Heaps

- Heaps
- Properties
- Deletion, Insertion, Construction
- Implementation of the Heap
- Implementation of Priority Queue using a Heap
- An application: HeapSort

Proof:

- Let h be the height of a heap storing n keys
- Since there are 2^{i} keys at depth $i=0, \ldots, h-2$ and at least one key at depth $h-1$, we have $n \geq 1+2+4+\ldots+2^{h-2}+1$
- Thus, $n \geq 2^{h-1}$, i.e., $h \leq \log n+1$

Notice that

- We could use a heap to implement a priority queue
- We store a (key, element) item at each internal node

Bottom-up Heap Construction

- We can construct a heap storing n given keys using a bottom-up construction

But we can do better

Calculating $O\left(\Sigma(L-i) \cdot 2^{i}\right)$

$$
\begin{aligned}
& \begin{array}{l}
\text { Let } j=L-i, \quad \text { then } i=L-j \text { and } \\
\sum_{i=0}^{L}(L-i) \cdot 2^{i} \quad=\sum_{j=0}^{L} j 2^{L-j}=2 L \sum_{j=0} j 2^{-j}
\end{array} \\
& \text { Consider } \sum_{j-2-\mathrm{j}} \\
& \sum j \cdot 2^{-j}=1 / 2+21 / 4+31 / 8+41 / 16+\cdots \\
& =1 / 2+1 / 4+1 / 8+1 / 16+\cdots<=1 \\
& +1 / 4+1 / 8+1 / 16+\cdots<=1 / 2 \\
& +\quad+1 / 8+1 / 16+\cdots<=1 / 4 \\
& \sum_{j \cdot 2-j}<=2 \\
& \text { So } 2 L \sum j 2^{-j}<=2 \cdot 2^{L}=2 n \quad O(n)
\end{aligned}
$$

Analysis of Heap Construction

Number of swap

At level ithe number of swaps is

$\leq L-i$ for each node
At level i there are $\leq 2^{\text {i }}$ nodes
Total: $\leq \sum_{i=0}(L-i) \cdot 2^{i}$

$$
2^{L} \sum_{\mathrm{j}=1} \mathrm{j}^{\mathrm{j}} \quad \leq 2^{\mathrm{L}+1}
$$

Where L is $O(\log n)$
So, the number of swaps is $\leq O(n)$

Implementation of a Priority Queue with a Heap

