Heaps

- · Heaps
- Properties
- · Deletion, Insertion, Construction
- · Implementation of the Heap
- Implementation of Priority Queue using a Heap
- An application: HeapSort

Heaps (Min-heap)

Complete binary tree that stores a collection of keys (or key-element pairs) at its internal nodes and that satisfies the additional property:

key(parent) ≤ key(child)

REMEMBER:

complete binary tree
all levels are full, except the last one, which is left-filled

15

9

7

20

2

We store the keys in the internal nodes only

S

15

9

After adding the leaves the resulting tree is full

Heap Construction

We could insert the Items one at the time with a sequence of Heap Insertions:

$$\sum_{k=1}^{n} \log k = O(n \log n)$$

But we can do better

17

Bottom-up Heap Construction

 We can construct a heap storing n given keys using a bottom-up construction

18

Calculating
$$O(\Sigma(L-i)\cdot 2^{i})$$

Let $j = L-i$, then $i = L-j$ and
$$\sum_{j=0}^{L} (L-i)\cdot 2^{j} = \sum_{j=0}^{L} j \ 2^{L-j} = 2^{L} \sum_{j=0}^{L} j \ 2^{-j}$$

Consider $\sum_{j} \cdot 2^{-j}$:
$$\sum_{j} \cdot 2^{-j} = 1/2 + 2 \ 1/4 + 3 \ 1/8 + 4 \ 1/16 + \cdots = 1/2 + 1/4 + 1/8 + 1/16 + \cdots = 1/2 + 1/4 + 1/8 + 1/16 + \cdots = 1/2 + 1/8 + 1/16 + \cdots = 1/4$$

$$\sum_{j} \cdot 2^{-j} = \sum_{j} \cdot 2^{-j} \cdot 2^{-$$

$$2^L \sum_{j=1}^{\ell} j/2^j \qquad \leq \ 2^{L+1}$$
 Where L is O(log n) So, the number of swaps is \leq O(n)

When there are i nodes left in the PQ: $\lfloor log \ i \rfloor$

⇒TOT =
$$\sum_{i=1}^{n} \lfloor \log i \rfloor$$
= $(n+1)q - 2^{q+1} + 2$
where $q = \lfloor \log (n+1) \rfloor$

$$O(n \log n)$$