
Wavefront - Design, Analysis,
and Selected Testing of a

Complete Martian Spacecraft
System

a project presented to
The Faculty of the Department of Aerospace Engineering

San José State University

in partial fulfillment of the requirements for the degree
Master of Science in Aerospace Engineering

by

Stanley Marcus Krześniak
August 2023

approved by

Dr. Periklis E. Papadopoulos
Faculty Advisor

Marcus S. Murbach, L. Seth Schisler
NASA Ames Research Center

© 2023

Stanley Marcus Krześniak

ALL RIGHTS RESERVED

ABSTRACT

Wavefront - Design, Analysis and Selected Testing of a Complete Martian Spacecraft
System

Stanley Marcus Krześniak

In the coming years and decades, Mars will become a major destination, with

several space agencies sending uncrewed spacecraft - and eventually human-rated

missions. While humans will undoubtedly make the largest impact in terms of

scientific output, uncrewed flagship-class spacecraft and smaller space probes will

continue to have a substantial role in delivering science - and technology

demonstrations - before, during, and after an initial human visit. Wavefront, a

complete, NASA Flagship-class multiprobe mission, would deliver twelve rovers,

twelve landers, and 120 nanoprobes to the surface of Mars, as well as one orbital relay

to a sun-synchronous orbit. This will enable vast amounts of science returns and

prepare humans for exploration on Mars.

In this thesis, a systems engineering and program management approach is

taken to define, design, and develop a complete mission, as well as deliver certain

components to demonstrate some concepts. An extensive literature review surveys

notable successes and challenges from multiple world space agencies on missions to

the Moon and Mars to avoid reinventing the wheel. The definition of the mission

follows, starting from government-level regulatory and scientific requirements. With

this baseline established, the top-level engineering requirements are then established

within the purview of scientific and regulatory frameworks.

A design summary of hardware nanoprobe development, a universal electrical

power system, and fluid dynamics analysis of entry, descent, and landing hardware

follows. Due to a limited amount of time and a tremendous amount of detailed design

work that went on up until the final months of the project, much of the specifics were

omitted. The code for multiple hardware pieces has been included in the Appendix to

prove that full-stack engineering development occurred.

iv

"Let us pick up our books and our pens. They are our most powerful weapons.

One child, one teacher, one book, and one pen can change the world. Education is

the only solution." - Malala Yousafzai

One person with the appropriate education and connections can change the

world for the better. In this broken world full of strife and rapid climate change,

humanity needs someone. Are you the avalanche?

v

Acknowledgements

I owe it to a lot of people on this long journey:

- First and foremost: my mom, dad, and sister for their advice, and

unconditional and unwavering support for everything I’ve done;

- Marcus Murbach, although a reviewer, deserves additional acknowledgements

for all the life advice and being able to stick with my occasional but necessary

hardheadedness;

- L. Seth Schisler, also a reviewer, for the lucid advice, theory, and practice of

political science, especially for my personal enrichment;

- Ian (Sazh), Maisie (Fang), Evan (Setzer), Aysha (Yuna), Steven (4S), Javaneh,

Joon, Joey, Andreana (Serah), Jesse (Snow), Svitlana (Lightning), Asma (Aerith),

Hieu, Devin, and Derek for being some of my best friends;

- The SEEDS 1 team (many of whom are my good friends): Christian Espinoza

(Garlond), Dominic Campbell, Eduardo Marchan, Jay Mehta, Kobi Boateng, Louie

Freitas, Maxime Carpentier, the SETI Institute, Dr. Nathalie Cabrol, and the Hines

Family Foundation/John Hines, for whom I owe the seed - the idea and concept - of

my masters project to bloom into something I totally did not expect;

- And finally, my senior design team. I am merely continuing the amazing work

that Afrah (A2), Kayla (21O), and Nataliya (4B) put into SEEDS 1 and 2.

vi

This masters project was supported by a Space Act Agreement between San

José State University and the NASA Ames Research Center.

The SEEDS-A sensor network development project, detailed in Chapter 5,

Section 1, was funded in part through John Hines Technology Associates LLC, the

SETI Foundation, and NASA Grant NNA15BB01A.

Products and services mentioned as part of this report are not endorsements.

Any perceived or implied endorsements do not imply favorability over any other

product or company.

vii

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Literature Review . 8

1.2.1 Lunar Robotic Systems . 10

1.2.2 Martian Robotic Systems . 18

1.3 Project Proposal . 52

1.4 Methodology . 52

2 Problem Scope 56

2.1 A Word on Management and Expectations 56

2.2 Political Requirements . 57

2.3 Peer-Reviewed Science Requirements 63

2.3.1 Goal II . 65

2.3.2 Goal III . 68

2.3.3 Goal IV . 69

2.4 Regulatory Requirements . 72

2.4.1 Program Formulation . 73

2.5 Work and Cost Breakdown . 74

2.5.1 Projected Program Lifecycle 75

2.5.2 Project and Work Breakdown 81

2.5.3 Cost Breakdown . 87

2.6 Conclusion . 93

viii

3 Engineering Constraints 94

3.1 MSPSP . 95

3.2 Inhibit Scheme . 98

3.3 Launch Vehicle Identification . 100

3.4 Launch, Cruise, and Arrival . 101

3.5 Communications . 105

3.6 Power . 106

3.6.1 Nuclear . 106

3.6.2 Solar . 107

4 Architectural Design Process and Concept of Operations 109

4.1 Architecture, Version 1 . 109

4.1.1 Architectural Revision Rationale 114

4.2 Architecture, Version 2 . 116

4.3 Architecture, Version 3 . 118

4.4 Version 4 and Shinra RTG . 118

4.5 Version 5 and 6 - New Space LSP Version 121

4.6 Version 7 - Final Version . 123

4.7 Complete Concept of Operations . 123

5 Nanoprobe Design, Development, and Testing 130

5.1 Version 0 - SEEDS-A . 130

5.1.1 Work Breakdown . 130

5.1.2 Product Breakdown . 131

5.2 Revision 1 . 131

5.3 Revision 2 . 131

5.4 Gateway Electronics . 132

ix

6 Entry, Descent, and Landing System 145

6.1 Assumptions and Initial Requirements 145

6.2 Individual Cases . 149

6.2.1 Hypersonic, Mach 18 and 9.79 149

6.2.2 Mach 2.1 . 162

6.2.3 Mach 1.4 - Parachute Deployed 165

6.2.4 Mach 0.16 - Pre-Deployment 169

6.2.5 Fuel Margin Validation . 174

7 Universal Electrical Power System 176

7.1 Design . 176

7.1.1 Dual-Redundant CPU Topology 179

7.2 System-level I&T Plan . 180

8 Next Steps 181

8.1 Report Work . 181

8.2 Research and Development . 181

8.3 Mission Proposal . 183

9 Conclusion 184

Appendices 203

Appendix 1 MATLAB (R) 2D hypersonic propagator code 204

Appendix 2 RF Gateway I&T Unit 215

Appendix 3 Etro Thermocouple Test Code 234

Appendix 4 Gateway Code - Main Processor 242

x

Appendix 5 Gateway Code - Inclinometer and Strong-motion Seismometer 344

Appendix 6 Node Code - Node Version 2 358

Appendix 7 ADCS Development - Noise Characterization 364

Appendix 8 SEEDS-A Assembly and Deployment Manual 371

8.1 Instrument Description . 372

8.2 Post-Arrival Conditions and Deployment Risks. 373

8.2.1 Tools used in Deployment. 374

8.2.2 Repair Procedures. 374

8.2.3 Site survey. 376

8.2.4 Deployment procedures. 376

xi

List of Tables

1.1 Sojourner Rover Specifications [1]. 31

1.2 Maximum Mars/Earth Communications Distance (Mm) vs Data Rate

and Transmitter Power [2]. For comparison, 1 astronomical unit (AU)

is 150 Mm. 37

1.3 Perseverance Instruments [3] . 44

1.4 Zhurong Instruments [4] . 48

1.5 Tianwen Instruments [4] . 49

2.1 Political Alignment Requirements . 64

2.2 MEPAG Goal II Objectives . 66

2.3 MEPAG Goal III Objectives . 67

2.4 MEPAG Goal IV Objectives . 70

2.5 Major Program Review Acronyms in Systems Engineering [5] 77

2.6 Wavefront Basic Cost Breakdown . 88

3.1 NFPA 704 Standard "Fire Diamond" - Health[6] 95

3.2 NFPA 704 Standard "Fire Diamond" - Flammability[6] 96

3.3 NFPA 704 Standard "Fire Diamond" - Reactivity[6] 96

3.4 AFSPCMAN 91-710 Inhibit Requirements 99

4.1 Derived Insolation at Mars . 115

6.1 CFD Analysis Assuptions . 149

6.2 Major Fluent Parameters, Initialization Run 154

xii

6.3 Park 8-species Mars atmospheric model - reactions [7]. 156

6.4 Park 11-species Earth atmospheric model [7]. 175

7.1 2-bit Exclusive-NOR gate truth table. 178

8.1 Summary of individual subsystems remaining to be documented . . . 182

8.1 Gateway . 372

8.2 Node . 372

8.3 Gateway . 374

xiii

List of Figures

1.1 AGC at Computer History Museum 2

1.2 Core memory module example . 3

1.3 NASA Mars Sample Return Conops 7

1.4 Ranger VII Spacecraft . 10

1.5 Russian Ye-6 No.13/Luna 9 Spacecraft 11

1.6 Ranger 1 Foot Pad . 12

1.7 Russian Luna XIII Spacecraft . 13

1.8 Surveyor 3, Apollo XII, and Conrad 15

1.9 Luna 16 Model . 15

1.10 Lunokhod 1 Model . 16

1.11 Mariner IV Spacecraft . 18

1.12 Venera 7 Model . 19

1.13 PrOP-M rover model . 20

1.14 Mars 3 Cutaway . 21

1.15 Viking 1 Lander Model . 22

1.16 Viking 1 Biological Experiment Package 24

1.17 Mars Observer . 25

1.18 Mars Global Surveyor . 26

1.19 MGS Affected Processor Register . 27

1.20 MGS Resulting Processor Error . 28

1.21 Mars Pathfinder Lander . 29

1.22 MPF and Sojourner Model . 30

xiv

1.23 MESUR CONOPS . 31

1.24 MESUR in Delta LV configuration 33

1.25 GPHS CAD, full unit . 35

1.26 GPHS CAD, Exploded . 36

1.27 MESUR Network Data Rate . 37

1.28 DS2 Probes with Mounting Hardware 38

1.29 Mars 2020 skycrane and rover . 40

1.30 Perseverance Drill Bits . 41

1.31 RIMFAX Instrument Context . 42

1.32 RIMFAX electronics . 42

1.33 RIMFAX Test Results . 43

1.34 Mars Helicopter on sol 46 . 45

1.35 Mars Sample Fetch Helicopter Concept 46

1.36 Zhurong and Lander System . 47

1.37 Tianwen 1 Engineering Drawings . 50

1.38 Tianwen 1 Cruise Stage and Orbiter 51

1.39 Zhurong Imaged by MRO . 51

2.1 U.S. Department of Defense Budget 58

2.2 U.S. Federal Budget . 59

2.3 NASA FY2024 Proposed Budget . 61

2.4 Equivalent Human Dosages . 71

2.5 Systems Engineering Key Decision Points 76

2.6 Systems Engineering Project Lifecycle 76

2.7 Project Management as a Control System 82

2.8 Level 1 PBS . 83

xv

2.9 Level 5 PBS for EIT Transmitter . 84

2.10 WBS Overall . 84

3.1 Dual-fault tolerant inhibit scheme . 99

3.2 Military-grade sealed switch . 100

3.3 Dual-fault tolerant electromechanical inhibit 101

3.4 Hohmann transfer tradeoff . 103

3.5 SpaceX Falcon 9 with Wavefront . 103

3.6 First iteration of free-flyer cruise stage 104

3.7 AFRL Roll-out Solar Array . 108

4.1 MOOG Space and Defense ESPA Ring 109

4.2 Nines Independent Mission - Backshell Internals 110

4.3 Nines Independent Mission - Full Concept 111

4.4 Pathfinder Concept of Operations Representing Nines v1 112

4.5 Nines Independent Mission - Concept of Operations 113

4.6 Solar Cell Area Visualization . 114

4.7 Nines Probes v2 Scale . 116

4.8 Rover Dropping off Nines Nodes . 117

4.9 Wavefront complete system draft . 119

4.10 Shinra RTG Render, Bottom . 119

4.11 Shinra RTG Render, Top . 120

4.12 Shinra RTG Render, Mounted . 121

4.13 Free-flyer version of Wavefront . 122

4.14 Notional Wavefront, with orbiter . 122

4.15 Complete Mission Rendering in Orbit 124

4.16 SpaceX Falcon 9 with Wavefront . 125

xvi

4.17 Wavefront CONOPS, frame 1 . 126

4.18 Wavefront CONOPS, frame 2 . 128

4.19 Wavefront CONOPS, frame 3 . 129

5.1 SEEDS-A Master Product Breakdown Structure 135

5.2 SEEDS-A Mechanical Layout . 136

5.3 SEEDS-A Mechanical Internals . 137

5.4 SEEDS-A DIN Rail . 138

5.5 SEEDS-A Gateway Sensor Head . 139

5.6 Serial Camera, Initial Picture . 139

5.7 Windsonic Testing . 140

5.8 SEEDS-A Node Sensor Head . 140

5.9 Nines R1 in test environment . 141

5.10 Nines in fully assembled form . 141

5.11 Nines with stack removed . 142

5.12 Nines upper stack . 142

5.13 Nines lower stack . 143

5.14 Gateway Complete Electronics . 143

5.15 Wavefront R1 electrical system prototype 144

6.1 Mars 2020 DGB Parachute . 146

6.2 InSight Reconstructed AOA . 146

6.3 InSight Reconstructed 3-sigma AOA 147

6.4 Stagnation Point Heat Flux on Schiaparelli 150

6.5 Wavefront Aeroshell Tracing in SpaceClaim 150

6.6 Non-gray radiative bands . 151

6.7 DesignModeler (R) mesh of 2.9M cell mesh 152

xvii

6.8 DesignModeler (R) control volume 153

6.9 DesignModeler (R) control volume 156

6.10 Mach 9.79 convergence plots . 158

6.11 Mach 9.79 pressure results . 159

6.12 Mach 10 surface pressure comparison against MSL 159

6.13 Mach 10 radiative response . 160

6.14 Mach 10 radiative response, MSL . 160

6.15 Mach 10 radiation temperature . 161

6.16 Mach 10 static temperature . 161

6.17 Mach 2.1 Settings Dialog . 163

6.18 InSight Reconstructed Trajectory Data 163

6.19 Mach 2.1 and Below Mesh Setup . 164

6.20 Mach 2.1 Convergence . 164

6.21 Mach 2.1 Aerodynamic Force Convergence 165

6.22 Mach 2.1 Results, Panel 1 . 165

6.23 Mach 2.1 Results, Panel 2 . 166

6.24 Mach 2.1 Results, Panel 3 . 167

6.25 Mach 1.4 Boundary Conditions . 167

6.26 Mach 1.4 CAD with Parachute Off-Axis 168

6.27 Mach 1.4 Initial solution . 168

6.28 Mach 1.4 Transient Time Stepping Residuals 169

6.29 Mach 1.4 Coefficient of Drag, Total 170

6.30 Mach 1.4 Capsule Drag . 170

6.31 Mach 1.4 Parachute Drag . 171

6.32 Mach 1.4 Scene at 331.4ms Flow time 171

6.33 Mach 0.16 Residuals . 172

xviii

6.34 Mach 0.16 Drag Convergence Plot . 173

6.35 Mach 0.16 Lift Convergence Plot . 173

6.36 Mach 0.16 Total Cd Convergence . 174

7.1 Claire II Draft Electrical Overview 177

7.2 Claire II GPSDO Rubidium Atomic Clock 177

7.3 Claire II Potentiometer Power Supply and CPU Watchdog 178

7.4 Claire II Solar Wing Power Regulator 179

7.5 Claire II Battery Charging Subsystem 180

xix

1. Introduction

1.1 Motivation

Humanity’s insatiable appetite to know more and to answer some of the most

fundamental open scientific questions has continued to grow since the dawn of the

Space Race. New fields of research and ones enabled by space exploration have

opened up and florished. Space exploration has arguably accelerated technological

advancement, despite the dynamic and complex nature of relations within humanity.

A prime and timeless example of this is computing in aerospace. To enable

humans to navigate to - and land on - the Moon with incredibly limited

computational resources with the Apollo Guidance Computer (AGC), two inventions

had to occur: the real-time operating system (RTOS) [8], and the virtual machine [9].

The AGC is shown in Figure 1.1.

Today, personal computers, smartphones, and even some smartwatches are fast

enough to perform hundreds, if not thousands of simultaneous tasks without the need

for an RTOS. [10]. However, in requirement-constrained, mission-critical

environments such as in aerospace and defense, RTOSes are still, and will always be,

necessary. For example, an RTOS was foundational to the AGC because the

processor had to perform multitasking between operating a landing radar,

continuously computing the state vector of the spacecraft, controlling the reaction

systems, among many other tasks. [8]. Today, in computer engineering for aerospace

and defense applications, it is highly common to design physically separate processor

and memory boards (and for extremely high-speed, highly time-sensitive tasks,

application specific integrated circuits (ASICs)) to perform truly simultaneous,

overlapping processing [11]. This was simply not possible in the Apollo program: the

2

Figure 1.1: Apollo Guidance Computer shown on display at the Computer History
Museum in Mountain View, CA.

AGC itself was 32 kg and consumed 70 watts [12] - compared to milligrams and

milliwatts of similarly specified processors as of writing [13, 14].

The other major challenge of the first Space Race was random access memory

(RAM) and program memory. RAM of the day was exceptionally expensive: it

needed to be extremely fast, and be able to tolerate constant reading and writing

without failure. On top of that, it needed to be robust against the rigors of

spaceflight and the testing regimen: extreme G forces, heavy launch vibration,

temperature extremes, and radiation. CMOS, or silicon-based memory, had not yet

become small, power efficient, nor reliable enough in even the production phase [15].

Additionally, the effects of radiation on silicon-based memory were not yet well

understood. This is apparent due to the lack of journal publications on the subject

before 1972 [16], and to the fact that the first production CMOS memory was

3

released in 1970 [17]. Therefore, core memory (core) filled this role. Core, shown in

Figure 1.2, was the appropriate, tried-and-true solution of the time. Core was created

out of microscopic ferrite donuts woven with thin magnet wire. By energizing and

sensing the differences in current sent through the woven wires, bits could be read

and written. It is highly resistant to radiation and strong magnetic fields.

Figure 1.2: Core rope memory module storing 1024 bits. Credit: Wikimedia Founda-
tion.

Despite the robustness, RAM and program memory were still physically large

and extremely expensive - at the breakeven point of silicon-based RAM and core from

1970-1972, prices were $10 to $28 per kilobit [17]. Figure 1.2 shows how

space-inefficient these modules are: the entire chip holds only 128 bytes. Additionally,

the AGC had a limited number of processor instructions, due to the extraordinary

size and mass of the computer compared to the vehicle. Adding native instructions to

read-only program memory (ROM) increased cost and mass dramatically. To offset

this, the MIT Instrumentation Laboratory developed the virtual machine: a piece of

software that emulates a computer’s native instruction set. Complex instructions,

such as double or triple precision floating point matrix multiplication (which the

AGC processor did not natively support), could then be implemented in an extremely

4

limited ROM. By using an instruction interpreter that had its own language, a much

more compact program could be stored and executed, at the expense of slower

execution speed [9].

Whether it be from virtual machines and RTOSes of the Apollo project or the

early advances in autonomy for interplanetary exploration from the Soviet space

program, the desire to compete on the global, geopolitical stage allowed monumental

advances in technology in the short span of a decade. To this day, the same VM and

RTOS design pervade modern electrical systems of much higher (and lower)

sophistication for products as niche as temperature tracking in foodstuffs [13].

Tracking food as it moves from farm to plate is important in a world of highly

constrained resources and high demand. Characterizing the limitations of this global

system is only possible with global cooperation, which, as of writing, is increasingly

difficult to come by. The world is in the midst of what might be considered the

Second Space Race. As in the 1950s and 1960s, where geopolitical tensions befell the

world and nearly drove life as we know it to extinction1 , the world is faced yet again

with the same - if not greater - potential for a real-life rendition of Bethesda’s Fallout.

Add to that the threat of human timescale climate change, which has seemed to

accelerate rapidly in the recent past.2 In the big picture, the desire to answer

fundamental open scientific questions includes such existential ones as "Where do we

come from" or "Are we alone in this universe" is driven by advances in technology. As

America applied technology from the Apollo program to every part of life, the world

may do the same for the Second Space Race to the Moon and Mars. Technology itself

will not solve the acute geopolitical issues at hand, but the correct use of
1 The Cuban Missile Crisis
2 Humans generally cannot comprehend change on geological timescales. Considering the over-

whelming geological evidence for an Earth much warmer than today in the past, Mother Nature has
tolerated things more severe than humans.

5

technological and political tools tools at hand just might.

It is therefore vital to demonstrate cooperation on a global scale to create and

utilize such tools. They are borne of large-scale engineering and scientific endeavors.

As discussed in the prior paragraphs, to this day, the same tools and methods for

obtaining funding and building a space exploration mission are still being studied and

utilized. With them, the largest space agencies today are investing heavily into lunar

exploration partly because an incremental, stepping stone approach is necessary to

send humans to Mars, which will be further discussed later. Part of this incremental

approach is to send ever more complex robotic missions to Mars. This prepares the

acting party (a governmental agency or a private corporation, or both) to the

complex choreography of human deep spaceflight, and to site selection for resource

utilization and further scientific value only realized by a human visit.

Indeed, on the scientific objectives, more time and in-situ data is needed from

more parts of Mars, especially in identifying locations with large deposits of water in

areas of thicker atmospheres. Once again, an internationally available body of

scientific knowledge is required to advance this. On the stairstep of flying to the

Moon, it is possible to bring everything with the exploration system, including the

fuel to come back - as demonstrated by the Apollo program. However, when going to

Mars, it is highly impractical to bring everything with the exploration system.

According to the Tsiolkovsky equation (in Section x), only 0.2% of the mass of a

launch vehicle launching from Earth is allowed as the lander mass and life support

systems, if the vehicle were to return to Earth. To put this into perspective, if the

Apollo Lunar Module were used to get to the surface of Mars and come back to

Earth, the entire rocket getting it there would be 8,200 metric tons (mt). This is in

comparison to the 2,965 mt that the Saturn V weighed in during the most

science-heavy Apollo missions. This does not even include the additional mass

6

required for life support, spare parts, and other important omissions for a multi-year

journey, which would further exponentially increase the mass of such a launch vehicle.

While the oft-discussed Mars Sample Return (MSR) mission has very high

complexity involving many separate missions and vehicles, MSR is a conceptual

baseline for a human-rated mission. Figure 1.3 illustrates the mininal number of

assets to achieve a successful mission. However, in a human-rated mission:

1. an appropriate site must be selected to maximize scientific returns for

humans in-situ, which is the scope of this work,

2. the safety of the site must be guaranteed using robotic missions sent to the

location, since, for example, the surface soil might be unpredictable as in [18] and

spelled out as a requirement in [19],

3. the site or nearby sites must have adequate resources to provide water and

fuel for in-situ resource utilization (ISRU), since current plans require ISRU to be a

part of the mission [19],

4. habitats, ISRU plants, all-terrain vehicles (ATVs), and potentially an ascent

stage must be sent on separate missions ahead of time, and of course,

5. an interplanetary transfer vehicle (ITV) with the capability of operating

reliably and sustaining astronauts for years must be designed, built, and tested.

Therefore, while the MSR mission is tremendously complex, it is just a drop in

the bucket compared to a human-rated mission. Thus, robotic exploration has a

sizable role to play in paving the way for humans to walk the surface of Mars. In all

phases of site selection, many robotic assets will be needed, most of which will need

to act autonomously. For example, Mars 2020’s Lander Vision Descent System

(LVDS) performed a very complex site-selection, trajectory computation, and landing

autonomously [20].

To some in computer and embedded systems engineering, the Internet of

7

Figure 1.3: Concept of operations for NASA’s Mars Sample Return mission, including
all assets. From bottom left to top left counterclockwise: NASA Mars 2020/Persever-
ance, ESA Sample Fetch Rover, ESA Sample Fetch Lander, NASA Sample Retrieval
Lander, NASA Mars Ascent Vehicle, and ESA Earth Return Orbiter. Credit: NASA/-
Caltech Jet Propulsion Laboratory

Things (IoT) paradigm might be an overused phrase, but given appropriate

adaptation for space-based operation, it may provide a robust framework for

autonomous communication and information sharing on the large scales necessary.

Examples of IoT-like systems and frameworks are NASA’s Starling constellation [21],

NASA’s EDSN swarm [22], NASA’s THEMIS constellation [23], space-based

delay-tolerant networking [24], and compact atomic clocks for precise interplanetary

references in base stations or gateways [25].

A major objective of this thesis is to design a mission architecture that is

somewhere in between MSL/Mars 2020, and MSR. As previously mentioned,

gathering more in-situ data for human lander site selection is an important objective.

Page 549 of [19] spells this out in terms of "trafficability", or ability to drive and walk

over a surface safely. There is even an Apollo-era precedent from the Soviet Union for

surface safety: Luna XIII [26]. Meeting this objective will require significantly scaling

up the number of spacecraft and lowering the development cost of such a network of

8

fixed and mobile spacecraft. To date, no such distributed, IoT-like dedicated mission

has launched to any interplanetary destination.

One main tradeoff study drives IoT design: power versus mass versus

bandwidth [27]. In all spacecraft, this trade study becomes a very tightly coupled

system due to launch vehicle mass limits within a set budget, power budgets when

operating off of a nuclear power source or solar panels when far from the Sun, and the

selection of relevant scientific data, which is itself heavily constrained by power

availability and mass limits. This does not include all the minutiae of electrical

engineering constraints explored in [27]. The coupling of this article and space-based

constraints will be further discussed in Chapter 9.

The main reason the motivation section is partly a literature review on

computer engineering is to illustrate the fact that much of the engineering that goes

into spacecraft is of software, firmware, and computers. Indeed, much of the effort of

this thesis went into those subjects. This thesis serves to demonstrate to an aerospace

engineer that it is not practical to design one’s own hardware without subject matter

experts (SMEs) in computer, electrical, and software engineering. A specialist in

aerospace engineering project management is also needed to dictate the appropriate

requirements to said SMEs.

1.2 Literature Review

Due to the very broad nature of this thesis, the literature review is broken up

into sections. Further, material from the literature that describes an individual

system or method will fall under that respective system’s chapter. Only full

spacecraft systems for Moon and Mars are covered in the actual literature review.

The majority of baseline information on lunar and Martian missions and systems

9

draws from Asif Siddiqi’s Beyond Earth, a comprehensive NASA Headquarters

chronicle of all interplanetary space missions from 1958 to 2016, from all space

agencies [28]. Additional references are included as necessary.

The depth of this literature review is intentionally and necessarily extensive:

most selected spacecraft in this review represent "firsts" and "atttempted firsts". A

systems-level approach to designing an entire mission requires the engineer and

system architect to have a good idea of lessons learned for as many systems as

possible, reaching as far back as possible. While Wavefront is a mission for Mars,

system architectures from lunar systems are also very useful: except for an

atmospheric package (heat shield and parachute), autonomous exploration systems

for the Moon are the nearly the same as ones designed for Mars.

For example, the Soviet Mars 3 spacecraft, launched in May 1971, was the first

spacecraft to make a soft landing on another planet. It included a tethered rover that

was designed to "walk" with skids across the surface. However, within 20 seconds of

landing and powering on its instruments, the spacecraft stopped transmitting. The

cause of failure was determined to be static buildup due to the unfortunate timing of

landing during a global dust storm: dust caused static buildup on the spacecraft,

which eventually disabled it [28]. In designing a mission, being aware of this data

point is important: operating during a dust storm requires static-mitigating operating

procedures and engineering design, especially for nuclear-powered assets that can

operate through heavy sky cover in a dust storm.

10

Figure 1.4: The Ranger VII Spacecraft. Credit: NASA/Jet Propulsion Laboratory.

1.2.1 Lunar Robotic Systems

1.2.1.1 Ranger VII

The first successful mission to return data about the surface of another celestial

body, Ranger VII in Figure 1.4 was the product of 13 consecutive stinging failures by

the Americans to return data about the Moon in close proximity. It offered a plethora

of instruments, including cosmic radiation, dust, helium vector magnetometer, and of

highest importance, an imaging system that used analog television cameras. Ranger

VII weighed 365.6kg. 4,308 pictures were transmitted before impact, and scientists

were able to conclude that the lunar surface was solid and smooth enough to land on

[29, 28]. This paved the way for the Surveyor series of American spacecraft, which

landed on the surface of the Moon.

11

Figure 1.5: The Luna 9 spacecraft. Credit: NASA NSSDC.

1.2.1.2 Luna 9/Ye-6 No.13

But before the Americans could achieve a soft landing, the Soviets beat them to

it. The 99kg Luna 9, in Figure 1.5, was designed and built by NPO Lavochkin. It

landed on the Moon on February 3, 1966 using an airbag-based system, in addition to

a novel, petal-based deployer that ensured the spacecraft would be deployed right side

up [28]. This airbag, petal, and retropropulsion system was likely inspiration for the

American Mars Exploration Rover and Pathfinder rover lander systems, covered in

the next section. Owing to the fact that the Soviets had 12 successive failures in

landing at the Moon, their scientific payload was minimal and consisted of a

panoramic camera and a radiation sensor. The fact that they were able to land, not

sink into the lunar regolith as some models predicted [30], and achieve scientific

success before the Americans was a major milestone.

Luna 9 was battery powered and operated its radio for only 8 hours and 5

minutes. Radiation information was taken at the surface; the dosage was estimated at

30 mRad per day [31]. Nine images, including panoramas, were taken.

12

Figure 1.6: A picture of Surveyor 1’s foot pad from it’s zoomable television camera.
The softness of the regolith is visible. Credit: NASA/Jet Propulsion Laboratory.

1.2.1.3 Surveyor 1

NASA finally had its day of glory when Surveyor 1 landed on the surface of the

Moon on June 2, 1966 [28]. The 292kg probe achieved the first true soft landing on

the Moon - a necessary step for humans to land and leave the Moon safely. Due to

the string of failures to even crash a spacecraft into the lunar surface, JPL engineers

were very surprised when Surveyor 1, the first spacecraft of a series of new spacecraft,

landed flawlessly [32].

Surveyor 1, similar to Luna 9, had a minimal number of scientific instruments:

it only had a camera. However, the camera boasted a zoomable lens, which enabled

highly detailed panoramas and in-depth studies of soil mechanics (as shown in Figure

1.6). By the end of the extended mission (the spacecraft managed to survive several

lunar day-night cycles), the spacecraft returned 11,440 images.

On the engineering side, Surveyor carried many more instruments:

- Strain gauges were mounted on the feet and mast to validate calculated loads

and to infer soil mechanics,

13

- Temperature sensors to maintain control of temperature-regulated enclosures,

- Sun trackers and a Canopus (star) tracker for attitude knowledge,

- A radar for landing engine burn timing and surface reflectivity experiments,

and

- Over 100 other unlisted engineering sensors [33].

The spacecraft was powered by an 85-watt solar array, and stored energy in a

silver-zinc battery.

Figure 1.7: A full-scale model of the Luna XIII lander. Credit: NPO Lavochk-
in/Roscosmos.

1.2.1.4 Luna XIII

Luna 13 landed on the surface at Oceanus Procellarum on Christmas Eve, 1966,

marking the last lunar mission of a very busy year in interplanetary space [28]. This

113kg probe leveraged the same design as its precedessors, including the landing

system, but included a wide array of scientific instruments:

- Two television cameras,

- Four radiometers to measure heat and heat flow at the surface,

- A penetrometer to measure the softness of the lunar regolith,

- A densitometer with a 137Cs gamma ray source to measure regolith density,

14

- A dosimeter measuring background radiation, and

- A high-resolution IMU to determine landing loads and further information on

soil softness [26].

To simplify the design, the entire spacecraft electronics package was kept inside

a hermetically sealed sphere at 1.2 atmospheres. This allowed the simplification of

thermal management, and continued a long heritage of using spherical pressure

vessels since Sputnik 1.

According to Siddiqi’s research in Russian and other archives, the scientific

results from Luna XIII proved to be valuable for future landers [28]:

- The penetrometer recorded a 4.5cm depth when a small solid rocket motor

forced this instrument into the ground.

- The densitometer, after integrating reflected gamma rays from its 137Cs

source pointed at the surface, yielded a density of 0.8kg/cm2.

- The surface temperature, indicated by the radiometers, was found to be

117 ± 3oC at noon.

- The IMU, recording landing forces, was able to determine regolith structure

down to 20-30cm.

- The radiation sensor, in line with Luna 9 results, pointed towards a "less than

hazardous" dosage in human terms.

1.2.1.5 Surveyor III

Surveyor III, in terms of instrumentation, was largely the same spacecraft as

Surveyor I, but also carried a scoop and shovel to determine the bearing strength of

the lunar regolith [28]. From Figure 1.8, this 296kg probe was visited by Apollo 12 -

the only uncrewed mission that a crewed mission caught up to.

The major accomplishment of Surveyor 3 was in gathering more information on

15

Figure 1.8: The Surveyor 3 spacecraft, Apollo XII lander, and astronaut Pete Conrad.
Conrad is inspecting components on the inert Surveyor 3. This was the first, and
only time as of writing where a crewed mission caught up to an uncrewed mission to
investigate it. Perhaps, someday in the future, this feat might be replicated on Mars.
Credit: NASA.

soil science, a continued theme from past lunar landers [34]. Through digging four

trenches and performing 13 impact tests in the regolith, the strength of the soil was

determined to be 0.7 kg/cm2, similar to wet sand. This was sufficient strength to

support a much heavier lunar lander, i.e. Apollo [28].

Figure 1.9: A model of the Roscosmos Luna 16 spacecraft. The scoop and spiral
helical antenna are prominent. Credit: Asif Siddiqi.

16

1.2.1.6 Luna XVI

Luna XVI/16 was a monumental success for the Soviets. On 20 September

1970, a year and two months after Apollo 11, the 5,725kg Luna XVI descended to the

surface of the Moon. Upon landing, the spacecraft deployed a drill, and drilled for 7

minutes. The 35cm depth sample was raised into the return capsule, dumping 101

grams of lunar regolith. After spending just over a day at the surface, the 512kg

return stage powered up, firing a 42kg solid engine for 60 seconds. The probe landed

in Kazakhstan on September 24, 1970, after returning at 10.95km/s and experiencing

up to 350g of acceleration. [28]. This marked the first robotic sample return mission

from another celestial body.

Aside from the samples returned, Luna XVI carried a stereo imager and

radiation sensor, of which there is no publicly available data [35].

Figure 1.10: A high-resolution rendering of the Lunokhod 1 rover, part of the Luna 17
lander. To enable high-rate data return, a steerable Yagi was incorporated onto the
rover. A conical helix antenna provided a low-gain link. Credit: NASA NSSDC.

1.2.1.7 Lunokhod 1 Rover/Luna 17

Luna 17 was yet another major success story for the Soviets. The 5,700 kg

Luna 17 carried the Lunokhod 1 rover to the surface on November 17, 1970, the first

wheeled vehicle to traverse another celestial body, as well as the first robotic - albeit

17

teleoperated - vehicle to rove another celestial body [28]. They beat the Americans to

this feat - the first American wheeled vehicle was the Lunar Roving Vehicle, deployed

from Apollo 15 on July 30, 1971 [36].

Lunokhod 1 carried a generous number of scientific instruments:

- an imaging system with two low resolution TV cameras and four high

resolution "photometers",

- an X-ray spectrometer, similar to the APXS found on a few American

Martian rovers,

- a penetrometer to determine surface density and characteristics,

- a laser reflector to determine the precise location of the rover from Earth,

- a radiation detector,

- an X-ray telescope, and

- an odometer and speedometer [28].

A team of five cosmonauts were selected to drive the rover: commander, driver,

flight engineer, navigator, and narrow-beam antenna-guidance operator [28]. While

the rover was on the day side, the operators drove the rover for 322 Earth days over

9,930 meters. Tens of thousands of images were returned, several soil analyses were

performed, and the penetrometer was used hundreds of times. The rover outlived its

design life by almost 400% - it lasted 11 lunar days. The laser reflector continues to

be used to determine distances to the Moon.

Several lunar Soviet rovers followed for some years to come, the final successful

system being Luna 24.

18

Figure 1.11: The Mariner IV Spacecraft. Credit: NASA/Jet Propulsion Laboratory.

1.2.2 Martian Robotic Systems

1.2.2.1 Mariner IV

The first successful mission to return data about another planet in close

proximity, Mariner IV, followed the failure of Mariner III due to a launch vehicle

failure [28]. The 260.8kg spacecraft carried similar instrumentation to Ranger VII,

save for a trapped radiation detector for inferring the presence of a strong magnetic

field. Data transmission rate for much of the mission was 8.5 bits per second. [37]. 22

TV images of the surface were returned and a very weak magnetic field was detected.

At the time, it was still thought that there was intelligent life on Mars; these pictures

and the data supporting surface temperatures of -100oC put such theories to rest.

Mariner IV continued to be tracked until its propellant was exhausted, which was

markedly faster than anticipated. This was due to the spacecraft flying through a

comet tail; dozens of micrometeroid strikes were recorded by the cosmic dust detector,

which perturbed the spacecraft and caused loss of lock several times.

19

Figure 1.12: A model of the Roscosmos Venera 7 spacecraft. Credit: Emerezhko/Wiki-
media Foundation.

1.2.2.2 Venera 7

While clearly not a Martian spacecraft, it is worth reviewing Venera 7. The

1,180kg spacecraft was one of a series of many, highly successful Soviet probes to

Venus. On December 15, 1970, Venera 7 became the first spacecraft to land, and

transmit data from, the surface of another planet [28]. Roscosmos engineers and

scientists redesigned each successive Venera spacecraft to withstand higher and higher

pressures and temperatures, as each prior version was destroyed at some point in the

atmosphere. Venera 7 was designed to withstand 18MPa and 580oC, an extreme

amount of pressure that was not initially expected [38].

The probe entered the atmosphere at 11.5km/s and encountered over 200g of

acceleration, similar to other Venera probes. The parachute opened to a 97% CO2

atmosphere at 60km altitude. Data continued to be taken until perceived impact and

the mission was declared complete. However, upon further review of the signal at a

later date, an extremely weak and seemingly corrupt signal was recovered. After

applying corrections, the data showed Venera 7 landed on the surface of Venus and

continued to transmit pressure, temperature, and atmospheric composition data for

another 23 minutes [39]. This fact conclusively proved, just as Mariner IV did for

20

Mars, that there was neither water nor intelligent life on the surface of Venus, as a

pressure of 9.3MPa and 475oC with a 2.5m/s wind was recorded at the surface.

Figure 1.13: A model of the PrOP-M rover, a part of the Soviet Mars 2 mission.
Credit: T. Varfolomeyev.

1.2.2.3 Mars 3

Mars 3 followed the failure of the Soviet Mars 2 to perform a soft landing. After

an uneventful cruise, the entry, descent and landing of the 1,210kg lander on

December 2, 1971 occurred smoothly. Immediately after landing, the Mars 3 orbital

relay began to receive an image. However, this success was short-lived. The probe

failed after only 20 seconds of transmission, possibly due to immense static buildup as

a result of landing during a punishing global dust storm [28]. Despite this failure, the

Soviets could once again gain its claim to fame for being the first to successfully

soft-land on Mars [40].

Mars 3 also carried what would have been the first rover on Mars: the PrOP-M

rover. Shown in Figure 1.13, the 4.5kg rover was a very small, CubeSat-sized rover

that operated by "walking" on the surface with two skids while tethered to the lander

[40]. It carried a 137Cs gamma-ray source to perform surface density measurements

and a penetrometer for soil hardness tests.

21

Figure 1.14: A cutaway of a full-scale model of the Mars 3 lander, on display at the
NPO Lavochkin Museum. Credit: Alexander Chernov.

Mars 3 would not have been able to communicate directly to Earth, so it

brought a relay along. This relay also included a very generous set of scientific

equipment [28]:

- infrared (IR) radiometer to sense temperature, much like Mariner IV did,

- microwave radiometer to sense UHF radio frequency emissions from Mars,

- photometer, essentially a calibrated camera,

- 4-channel ultraviolet cameras,

- two high-resolution cameras delivering 480 images,

- triaxial fluxgate magnetometers,

- cosmic ray detectors,

- particle traps to detect certain low-energy particles,

- a French radio astronomy instrument,

- and a specific RF transmitter to determine atmospheric structure.

All these instruments operated successfully. The French instrument, the

Stéréo-1 radio astronomy instrument, returned over 1 megabyte of data after

operating for over 180 hours [40]. All in all, Mars 3 was a fairly successful mission.

22

Figure 1.15: A model of the Viking 1 lander. Credit: NASA NSSDC.

1.2.2.4 Viking 1

Viking 1, at the time, was among the most complex robotic spacecraft launched.

It was a high-stakes mission because it had a formidable compliment of instruments,

including those that would explicitly determine if life was extant on Mars. The

Viking landers were also the first to use nuclear power sources on an interplanetary

mission. The 2,339kg orbiter had the following instruments:[28]

- imaging system using two vidicon tubes1 ,

- IR spectrometers to map water vapor and surface thermal properties.

The 978kg lander had the following instruments:[28]

- two "fax" cameras, which scanned line-by-line providing high resolution digital

images,

- gas chromatograph mass spectrometer, which measured the composition of

heated gases,

- a seismometer, which unfortunately failed to deploy,

- an X-ray fluorescence spectrometer, which used X-ray radiation to illuminate

and identify different compounds,

- a full, wet biological laboratory with the intention of determining if life was on
1 Vidicon tubes, at the time, were starting to become dated due to the emergence of CMOS

imagers. Reliability was a key reason they flew into the 70’s and 80’s.

23

Mars,

- a weather suite, measuring pressure, temperature, and wind, and

- a remote sampler arm.

To power all these instruments without having to be constrained by dust

storms or inefficient and fragile solar panels of the time, two 13.6kg radioisotope

thermoelectric generators (RTGs) were used. Each produced 30 watts electrical power

at 4.4 volts, which charged a 28 volt, 8 amp-hour battery pack to handle peak loads

[41]. The RTGs on their own were not able to support the load of individual

experiments; however, the waste heat generated from the RTGs allowed systems to be

safely powered off to allow recharging of batteries. Due to the RTG power provided,

the guaranteed mission time was much longer than if the spacecraft were to have

solar panels. A comparable, contemporary spacecraft with this problem is InSight,

discussed in a later section.

The science data subsystem included a 40 megabit data tape recorder (DTR)

and an S-band transmitter with redundant, 20-watt traveling wave tube amplifiers

(TWTAs). The tape recorder was important since a constant link could not be

maintained with Earth, like was done with missions to the Moon. All commands for

science operations were auditioned on ground hardware before being sent to the

spacecraft. Science data playback was at one of three rates: 250, 500, or 1000

bits/sec. To ensure the weak direct-to-Earth (DTE) link was stable and that bit

errors could be readily corrected, biorthogonal block coding of 6 data bits for every 32

redundant bits were transmitted (32:6 in telecommunications notation) [42]. More

efficient coding schemes emerged later; these are discussed further along in the thesis.

Commands were sent up to the spacecraft at 4 bits/sec, and engineering data was

received at 8.33 bits/sec.

Extensive efforts were made to decontaminate and sterilize the spacecraft. JPL

24

went as far as purifying the poisonous hydrazine propellant [41]. This was critical

because any contamination to the biological sampling payload could potentially

produce a false positive.

Figure 1.16: A detailed drawing of the Viking Biological Package, an experiment
specifically designed to determine if life was present on Mars. Credit: NASA.

Figure 1.16 shows an engineering drawing of the central experiment to the

Viking series. In one sub-experiment, called the Labeled Release (LR) experiment,

soil from a sampler arm was deposited into this experiment’s well. Radioactive 14C

tracer in a nutrient solution was injected into this soil, and the air above the sample

was monitored for changes in radioactivity, which would determine if a biological

process was metabolizing the nutrients [43]. The positive result from this experiment

has continued to be highly contentious and have been represented by many as a false

positive [44]. Journal articles from as recent as 2016 investigate data from the Viking

Biological Package, incorporating data from recent Mars missions in an argument to

continue to consider biological processes for the positive result [43].

Viking 1’s mission was inadvertently ended in 1985 due to human error in

command sequencing. Engineering commands meant to optimize the degrading

battery’s operation overwrote the antenna pointing firmware, resulting in an invalid

25

antenna position. Over the next 4 months, JPL tried to reestablish communications

based on the presumed direction the antenna was pointing, but were unsuccessful [42].

However by this point, Viking 1 had more than exceeded its’ design life, and returned

vast amounts of data.

Figure 1.17: A rendering of the ill-fated Mars Observer. Featured prominently are the
large solar panels, long instrument booms, and steerable dish antenna. Credit: NASA.

1.2.2.5 Mars Observer

After a very long lull of Mars missions, due to focusing of constrained agencies’

resources towards Venus and the outer planets (Voyagers 1/2), Mars Observer was

launched in 1992. This 1,018kg spacecraft was designed to image the entire surface of

Mars over the course of a year. Mars Observer had an uneventful launch and cruise,

but only three days prior to orbital insertion on August 21, 1993, the spacecraft

suddenly ceased to transmit. The root cause of the failure was never conclusively

determined, but an independent review from the Naval Research Laboratory stated

that the most likely cause was a slow leakage of hypergolic propellant and oxidizer

into the plumbing of the propulsion system. When the engine was reactivated, the

engine exploded, potentially completely destroying the spacecraft [45].

26

Figure 1.18: An artist’s rendition of Mars Global Surveyor, the first spacecraft to
deliver a global photographic and height map of Mars. Credit: JPL/Caltech.

1.2.2.6 Mars Global Surveyor

Following the investigation into the failure of Mars Observer, JPL, as the sole

contractor of the "Faster, Better, Cheaper" Daniel Goldin-era of NASA, once again

attempted a global mapping mission. Mars Global Surveyor (MGS), a 1,030.5kg

spacecraft, launched on November 7, 1996. A procedure for aerobraking on arrival on

September 11, 1997 was modified after one of the solar panels failed to completely

deploy. Additionally, during the first phase of aerobraking, operators discovered that

one solar panel had started bending backwards due to aerodynamic stresses [46] as a

result of a 110 km periapsis [47]. Consequently, aerobraking took far longer than

expected - it was completed in March 1999.

Most instruments on board MGS were carried over from Mars Observer,

including an orbital relay, which would forward data from any surface asset back to

Earth. This function was heavily utilized when the rovers Spirit and Opportunity

arrived in 2003.

27

MGS was a highly successful mission: it returned over 83,000 images of the

surface and produced a global height map of Mars consisting of 500 billion laser

altimeter points [28]. Reflights over certain locations monitored geological evolution

over its active period, such as erosion due to ice and wind. MGS was also the first

spacecraft to image dust devils from orbit.

Figure 1.19: The affected register location of a memory discrepancy between the
primary and backup flight computers on Mars Global Surveyor. Credit: Aerospace
Engineering Associates, LLC.

After a mission extension was granted in October 2006, the spacecraft operated

for another month, until a solar array reposition command disabled the spacecraft. In

Figure 1.19, two processor registers are shown containing three memory locations. In

September 2005, issues with the spacecraft computers resulted in only the backup

computer, Spacecraft Control Processor #2, receiving the update. Between this

update and another command update scheduled in June 2006, the lead flight software

engineer noticed a discrepancy at 0x2708 (CMODE’HGA’ELE’ANGLE): Computer #1

contained 0x8301 while Computer #2 contained 0x8B01. This engineer retired

shortly after documenting the discrepancy. The new lead flight software engineer

assumed that the previous engineer’s note on a discrepancy at memory address

0x2708 was actually an error: they meant to write 0x2707.

The rationale behind the new engineer’s assumption can be given credibility

28

Figure 1.20: The intended processor registers to be updated versus what actually
happened. Credit: Aerospace Engineering Associates, LLC.

because the processor in use at the time, an RCA 1750A, was a 16-bit CPU [48]: they

would have thought the retired engineer was one byte off according to the diagram in

Figure 1.19. Unfortunately, the new senior engineer’s assumption was incorrect as

shown in Figure 1.20. The unintentional offset had two fatal effects:

- it disabled over-rotation protection on one of the solar panel gimbals, and

- it moved the high-gain antenna to a totally incorrect position that pointed

away from Earth because of going into safe mode due to perceived gimbal failure by

the flight computer.

A very weak signal was detected briefly in the following days, but loss of

attitude determination resulted in the batteries overheating, which subsequently

resulted in loss of power [49].

1.2.2.7 Mars Pathfinder

Mars Pathfinder was the Americans’ first attempt to launch a fully independent

rover to another planet. The 870kg mission carried a 10.6kg [50] rover called

Sojourner, 28 x 65 x 48cm in dimensions - similar to a microwave oven [28].

Pathfinder was launched on December 4, 1996, and landed on July 4, 1997 at 2:56:55

am local Mars time [51].

29

Figure 1.21: The Mars Pathfinder Lander, as imaged by the Sojourner Rover. Credit:
NASA JPL/Caltech.

Interestingly enough, Pathfinder’s primary objective was not science: it was to

prove that the "faster, better, cheaper" mantra of Daniel Goldin’s NASA was tenable,

and that scientific instruments could be sent to the surface of Mars at only

one-fifteenth the cost of the Viking program [51]. Indeed, the entire mission,

including R&D, I&T, and launch and operations cost $440 million (in 1997 dollars).

This was in contrast to the $3.5 billion 1997 dollars that the Viking Program cost [52].

The reference to "one-fifteenth" the cost and the clear price discrepancy is likely due

to NSSDC citing the R&D cost cap of $150 million 1997 dollars.

MPF used a less than conventional approach to landing on the surface: after a

conventional entry using a heatshield and supersonic parachute, an airbag-assisted

landing was performed. Determined by landing radars, at 355 meters above the

surface, three solid rockets fired from the backshell, still descending under a

parachute. This slowed down the landing package to zero vertical velocity, where the

bridle was then cut. Airbags cushioned the landing to a much more gentle 18g of

acceleration. The spacecraft bounced at least 15 more times before coming to a rest.

30

Figure 1.22: Mars Pathfinder and Sojourner model viewed from above in the Udvar-
Hazy Center. Credit: NASA NSSDC.

In a similar vein to Soviet Lunar and Martian systems, the base station used

petals to ensure the spacecraft was deployed the correct side up to allow the rover to

roll off the base station. Figure 1.22 shows these petals, illustrating the tetrahedral

design. By having only four sides and three petals, barring the failure of one of the

petal actuators, the spacecraft would be guaranteed to fold out upright [28].

Originally designed to last only 7 and 30 days, the respective rover and lander

ended up lasting 85 Earth days until the final communication. Being a technology

demonstration, the mission had fulfilled a comprehensive success by their expected

lifetimes. The rover transmitted 550 pictures and took several spectrometry samples

of rocks, while the base station managed to take over 15,000 images and 8.5 million

ASI weather station measurements [28]. From the images and spectrometry data,

scientists determined that the system’s landing site, Ares Vallis, hosted andesitic rock

- similar to rocks found near volcanoes.

31

Table 1.1: Sojourner Rover Specifications [1].

Characteristic Specifications
Total Mass 16 kg
Mobile Mass 11.5 kg
Lander-Mounted Rover
Mass

4.5 kg - RF equipment

Autonomous Navigation Laser striping to detect obstacles
Command and Telemetry 400 MHz UHF link to lander
Payload Fore and Aft cameras, Alpha Particle X-ray Spec-

trometer (APXS)
Power 0.25m2 solar array - 16Wh. Battery - 50Wh
Thermal 3x Department of Energy 238Pu RHUs
Rover Computer 2 MHz Intel 80C85, 512kB RAM, 1.5W.
Imager Characteristics 5.2kg, 2.6W.
APXS Characteristics 0.74kg, 0.8W.

Figure 1.23: Figure from an unpublished report showing MESUR mission sequence
from launch to landing. Photocopy credit: Stanley Krześniak.

32

1.2.2.8 MESUR

MESUR, or Mars Environmental Survey, was a proposal pitched by NASA

Ames Research Center on July 19, 1991, in competition to Mars Pathfinder [52].

MESUR, in the original 1991 report, was designed to deploy a global Martian sensor

network designed to measure weather. Although this proposal was never selected, it is

worth including into this literature review due to the similarity of the mission

described in this thesis.

Most information about MESUR is from a potentially unpublished copy found

in an SJSU aerospace engineering lab, cited as [2]. MESUR’s objectives were as

follows:

1. Objectives that require the simultaneous operation of a number of
globally-distributed [sic] surface stations. The primary examples are
a global seismic network and a global network of meteorological
stations.
2. Objectives that require sampling of a large number of
globally-distributed [sic] sites. Examples include geological sampling,
high-resolution surface imaging, and measurement of atmospheric
structure along entry profiles. Particular emphasis would be placed
on hard-to-reach sites (polar deposits, rugged volcano flanks, etc.)
that would be difficult or impossible to investigate by other means.
- MESUR Report, p.3 [2]

The MESUR program was intended to cost less than $1 billion to launch 16 probes

over four launches, which would have carried four probes at a time. Figure 1.24 shows

this configuration in a Delta launch vehicle.

Unlike the Mars Pathfinder mission, the primary objective of the mission was

not for technology demonstration, but for scientific returns. The 16 MESUR probes

would have carried the following instruments:

- Three-axis Seismometer with 10−10g sensitivity,

- Meteorology Package measuring temperature, pressure, and wind speed and

33

Figure 1.24: MESUR configuration inside a then-U.S. Air Force Delta II launch vehicle.
Four MESUR probes are shown on a structure mounted to a solid rocket booster upper
stage. The entire configuration would have fit within a 100-inch diameter. Credit:
Stanley Krześniak.

direction,

- Elemental Composition Instrument, or APXS, which is exactly the instrument

described on Pathfinder [52],

- Thermal Analyzer/Evolved Gas Analyzer, which was actively designed to

sample the surface and heat it to determine the chemical composition of subsurface

soil,

- Descent Imager to establish geological context of the probe,

- Surface Imager to determine day-to-day changes to the environment, and

- Atmospheric Structures Experiment measuring the atmospheric properties

during descent, inferred from pressure, temperature, and acceleration measurements.

All the instruments described have since been flown on subsequent rover and

34

lander missions to Mars.

To allow deployment at any latitude on Mars, and to be able to operate

through dust storms, all sixteen MESUR probes would have contained a radioisotope

thermoelectric generator (RTG). These would have been built around the U.S.

Department of Energy’s General Purpose Heat Source (GPHS), a standard that is

still used to this day for most space missions that require RTGs [53]. One or two

GPHS’s would have been used in the design, sufficient to provide electrical energy

while load sharing between instruments and thermal energy to keep all instruments

within operating temperature.

A brief literature review [53] [54] [55] [56] shows that there is currently only one

RTG available for deep-space usage, which is produced by the U.S. Department of

Energy’s Space and Defense Power Systems division. Previously produced RTGs

include the odd-numbered SNAP series, which includes the SNAP-19. It has

significant heritage - it powered the Pioneer deep-space series, Viking Mars landers,

Galileo, and Cassini. The Multimission RTG (MMRTG), currently produced by the

U.S. DOE, is NASA’s only choice of RTG. It has been used on MSL, Mars 2020, the

New Horizons Pluto mission, and will be used on Dragonfly, the Titan multi-rotor

helicopter. This literature review within the MESUR mission serves to illustrate the

contemporary difficulty of developing space-based nuclear power. Very few nuclear

power sources have been designed since the 1960s; in fact, the entire SNAP series was

developed between the 1950s and 60s. The MMRTG was a multi-year development

that improved safety and efficiency, which was finalized by 2004. As necessary as an

RTG might have been for MESUR, it may have also been its’ major Achilles heel in

the face of very limited space exploration budgets in the 1990s. As quoted from the

MESUR report:

35

"...because the GPHS [general purpose heat source] is already
flight-qualified, repackaging the rest of the unit to produce a small
MESUR RTG should not require a major development. Smaller
RTG’s are probably not practical because they would force the
thermal brick design into flight requalification, which represents a
major technology effort. The requalification process would also be
required if the current GPHS brick was used and the number of fuel
pellets was reduced" [2].

It is not clear that the MESUR team understood that creating a custom RTG

for a low-cost mission, decades after the Space Race, was going to be financially and

resource intensive - an oxymoron at best as shown in this quote. Repackaging a

GPHS, as shown in Figures 1.25 and 1.26 to use less than four plutonium fuel pellets

is a non-starter; since the GPHS design, every mission has used multiple GPHS bricks

in the designed-as-intended configuration.

Figure 1.25: General purpose heat source CAD drawing, fully assembled and defined.
Four plutonium fuel pellets are visible as silouhettes, with pairs encapsulated in their
own silos contained in carbon-carbon sleeves. Credit: Stanley Krześniak.

Another reason MESUR likely was not selected is telecommunications: MESUR

would have primarily relied on direct-to-Earth (DTE) communication via S-band,

36

Figure 1.26: General purpose heat source CAD drawing, exploded. Credit: Stanley
Krześniak.

2,200 MHz, for the first Martian year. For scientific instruments such as seismometers,

returning 37 MBit per day [57], this is a red flag in the systems engineering trade

study. According to an Insight mission literature review, the SEIS seismometer

observed 20 events of Mw 3.0 to 4.0 over the timespan of 300 days [58]. Returning 37

Mbit per day, this represented 11.1 GBit over the period studied in the publication.

Table 1.2 shows why this would have never been attainable - at near-maximum

distance or opposition from Earth, the bit rate was estimated at 2 bits/second, or 1/4

character per second. Obtaining meaningful scientific data would simply take too

long, the risk too high to wait for a relay, and continuous measurements would have

been impossible.

All things considered, this assumed that JPL’s Deep Space Network 70-meter

antennas would be used, with 15% total utilization [2]. With JPL needing to support

several other deep-space missions at the time, MESUR would have occupied too much

antenna time for too little science return. Figure 1.27 illustrates this fact. It

represents a best-case, or ideal scenario, which is never representative - few if any

missions accomplish all objectives perfectly or as scientists intend them to. Even if

the best-case were to be achieved, there would simply be too little data return. The

mission was also predicated on there being a separate, follow-on orbital relay being

sent the next Martian year. While the Viking landers lasted several Martian years,

they were not constrained by solar power, a severely limited budget, and

37

direct-to-Earth communications. As shown by Pathfinder, the mission only lasted 3

months with similar technology to MESUR, failing due to battery failure and

inability to heat itself adequately at night.

Table 1.2: Maximum Mars/Earth Communications Distance (Mm) vs Data Rate and
Transmitter Power [2]. For comparison, 1 astronomical unit (AU) is 150 Mm.

Bit Rate (bps) Transmitter Power (W)
4 6 8 10 12

2 240 294 339 379 416
4 212 260 300 335 367
8 178 218 252 281 308

16 127 155 179 201 220
32 90 110 127 142 156
64 64 77 90 100 110

128 45 54 64 70 78
256 32 38 45 50 55

Figure 1.27: MESUR network data rate capability using 15% of one DSN 70m antenna.

Despite not being selected, components and scientific objectives of the mission

were reused for Mars Pathfinder and many other NASA/JPL missions going forward;

most science requirements have since been fulfilled, up to Phoenix, InSight, the MER

rovers, and Curiosity/Perseverance. In particular, InSight’s weather instrumentation

38

has made intriguing discoveries with respect to the Martian magnetic field and

weather phenomenon. It has discovered very close similarities to Earth’s atmosphere,

particularly baroclinic and gravity waves, and convective vortices. Airglow has also

been discovered through InSight’s cameras, with similar processes to Earth’s

formation of airglow [59].

The only outstanding scientific requirement to be fulfilled is distributed, in-situ

weather and geophysical monitoring of Mars. As of writing, there are no publically

known comprehensive plans for such probes.

1.2.2.9 Deep Space 2 and Mars Polar Lander

Figure 1.28: Deep Space 2 probes mounted to Mars Polar Lander bus. The heatshield
was of a 45° design to accommodate its parachuteless crash landing.

The two 3.57 kg Deep Space 2 (DS2) microprobes shown in Figure 1.28, part of

the 576 kg Mars Polar Lander mission, were launched on January 3, 1999. The trio of

spacecraft were slated to explore and characterize polar ice near the Martian south

pole. Controllers at NASA maintained control over the spacecraft up until entry,

where they were expecting to regain contact with all spacecraft approximately 24

minutes after radio blackout [28]. The probes entered the atmosphere at 6.9 km/s.

39

Contact was never reestablished with Mars Polar Lander, and Mars Global Surveyor

was never able to reach either of the DS2 probes.

According to a JPL Special Review Board commissioned to study why all three

probes failed, the most probable cause for MPL’s failure was a faulty indication of

surface contact from the foot pad sensors during the deployment of the landing legs.

Landing leg deployment would have occurred at 40 meters, at which the software

logic for ignoring spurious foot pad signals was also deactivated. To add to this, a

program management failure was the lack of entry telemetry and lack of DS2 system

checkout capability prior to entry, which had previously been required to enable

understanding of the EDL system’s performance, as well as assisting in understanding

failure mechanisms if one were to occur [60].

The programmatic failure at a NASA level was a very high pressure,

understaffed, and severely underfunded mission due to JPL and Lockheed Martin

Space’s understanding that cost increases beyond the $165 million were not

permissable. Additionally, according to a report to the U.S. House Science and

Technology Committee in 2000, the combined MPL/DS2 mission cost less than the

$200 million Pathfinder, and demanded "three times more science" [61]. Pathfinder

was intended as a technology demonstration, which lends credence to this claim.

Just two and a half months prior, the ill-fated Mars Climate Orbiter

disintegrated 57 km over Mars due to a unit conversion error from Metric to Imperial.

It was also uncovered in the same report to the House Science and Technology

Committee that similar unit conversion issues were uncovered in flight software. The

lack of software testing and review was further evidence for the severe lack of funding,

general project management inexperience, and lack of transparency [61]. The DS2,

Mars Polar Lander, and Mars Climate Orbiter saga spelled the end of the "Faster,

Better, Cheaper" mantra.

40

Had the DS2 probes successfully landed, they were to have endured up to

800,000m/s2 (80,000g) of acceleration on hitting the ground, deploy a subsurface

probe to sample soil conductivity and the soil itself, and to deploy a small weather

sensor to determine ambient conditions [62]. The lithium thionyl chloride batteries

and electronics were specifically designed to endure high acceleration and

temperatures as low as -80°C. Unfortunately, these articles were never tested as a

complete system, which could never guarantee survival at the very extreme peak

acceleration on ground impact [60]. Additonally, blunt body entry vehicles tend to

become less stable at lower Mach numbers. The phenomenon of "coning" increases as

the vehicle slows down due to atmospheric friction. It is very likely that neither of the

DS2 probes crash-landed with a zero angle of attack, thus limiting the effect of the

crumple zone and preventing the release and deployment of the penetrator probe.

1.2.2.10 Perseverance

Figure 1.29: Screenshot of JPL video, replaying multiple angles of Mars 2020 while
landing. The upper portion of the frame is a view from the rover looking up at the
skycrane system, and the lower frame is the rover suspended from the skycrane.

41

A substantial upgrade to Curiosity, Mars 2020’s Perseverance landed on

February 18, 2021. The 3,645 kg system includes among the largest suite of

instruments of any spacecraft surveyed in this literature review, which even includes

an in-situ resource utilization demo, and showcased the high-precision "skycrane"

landing system in multiple high resolution video camera views after heat shield

deployment, both major firsts for an interplanetary mission. Most importantly,

Perseverance carries a highly automated sample caching system, which is the first

step of many in returning samples from the surface of Mars to Earth, which itself is a

blueprint for NASA’s current long-term priority of sending humans to the surface of

Mars. Table 1.3 surveys the main scientific instruments and their capabilities, which

does not include the large array of engineering instruments and systems.

Figure 1.30: Perseverance’s sample caching system drill bits. On the far left with a
conical tip is a regolith drill, designed to drill into softer soil. The six drills in the
middle are rock-coring drills, which have a cavity inside to allow rock to be deposited
into a sample tube. On the right are two abrasion drills, which clean off a surface
before measurements or a sample is taken. The gold color on all drills and abrasion
tools are titanium nitride. Credit: NASA/JPL.

Of particular interest from Perseverance is the RIMFAX (Radar imager for

subsurface experiment/Hrímfaxi) instrument. RIMFAX is an ultra-wideband (UWB)

radar sounder designed to determine subsurface features at depths greater than 10

42

meters. Figure 1.31 shows the location of this instrument on the rover, and Figure

1.32 shows a detailed view of the signal processing electronics and enclosure.

Figure 1.31: Location of RIMFAX data processing unit (top) and antenna (bottom).
Credit: NASA/JPL/University of Oslo.

Figure 1.32: Internals and assembly of RIMFAX signal processing and conditioning.
Credit: University of Oslo.

Ground-penetrating radars are ubiquitous in Earth geophysical sciences, and

43

have extensive heritage in Martian remote observations - notably NASA Martian

Reconaissance Orbiter’s SHARAD [63], and ESA Mars Express’s MARSIS [64]. Both

radars have recently returned strong evidence of vast quantites of buried water ice

and potentially liquid water deep below the surface. Figure 1.33 shows an example

data product of a glacier on Earth, taken with a RIMFAX engineering unit. Planetary

geologists continue to advocate for instruments that view terrain below the surface.

Figure 1.33: RIMFAX instrument test results at the Midtre Lovenbreen glacier in
Svalbard, Norway. The solid, near-diagonal line is the surface, and features under it
show different properties of the ice and water below the glacier. The strong, horizontal
return is the "grounding line", where the ice meets rock. Credit: University of Oslo.

1.2.2.11 Ingenuity

Ingenuity is a landmark in aeronautics: it is the first aircraft to achieve

controlled flight on another planet. The 1.8-kg helicopter was deployed from the

bottom of Perseverance on April 3, 2021, and performed its first flight on April 17,

2021. As of writing, Ingenuity completed its 49th flight, with over 11 km flown for

nearly 1 hour and 30 minutes. Due to the novelty and extreme mass constraints,

Ingenuity carries no scientific instruments [65]. Navigation is performed with

off-the-shelf inertial measurement units, optical flow from a cellphone-grade camera,

44

Table 1.3: Perseverance Instruments [3]

Instrument Description
Mars Oxygen ISRU Ex-
periment (MOXIE)

Tech demonstration of oxygen generation from at-
mospheric CO2

Planetary Instrument for
X-Ray Lithochemistry
(PIXL)

Detailed charictarization of surface minerals though
X-ray exposure

Radar Imager for Mars
Subsurface Experiment
(RIMFAX)

Ground-penetrating radar to examine subsurface to
10m depth

Mars Environmental Dy-
namics Analyzer (MEDA)

Comprehensive weather station for in-situ weather
conditions

SuperCam/AEGIS Remote identification of biosignatures and chemical
analysis

MastCam-Z 10x optical zoom camera
Scanning Habitable En-
vironments with Raman
and Luminescence for
Organics and Chemicals
(SHERLOC)

Ultraviolet Raman spectrometer and camera as-
sembly to image detailed minerology and potential
biosignatures

Stereo Microphones Determine atmospheric structure and nature of Mar-
tian turbulence

Hazard Cameras (x16) Hazard avoidance and additional spatial awareness
for rover operators and artificial intelligence (AI)-
based navigation

and a tilt sensor to initially calibrate the IMU. The most notable design feature of

Ingenuity is that most parts are commercial, off-the-shelf. Aside from screening for

higher single-event latchup (SEL) radiation immunity, the IMU, tilt sensor, and

cameras are "cellphone-grade" [66]. Ingenuity already has faced a frigid Martian

winter due to a lack of power required to heat itself from excessive dust accumulation

on the solar cells [67]. Heaters kept Ingenuity to no lower than -15°C, but without

them, internal temperatures dropped to lower than -80°C. Including the

military-grade components, all parts were completely out of their operating

temperature ranges [66] for an incredible 280 sols [68]. During this challenging winter,

45

Figure 1.34: Ingenuity Helicopter sitting on the surface of Mars after being deployed
by Perseverance. Credit: Jet Propulsion Laboratory.

dust storms blew through, further reducing solar output and the chance of

survivability. Despite this, Ingenuity only managed to lose one component: the tilt

sensor. A method for calibrating the IMU without the tilt sensor was developed, and

was able to continue its unlimited mission extension. By April 2023, the Ingenuity

chief engineer compared operating the helicopter to participating in a race with its

base station, Perseverance [69], clearly demonstrating that special electronics are not

always required.

Status update # 450 by the chief engineer shows a useful in-situ data point for

local, point-to-point networks. Ingenuity uses a ZigBee(R) 900-MHz, IEEE 802.15.4

mesh network radio, similar to those used in smart utility meter networks [66]. Due

to the high frequency used, nearly line-of-sight communication is required. In areas

with steep canyons and narrow valleys, communication is limited to a few hundred

meters, severely limiting the ability to downlink any useful scientific and operational

information. During Flights 47 and 48, the team was unable to receive any

information other than the helicopter successfully landed [69]. Although

46

communications have been demonstrated at its maximum range of 1,000 meters,

communication with ZigBee is slow. The helicopter generates about 700 megabits of

data per flight - given the constraints, almost all the data has to be discarded [70].

For fixed mesh networks, robust link budget analyses should be conducted to

determine instrument and power scoping.

Figure 1.35: AeroVironment Sample Fetch Helicopter concept. Aside from the inclusion
of a robotic arm and wheels, the helicopter design remains fairily similar.

Ingenuity has heralded a strategic sea change in scientific exploration: the trade

space has opened up to helicopters with robotic arms that are also capable of

carrying 5 kg of scientific instruments [70]. AeroVironment Inc’s Sample Fetch

Helicopter (SFH) is of Ingenuity heritage, and includes the ability to drive on wheels

and pick up the sample tubes dropped off by Perseverance. A render is shown in

Figure 1.35, showing the wheels and miniature robotic arm. It is currently in active

development and is slated to be included on an upcoming Mars mission. This would

support the Mars Sample Return mission as backup methods of delivering the cached

samples to the ascent stage [71].

Another concept in active development is the Mars Science Helicopter, with a

capability of carrying 5 kg of scientific instruments over 5 km range, with 3 minutes of

hover time [70]. Such a helicopter would enable exploration of regions too dangerous

47

for rovers or humans to land in, such as Valles Mareneris. It would continue to use

the same technology and methods proved on Ingenuity, in particular, the power

electronics and traditional helicopter-based collective and swashplate control.

While helicopters would be useful in their own right, for the Wavefront mission,

stationary and buried assets are required. The success of Ingenuity came too far into

the development of Wavefront to consider rotorcraft assets; that being said, it is the

most important literature review piece for Wavefront. This is due to the success with

off-the-shelf components and cold survivability. It greatly influenced the late design

changes of the lander, nanoprobe, and rover, eliminating the need for extremely

encumbering RTGs and RHUs.

Figure 1.36: The Zhurong rover and lander system, imaged by a deployable remote
imager. The imaging unit transferred data through a WiFi network. Credit: China
News Service.

1.2.2.12 Zhurong/Tianwen 1

Zhurong and Tianwen 1 of China mark the fourth nation to soft land a vehicle

on Mars 1 , and the second nation to land a rover on Mars. Launched on July 23,
1 The United Kingdom’s Beagle 2 was later determined by NASA’s Mars Reconaissance Orbiter

to have soft landed in 2003, but the probe was never heard from due to a solar panel actuator
malfunctioning.

48

2020, Tianwen 1 and Zhurong flew in a Hohmann transfer window along with

America’s Perseverance and Ingenuity, and the United Arab Emirates’s Hope. The

Zhurong rover landed on 22 May 2021, after being deployed from the Tianwen 1

orbiter for a gentle, 4 km/s entry. Tianwen was formed as a direct result of the failure

of the Russian Federation’s Fobos-Grunt mission in 2012 [72], of which China

provided the lander and rover.

A significant amount of engineering and scientific information is available on

Tianwen and Zhurong in the scientific community. The 240kg and 1.85m tall rover

with deployable boom [73] carried 7 instruments, tabulated in 1.4. The 3,715kg

Tianwen 1 orbiter’s instruments are tabulated in 1.5 [4]. Particular attention is paid

to Tianwen due to the availability of this information. It provides a contemporary

version of the American Viking 1/2 and Soviet Mars 3 architectures, which are

instrumental in Wavefront’s mission concept of operations development.

Table 1.4: Zhurong Instruments [4]

Instrument Description
Mars Rover Penetrating
Radar

Ground penetrating radar designed to image 100
meters below the surface

Mars Rover Magnetome-
ter

Examines changes in crustal magnetic fields

Mars Meteorological Mea-
surement Instrument

Weather instrument suite containing temperature,
pressure, anemometer, and microphones

Mars Surface Compound
Detector

Laser-induced breakdown spectrometer and infrared
spectrometer

Multispectral Camera Minerology characterization
Navigation and Topogra-
phy Cameras

Automatic navigation camera system

Tianwen’s mission concept of operations is similar to most NASA missions,

with a notable exception. After launch and a speedy interplanetary cruise of just

under 7 months, Tianwen 1 and Zhurong entered orbit on February 10, 2021. For

49

Table 1.5: Tianwen Instruments [4]

Instrument Description
Mars Minerological Spec-
trometer

Identifies mineral distribution throughout Mars

Moderate Resolution
Imaging Camera

Studies the characteristics of Martian topography
and geological structure

High Resolution Imaging
Camera

Studies the characteristics of Martian topography
and geological structure

Mars Orbiter Magnetome-
ter

Studies the Martian physical fields (electromagnetic,
gravitational) and internal structure

Mars Ion and Neutral
Spectrometer

Studies the ionosphere, surface climate and environ-
mental characteristics of Mars

contemporary NASA missions, this is the point of departure. JPL has planned for

and executed hyperbolic entries since Pathfinder due to several factors. Primarily,

orbital insertion for such large missions is more of a mass penalty than carrying more

thermal protection, since Curiosity data from the MEDLI instrument had shown less

than 0.1-inch (2.54mm) of ablation [74] [75] at 5.8 km/s [76] - a nearly insignificant

amount of mass. Tianwen 1 inserted into a 275x10, 750km by 86.3° orbit for imaging

of the two candidate landing sites. In the literature, Zou, et. al. describe initial site

selection through data obtained from MGS imagery and altimetry and MRO’s

SHARAD radar, and claim that the currently available spectral data is of low

resolution, which necessitates the mission’s investigation [4]. Ultimately, the site

selection team chose Utopia Planitia based on orbital imagery from Tianwen 1 due to

low crater densities, gentler terrain, and higher probabilities of finding evidence of an

ancient ocean [77].

After site selection, Tianwen was programmed to release Zhurong at apoapsis

[78]. The capsule entered at 4 km/s; peak acceleration values are not provided but

could be reconstructed with significant error through the Mach number in [78]. Much

like MSL and Mars 2020, Zhurong navigated to the target location through lift

50

modulation at up to 50 deg angle of attack (AOA) during the hypersonic phase. After

Max-Q and peak heating, a "trim wing" was deployed at Mach 2.8 to provide further

target refinement, followed by disk-gap-band (DGB) deployment at Mach 1.8. Based

on the literature review, this feature is novel. By published indications, the trim wing

worked as intended. Upon reaching Mach 0.5, the heat shield was jettisoned and

landing radars were activated to determine a solution. At Mach 0.25, the lander was

ejected from the backshell, initiated a debris avoidance maneuver, and proceeded to

the safest landing site determined by AI-driven hazard cameras. On landing, the

lander deployed the ramps, unlocked the rover from the platform, and rolled off. A

deployable WiFi camera was set on the surface to image the Zhurong lander and

rover as shown in 1.36. Several publications are available detailing the scientific

results, which appears to have met the CNSA’s objectives.

Figure 1.37: The Tianwen 1 spacecraft. Credit: China National Space Administration
[78].

As of writing, Zhurong was supposed to have woken up from hibernation in

December 2022 after the Martian winter, but the CNSA has been silent on the status

of the rover. Researchers are beginning to speculate that the rover was not able to

survive the winter [79]. Ingenuity status updates revealed that this winter was

difficult; multiple dust storms greatly hindered power production [68]. Regardless,

51

Figure 1.38: The Tianwen 1 cruise stage and orbiter. The upper part shows an oblong,
white object - this is the Zhurong EDLS. It is apparent that the EDLS backshell is
taller than U.S designs. The reflective object off the left side is the high-gain dish
antenna, and the gold rectangle is the cruise stage and orbiter. Credit: China National
Space Administration.

Figure 1.39: The Zhurong rover and lander system on the surface, imaged by NASA
JPL’s Mars Reconnaissance Orbiter. The blast pattern from the descent engines of
the lander are shown. To the right of the lower blast pattern is the Zhurong rover.
Credit: NASA/JPL-Caltech/Arizona LPL.

Zhurong greatly exceeeded its’ 90-sol lifetime requirement, achieved its scientific

objectives, and landed successfully on Mars on the CNSA’s first attempt. More

missions of much greater ambition are expected from China in the coming years.

52

1.3 Project Proposal

Work on this project has been ongoing since 2017. From 2017 to late 2019,

much of the work was devoted to substantially strengthening computer engineering

and electrical instrumentation design skills, specifically for spacecraft systems. This

took the form of multiple projects, such as [80], [81], and numerous, yet-to-be

published works. Work for SEEDS and Nines nodes were performed between 2019

and 2022, and perfected embedded system design to specific requirements and

demonstrated the necessary miniaturization for some scientific instruments and

subsystems. Between late 2021 and early 2023, work was performed in conjunction

with NASA Ames under a Space Act Agreement with San Jose State - power,

guidance, and other selected systems were developed to fly on the TechEdSat platform.

The TechEdSat work also significantly focused the development of spacecraft system,

scientific, and mission requirements. The remainder of work in the final months is

therefore focused on compiling information and performing basic mission analysis.

1.4 Methodology

This publication makes an attempt to be as scope-complete as possible in a

given amount of time. First, the problem is defined in programmatic and regulatory

terms: in addition to fulfilling diplomatic requirements and formulating contracts

with the right companies and contacts, engaging in safety and cost reduction

measures through government regulation, prior experience, and existing infrastructure

is a hard requirement. Science and engineering cannot move forward without such

frameworks. A cursory exploration of some of these programmatic and regulatory

requirements is outlined in the first main chapter.

The basis of scientific requirements are then outlined in the next chapter.

53

Through the Scientific Method, scientists pose hypotheses and theories. In the case of

Mars, these are followed up with remote and in-situ observations and experiments.

Science, and the ability to physically return it, is constrained by regulatory and

financial priorities, as well as progress in engineering and instrumentation to make

scientific measurements. Engineering requirements informed by the type of science

under investigation therefore move the design space forward.

With this design space now fully defined, the engineering design work can then

proceed. Several iterations of a mission to Mars are explored, each with increasing

levels of maturity, complexity, and budget. The final iteration is assumed to be a

NASA Flagship-class mission, with a dedicated launch vehicle and budget running

into the US$3- to $5-billion (CY2023 dollars) range for the life of the project.

Due to the very long timespan of this project and resulting large quantity of

prototypes, systems, and data produced, each chapter chronicles the design process of

each component of the mission. The majority of this effort was placed into nanoprobe

and lander telecommunication development; this is wrapped up into one chapter with

many sections detailing the design process and resulting data. The final revision is a

purely theoretical design, but one informed by research, development, and testing

with hardware. A lengthy section is finally spent describing the firmware and custom

RTOS for the nanoprobes, which form the basis for the rest of the firmware and

software for all other assets.

The next chapter focuses on development of the rover. The rover is

instrumental in deploying the nanoprobes - the main payload is a robotic arm with an

impact driver designed to drive the nanoprobe spike into the ground. A few design

iterations were considered, before converging on a standard, 6-wheel, JPL

rocker-bogie suspension. Detailed design down to off-the-shelf component level of

rover internals was not acheived due to time constraints. However, the nanoprobe

54

design process greatly informed software, firmware, and computer design of the rover,

which goes into low-level details.

A design of the lander follows. Not including the lander’s primary job of

landing the rover and nanoprobes safely, it is the most important component of

scientific operations. In IoT terms, it is a "concentrator" for the "edge" devices - in

other words, the lander collects and stores the data collected from the rover and

probes for later uplink to an orbiting asset. It also functions as a weather station and

time standard for the rest of the local network of landed assets. Particular attention

was paid to power budgeting: an option to have an RTG-powered lander was assumed

for nearly the entire duration of this study. However, near the end, solar power was

ultimately selected. This was primarily due to the perceived regulatory and financial

difficulty of developing and qualifying a new RTG, despite using the same

Department of Energy standard heat source. Regardless, a section of this chapter

studies a complete mechanical design of a new, Discovery-class RTG.

Although the lander has a component of this system, a separate chapter is

warranted for the entry, descent, and landing system (EDLS). The EDLS ensures the

scientific instruments make it to the surface of Mars as intended, but levies a severe

constraint on virtually all aspects of mission design. The literature review guides the

assumption of using a twice-proven capsule shape from the Curiosity and

Perseverance missions. A basic aerodynamic study is performed on this shape, with a

2-D hypersonic, full reacting flow simulation for a modest, 4.3 km/sec EI velocity.

The final asset of the mission is the reason for a very slow entry: the orbiter.

Much like NASA’s Viking landers, and China’s recent Tianwen 1 lander and orbiter,

this orbiter will carry all four lander sets to a low Mars orbit. While having a

considerable mass penalty in terms of fuel required for an entry burn, an orbiter is

critical for returning large amounts of data through acting as an orbital relay.

55

Further, by designing an orbiter to have very large fuel margins, the orbital relay can

serve other missions beyond the lifespan of the landers. A significant portion of this

chapter describes launch vehicle sizing. At the beginning of the study, an Atlas V 421

was considered. However, as of writing, the Atlas V is slated to go out of production

soon. Later on, the mission was then sized for a "New-Space Space Launcher"

(NSSL)-class vehicle - specifically a Firefly Aerospace Alpha; but bringing an orbiter

with sufficient fuel margins for an entry burn became likely infeasible. Finally, due to

its proven track record and competitive costs, a SpaceX Falcon 9 Block 5 or Falcon

Heavy, which would give generous margins and the same fairing inner mold line (IML)

for both rockets, was selected.

Finally, a high- to mid-level analysis is performed for the entire mission span,

from launch to landing. A Monte Carlo-type approach is taken for statistical analysis

of mission outcomes, which validates whether the mission would achieve

comprehensive success or not. All variables and probabilities of failures are tabulated

and scenarios are computed. Given enough time, additional validation of launch to

landing maneuvers would be conducted in the video game Kerbal Space Program

(KSP), with heavy modifications (mods). The primary mod is Principia, based on

Quinlan and Tremaine’s 12th-order, n-body planetary integrator [82] among others,

written and maintained in C++ by Pascal Leroy and Robin Leroy [83]. This drives

another mod called RSS (Real Solar System), which converts the default solar system

into the real-world solar system simulating 30 of the solar system’s largest bodies,

including asteroids and moons. Solar system initial conditions are provided by the

JPL HORIZONS service [84]. Details such as planetary oblateness J2 are

implemented in Leroy’s methods for most celestial bodies.

56

2.

This chapter discusses regulatory considerations and requirements for

Wavefront. Requirements, in the scientific and engineering sense, are quantitative.

While regulatory requirements are easier to put a number to, political requirements

are less intuitive. Statements that specify who or what to work for translate into a

single quantitative term: a budget.

2.1 A Word on Management and Expectations

For a project of the Flagship-class, rigorous systems engineering, project

management, and a very good working relationship between both disciplines is

required. Cost overruns typically occur because of poor management, poorly defined

requirements, and/or poor understanding of the problem [49] [60] [85] [86]. To set the

stage, a top-down, bottom-up approach is the first hard requirement. In other words,

the applying the "V-model" of systems engineering is the first management step.

Before reaching the Authority to Proceed (ATP) stage, program managers and talent

acquisition departments must evaluate the talent pool available - especially through

university outreach and engagement - to strike a balance between talent margin and

overhiring. The project managers and principal investigators can then make an

informed decision on scoping the most expensive portion of their budget: the people.

Successfully appeasing stakeholders by delivering the intended result (and

shareholders for publicly traded contractors on large capital expenditure projects)

plays into managements’ forward thinking. The political game played is one of

underpromising and overdelivering. Upper management, PI’s, and PM’s must develop

program management plans that fulfill requirements for maintaining financial and

Problem Scope

57

capital solvency, as well as margins on deliverables. For example, the twin Mars

Exploration Rovers (MER) Spirit and Opportunity were designed to last only 90

days, yet Opportunity lasted over 5,000. While an extreme and arguably an

unintended margin, NASA and JPL were able to leverage part of this in their public

relations to successfully recover from the reputational damage incurred by the loss of

three Mars missions and Space Shuttle Columbia with its’ seven astronauts.

Therefore, management of expectations should be baked into some of the highest level

requirements, even when scientists and engineers might be able to do more. Stretch

goals can be achieved, as long as they are at no additional cost or risk to the main

objectives and deliverables to the mission. This is called the "do-no-harm" clause, per

NASA Policy Directive 7120.8 [87].

A mission to Mars not only has to account for lessons learned from previous

missions, but take into consideration certain diplomatic and scientific objectives and

requirements. More specifically, how would a Mars mission serve the general public in

the short- and long-term? Interplanetary space missions are taxpayer-funded because

for-profit ventures are still not financially viable, and returns on investment occur in

the span of decades [88]. This brief chapter constructs the scientific objectives,

derived from government policy, so that Wavefront and Aerith would make the best

use of taxpayer dollars and any other corporate sources of funding.

2.2 Political Requirements

Today, in America, policy is typically controlled by the governing political party.

In Europe and European Union-aligned states, coalition governments composed of

several political parties form the governing party. And in authoritarian states, a

single party, if not a single individual, drives all decisions. In 2023, for any of these

58

types of described governments, opposition to the majority is not usually taken into

consideration.

Figure 2.1: U.S. Department of Defense Budget. While a decrease from the previous
year, the Fiscal Year 2024 requested budget represents a very large financial commit-
ment for any nation.

However, one thing is certain: aerospace and defense policy, especially in

America, enjoys broad support amongst any political affiliation, especially during this

new era of global conflict. In Europe and Asia, similar alignments are occurring,

regardless of type of government. This is due to a number of factors: in America, this

describes the "military-industrial complex", as indirectly shown in the FY 2024

Department of Defense budget [89]. The overall FY2024 budget, shown in 2.1, is

U.S.$842.0 billion. The majority of this money, directly or indirectly, goes to defense

contractors such as Lockheed Martin, General Dynamics, Northrop Grumman,

Boeing, Raytheon, and Newport News Shipbuilding. Unsurprisingly, many of these

contractors also play a role in civil aerospace, such as the building of airliners and

spacecraft systems. It is this connection that renders space and defense inseperable in

the highest levels of politics regardless of whether the state is a democracy or

dictatorship. The U.S. President’s budget for FY 2024 further shows this connection -

in Figure 2.2, FY2024’s discretionary spending under "Outlays" (expenses) has a line

item specifically for defense. This amounts to 12.8 percent of total federal expenses

[90]. Therefore, the highest level requirements must align with the economic, and by

association, the political and executive, objectives of the state.

59

Figure 2.2: U.S. Federal Budget, otherwise known as the Presidential Budget [90].

60

While planetary sciences would not ideally have anything to do with the

defense industry, many of the contractors listed above have leading roles in the design

and fabrication of interplanetary spacecraft. For example, per the literature review,

nearly all U.S. Mars missions after Pathfinder list Lockheed Martin as a contractor.

Ingenuity’s deployment mechanism was designed and built by Lockheed Martin Space

Systems [91]. Space exploration and defense have been inextricably tied for decades

because space exploration demands the most cutting-edge technology to function with

high reliability and high fault tolerance, required of any defense hardware.

The NASA requested FY2024 budget of US$27,185 million is 7.09% larger than

the enacted FY2023 budget, shown in Figure 2.3 [92]. When studying the breakdown,

about US$12 billion is spent on human spaceflight development. In terms of the

defense budget studied before, and the fact that during the Apollo era, approximately

4% of total federal spending, or roughly US$0.25 trillion in 2023 dollars was spent in

FY1964 [93], it is a drop in the bucket. Yet, R&D in support of scientific exploration,

human or robotic, has been forced to become more economically lean due to many

domestic political and geopolitical circumstances in the past four decades [94] [95].

Understandably, the financial and capital costs of R&D for space and defense

technology is high; in government terms, there must be a very good reason for billions

of taxpayer dollars to be spent on any R&D for abstract or unseen investments. In

fields other than defense, startups dedicated solely to commercial space usually must

bear R&D costs. The recent Chapter 11 debt restructuring of Virgin Orbit National

Systems (VO), a startup dedicated to launching small spacecraft to any orbital

inclination anywhere in the world, is a contemporary example. While VO obtained

venture capital (VC) funding from lenders like Silicon Valley Bank (SVB) and had

four successful flights, the failure of VO’s 5th launch and the lack of liquidity in SVB

shows how thin the financial margins are. Despite a relatively high success rate and

61

Figure 2.3: NASA’s FY2024 proposed budget, with major program breakdowns [92].

62

accurate deliveries of customer spacecraft to their intended orbits, VO still had to file

for Chapter 11 bankruptcy. The case of VO illustrates the nascent difficulty and high

risk of operating in commercial space without the same government funding that

R&D in defense gets.

All things considered, planetary exploration (even at the Moon), cannot be

performed without funding from a state entity. As of writing, the human race has

neither poured enough capital investment nor visited enough celestial bodies to make

any aspect of planetary exploration or exploitation commercially viable. Therefore,

the first requirement is to leverage any and all existing state (U.S. federal)

frameworks.

To fit Wavefront into the purview of a proposed American NASA flagship-class

mission, Wavefront must, at minimum, follow a management framework that landed

Curiosity and Perseverance to the surface of Mars. In other words, the mission must

follow legacy missions of similar scale and scope. Quantitatively, this means the

budget shall not exceed US$3 billion, with 50% margin. These are commonly called

fixed-price contracts; any cost overrun shall be borne by the contractor. There are

several nuances missing, such as "too-big-to-fail" missions that fall under U.S.

Congressional budget line items; for the sake of containing this thesis to an

engineering and scientific exercise, these are omitted.

However, such a large budget presents a chicken-before-the-egg problem: the

return on investment (ROI), or the "so-what" factor. Without a justification to ROI,

the first requirement cannot possibly exist. To the American taxpayer, is it really

worth it to send scientific instruments to the surface of Mars to learn more about

geophysical past and the current geological and meteorological conditions? As a

selfish individual, how would the average individual directly benefit from this? This

plays into the highest levels of Washington politics, where congresspeople would

63

(rightfully) ask, "Are my consitituents of X district affected by this project? How will

it affect my unemployment numbers, tax revenues to the cities and counties that fall

under my district, and how will that affect my chances of getting reelected? Am I

appeasing the business interests in my district?" Most engineers and some scientists

would never need to answer to these questions. But from a programmatic standpoint,

the message starts with the stated goal of NASA - to advance the knowledge of

humanity for all. The justification must start from all the way at the top of

governance. As covered in Chapter 1.1, Apollo technologies, knowledge, and methods

were widely distributed throughout humanity. What is learned from a Mars mission

dedicated to geological and meteorological sensing sets the stage for astronauts to

walk and live on Mars, safely. It allows for the potential expansion of commerce to

beyond Earth’s orbit - cautious exploration and characterization of other worlds must

occur.

All of this is to say that the mission shall comply and align fully with NASA’s

vision, because a failure to do so will not permit any money to flow under such

limited Agency budgets. Table 2.1 summarizes the requirements in this section.

2.3 Peer-Reviewed Science Requirements

Higher-level requirements must be evaluated for compliance continuously, but

foundational requirements such as scientific definition must be rigidly defined at the

outset. Science and engineering R&D can only be as focused as the agency, political,

and scientific requirements are. Wavefront intends to tackle many scientific interests,

including geophysics, meteorological models of Mars, and safety of astronauts for

future visits to Mars. With these interests in mind, the principal investigator and

program manager must now tailor those broad scientific endeavors to specific science

64

Table 2.1: Political Alignment Requirements

Requirement Rationale
0-0. Shall follow the 7000- and 8000-
series NASA directives

The 7000-series represent program for-
mulation and related systems engineer-
ing practices - in particular, the "V-
model" of systems engineering; and the
8000-series represent program manage-
ment [96] [97].

0-1. Must follow a management frame-
work that follows legacy missions of
similar scale and scope

In particular, the missions should be
current, within the past 10 to 20 years.
While following NASA program direc-
tives are required and provide all the
necessary frameworks, following a re-
cent precedent gives politicians, taxpay-
ers, and engaged contractors confidence
that the project will proceed efficiently,
and that R&D costs are minimized.

0-2. Shall evaluate compliance and
alignment with NASA’s vision.

See Section 1.1, Motivation for further
analysis of rationale. Compliance fail-
ure will result in missed funding. This
is technically a "Level-1" requirement,
peer-reviewed scientific definitions are
dependent on (flow down to) this re-
quirement.

needed from the scientific community.

The Mars Exploration Program Analysis Working Group (MEPAG) is a science

definition committee representing the views and research of many scientists. They

work to sharpen research focuses and prioritize Mars missions [98]. While a

committee based at JPL, MEPAG takes inputs from scientists around the world,

peer-reviewed research, and from the Planetary Science Decadal Survey, itself

commissioned by the U.S. National Academy of Sciences, a congressionally chartered

organization providing science policy advice [99]. To be in line with political and

policy requirements, the latest MEPAG committee document [100] will provide the

65

legal basis for all other all scientific and engineering requirements here forward.

The MEPAG 2020 Goals and Objectives document specifies four major

categories of research on Mars:

1. To determine if Mars ever supported, or still supports, life,
2. To understand the processes and history of climate on Mars,
3. To understand the origin and evolution of Mars as a geological
system, and
4. To prepare for human exploration.

Per the literature review, Goal 1 requires highly complex instruments that take

years to develop and rigorously validate. Viking 1/2 are an example of this, the

inclusion of life detection instruments required extreme planetary protection

requirements such as whole-spacecraft bakeout to nearly electrically intolerable

temperatures for hours [93] and extensive testing and validation, yet the results from

their Labeled Release experiments are still contentious to this day [44]. Due to this

complexity and large size of these instruments, Wavefront cannot be scoped into life

science requirements.

Goals 2 and 3 respectively relate to meteorology and geophysics, which are the

most desirable types of science Wavefront is scoped for. Table 2.2 lists the three

major objectives for attaining Goal II.

2.3.1 Goal II

Completing Goal II requires observations, computational models, and

laboratory experiments. Over the past several decades, the U.S., Soviet Union, the

European Union, India, China, and Emirates have contributed both remote and

in-situ observations. They have fed into global climatological models to attempt to

fill in the gaps that recreate the data points observed by probes. One particular

66

Table 2.2: MEPAG Goal II Objectives

Objective
Objective A: Characterize the state and controlling
processes of the present-day climate of Mars under the
current orbital configuration
Objective B: Characterize the history and controlling
processes of Mars’ climate in the recent past, under
different orbital configurations.
Objective C: Characterize Mars’ ancient climate and
underlying processes.

investigation of high priority is how dust lifting occurs on the surface of Mars, and

why and how turbulence forms. As many probes and staging for human exploration

will use solar power, dust accumulation is of concern. The serendipitous occurrence of

dust devils in Spirit and Opportunity’s landing zones in part allowed them to last for

many years beyond their intended lifespans; the same dust devils did not occur in

InSight’s landing zone, despite the similar geology. Recording dust loading and

turbulence profiles requires purpose-designed weather stations. Specifically, hot-wire

anemometers and saltation (dust classification) sensors fit the scientific requirements

for Wavefront.

Key to Goal II is the wide distribution of sensors. Remote sensing data, such as

from MAVEN and ExoMars TGO, can characterize the state of volatile gases

escaping Mars, such as hydrogen from water, but pinning down the exact methods of

sublimation or generation of other gases like methane requires measurements to be

made at the source. Wide but sparse networks were proposed in the 1990’s with

MESUR, but never took off for a multitude of reasons examined in the literature

review.

Measuring gas quantities is difficult with small instruments - many of the most

sensitive spectrometers designed for analyzing evolved gas or gas concentrations are

67

very large and consume large amounts of power. Methane is regarded as a

biosignature, and the highly transient detections of it by Curiosity has spurred

extreme interest. The Trace Gas Orbiter, provided by ESA, failed to detect any

methane as of their 2019 datasets [101]. These discrepancies have proved to be

extremely scientifically controversial, as some [102] dispute the accuracy of Curiosity’s

spectrometer, while others point out the need for more in-situ point measurements.

Others [101] [103] state that assuming the instruments are accurate, methane might

be so transient that there are still yet unknown geophysical, geochemical, or

potentially biological sinks that can quickly disperse the methane. While passed off as

out-of-scope, the inclusion of gas chromatographs and spectrometers for Goal II may

address Goal I as a stretch goal given enough time and effort to characterize and

calibrate the instruments.

In summary, Goal II will require weather stations that can sample at kilohertz

rates to resolve turbulence, saltation sensors that can determine airborne, suspended

sand grain inertia, gas chromatographs or nondispersive optical sensing to determine

if certain trace gases are present at the measurement source, and spectrometers to

supplement bulk gas sensing.

Table 2.3: MEPAG Goal III Objectives

Objective
Objective A: Document the geologic record preserved
in the crust and investigate the processes that have
created and modified that record.
Objective B: Determine the structure, composition,
and dynamics of the interior and how it has evolved.
Objective C: Determine origin and geologic history of
Mars’ moons and the implications for the evolution of
Mars.

68

2.3.2 Goal III

Tackling Goal III can similarly be accomplished with orbital and in-situ assets.

The placement of in-situ assets is best informed through orbital imaging, but require

site revisits after a set period of time. Geological (areological) changes take place at a

much slower rate than on Earth, but are observable on human timescales. That being

said, Goal III objectives would benefit from distributed probes that have a very long

period of collection. This, of course, is limited by engineering due to Martian factors,

such as unpredictable dust storms, lack of "cleaning" events like dust devils,

unanticipated terrain and subsurface, the extreme cold, and lower solar insolation.

These engineering challenges can best be approached with highly distributed

networks of in-situ sensors, given a design tolerant to dust storms and/or loss of

power. This architecture also has the capability of determining the extent of water,

sulfur, and carbon in the subsoil, the highest priority scientific objectives in Goal III.

One approach employed in geophysical and civil engineering site analysis is electical

resistivity tomography (ERT). Stakes are driven into the ground and pulses from a

base station are applied into the ground. By detecting a very slight change in voltage

relative to the base station’s ground potential, the presence of large areas of moisture,

clays, or softer ground can be inferred [104] [105]. Porting this to Mars would require

wireless ERT receiver nodes to perform tomography over a scientifically useful volume

below ground, with a method of driving conductive stakes into the ground. The

transmitter requires two stakes with a common frontend; ideally a larger stationary

lander with adequate power. By using similar but related methods to medical

electrical impedance tomography [106] on much longer time scales, geological changes

in underground and near-surface liquids and brines can be monitored in multiple

locations. This is of particular interest; scientists on the MRO mission have observed

69

so-called "recurring slope lineae", which are theorized to be liquid brine flow. ERT

would be able to characterize this in real-time and pinpoint exactly when and under

what conditions they occur, especially if the source is below ground.

ERT would not be the only way to determine subsurface changes in geology.

The RIMFAX radar on Perseverance and Zhurong’s radar are both designed to

analyze subsurface structure by listening for reflected chirps from the radar. Per the

literature review, the radars had great success in testing. As of writing though,

findings and effectiveness of the radars have yet to be published. Including a radar on

Wavefront would be a substantial challenge, however. Both radars are broadband,

from UHF to S-band, which necessitate clever RF frontend and antenna design to fit

such a unit in a very small lander package.

In summary, Goal III can be tackled with below-ground electrical resistance

tomography, radars if able to be accommodated on a small lander, and cameras

observing changes to the surroundings. All methods are contingent on a spacecraft

design and architecture that is resiliant and can withstand severe dust storms and

Martian winters.

2.3.3 Goal IV

While Wavefront is not explicitly scoped for human exploration, the mission

has a wealth of capabilities to advance Goal IV. Regardless of how long astronauts

stay, radiation dosimetry is of utmost importance. Several missions to Mars,

including the Curiosity rover, carry or carried radiation dosage sensors. Figure 2.4

shows a comparison of human dose equivalent for different scenarios. Of greatest

interest is the expected dose for a 180-day transit to Mars and an extended stay on

Mars. A person on a full, round-trip flight to Mars would accumulate over an order of

magnitude more radiation than the average dose for an astronaut on the International

70

Table 2.4: MEPAG Goal IV Objectives

Objective
Objective A: Obtain knowledge of Mars sufficient to
design and implement human landing at the designated
human landing site with acceptable cost, risk and per-
formance.
Objective B: Obtain knowledge of Mars sufficient to
design and implement human surface exploration and E-
VA on Mars with acceptable cost, risk and performance.
Objective C: Obtain knowledge of Mars sufficient to
design and implement In Situ Resource Utilization of
atmosphere and/or water on Mars with acceptable cost,
risk and performance.
Objective D: Obtain knowledge of Mars sufficient to
design and implement biological contamination and plan-
etary protection protocols to enable human exploration
of Mars with acceptable cost, risk and performance.
Objective E: Obtain knowledge of Mars sufficient to
design and implement a human mission to the surface
of either Phobos or Deimos with acceptable cost, risk,
and performance.

Space Station. Preliminary results from Curiosity’s Radiation Assessment Detector

(RAD) show a human dosage rate of 0.21 ± 0.04mGy/d [107], which back up the

estimates in Figure 2.4. These results are applicable for all Goal IV objectives. For

future missions, especially of a distributed format like Wavefront, gathering more

radiation data during the cruise stage and during in-situ operations, especially from

unexplored locations on Mars, would further inform human safety requirements for

operations. Data from rover missions suggest localized magnetic fields that are much

stronger than modeled or expected - as the magnetosphere does for Earth, localized

high-intensity magnetic domains on Mars would provide additional shielding from

radiation.

Determining specific regions that provide more shielding is signficantly

71

Figure 2.4: Equivalent human dosages for seven different scenarios, logarithmic dosing
scale. Of particular interest is the 180-day transit to Mars and the 500 days on Mars.
Credit: NASA/JPL/Caltech [107].

augmented by more in-situ measurements. Another objective achieved by virtue of

visiting more locations is IV.A. Experimental and in-situ atmospheric entry, descent,

and landing data is obtained through a distributed mission, as long as all probes are

instrumented and are able to transmit some of the atmospheric data, regardless of

landing success. The MEPAG report states that retropropulsion techniques alone

might be able to land human-rated missions to the surface, but that there are large

72

error bars due to many unknowns during different seasons, different altitudes, dust

loading, among other factors.

Mentioned previously in the literature review is the point of "trafficability",

stated explicitly as an objective in the MEPAG report as a sub-objective. In general,

higher-value scientific regions are very risky in terms of landing - obstacles such as

boulders and quicksand-like regolith are examples. Missions that profile the regolith

through physical probing would be desirable, as demonstrated in the InSight HP 3

instrument - which demonstrated the regolith had unexpected features due to its

inability to self-hammer into the surface.

In summary, many technologies and scientific investigations relating to human

exploration can be tested, much of which is not covered here; but in particular,

radiation dosimetry and determining traversability and trafficability is desirable.

2.4 Regulatory Requirements

Last, but certainly not least, are the regulatory requirements for such a

large-scale project. The NASA Policy Directives (NPD) are a series of documents

that provide a legal framework for governance models, project management,

engineering, and scientific guidance [108]. However, as stated in the directives, they

are not legally binding unless stipulated in a contract. If Wavefront were to be a

formalized mission, these NPD’s would be legally binding. There are 10 volumes of

NPD’s; the most relevant volumes are the 7000 and 8000 series, which respectively

cover program formulation and program management.

73

2.4.1 Program Formulation

The first document that must be followed, especially for a project of this size

and scope, is NPD 7120.5F - NASA Space Flight Program and Project Management

Requirements. Between recently released Version F and the prior version, projects

with lifecycle costs (LCC’s) of greater than US$1 billion are required to perform a

"Joint Cost and Schedule Confidence Level" (JCL) analysis, especially if there is an

open-ended closeout date (mission of potentially indefinite length due to use of

nuclear power systems, for example).

One of the first and most influential determining factors in the usage of 7120.5F

and other NPDs are the flight of nuclear material. "Significant" amounts of nuclear

material is determined by NPD 8715.26, which would ultimately require sign-off by

the NASA Administrator and the President of the US. Up until late in the design

phase of the mission, flight of up to 13 nuclear power sources were considered and

designed for, due to the length of time required for in-situ weather and geologic

measurements. Due to in part the extremely stringent regulations required,

heightened risk of accidental or intentional nuclear proliferation, and the

overwhelming engineering constraints of carrying radioisotope thermoelectric

generators (RTGs) on very small probes, the nuclear option was completely ignored

by the end of the initial design phase. Substituting energy sources for solar power

would still require a large, but more attainable and realistic engineering effort.

As an LCC mission of US$3 to 5 billion, the program would be considered a

"Category 1" mission, and would therefore require approval and concurrence of the

associate administrator, the NASA chief engineer, and NASA center directors.

Category 1 missions are expected to have continuous management, systems and

program management audits, and robust quality assurance.

74

For the rest of the document, typical systems engineering practices and work

breakdown shall be implemented. Figure (fig) shows a NASA standard Level 2 work

breakdown structure (WBS) for projects - an example of how work flows down into

the rest of the program elements. For missions with Flagship-level budgets,

substantial capital investment and procurement is required - the testing, data storage

and archival, and ground support equipment to name a few would likely exceed the

total cost of the spacecraft. The design of Wavefront benefits from serial

manufacturing: 12 landers, 12 rovers, and 120 nanoprobes would be developed for

flight. Once the design is finalized, the unit cost of each probe is expected to be lower

than if they were independently developed for different missions. The capital used to

produce, test, and validate operation of each unit would be used for every probe. In

this situation, the ground and mission support equipment costs would have the

potential to be higher. The orbital relay element, Aerith, would relay tens of

terabytes of information per Earth year, as long as all assets continue to function. For

scientists inside and outside of the agency, datacenters and supercomputing facilities

would be required for storage and processing of this data.

2.5 Work and Cost Breakdown

On designing a full systems engineering process for a flagship mission, a

rigorous work breakdown is needed before any work starts. All NASA flagship

missions are usually single, large vehicles, which sometimes carry a tech

demonstration or secondary payload, such as that of Mars 2020’s Ingenuity helicopter,

or Cassini’s Huygens Titan probe. Wavefront would be a complete paradigm shift, as

multiple, serially produced probes would form the primary payload. While critical to

the mission in terms of returning scientific data and carrying the probes to the

75

destination, the Aerith orbiter would be the secondary payload.

2.5.1 Projected Program Lifecycle

Once the program has reached the Authority to Proceed phase, initial R&D

work begins for the design process to advance the program to the Preliminary Design

Review phase. Initial drawings and designs would be refined by larger teams, and

more detailed interface requirements would be developed. Further technological

feasibility is studied as well, and any shortcomings are either addressed if enough

time and budget is avaialble from the financial margins pool, or downscoped if it is

determined an engineering solution cannot be developed for the specific challenge.

R&D also includes development of the manufacturing, testing, and validation process.

Especially for the Wavefront program, if they are not streamlined early in the

program lifecycle, cost overruns can quickly mount and grow the program out of

control to cancellation. This is why it is important to leverage appropriate

organizations with plenty of experience in spacecraft development.

As previously mentioned, in the systems engineering and project management

aspect, the ATP is the general starting point for a project as a major program review.

Figure 2.5 outlines this schedule, and Table 2.5 lists out the acronyms for KDPs and

program reviews. In particular, the figure will refer to the "Single Project and Tightly

Coupled Programs" row, since this is the expected mission classification sized to the

class of budget. Most that work under the project, however, whether that be

technicians or entry-level engineers, will only need to be cognizant of Figure 2.6 - the

project lifecycle. Since Wavefront is considered a robotic mission, fewer reviews need

to be conducted since human spaceflight is necessarily more rigorous.

Assuming an ATP date of June 2025, Figure 2.6’s beginning phase of

formulation under the NASA Lifecycle Phases row, development would stretch several

76

Figure 2.5: Systems engineering key decision points and major program reviews.[5]

Figure 2.6: Systems engineering project lifecycle required reviews. For large projects,
especially flagship-class, every review is required to be completed to ensure a continu-
ation of the project [5].

years. Since the U.S. federal budget is allocated on an annual basis starting on

October 1, Wavefront’s budget, activities, and lifecycle milestones will need to align

with the fiscal year (FY). See Figure (figure) for a visual guide to the following

explanatory paragraphs.

Phase A, spanning from June 1, 2025 to Q1 FY2028 (October 1, 2027) would

represent refinement of Wavefront’s conceptual studies and development. During this

77

Table 2.5: Major Program Review Acronyms in Systems Engineering [5]

Acronym Meaning
ATP Authority to Proceed
CDR Critical Design Review
CERR Critical Events Readiness Review
DR Decommissioning Review
FRR Flight Readiness Review
KDP Key Decision Point
MCR Mission Concept Review
MDR Mission Definition Review
ORR Operational Readiness Review
PDR Preliminary Design Review
PFAR Post-Flight Assessment Review
PIR Program Implementation Review
PLAR Post-Launch Assessment Review
PRR Production Readiness Review
P/SDR Program/System Definition Review
P/SRR Program/System Requirements Review
PSR Program Status Review or Pre-Ship Review
SAR System Acceptance Review
SDR System Definition Review
SIR System Integration Review
SRR System Requirements Review
TRR Test Readiness Review

time, final changes to the overall concept during the entire operations phase would be

completed. This not only includes the spacecraft, but the development of the ground

segment, science data distribution plans and archival, integration logistics, facilities

usage, among many other higher-level, programmatic aspects that support the

devleopment and operations of Wavefront. Due to the sheer number of operational

assets, a heavier focus on mission support, operations, and sustainment will be

required - potentially similar to supporting a human-rated mission. This is the

rationale to having a very long conceptual development arc. One of the primary

requirements in the ground support (GS) segment must specify that any GS and

78

operational components shall be repurposeable to human-rated missions to Mars at

little to no cost. Without this requirement fulfilled, the program cannot move past

SRR to MDR.

Once the MDR has been cleared with an adequate mission definition, the

project can then move onto Phase B - preliminary design and technology completion,

ending Q4 FY2028 (June 30, 2028). This phase will also be relatively long due to the

need for the initial design of the spacecraft to be completely defined and methods for

collecting scientific data will need to be validated and brought to completion. Of

particular concern would be the impedance-measuring nanoprobes, which requires

precision timing, network synchronization with very high sensitivity, and high

robustness needed to survive dust storms and long Martian winters. This detail is

covered in a separate design chapter. Other details, such as robotic arms with impact

drivers on the rover, are critical but do not require very much study effort because

there is a wealth of experience with mechatronic systems. Concerning the most

critical element of the mission - the Aerith orbiter, most of the design work would

center around integration of existing spacecraft buses into a tube form factor and

development of high aerodynamic pressure capable solar wings. In data flow terms,

Aerith could be considered a single-point failure. However, the high-speed

communications relay is a relatively trivial component despite being very critical;

Maxar Technologies has decades of experience of building highly reliable,

high-throughput relays in buses such as the SSL 1300 [109]. JPL would be

responsible for developing the rover during this time, since their decades of experience

with rovers would pay dividends into the miniaturized build of the Pascal rover,

despite their recent forays into helicopter exploration of Mars.

By this point in time, only a small portion of the budget should be spent, since

the Formulation phase of the mission can also be considered the research and

79

development phase. By PDR, the engineering work to accommodate scientific

instruments should be complete, and only minor changes should be necessary up until

CDR. The time between PDR and CDR in this case, shall only be reserved for

finalizing engineering work for science, in order to meet the core scientific

requirements developed at the beginning of the program, defined by MEPAG. In all,

KDP C is arguably the most important decision point or review because requirement

scoping and "last-minute" revisions can still be made.

A successful KDP C leads up to Phase C, where the engineering work and R&D

work for science comes to an end. Reports on instrument performance, integration

activities, test and integration procedures, contingencies, projected schedule and

budget margins, and other related documentation are finalized for reporting in CDR.

For Wavefront, the CDR process will take weeks, since the chief engineer, principal

investigator, instrument PI’s, and the program manager will need to personally

delegate shortcomings or challenges and ultimately sign off on every single component

of the program. If all goes to plan and the CDR is passed, fabrication of all

consitituent systems can finally begin. Since contractors would be accomplishing this

work, forward-funding mechanisms and fixed-price contracts would dictate the

schedule. In other words, contractor schedules can be decoupled from the FY to an

extent. Since much of the time was spent on R&D, fabrication of all components with

several contractors would take Phase C up to December 31, 2029. The spacecraft will

be the easiest, since serial manufacturing is assumed to be easily accomplishable given

thorough procedures and experienced spacecraft instrument manufacturers.

KDP D is more of a soft decision point, and is the most likely point at which

delays would occur. This is to say that evaluation of engineering samples and partly

integrated spacecraft from serial production is required. The first produced landers

and nanoprobes will almost certainly have defects or manufacturing difficulties;

80

mid-production corrections can be made. However, if a chronic issue does occur that

cannot be fixed easily, a program stand-down would then be required. KDP D then

becomes the most significant milestone. Delays would have to be aligned to

Earth-Mars Hohmann transfer windows, since these occur roughly every two Earth

years. Any delays with large numbers of contractors would burn through substantial

sums of money and capital to stand down an entire program to review requirements.

Thus, a fine balance between required workforce, risk of program-jeopardizing delays,

and allowable budget with defined maximum-allowable stand down periods. Figure

(figure) illustrates this programmatic engineering challenge.

Assuming there are no program standdowns, Phase D is a smooth transition

from Phase C, with engineering samples and demonstration units and spares being

built immediately following CDR. Assembly, integration, and testing (AI&T) is

performed with all assets in parallel. This massively parallel AI&T process MUST be

defined rigidly in systems engineering terms and with information sharing systems

and procedures. Product lifecycle management (PLM) software is a required

component of this process, especially for final validation of requirements through

measurement and characterization. Of course, these processes must occur in a

nondestructive manner, and must be designed and built to withstand testing. While

testing and system characterization is being finalized, the ORR will then be

conducted with selected mission operators, who have, by this point, been walked

through the as-built mission hardware. This is necessary to allow operators to

rehearse operations through simulations and use of actual hardware/engineering

demonstration units (EDUs). The end of Phase D occurs when launch occurs; this is

during the point at which C3 is lowest in the Hohmann transfer window. This date is

assumed to be approximately June 2032. Integration of the final payload onto the

Falcon 9 occurs T-90 days before launch, according to SpaceX F9 user guides, or

81

approximately February to March 2032.

Assuming the launch occurs and Wavefront is injected into the correct transfer

orbit, cruise will take 9 months. Wavefront officially arrives when Aerith fires the

main engine to insert the entire stack into a highly elliptical orbit. A CERR is

required before this event for mission operators, because operations will very quickly

begin to unfold. Before aerobraking to circularization, and after orbit

characterization, Aerith will drop one lander per apoapsis to reduce the amount of

fuel spent by the Wavefront aeroshell GNC to deorbit. After all payloads are dropped,

and Aerith completes circularization, the operations phase kicks into very high gear.

This phase ends once all assets are deployed to their correct locations and

configurations. The mission is sustained for as long as there are assets surviving on

the surface; this would continue for at least two Martian years.

Finally, at the conclusion of the last transmission of the last surviving Midgar

lander, a decommissioning review and mission closeout is held, reviewing the mission,

engineering and program data, as well as compiling a lessons learned document. The

expected data volume from Wavefront will likely be in the thousands of terabytes

(TB); data analysis plans to more effectively use and classify science would be

required as part of the program plan beyond the decommissioning review. Artificial

intelligence and machine classification will almost certainly play a role in this plan.

2.5.2 Project and Work Breakdown

In terms of project and work breakdowns, both must be combined and defined

before PDR. However, a project breakdown structure (PBS) must come before a work

breakdown structure (WBS) because the elements/subsystems of a system must be

defined before any work can be assigned. That is, the scope and variables of the

entire engineering problem or project must be known, fully observable, and fully

82

controllable1 especially for a flagship-sized mission. Figure 2.7 illustrates this in a

more engineering-friendly manner.

Figure 2.7: A representation of project management as a control system. The highest
level input required is money and capital - this flows into engineering work. The sum
of this work is included in the output goal of producing a spacecraft. However, things
might not go according to plan, such as engineering work not proceeding at the correct
pace or unforeseen circumstances interfering with the goal. The systems engineer
would analyze the effect on this propagated throughout the rest of the system, while
the chief engineer considers how to compensate for this negative effect. Missing is the
tightly coupled nature of chief engineer and systems engineer in tandem with project
management - this is for clarity’s sake. At the end of the feedback analysis, the project
manager has the final say over the course of action, since they also have control of the
budget.

While illustrating only general controllability analysis of project management, it

serves to show that a project can only be managed when most variables are known,

and force majeure can be compensated adequately. Therefore, a PBS must be defined.

Figure 2.8 shows from a top level, what this would look like for Wavefront. A full PBS
1 This is just like a controls problem, if the system cannot be fully controlled and/or observed,

additional states or governing equations must be added until it is full-rank. Failing that, a state
estimator may be used to compensate, but at a reduced control system effectiveness. In system and
program management, this is equivalent to making assumptions. If the program manager or chief
engineer assumes incorrectly based on faulty or limited information, the program will "crash".

83

for Wavefront would be enormous, and would only be representable in a spreadsheet

program. An example of how deep the tree would go is represented in Figure 2.9.

Figure 2.8: Level-1 with a single member node Level-2 product breakdown tree. Each
box represents the system, subsystem, and so forth required to formulate the product.
When these are fully defined, work can very easily be delegated because the chief
engineer and project manager will be able to see the whole picture in terms of the
project, and create an appropriately scoped WBS.

This has a visible effect on the finer details of WBS construction. Because of

the very fine details required for the project, it is now known that more engineering

work and collaboration with scientists is required to meet requirements and deadlines.

Because of the higher cost of directly hiring engineers and scientists, work can be

leveraged through academic institutions. In some cases, instrument and scientific

principal investigators (PIs) are supported through academia, and can then further

delegate program-wide Level-3 and higher-level instrument particulars to students. 2

Not only does the WBS include work breakdown for individual components, it
2 This is not to say that students are "free labor", students get work experience and further their

own educational outcomes and degrees as collateral. There must always be something gained in
return; few if any individuals would do something for completely free to expect nothing in return.

84

Figure 2.9: Representative Level-5 product breakdown for impedance transmitter on
electrical impedance tomography instrument of individual Midgar lander. Because
of the distributed nature of this instrument, this is not a complete PBS of the EIT
instrument. Aside that, the very high tier numbering shows how much engineering
would have to be considered as part of the system, which significantly increases the
number of engineers required for this stage of the project.

Figure 2.10: Representative overall WBS of Wavefront. Note that at the highest level,
it looks similar to a PBS, but now includes management and work systems to tie
everything together.

85

would include the subsystems and tasks needed to "glue" the system together. This is

why a WBS can be described as a gestalt: the sum of an organized whole is perceived

as greater than its individual parts. An example of this is building a complete car

from parts in a junkyard - there are a sea of parts to choose from that are in various

conditions. An individual or individuals that get together to choose the right parts to

create a working car requires background knowledge of how a car works, what parts

are needed, the regulations required to pass a smog test and to be in a safe condition

to drive, etc. Effectively, this describes a systems engineer - someone that has the

knowledge of how to organize the people, knowledge, and requirements together to

complete a system, such as a car built from scrap in a junkyard. The WBS in Figure

2.10 accounts for the gestalt.

According to the NASA Systems Engineering Handbook, 2007 edition, the

WBS is responsible for:

1 - Project and technical planning and scheduling,

2 - Cost estimation and budget formulation (in particular, costs collected in a

product-based WBS can be compared to historical data. This is identified as a

primary objective by DOD standards for WBSs),

3 - Defining the scope of statements of work and specifications for contract

efforts,

4 - project status reporting, including schedule, cost, workforce, technical

performance, and integrated cost/schedule data (such as earned valud and estimated

cost at completion),

5 - plans, such as the Systems Engineering Management Plan, and other

documentation products, such as specifications and drawings [5].

Clearly, without a WBS, a program of this scope will not be able to function

properly.

86

In the interest of leveraging organizations that have significant experience in

building spacecraft with rigorous systems engineering, V&V, and I&T practices, both

a well-defined WBS and knowledge of contractor experience and competency with

appropriately scoped systems is required. For example, JPL/Caltech is viewed by the

space and defense industry as one of the most experienced interplanetary probe

integrators, with solid management and design, V&V, and I&T processes. Their

experience includes learning from challenges and failures, of which they have many

lessons learned. This being said, JPL does not have a record for serial production of

large amounts of small mission hardware - the Wavefront mission would consist of

twelve landers, twelve rovers, and 120 spike-mounted nanoprobes. Despite this, JPL

cannot be discounted from IV&V and AI&T and would ultimately play a significant

role in R&D (Phase B/C) of the project. The serial production phase would then

likely fall with, as of writing, a division of Lockheed Martin or Maxar. Further

subcontracts might be necessary, especially those experienced with small robotic

systems.

One of the last major points to cover in this section is point 5 in the WBS

purpose: formulating a Systems Engineering Management Plan (SEMP). The SEMP

is a comprehensive document that conveys technical and engineering activities

conducted during the project [5]. It serves as an agreement for how the work within

the scope of the program will be accomplished, as communicated to all personnel.

The SEMP includes details as specific as what types of tools and facilities are to be

used in integration and testing, how strictly the environment must be controlled

(such as cleanroom classifications), materials compatibility, responsibility and

authority, reviews to ensure compliance with recognized standards and internal

program requirements, among many others. It includes the following general sections:

1 - Technical program planning and control, which describes the processes for

87

planning and control of the engineering efforts for the design, development, test, and

evaluation of the system,

2 - Systems engineering processes, which includes specific tailoring of the

systems engineering process as described in the NPR, implmentation procedures,

trade study methodologies, tools, and modesl to be used,

3 - Engineering specialty integration describes the integration of the technical

disciplines’ efforts into the systems engineering process and summarizes each technical

discipline effort and cross references each of the specific and relevant plans.

The SEMP cannot be completed until the scope and purpose of every single

instrument and system is defined, which is dependent on everything covered in this

chapter - the program must be defined rigidly enough so there is no ambiguity in

downstream documentation like the SEMP.

2.5.3 Cost Breakdown

As discussed in the prior subsection, a WBS is invaluable for cost estimation. A

US$3 to 5 billion was initially proposed, but with a basic breakdown, a more rigorous

cost estimation can be made.

All things considered thus far, the following tables and subsections document

the cost breakdown. These are estimates, and are based on literature reviews and

prior experience. Table 2.6 summarizes the cost breakdown.

2.5.3.1 Aerith Orbital Relay

As previously stated, despite being considered a "secondary" payload that

carries the primary payloads to the surface, Aerith is the most important component

of the actual mission hardware. Based on the literature review and lifespan analyses

of similarly classified relay spacecraft, an cost estimate over the full life of Aerith

88

Table 2.6: Wavefront Basic Cost Breakdown

Line Item Cost
Aerith $1400M
- Hardware Cost $640M
- Total Launch Cost (aggressive-conservative est.) $400M
- General Development Margin $200M
- 25-year Operating Budget $160M
– Base Operating Budget, 3-shift exempt model $105M
– Reserve $55M
Midgar Lander $750M
- 25x Lander and Backshells $30M each
Nines Nanoprobes $120M
- 173x Nanoprobe Production Budget $40M
- Development Budget $60M
- Development Margin $20M
Pascal Rover $340M
- 25x Rover Production Budget $175M
- Development and Test Budget $130M
- Robotic Arm Development Margin $15M
- Cold-Tolerance Development Margin $20M
Ground Operations $800M
- Operating Budget $300M
- Facilities/Federal Real Property $150M
- Margin for Extended Operations $350M
Data Research - Direct Funding $120M
- Mars Analogs and Laboratory Follow-ups, 1-year $75M
- PI Funding, 3-year $45M

would be $1.4 billion. Hardware development would constitute approximately $1040

million, with the rest ($360 million) allocated to operations. While the spacecraft

would return large amounts of data, a small team is required to run it. This is in line

with operations of other mainline communications relays at Earth and Mars.

Past the prime mission, Aerith would continue to serve as an orbital relay for

other assets, including supporting human spaceflight. A mission length is scoped for

25 years, with 30 operators running instruments, relay functions, and other systems

89

aboard the spacecraft. A three-shift model of 10 operators at exempt pay status

would form the team monitoring operations. With no margin, this adds up to $105M.

The remaining $255M serves as a contingency budget, shared amongst other assets.

2.5.3.2 Midgar Backshell and Lander

The largest hardware cost will lie in the serial production of the Midgar lander

and backshell system. In the manufacture of production units, the general rule of

thumb is to produce three copies of hardware for the actual flight article: a "training"

unit, an engineering demonstration unit (EDU) that is physically and functionally the

same as the flight unit, a backup flight unit, and of course, the flight unit. For serial

production of more than one flight unit, this rule can be more relaxed. However, as

soon as manufacturing revisions are incurred that significantly change any operational

or assembly procedures, the same three units then apply to the serially produced units

of that new revision. It is expected that up to three total manufactured revisions are

made during the production run of Midgar, which then requires 21 Midgar articles to

be produced. In case of any manufacturing or quality assurance issues, a further four

units will be produced to use as spares. In all, 25 units would be produced.

The only similarly sized hardware to land on Mars to draw conclusions from is

Mars Pathfinder, which cost $150M for the lander, and $25M for the rover. Midgar is

a considerably more advanced lander, with many more survival features and scientific

instruments, but given the pace of technological advancement and the lower costs of

producing hardware 3 , Midgar would likely have the same pricetag. Additionally,

assuming economies of scale port directly to spacecraft, the production cost per unit

would end up being lower. For Mars Pathfinder, assuming the 3-spare model, each

Pathfinder lander and EDL unit cost $37.5M. Assuming a cost of $30M per unit after
3 This even considers the extreme pressure of inflation as of writing.

90

the economies of scale assumption, all Midgar landers would cost $750M. Note that

this is only the lander, and not the rover or nanoprobe.

Operations is an entire Pandora’s box, one unexplored in deep-space exploration

thus far. Up to twelve units will operate on the surface of Mars, which does not

include the 120 Nines nanoprobes and 12 rovers designed to deploy the nanoprobes.

This aspect is further explored in a later section as a separate budget line item.

2.5.3.3 Nines Nanoprobes

Nines is a relatively simple probe to design and build - much of the upfront

R&D of an individual unit would come from development of a cold-tolerant,

low-friction slip ring to allow solar panel cleaning, and high-sensitivity receivers for

ground impedance.

To ensure the EIT system functions to specified requirements, a lander

simulator and the entire complement of nanoprobes are required. Holding with the

three-unit rule of thumb plus 3 spares, 33 would be produced for V&V and mission

operations scenarios. The mission set requires 120 probes, and with a two backup sets,

a total of 173 probes would be produced. Development and production would amount

to $100M, based off of IPC Class 3 printed circuit board fabrication houses3 , custom

battery manufacturers, extended-range environmental testing, and cold-tolerant

electronics. In case of development cost overruns, an additional $20M is allocated.

The pricing of the fixtures for mounting and securing the nanoprobes are

counted as part of the lander.
3 Most board houses with manufacturing to these standards provide quotes classified as proprietary

information.

91

2.5.3.4 Pascal Rover

Developing the Pascal rover is fortunately aided by many advances in

mechatronics and a similarly sized precedent: the Pathfinder rover. The Pathfinder

rover was developed under the Faster, Better, Cheaper era of NASA; it helped that

the rover was only a technology demonstration. Pathfinder’s development budget was

only U.S.$120 million, but had to deal with a slew of unknowns and how to address

them. With decades of roving experience and data, the development of a chassis,

drive system, vision system, and radiation-tolerant circuitry is expected to be a

fraction of Pathfinder’s development costs. Another example working towards

Pascal’s low cost is the highly succesful Ingenuity helicopter. The entire budget for

the helicopter came in at U.S.$27 million, with an expected lifespan of 5 flights, or

about 5 minutes in the air. More than one Martian year on, the helicopter has made

over 50 flights, and is not showing any significant signs of wear. Revised versions of

the Mars Sample Return program envision replacing rovers with helicopters of the

same size, each sporting very small robotic arms designed to pick up sample tubes

deposited by Perseverance.

These two data points help inform a conservative cost of U.S.$130M to develop

and test the platform before mass production. The rover production cost of U.S.$175

million accounts for custom tooling and political agendas, which are coupled factors.

In the current political environment, a U.S. mission would likely involve restrictions

on outsourcing and domestic production limitations, including components as small

as capacitors and resistors. The single, most expensive components are the FPGA’s

and processors - the U.S. has very limited domestic production capacity, especially for

larger feature sizes and special production treatments such as chemical vapor

deposition (CVD) plating of iridium for radiation resistance. Therefore, the tooling

92

set up for rover and lander mass production would need to be leveraged in the future

for other rovers or similar systems.

The robotic arm and cold-tolerance budget line items are separate from the

development and test budget because of their importance to the mission. Ingenuity

had recently demonstrated survival to as cold as -85°C for multiple months. A similar

electrical system topology is expected to be leveraged, especially control and power

electronics, as well as batteries.

2.5.3.5 Ground Operations

The operations budget is expected to comprise a large portion of the program

budget. This includes facilities procurement and development, as well as margin for

extended operations. A detailed breakdown was skipped because there was little

familiarity with this subject. As a result, the budget required for ground and facilities

management might have too large of a margin.

2.5.3.6 Direct-funded Data Research

To support future missions and mission planning, direct funding is provided for

analysis of Wavefront data. The primary benefactors of this analysis would be

scientists and the overarching steering committees, such as MEPAG. The first line

item, Mars Analogs and Laboratory follow-ups, is heavily funded to support rapid

research and conclusions into findings made by the program. This funding would not

be activated until a sufficient amount of data are collected. The second line item is

for more detailed investgations, which fund up to 10 PI’s at U.S.$1.5 million for three

years. This funding includes equipment purchases and intern funding.

93

2.6 Conclusion

This extensive chapter set the framework and scope of Wavefront starting at

the political level. This is necessary due to the large scope of the project - at the

total cost of U.S.$3530 million, it is termed a program. In NASA nomenclature, it is

considered a Flagship program. Program development and cost scheduling and

rationales are developed.

94

3.

This chapter details the highest level engineering requirements in Wavefront -

ones that are fundamental to the mission. Given a U.S.$3.53 billion budget, there is

an acute need to follow through on all requirements, procedural and engineering.

These high-level engineering requirements constrain the problem to reduce the risk of

a runaway budget.

Aside from project management requirements and frameworks, the highest level

engineering requirement specification to follow i s the AFSPCMAN 91-710 document

on launch vehicle, range safety, and payload requirements [110]. This document states

basic requirements for launch vehicles, safing of hazardous payloads such as explosives

and fuels, and redundant system requirements. Wavefront would be launched from a

US Space Force (USSF) base, and to ensure minimal risk to technicians, range safety

officers, and to ensure minimal downtime on the base or range, compliance with this

document is mandatory. Covering the entire document and validation of compliance

would require many more chapters and sections than practical. This section

summarizes the most important, higher-level requirements necessary for Wavefront. A

more intuitive method of describing why all requirements and design efforts for such a

large project must flow down from AFSPCMAN 91-710 i s the fact that most

spacecraft endure the most severe loads only during launch. This is the shortest

phase of the mission, but obviously the most critical since if the launch vehicle fails or

a spacecraft system fails due to launch loads (high g-loading or vibrations), the

mission is immediately deemed a failure.

Engineering Constraints

95

3.1 MSPSP

The Missile System Prelaunch Safety Package (MSPSP), per AFSPCMAN

91-710 page 212, is a required document from all rocket providers, ground support

operators, and payloads that describe hazardous hardware and safety-critical

equipment. Assuming that the launch provider decouples all hazardous rocket

requirements from the payload (which is reasonable), the payload provider shall

specify all hazardous systems and materials present. Per MIL-STD-882, Department

of Defense Standard Practice for System Safety, hazardous systems are those that

would present a significant hazard to life and safety if the system were to fail in an

inadvertent manner. In the purview of Wavefront, these are systems like batteries,

separation devices, propulsion systems, and mortars.

Table 3.1: NFPA 704 Standard "Fire Diamond" - Health[6]

Rating HEALTH (blue)
0 Poses no health hazard, no precautions necessary and would offer no

hazard beyond that of ordinary combustible materials.
1 Exposure would cause irritation with only minor residual injury.
2 Intense or continued but not chronic exposure could cause temporary

incapacitation or possible residual injury.
3 Short exposure could cause serious temporary or moderate residual injury.
4 Very short exposure could cause death or major residual injury.

Of these four systems, propulsion systems have the highest potential to be a

hazard. To maintain heritage with other Mars and lunar landers, hydrazine propellant

will be used. It is an extremely hazardous liquid: on the NFPA 704 scale in Table 3.2,

3.1, and 3.3, it rates as a 4 on health hazard, 2 on flammability, and 3 on reactivity.

Containment design is therefore extremely important, which does not include the

necessary procedures for loading and handling propellant during preparation for flight.

Additionally, as shown later, custom tank designs in potentially custom shapes will be

96

Table 3.2: NFPA 704 Standard "Fire Diamond" - Flammability[6]

Rating FLAMMABILITY (red)
0 Materials that will not burn under typical fire conditions, including

intrinsically noncombustible materials such as concrete, stone, and sand.
Materials that will not burn in air unless exposed to a temperature of
820°C (1,500°F) for more than 5 minutes.

1 Materials that require considerable preheating, under all ambient tem-
perature conditions, before ignition and combustion can occur. Includes
some finely divided suspended solids that do not require heating before
ignition can occur. Flash point at or above 93.3°C (200°F).

2 Must be moderately heated or exposed to relatively high ambient tem-
perature before ignition can occur. Flash point between 37.8 and 93.3°C
(100 and 200°F).

3 Liquids and solids that can be ignited under almost all ambient tempera-
ture conditions. Liquids having a flash point between 22.8°C (73°F) and
having a boiling point at or above 37.8°C (100°F) or having a flash point
betwen 22.8 and 37.8°C (73 and 100°F).

4 Will rapidly or completely vaporize at normal atmospheric pressure and
temperatur, or is readily dispersed in air and will burn readily. Includes
pyrophoric substances. Flash point below room temperature at 22.8°C
(73°F).

Table 3.3: NFPA 704 Standard "Fire Diamond" - Reactivity[6]

Rating INSTABILITY-REACTIVITY (yellow)
0 Normally stable, even under fire exposure conditions, and is not reactive

with water.
1 Normally stable, but can become unstable at elevated temperatures and

pressures.
2 Undergoes violent chemical change at elecated temperatures and pressures,

reacts violently with water, or may form explosive mixtures with water.
3 Capable of detonation or explosive decomposition but requires a strong

initiating source, must be heated under confinement before initiation,
reacts explosively with water, or will detonate if severely shocked.

4 Readily capable of detonation or explosive decomposition at normal
temperatures and pressures.

required. 91-710 Chapter 12 details the design criteria and verification and validation

approach for pressurized tanks, which themselves follow U.S. Department of

97

Transportation (DOT) standards for tank and pressure vessel design.

The next hazardous system is the parachute mortar. Usually, a black powder

charge is used when blowing a parachute assembly from its mortar shell. Due to the

risk of explosion during spacecraft integration, launch vehicle handling, or other

instances where the spacecraft is interacted with, stringent requirements are levied

upon ordinance systems. 91-710 Chapter 13 details these requirements. While the

parachute mortar would hold heritage to other Martian systems, they would still need

to go through a classification system as they would be brand new designed systems.

Per Requirements 13.1.1.1, 13.1.1.2, and 13.1.1.3, the mortars shall have United

Nations (UN) explosive hazard classification, shall be tested against U.S.

NAVSEAINST directive 8020.3 Explosive Hazard Classification Procedures, and shall

obtain a DOT classification.

In the consumer sphere, batteries are generally deemed safe due to their

widespread adoption. However, this is because they are handled under "ordinary"

circumstances - room temperature, rarely if ever exposed to mechanical and thermal

shock, and have usually been tested with a known, maxmimum load. In the space and

defense sphere, batteries are treated as a hazardous system due to chemical storage of

energy. In the presence of other hazardous systems and human operators, inadvertent

catastrophic failure of a battery system could result in catastrophic failure of other

systems and injury or death of technicians and/or operators. To comply with range

safety and the MSPSP requirement, Chapter 14, Section 1 spells out all required

design features, specified transportation methods, and safety devices for batteries and

other high-power electrical systems. One particular design feature requires physical

connections or connectors that contain a "positive locking mechanism". For example,

if in the case mechanical vibration from launch loads induce a resonant mode that

(dis)connects a connector for a safety-critical system such as a mortar detonation

98

circuit or activate a high-power load on the battery, inadvertent actuation might

occur, which could destroy the spacecraft and/or launch vehicle.

Finally, separation devices would be examined. These may contain either

explosive or non-explosive actuation devices. In Wavefront’s case, all separation

devices aside from the LV separation ring, would be non-explosive electromechanical

actuators. Therefore, the separation device would not be considered hazardous, but

only safety critical. Design of the system and V&V activities for such systems would

thus fall upon software and electrical design, covered in Chapter 15 and 16.

3.2 Inhibit Scheme

To render spacecraft systems inert during the entirety of the vehicle launch,

appropriate inhibit schemes shall be used. Even though the hazardous systems will

not be used until arrival at Mars, after the cruise stage insertion burn, all systems

must under all known circumstances remain inert. Because of the importance of this,

all inhibit requirements from 91-710 are listed in Table 3.4.

A catastrophic hazard would be considered one where the launch vehicle

completely fails due to inadvertent activation of a hazardous system. The most

catastrophic example would be one of the lander parachute mortars blowing, resulting

in overpressure of the launch vehicle fairing, blowing it off during ascent. Regardless

of launch provider, such a scenario would result in automatic activation of the flight

termination system (FTS), since the vehicle would very likely no longer be safely

controllable. Thus, the parachute mortar inhibit will require a triple inhibit system.

Figure 3.1 shows an electrical example of a solution to this requirement. Mechanically,

this implementation would occur through the use of high-reliability, low-resistance

plunger switches, such as shown in Figure 3.2, which might contact the cruise stage

99

Table 3.4: AFSPCMAN 91-710 Inhibit Requirements

Requirement
3.2.1 - If a system failure may lead to a catastrophic
hazard, the system shall have three inhibits (dual fault
tolerant).
3.2.2 - If a system failure may lead to a critical hazard,
the systems shall have two inhibits (single fault tolerant).
3.2.3 - If a system failure may lead to a marginal hazard,
the system shall have a single inhibit (no fault tolerant).
3.2.4 - Probabilities of hazard ocurrence shall be tak-
en into consideration when determining the number of
required inhibits (See AFSPCMAN 91-710 Volume 1,
Chapter 3, Table 3.1).
3.2.5 - Systems shall be able to be brought to a safe
state with the loss of an inhibit.
3.2.6 - All inhibits shall be independent and verifiable.
Common case failures shall be considered.
3.2.7 - Design inhibits shall consist of electrical and/or
mechanical hardware.
3.2.8 - Operator controls shall not be considered a design
inhibit. Operator controls are considered a control of
an inhibit.

wall.

Figure 3.1: Electrical schematic for a dual-fault tolerant inhibit scheme.

Inhibiting the rest of the spacecraft during launch is accomplished using the

same mechanical switch scheme, except they drive silicon carbide (SiC) MOSFETs.

100

Figure 3.2: Military-grade, hermetically sealed plunger switch. Credit: Honeywell
Aerospace

Figure 3.3 shows this modified inhibit scheme. SiC MOSFETs have been used for

decades in switching and regulation electronics and have significant spaceflight

heritage in military electronics. Due to the safety- and mission-critical nature of these

inhibits and the very high current carrying capabilities of SiC MOSFETs, they are

used in lieu of purely mechanical switch designs or newer gallium nitride (GaN) FETs.

3.3 Launch Vehicle Identification

The next level down is to identify a launch vehicle (LV). As of writing, a sizable

number of companies with different sizes of launch vehicles exist. Almost all

companies advertise their capability to low Earth orbit (LEO) from specific launch

sites. A big figure of merit in determining total payload energy is launch site

inclination: the closer one is to the equator, the more one gets a "boost" for free. The

Earth’s rotational velocity at the equator is 447 m/s - this is 5.73% of total orbital

velocity in an earth-centered, earth fixed frame (ECEF). However, orbital dynamics

can still allow more efficient or opportunistic launches from higher inclinations or

even retrograde launches. For example, the Double Asteroid Redirection Test

101

Figure 3.3: Electrical schematic for a dual-fault tolerant, electromechanical inhibit
scheme. Resistor RP is used to "pull-down" the voltage to zero, since MOSFETs
behave like parallel plates - capacitors and must be discharged to properly signal.
Resistor RL is the entire spacecraft load. The switches are ahead of the spacecraft
load in order to allow power to flow to the inhibit MOSFETs.

(DART) mission launched into a 200x300, 64.7o parking orbit to then accomplish a

Hohmann transfer to Didymos.

3.4 Launch, Cruise, and Arrival

The highest-level requirement is of how the lander hardware will be ferried to

Mars. Depending on the phase departure from the lowest energy Hohmann transfer

acheiveable, Wavefront will have a wide range of possible approach velocities in a

Mars centered Mars frame of reference (MCMF). The Mars Pathfinder and MESUR

missions designed for as high of an approach velocity as 7.6 km/s. This strongly

affects the thermal protection sizing and mass on entry into Mars’s atmosphere,

which in turn negatively affects the available landable scientific mass.

However, because an orbital relay will fly with the landers, a hyperbolic entry,

descent, and landing is not desirable. The tradeoff is that a higher fuel mass fraction

will be required to perform a costly orbital insertion burn. This will narrow the

102

launch window to a smaller number of days; in other words, there will be a reduction

in the permissable phase error relative to a Hohmann transfer resulting in the lowest

C3, holding the launch vehicle the same. This concept is illustrated in relative terms

in Figure 3.4. A larger rocket will allow larger phase error, however, this also carries

it’s own constraint: some rocket companies specify a minimum launch mass to reduce

the acceleration and vibration imparted onto the spacecraft. In Figure 3.4, this is

represented by the lower line. Intuitively, the upper bound gives the maximum mass

allowable in a given Hohmann transfer. For the final Wavefront mission studied here,

there exists a plethora of launch vehicles that could accomplish the job.

The largest constraints are launch service provider availability and reliability.

At the time of writing, the only LSP capable of launching to Mars reliably, on

schedule, and on budget for the mission size is SpaceX. Their Falcon 9 is capable of

transferring up to 4 metric tons (Mt, 4,000 kg) to a Martian transfer orbit. Further

details regarding this maximum transfer mass was not available, but an intuitive

assumption can be made where this represents the top-right of the porkchop plot.

Figure 3.5 shows a Falcon 9 with the final mission configuration, to scale, seated in

the fairing.

The next family of tradeoffs are a direct consequence, and benefit, of carrying

an orbital relay. The benefit of carrying a relay is such that the actual Wavefront

landers do not have to be free-flyers, they can obtain power and thermal control from

its’ "mothership". Individual free-flight has the following consequences:

- navigation for multiple objects has to be performed, increasing mission

support cost,

- complete systems have to be carried with the Wavefront landers to keep them

power-positive and thermally regulated, which includes an appropriate guidance,

navigation, and control (GNC) system for thermal regulation, increasing individual

103

Figure 3.4: A basic tradeoff of the phase error between an ideal Hohmann transfer and
the fuel requirement. The space in between the upper and lower lines represent an
acceptable mission. In orbital dynamics, derivatives of this plot are called "porkchop
plots", due to the shape of the area within the curves forming a porkchop.

Figure 3.5: An illustration of SpaceX’s Falcon 9 with a to-scale representation of
Wavefront seated in the payload fairing. Background image credit: SpaceX.

system mass and complexity,

- no possibility for delaying or repositioning landings to a very specific site, and

- TPS mass is increased due to the direct, hyperbolic entry required.

Free-flight was considered early on in the mission design process; Figure 3.6

shows a detailed cruise stage design for such a configuration. Bifacial, fold-out solar

panels built using commercial, off-the-shelf modules would provide 30 watts electrical

power per wing.

104

Figure 3.6: Detailed design of a cruise stage with stand-in EDL capsule skeleton.
The cruise stage was designed to fit inside of an ESPA ring’s portal (shown floating
at the midpoint of the anodized fuel tanks), in order to comply with volumetric
requirements for a ULA Atlas V 421 launch vehicle. All hardware needed to join all
components is modeled; STEP models are taken from hardware distributors. This
was necessary to validate the ability to be assembled and whether realistic fasteners
were available for the design. To facilitate modularity of this cruise stage, the central
cavities were compliant with a 3x1U CubeSat specification. Each cavity would host
cruise stage systems, such as the flight computer, batteries, communication systems,
and potentially a separate CubeSat.

For the "mothership" or orbital relay concept, the most visible consequence is

the mass required to perform an orbital insertion burn, while carrying the extra mass

of the landers. Some missions operated off of this principle: the most recent example

of this paradigm successfully working is China’s Zhurong lander. The Tianwen 1

orbiter carried Zhurong during the orbital insertion burn. Aerith, the orbital relay

and mothership, is a would carry twelve landers. To reduce the fuel carried to

perform a needed circularization (to be as close as possible to landed assets,

105

maximizing bit rate), Aerith is designed to perform aerobraking. Mars Global

Surveyor, 2001 Mars Odyssey, Mars Reconnaissance Orbiter, and MAVEN are known

to have successfully performed an aerobraking maneuver to perform circularization.

According to JPL, this maneuver reduces fuel needs by up to 50%. Such a maneuver

carries other major tradeoffs, which will be explored in the detailed design of Aerith.

In summary, landing hardware will be ferried to Mars by a combination

mothership and orbital relay that utilizes an insertion burn and multiple aerobraking

maneuvers to circularize before dropping off the landing hardware.

3.5 Communications

MESUR and the Viking landers provided very important insight into the need

for an orbital relay, which directly affects the selection of an arrival type. During

Martian conjunction, when Mars and Earth are the furthest apart, MESUR was

expected to communicate at rates as low as two bits per second direct-to-Earth

(DTE), or when forward error correcting is introduced, fewer than 1/4 symbols per

second per MESUR probe. For the Viking missions, DTE bit rates from 250 to 1,000

bps were acheived through all phases of the mission. Considering an IoT approach to

global in-situ science, even the higher bit rate achieved by Viking is simply untenable

and unsustainable for multi-year missions. Viking designers were aware of this issue:

the orbiter functioned as a relay to Viking: bit rates of up to 16 kbps were achieved

[42], a substantial improvement over a DTE link.

During the extensive field campaigns of the Nines nanoprobes, high resolution

data from multiple sensor suites simulated Mars IoT deployments. Depending on

content and sensors, each probe returned 60 kB to 1 MB of data per day, in the form

of comma-separated values (CSV). In a four lander mission, a total of 36 assets would

106

be able to return scientific data. Assuming the worst-case engineering design envelope

of 1 MB/day/asset, up to 36 MB per day would be collected on environmental

conditions. Since similar IoT strategies, topologies, and hardware would be used, this

is a very acheivable goal.

3.6 Power

While there are plenty of solar-powered Mars missions, solar power incurs a

certain amount of operational risk for long-term missions. This is due to the

unpredictability of dust storms. A great example is the Opportunity rover: it was able

to operate for 15 years and survive multiple dust storms, but the June 2018 global

dust storm ended it due to an extended period of time without enough sunlight.

3.6.1 Nuclear

Nuclear power has been the choice of energy for many high-power rovers or

spacecraft that require long mission durations, such as Curiosity and Perseverance.

However, to date, zero practical missions in the smallsat category have been designed

or scoped for nuclear energy 2 . This is due to a wide range of factors,

To avoid a complete and very costly redevelopment of an RTG, the most recent

fuel containment mechanism is used. The U.S. Department of Energy’s General

Purpose Heat Source (GPHS) is a highly reinforced, insulated, and ablatively coated

enclosure for four standard plutonium dioxide heat sources. Despite this usage, in

order to comply with containment requirements in the event of catastrophic failure of

the launch vehicle for instance, certification and engineering with high design margins
2 A notable exception is Breakthrough Starshot. These would use a ground-based laser firing at

solar sails for propulsion, and very small RTGs for power generation. However, this mission is still
not practical due to the need for construction of a 100-gigawatt laser and light sail material needing
almost perfect reflectivity [111].

107

are required. Such a redesign has the unfortunate side effect of costing tens of

millions of dollars. This design process is detailed in later chapters, and resulted in an

untenable and unwieldy design for small probes.

3.6.2 Solar

The only other feasible choice for medium- to long-term power generation is the

use of solar power. Two types come to mind: rigid and flexible. Up until 2017, rigid,

foldable solar arrays have been used in spaceflight. The flight test of the USAF’s

Roll-out Solar Array (ROSA) on the International Space Station (ISS), shown in

Figure 3.7, is a paradigm shift. Higher density packing and lower masses can be

achieved, leading to higher power generation and/or larger margins. In terms of

lifespan on Mars, the biggest design variable is dust accumulation. Over time, dust

eventually accumulates to the point the mission comes to an end. This dust

accumulation rate depends on geography and a number of other factors; Spirit and

Opportunity were fortunate enough to have dust devils pass over the rovers frequently

enough that the missions were extended multiple times. On the other hand, the more

recent InSight lander was not fortunate enough to see even one cleaning event - the

mission was ended after about two Martian years.

One design note is that all solar powered Mars missions used horizontally

deployed panels. By deploying the solar panels at a relatively high angle, dust could

roll off the panel over time. Such a design is possible by implementing a ROSA on a

gimbaled mount.

108

Figure 3.7: U.S. Air Force’s Roll-out Solar Array (ROSA) mounted on Canadarm
at the ISS for system validation and testing. Credit: NASA/Air Force Research
Laboratory.

109

4. Architectural Design Process and Concept of
Operations

With all of the guardrails for design in place, this chapter describes the

concepts of operation and development of notional designs into the final product.

4.1 Architecture, Version 1

The original proposal called for a U.S.$25 to 40 million payload of opportunity

that would be deployed from a NASA Flagship mission. The specific details of this

work are published in [81]. The maximum diameter was specified at 13 inches, which

is designed to fit inside an ESPA 6-15-24, shown in Figure 4.1.

Figure 4.1: The EELV Secondary Payload Adapter, manufactured by MOOG Space
and Defense Group. Credit: MOOG Space and Defense Group.

In summary, the nanoprobe would have been a completely independent mission

of similar size and mass to the Deep Space 2 microprobes. The point of departure,

110

however, was the complete EDL system. Utilizing COTS and GOTS equipment and

advanced additive manufacturing capabilities, the Pathfinder mission was effectively

replicated on a 1U CubeSat scale. Figure 4.3 shows this in detail. There are six Estes

ammonium perchlorate composite propellant (APCP) retrorockets to slow the entire

stack down to zero velocity near the ground. Sandwiched in between each motor are

three Crosman carbon dioxide gas cartridges, which provide controllability during the

terminal atmospheric entry phase. These details are shown in Figure 4.2.

Figure 4.2: Internal render of Nines as an independent, 1U CubeSat mission of
opportunity. Promenently shown is the 1U CubeSat, six solid rocket retropropulsion
motors, and three gas thruster cartridges.

Since the EDL concept of operations is exactly the same as Pathfinder, Figure

4.4 is accurately representative of this first version of Nines. A hyperbolic entry is

conducted, followed by parachute deployment at approximately Mach 1.6 - just before

the vehicle becomes unstable. Upon slowing to approximately Mach 0.5, the

heatshield is let go, the tetrahedral CubeSat deployer rappels down a 10-meter Zylon

braided cable, and the radar begins to seek a solution for retrorocket firing time.

111

Figure 4.3: 2D drawing of the full Nines concept. The backshell (A-D) contains
propellant (C), batteries (D), the parachute (A), and high speed deceleration devices
(B). The tetrahedron (E-G) contains the actual lander hardware (G) and self-righting
lander petals (E), as well as airbags and airbag inflators (F). The heatshield (H) is at
the bottom, which would be 3D printed using ablator and PAEK-based thermoplastics.

Seconds before engine ignition, the CO2 airbags inflate in about 1 second. At about

50-meters above the ground, the radar commands the rockets to fire, bringing the

entire package to a stop 15 to 20-meters above the ground. At this point, the Zylon

bridle is cut, the backshell flies into the parachute, and the CubeSat deployer bounces

off the ground until it comes to rest. In a compressed timeline compared to

Pathfinder, the tetrahedron deploys the CubeSat within 2-3 minutes of commanding

the airbags to deflate. This is because of very low thermal inertia: warming up the

high-torque axial petal deployer motors would eat into Sol 0/1 power margins. The

lander would take advantage of preheating operation in the hours before entry.

Therefore, the petals and conformal solar panels would be deployed quickly after

112

landing.

Figure 4.4: Concept of operations of Pathfinder rover mission. It is an accurate
representation of a free-flyer version of Nines due to experiencing direct entry and due to
the architecture being almost exactly the same. Credit: NASA JPL/Caltech/Lockheed
Space Systems

Upon reaching the deployed configuration, the lander goes into a minimal power

state to charge the battery. The major constraint for landings are that they need to

occur in the local early morning - survival with such small batteries and low thermal

inertia would be difficult if not impossible.

Once the state of charge reaches acceptable levels, data transmission from EDL

can begin. As customary with all Mars missions, the highest priority data is from heat

shield performance, internal thermals, and trajectory reconstruction. Without this

data, landing models cannot be refined and margins cannot be reduced confidently.

After about 2-3 sols and 4-6 passes from an MRO-class relay spacecraft, science

data collection can begin. This period is continued for a minimum 90 sols, but was

expected to last 1 Martian year. The largest survivability constraints were night

113

survival and global dust storms of magnitudes as great as those in 1970 and 2018.

Data collection and instrumentation selection was expected to be limited, and was

one of the contributing factors to completely revising the design.

Figure 4.5: Concept of operations of the independent Nines mission, also known
as a "payload of opportunity". Many of these would independently deploy from a
mothership of an unrelated mission and land on the surface of Mars.

A pictoral representation of mission CONOPs is shown in Figure 4.5.

114

4.1.1 Architectural Revision Rationale

While very much a feasible and viable concept, the science returns would be

extremely limited. Additionally, a top-level power budget analysis shows that the

margins would be very limited.

Figure 4.6: Total area in solar cell assumption for lander.

Figure 4.6 sets the stage for the analysis - there is 210cm2 of surface area to

work with. SolAero IMM4J gallium arsenide (GaAs) solar cells used on the Ingenuity

helicopter are 33% efficient, and are tuned specifically for maximum absorption on

Mars.

The next step is to determine insolation per unit area per sol. According to

data from multiple missions, the solar energy per unit area received is determined

based on several variables - this is tabulated in 4.1. τ represents the optical depth

ratio, where 0 is no atmospheric attenuation by dust; HH is total energy received per

square meter per sol, and GLI is average insolation received per sol, in watts/meter2.

Assuming a conservative, but nominal scenario at a mid latitude, a τ of 0.65 is

assumed. This results in a 290 W/m2 peak at midday. Integrating the following

formula approximating instantaneous insolation constrained by the average insolation

per sol,

115

Table 4.1: Derived Insolation at Mars

τ HH (W) GLI (W/m2)
0.65 3340 290
0.4 3882 308
1.4 1900 178
3.25 1024 95

PT OT AL =
∫

GLI ∗ sind(t + 360
24.6)dt (4.1)

where PT OT AL is total solar power received in 1 Martian day, GLI is average

insolation received per sol, and t is time. This yields 2.27kWh/m2 per sol. No solar

energy conversion system is perfect - multiplying by the efficiency ratio of GaAs solar

cells of 33%, 749.1Wh/m2 represents a real-world, perfectly manufactured solar

panel with no dust on the surface of the panels. With the total panel area in Figure

4.6 considered, the total power output per day, assuming no obstructions or shade on

the panels, is 15.7311Wh .

This result is the primary reason a design change had to be made. While by

chance, NASA/JPL learned through the Ingenuity helicopter that almost all

electronics are capable of surviving Martian winters with no electrical heating, the

same would almost certainly not be said about scientific instruments. If the spacecraft

were to use a nuclear heat source, such as a 1-watt thermal radioisotope heater unit

(RHU), assuming that a fantastically thermally isolated design was feasible, the probe

could possibly survive. This being said, nuclear power sources are not friendly with

budgets or politics - replacing this 1-watt heat source with electrical heating would

mean 76% of total energy per sol at landing would be consumed just to keep the

probe, instrumentation, and power systems warm. Additionally, given that many RF

communnications packages on the surface of Mars require power on the order of tens

116

of watts during transmission, this further excludes this design from the trade space.

4.2 Architecture, Version 2

The next version of the system diverged from dedicated assets to much smaller

"payloads of opportunity". It leaned on the Ingenuity-type model, where a primary

payload like a rover or helicopter would drop off each nanoprobe somewhere on the

surface of Mars. Figure 4.7 shows, with some changes needed for ruggedization, what

each probe would have looked like at one to one scale.

Figure 4.7: Nines probes, version 2, with ruler for scale. The polycarbonate boxes
held a complete Internet of Things node inside, fabricated on two stacked PCBs.

After dropping off each node at various places in close proximity to an

operating rover or helicopter, the nodes would gather and store data whenever there

was enough power to do so. This was under the assumption that all electronics,

batteries, and instruments would tolerate very low night time temperatures.

Assuming that the rover or helicopter was within range of its’ radio, each node would

transmit the cached data, which would occur whenever the opportunity presented

itself. An illustration of this conops is shown in Figure 4.8.

117

Figure 4.8: Concept of operations of Nines nodes being dropped off by a rover, one at
a time. After all nanoprobes are deployed and activated, each communicate in a mesh
network to eventually move the data to the rover when in range.

While a good exercise in IoT design, Nines as-is in this form factor has severe

limitations. Aside from an opportunistic deployment scenario, data collection

intervals would be inconsistent. Additionally, the solar power system was designed

with minimal margin for collection on Earth - a complete recharge would require two

to three days of sun exposure. From 4.1, with 25% efficient solar cells as used in the

design, the probe’s 5.7 cm2 of cells would only generate 1.30 watt-hours per day.

While sufficient for Earth testing, it would be completely insufficient for Mars

especially when survival heaters are considered and survival every night would

amount to gambling.

118

4.3 Architecture, Version 3

The next design iteration widened the scope to allow for more volume for better

electrical systems. For this version, a new geometric constraints were given: the

aeroshell diameter was to be no greater than 940 mm, a 70-degree half angle heat

shield would be used, and the backshell would be no taller than 1-meter. By its’

nature, the spacecraft system departed from the possibility for Wavefront to be a

"rideshare" or "payload of opportunity" mission. This revision firmed up the

lander-rover concept, and opted for a stackable cruise stage ring as shown in 4.9. The

cruise stage was not considered; however, would have looked similar to the final

iterations of Wavefront. The design would have allowed for larger lander systems and

potentially more probes; but in the interest of maintaining flexibility for other launch

vehicles and configurations, the outer mole line of the aeroshell was maintained at

940mm. It would have also endured the lightest loads, since the final revision would

encounter significant cantilevered scenarios. By having a stacking semi-independent

cruise stage with propellant, all probes would have allowed release days to weeks

before entry, permitting high landing flexibility at the expense of hyperbolic entry

speeds.

4.4 Version 4 and Shinra RTG

One of the primary reasons nuclear spacecraft were landed on Mars was to have

guaranteed power in all situations, especially during dust storms. While rovers like

Spirit and Opportunity were not designed to last through dust storms, it showed it

was possible to survive dust storms with very high τ . After accepting that the

mission cost could no longer even be a NASA Discovery-class mission, a miniaturized

RTG was studied. The Shinra RTG is shown in Figures 4.10 and 4.11. The main

119

Figure 4.9: Notional, initial design for the Wavefront mission system. From left to
right: 70 deg half-angle instrumented heatshield, 18U CubeSat form factor rover,
ultra-light lander with base station and unrollable solar panels, Nines nanoprobes,
instrumented backshell, cruise stage with stacking struts.

requirement was to design around the GPHS, as shown in Figure 1.25. This was

critical to keeping development costs of a new RTG down, since requialification of

nuclear fuel though required destructive testing due to ablation and impact could

amount to U.S.$100 million.

Figure 4.10: Shinra Radioisotope Thermoelectric Generator for nuclear lander option,
which was ultimately not selected.

The minutiae of design choices and requirements were bypassed by creating

120

Figure 4.11: Shinra Radioisotope Thermoelectric Generator for nuclear lander option,
which was ultimately not selected.

very large mechanical design margins. This, in turn, created a likely overdesigned and

excessively heavy RTG. After fully modeling the correct material densities for all

fasteners, insulators, and shock-absorbing material, the entire RTG was 9.4 kg and

took up an excessive amount of volume in the backshell. The overdesign had fatal

ramifications in the systems engineering design space, since the physical size would

leave no more room for any vehicle electronics and would potentially very negatively

affect stability due to the high mass at a high vehicle CG. When comparing Figure

4.12 with the final render of the Midgar lander, it is painfully apparent that there

would simply not be enough room. If the Wavefront program were to go ahead with

an RTG, several revisions of RTGs would be required. This was necessary to reduce

the design margins to an acceptable balance of safety, power output, and structural

rigidity.

Had the design been viable, Shinra would have produced 250W thermal and

12.5W electrical BOL (beginning of life) with the most efficient thermocouple

junctions. Despite the low electrical output power, no electrical load would be needed

121

Figure 4.12: Shinra RTG mounted on lander, showing the extensive amount of volume
it occupies.

for heat management or survival on the Martian surface, since waste heat would

radiate throughout the spacecraft. To supply peak load demands past Shinra’s

capabilities, the system would have charged a battery whenever scientific

measurements or transmissions were not being conducted.

4.5 Version 5 and 6 - New Space LSP Version

To keep the possibility open for "New Space" launch service providers (LSPs), a

descoped version was considered, with a smaller version of Aerith (version numbering

taken from the first version of Nines) as a free-flyer cruise stage. The nominal concept

is shown in Figure 4.13. As of writing, the only viable New Space LSP aside from

SpaceX is Firefly Aerospace’s Alpha LV. A vehicle that can fit snugle inside the

Alpha payload inner mold line (IML) is shown in Figure 14, which comprises the

smaller Aerith cruise stage and relay, and a single Wavefront lander package.

Unfortunately, according to the Alpha User’s Guide, the Star 37D third stage plus

Wavefront mission was 960 kg, barely under the maximum mass Firefly is able to

launch to low-Earth orbit. Additionally, assuming a total impulse of 1.8 MN*s, only

784 m/s ∆V would be achieved - only 23.8% of needed Earth escape velocity.

122

Figure 4.13: Initial revision of a free-flyer version of Wavefront. The white engine is a
Star 37D solid rocket kick motor.

Figure 4.14: Notional, complete system design with orbital relay. Four nanoprobe
landers surround the center tube, which serves as both a mounting point for all
nanoprobes and relay, and extra internal space for communication equipment, including
a high-gain antenna. Four external tanks surround a hexagonal prism-shaped main
spacecraft body of the relay. All tanks will have a hypervelocity Whipple shield to
mitigate catastrophic damage to the spacecraft during the orbital phase.

123

Another version was investigated with the EDL aeroshell fixed in design, which

sported a composite-wound, single-piece tube, shown in Figure 4.14. The flared

portion, which would provide a means for mechanical fastening to the rocket 2nd

stage, doubled as a Ka-band antenna dish and volume for a laser communications

system. This design was specific to a Firefly Alpha LV, but given the need for a third

stage to perform a transfer burn to Mars, and the lack of volume (this design

maximized the LV IML), the design was seen as a non-starter. Design elements,

however, such as the single-piece composite tube, survived to the final iteration.

4.6 Version 7 - Final Version

After many top-level configuration revisions over 1 1/2 years, the design space

finally converged with a 12-lander mission. The complete mission is shown in Figure

4.15. This design first set a budget for US$3 to 5 billion over the life of a NASA

Flagship program, and took into consideration such activities as management and

real-time data analysis and processing. These details were covered in the previous

chapters. The next step was to select a viable launch vehicle that would be

generously flexible in terms of payload volume and mass to a Martian transfer orbit.

4.7 Complete Concept of Operations

One of the only vehicles that could support these requirements with on-time

delivery and reliative flexibility is the SpaceX Falcon 9 Block 5 (F9). The complete

Wavefront mission as mounted in an F9 is shown in Figure 4.16. In the F9 User’s

Guide, a Mars transfer mass of 4 metric tons (Mt) is specified. To allow for vehicle

and spacecraft margins, 3 Mt is given as the upper limit. With a 95 kg lander mass,

all landers added up to 1.14 Mt, leaving relatively small margins for Aerith. To

124

Figure 4.15: Aerith releasing two Midgar landers at apoapsis. By releasing the
landers at apoapsis, fine-tuning the landing site by the lander’s limited fuel supply is
maximized.

125

Figure 4.16: An illustration of SpaceX’s Falcon 9 with a to-scale representation of
Wavefront seated in the payload fairing. Background image credit: SpaceX.

increase these margins, very stiff deployable solar wings were incorporated, in order to

allow for aerodynamic maneuvers.

A hybrid aerocapture and retropropulsion maneuver would be used to reduce

fuel needed to bring the mission to an orbit with 0.9 < e < 0.98. In this state, landers

are released at the apoapsis - they use their own fuel and power to conduct a

retrograde burn to lower the periapsis to come in for a landing. Once all probes are

released, Aerith conducts an aggressive aerobraking campaign to bring the orbit down

to a 500x500 km sun-synchronous. This portion of the operations are shown in Figure

4.17. SSO allows for minimum mission downtime when functioning as an orbital relay

with a high power radio. In between relay campaigns, Aerith would conduct Mars

observations and site surveys of potential human landing sites, and use its HF radar

to produce a map of subsurface ice or brine.

On Mars, all 168 assets including backshell and heatshield would transmit

scientific data. Each group lands as a complete unit on the Midgar lander. After a

safe landing in a particular orientation, Midgar’s solar panel is unrolled and locked at

an angle that allows dust to roll off the solder wing. The Pascal rover is unlocked and

untethered, and drives out from under the lander to unroll its own solar wing. Once

Pascal is charged adequately and the robotic arm is checked out, the Midgar lander

swivels the tray holding the Nines nanoprobes 45 deg so Pascal can grapple them one

126

Figure 4.17: Concept of Operations for Wavefront, part 1. (1) Wavefront is launched
and inserted into a Hohmann transfer by a SpaceX Falcon 9 Block 5. (2) Cruise
operations begin after a complete system checkout on all hardware pieces. Lost assets
are accounted for and when possible, a root-cause analysis is conducted. (3) Most
of the cruise time will be spent in a "barbeque roll" spin-stabilized mode, evenly
distributing heat throughout all components of the spacecraft. As-needed course
corrections are performed. (4) Before the insertion burn, functionality is checked once
again on all hardware. (5) A deep aeropass maneuver in tandem with an insertion
burn is performed. The solar panels are retracted to move the center of pressure
behind the center of mass to reduce RCS firing. (6) At multiple apoapses, two to three
Midgar landers are released from Aerith in order to position all assets. (7) All probes
coast to the entry interface and enter the atmosphere. The CONOPS for this portion
continues in the next frame. (8) To support the missions with as minimal downtime as
possible, an aggressive aerobraking campaign is carried out. The campaign ends when
the orbital parameters reach a 500x500 km sun-synchronous orbit with an LTAN of 6
PM.

at a time. At predetermined locations, Pascal takes each Nines probe to the site and

uses a percussion end effector to hammer the probe into the ground. At the final

depth, a pin is pressed inside the stainless steel rod on Nines by the robotic arm,

unlocking the solar panels and powering on the probe. Data is received by Midgar,

127

relayed to Aerith, and received on Earth for confirmation that the nanoprobe is

functioning. This process is repeated 12 more times, until all nanoprobes are in the

ground and the Midgar VLF transmitter is hammered into the ground. Because time

is of the essence, all 12 lander groups would conduct this simultaneously, necessitating

a high degree of autonomy to reduce mission control demands during this period.

Figures 4.18 and 4.19 provide an illustration of this process.

In orbit, Aerith collects data from all Midgar landers during a twice-daily

overflight window of 15 minutes. At an average effective bit rate of 4 Mbps, 900 MB

may be collected per pass. This is a conservative estimate; adaptive bit rates can

substantially increase data throughput.

128

Figure 4.18: (1) A much more mundane 4.1 km/s entry is performed, due to having no
hyperbolic excess velocity with respect to the Mars frame. (2) Upon reaching about
Mach 1.6, the supersonic disc-gap-band parachute is deployed. It stays on for the
majority of the descent. Once the system reaches terminal velocity, the heatshield
is released and (3) a terrain solution is generated. This solution is used to time the
release and firing of the landing engines. (4) At about 1 kilometer above the surface,
the lander is released from the backshell, the engines fire, and a debris avoidance
maneuver (DAM) is performed to steer clear of the parachute and backshell. (5)
Terrain relative navigation (TRN) is engaged as soon as the lander vision dynamics
system (LVDS) locks onto the ground, and quickly identifies as safe of a landing site as
possible given its fuel margins. Midgar has very little fuel reserves for higher altitude
destinations, so LVDS must use a multitude of remote sensing techniques to identify
even the smallest zone of safety. (6) Within 5 to 7 minutes, Midgar comes in for a
landing. For the fleet of landers, this is repeated 11 more times.

129

Figure 4.19: From bottom left, counterclockwise: Pascal is shown carrying a Nines
nanoprobe with its robotic arm. The robotic arm has an impact driver attachment
to drive the nanoprobe into the ground. To reduce vibration associated with impact
driving, the electronics and instruments are mechanically stood off from the 316L
stainless steel spike. Moving counterclockwise, each Nines probe is illustrated as
driven in the ground at regular intervals. To analyze regolith impedence and develop
a tomographic map of the subsurface, the probes are driven in these intervals. In the
lower right corner, the Midgar lander acts as a relay between Nines probes, Pascal,
and Aerith, whenever it is in view. While relay operations occur, the tomography
transmitter emits RF into the ground via two spikes, and the weather station takes
high resolution data. Twice a day, Midgar transmits up to 900 MB per pass to Aerith,
which then forwards this data to Earth via optical communications.

130

5. Nanoprobe Design, Development, and Testing

This chapter details the development of compact, field-tested remote sensing

units, considered precursors to the spike-mounted nanoprobes deployed by the Pascal

rover. Three versions of nodes are built, spanning three years of development.

5.1 Version 0 - SEEDS-A

SEEDS-A, or Space Extreme Environment Detection System - Atacama, was a

project formed in June 2019 as a collaboration between NASA, SETI, and San Jose

State University. The objective of SEEDS-A was to deploy an array of sensors to the

top of Cerro Simba, a 20,500-foot (6.24-km) tall stratovolcano, in order to perform

follow-up observations to anomalously high UV indices [112]. The top of the volcano

has a high altitude lake, which was also a science focus as an analog to the late

Hesperian period of Mars. Monitoring extreme UV at the top of this volcano would

have allowed future astrobiologists to test theories of how, if any, extant life on Mars

would have begun to adapt to Mars drying out [113]. The full design, test,

integration, validation, and deployment sequence was compressed into 5 months.

Ultimately, the system was sent but never deployed due to geopolitical factors beyond

the team’s control [114].

5.1.1 Work Breakdown

Due to the small team size, a WBS for the team was very small. The SEEDS

team was given only 90 days to design, develop, demonstrate, and deliver the product,

so development work needed to commence immediately. The team was broken down

into three main groups: the undergraduate senior design team, the graduate design

131

team, and the administrative team. The undergraduate team focused on development

of the sensor units and instrumentation - a chiefly software and electrical discipline;

the graduate team worked on mechanical design, custom PCB design, concept of

operations, and deployment procedures of the sensors at the top of the volcano; and

the administration team coordinated requirements, purchases, and deliverable

timelines. The deployment procedures, as written in 2019, is listed in Appendix 8.

5.1.2 Product Breakdown

Figure 5.1 shows the high complexity of the SEEDS system. Although the PBS

was for the follow-on project, it was focused on higher data throughputs and a

smaller, more optimized design, and still served to demonstrate the work required to

turn the project around.

5.2 Revision 1

The earliest test of an encapsulated system occurred in mid-2020, and involved

soldering several, off-the-shelf sensors to another off-the-shelf Cortex M0 processor

evaluation board. 13 test campaigns were carried out, the final one ending when

rainwater seeped in through a hole in the seal.

Figure 5.9 shows the first revision of the nanoprobe in the test environment

before being left outside until the battery was depleted. Several more revisions of this

system were made until the firmware and concept were firmed up.

5.3 Revision 2

Figure 5.10 shows two identical nodes, which were designed around the

constraint of a PocketQube-like form factor container. It is the product of several

132

design iterations mostly involving power optimization strategies.

Figures 5.11, 5.12, and 5.13 are images of the internal electronic hardware. All

these images are telling of how little room there was to work with.

5.4 Gateway Electronics

The second component of IoT-type sensing and networking is developing a

gateway, which relays data from one network to another. A substantial effort was

made, for at least one year, to develop the hardware and custom scheduler to cache

and forward data to the Internet. Figure 5.14 shows the complete, prototyped

gateway.

On the left of the image, there are six antennae - three rubber duckys are for

the 915 MHz ISM band, the long, skinny vertical antenna is for 2.4 GHz WiFi, an

aluminum substrate-mounted patch antenna is for GPS, and the isolated black,

substrate patch antenna is for L-band Iridium. This section forms the RF subsystem.

Note that the GPS antenna and Iridium antenna are as far away as possible - this is

due to their very close adjacent frequency bands. The Iridium modem can transmit in

bursts with greater than 1W RF, which could easily overwhelm the extremely

sensitive GPS frontend if not accounted for.

The next system is to the right - a small red board in the center of the

breadboard. This is a precision, low bandwidth inclinometer from Murata. With a

running average filter and other DSP, it can be repurposed as a strong-motion

seismometer. The data output from this is a raw stream of floats in 3 axes at 1.6 kHz,

which is fed to an intermediate processor characterizing the data output. If an event

is detected as determined experimentally by listening for months for any local seismic

activity, the peak ground acceleration (PGA) is converted into the Modified Mercalli

133

Index (MMI), used by the U.S. Geological Survey to provide a qualitative scale for

ground motion. However, this complete subsystem was not tested due to a lack of

time and other hardware priorities.

Directly below the inclinometer is an environmental sensor suite. Most

prominent are the four green boards, which are screen-printed electrodes utilizing

electrochemical sensing techniques. From left to right, these sensors pick up carbon

monoxide, hydrogen sulfide, sulfur dioxide, and ozone at the parts per billion level.

While not suitable for Mars, these sensors would deliver suitable science for

volcanology - an extreme environment analog for space missions. In fact, the

intention was to validate this entire system concept in proximity of a local volcano if

time permitted. These sensors represented science-grade instrumentation that is a

hard requirement of any interplanetary space mission. To the immediate right of the

SPECs are consumer-grade and some military-grade weather and temperature sensors.

These served to provide an engineering and scientific reference for the rest of the

system. Data included several high-accuracy temperature sensors, atmospheric

pressure, carbon dioxide concentration, and a small, 16-pixel spectrometer. This

subsystem produced the most data, and was formatted as comma-separated values for

readability and ease of debugging.

Above the weather and temperature sensors and to the right of the inclinometer

is the debug interface. This included the parallel character display. There are a large

number of firmware libraries available - development of this interface was fairly

straightforward. However, debug statements used a lot of flash memory and greatly

slowed execution of routines, so by the end of the development period, this interface

was not used except during boot.

To the right of the parallel character display is a very complex rat’s nest of

wiring. This is the command and data handling system. It is centered around an

134

Arduino Due, which itself runs on an 84 MHz, 32-bit ARM(R) Cortex-M3. This

board was chosen due to the large number of I/O lines broken out. This fact allowed

usage of parallel static RAM from Panasonic, using a 500 nanometer (nm) feature

size. While extremely outdated - the SRAM was from 1994 - the very large feature

size has intrinsically high radiation tolerance. It allowed for experience to be gained

in interfacing with potentially space-rated hardware. Four memory chips were used,

totaling 16 Mbit of external RAM. Underneath the rat’s nest is a precision real-time

clock (RTC) that also doubles as a temperature-compensated, accurate frequency

reference.

Finally, all the way on the right of the board is the optical and radar evaluation

subsystem. A 32x24 thermal camera is evaluated for sun tracking and attitude

knowledge, the 5 megapixel rolling shutter camera takes pictures for situational

awareness and context, and the radar is to determine if there is motion in the

immediate vicinity.

Given enough time and work-hours to complete, Figure 5.15 shows the

flight-like production system for Midgar. It was to use several Raspberry Pi RP2040s

with a fully custom PCB in a PC-104 form factor for maximum system compatibility.

While the RP2040 is an extremely cheap processor, the large feature size (45 nm) was

a driving factor in its usage, as larger feature sizes are more tolerant to radiation and

single event upsets to a degree.

135

Figure 5.1: SEEDS-A version 2 master product breakdown structure of the gateway
unit. This overview illustrates the very complex nature of systems engineering for
even an Earth-analog mission for Mars. Drawings in the lower-right were the earliest
version of the small environmental monitoring nodes. Credit: Stanley Krześniak,
Kayla Parcero.

136

Figure 5.2: SEEDS-A mechanical configuration of gateway. The project used a different
nomenclature that is incompatible with IoT terminology. A ground-mountable mast
held the optical sensor head and Inmarsat(R) communications unit. A ground-staked
polycarbonate enclosure held the electronics and mass storage. On the lower-left, a
30-watt monocrystalline solar panel powered the entire gateway. Credit: Christian
Espinoza.

137

Figure 5.3: SEEDS-A interal mechanical configuration of gateway. From left to right:
3S2P, lithium-ion, 200 watt-hour; 128 GB SLC SSD; Raspberry Pi 3B+; 12V buck
regulator; 3.3V buck regulator; 27V MPPT solar to battery charger; terminal block;
modular central computer. Credit: Stanley Krześniak

138

Figure 5.4: DIN rail mounting mechanism for power supplies and industrial Raspberry
Pi. Credit: Stanley Krześniak

139

Figure 5.5: Sensor head CAD with internals shown. The optical sensor head was
designed to be mounted on top of a Windsonic(R) ultrasonic wind sensor. Credit:
Stanley Krześniak

Figure 5.6: Initial sensor head camera picture. Left: unfocused, right: focused. Credit:
Afrah Siddiqi.

140

Figure 5.7: Completing a test of the Windsonic ultrasonic wind sensor with a standard
room fan. Credit: Nataliya Grigoryan.

Figure 5.8: Completed assembly of SEEDS-A node sensor head with IFW(R) diodes,
the type flight-certified and flown on both the Curiosity and Perseverance rovers in
the Spanish Astrobiology Center’s Rover Environmental Monitoring Station payload.
Wires were in twisted pairs to reduce RF interference due to extremely sensitive
analog readings from the photodiodes. To ensure universal compatibility with other
systems, the entire sensor head was controlled and telemetered by I2C. Credit: Stanley
Krześniak.

141

Figure 5.9: R2 node in a clear polycarbonate junction box in the test environment.

Figure 5.10: Two R3 Nines nodes. The containers are off-the-shelf and contain two
custom PCBAs stacked internally.

142

Figure 5.11: Stack removed from container. This image clearly illustrates the very
limited volume to work with.

Figure 5.12: The upper stack contains the solar panels, power conditioning, and a
light sensor.

143

Figure 5.13: Lower stack. This contains a LoRa modem under Kapton tape, an off-
the-shelf microcontroller, precision inclinometer, and pressure/temperature/humidity
sensors. The blue header is a board-to-board connector, which contains 3.3V, I2C
data, and three GPIO control lines.

Figure 5.14: The complete gateway electronics mounted on an aluminum-2000 series
honeycomb panel. The highly complex system is broken up into the following sub-
systems: command and data handling, mass storage, radar evaluation and machine
vision, environmental and gas sensing, debug, seismometry, and communications.

144

Figure 5.15: Wavefront R1 lander electronics. The prototype was meant to be
breadboardable across several boards for prototyping. No propulsion system was to
be a part of it; an LED quadrant simulates reaction control system thrusters.

145

6. Entry, Descent, and Landing System

The design of the entry, descent, and landing system (EDLS) is documented

here. Supporting CFD and assumptions are given in this chapter for all stages of

flight.

6.1 Assumptions and Initial Requirements

In the design of Wavefront, the most important design requirement made early

in the process was a 1-meter aeroshell maximum diameter. This was to ensure a

universal fit in a variety of launch vehicles regardless of configuration or launch

provider. Late in the design process, the Falcon 9 was chosen as the launch vehicle for

the configuration, allowing for a generously sized mothership and communications

relay. By retaining the same 1-meter aeroshell requirement, up to 12 landers could be

flown. As covered later, this still heavily constrained landed volume, fuel budgets for

the Midgar lander after release from the backshell, and reduced the landable sites to

areas below zero-meters MOLA.

An assumption of an aeroshell shape was the first specific design consideration.

According to the literature, nearly all larger Martian lander probes, especially those

from NASA, utilized a 70-degree half-angle heat shield profile. This maximized the

internal volume and lowered the center of mass, critical for stability at hypersonic

speeds.

Regardless, blunt-body stability is Mach-dependent. As the capsule slows, the

center of pressure shifts forward, closer to the center of mass. At a critical Mach

number, the center of pressure moves ahead of the center of mass, rendering the

capsule an effective inverted pendulum. Figures 6.2 and 6.3 clearly show this from

146

Figure 6.1: Disk-band-gap parachute of Mars 2020, fully inflated. The gap is clearly
visible. While sacrificing on maximum drag, it is the only proven parachute design
that deploys at supersonic speeds. Credit: NASA JPL/Caltech.

Figure 6.2: InSight reconstructed angle of attack, based on data from IMU and other
factors. The black line is the direct data from the inertial measurement unit, and the
pink line is from a ratio of normal and side acclerations for determination or angle of
attack and sideslip, respectively. Credit: NASA JPL/Caltech.

JPL InSight flight reconstructed landing data [115]. As time past peak deceleration

increases, the angle of attack oscillations increase. Past a certain point, this becomes

unstable. It is highly impractical from a mass- and volume-budget perspective to

147

Figure 6.3: Reconstructed angle of attack, with 3-sigma error bounds. Credit: NASA
JPL/Caltech.

control the pitch angle of the capsule, as most designs have used gas thrusters to

control angle of attack1 . This is the main rationale behind the supersonic

disk-band-gap (DGB) parachute in Figure 6.1: the parachute would deploy before the

capsule reached the critical Mach number. These considerations lead to the following

assumptions:

A6.1 - a 70-degree half-angle heat shield is assumed to be the best
design in terms of flight heritage and volumetric efficiency.
A6.2 - a supersonic, DGB parachute is assumed due to extensive
flight heritage on Mars and the impracticality of devoting more fuel
margins to stabilization of the vehicle below the critical Mach of the
vehicle.

Following the heatshield is the backshell shape. The initial assumption was to

start with a Mars 2020 and MSL-type backshell, with a "biconic" design conforming

to the vehicle internals. The backshell shape, also a contributing factor to stability,
1 Tianwen 1 is an exception - it used novel, popout fins that further guided the capsule below

Mach 2.8.

148

was chosen (i.e. assumed) as a shape similar to that of Mars 2020 and MSL. An

additional study on the optimal shape would have been beyond the scope of this

paper. Due to time constraints, only one CFD run was made at Mach 2.0, which

would inform very rough stability margins of the final iteration. Future work would

more rigidly evaluate the stability based on more optimized CFD codes. The fidelity

and uncertainty of roll rates at a given Mach is further constrained by the center of

mass, which was not rigidly defined at the time of the CFD analysis. In summary:

A6.3 - a backshell of Mars 2020 shape is assumed. Due to time
constraints, changes to the backshell profile are assumed to minimally
alter the aerodynamics of the aeroshell all the way down to low Mach
numbers.
A6.4 - the assumed deployment Mach number of the parachute is
Mach 1.8.

With the aeroshell assumptions squared away, the assumptions for aerodynamic

analysis are made. Table 6.1 lists a summary of these assumptions.

The Ansys Fluent multiphysics package was available through the Aerospace

Engineering department; the tight integration to other analysis types especially for

future research and development was the driving consideration for its usage. New to

the 2022 R1 version was the inclusion of mixtures and reaction rates for both Earth

and Mars atmospheres; this greatly simplified the modeling and setup of

nonequilibrium chemically reacting flows. Conservation of energy included the

radiative terms, but with non-optimal settings. Per [75], this was not the best mode

of operation, as the radiative term considerably contributes to the flow energy on

entry into a CO2-dominant atmosphere, as shown in Figure 6.4. However, correctly

modeling and validating results against NEQAIR, LAURA, and HARA codes as a

complete system was deemed far beyond the scope of this paper.

149

Table 6.1: CFD Analysis Assuptions

Assumption
A6.5: ANSYS Fluent 2022 R1 is used for all computational fluid
dynamics analyses.
A6.6: The Park 8-species Mars model is used for chemically reacting
flows.
A6.7: The built-in Stiff Chemistry Solver is used to solve for nonequi-
librium chemically reacting flow, and a minimum reaction tempera-
ture of 1,800K is considered to reduce computational overhead.
A6.8: The Ansys proprietary Transition-SST 4-equation viscosity
model is used.
A6.9: Entry conditions following the ESA/Roscosmos Schiaparelli
lander are considered at the following Mach numbers: 18, 9.79, 7, 5,
and 1.8.
A6.10: A similar trajectory to NASA’s Viking landers are considered
due to time constraints.
A6.11: To analyze moment coefficients of the vehicle, a 5-degree
flow angle of attack is used for all Mach numbers.
A6.12: A simplified OML with rounded corners is used.
A6.13: The Spalart-Allmaras and k-omega SST viscosity models are
used.

6.2 Individual Cases

6.2.1 Hypersonic, Mach 18 and 9.79

To begin the initial analysis, the geometry was traced by screenshot in Ansys

SpaceClaim, shown in Figure 6.5. Per assumption A6.13, geometric simplification,

especially for 3D simulations, is necessary. Modeling extra surfaces, internal volumes,

and other geometry is impractical, out of scope, and highly time- and

resource-consuming. In addition, memory requirements increase exponentially

especially with fully reacting, nonequilibrium flows.

Definition of the control volume lies in a number of smaller assumptions, but

primarily tie back to A6.12. If radiative terms were included, according to [116], the

150

Figure 6.4: A chart of Schiaparelli’s estimated total heat flux contributions just after
peak heating. Due to the chemical kinetics of CO2, the radiative component cannot
be neglected for high-fidelity, high-precision landing simulations.

Figure 6.5: A screenshot of the SpaceClaim CAD program in sketch mode. The
screenshot was scaled to the correct dimensions in order to prepare it for CFD
analysis.

151

Figure 6.6: n=1 wavelength radiative bands inputted into the Fluent non-gray radiation
model.

wake length should be at least 12 body lengths to converge radiative emissions from

reacting flows in nonequilibrium states. Given the sheer number of cells needed for

such an analysis, even with NEQAIR and HARA, radiative terms were only

considered to demonstrate that a full, multiphysics simuation can be achieved with

Fluent. These parameters were included with the non-gray model, using the NIST

Atomic Spectra Database (ASD), inputted as shown in Figure 6.6. This allowed the

control volume to be substantially reduced to just over one body length to observe

recirculation at the backshell, an indication of a correct CFD implementation.

Upstream flow is assumed to be steady; therefore, the volume ahead of the shock is

kept as small as practically possible. This distance is informed by

δ

R
= ρ1/ρ2

1 +
√

2(ρ1/ρ2)
(6.1)

However, as freestream goes to infinity, Equation 6.1 simplifies to

δ

R
≈ ρ1

ρ2
= 1

(ρ2ρ1)
(6.2)

per Anderson [117]. Since flight data from Mars is available, the ρ1/ρ2 ratio can

be found from the Schiaparelli flight data. Using a rearrangement of the momentum

152

equation,

p2 = p1 + ρ1u
2
1(1 − ρ1

ρ2
) (6.3)

the density ratio can be solved for from aerodynamic data at point S3 in [118],

yielding a shock standoff distance of 6.63cm at the stagnation point at Mach 9.79.

To account for solution instability during the first few hundred iterations, the upwind

portion of the control volume was offset by about 2.5x from the surface of the

heatshield.

Figure 6.7: ANSYS DesignModeler (R) meshing software showing a cross-section of
the 3D control volume for the Wavefront lander. This particular mesh has 2.9 million
cells, with an O-type structured mesh and unstructured tetrahedral filler mesh. Note
the semi-unstructured form of the O-type mesh - each layer is a hexahedral/triangular
prism.

Meshing of the body was performed with the DesignModeler (DM) meshing

system. To ensure accurate boundary layer physics, a structured O-type hexahedral

153

Figure 6.8: ANSYS DesignModeler (R) meshing software showing a cross-section
of the blank 3D control volume for the Wavefront lander. After simulating flow, it
was determined a loss of accuracy might have occurred due to part of the boundary
condition intersecting the shoulders of the bow shock flow.

mesh was created. In DM, this option is called "Inflation Layers". It is called such

due to the algorithm generating the O-type mesh - every subsequent layer from the

adjacent wall layer grows, or inflates, by a specific ratio. The selected ratio was 1.35 -

35% larger every layer for 40 layers. Initial wall layer thickness started at 100 micron.

O-type meshing is only possible when the entire, selected wall surface is free of sharp

edges - to create a structured mesh, hexahedral cells (8 edges) are required. A low

resolution example is included in Figure 6.7. Filling the rest of the control volume out

to the boundary was accomplished by unstructured, tetrahedral meshing. While not

ideal, this was chosen due to time limitations - creating a structured mesh considering

shock capturing is a highly time-consuming process in the ANSYS ecosystem. It was

154

especially difficult to accomplish with 3D simulations. In addition to being

time-consuming for the operator to set up flow feature refinement, on a single body,

meshing can only be performed serially: with a single core. This vastly increases the

mesh generation time when converting from a tetrahedral to hexahedral mesh -

several hours with over 1 million cells.

3 to up to 7 million cells were targeted to balance RAM usage and CPU time

for initial solution exploration. A single, 2U rack-mount server with 8 physical cores

and 144GB DDR3 ECC RAM was available - the bottleneck was the relatively low

core count. Years of trial and error with FLUENT yielded optimal estimates of RAM

usage and CPU time for a given set of hardware - with double precision, chemically

reacting, nonequilibrium flow in 3D, iteration time was expected to be approximately

3 minutes. Later in the analysis, the cell count was increased to a maximum of 6.3

million cells for the problem, limited by total RAM in the server. Finer meshes, with

an initially proposed target of 40 million cells, were not possible due to

double-precision required for numerical stability in hypersonic flows and modeling of

fully-reacting nonequilibrium flow. At minimum, 1.14TB RAM would be required for

such a mesh, and a small supercomputer cluster with cores in the hundreds would be

needed to solve the flow in reasonable amounts of time.

Table 6.2: Major Fluent Parameters, Initialization Run

Parameter Value
Gauge Pressure 195.4 Pa
Mach Number 9.79
Flow Direction 5°
Turbulent Viscosity Ratio 2:1
Freestream Temperature 193.5K

After creating the mesh, it is automatically converted to a Fluent mesh. The

major Fluent parameters for the first run attempting to establish an initial flowfield

155

are tabulated in Table 6.2. To increase the solution speed as much as possible while

still retaining acceptable accuracy, a single-variable synthetic viscosity model by

Spalart and Allmaras is used [119]. According to the ANSYS (R) Fluent (R) theory

guide, Spalart-Allmaras (S-A) has gained in popularity in wall-bounded flows,

including turbomachinery simulations, and is shown to have reasonably accurate

results against experiment in aerospace appliations. The original S-A turblulence

model requires a well-defined boundary layer, with a Y+ starting at ≈ 1.0 for

adequate simulation of heat and stress transfer. The ANSYS Fluent treatment

includes a less sensitive treatment of heat and stress transfer - but still recommends

at least 15 to 30 layers within the boundary layer to model the viscous regions

correctly. In 3D flows, this is a considerable constraint when considering the O-type

boundary layer meshing. The shortfall of S-A is it cannot be used to predict the

decay of isotropic turbulence. In the case of hypersonic aerodynamics, this could

potentially have an effect on chemical mixing and radiative emissions depending on

the amount of CO2 dissociation. Further investigation, which surveys the differences

in turbulence models in hypersonic applications, is necessary.

Running hypersonic simulations with any reasonable acuracy requires chemical

species to be considered in the energy term of the Navier-Stokes equations. Starting

with ANSYS Fluent 2022 R1, a few gas mixtures were incorporated with 2, 5, and

11-species Earth air, as well as 5- and 8-species Mars air. Table 6.3 shows the

chemical kinetics for the selected 8-species Mars air case.

Mach 25 to 18 cases were not considered due to a high Knudsen number. At 10

Pa, about 40 km deep from the edge of the Mars atmosphere, the Knudsen number is

computed from the relation

156

Figure 6.9: ANSYS DesignModeler (R) meshing software showing a cross-section
of the blank 3D control volume for the Wavefront lander. After simulating flow, it
was determined a loss of accuracy might have occurred due to part of the boundary
condition intersecting the shoulders of the bow shock flow.

Table 6.3: Park 8-species Mars atmospheric model - reactions [7].

No. Reactions Rate Expression Remark
1 CO2 ⇄ CO + O 6.9E18T −1.5

a exp(5.260976E8/Ta) —
2 CO ⇄ C + O 2.3E17T −1.

a exp(1.072566E9/Ta) —
3 O2 ⇄ O + O 2.0E18T −1.5

a exp(4.967891E8/Ta) —
4 CO2 + O ⇄ O2 + O 2.1E10T 0

a exp(5.260976E8/Ta) —
5 CO2 ⇄ CO + O 5.260978E21T −1.5

a exp(5.260976E8/Ta) —
6 CO2 ⇄ CO + O 5.260978E21T −1.5

a exp(5.260976E8/Ta) —
7 CO2 ⇄ CO + O 5.260978E21T −1.5

a exp(5.260976E8/Ta) —
8 CO2 ⇄ CO + O 5.260978E21T −1.5

a exp(5.260976E8/Ta) —
9 CO2 ⇄ CO + O 5.260978E21T −1.5

a exp(5.260976E8/Ta) —

Kn = Ma

Re

√
γπ

2 (6.4)

where Kn is the Knudsen number, Ma is the Mach number, Re is the cell

157

Reynolds number, and γ is the heat capacity ratio of the gas in the cell. Assuming a

length scale of the smallest freestream cell of 0.01m2,

Re = ρνL

µ
(6.5)

Re is 33.3. Mach at 10 Pa is 18, and γ is 1.28. This results in a Kn of 0.77 .

According to Anderson, this is considered transition flow, meaning Navier-Stokes is

unusable for any reasonable amount of accuracy. Kn should be under 0.01 to use

traditional CFD methods. While there was access to Direct Simulation Monte Carlo

(DSMC) codes, such as SPARTA, the time to set up the problem was out of scope of

this paper and simulations were kept below the equivalent altitude of Mach 10.

Additionally, dissociative radiative heat transfer from the bow shock must be

accounted for as demonstrated in several publications and data from several Mars

landers, so a tightly coupled simlulation involving SPARTA, LAURA, and HARA

would also be necessary. This is far out of the scope of this paper.

6.2.1.1 Results

Due to the usage of unstructured mesh, hotspots were observed on the surface

of the heat shield. The bow shock uncertainty from tetrahedral cells resulted in

non-uniform energy balance, propagating to the rest of the coupled equations. Figure

6.10 shows the state of convergence in this case. Convergence to an accurate solution

in a density-based solver is 0.1% change (residuals), which was still more than an

order of magnitude away after 5 days of simulation with 2.997 million cells. However,

comparing Figure 6.12 and 6.11, the pressure is well within the same order of

magnitude.

Figure 6.14 shows the radiative response of the aeroshell. Using the non-gray

158

Figure 6.10: Convergence results after running the simulation with 2.997 million cells
for 5 days. The stairstepping occurring in the νt variable shows constant divergence
protection, which is a symptom of very high gradients, poor meshing in shoulder flow,
and a generally unsolved flow condition.

and chemical kinetics model, the results are in general agreeance with experimental

data from MSL and Mars 2020 MEDLI instrumentation as shown in Figure 6.13, as

well as the Schiaparelli lander COMARS2 instrumentation.

The shoulder flow was tricky to mesh with sufficient resolution whilst beign

bounded by a 3 million cell limit for hypersonic simulation, and is potentially the

reason for convergence stalling. Figure 6.15 clearly shows rays emanating from the

general direction of the shoulders, which is not realistic. Due to low dissociation at

Mach 10, the radiative flux should gradually increase starting from the shoulders all

159

Figure 6.11: ANSYS DesignModeler (R) meshing software showing a cross-section
of the blank 3D control volume for the Wavefront lander. After simulating flow, it
was determined a loss of accuracy might have occurred due to part of the boundary
condition intersecting the shoulders of the bow shock flow.

Figure 6.12: This figure shows the material response on the MSL heatshield. When
compared to Figure 6.11, the results are well within the order of magnitude, and show
that the approach is more or less correct.

the way to some distance back from the aeroshell as CO2 recombines in the flow,

which is indeed observed to some extent. It is obscured by the higher radiation

temperature from the shoulder cells. Additional evidence of shoulder flow mesh issues

160

Figure 6.13: Radiative response of the surface of the aeroshell. The circle (reticle) on
the backshell corresponds to Figure 6.13’s MTB09 radiometer response.

Figure 6.14: Radiative response of the surface of the MSL aeroshell.

is shown in Figure 6.16. Shoulder flow should not be generating heat greater than the

stagnation point - the most severe part of a hypersonic flow.

161

Figure 6.15: Radiation temperature response from the surface of the aeroshell.

Figure 6.16: Radiative response of the surface of the MSL aeroshell.

162

6.2.2 Mach 2.1

CFD was performed at a much lower Mach number as Wavefront would

descend down to Hellas Basin. Supersonic conditions afforded much easier simulation

conditions: chemical kinetics and radiative heat transfer mechanisms could be

completely discounted. This also had the added benefit of being able to run higher

fidelity simulations. From Mach 2.1 to 0.16, 30 million cells were targeted, since

additional RAM would not be occupied by the extremely computationally expensive

chemistry and radiation view factor tables.

The simulation was run at 300 Pa, Mach 2.1, and 207 Kelvin, which are

conditions taken from trajectory reconstruction of InSight’s landing. The setup dialog

is shown in Figure 6.17. Erroneous results were discovered days into the simulation,

which can be traced back to the X-component setting - it was not set to zero. The Y

and Z components are set such that the flow gives a 5-degree angle of attack, allowing

for derivation of stability derivatives. These are run at all Mach numbers, because

stability of a blunt-body is a highly Mach-dependent phenomenon. This is clearly

shown in the trajectory reconstructed data of InSight shown in Figure 6.18, top-left

subpanel.

Due to the relaxed requirements, the k-omega shear stress transport equations

(SST) are used from this point forward.

A section plane shows the internal cell structure after meshing in Figure 6.19.

No mesh alignments were performed, as high accuracy was not desired. However, a

boundary layer mesh of 16 cells thickness was used, in order to accurately simulate

shear stress transition in the boundary layer.

Unfortunately, the error in the boundary conditions resulted in a potentially

compromising scenario being simulated - the total angle of attack was approximately

163

Figure 6.17: Dialog showing boundary condition settings for Mach 2.1. Note the
X-component error.

Figure 6.18: InSight reconstructed trajectory data. In the upper-left subpanel, it is
very apparent that there is a Mach dependency on stability, as diverging oscillations
occur with small perturbations from the Martian atmosphere.

164

Figure 6.19: Unstructured grid showing backshell and parachute meshing.

40 deg. However, this was kept as a worst-case scenario.

The convergence plot is shown in Figure 6.20. Monitoring convergence was not

sufficient; aerodynamic parameters needed to be converged as well. The force readout

of the capsule is shown in Figure 6.21.

Figure 6.20: Convergence plot for Mach 2.1.

The results of this off-nominal scenario are shown in Figures 6.22, 6.23, and

6.24.

165

Figure 6.21: Aerodynamic convergence plot for Mach 2.1.

Figure 6.22: Oblique view of XZ and YZ planes of 3D flow around the aeroshell at
over 40 deg AOA.

6.2.3 Mach 1.4 - Parachute Deployed

The same mesh and flow settings were retained for Mach 1.4, except the

pressure and temperature were propagated downstream in accordance with InSight’s

reconstructed trajectory and atmospheric data, in addition to setting the airflow to

166

Figure 6.23: Density of flow on the XZ plane of flow around the aeroshell at over 40
deg AOA.

zero angle of attack. Figure 6.25 shows the boundary conditions.

An angle of attack is simulated with the parachute - it is modeled being 5 deg

off-axis in the pitch and yaw axes. This is to simulate parachute sway, and to

calculate for restoring force and the effect on vehicle dynamics after deployment. The

CAD is shown in 6.26 shows the parachute off-axis.

To accelerate convergence, especially when using nearly 30 million cells, FAS

FMG initialization is used. Care must be taken to use a small enough CFL number

when running FMG because a misleading solution can be initialized and take much

more computational effort than a simple Bernoulli-style hybrid initialization. After a

10 iteration initialization routine of approximately 30 minutes, the flowfield in the YZ

axis is shown in Figure 6.27, which is a relatively accurate result for the algorithm it

is.

167

Figure 6.24: Density of flow on the YZ plane of flow around the aeroshell at over 40
deg AOA.

Figure 6.25: Boundary conditions dialog. Note that there is no angle of attack.

168

Figure 6.26: Off-axis parachute. No bridles are modeled to allow for computational
simplicity.

Figure 6.27: Initial solution obtained using FAS FMG initialization.

To analyze the effect of turbulence on aerodynamics, the initial solution was

used to perform a transient time-stepped simulation. After 150 timesteps at 160

microseconds for approximately 6 days of simulation time, the simulation was

advanced to 1 milisecond per timestep and convergence criteria was relaxed to 0.5%.

169

By this point, timesteps were solved in only one to two iterations, indicating a very

steady flow. The residual plot shows this exponentially convergent behavior in Figure

reffig:140mach-pp4.

Figure 6.28: Residual plot of transient simulation. The first 100 iterations were
performed at steady state to antialias the FMG solution, 150 timesteps were performed
at 160 microseconds to converge the solution, and 251 timesteps were then performed
at 1 millisecond once sufficiently converged.

To show convergence of the solution and minimal effect of turbulence on drag,

Figures 6.29, 6.29 and 6.29 show the convergent behavior and the overall drag of the

entire system, the capsule, and the parachute.

The final result after 331.3 ms of timestepping is shown in Figure 6.32. It is a

composite scene, with the Mach number showing on the YZ plane, density on the

parachute and aeroshell, and an iso-surface of 14% turbulent viscosity ratio with flow

velocity plotted on the iso-surface.

6.2.4 Mach 0.16 - Pre-Deployment

One more multi-day simulation was performed with the same mesh. This was

to validate a hand calculation of terminal velocity and drag on the system seconds

before release into the lowest points of Hellas Basin.

170

Figure 6.29: Total coefficient of drag on the capsule-parachute system.

Figure 6.30: Drag in Newtons on the aeroshell.

To compute this, the coefficient of drag during Mach 1.4 flight was taken,

assuming that the CD holds relatively constant through the transonic and subsonic

flight regime. This CD was taken as 1.428.

One form of the ideal gas equation is given as

ρ = P

RT
(6.6)

At 1 km above the lowest point in Hellas Basin, the pressure is approximately

171

Figure 6.31: Drag in Newtons on the parachute.

Figure 6.32: Mach 1.4 scene at 331.4ms flow time.

1150 Pa. Using 6.6, a density of 2.623E − 2 kg/m3 is determined at 232 Kelvin.

Terminal velocity is then given as

VT =
√

2mg

ρACD

(6.7)

where m is the mass of the system (91 kg - the heat shield was ejected by this

point), g is gravitational acceleration, which on Mars, is 3.728 m/s2; ρ is density,

which was just solved for; and A is the total projected area of the system. Assuming

the flow is slow enough, the reference area used is both the aeroshell and parachute,

172

which yielded 12.56637 m2. Therefore, the terminal velocity at this altitude is

37.96m/s . Converting this to Mach on pure CO2 at 232K results in Mach 0.16.

The CFD run to validate these numbers is the same, except for changing

temperature and pressure to match the conditions near deployment.

The ending residuals are shown in Figure 6.33. The ending residuals are just

above 0.1%, which is likely due to an undersized control volume and very close

proximity of the turbulent core of the parachute to the boundary condition. Given

the limited time, CPU cores, and only 144 GB RAM, enlarging the control volume

was a non-starter, as the problem size peaked at 120 GB RAM for 29.9 million cells.

This convergence condition is an acceptable tradeoff for the hardware and time

limitations, however.

Figure 6.33: Residuals at Mach 0.16. The solution converges just above 0.1%, which
is likely due to the boundary conditions being too close to the turbulent wake core of
the parachute.

Figures 6.34, 6.35, and 6.36 are additional aerodynamic plots that demonstrate

numerical convergence. The final drag value computed at steady state is 419.8

Newton, significantly above the 338.5N system weight at this point of the flight.

Observing the total CD assuming all other aerodynamic parameters are correct

173

(which is a reasonable assumption given the very low speed flow) gives the reason why

- the computational value is 1.77. Recomputing the terminal velocity with this

coefficient of drag yields 34.01m/s .

Figure 6.34: Plot of lift force in the XY plane. The plot is erroneously labeled as drag.

Figure 6.35: Plot of coefficient of lift in the XY plane. The initial estimate generated
by FAS FMG was nearly spot-on with the final result.

174

Figure 6.36: Total CD for the entire package. Convergence was observed at 1800
iterations, or roughly 3 days of wall-clock time.

6.2.5 Fuel Margin Validation

At this point, it is now possible to validate the fuel margin available in the

Midgar lander. As designed, there is 9.21 kg of hydrazine fuel loaded in the four

conformal tanks. Using the Tsiolkovsky rocket equation,

m0 = mfe∆v/ve (6.8)

the initial mass is assumed to be 84 kg without the aeroshell, heatshield, and

parachute, the final mass is 74.79 kg, and the specific impulse of hydrazine is 220

seconds. This translates to 2.157 km/s. Rearranged to solve for ∆V , the final

solution is 250.50m/s . This is a very favorable result - the resulting factor of safety

is 6.756 . This factor of safety can then be used by machine vision to search for a

safe landing spot.

175

Table 6.4: Park 11-species Earth atmospheric model [7].

No. Reactions Rate Expression Remark
1 O2 + O2 → O + O + O2 2E21T −1.5

a exp(−5.95E4/Ta) —
2 O2 + NO → O + O + NO 2E21T −1.5

a exp(−5.95E4/Ta) Est.
3 O2 + N2 → O + O + N2 2E21T −1.5

a exp(−5.95E4/Ta) —
4 O2 + O → O + O + O 1E22T −1.5

a exp(−5.95E4/Ta) —
5 O2 + N → O + O + N 1E22T −1.5

a exp(−5.95E4/Ta) Est.

6 NO + O2 → N + O + NO 5E15T 0
a exp(−7.55E4/Ta) Est.

7 NO + NO → N + O + NO 1.1E17T 0
a exp(−7.55E4/Ta) —

8 NO + N2 → N + O + N2 5E15T 0
a exp(−7.55E4/Ta) —

9 NO + O → N + O + O 1.1E17T 0
a exp(−7.55E4/Ta) Est.

10 NO + N → N + O + N 1.1E17T 0
a exp(−7.55E4/Ta) Est.

11 N2 + O2 → N + N + O2 7E21T −1.6
a exp(−1.132E5/Ta) Est.

12 N2 + NO → N + N + NO 7E21T −1.6
a exp(−1.132E5/Ta) Est.

13 N2 + N2 → N + N + N2 7E21T −1.6
a exp(−1.132E5/Ta) —

14 N2 + O → N + N + O 3E22T −1.6
a exp(−1.132E5/Ta) Est.

15 N2 + NO → N + N + NO 3E22T −1.6
a exp(−1.132E5/Ta) —

16 N2 + e → N + N + e 3E24T −1.6
a exp(−1.132E5/Te) Est.

17 N2 + O → NO + N 6.4E17T −1
a exp(−3.82E4/Ta) —

18 NO + O → O2 + N 8.4E12T 0
a exp(−1.94E4/Ta) —

19 N + O → NO+ + e 5.3E12T 0
a exp(−3.19E4/Ta) —

20 N + N → N+
2 + e 2E13T 0

a exp(−6.75E4/Ta) —
21 N2 + O → NO + N 6.4E17T −1

a exp(−3.82E4/Ta) —
22 O + e → O+ + e + e 3.9E33T −3.78

a exp(−1.585E5/Te) Est.
23 N + e → N+ + e + e 2.5E33T −3.82

a exp(−1.682E5/Ta) —
24 NO+ + O → N+ + O2 1E12T 0.5

a exp(−7.72E4/T) —
25 O+

2 + N → N+ + O2 8.7E13T 0.14
a exp(−2.86E4/T) —

26 NO + O+ → N+ + O2 1.4E5T 1.9
a exp(−1.53E4/T) —

27 O+
2 + N2 → N+

2 + O2 9.9E12T −1.08
a exp(−4.07E4/T) —

28 O+
2 + O2 → Ok + O2 6.4E17T −1

a exp(−3.82E4/Ta) —
29 NO+ + N → O+ + N2 3.4E13T −1.08

a exp(−1.28E4/T) —
30 NO+ + O2 → O+

2 + NO 2.4E13T 0.41
a exp(−3.26E4/T) —

31 NO+ + O → O+
2 + N 7.2E12T 0.29

a exp(−4.86E4/T) —
32 O+ + O → NO + N 6.4E17T −1

a exp(−3.82E4/Ta) —

176

7.

7.1

Universal Electrical Power System Design

Although the design of this system was incomplete, the only major items that

were needed to complete the electrical design were backplane (spacecraft bus)

configuration and tuning of power system control parameters, as well as the

establishment of a safe operating envelope for all adjustable systems. This adjustment

and characterization is what would take the most amount of R&D time: the electrical

systems need to be validated in a program such as MATLAB(R) Simulink(R), or

Spice, an electronic circuit simulator. Further, porting the simulated and validated

envelopes of control would take a large amount of time, especially to validate program

execution under a variety of conditions and coupling.

Figure 7.1 shows the overall schematic. However complicated this PCBA might

be, it is necessary due to the need for redundant circuitry and enough self-sensing.

Figure 7.2 shows the GPSDO subsystem. There are three further subsystems in

this circuit: a dual-redundant, precision in-flight adjustable voltage regulator, a

high-frequency clock prescaler, and the rubidium atomic clock unit itself along with

supporting passive and monitoring electronics.

Figure 7.3 is the digital potentiometer power supply and the redundant

watchdog timeout circuit. Due to how critical the potentiometers are in precisely

trimming the output voltages to the entire spacecraft during the life of the mission,

the potentiometer power supply is quadruple redundant, featuring Schottky barrier

diodes to block lower voltage from a faulty or burned out regulator circuit. The

watchdog timer, however, is the most critical circuit on the spacecraft. Two watchdog

ASICs send a signal to either of the active redundant CPUs (through an EX-NOR

177

Figure 7.1: Overview of Claire II. This screenshot illustrates the very high degree of
complexity of an autonomous power system.

Figure 7.2: Power delivery and control schematic for GPSDO. There are three sub-
subsystems: a dual-redundant, precision in-flight adjustable voltage regulator, a
high-frequency clock prescaler, and the rubidium atomic clock unit itself.

gate) if one of them does not receive a signal by their hardwired timeout period. This

signal turns off the frozen CPU and powers on the other. To protect against failure of

one of the watchdog timers, an EX-NOR gate is used.

Table 7.1 shows the logic truth table for this gate: if the state if either watchdog

178

Table 7.1: 2-bit Exclusive-NOR gate truth table.

Input A Input B Output
False False False
False True True
True False True
True True False

fails, regardless of a watchdog failure or not, the reset signal will be triggered.

Figure 7.3: Potentiometer power supply and CPU watchdog schematics.

Figure 7.4 shows the solar wing power regulator. The core of the regulator

circuit, an LTC3119MPFE, is a highly monolithic, military temperature-rated

integrated circuit that is able to track a variable input voltage, while maintaining

control over the maximum power point. The drawback of this highly integrated chip

is that it is not radiation tolerant. To counteract potential early failure or latchup due

to radiation, multiple regulators are used in parallel. [Elaborate more on this later.]

Figure 7.5 shows the GaNFET-supported battery charger circuit. To support

two parallel cells, two circuits are included. Simplification of this highly complex

subsystem, centered around a monolithic controller IC, is possible by using multi-cell

batteries with internal regulator circuitry. These are available from various

manufacturers; some are custom-manufactured.

179

Figure 7.4: Solar wing power regulator subsystem schematic.

7.1.1 Dual-Redundant CPU Topology

The implications for switching over CPUs from one active set to another is one

of RAM. Because the power system does not require fast response times, the CPUs

do not need to execute in lockstep mode. This additionally preserves the inactive

CPU from some radiation-induced effects. However, when power is lost to the CPU,

the contents of RAM are lost. To offset this, a shadow copy of all runtime variables

and states is saved into external ferroelectric RAM (FRAM). FRAM is a relatively

new type of memory that repackages and miniaturizes the strengths of core memory,

discussed in Section 1.1. According to [14], it is intrinsically radiation resistant, since

magnetic domains, not capacitive domains, store memory. Additionally, the feature

size and insulation oxides are relatively speaking, thick compared to many other

wafer processes as of writing. By storing a shadow copy, as long as the executing

CPU’s microcode is not corrupted, the other CPU can pick up back where the failed

180

Figure 7.5: Schematic for battery charger. There are two battery circuits for parallel
battery packs. The circuit does not include per-cell balancing; this is contained in the
individual batteries.

or timed out CPU left off.

7.2 System-level I&T Plan

As previously mentioned, the large amount of programming and validation

work still needed did not allow for physical layout and routing of a PCBA.

181

8. Next Steps

The most time-consuming aspect of the project as documented is the research

and development work. Despite the four years of work on the project, there are

substantial amounts of work and data omitted from the report due to time

limitations. During final compilation of this report, seven chapters were omitted,

which would have showcased most of the design work, including on physical

deliverables. These include detailed subsystem design at the electrical and firmware

level, data analysis from operational validation efforts, and in-the-field testing

campaigns, of which there were over 20 conducted. This being said, some of the

design work is included in the following appendices, which includes code, screenshots

and drafts of subsystems, among others.

Beyond this, Wavefront can be a real mission, given 2- to 3-years of intensive,

full-time effort to clearly define and vet requirements and procedures to 7120.5F

program management requirements.

8.1 Report Work

Much remains to be documented and potentially published to journals. Table

8.1 gives an overview of all subsystems remaining to be documented, and Table ??

shows the component system theoretical designs remaining.

8.2 Research and Development

To generate a very strong mission proposal, work must continue to advance

each system’s TRL. One of the most important characterizations required is an

extended test in a Martian environment exposed to equivalent temperatures,

182

Table 8.1: Summary of individual subsystems remaining to be documented

System Description
Claire Controlled, Limited, And Integrated Regulation Electronics - uni-

versal electrical power system. A nearly complete schematic was
developed. Some of the most basic design summaries are included in
a prior chapter.

Serah Spacecraft Engineering Reference, Attitude, Health - spacecraft en-
gineering instrumentation and scientific reference electronics. A
complete system was built for the TechEdSat program as part of a
Space Act Agreement, and was subsequently taken up by TechEdSat
to be further developed internally.

Etro Extended Temperature Range Omnibus - temperature monitoring
extension of Serah. Etro was also taken up by TechEdSat to be
further developed as a multimission temperature monitor.

Shinra Spacecraft Heating In Nuclear Regulated Apparatus - radioisotope
thermoelectric generator and power delivery controller. A very thor-
ough chapter detailing the design of Shinra was outlined, but near
the end, it was descoped due to limited time. The Shinra RTG was
technically a 4-month diversion near the end of the project, due to
the late perception that one would be required for reliable operation.
The RTG was extremely conservatively oversized to ensure full con-
tainment of the ceramic plutonium fuel, as well as to represent the
worst possible case in terms of landable mass, which unfortunately
turned out to be a bad design choice. After further iterations of
lander hardware and further research into budgetary and political
constraints, work short of a report was discontinued.

Cloud Closed-Loop Ordered Unified Driver - hardware controller for GNC
system. The conceptual baseline for the controller was developed,
but no hardware was developed by the conclusion of the project.

Tifa Tracked Intrinsic Fine Attitude - GNC sun and star tracker. Initial
evaluation of in-family hardware was performed, and a breadboard
version was built. Some of the evaluation code is included in the
Appendix.

Snow Spectrometry of Nuclear and Orbital Whistlers - electromagnetic
FFT and nuclear spallation detection and classification. Parts for this
system, including avalanche photodiodes (APDs) for classification
of nuclear radiation, were purchased. An initial aspect of Snow was
fabricated in the PCB as part of Serah to evaluate electromagnetic
FFT.

183

pressures, and insolation. This is required to validate the Nines concept with respect

to survivability and functionality of electrical systems without any night time heating.

Another important aspect is to complete the design of Pascal. This includes the

robotic arm and hammer mechanism, since deployment of Nines depends on the

success of the functionality of this system.

Beyond these two items, an end-to-end test of lower-TRL versions of the

complete mission can only be completed with additional funding. Given a thorough

effort in completing Nines and Pascal, Midgar and the Wavefront EDL aeroshells can

be easily developed, given JPL and Lockheed Martin’s extensive experience with

Martian landers.

While technically a dead-end, work should continue with development of the

Shinra RTG. For missions beyond Mars, RTGs will continue to be a viable - if not the

only - option for power generation. Of keen interest is potential prebiotic conditions

on Titan. Given a less than 1% insolation level compared to Earth on Titan, and the

cryogenic temperatures present, RTGs are a necessity. Smaller RTGs would benefit

multiprobe missions, since volume, mass, and consequently budget constraints to any

destination beyond Mars are extremely tight.

8.3 Mission Proposal

Once R&D activities and relevant tech demos have been completed to the best

of a college’s ability, a complete mission proposal will be needed. This process is

expected to take 2-3 years with dedicated funding and time. Industry guidance will

be needed, and specific SMEs must guide the science to justify the narrative for such

a large mission.

184

9. Conclusion

This report attempted to cover a tremendous amount of ground to develop a

complete, NASA Flagship mission to Mars. The initial concept of geophysical and

atmospheric science monitoring stations mounted near the summit of an active

volcano in Chile grew into a concept for a Mars mission. This concept was shrunk

down to a CubeSat as a dedicated mission - effectively a 1U version of Mars

Pathfinder. Due to several engineering constraints in the design space, notably power

generation to keep warm during Martian nights, a years-long journey began to iterate

the design space to an acceptable mission. This continued to grow the scope and

budget of this theoretical mission, which necessitated larger literature reviews and

new forays into the politics of budgetary allocation in science and engineering. At the

end of this project, a Flagship-class mission of $3.5 billion was developed, utilizing

one orbital relay/mothership and twelve aeroshells, each containing twelve landers,

twelve rovers, and ten nanoprobes. All in all, 193 assets including heatshields and

backshells will be deployed to Mars.

Meanwhile, work on hardware continued in the background. Starting with the

SEEDS effort, multiple i terations of hardware were conducted in order to miniaturize

remote sensing and Internet of Things (IoT) concepts and to evaluate the feasibility

of execution on Mars. The final hardware i teration ended with a 52x48x35mm

hermetically sealed enclosure, with two PCBs containing instruments and power

interfaces. This effort i s partly covered in Chapter 5.

In the end, there was so much work that occurred that much of the design

effort and data was not included into the r eport. Future efforts would round out the

documentation of this project and its deliverables.

185

References

[1] “Mars Pathfinder Fact Sheet,” Website. Jet Propulsion Laboratory, Caltech„

1997.

[2] Hubbard, S., Haberle, R., Wercinski, P., Sarver, G., Tauber, M., Lemke, L., and

DeVincenzi, D., “Mars Environmental Survey (MESUR) Science Objectives and

Mission Description,” Unpublished Report Manuscript. NASA Ames Research

Center, Moffett Field, CA 94035. July 19, 1991.

[3] “Scientific instrument diagram of Perseverance rover,” 2015,

http://photojournal.jpl.nasa.gov/jpeg/PIA19672.jpg.

[4] Zou, Y., Zhu, Y., Bai, Y., Wang, L., Jia, Y., Shen, W., Fan, Y., Liu, Y., Wang,

C., Zhang, A., Yu, G., Dong, J., Shu, R., He, Z., Zhang, T., Du, A., Fan, M.,

Yang, J., Zhou, B., Wang, Y., and Peng, Y., “Scientific objectives and payloads

of Tianwen-1, China’s first Mars exploration mission,” Advances in Space

Research, Vol. 67, No. 2, 2021, pp. 812–823.

[5] Kapurch, S. J. and Rainwater, N. E., NASA Systems Engineering Handbook,

Office of the Chief Engineer, National Aeronautics and Space Administration,

Washington, DC 20001, 2007, NASA SP-2007-6105.

[6] A., N., “NFPA 704: Standard System for the Identification of the Hazard of

Materials for Emergency Response,” Tech. rep., National Fire Protection

Association, 2017,

http://photojournal.jpl.nasa.gov/jpeg/PIA19672.jpg

186

https://www.nfpa.org/codes-and-standards/all-codes-and-standards/

list-of-codes-and-standards/detail?code=704.

[7] Chul, P., Nonequilibrium Hypersonic Aerothermodynamics, Wiley International,

Wiley Interscience, 1990.

[8] Hoag, D. G., The History of Apollo On-Board Guidance, Navigation, and

Control, The Charles Stark Draper Laboratory, Inc., 1976.

[9] Hall, E., “Hugh Blair-Smith’s Introduction,” Apollo Guidance Computer

History Project, California Institute of Technology,

http://authors.library.caltech.edu/5456/1/hrst.mit.edu/hrs/

apollo/public/conference3/blairsmith.htm.

[10] “Mach Scheduling and Thread Interfaces,” Tech. rep., Apple Inc., 2013,

https://developer.apple.com/library/archive/documentation/Darwin/

Conceptual/KernelProgramming/scheduler/scheduler.html.

[11] Fox, O. D., Kutyrev, A. S., Rapchun, D. A., Klein, C. R., and et. al.,

“Performance and Calibration of H2RG Detectors and SIDECAR ASICs for the

RATIR Camera,” Tech. rep., NASA Goddard Space Flight Center, 2012,

https://ntrs.nasa.gov/api/citations/20120009967/downloads/

20120009967.pdf.

[12] Hall, E., Journey to the Moon: The History of the Apollo Guidance Computer ,

Reston, VA, USA. AIAA, 1996, ISBN 1-56347-185-X.

[13] "nRF52840 Product Specification",

https://infocenter.nordicsemi.com/pdf/nRF52840_PS_v1.5.pdf.

https://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=704
https://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=704
http://authors.library.caltech.edu/5456/1/hrst.mit.edu/hrs/apollo/public/conference3/blairsmith.htm
http://authors.library.caltech.edu/5456/1/hrst.mit.edu/hrs/apollo/public/conference3/blairsmith.htm
https://developer.apple.com/library/archive/documentation/Darwin/Conceptual/KernelProgramming/scheduler/scheduler.html
https://developer.apple.com/library/archive/documentation/Darwin/Conceptual/KernelProgramming/scheduler/scheduler.html
https://ntrs.nasa.gov/api/citations/20120009967/downloads/20120009967.pdf
https://ntrs.nasa.gov/api/citations/20120009967/downloads/20120009967.pdf
https://infocenter.nordicsemi.com/pdf/nRF52840_PS_v1.5.pdf

187

[14] "MSP430FR203x Mixed-Signal Microcontrollers",

https://www.ti.com/lit/ds/symlink/msp430fr2033.pdf.

[15] Hall, E., “Apollo Guidance, Navigation, and Control,” Tech. rep., MIT Charles

Stark Draper Laboratory, 1972,

http://ibiblio.org/apollo/hrst/archive/1029.pdf.

[16] Wegener, H. A. R., Doig, M. B., Marraffino, P., and Robinson, B., “Radiation

Resistant MNOS Memories,” IEEE Transactions on Nuclear Science, Vol. 19,

No. 6, 1972, pp. 291–298, https://dx.doi.org/10.1109/TNS.1972.4326847.

[17] Logek, B., History of Semiconductor Engineering, Springer Science and

Business Media, 2007, ISBN 9783640342588.

[18] Spohn, T., “’Undercover’ Mole,” DLR Blogs, Deutsches Zentrum fur Luft- und

Raumfahrt, 2020, https://www.dlr.de/blogs/en/desktopdefault.aspx/

tabid-5893/9577_read-1144/.

[19] Drake, B. G. and Watts, K. D., “Human Exploration of Mars Design Reference

Architecture 5.0,” Tech. rep., NASA Johnson Space Center, Houston, TX, 2009,

https://ntrs.nasa.gov/api/citations/20160003093/downloads/

20160003093.pdf.

[20] Restrepo, C. I., Petro, N. F., Barker, M. K., and Mazarico, E., “Building Lunar

Maps for Terrain Relative Navigation and Hazard Detection Applications,”

AIAA SciTech, 2021, https://ntrs.nasa.gov/citations/20210024816.

[21] Cramer, N., Cellucci, D., Adams, C., Sweet, A., and Hejase, M., “Design and

Testing of Autonomous Distributed Space Systems,” 35th Annual Small

https://www.ti.com/lit/ds/symlink/msp430fr2033.pdf
http://ibiblio.org/apollo/hrst/archive/1029.pdf
https://dx.doi.org/10.1109/TNS.1972.4326847
https://www.dlr.de/blogs/en/desktopdefault.aspx/tabid-5893/9577_read-1144/
https://www.dlr.de/blogs/en/desktopdefault.aspx/tabid-5893/9577_read-1144/
https://ntrs.nasa.gov/api/citations/20160003093/downloads/20160003093.pdf
https://ntrs.nasa.gov/api/citations/20160003093/downloads/20160003093.pdf
https://ntrs.nasa.gov/citations/20210024816

188

Satellite Conference, 2021, https://ntrs.nasa.gov/api/citations/

20210016930/downloads/SmallSat2021.pdf.

[22] Hanson, J., Chartres, J., Sanchez, H., and Oyadomari, K., “The EDSN

Intersatellite Communications Architecture,” 28th Annual Small Satellite

Conference, 2014, https://ntrs.nasa.gov/api/citations/20160006437/

downloads/20160006437.pdf.

[23] Time History of Events and Macroscale Interactions during Substorms

(Explorer 85), NASA. Web.

http://www.nasa.gov/mission_pages/themis/main/index.html.

[24] Dudukovich, R., LaFuente, B., Hylton, A., and Tomko, B., “A Distributed

Approach to High-Rate Delay Tolerant Networking Within A Virualized

Environment,” IEEE Cognitive Communications for Aerospace Applications,

edited by IEEE, 2021, https://ntrs.nasa.gov/api/citations/

20210014035/downloads/HDTN_CCAA_21_final.pdf.

[25] Ely, T. A., Koch, T., Kuang, D., Lee, K., and Murphy, D., “The Deep Space

Atomic Clock Mission,” Tech. rep., Jet Propulsion Laboratory, 2012,

https://hdl.handle.net/2014/43016.

[26] “Luna 13,” Tech. rep., NASA Solar System Exploration - Science Directorate,

2018, https://solarsystem.nasa.gov/missions/luna-13/in-depth/.

[27] Mahmood, A., Hossain, M. M. A., Cavdar, C., and Gidlund, M.,

“Energy-Reliability Aware Link Optimization for Battery-Powered IoT Devices

With Nonideal Power Amplifiers,” IEEE Internet of Things Journal, Vol. 6,

No. 3, 2019, pp. 5058–5067,

https://dx.doi.org/10.1109/JIOT.2019.2895228.

https://ntrs.nasa.gov/api/citations/20210016930/downloads/SmallSat2021.pdf
https://ntrs.nasa.gov/api/citations/20210016930/downloads/SmallSat2021.pdf
https://ntrs.nasa.gov/api/citations/20160006437/downloads/20160006437.pdf
https://ntrs.nasa.gov/api/citations/20160006437/downloads/20160006437.pdf
http://www.nasa.gov/mission_pages/themis/main/index.html
https://ntrs.nasa.gov/api/citations/20210014035/downloads/HDTN_CCAA_21_final.pdf
https://ntrs.nasa.gov/api/citations/20210014035/downloads/HDTN_CCAA_21_final.pdf
https://hdl.handle.net/2014/43016
https://solarsystem.nasa.gov/missions/luna-13/in-depth/
https://dx.doi.org/10.1109/JIOT.2019.2895228

189

[28] Siddiqi, A., Beyond Earth: A Chronicle of Deep Space Exploration, 1958-2016 ,

NASA Headquarters, Washington, DC, 2018.

[29] Williams, D. R., “Ranger 7,” Tech. rep., NASA Space Science Data

Coordinated Archive, 1964, https:

//nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1964-041A.

[30] Williams, D. R., “Luna 9,” Tech. rep., NASA Space Science Data Coordinated

Archive, 1966, https:

//nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1966-006A.

[31] “Luna 9 Radiation Sensor,” Tech. rep., NASA Space Science Data Coordinated

Archive, 1966, https://nssdc.gsfc.nasa.gov/nmc/experiment/display.

action?id=1966-006A-02.

[32] Pyle, R., “Fifty Years of Moon Dust: Surveyor 1 was a Pathfinder for Apollo,”

NASA JPL, Jet Propulsion Laboratory, 2017,

https://www.nasa.gov/feature/jpl/

fifty-years-of-moon-dust-surveyor-1-was-a-pathfinder-for-apollo.

[33] “Surveyor 1,” Tech. rep., NASA Space Science Data Coordinated Archive, 1966,

https:

//nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1966-045A.

[34] “Surveyor 3,” Tech. rep., NASA Space Science Data Coordinated Archive, 1968,

https:

//nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1967-035A.

https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1964-041A
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1964-041A
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1966-006A
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1966-006A
https://nssdc.gsfc.nasa.gov/nmc/experiment/display.action?id=1966-006A-02
https://nssdc.gsfc.nasa.gov/nmc/experiment/display.action?id=1966-006A-02
https://www.nasa.gov/feature/jpl/fifty-years-of-moon-dust-surveyor-1-was-a-pathfinder-for-apollo
https://www.nasa.gov/feature/jpl/fifty-years-of-moon-dust-surveyor-1-was-a-pathfinder-for-apollo
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1966-045A
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1966-045A
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1967-035A
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1967-035A

190

[35] “Luna 16,” Tech. rep., NASA Space Science Data Coordinated Archive, 1970,

https:

//nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1970-072A.

[36] Apollo 15 Press Kit, NASA Headquarters, 1971,

https://history.nasa.gov/alsj/a15/A15_PressKit.pdf.

[37] Williams, D. R., “Mariner 4,” Tech. rep., NASA Space Science Data

Coordinated Archive, 1965, https:

//nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1964-077A.

[38] Huntress, W. T. J. and Marov, M. Y., Soviet Robots in the Solar System:

Mission Technologies and Discoveries, Springer-Praxis, 2011, ISBN

9781441978974.

[39] “Venera 7,” Tech. rep., NASA Space Science Data Coordinated Archive, 1970,

https:

//nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1970-060A.

[40] “Mars 3,” Tech. rep., NASA Space Science Data Coordinated Archive, 1971,

https:

//nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1971-049F.

[41] “Viking 1,” Tech. rep., NASA Space Science Data Coordinated Archive, 1975,

https:

//nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1975-075C.

[42] “Telecommunications and Data Acquisition Systems Support for the Viking

1975 Mission to Mars,” Tech. rep., NASA Jet Propulsion Laboratory, 1982, JPL

Publication 82-107.

https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1970-072A
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1970-072A
https://history.nasa.gov/alsj/a15/A15_PressKit.pdf
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1964-077A
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1964-077A
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1970-060A
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1970-060A
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1971-049F
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1971-049F
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1975-075C
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1975-075C

191

[43] Levin, G. V. and Straat, P. A., “The Case for Extant Life on Mars and Its

Possible Detection by the Viking Labeled Release Experiment,” Astrobiology,

Vol. 16, No. 10, 2016, pp. 798–810, PMID: 27626510.

[44] Klein, H. P., “The Viking biological experiments on Mars,” Icarus, Vol. 34,

No. 3, 1978, pp. 666–674, https:

//www.sciencedirect.com/science/article/pii/0019103578900532.

[45] “MARS OBSERVER INVESTIGATION REPORT RELEASED,” Press release,

Malin Space Science Systems, 1994, https:

//www.msss.com/mars/observer/project/mo_loss/nasa_mo_loss.txt.

[46] Albee, A. L., Arvidson, R. E., Palluconi, F., and Thorpe, T., “Overview of the

Mars Global Surveyor mission,” Journal of Geophysical Research: Planets,

Vol. 106, No. E10, 2001, pp. 23291–23316,

https://doi.org/10.1029/2000JE001306.

[47] Lyons, D. T., Beerer, J. G., Esposito, P., Johnston, M. D., and Willcockson,

W. H., “Mars Global Surveyor: Aerobraking Mission Overview,” Journal of

Spacecraft and Rockets, Vol. 36, No. 3, 1999, pp. 307–313,

https://doi.org/10.2514/2.3472.

[48] “Mars Global Surveyor,” Tech. rep., NASA Space Science Data Coordinated

Archive, 1996, https:

//nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1996-062A.

[49] Nieberding, J. and Ross, L., “Mission Success First: Lessons Learned: Lecture

#94,” Lecture slides. Aerospace Engineering Associates, LLC, Bay Village, OH,

2006.

https://www.sciencedirect.com/science/article/pii/0019103578900532
https://www.sciencedirect.com/science/article/pii/0019103578900532
https://www.msss.com/mars/observer/project/mo_loss/nasa_mo_loss.txt
https://www.msss.com/mars/observer/project/mo_loss/nasa_mo_loss.txt
https://doi.org/10.1029/2000JE001306
https://doi.org/10.2514/2.3472
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1996-062A
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1996-062A

192

[50] McCuiston, D., “Mars Exploration Group: Mars - the search for life,”

Conference slides. Mars Exploration Program, NASA, 2009, http://mepag.

jpl.nasa.gov/meeting/mar-09/02_MEPAG_McCuistion_Mar_09.pdf.

[51] “Mars Pathfinder,” Tech. rep., NASA Space Science Data Coordinated Archive,

1997, https:

//nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1996-068A.

[52] “Sojourner Rover, Mars Pathfinder Rover,” Tech. rep., NASA Space Science

Data Coordinated Archive, 1996, https:

//nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=MESURPR.

[53] “NASAfacts: Radioisotope Power Systems for NASA,” Web. Jet Propulsion

Laboratory, Caltech, 2009,

https://web.archive.org/web/20120311002411/http://www.jpl.nasa.

gov/news/fact_sheets/radioisotope-power-systems.pdf - original has

been taken down.

[54] Bechtel, R., “Radioisotope Missions,” U.S. Department of Energy, 2011,

https://web.archive.org/web/20120201232852/http:

//www.jpl.nasa.gov/msl/pdf/MMRTG_RyanBechtel_DOE.pdf.

[55] Ritz, F. and Peterson, C. E., “Multi-Mission Radioisotope Thermoelectric

Generator (MMRTG) Program Overview,” Institute for Electrical and

Electronic Engineers, Vol. 4, No. 1595, 2004,

https://web.archive.org/web/20111216101915/http:

//trs-new.jpl.nasa.gov/dspace/bitstream/2014/38246/1/04-0191.pdf.

[56] Shure, L. I. and Schwartz, H. J., “Survey of Electric Power Plants for Space

Applications,” Tech. rep., NASA Lewis Research Center, Cleveland, Ohio, USA,

http://mepag.jpl.nasa.gov/meeting/mar-09/02_MEPAG_McCuistion_Mar_09.pdf
http://mepag.jpl.nasa.gov/meeting/mar-09/02_MEPAG_McCuistion_Mar_09.pdf
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1996-068A
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1996-068A
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=MESURPR
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=MESURPR
https://web.archive.org/web/20120311002411/http://www.jpl.nasa.gov/news/fact_sheets/radioisotope-power-systems.pdf
https://web.archive.org/web/20120311002411/http://www.jpl.nasa.gov/news/fact_sheets/radioisotope-power-systems.pdf
https://web.archive.org/web/20120201232852/http://www.jpl.nasa.gov/msl/pdf/MMRTG_RyanBechtel_DOE.pdf
https://web.archive.org/web/20120201232852/http://www.jpl.nasa.gov/msl/pdf/MMRTG_RyanBechtel_DOE.pdf
https://web.archive.org/web/20111216101915/http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/38246/1/04-0191.pdf
https://web.archive.org/web/20111216101915/http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/38246/1/04-0191.pdf

193

1965, https://web.archive.org/web/20100525084704/https://ntrs.nasa.

gov/archive/nasa/casi.ntrs.nasa.gov/19660005486_1966005486.pdf.

[57] “InSight Seismometer,” 2018,

https://mars.nasa.gov/insight/mission/instruments/seis/.

[58] Banerdt, W. B., Smrekar, S. E., Banfield, D., Giardini, D., Golombek, M.,

Johnson, C. L., Lognonné, P., Spiga, A., and Spohn, T., “Initial results from

the InSight mission on Mars,” Nature Geoscience, Vol. 13, 2020,

https://doi.org/10.1038/s41561-020-0544-y.

[59] Banfield, D., Spiga, A., Newman, C., and et al., “The atmosphere of Mars as

observed by InSight,” Nature Geoscience, Vol. 13, 2020,

https://doi.org/10.1038/s41561-020-0534-0.

[60] Albee, A., Leising, C., Battel, S., MacPherson, D., Casani, J., and Whetsel, C.,

“Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions,”

Tech. rep., NASA Jet Propulsion Laboratory, Pasadena, CA, 2000,

https://web.archive.org/web/20151213144413/ftp:

//ftp.hq.nasa.gov/pub/pao/reports/2000/2000_mpl_report_1.pdf.

[61] Young, T., “Mars Program Independent Assessment Team Summary Report,”

Tech. rep., United States House Science and Technology Committee, 2000,

https://spaceref.com/press-release/

testimony-of-thomas-young-chairman-of-the-mars-program-independent-assessment-team-before-the-house-science-committee/.

[62] Russell, P., Carmen, D., Marsh, C., Reddy, T., Bugga, R., Deligiannis, F., and

Frank, H., “Development of a lithium/thionyl chloride battery for the Mars

Microprobe Program,” Thirteenth Annual Battery Conference on Applications

and Advances. Proceedings of the Conference, 1998, pp. 341–346.

https://web.archive.org/web/20100525084704/https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19660005486_1966005486.pdf
https://web.archive.org/web/20100525084704/https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19660005486_1966005486.pdf
https://mars.nasa.gov/insight/mission/instruments/seis/
https://doi.org/10.1038/s41561-020-0544-y
https://doi.org/10.1038/s41561-020-0534-0
https://web.archive.org/web/20151213144413/ftp://ftp.hq.nasa.gov/pub/pao/reports/2000/2000_mpl_report_1.pdf
https://web.archive.org/web/20151213144413/ftp://ftp.hq.nasa.gov/pub/pao/reports/2000/2000_mpl_report_1.pdf
https://spaceref.com/press-release/testimony-of-thomas-young-chairman-of-the-mars-program-independent-assessment-team-before-the-house-science-committee/
https://spaceref.com/press-release/testimony-of-thomas-young-chairman-of-the-mars-program-independent-assessment-team-before-the-house-science-committee/

194

[63] Holt, J. W., Safaeinili, A., Plaut, J. J., Head, J. W., Phillips, R. J., Seu, R.,

Kempf, S. D., and Choudhary, P., “Radar Sounding Evidence for Buried

Glaciers in the Southern Mid-Latitudes of Mars,” Science, Vol. 322, No. 5905,

2008, https://doi.org/10.1126/science.1164246.

[64] Orosei, R. and et al., “Radar evidence of subglacial liquid water on Mars,”

Science, Vol. 361, No. 6401, 2018,

https://doi.org/10.1126/science.aar7268.

[65] Laboratory, N. J. P., “Ingenuity Mars Helicopter Press Kit,” Web, 2021,

https://www.jpl.nasa.gov/news/press_kits/mars_2020/download/

ingenuity_landing_press_kit.pdf.

[66] Balaram, B., Canham, T., Duncan, C., Golombek, M., Grip, H. F., Johnson,

W., Maki, J., Quon, A., Stern, R., and Zhu, D., “Mars Helicopter Technology

Demonstrator,” AIAA SciTech Forum, Vol. 6, No. 23, 2018, DOI

10.2514/6.2018-0023.

[67] Agle, D., “NASA’s Ingenuity in Contact With Perseverance Rover After

Communications Dropout,” JPL Ingenuity Status Updates, 2022,

https://mars.nasa.gov/technology/helicopter/status/379/

nasas-ingenuity-in-contact-with-perseverance-rover-after-communications-dropout/.

[68] Brown, T., “Perseverance’s Four Legged Companion is Ready,” JPL Ingenuity

Status Updates, 2023, https://mars.nasa.gov/technology/helicopter/

status/441/perseverances-four-legged-companion-is-ready/.

[69] Brown, T., “The Race Is On,” JPL Ingenuity Status Updates, 2023, https:

//mars.nasa.gov/technology/helicopter/status/450/the-race-is-on/.

https://doi.org/10.1126/science.1164246
https://doi.org/10.1126/science.aar7268
https://www.jpl.nasa.gov/news/press_kits/mars_2020/download/ingenuity_landing_press_kit.pdf
https://www.jpl.nasa.gov/news/press_kits/mars_2020/download/ingenuity_landing_press_kit.pdf
https://mars.nasa.gov/technology/helicopter/status/379/nasas-ingenuity-in-contact-with-perseverance-rover-after-communications-dropout/
https://mars.nasa.gov/technology/helicopter/status/379/nasas-ingenuity-in-contact-with-perseverance-rover-after-communications-dropout/
https://mars.nasa.gov/technology/helicopter/status/441/perseverances-four-legged-companion-is-ready/
https://mars.nasa.gov/technology/helicopter/status/441/perseverances-four-legged-companion-is-ready/
https://mars.nasa.gov/technology/helicopter/status/450/the-race-is-on/
https://mars.nasa.gov/technology/helicopter/status/450/the-race-is-on/

195

[70] Bapst, J., Tzanetos, T., and Withrow-Maser, S., “Helicopters on Mars:

Technology Demonstration to Future Science Missions,” Tech. rep., NASA Jet

Propulsion Laboratory, 2021, http:

//fiso.spiritastro.net/telecon19-21/Bapst-Tzanetos-WithrowMaser_

9-29-21/Bapst-Tzanetos-WithrowMaser_9-29-21.pdf.

[71] Pipenberg, B. T., Langberg, S. A., Tyler, J. D., and Keennon, M. T.,

“Conceptual Design of a Mars Rotorcraft for Future Sample Fetch Missions,”

2022 IEEE Aerospace Conference (AERO), 2022, pp. 01–14.

[72] Wu, N., “Next Stop - Mars: China aims to send rover to Red Planet within six

years,” South China Morning Post, 2014,

http://www.scmp.com/news/china/article/1539568/

next-stop-mars-china-aims-send-rover-red-planet-within-six-years.

[73] Jones, A., “Here’s What You Need to Know About China’s Mars Rover,” IEEE

Spectrum, 2021, hhttps://spectrum.ieee.org/

what-you-need-to-know-about-china-mars-rover-tianwen-1.

[74] Cheatwood, F. M., Bose, D., Karlgaard, C. D., Kuhl, C. A., Santos, J. A., and

Wright, M. J., “Mars Science Laboratory (MSL) Entry, Descent, and Landing

Instrumentation (MEDLI): Complete Flight Data Set,” Tech. rep., NASA Ames

Research Center, 2014, https://ntrs.nasa.gov/citations/20140016393/.

[75] Thornton, J. M., Meurisse, J. B. E., Prabhu, D. K., Borner, A. P., Monk, J. D.,

and Cruden, B. A., “ANALYSIS OF THE MSL/MEDLI ENTRY DATA WITH

COUPLED CFD AND MATERIAL RESPONSE,” Tech. rep., NASA Ames

Research Center, 2021,

https://ntrs.nasa.gov/api/citations/20210014103/.

http://fiso.spiritastro.net/telecon19-21/Bapst-Tzanetos-WithrowMaser_9-29-21/Bapst-Tzanetos-WithrowMaser_9-29-21.pdf
http://fiso.spiritastro.net/telecon19-21/Bapst-Tzanetos-WithrowMaser_9-29-21/Bapst-Tzanetos-WithrowMaser_9-29-21.pdf
http://fiso.spiritastro.net/telecon19-21/Bapst-Tzanetos-WithrowMaser_9-29-21/Bapst-Tzanetos-WithrowMaser_9-29-21.pdf
http://www.scmp.com/news/china/article/1539568/next-stop-mars-china-aims-send-rover-red-planet-within-six-years
http://www.scmp.com/news/china/article/1539568/next-stop-mars-china-aims-send-rover-red-planet-within-six-years
hhttps://spectrum.ieee.org/what-you-need-to-know-about-china-mars-rover-tianwen-1
hhttps://spectrum.ieee.org/what-you-need-to-know-about-china-mars-rover-tianwen-1
https://ntrs.nasa.gov/citations/20140016393/
https://ntrs.nasa.gov/api/citations/20210014103/

196

[76] Way, D., Dutta, S., Zumwalt, C., and De León, S. S., “EDL Simulation Results

for the Mars 2020 Landing Site Safety Assessment,” 2020 IEEE Aerospace

Conference, 2020, pp. 1–5,

https://ieeexplore.ieee.org/document/9172525.

[77] Wu, B., Dong, J., Wang, Y., Rao, W., Sun, Z., Li, Z., Tan, Z., Chen, Z., Wang,

C., Liu, W. C., Chen, L., Zhu, J., and Li, H., “Landing Site Selection and

Characterization of Tianwen-1 (Zhurong Rover) on Mars,” Journal of

Geophysical Research: Planets, Vol. 127, No. 4, 2022, pp. e2021JE007137,

https:

//agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021JE007137.

[78] Huang, X., Li, M., Wang, X., Jinchang, H., Guo, M., Liu, W., Wang, Y., and

Xu, L., “The Tianwen-1 Guidance, Navigation, and Control for Mars Entry,

Descent, and Landing,” Space Science and Technology, Vol. 2021, No. 9846185,

2021, https:

//spj.science.org/doi/10.34133/2021/9846185?permanently=true.

[79] Mallapaty, S., “What’s happened to China’s first Mars rover?” Nature

Communications, , No. 610, 2023,

https://www.nature.com/articles/d41586-023-00111-3.

[80] Mazhari, A. A., Ticknor, R., Swei, S., Krześniak, S., and Teodorescu, M.,

“Automated Characterization and Testing of Additive Manufacturing

(ATCAM),” Journal of Materials Engineering and Performance, Vol. 30, 2021,

pp. 6862–6873, https://dx.doi.org/10.1007/s11665-021-06042-2.

[81] Krześniak, S. and Papadopoulos, P., “Martian Microprobe Entry, Descent, and

Landing System,” Interplanetary Probe Workshop, 2021.

https://ieeexplore.ieee.org/document/9172525
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021JE007137
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021JE007137
https://spj.science.org/doi/10.34133/2021/9846185?permanently=true
https://spj.science.org/doi/10.34133/2021/9846185?permanently=true
https://www.nature.com/articles/d41586-023-00111-3
https://dx.doi.org/10.1007/s11665-021-06042-2

197

[82] Quinlan, G. D. and Tremaine, S., “Symmetric Multistep Methods for the

Numerical Integration of Planetary Orbits,” Astronomical Journal, Vol. 100,

No. 5, 1990.

[83] Leroy, R. and Leroy, P., “Principia,” GitHub, 2023,

https://github.com/mockingbirdnest/Principia.

[84] “HORIZONS Service,” NASA Jet Propulsion Laboratory, 2023,

https://ssd.jpl.nasa.gov/horizons/.

[85] “JOINT STRIKE FIGHTER - DOD Actions Needed to Further Enhance

Restructuring and Address Affordability Risks,” Tech. rep., U.S. Government

Accountabiilty Office, 2012, GAO Report 12-437.

[86] “Galileo Final Report,” Tech. rep., NASA Jet Propulsion Laboratory, Pasadena,

CA, USA, 1991, NASA JPL Report D-28516, Volumes 1-3.

[87] “NASA PROCEDURAL REQUIREMENTS: NASA RESEARCH AND

TECHNOLOGY PROGRAM AND PROJECT MANAGEMENT

REQUIREMENTS,” NASA Headquarters, 2023,

https://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=7120&s=8A.

[88] Serrano, J. E., “Commerce, Justice, Science, and Related Agencies

Appropriations for 2020,” U.S. House of Representatives Subcommittee on

Appropriations, 2019, Section DEXP-2.

[89] “U.S. Department of Defense Budget Overview,” Comptroller, United States

Department of Defense, 2023,

https://comptroller.defense.gov/Portals/45/Documents/defbudget/

FY2024/FY2024_Budget_Request_Overview_Book.pdf.

https://github.com/mockingbirdnest/Principia
https://ssd.jpl.nasa.gov/horizons/
https://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=7120&s=8A
https://comptroller.defense.gov/Portals/45/Documents/defbudget/FY2024/FY2024_Budget_Request_Overview_Book.pdf
https://comptroller.defense.gov/Portals/45/Documents/defbudget/FY2024/FY2024_Budget_Request_Overview_Book.pdf

198

[90] Biden, J. R., “Budget of the U.S. Government for Fiscal Year 2024,” U.S.

White House, 2023, https://www.whitehouse.gov/wp-content/uploads/

2023/03/budget_fy2024.pdf.

[91] “Ingenuity Spots Rover Tracks During Ninth Flight,” NASA, 2021,

https://mars.nasa.gov/resources/26046.

[92] “NASA FY2024 Budget Request,” NASA Headquarters, 2023,

https://www.nasa.gov/sites/default/files/atoms/files/fiscal_year_

2024_nasa_budget_summary.pdf.

[93] Smith, D. H., Review and Assessment of Planetary Protection Policy

Development Processes, National Acadamies Press, 500 Fifth Street, NW,

Washington, D.C. 20001, 2018.

[94] Nilekani, N., Dixon, H., Chaibong, H., and Sherman, W., World War Web,

Foreign Affairs, 58 E. 68th Street, New York, NY 10065, 2018.

[95] Aspaturian, V. V., Hill, C., Joffe, J., Macridis, R. C., Odom, D., Roett, R.,

Safran, N., Scalapino, R. A., Sundelius, B., White, B., Whiting, A. S., and

Wright, S., Foreign Policy in World Politics, Eighth Edition, Prentice-Hall,

1991.

[96] Smith, N., “7000-7999 Program Formulation,” NASA Online Directives

Information System, 2023,

https://nodis3.gsfc.nasa.gov/lib_docs.cfm?range=7.

[97] Smith, N., “8000-8999 Program Management,” NASA Online Directives

Information System, 2023,

https://nodis3.gsfc.nasa.gov/lib_docs.cfm?range=8.

https://www.whitehouse.gov/wp-content/uploads/2023/03/budget_fy2024.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/03/budget_fy2024.pdf
https://mars.nasa.gov/resources/26046
https://www.nasa.gov/sites/default/files/atoms/files/fiscal_year_2024_nasa_budget_summary.pdf
https://www.nasa.gov/sites/default/files/atoms/files/fiscal_year_2024_nasa_budget_summary.pdf
https://nodis3.gsfc.nasa.gov/lib_docs.cfm?range=7
https://nodis3.gsfc.nasa.gov/lib_docs.cfm?range=8

199

[98] Hang, W. and Erickson, S., “About Us,” Mars Exploration Program Analysis

Group, Jet Propulsion Laboratory, Pasadena, CA, 2021,

https://mepag.jpl.nasa.gov/about.cfm.

[99] Blair, P. D., “The evolving role of the US National Academies of Sciences,

Engineering, and Medicine in providing science and technology policy advice to

the US government,” Palgrave Communications, Vol. 1, No. 2, 2016,

https://doi.org/10.1057%2Fpalcomms.2016.30.

[100] Banfield, D., “Mars Science Goals, Objectives, Investigations, and Priorities:

2020 Version,” Tech. rep., Mars Exploration Program Analysis Group, Jet

Propulsion Laboratory, Pasadena, CA, 2020, https:

//mepag.jpl.nasa.gov/reports/MEPAGGoals_2020_MainText_Final.pdf.

[101] Korablev, O., Vanadele, A. C., Montmessin, F., and Federova, A. A., “No

detection of methane on Mars from early ExoMars Trace Gas Orbiter

observations,” Nature Communications, Vol. 2019, No. 568, 2019,

https://www.nature.com/articles/s41586-019-1096-4#citeas.

[102] Yung, Y. L., Chen, P., Nealson, K., Atreya, S., Beckett, P., and Blank, J. G.,

“Methane on Mars and Habitability: Challenges and Responses,” Astrobiology,

Vol. 10, No. 18, 2018,

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6205098/.

[103] Etiope, G. and Oehler, D. Z., “Methane spikes, background seasonality and

non-detections on Mars: A geological perspective,” Elsevier Planetary and

Space Science, Vol. 168, No. 2, 2019, https://www.sciencedirect.com/

science/article/abs/pii/S0032063318303404?via%3Dihub.

https://mepag.jpl.nasa.gov/about.cfm
https://doi.org/10.1057%2Fpalcomms.2016.30
https://mepag.jpl.nasa.gov/reports/MEPAGGoals_2020_MainText_Final.pdf
https://mepag.jpl.nasa.gov/reports/MEPAGGoals_2020_MainText_Final.pdf
https://www.nature.com/articles/s41586-019-1096-4#citeas
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6205098/
https://www.sciencedirect.com/science/article/abs/pii/S0032063318303404?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0032063318303404?via%3Dihub

200

[104] Budhu, M., Soil Mechanics and Foundation, 3rd Edition, John Wiley and Sons,

Inc., Hoboken, New Jersey, USA, 2011.

[105] Tikhonov, A. N., “O edinstvennosti resheniya zadachi elektrorazevedki (in

Russian),” Doklady Akademii Nauk SSSR, Vol. 69, No. 6, 1949.

[106] Brown, B. H., “Electrical impedance tomography (EIT): A review,” Journal of

Medical Engineering and Technology, Vol. 27, No. 3, 2003,

https://pubmed.ncbi.nlm.nih.gov/12775455.

[107] Hassler, D. M., Zeitlin, C., Wimmer-Schwingruber, R. F., Ehrsmann, B., Rafin,

S., Eigenbrode, J. L., Brinza, D. E., Weigle, G., Böttcher, S., and Böhm, E.,

“Mars’ Surface Radiation Environment Measured with the Mars Science

Laboratory’s Curiosity Rover,” Science, Vol. 343, No. 6169, 2013,

https://pubmed.ncbi.nlm.nih.gov/24324275.

[108] Parker, C. and Smith, N., “NODIS Library,” NASA Online Directives

Information System, NASA Goddard Spaceflight Center, Cleveland, OH, 2023,

https://nodis3.gsfc.nasa.gov/main_lib.cfm.

[109] “1300-Series Spacecraft Platform,” Space Systems Loral/Maxar, 2010, Web.

https://web.archive.org/web/20100210192715/http:

//www.ssloral.com/html/products/1300.html.

[110] Humphries, J. and Colwell, B., Tech. rep., United States Air Force Space

Command.

[111] “Breakthrough Starshot: Concept,” Breakthrough Initiatives, 2016,

http://breakthroughinitiatives.org/Concept/3.

https://pubmed.ncbi.nlm.nih.gov/12775455
https://pubmed.ncbi.nlm.nih.gov/24324275
https://nodis3.gsfc.nasa.gov/main_lib.cfm
https://web.archive.org/web/20100210192715/http://www.ssloral.com/html/products/1300.html
https://web.archive.org/web/20100210192715/http://www.ssloral.com/html/products/1300.html
http://breakthroughinitiatives.org/Concept/3

201

[112] Cabrol, N. A., Feister, U., Häder, D.-P., Piazena, H., Grin, E. A., and Klein, A.,

“Record solar UV irradiance in the tropical Andes,” Frontiers in Environmental

Science, Vol. 2, No. 19, 2014, DOI: 10.3389/fenvs.2014.00019.

[113] Cabrol, N. A., Grin, E. A., Chong, G., Minkley, E., Hock, A. N., and Yu, Y.,

“The High-Lakes Project,” Journal of Geophysical Research, Vol. 114, No. 6,

2009, https://dx.doi.org/10.1029/2008JG000818.

[114] “Bloomberg: Santiago despierta en la devestacion,” El Mostrador, 2019, https:

//web.archive.org/web/20191020042309/https://www.elmostrador.cl/

dia/2019/10/19/bloomberg-santiago-despierta-en-la-devastacion/.

[115] Karlgaard, C. D., Korzun, A. M., Schoenenberger, M., Bonfiglio, E. P., Kass,

D. M., and Grover, M. R., “Mars InSight Entry, Descent, and Landing

Trajectory and Atmosphere Reconstruction,” Tech. rep., NASA Langley

Research Center, 2020.

[116] Brandis, A. M., Saunders, D. A., Johnston, C. O., Cruden, B. A., and White,

T. R., “Radiative Heating on the After-Body of Martian Vehicles,” Journal of

Thermophysics and Heat Transfer , Vol. 34, No. 1, 2019,

https://arc.aiaa.org/doi/10.2514/1.T5613.

[117] Anderson, J. D., Hypersonic and High-temperature Gas Dynamics, American

Institute of Aeronautics and Astronautics, Reston, VA, 2006.

[118] Brandis, A. M., White, T. R., Saunders, D. A., Hill, J. P., and Johnston, C. O.,

“Simulation of the Schiaparelli Entry and Comparison to Aerosciences Flight

Data,” Journal of Spacecraft and Rockets, Vol. 59, No. 1, 2022,

https://dx.doi.org/10.2514/1.A35049.

https://dx.doi.org/10.1029/2008JG000818
https://web.archive.org/web/20191020042309/https://www.elmostrador.cl/dia/2019/10/19/bloomberg-santiago-despierta-en-la-devastacion/
https://web.archive.org/web/20191020042309/https://www.elmostrador.cl/dia/2019/10/19/bloomberg-santiago-despierta-en-la-devastacion/
https://web.archive.org/web/20191020042309/https://www.elmostrador.cl/dia/2019/10/19/bloomberg-santiago-despierta-en-la-devastacion/
https://arc.aiaa.org/doi/10.2514/1.T5613
https://dx.doi.org/10.2514/1.A35049

202

[119] Spalart, P. and Allmaras, S., “A one-equation turbulence model for

aerodynamic flows,” Tech. rep., American Institute of Aeronautics and

Astronautics, 1992, Report AIAA-92-0439.

Appendices

203

1. MATLAB (R) 2D hypersonic propagator code
1 clearvars;
2 clc;
3 % Written ca. 2019.
4 % Stanley Krzesniak
5 % Data based on:
6 % NASA research papers (see References for this)
7 % NASA Chemical Equilibrium with Applications - MATLAB
8 % NASA Mars -GRAM 2010
9 % Modified Newtonian Theory

10 % Local Slope Inclination , valid from Mach 8 and above
11
12 %% static and inital definitions
13 decelDragForce = zeros(27 ,1);
14 decelDragForce(27) = 0;
15 vehicleMass = 80000; %kg
16 marsGrav = 3.72076; %m/s^2
17 flightPathAngle = zeros(28 ,1);
18 flightPathAngle(28) = -1; %degrees
19 vehicleRadius = 23; %meters , yes , this is a bicc boi
20 surfAngle = 20; %degrees , average surface inclination
21 deltaVerticalDist = 5000; %meters
22 u1 = zeros(28 ,1);
23 u1(28) = 5600; %inital entry interface total velocity
24 u1_x = zeros(28 ,1);
25 u1_x(28) = u1(28).*cosd(flightPathAngle(28)); %EI horiz
26 u1_y = zeros(28 ,1);
27 u1_y(28) = u1(28).*sind(flightPathAngle(28)); %EI vert
28 dragAcc = zeros(27 ,1);
29 dragAcc(27) = 0;
30 dragAcc_x = zeros(27 ,1);
31 dragAcc_y = zeros(27 ,1);
32
33 % For kinetic theory of gases
34 boltzmann = 1.3806e -23;
35 diaCO = 376e-12;
36 diaCO2 = 330e-12;
37 diaO2 = 346e-12;
38 diaAr = 340e-12;
39 diaN2 = 364e-12;
40 p2 = zeros(27 ,1);
41 p2(27) = 1e-2; % initial condition , Pa (just for a guess to get it

started)

205

42 h2 = zeros(27 ,1);
43 h2(27) = 4000; % initial condition , kJ/kg
44 controlVolumeDepth = 1; %meters
45 L = ((pi*vehicleRadius*(vehicleRadius*cosd(surfAngle)+

vehicleRadius)-(pi*vehicleRadius. ^2))*controlVolumeDepth).^(1/3); %
Characteristic length

46
47 % CEA convergence solver parameters
48 t2Stepping = 20; % Kelvin , smaller means more accurate convergence

but longer computation time
49 rho2Stepping = [12000E -8;16000E -8;35000E -8;540000E -8;800000E

-8;600000E -8;400000E -8;120000E -8;72000E -8;28000E -8;14400E -8;9600E
-8;4800E -8;2400E -8;1200E -8;720E -8;360E -8;180E -8;164E -8;128E-8;64E
-8;32E -8;16E-8;8E-8;4E-8;2E-8;1E-8];

50 t2 = zeros(27 ,1);
51 rho2 = [1.5E -01;8.7E -02;6.5E -03;4.5E -03;3.3E -3;3.2E -3;3.1E -3;3.09E

-3;...
52 3.08E -03;2 .33E -03;1 .37E -03;7 .62E -04;4 .12E -04;2 .43E -04;1 .66E -04;

...
53 1.04E -04;5 .87E -05;2 .99E -05;1 .45E -05;6 .72E -06;3 .08E -06;1 .42E -06;

...
54 6.63E -07;3 .15E -07;1 .51E -07;7 .25E -08;3 .72E -08]; %initial guesses

to converge faster
55 rhoConvgError = zeros(27 ,1);
56 rhoConvgError_old = zeros(27 ,1);
57 h2ConvgError = zeros(27 ,1);
58 h2ConvgError_old = zeros(27 ,1);
59 rhoConvgError(27) = 100; % arb
60 rhoConvgError_old(27) = 100; %arb
61 h2ConvgError(27) = 100; % arb
62 iterationTimeout = 25;
63 t2GuessNew = 0; % for self -learning guess - refines based on the

previous converged temperature
64
65 % OUTPUT MATRICES
66 u2 = zeros(27 ,1); %preallocate for output
67 m2 = zeros(27 ,1); %preallocate for output
68
69 % Atmospheric Properties from Mars -GRAM 2010
70 Ar = [1.5860 ;1 .5890;1 .5900;1 .5890;1 .5890;1 .5880;1 .5880;1 .5870 ;1

.5870;1 .5860 ;1.5850 ;1.5850 ;1.5840 ;1.5830 ;1.5830 ;1.5820 ;1.5810 ;1

.5810;1 .6300 ;1.6200 ;1.6070 ;1.5860 ;1.5750 ;1.5570 ;1.5460 ;1.5440 ;1

.5510];
71 CO = [0.0670000000000000 ;0 .0680000000000000 ;0 .0680000000000000 ;0

.0680000000000000 ;0 .0670000000000000 ;0 .0670000000000000 ;0

.0670000000000000 ;0 .0670000000000000 ;0 .0670000000000000 ;0

206

.0670000000000000 ;0 .0670000000000000 ;0 .0670000000000000 ;0

.0670000000000000 ;0 .0670000000000000 ;0 .0670000000000000 ;0

.0670000000000000 ;0 .0670000000000000 ;0 .0670000000000000 ;0

.163000000000000 ;0 .256000000000000 ;0 .348000000000000 ;0

.438000000000000 ;0 .530000000000000 ;0 .619000000000000 ;0

.710000000000000 ;0 .805000000000000 ;0 .919000000000000];
72 CO2 = [96.0840000000000 ;96 .2900000000000 ;96 .3660000000000 ;96

.3800000000000 ;96 .3850000000000 ;96 .3880000000000 ;96 .3890000000000
;96 .3910000000000 ;96 .3920000000000 ;96 .3930000000000 ;96
.3950000000000 ;96 .3960000000000 ;96 .3980000000000 ;96 .3990000000000
;96 .4010000000000 ;96 .4020000000000 ;96 .4040000000000 ;96
.4060000000000 ;96 .4070000000000 ;96 .4090000000000 ;96 .4140000000000
;96 .4210000000000 ;96 .4470000000000 ;96 .4500000000000 ;96
.4500000000000 ;96 .4510000000000 ;96 .4510000000000];

73 kmMOLA = [
-5;0;5;10;15;20;25;30;35;40;45;50;55;60;65;70;75;80;85;90;95;100;105;110;115;120;125
];

74 N2 = [1.85400000000000 ;1 .85700000000000 ;1 .85800000000000 ;1
.85700000000000 ;1 .85700000000000 ;1 .85600000000000 ;1 .85500000000000
;1 .85500000000000 ;1 .85400000000000 ;1 .85300000000000 ;1
.85300000000000 ;1 .85200000000000 ;1 .85100000000000 ;1 .85000000000000
;1 .84900000000000 ;1 .84900000000000 ;1 .84800000000000 ;1
.84700000000000 ;1 .90800000000000 ;1 .89800000000000 ;1 .88600000000000
;1 .86400000000000 ;1 .85300000000000 ;1 .83500000000000 ;1
.82500000000000 ;1 .82500000000000 ;1 .90900000000000];

75 O2 = [0.100000000000000 ;0 .100000000000000 ;0 .100000000000000 ;0
.100000000000000 ;0 .100000000000000 ;0 .100000000000000 ;0
.100000000000000 ;0 .100000000000000 ;0 .100000000000000 ;0
.100000000000000 ;0 .100000000000000 ;0 .100000000000000 ;0
.100000000000000 ;0 .100000000000000 ;0 .100000000000000 ;0
.100000000000000 ;0 .100000000000000 ;0 .100000000000000 ;0
.109000000000000 ;0 .115000000000000 ;0 .121000000000000 ;0
.126000000000000 ;0 .132000000000000 ;0 .137000000000000 ;0
.143000000000000 ;0 .149000000000000 ;0 .159000000000000];

76 P1 = [895 ;567;358;216;128;73 .7000000000000 ;41 .6000000000000 ;22
.9000000000000 ;12 .3000000000000 ;6 .52000000000000 ;3 .39000000000000 ;1
.73000000000000 ;0 .920000000000000 ;0 .537000000000000 ;0
.361000000000000 ;0 .217000000000000 ;0 .116000000000000 ;0
.0563000000000000 ;0 .0262000000000000 ;0 .0116000000000000 ;0
.00517000000000000 ;0 .00232000000000000 ;0 .00107000000000000 ;0
.000506000000000000 ;0 .000243000000000000 ;0 .000121000000000000 ;6
.24000000000000e -05];

77 rho1_avg = [0.0196000000000000 ;0 .0132000000000000 ;0
.00897000000000000 ;0 .00575000000000000 ;0 .00359000000000000 ;0
.00219000000000000 ;0 .00131000000000000 ;0 .000772000000000000 ;0
.000437000000000000 ;0 .000248000000000000 ;0 .000135000000000000 ;6

207

.90000000000000e -05;3 .48000000000000e -05;1 .94000000000000e -05;1

.30000000000000e -05;7 .92000000000000e -06;4 .33000000000000e -06;2

.16000000000000e -06;1 .02000000000000e -06;4 .61000000000000e -07;2

.06000000000000e -07;9 .24000000000000e -08;4 .24000000000000e -08;1

.97000000000000e -08;9 .16000000000000e -09;4 .31000000000000e -09;2

.09000000000000e -09];
78 T1 = [241.800000000000 ;227 .800000000000 ;211;198 .700000000000 ;188

.300000000000 ;178 .100000000000 ;168;157 .100000000000 ;149

.400000000000 ;139 .300000000000 ;133 .200000000000 ;132 .400000000000
;140 .400000000000 ;146 .600000000000 ;147;144 .600000000000 ;141
.200000000000 ;133 .800000000000 ;128 .600000000000 ;126 .300000000000
;125 .700000000000 ;126 .100000000000 ;127 .200000000000 ;129
.400000000000 ;133 .400000000000 ;140 .800000000000 ;149];

79
80 Cp_max_aero = zeros(27 ,1);
81 Minf = zeros(27 ,1);
82 p02_p1 = zeros(27 ,1);
83 a1 = zeros(27 ,1);
84 coeffPressureLower = zeros(27 ,1);
85 coeffPressureUpper = zeros(27 ,1);
86 Kn = zeros(27 ,1);
87
88 % define capsule in 2D (heat shield only because hypersonic

assumes zero backshell pressure)
89 capsule_2d = [0.57566 0.57914 0.58168 0.58334 0.58417 0.58423 0

.58358...
90 0.58227 0.58037 0.57792 0.57499 0.57163 0.56791 0.56387 0

.55957...
91 0.55508 0.55044 0.54572 0.54097 0.53626 0.53162 0.52710 0

.52270...
92 0.51840 0.51420 0.51012 0.50613 0.50224 0.49844 0.49474 0

.49113...
93 0.48761 0.48418 0.48082 0.47755 0.47435 0.47123 0.46818 0

.46520...
94 0.46229 0.45944 0.45665 0.45391 0.45121 0.44855 0.44591 0

.44330...
95 0.44070 0.43810 0.43550 0.43290 0.43028 0.42763 0.42496 0

.42224...
96 0.41949 0.41668 0.41381 0.41087 0.40786 0.40478 0.40165 0

.39850...
97 0.39534 0.39220 0.38909 0.38605 0.38307 0.38020 0.37744 0

.37483...
98 0.37237 0.37009 0.36802 0.36617 0.36456 0.36322 0.36216 0

.36140...
99 0.36216 0.36322 0.36456 0.36617 0.36802 0.37009 0.37237 0

.37483...

208

100 0.37744 0.38020 0.38307 0.38605 0.38909 0.39220 0.39534 0
.39850...

101 0.40165 0.40478 0.40786 0.41087 0.41381 0.41668 0.41949 0
.42224...

102 0.42496 0.42763 0.43028 0.43290 0.43550 0.43810 0.44070 0
.44330...

103 0.44591 0.44855 0.45121 0.45391 0.45665 0.45944 0.46229 0
.46520...

104 0.46818 0.47123 0.47435 0.47755 0.48082 0.48418 0.48761 0
.49113...

105 0.49474 0.49844 0.50224 0.50613 0.51012 0.51420 0.51840 0
.52270...

106 0.52710 0.53162 0.53626 0.54097 0.54572 0.55044 0.55508 0
.55957...

107 0.56387 0.56791 0.57163 0.57499 0.57792 0.58037 0.58227 0
.58358...

108 0.58423 0.58417 0.58334 0.58168 0.57914 0.57566; 0.00000 0
.10693...

109 0.20322 0.28704 0.35914 0.42026 0.47115 0.51255 0.54521...
110 0.56988 0.58729 0.59821 0.60337 0.60351 0.59939 0.59175...
111 0.58134 0.56890 0.55518 0.54092 0.52685 0.51333 0.50036...
112 0.48790 0.47593 0.46442 0.45334 0.44267 0.43238 0.42244...
113 0.41282 0.40351 0.39446 0.38566 0.37707 0.36868 0.36044...
114 0.35234 0.34435 0.33645 0.32860 0.32080 0.31305 0.30535...
115 0.29769 0.29008 0.28251 0.27498 0.26748 0.26002 0.25259...
116 0.24519 0.23781 0.23046 0.22313 0.21583 0.20854 0.20127...
117 0.19401 0.18676 0.17950 0.17219 0.16478 0.15724 0.14953...
118 0.14160 0.13341 0.12492 0.11609 0.10688 0.09725 0.08715...
119 0.07655 0.06540 0.05366 0.04129 0.02825 0.01450 0.00000...
120 -0.01450 -0.02825 -0.04129 -0.05366 -0.06540 -0.07655 -0

.08715...
121 -0.09725 -0.10688 -0.11609 -0.12492 -0.13341 -0.14160 -0

.14953...
122 -0.15724 -0.16478 -0.17219 -0.17950 -0.18676 -0.19401 -0

.20127...
123 -0.20854 -0.21583 -0.22313 -0.23046 -0.23781 -0.24519 -0

.25259...
124 -0.26002 -0.26748 -0.27498 -0.28251 -0.29008 -0.29769 -0

.30535...
125 -0.31305 -0.32080 -0.32860 -0.33645 -0.34435 -0.35234 -0

.36044...
126 -0.36868 -0.37707 -0.38566 -0.39446 -0.40351 -0.41282 -0

.42244...
127 -0.43238 -0.44267 -0.45334 -0.46442 -0.47593 -0.48790 -0

.50036...
128 -0.51333 -0.52685 -0.54092 -0.55518 -0.56890 -0.58134 -0

209

.59175...
129 -0.59939 -0.60351 -0.60337 -0.59821 -0.58729 -0.56988 -0

.54521...
130 -0.51255 -0.47115 -0.42026 -0.35914 -0.28704 -0.20322 -0

.10693...
131 0.00000];
132
133 %% CEA + Mars -GRAM > newtonian theory and rarified gas dynamics
134
135 for ai = length(kmMOLA):-1:1
136 %cearun1 = CEA(’prob’,’TP’,’p,bar’,P1(ai)/10000 ,’t,K’,T1(ai),’

reac’,...
137 % ’fuel’,’na’,’CO2’,’wt%’,CO2(ai),’na’,’N2’,’wt%’,N2(ai),’na’

,...
138 % ’Ar’,’wt%’,Ar(ai),’na’,’O2’,’wt%’,O2(ai),’na’,’CO’,’wt%’,

...
139 % CO(ai),’end’); % CEArun for accurate gas Cp at every

altitude
140 gammaMarsStatic = 1.3319;
141 h1 = (0.7677).*T1(ai); % assuming still air
142 p2(ai) = P1(ai)+rho1_avg(ai)*u1(ai +1).^2*(1-(rho1_avg(ai)

./rho2(ai))); % behind shock , guess
143 h2(ai) = h1+(u1(ai +1).^2/2)*(1-(rho1_avg(ai)./rho2(ai)).^2) /1000

; % behind shock , guess
144 if rho1_avg(ai)/rho2(ai) >= 1
145 error(message("Error:␣rho2␣is␣smaller␣than␣rho1.␣Halting."));
146 end
147 % convergence parameters BEGIN
148 t2(ai) = 8000; %init guess
149 rhoConvgError(ai) = 100; % arb
150 rhoConvgError_old(ai) = 100; % arb
151 rhoPrecision = 1e-2;
152 % convergence parameters END
153 rho_run = 0; % number of times CEA has run for density

convergence
154 iterationTotal = 0; %total number of times CEA has run
155 iterationTotalAi = 0; %total number of times CEA has run for the

current altitude
156 while rhoConvgError(ai) >= rhoPrecision || rhoConvgError(ai) <=

-rhoPrecision %medium precision solver
157 if ai < 8 %quick and dirty condition to optimize calculations
158 t2Stepping = 5;
159 t2(ai) = 3000;
160 end
161 h2ConvgError(ai) = 60; % arb
162 h2ConvgError_old(ai) = 60; % arb

210

163 cearun2 = CEA(’prob’,’TP’,’p,bar’,p2(ai)/10000 ,’t,K’,t2(ai),’
reac’,...

164 ’fuel’,’na’,’CO2’,’wt%’,CO2(ai),’na’,’N2’,’wt%’,N2(ai),’na’,
...

165 ’Ar’,’wt%’,Ar(ai),’na’,’O2’,’wt%’,O2(ai),’na’,’CO’,’wt%’,...
166 CO(ai),’end’);
167 iterationTotal = iterationTotal +1;
168 iterationTotalAi = iterationTotalAi +1;
169 h2_run = 0;
170 while h2ConvgError(ai) >= 1e-2 || h2ConvgError(ai) <= -1e-2

%requesting very high precision
171 if h2_run >= iterationTimeout && sign(h2ConvgError(ai)) >

0
172 fprintf(’Unable␣to␣converge␣a␣solution␣in␣%i␣iterations

,␣increasing␣temperature...\n’,iterationTimeout);
173 t2GuessNew =
174 t2(ai) = t2(ai)-(t2Stepping*iterationTimeout -1) +20;
175 h2_run = 0;
176 h2convgError(ai) = 60;
177 h2ConvgError_old(ai) = 60;
178 elseif h2_run >= iterationTimeout && sign(h2ConvgError(ai)

) > 0
179 fprintf(’Unable␣to␣converge␣a␣solution␣in␣%i␣iterations

,␣reducing␣temperature...\n’,iterationTimeout);
180 t2(ai) = t2(ai)-(t2Stepping*iterationTimeout -1) -20;
181 h2_run = 0;
182 h2convgError(ai) = 60;
183 h2ConvgError_old(ai) = 60;
184 end
185 cearun2 = CEA(’prob’,’TP’,’p,bar’,p2(ai)/10000 ,’t,K’,t2(ai

),’reac’,...
186 ’fuel’,’na’,’CO2’,’wt%’,CO2(ai),’na’,’N2’,’wt%’,N2(ai),’

na’,...
187 ’Ar’,’wt%’,Ar(ai),’na’,’O2’,’wt%’,O2(ai),’na’,’CO’,’wt%’

,...
188 CO(ai),’end’);
189 iterationTotal = iterationTotal +1;
190 iterationTotalAi = iterationTotalAi +1;
191 h2ConvgError(ai) = 1-(cearun2.output.enthalpy/(h2(ai)));
192 fprintf("h2␣coverr:␣%f,␣h2␣iteration:␣%i\n",

h2ConvgError(ai),h2_run);
193 h2ConvgErrorSign = sign(h2ConvgError_old(ai)

/h2ConvgError(ai));
194 % Check last convergence case:
195 if h2ConvgError_old(ai) > h2ConvgError(ai) &&

h2ConvgErrorSign >= 0

211

196 %guess higher:
197 t2(ai) = abs(t2(ai) + t2Stepping);
198 elseif h2ConvgError_old(ai) < h2ConvgError(ai) &&

h2ConvgErrorSign >= 0
199 %guess lower:
200 t2(ai) = abs(t2(ai) - t2Stepping);
201 elseif h2ConvgError_old(ai) > h2ConvgError(ai) &&

h2ConvgErrorSign == -1
202 % if negative number do this
203 t2(ai) = abs(t2(ai) - t2Stepping);
204 elseif h2ConvgError_old(ai) < h2ConvgError(ai) &&

h2ConvgErrorSign == -1
205 % also if negative number do this
206 t2(ai) = abs(t2(ai) + t2Stepping);
207 end
208 h2ConvgError_old(ai) = h2ConvgError(ai) -1e-17; %Deadlock

if equal to each other for any reason
209 h2_run=h2_run +1; % add 1
210 end
211 rhoConvgError(ai) = 1-(rho2(ai)./cearun2.output.density);
212 fprintf("rho␣coverr:␣%f,␣rho2␣iteration:␣%i\n",

rhoConvgError(ai),rho_run);
213 rhoConvgErrorSign = sign(rhoConvgError_old(ai)

/rhoConvgError(ai));
214 if rhoConvgError_old(ai) > rhoConvgError(ai) &&

rhoConvgErrorSign > 0
215 %guess higher:
216 rho2(ai) = rho2(ai) + rho2Stepping(ai);
217 elseif rhoConvgError_old(ai) < rhoConvgError(ai) &&

rhoConvgErrorSign > 0
218 %guess lower:
219 rho2(ai) = rho2(ai) - rho2Stepping(ai);
220 elseif rhoConvgError_old(ai) > rhoConvgError(ai) &&

rhoConvgErrorSign == -1
221 %negative guess higher
222 rho2(ai) = rho2(ai) - rho2Stepping(ai);
223 elseif rhoConvgError_old(ai) < rhoConvgError(ai) &&

rhoConvgErrorSign == -1
224 %negative guess lower
225 rho2(ai) = rho2(ai) + rho2Stepping(ai);
226 %else
227 % continue; %continue beacuse rhoConvgError = 0;
228 end
229
230 % if "ai" is the same as the last run ,
231 % then increase the precision

212

232 % check for race condition or deadlock due to reduced
precision *** VERY IMPORTANT ***

233 % Add more conditions
234 if rho_run >= iterationTimeout && rhoConvgError(ai) <=

rhoPrecision *3 && rhoConvgError(ai) >= rhoPrecision
235 rho2Stepping(ai) = rho2Stepping(ai) - 0.5e -8; % should

prevent race condition
236 rho_run = 0; % should bypass the final case if it’s␣only␣

rho_run␣that␣meets␣the␣conditions
237 ␣␣␣␣␣␣ elseif␣rho_run␣>=␣iterationTimeout␣&&␣rhoConvgError(ai)␣>=␣-

rhoPrecision *3␣&&␣rhoConvgError(ai)␣<=␣rhoPrecision
238 ␣␣␣␣␣␣␣␣ rho2Stepping(ai)␣=␣rho2Stepping(ai)␣-␣0.5e -8;␣%␣should␣

prevent␣race␣condition
239 ␣␣␣␣␣␣␣␣ rho_run␣=␣0;
240 ␣␣␣␣␣␣ elseif␣rho_run␣>=␣iterationTimeout␣&&␣sign(rhoConvgError(ai))␣

>␣0␣%positive
241 ␣␣␣␣␣␣␣␣ rho2(ai)␣=␣rho2(ai)*0.5;␣%guess␣2x␣higher␣than␣initial␣guess
242 ␣␣␣␣␣␣␣␣ rho_run␣=␣0;
243 ␣␣␣␣␣␣ elseif␣rho_run␣>=␣iterationTimeout␣&&␣sign(rhoConvgError(ai))␣

==␣-1
244 ␣␣␣␣␣␣␣␣ rho2(ai)␣=␣rho2(ai)*2;␣%guess␣2x␣lower␣than␣init␣guess
245 ␣␣␣␣␣␣␣␣ rho_run␣=␣0;
246 ␣␣␣␣␣␣end
247 ␣␣
248 ␣␣␣␣␣␣ rho_run=rho_run +1;
249 ␣␣␣␣␣␣ rhoConvgError_old(ai)␣=␣rhoConvgError(ai);
250 ␣␣␣␣␣␣ p2(ai)␣=␣P1(ai)+rho1_avg(ai).*u1(ai +1).^2.*(1 -(rho1_avg(ai)

./rho2(ai)));␣%␣recalc␣if␣not␣good
251 ␣␣␣␣␣␣ h2(ai)␣=␣h1+(u1(ai +1).^2/2).*(1 -(rho1_avg(ai)./rho2(ai)).^2)

/1000;␣%␣recalc␣if␣not␣good
252 ␣␣␣␣end
253 ␣␣␣␣ fprintf(’%i times to convergence for %i km.’,iterationTotalAi ,

kmMOLA(ai));
254 ␣␣␣␣ atomicDiaAvg␣=␣((CO2(ai).*diaCO2)/100+(N2(ai).*diaN2)/100+(Ar(ai

).*diaAr)/100+(O2(ai).*diaO2)/100+(CO(ai).*diaCO)/100);
255 ␣␣␣␣ Kn(ai)␣=␣(boltzmann*T1(ai))/(sqrt(2).*pi.*atomicDiaAvg. ^2.*p2(ai

).*L);
256 ␣␣␣␣ u2(ai)␣=␣(rho1_avg(ai).*u1(ai))/cearun2.output.density;
257 ␣␣␣␣ m2(ai)␣=␣u2(ai)./cearun2.output.sonvel;
258 ␣␣␣␣ a1(ai)␣=␣sqrt(gammaMarsStatic. *277.*T1(ai));
259 ␣␣␣␣ Minf(ai)␣=␣u1(ai +1) ./a1(ai);
260 ␣␣␣␣ gammaMars␣=␣cearun2.output.gamma;
261 ␣␣␣␣ p02_p1(ai)␣=␣((1+(gammaMars -1)/2.*m2(ai).^2).^

(gammaMars/(gammaMars -1))).*((1 -gammaMars +2.*gammaMars.*Minf(ai).
^2) /(gammaMars +1));

262 ␣␣␣␣ Cp_max_aero(ai)␣=␣(2./(gammaMarsStatic.*Minf(ai).^2)).*

213

((p02_p1(ai)) -1);
263 ␣␣␣␣if␣Kn␣>=␣1␣%␣Knudsen␣number␣greater␣than␣1␣indicates␣you␣can’t

use
264 % aerodynamic equations anymore
265 % rarified gas dynamics in here
266 % not necessary because Kn << 1
267 else
268 % again , be mindful of order of operations. There are initial
269 % conditions specified in the header of the code
270 cp_lsi = 0;
271 for p=1:size(capsule_2d ,2) -1 % for every panel of the capsule ,
272 LSI_y = capsule_2d(2 ,p+1)-capsule_2d(2 ,p); %slope
273 LSI_x = capsule_2d(1 ,p+1)-capsule_2d(1 ,p); %slope
274 if LSI_y <= 0 && LSI_x <= 0
275 %fprintf("Ignored␣shadowed␣upper␣surface␣above␣Mach␣8...\n

");
276 elseif LSI_y <= 0 && LSI_x >= 0
277 %fprintf("Ignored␣shadowed␣lower␣surface␣above␣Mach␣8...\n

");
278 else
279 cp_lsi_cat = Cp_max_aero(ai).*sind(atand((LSI_y)/(LSI_x)))

.^2;
280 if cp_lsi_cat ~= 0 %#ok<BDSCI >
281 cp_lsi = [cp_lsi;cp_lsi_cat]; %#ok <AGROW >
282 end
283 end
284 end
285 coeffPressureUpper(ai) = sum(cp_lsi(1:size(cp_lsi ,1)/2))

/(size(cp_lsi ,1)/2);
286 coeffPressureLower(ai) = sum(cp_lsi((size(cp_lsi ,1)/2)+1:

size(cp_lsi ,1)))/(size(cp_lsi ,1)/2); %+1 because it is even
287 decelDragForce(ai) = 0.5*rho1_avg(ai)*u1(ai +1).^2*

coeffPressureUpper(ai)*((pi *23^2) /2);
288 dragAcc(ai) = decelDragForce(ai)/vehicleMass;
289 dragAcc_x(ai) = dragAcc(ai)*cosd(flightPathAngle(ai +1));
290 dragAcc_y(ai) = dragAcc(ai)*sind(flightPathAngle(ai +1));
291 u1_x(ai) = sqrt(u1_x(ai +1).^2+2.*((dragAcc_x(ai)).*

cosd(flightPathAngle(ai +1))).*((deltaVerticalDist.*sind(90 -
flightPathAngle(ai +1)))./sind(flightPathAngle(ai +1))));

292 u1_y(ai) = -sqrt(u1_y(ai +1).^2+2.*((marsGrav+dragAcc_y(ai)).*
deltaVerticalDist));

293 u1(ai) = sqrt(u1_x(ai).^2+ u1_y(ai).^2);
294 flightPathAngle(ai) = atand(u1_y(ai)/u1_x(ai));
295 end
296 % save all data into a matrix for graphing:
297 % (insert everything here)

214

298
299 if Minf(ai) <= 8
300 fprintf("Execution␣complete");
301 break;
302 end
303 end
304

215

2. RF Gateway I&T Unit

1 # include <Arduino.h >
2 # include <ArduinoJson.h >
3 # include <WiFiUdp.h >
4 # include <RH_RF95.h >
5 # include <RH_RF69.h >
6 # include <WiFi101.h >
7 # include <Adafruit_SleepyDog.h >
8 # include <RTClib.h >
9 # include <PriUint64.h >

10 # include <Adafruit_DotStar.h >
11
12 // RFM95
13 # define RFM95_CS A2
14 # define RFM95_INT 9u
15 # define RFM95_RST 7u
16 # define RFM69_CS A4
17 # define RFM69_INT 11u
18 # define RFM69_RST 13u
19 # define DEFAULT_FREQ 922.0 // MHZ
20 RH_RF95 r(RFM95_CS , RFM95_INT);
21 // RH_RF69 cmd(RFM69_CS , RFM69_INT);
22
23 RTC_Millis rtc;
24 uint32_t timeUnix = 0;
25 String snd= "";
26
27 // WiFi credentials for known networks :
28 // (reside in flash memory only):
29 # define NUM_SSID_ENTRIES 6
30 const char *ssidlist[NUM_SSID_ENTRIES] = {
31 "REDACTED", "REDACTED", "REDACTED", "REDACTED", "REDACTED", "

REDACTED"
32 };
33
34 const char *passlist[NUM_SSID_ENTRIES] = {
35 "REDACTED","REDACTED","REDACTED","REDACTED","NONE","NONE"
36 };
37
38 // two SSIDs in case the first one doesn ’t work for latency ’s sake
39 const char *ssid3 = "REDACTED";
40 const char *ssid2 = "REDACTED";
41 const char *pass2 = "REDACTED";

216

42 const char *ssid1 = "REDACTED";
43 const char *pass1 = "REDACTED";
44
45 int netsRange = 0;
46
47 # define NUMPIXELS 1
48 # define DATAPIN 8u
49 # define CLOCKPIN 6u
50 Adafruit_DotStar strip(NUMPIXELS , DATAPIN , CLOCKPIN , DOTSTAR_BGR);
51
52 // //
53 // wifi:
54 # define ATWIFI_SS A5
55 # define ATWIFI_ACK 12u
56 # define ATWIFI_RST 5u
57 # define ATWIFI_EN 2u
58 int status = WL_IDLE_STATUS;
59 WiFiSSLClient client; // internet
60 WiFiUDP udp; //HTTP -only
61
62 // FOR HIDDEN SSIDs: BSSID REQUIRED
63 uint8_t bssid_1[6] = {REDACTED , REDACTED , REDACTED , REDACTED ,

REDACTED , REDACTED }; // Asus router
64
65 # define NTP_PACKET_SIZE 48
66 uint8_t netNTPpacketBuffer[48];
67
68 uint16_t localPort = 2390; // NTP server
69 # define UTCMINUS7 28800// +3600 //seconds
70 // THE FOLLOWING KEYS/ADDRESSES ARE PRIVATE - DO NOT LET ANYONE ELSE

USE THEM.
71 /*
72 * Discord private keys are redacted for publication.
73 */
74
75 // end wifi:
76 // //
77
78
79 /*
80 * 64- bit microsecond timer. Number will roll over after 213 million

days.
81 * Best if run on a CPU that can handle sub - microsecond precision ,

such as
82 * a Cortex M4 , M7 , or A- series.
83 * MUST CALL TWICE EVERY 71.6 MINUTES TO WORK.

217

84 */
85 uint64_t micros64(void) {
86 static uint32_t low32 , high32;
87 uint32_t new_low32 = micros();
88 if(new_low32 < low32)high32 ++;
89 low32 = new_low32;
90 return (uint64_t)high32 << 32 | low32;
91 }
92
93 // Convenience function : microseconds after boot time:
94 // Dependancy : Serial must be enabled before using.
95 // Takes a few uS to execute.
96 void SPTime(String msg) {
97 Serial.print("[");
98 Serial.print(PriUint64 <DEC >(micros64()));
99 Serial.print("]␣");

100 Serial.print(msg);
101 }
102
103 // Same function as above but prints newline :
104 void SPLTime(String msg) {
105 Serial.print("[");
106 Serial.print(PriUint64 <DEC >(micros64()));
107 Serial.print("]␣");
108 Serial.println(msg);
109 }
110
111 //

///

112 // serial forwarder - RFM 69W
//

113 // PID: XX
//

114 //
///

115 // void sfr69(String str) {
116 // cmd.send((uint8_t *) str.c_str(),strlen(str.c_str()));
117 //}
118
119 //

///

120 // iso8610 format - discord
//

218

121 // PID: 22
//

122 //
///

123 // Take an RTC and output the current time as an ISO 8610 String :
124 String rtcd_iso8610(DateTime &nowf , bool trailingComma = true ,\
125 bool startup = false) {
126 // if(startup == false) m.lastProcessIDActive = 0x22;
127 String iso8610 = "";
128 iso8610 += nowf.year() + (String)"-";
129 if(nowf.month() < 10) iso8610 += (String)"0";
130 iso8610 += nowf.month() + (String)"-";
131 if(nowf.day() < 10) iso8610 += (String)"0";
132 iso8610 += nowf.day() + (String)"T";
133 if(nowf.hour() < 10) iso8610 += (String)"0";
134 iso8610 += nowf.hour() + (String)".";
135 if(nowf.minute() < 10) iso8610 += (String)"0";
136 iso8610 += nowf.minute() + (String)".";
137 if(nowf.second() < 10) iso8610 += (String)"0";
138 iso8610 += nowf.second();
139 if(trailingComma) iso8610 += ",";
140 return iso8610;
141 }
142
143 //

///

144 // restart CPU
//

145 // PID: FF
//

146 //
///

147 // Writes a 1 to the SYSRESETREQ register to restart the CPU.
148 void restart(void) {
149 // m.lastProcessIDActive = 0xFF;
150 // SYNCFRAM ;
151 __asm volatile ("cpsid␣i" ::: "memory"); // disable interrupt

reporting
152 __asm volatile ("dsb␣0xF":::"memory"); // commit
153 SCB ->AIRCR = ((0x5FAUL << SCB_AIRCR_VECTKEY_Pos)\
154 | SCB_AIRCR_SYSRESETREQ_Msk); // write to system control block to

reset
155 __asm volatile ("dsb␣0xF":::"memory");

219

156 for(;;) __asm volatile("nop");
157 }
158
159 // Stratum 1 NIST.GOV. I hope the USG doesn ’t mind that I’m spamming

their server.
160 IPAddress timeServer(129 , 6, 15, 28);
161 // ntp packet
162 // Sends an NTP packet to request the time. Use this provision when

there is internet.
163 // Attempt to connect to internet for 1 minute before running this
164 //if unable to make connection , revert to GPS - derived time.
165 unsigned long sendNTPpacket(IPAddress &address) {
166 // fbuf.print("1"); FFPUSH ;
167 // set all bytes in the buffer to 0
168 memset(netNTPpacketBuffer , 0, NTP_PACKET_SIZE);
169 // Initialize values needed to form NTP request
170 netNTPpacketBuffer[0] = 0b11100011; // LI , Version , Mode
171 netNTPpacketBuffer[1] = 0; // Stratum , or type of clock
172 netNTPpacketBuffer[2] = 6; // Polling Interval
173 netNTPpacketBuffer[3] = 0xEC; // Peer Clock Precision
174 // 8 bytes of zero for Root Delay & Root Dispersion
175 netNTPpacketBuffer[12] = 49;
176 netNTPpacketBuffer[13] = 0x4E;
177 netNTPpacketBuffer[14] = 49;
178 netNTPpacketBuffer[15] = 52;
179 Serial.println(F("writing␣pKT"));
180 // all NTP fields have been given values , now
181 // you can send a packet requesting a timestamp :
182 udp.beginPacket(address , 123); // NTP requests are to port 123
183 udp.write(netNTPpacketBuffer , NTP_PACKET_SIZE);
184 int tst = udp.endPacket();
185 Serial.println(tst);
186 Serial.println(F("sent␣packet␣to␣time␣server"));
187 return 0;
188 }
189
190 uint32_t inputTimeNIST(void) {
191 udp.begin(localPort);
192 int count = 0;
193 while(true) {
194 Watchdog.reset();
195 Serial.println(F("loopp"));
196 sendNTPpacket(timeServer);
197 // wait for packet
198 delay(1000);
199 Serial.println(F("Waiting␣for␣pkt"));

220

200 if(udp.parsePacket()) {
201 Serial.println(F("Success"));
202 udp.read(netNTPpacketBuffer , NTP_PACKET_SIZE);
203 uint32_t sSince1900 = netNTPpacketBuffer[40] << 24 |

netNTPpacketBuffer[41] << 16 \
204 | netNTPpacketBuffer[42] << 8 |

netNTPpacketBuffer[43];
205 // uint32_t sSince1900 = highWord << 16 | lowWord ;
206 Serial.println(sSince1900 ,BIN);
207 // convert to unix time:
208 const uint32_t unixepoch = 2208988800 UL;
209 uint32_t unixtime = sSince1900 - unixepoch - UTCMINUS7;
210 return unixtime;
211 }
212 Watchdog.reset();
213 Serial.println(F("reached␣this␣p[oint"));
214 delay(9000);
215 count ++;
216 if(count > 3) restart();
217 }
218 }
219
220
221 //

///

222 // iso8610 format
//

223 // PID: 22
//

224 //
///

225 // Take an RTC and output the current time as an ISO 8610 String :
226 String rtc_iso8610(RTC_Millis &rtcf , bool trailingComma = true ,\
227 bool startup = false) {
228 // if(startup == true) m.lastProcessIDActive = 0x22;
229 // SYNCFRAM ;
230 DateTime nowf = rtcf.now();
231 String iso8610 = "";
232 iso8610 += nowf.year() + (String)"-";
233 if(nowf.month() < 10) iso8610 += (String)"0";
234 iso8610 += nowf.month() + (String)"-";
235 if(nowf.day() < 10) iso8610 += (String)"0";
236 iso8610 += nowf.day() + (String)"T";
237 if(nowf.hour() < 10) iso8610 += (String)"0";

221

238 iso8610 += nowf.hour() + (String)":";
239 if(nowf.minute() < 10) iso8610 += (String)"0";
240 iso8610 += nowf.minute() + (String)":";
241 if(nowf.second() < 10) iso8610 += (String)"0";
242 iso8610 += nowf.second();
243 if(trailingComma) iso8610 += ",";
244 return iso8610;
245 }
246
247 // send csv function , general for gateway.
248 /*!
249 * @brief Send CSV string to Discord. General function for
250 * both gateway and node. Retry not implemented in this function to

allow developer
251 * flexibility for retry strategies.
252 * @param token
253 * Set URL for webhook token , HTTP 1.3 format
254 * @param content
255 * Content string - the text. Already formatted for monospaced text.
256 * Pointer to ADDRESS of existing content string to save RAM.
257 * @param nodeName
258 * Name of node for username. Optional.
259 * @param imageUrl
260 * URL to profile picture of current message of bot. Optional.
261 * @param msp
262 * Whether to enclose in monospaced form or not.
263 * @return Returns true on success , false on failure to send.
264 */
265 bool sendDiscordCSV(String token , String content , String nodeName ,

String imageUrl , bool msp) {
266 Watchdog.reset();
267 // sfr69(" HEARTBEAT LOSS "); //this message will be shown if it

fails.
268 StaticJsonDocument <4096 > NODE; // allocate to stack. ONLY ON CORTEX

M4 , M7 , OR R5 OR BETTER.
269 // delay(1500); //delay so Cloudflare doesn ’t reject our messages
270 SPLTime("[DBG]␣Allocated␣JSON␣doc");
271 NODE["username"] = nodeName;
272 NODE["avatar_url"] = imageUrl;
273 if(msp) { NODE["content"] = "‘‘" + content + "‘‘"; }
274 else { NODE["content"] = content; }
275 // JsonArray embeds1 = NODE.createNestedArray(" embeds ");
276 // JsonObject embed_def1 = embeds1.createNestedObject();
277 // embed_def1[" description "] = " Courtyard readings - " + a4;
278 RETR:
279 Watchdog.reset();

222

280 if(client.connect("discord.com", 443)) {
281 // WiFi.setLEDs(64 ,255 ,255);
282 // Send HTTP header to Discord :
283 // HTTP header is extremely particular about order of flags , and

Discord is very particular about using HTTP 1.3
284 client.println("POST␣" + token + "␣HTTP/1.1");
285 client.println("Host:␣discord.com");
286 client.println("Accept:␣*/*");
287 client.println("Content -Type:␣application/json");
288 client.print("Content -Length:␣");
289 // compute length of minified JSON:
290 client.println(measureJson(NODE));
291 client.print("\r\n"); // terminate HEADER by sending a newline
292 // Now send JSON header to Discord :
293 serializeJson(NODE , client); // This sends without any additional

RAM
294 // free((void *) NODE);
295 // timeout implementation - 1 second timeout.
296 uint32_t timeout = millis();
297 uint32_t t_timeout = 1500;
298 // WiFi.setLEDs(64 ,0 ,255);
299 // Edit 17 October 2022:
300 // Dynamic retry needed. Cloudflare is extremely strict with ANY

missing/malformed packets.
301 // Analyze the output of this function by outputting the entire

CF response :
302 // wait for response from server :
303 Watchdog.reset();
304 while(!client.available() && (millis() < (timeout + t_timeout)))

;
305 /*
306 * There were two reasons a TX failed frequently :
307 * 1. Low power mode called and a call to shut off LPM never

existed after initialization.
308 * This resulted in the radio misbehaving frequently and/or

needing to be really REALLY
309 * close to an AP.
310 * 2. On busy networks , the radio might transmit on an

overlapping frame (radio is very
311 * slow over SPI) with another client and the AP will throw

that frame away and tell
312 * the legitimate client to retransmit. My radio is dumb and

won ’t recognize that
313 * command. So the easiest solution will simply be to retry

til I get a frame from
314 * Cloudflare (specifically an HTTP 1 .1/204 No Content).

223

315 */
316 //if we time out retry TX:
317
318 if(client.available()) {
319 timeout = millis();
320 while(client.available() && (millis() < (timeout + t_timeout))

) {
321
322 char c = client.read();
323 Serial.print(c);
324 }
325 }
326 else goto RETR;
327 client.stop();
328 // sfr69(" Discord TX ’d"); //this message will be shown if it

fails.
329 return true;
330 // if(millis() > timeout + t_timeout) return false ;
331 } return false;
332 }
333
334 // Agent to control WiFi coprocessor , including CONNECTION AT BOOT.
335 // Major update May 4: loss of STA reassociation and no known

networks found
336 // handler.
337 uint64_t wifi_delegate(int w_stat) {
338 #define CONN_TIMEOUT 30000 // msec
339
340 Watchdog.reset();
341 WiFi.noLowPowerMode();
342 bool poll_requested = false;
343 uint8_t netsReturned = 0;
344 // Basic state check : are we connected to a STA?
345 if(w_stat != WL_CONNECTED) {
346 // Figure out what state we’re in and act upon it to return to

WL_CONNECTED
347 // Worst case:
348 if(w_stat == WL_NO_SHIELD) {
349 SPTime(F("[wifi_delegate]␣CRITICAL:␣TOTAL␣LOSS␣OF␣WIFI␣

COPROCESSOR."));
350 Serial.println(F("␣UNABLE␣TO␣TRANSFER␣ANY␣DATA ,␣PERIOD."));
351 return micros64();
352 }
353 //we ’ve probably just restarted , so proceed with SSID search
354 else {
355 connect: // GOTO used as alias only within this function as a

224

lazy way to
356 // transfer control.
357 Watchdog.disable();
358 // Reenable for a longer time to allow for scanning :
359 Watchdog.enable(32000);
360 SPLTime(F("[wifi_delegate]␣Starting␣WiFi␣SSID␣search..."));
361 netsReturned = WiFi.scanNetworks();
362 netsRange = netsReturned;
363 Watchdog.enable(16000);
364 SPLTime(F("[Watchdog]␣NOTICE:␣Watchdog␣enabled ,␣16s␣timeout"))

;
365 SPTime(F("[wifi_delegate]␣Returned␣"));
366 Serial.print(netsReturned);
367 Serial.println(F("␣networks␣in␣range."));
368 if(WiFi.status() == WL_NO_SSID_AVAIL) {
369 SPTime(F("[wifi_delegate]␣Warning:␣No␣SSIDs␣found.␣Reducing␣

sensor"));
370 Serial.println(F("␣polling␣rate␣until␣SSIDs␣are␣in␣range."))

;
371 // actually follow up on this later
372 return micros64();
373 }
374 for(int thisNet = 0; thisNet < netsReturned; thisNet ++) {
375 const char * tmp_ssid = WiFi.SSID(thisNet);
376 uint8_t tmp_bssid[6];
377 // look up if this entry is in our table :
378 for(int i=0;i<NUM_SSID_ENTRIES;i++) {
379 // INCLUDE BSSID LOOKUP , this will be really long if

statement :
380 uint8_t *tmp_bssid_actual = {WiFi.BSSID(thisNet , tmp_bssid

)};
381 // printMacAddress(tmp_bssid_actual);
382 if(strcmp((const char *) ssidlist[i] ,(const char *) tmp_ssid

) == 0 || (\
383 tmp_bssid_actual[0] == bssid_1[0] && \
384 tmp_bssid_actual[1] == bssid_1[1] && \
385 tmp_bssid_actual[2] == bssid_1[2] && \
386 tmp_bssid_actual[3] == bssid_1[3] && \
387 tmp_bssid_actual[4] == bssid_1[4] && \
388 tmp_bssid_actual[5] == bssid_1[5])) {
389 //we ’re done searching - attempt connection and return.
390 SPTime(F("[wifi_delegate]␣Attempting␣to␣connect␣to␣"));
391 Serial.println(ssidlist[i]);
392 // decide if we ’re open or WPA/WPA2 :
393 Watchdog.disable();
394 SPLTime(F("[watchdog]␣NOTICE:␣Watchdog␣disabled"));

225

395 uint32_t tot = millis();
396 if(strcmp(passlist[i] ,"NONE") == 0) {
397 while(WiFi.status() != WL_CONNECTED && (millis() < tot

+ CONN_TIMEOUT)) {
398 WiFi.begin(ssidlist[i]);
399 delay(6000);
400 }
401 Watchdog.enable(16000);
402 SPLTime(F("[Watchdog]␣NOTICE:␣Watchdog␣enabled ,␣16s␣

timeout"));
403 if(WiFi.status() == WL_CONNECTED) {
404 SPLTime(F("[wifi_delegate]␣Connected"));
405 // WiFi.setLEDs(64 ,0 ,255);
406 return micros64();
407 } else goto failw;
408 }
409 else {
410 while(WiFi.status() != WL_CONNECTED && (millis() < tot

+ CONN_TIMEOUT)) {
411 WiFi.begin(ssidlist[i] ,passlist[i]);
412 delay(6000);
413 }
414 Watchdog.enable(16000);
415 SPLTime(F("[Watchdog]␣NOTICE:␣Watchdog␣enabled ,␣16s␣

timeout"));
416 if(WiFi.status() == WL_CONNECTED) {
417 SPLTime(F("[wifi_delegate]␣Connected"));
418 // WiFi.setLEDs(64 ,0 ,255);
419 // w.RES_CONNECTED_TO_WIFI = true;
420 // SYNCFRAM ;
421 return micros64();
422 }
423 }
424 failw:
425 if(WiFi.status() == WL_CONNECT_FAILED || WiFi.status()

== WL_CONNECTION_LOST) {
426 SPLTime(F("[wifi_delegate]␣Failed␣to␣connect.␣Retrying

␣in␣1␣minute."));
427 // w.RES_CONNECTED_TO_WIFI = false ;
428 // WiFi.setLEDs(0 ,0 ,0);
429 }
430 return micros64();
431 }
432 }
433 //if we get this far we have a hidden network :
434 if(netsReturned > 0) {

226

435 SPLTime(F("[wifi_delegate]␣Failed␣to␣find␣network␣in␣list␣
but␣networks␣available.␣Trying␣hidden␣network␣DB:"));

436 Watchdog.disable();
437 SPLTime(F("[watchdog]␣NOTICE:␣Watchdog␣disabled"));
438 uint32_t tot = millis();
439 while(WiFi.status() != WL_CONNECTED && (millis() < tot +

CONN_TIMEOUT)) {
440 WiFi.begin(ssid1 ,pass1);
441 delay(6000);
442 }
443 Watchdog.enable(16000);
444 SPLTime(F("[watchdog]␣NOTICE:␣Watchdog␣enabled ,␣16s␣

timeout"));
445 if(WiFi.status() == WL_CONNECTED) {
446 SPLTime(F("[wifi_delegate]␣Connected␣to␣Orion."));
447 // WiFi.setLEDs(64 ,0 ,255);
448 // w.RES_CONNECTED_TO_WIFI = true;
449 return micros64();
450 }
451 }
452 else {
453 SPLTime(F("No␣networks␣in␣range.␣Sleeping␣processes␣for␣5␣

minutes."));
454 WiFi.lowPowerMode();
455 delay(300000);
456 }
457 }
458 }
459 }
460 //IN CASE MY PROGRAMMING IS A PIECE OF SHIT:
461 // w.RES_CONNECTED_TO_WIFI = true;
462 return micros64();
463 }
464
465
466 void setup() {
467 Serial.begin(11000000); // max speed USB
468 digitalWrite(LED_BUILTIN , LOW);
469 // while(! Serial);
470 strip.begin();
471 strip.show();
472
473 // Serial1 slave+ master mode. C&DH can command the board to go into

master mode
474 Serial1.begin(115200);
475

227

476 // NEW AND PROVISIONAL : WAIT FOR "AT" COMMAND. DO NOT PROCEED UNTIL
THIS HANDSHAKE

477 // HAS BEEN ACCOMPLISHED.
478 // MUST HAVE 4-WAY HANDSHAKE.
479 while(true) {
480 if(Serial1.available()) {
481 String str = Serial1.readStringUntil(’*’);
482 if(str == "AT") {
483 Serial1.print("OK*");
484 break;
485 }
486 }
487 }
488
489 Watchdog.enable(60000);
490 SPLTime(F("Watchdog␣started"));
491
492 // set to handshake or long - range mode settings :
493 // Handshake : 10 bps
494 // Main data throughput : 200 bps
495 // RH_RF95 :: Bw125Cr48Sf4096
496
497
498 // turn on wifi radio
499 SPLTime(F("Starting␣WiFi..."));
500 digitalWrite(ATWIFI_EN , LOW);
501 delay(2000); // FULL RESET
502 digitalWrite(ATWIFI_EN , HIGH);
503 delay(100);
504 digitalWrite(ATWIFI_RST , HIGH);
505 // delay(100);
506 // digitalWrite(ATWIFI_RST , LOW);
507 delay(100);
508 WiFi.setPins(ATWIFI_SS ,ATWIFI_ACK ,ATWIFI_RST);
509
510 // RTC start.
511 // rtc.begin();
512 wifi_delegate(WiFi.status());
513
514 Serial.println(F("Asking␣for␣time..."));
515 // if(! rtc.initialized() || rtc.lostPower())

rtc.adjust(DateTime(inputTimeNIST()));
516 rtc.begin(DateTime(inputTimeNIST()));
517 status = WiFi.status();
518 if(status == WL_CONNECTED) {
519 SPTime(F("Sending␣beacons␣to␣Discord..."));

228

520 DateTime compileTime(F(__DATE__), F(__TIME__));
521 String se = "Boot␣OK.␣Firmware␣compiled␣";
522 se += rtcd_iso8610(compileTime ,false ,true);
523 se += ".␣Connected␣to␣";
524 se += String(WiFi.SSID());
525 se += ",␣RSSI␣";
526 se += String(WiFi.RSSI());
527 se += "␣dBm.␣";
528 se += String(netsRange);
529 se += "␣SSIDs␣in␣range.\n␣Firmware␣specifically␣for␣AE␣110␣labs.

";
530 sendDiscordCSV(CSV_RDA ,se,"Aerith␣7.0.1",AERITH_pfp ,false);
531 sendDiscordCSV(AE_RDA ,se ,"Aerith␣7.0.1",AERITH_pfp ,false);
532 }
533
534 Serial.println(F("success"));
535 // sfr69(String(timeUnix));
536
537 pinMode(RFM95_RST , OUTPUT);
538 digitalWrite(RFM95_RST , HIGH);
539 delay(100);
540 digitalWrite(RFM95_RST , LOW);
541 delay(10);
542 digitalWrite(RFM95_RST , HIGH);
543 delay(100);
544
545
546 if(!r.init()) {
547 Serial.println(F("Device␣not␣responding.␣HALT."));
548 String snd = "** Fatal **:␣LoRa␣radio␣hardware␣error.␣Disabling␣

watchdog␣to␣permanently␣halt␣until␣POR.";
549 sendDiscordCSV(CSV_RDA ,snd ,"Aerith␣7.0.1",AERITH_pfp ,false);
550 Watchdog.disable();
551 sendDiscordCSV(CSV_RDA ,"Watchdog␣disabled","Aerith␣7.0.1",

AERITH_pfp ,false);
552 sendDiscordCSV(CSV_RDA ,"Halt.","Aerith␣7.0.1",AERITH_pfp ,false);
553 while(1);
554 }
555 if(!r.setFrequency(DEFAULT_FREQ)) {
556 }
557 snd = "LoRa␣started.␣Center␣frequency:␣";
558 snd += (String)DEFAULT_FREQ;
559 snd += "␣MHz.";
560 // sendDiscordCSV(CSV_RDA ,snd ," Aerith 7.0.1",AERITH_pfp ,false);
561 r.setModemConfig(RH_RF95 :: Bw31_25Cr48Sf4096);
562 r.setTxPower(20 ,false);

229

563 // r.setLowDatarate();
564
565
566 sendDiscordCSV(CSV_RDA ,String("RTC␣started␣from␣TIME.NIST.GOV.␣

Time:␣" + rtc_iso8610(rtc ,true ,false)),"Aerith␣7.0.1",AERITH_pfp ,
false);

567 sendDiscordCSV(CSV_RDA ,"Init␣complete.","Aerith␣7.0.1",AERITH_pfp ,
false);

568
569 // need to tell C&DH we’re ready:
570 Serial1.print(F("READY"));
571
572 delay(2000);
573 // initialize Aerith C&DH:
574 strip.setPixelColor(0 ,0 x00FF4000); // visual hold
575 strip.show();
576 while(true) {
577 if(Serial1.available()) {
578 String str = Serial1.readStringUntil(’*’);
579 if(str == "AT+REQTM") {
580 DateTime now = rtc.now();
581 Serial1.write((uint8_t *)&now , sizeof(now));
582 delay(3); // arbitrary delay
583 break;
584 }
585 }
586 }
587 strip.setPixelColor(0 ,0 x0000FF00);
588 strip.show();
589 sendDiscordCSV(CSV_RDA ,"Aerith␣C&DH␣RTC␣initialized␣from␣RF␣board.

","Aerith␣7.0.1",INGENUITY_pfp ,false);
590 Watchdog.enable(160000);
591 sendDiscordCSV(CSV_RDA ,"Watchdog␣enabled.","Aerith␣7.0.1",

AERITH_pfp ,false);
592 delay(2000);
593 // execute only once !!!!!!!!!!!!!
594 // sendDiscordCSV(TEAM1_WH ," test "," Aerith 7.0.1", AERITH_pfp ,false);
595 // sendDiscordCSV(TEAM2_WH ," test "," Aerith 7.0.1", AERITH_pfp ,false);
596 // sendDiscordCSV(TEAM3_WH ," test "," Aerith 7.0.1", AERITH_pfp ,false);
597 // sendDiscordCSV(TEAM4_WH ," test "," Aerith 7.0.1", AERITH_pfp ,false);
598 // sendDiscordCSV(TEAM5_WH ," test "," Aerith 7.0.1", AERITH_pfp ,false);
599 }
600
601
602 // Transmits data on RF board ’s terms. Can be dangerous if the master

board is not designed to handle such situations

230

603 bool altMasterEnabled = false; //AT+ ALTMI - on , AT+ ALTMO - off
604
605 int pkrxd[5] = {0,0,0,0,0};
606 String pkrxd_a = "";
607
608
609 void loop() {
610 Watchdog.reset();
611 //no handshake for commands , only for time
612 if(Serial1.available()) {
613 String str = Serial1.readStringUntil(’*’);
614 // crude switch statement for multicharacter commands :
615 if(str == "AT+ALTMI") {
616 altMasterEnabled = true;
617 sendDiscordCSV(CSV_RDA ,"RFB␣Alt␣master␣mode␣enabled.","Aerith␣

7.0.1",AERITH_pfp ,false);
618 }
619 else if(str == "AT+ALTMO") {
620 altMasterEnabled = false;
621 sendDiscordCSV(CSV_RDA ,"RFB␣Alt␣master␣mode␣disabled.","Aerith

␣7.0.1",AERITH_pfp ,false);
622 }
623 else if(str == "AT+DISUL") {
624 Serial1.print("OK*");
625 while(true) {if(Serial1.available()) break;}
626 String tmpp = Serial1.readStringUntil(’*’);
627 sendDiscordCSV(E236_RDA ,tmpp ,"Aerith␣II",AERITH_pfp ,false);
628 }
629 else {
630 while(Serial1.available()); // flush , could be dangerous

without a watchdog
631 }
632 }
633 if(r.available()) {
634 strip.setBrightness(255);
635 strip.setPixelColor(0 ,0 x00FFFFFF);
636 strip.show();
637 digitalWrite(LED_BUILTIN , HIGH);
638 uint8_t buf[RH_RF95_MAX_MESSAGE_LEN];
639 // dynamically allocated data , the string (not String) must be

null - terminated.
640 memset(buf ,’\000’,sizeof(buf));
641 uint8_t len = 64;
642 if(r.recv((uint8_t *)&buf ,&len)) {
643
644 uint8_t hdr = r.headerFrom();

231

645 // memset((void *)buf , ’\000’ , sizeof(buf)); // <-- this line
screwed it all up , not supposed to be here

646 int rssi ,snr ,from ,ferr; rssi = 0; snr = 0; from = 0; ferr = 0;
647 rssi = r.lastRssi(); snr = r.lastSNR(); ferr =

r.frequencyError();
648 String ds = rtc_iso8610(rtc , true ,false);
649 ds += String(from , HEX); ds += ",";
650 ds += String(rssi , DEC); ds += ",";
651 ds += String(snr , DEC); ds += ",";
652 ds += String(ferr , DEC); ds += ",";
653 ds += String(len , DEC); ds += ",";
654 // peek the data in buf in byte form:
655 for(int i=0;i<sizeof(buf);i++) {
656 if(buf[i] < 0x100) Serial1.print("0");
657 Serial1.print(buf[i] ,HEX);
658 Serial1.print("␣");
659 }
660 ds += String((char *)buf);
661 if(hdr == 0x90) {
662 pkrxd[0] += 1;
663 sendDiscordCSV(TEAM1_WH ,ds,"Aerith␣7.0.1",AERITH_pfp ,false);
664 }
665 else if(hdr == 0xA6) {
666 pkrxd[1] += 1;
667 sendDiscordCSV(TEAM2_WH ,ds,"Aerith␣7.0.1",AERITH_pfp ,false);
668 }
669 else if(hdr == 0xB1) {
670 pkrxd[2] += 1;
671 sendDiscordCSV(TEAM3_WH ,ds,"Aerith␣7.0.1",AERITH_pfp ,false);
672 }
673 else if(hdr == 0xC4) {
674 pkrxd[3] += 1;
675 sendDiscordCSV(TEAM4_WH ,ds,"Aerith␣7.0.1",AERITH_pfp ,false);
676 }
677 else if(hdr == 0xFC) {
678 pkrxd[4] += 1;
679 sendDiscordCSV(TEAM5_WH ,ds,"Aerith␣7.0.1",AERITH_pfp ,false);
680 }
681 else if(hdr == 0xAE) {
682 //in order to get proper null termination , set the buf to

NULL
683 memset((void *)buf ,’\000’,sizeof(buf));
684 RH_RF95 :: printBuffer("Received:␣",buf ,len);
685 // Serial.println((char *) buf);
686
687 // AE110 specific code:

232

688 // Parsing the stupid buffer.
689
690 // also send over serial to aerith if in master mode
691 if(altMasterEnabled) {
692 Serial1.print(ds);
693 }
694
695 // sendDiscordCSV(AE_RDA ,ds ," Aerith VII",AERITH_pfp ,true);
696 // cmd.send((uint8_t *)buf , RH_RF69_MAX_MESSAGE_LEN);
697 ds = "";
698 // send handshake :
699 r.send((uint8_t *)"OK" ,3);
700 r.waitPacketSent(); // important for super slow rates
701 digitalWrite(LED_BUILTIN , LOW);
702 } else {
703 digitalWrite(LED_BUILTIN , HIGH);
704 RH_RF95 :: printBuffer("Received:␣",buf ,len);
705 Serial.println((char *)buf);
706 int rssi ,snr ,from ,ferr; rssi = 0; snr = 0; from = 0; ferr =

0;
707 rssi = r.lastRssi();
708 snr = r.lastSNR();
709 ferr = r.frequencyError();
710 Serial.print(F("RSSI:␣"));
711 Serial.println(rssi ,DEC);
712 Serial.print(F("SNR:␣"));
713 Serial.println(snr , DEC);
714 from = r.headerFrom();
715 Serial.print(F("From:␣"));
716 Serial.println(from , HEX);
717 String ds = rtc_iso8610(rtc , true ,false);
718 ds += String(from , HEX); ds += ",";
719 ds += String(rssi , DEC); ds += ",";
720 ds += String(snr , DEC); ds += ",";
721 ds += String(ferr , DEC); ds += ",";
722 ds += String((char *)buf);
723
724 sendDiscordCSV(TILT_RDA ,ds,"Aerith␣7.0.1",AERITH_pfp ,true);
725 // cmd.send((uint8_t *)buf , RH_RF69_MAX_MESSAGE_LEN);
726 ds = "";
727 // send handshake :
728 r.send((uint8_t *)"OK" ,3);
729 r.waitPacketSent(); // important for super slow rates
730 digitalWrite(LED_BUILTIN , LOW);
731 }
732 pkrxd_a = "0x90:␣" + (String)pkrxd[0] + (String)"," + "0xA6:␣"

233

+ (String)pkrxd[1] + (String)"," +"0xB1:␣" + (String)pkrxd[2] +
(String)"," + "0xC4:␣" + (String)pkrxd[3] + (String)"," + "0xFC:␣"
+ (String)pkrxd[4];

733 sendDiscordCSV(AE_RDA ,pkrxd_a ,"Aerith␣7.0.1",AERITH_pfp ,false)
;

734 }
735 digitalWrite(LED_BUILTIN , LOW);
736 strip.setBrightness(128);
737 strip.setPixelColor(0 ,0 x0000FF00);
738 strip.show();
739 }
740 }

234

3. Etro Thermocouple Test Code

1 /*
***80

2 * Etro Eval Board Microcode
3 * Extended Temperature Range Omnibus
4 * Universal multiplexed thermocouple amplifier
5 * Stanley Krzesniak
6 * Discord : @Nines #4444. Other methods of contact are unreliable ,

including
7 * by phone or (non - government) email. Please do not attempt to

call or email
8 * me unless for official business.
9 *

10 * version 1.0 -08 _2022
11 * 16 August 2022
12 *
13 * This work is mostly to support this as a USBSerial thermocouple

readout
14 * device , usable on any computer with a ** user interface **.
15 *
16 * No warranty is implied :
17 * this code is provided "as -is". I do not guarantee this microcode

to be
18 * bug -free , that it is portable across multiple architectures , or

that it will
19 * work for your application , wheter that be an IoT (Internet of

Things)
20 * project or a mainline spacecraft. The end user agrees that in

the case this
21 * microcode is used for mission -, safety -, or life support -

critical systems ,
22 * all damages as a result of any bugs , misuse , misimplementation ,

or gross
23 * negligence fall upon the party utilizing this code.
24 *///

//

25
26 #include <Arduino.h >
27 #include <Adafruit_I2CDevice.h >
28 #include <Adafruit_I2CRegister.h >
29 #include <Adafruit_MCP9601.h >

235

30
31 // convenience functions
32 #define FSP(x) Serial.print(F(x))
33 #define FSPL(x) Serial.println(F(x))
34
35 // BREN and BREN2 shall be switched at the same time
36 #define BREN 26
37 #define BREN2 27
38 #define A0SW 28 // addr0
39 #define A1SW 29 // addr1
40 #define MCP0ADDR 0x67
41 #define MCP1ADDR 0x60
42
43 Adafruit_MCP9601 mcp0;
44 Adafruit_MCP9601 mcp1;
45
46 void setup() {
47 Serial.begin(1000000);
48 while(!Serial);
49
50 // starting UI:
51 FSPL("

**
");

52 FSPL("**␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣Etro␣-␣Extended␣Temperature␣Range␣
Omnibus␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣**");

53 FSPL("**␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣Firmware␣1.0␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣**");

54 FSPL("**␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣Stanley␣M.␣Krzesniak␣␣␣␣␣␣␣␣␣␣␣
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣**");

55 FSPL("**␣␣␣␣␣␣␣␣␣␣␣San␣Jose␣State␣University␣/␣NASA␣Ames␣Research
␣Center␣␣␣␣␣␣␣␣␣␣␣␣**");

56 FSPL("
**
");

57 // flush serial buffer before beginning :
58 while(Serial.available()) Serial.read();
59 FSP("Press␣any␣key␣to␣start...");
60 while(true) {
61 if(Serial.available()) break;
62 }
63
64 // explicitly set pin modes
65 pinMode(BREN ,OUTPUT);
66 pinMode(BREN2 , OUTPUT);
67 pinMode(A0SW , OUTPUT);

236

68 pinMode(A1SW , OUTPUT);
69 digitalWrite(BREN , LOW);
70 digitalWrite(BREN2 , LOW);
71 digitalWrite(A0SW , LOW); // addr 0
72 digitalWrite(A1SW , LOW); // addr 1
73
74 // start chip0
75 FSP("Starting␣channel␣1-4␣thermocouple␣reader...");
76 if(!mcp1.begin(MCP1ADDR)) {
77 FSPL("ERROR");
78 FSPL("U5␣failed␣to␣initialize ,␣chip␣is␣damaged.");
79 digitalWrite(LED_BUILTIN , HIGH);
80 while(1);
81 } else {
82 FSPL("ok");
83 FSPL("Set␣thermocouple␣to␣type␣K");
84 mcp1.setThermocoupleType(MCP9600_TYPE_K);
85 FSPL("Set␣ADC␣resolution␣to␣14-bit");
86 mcp1.setADCresolution(MCP9600_ADCRESOLUTION_18);
87 FSPL("Set␣LPF␣decimation␣to␣3");
88 mcp1.setFilterCoefficient(3);
89 FSPL("Read␣circuit␣powered␣on");
90 mcp1.enable(true);
91 }
92 // check chip0 and multiplexers
93 int32_t tmpReading = 0;
94 FSPL("Checking␣ch␣1-4␣readings␣for␣faults...");
95 // channel 1
96 digitalWrite(BREN , HIGH); digitalWrite(A0SW , LOW);

digitalWrite(A1SW , LOW);
97 FSP("␣␣channel␣1.");
98 tmpReading = mcp1.readADC();
99 if(tmpReading < -5000 || tmpReading > 5000)

100 FSPL("Error:␣mux␣channel␣1␣or␣TCA␣0␣out␣of␣range.");
101 else FSPL("..ok");
102 // channel 2
103 digitalWrite(BREN , HIGH); digitalWrite(A0SW , LOW);

digitalWrite(A1SW , HIGH);
104 FSP("␣␣channel␣2.");
105 tmpReading = mcp1.readADC();
106 if(tmpReading < -5000 || tmpReading > 5000)
107 FSPL("Error:␣mux␣channel␣2␣or␣TCA␣1␣out␣of␣range.");
108 else FSPL("..ok");
109 // channel 3
110 digitalWrite(BREN , HIGH); digitalWrite(A0SW , HIGH);

digitalWrite(A1SW , HIGH);

237

111 FSP("␣␣channel␣3.");
112 tmpReading = mcp1.readADC();
113 if(tmpReading < -5000 || tmpReading > 5000)
114 FSPL("Error:␣mux␣channel␣3␣or␣TCA␣2␣out␣of␣range.");
115 else FSPL("..ok");
116 // channel 4
117 digitalWrite(BREN , HIGH); digitalWrite(A0SW , HIGH);

digitalWrite(A1SW , LOW);
118 FSP("␣␣channel␣4.");
119 tmpReading = mcp1.readADC();
120 if(tmpReading < -5000 || tmpReading > 5000)
121 FSPL("Error:␣mux␣channel␣4␣or␣TCA␣3␣out␣of␣range.");
122 else FSPL("..ok");
123 digitalWrite(BREN , LOW); // turn reader1 off
124
125
126 // start chip1
127 FSP("Starting␣channel␣5-8␣thermocouple␣reader...");
128 if(!mcp0.begin(MCP1ADDR)) {
129 FSPL("ERROR");
130 FSPL("U6␣failed␣to␣initialize ,␣chip␣is␣damaged.");
131 digitalWrite(LED_BUILTIN , HIGH);
132 while(1);
133 } else {
134 FSPL("ok");
135 FSPL("Set␣thermocouple␣to␣type␣K");
136 mcp0.setThermocoupleType(MCP9600_TYPE_K);
137 FSPL("Set␣ADC␣resolution␣to␣14-bit");
138 mcp0.setADCresolution(MCP9600_ADCRESOLUTION_18);
139 FSPL("Set␣LPF␣decimation␣to␣3");
140 mcp0.setFilterCoefficient(3);
141 FSPL("Read␣circuit␣powered␣on");
142 mcp0.enable(true);
143 }
144
145 FSPL("Checking␣ch␣5-8␣readings␣for␣faults...");
146 // channel 5
147 digitalWrite(BREN2 , HIGH); digitalWrite(A0SW , LOW);

digitalWrite(A1SW , LOW);
148 FSP("␣␣channel␣5.");
149 tmpReading = mcp0.readADC();
150 if(tmpReading < -5000 || tmpReading > 5000)
151 FSPL("Error:␣mux␣channel␣1␣or␣TCA␣4␣out␣of␣range.");
152 else FSPL("..ok");
153 // channel 6
154 digitalWrite(BREN2 , HIGH); digitalWrite(A0SW , LOW);

238

digitalWrite(A1SW , HIGH);
155 FSP("␣␣channel␣6.");
156 tmpReading = mcp1.readADC();
157 if(tmpReading < -5000 || tmpReading > 5000)
158 FSPL("Error:␣mux␣channel␣2␣or␣TCA␣5␣out␣of␣range.");
159 else FSPL("..ok");
160 // channel 7
161 digitalWrite(BREN2 , HIGH); digitalWrite(A0SW , HIGH);

digitalWrite(A1SW , HIGH);
162 FSP("␣␣channel␣7.");
163 tmpReading = mcp1.readADC();
164 if(tmpReading < -5000 || tmpReading > 5000)
165 FSPL("Error:␣mux␣channel␣3␣or␣TCA␣6␣out␣of␣range.");
166 else FSPL("..ok");
167 // channel 8
168 digitalWrite(BREN2 , HIGH); digitalWrite(A0SW , HIGH);

digitalWrite(A1SW , LOW);
169 FSP("␣␣channel␣8.");
170 tmpReading = mcp0.readADC();
171 if(tmpReading < -5000 || tmpReading > 5000)
172 FSPL("Error:␣mux␣channel␣4␣or␣TCA␣7␣out␣of␣range.");
173 else FSPL("..ok");
174
175 FSPL("All␣channels␣ok.");
176 delay(1000);
177 if(Serial.available()) Serial.read(); // empty buffer
178
179 digitalWrite(BREN , HIGH);
180 digitalWrite(BREN2 , HIGH);
181 // if(! mcp0.begin(MCP0ADDR)) { Serial.println("MCP0 dead. ");

while(1);}
182 // if(! mcp1.begin(MCP1ADDR)) { Serial.println("MCP1 dead. ");

while(1);}
183
184 }
185
186 bool bit0 = false;
187 bool bit1 = false;
188 bool mux60 = false;
189 bool mux67 = false;
190 bool constRead = false;
191
192 float atr(Adafruit_MCP9601 inp ,uint32_t samps) {
193 float accum = 0.0;
194 for(uint32_t sp = 0; sp <= samps; sp++) {
195 accum += inp.readThermocouple();

239

196 delay(5);
197 }
198 accum /= samps;
199 return accum;
200 }
201
202 void loop() {
203 // task1: check for keypresses :
204 if(Serial.available()) {
205 char c = Serial.read();
206 switch(c) {
207 case ’1’:
208 if(!bit0) {
209 bit0 = true;
210 digitalWrite(A0SW , HIGH);
211 Serial.println(F("Address␣0␣bit␣on"));
212 } else {
213 bit0 = false;
214 digitalWrite(A0SW , LOW);
215 Serial.println(F("Address␣0␣bit␣off"));
216 }
217 break;
218 case ’2’:
219 if(!bit1) {
220 bit1 = true;
221 digitalWrite(A0SW , HIGH);
222 Serial.println(F("Address␣1␣bit␣on"));
223 } else {
224 bit1 = false;
225 digitalWrite(A0SW , LOW);
226 Serial.println(F("Address␣1␣bit␣off"));
227 }
228 break;
229 case ’3’:
230 if(!mux60) {
231 mux60 = true;
232 digitalWrite(BREN , HIGH);
233 Serial.println(F("U5␣TC␣mux␣on"));
234 } else {
235 mux60 = false;
236 digitalWrite(BREN , LOW);
237 Serial.println(F("U5␣TC␣mux␣off"));
238 }
239 break;
240 case ’4’:
241 if(!mux67) {

240

242 mux67 = true;
243 digitalWrite(BREN2 , HIGH);
244 Serial.println(F("U6␣TC␣mux␣on"));
245 } else {
246 mux67 = false;
247 digitalWrite(BREN2 , LOW);
248 Serial.println(F("U6␣TC␣mux␣off"));
249 }
250 break;
251 case ’a’:
252 Serial.print(F("MCP␣U6:␣"));
253 Serial.print(mcp0.readADC());
254 Serial.print(F("␣ADC ,␣"));
255 Serial.print(mcp0.readAmbient());
256 Serial.print(F("*C␣internal ,␣"));
257 Serial.print(mcp0.readThermocouple());
258 Serial.print(F("*C␣thermocouple.\r\n"));
259 break;
260 case ’s’:
261 Serial.print(F("MCP␣U5:␣"));
262 Serial.print(mcp1.readADC());
263 Serial.print(F("␣ADC ,␣"));
264 Serial.print(mcp1.readAmbient());
265 Serial.print(F("*C␣internal ,␣"));
266 Serial.print(mcp1.readThermocouple());
267 Serial.print(F("*C␣thermocouple.\r\n"));
268 break;
269 case ’z’:
270 if(!constRead) constRead = true;
271 else constRead = false;
272 default:
273 break;
274 }
275 }
276 /*
277 delay(250);
278 digitalWrite(A0SW , LOW); digitalWrite(A1SW , LOW); delay(10);
279 Serial.print(mcp0.readADC()); Serial.print(F(" ,"));
280 Serial.print(mcp1.readADC()); Serial.print(F(" ,"));
281 digitalWrite(A0SW , HIGH); digitalWrite(A1SW , LOW); delay(10);
282 Serial.print(mcp0.readADC()); Serial.print(F(" ,"));
283 Serial.print(mcp1.readADC()); Serial.print(F(" ,"));
284 digitalWrite(A0SW , LOW); digitalWrite(A1SW , HIGH); delay(10);
285 Serial.print(mcp0.readADC()); Serial.print(F(" ,"));
286 Serial.print(mcp1.readADC()); Serial.print(F(" ,"));
287 digitalWrite(A0SW , HIGH); digitalWrite(A1SW , HIGH); delay(10);

241

288 Serial.print(mcp0.readADC()); Serial.print(F(" ,"));
289 Serial.print(mcp1.readADC()); Serial.println(F(""));
290 */
291
292 // conditional constant read
293 if(constRead) {
294 digitalWrite(BREN , HIGH); digitalWrite(BREN2 , LOW);
295 digitalWrite(A0SW , LOW); digitalWrite(A1SW , LOW); delay(5000);
296 Serial.print(atr(mcp1 ,512)); FSP(",");
297 digitalWrite(A0SW , LOW); digitalWrite(A1SW , HIGH); delay(5000);
298 Serial.print(atr(mcp1 ,512)); FSP(",");
299 digitalWrite(A0SW , HIGH); digitalWrite(A1SW , HIGH); delay(5000)

;
300 Serial.print(atr(mcp1 ,512)); FSP(",");
301 digitalWrite(A0SW , HIGH); digitalWrite(A1SW , LOW); delay(5000);
302 Serial.print(atr(mcp1 ,512)); FSP(",");
303
304 digitalWrite(BREN , LOW); digitalWrite(BREN2 , HIGH);
305 digitalWrite(A0SW , LOW); digitalWrite(A1SW , LOW); delay(5000);
306 Serial.print(atr(mcp0 ,512)); FSP(",");
307 digitalWrite(A0SW , LOW); digitalWrite(A1SW , HIGH); delay(5000);
308 Serial.print(atr(mcp0 ,512)); FSP(",");
309 digitalWrite(A0SW , HIGH); digitalWrite(A1SW , HIGH); delay(5000)

;
310 Serial.print(atr(mcp0 ,512)); FSP(",");
311 digitalWrite(A0SW , HIGH); digitalWrite(A1SW , LOW); delay(5000);
312 Serial.print(atr(mcp0 ,512)); FSP(",");
313
314 Serial.print(mcp1.readAmbient()); FSP(","); delay(100);
315 Serial.println(mcp0.readAmbient());
316 delay(1000);
317 }
318 }

242

4. Gateway Code - Main Processor

1 /*
2 * Wavefront Gateway
3 * Integrated Version with Environmental Sensing
4 * Dual Processor - second processor for dedicated seismometry

output
5 * Final Version
6 *
7 * Stanley Krzesniak - v1.0 April 15, 2022
8 *
9 * Goal: write a basic Discord bot in C, which is a matter of

implementing the
10 * API. Adjustable cadence , but default 10 minutes. Writeout all

stats from all
11 * sensors in one , giant line as a " packet ".
12 *
13 * This is the second -to -last iteration. I will only design a PTH

PCB for
14 * Wavefront due to the supply chain and associated need to

recode the system.
15 *
16 * Immediately writeout wireless node data to Discord.
17 * This file , in full , will not be released to the public domain.

Segments of
18 * it will be showcased in the masters report.
19 *
20 * I’m inspired by the COBOL style of writing programs : one

gigantic file.
21 * What ’s the big deal? It ’s like a novel. As long as it’s well

documented ,
22 * there ’s really no problem.
23 *
24 * 9 April , 2023 - I changed my mind for all code. The full code

is released with
25 * sensitive information redacted.
26 */
27
28 // required core libraries
29 #include <Arduino.h >
30 #include <Adafruit_Sensor.h >
31 #include <Wire.h >
32 #include <SPI.h >
33 #include <Adafruit_I2CDevice.h >

243

34 #include <Adafruit_SleepyDog.h > // watchdog config
35 #include <atomic > // utility
36 #include <inttypes.h > //to print uint64_t
37 #include <PriUint64.h >
38 #include <CRC32.h >
39
40 // sensor and peripheral libraries
41 #include <Adafruit_BME680.h > // i2c Address 0x77
42 #include <Adafruit_SCD30.h > // i2c Address 0x61
43 #include <Adafruit_ADT7410.h > // i2c Address 0x48 , conflict w

ADS1115
44 #include <Adafruit_AS7341.h > // i2c Address 0x39
45 #include <Adafruit_LIS3MDL.h > // i2c Address 0x1C
46 #include <Adafruit_CCS811.h > // i2c Address 0x5A
47 #include <Adafruit_ADS1X15.h > // i2c Address 0x4A , jumpered to

avoid conflict
48 #include <Adafruit_INA219.h > // i2c Address 0x40 , 0x41
49
50 // timing and others
51 #include <RTClib.h > // i2c address 0x68
52 #include <Sparkfun_Ublox_Arduino_Library.h > // i2c address 0x42
53 #include <Adafruit_FRAM_SPI.h >
54 #include <Adafruit_FRAM_I2C.h > // i2c address 0x50
55 #include <RH_RF95.h >
56 #include <RH_RF69.h >
57 #include <Adafruit_DotStar.h >
58
59 // internet access
60 //# include <WiFiNINA.h >
61 #include <WiFi101.h > // new WiFi module , Atmel ATWINC1500
62 #include <ArduinoJson.h >
63
64 // >:)
65 // macros for extremely frequent one to two line instructions
66 #define EXEC void loop(){tifa();}
67 // Due to the archaic way I used SYNCFRAM , I will insert the

whole function
68 // here:
69 #define SYNCFRAM write_fram()
70 #define DLFRAM read_fram()
71 #define WROBJ 0x000002 , m
72 #define FRAMA_ADDR_MASTER 0x0002
73 #define FRAMA_ADDR_WFLGS 0x2000
74 #define FRAMA_ADDR_CRCS 0x2B95
75
76 // for seismometer , use the already existing code to simplify ,

244

and treat as
77 //a single device. Simplify the access schema for commands -

single -drop bus.
78
79 // instances of each peripheral and their respective # defines
80 // GPS
81 #define GPS_INIT_TIMEOUT 60000
82 #define MTU_INTERNAL 128
83
84 // wifi:
85 #define ATWIFI_SS 10
86 #define ATWIFI_ACK 9
87 #define ATWIFI_RST 7
88 // wifi:
89 #define SPIWIFI_SS 10
90 #define SPIWIFI_ACK 9
91 #define ESP32_RESETN 7
92 #define ESP32_GPIO0 A4
93 int status = WL_IDLE_STATUS;
94 WiFiSSLClient client; // internet
95 WiFiClient clienthttp; //HTTP -only
96 // two SSIDs in case the first one doesn ’t work for latency ’s

sake
97 const char *ssid3 = "REDACTED";
98 const char *ssid2 = "REDACTED";
99 const char *pass2 = "REDACTED";

100 const char *ssid1 = "REDACTED";
101 const char *pass1 = "REDACTED";
102
103 // FOR HIDDEN SSIDs: BSSID REQUIRED
104 uint8_t bssid_1[6] = {REDACTED }; // Asus router
105
106 // Smarter way of SEEING what is around and auto connecting to a

known list of SSIDs
107 // Way faster and way WAY more reliable.
108 #define NUM_SSID_ENTRIES 6
109 char *ssidlist[NUM_SSID_ENTRIES] = {
110 "REDACTED", "REDACTED", "REDACTED", "REDACTED", "REDACTED", "

REDACTED"
111 };
112
113 char *passlist[NUM_SSID_ENTRIES] = {
114 "REDACTED","REDACTED","REDACTED","REDACTED","REDACTED","REDACTED

"
115 };
116

245

117 // lora node radio :
118 #define RFM95_CS 12
119 #define RFM95_RST 2
120 #define RFM95_INT 13
121 RH_RF95 rf95(RFM95_CS , RFM95_INT);
122
123 // command radio:
124 #define RFM69_CS A2
125 #define RFM69_RST 2
126 #define RFM69_INT A3
127 RH_RF69 rf69(RFM69_CS , RFM69_INT);
128
129 // sensors :
130 Adafruit_ADT7410 pts = Adafruit_ADT7410(); // temp sensor ,

precision
131 Adafruit_AS7341 as; // light sensor
132 Adafruit_BME680 bme; // PTHG
133 Adafruit_CCS811 ccs; // VOCs
134 Adafruit_LIS3MDL mag; // Magnetometer
135 Adafruit_SCD30 co2; // CO2 and TH
136 Adafruit_ADS1115 ads; // SO2 and H2S
137 Adafruit_INA219 ina; // Battery stats
138
139 // other (timing and memory):
140 #define RAD2DEG 57 .295779513
141
142 // READBACK REQUIRED ON ALL NONDESTRUCTIVE FRAM WRITE OPERATIONS
143 #define FRAM_CS 11
144 #define SM_SIG 0x2895
145 Adafruit_FRAM_SPI RAM = Adafruit_FRAM_SPI(FRAM_CS);
146 Adafruit_FRAM_I2C RAM1;
147 RTC_DS3231 rtc;
148 SFE_UBLOX_GPS gps; // Time sync , PPS sync (sub -usec sync),

space weather
149 #define NUMPIXELS 1
150 #define DATAPIN 41
151 #define CLOCKPIN 40
152 Adafruit_DotStar strip(NUMPIXELS , DATAPIN , CLOCKPIN ,

DOTSTAR_BGR);
153
154 const char e[2] = "";
155
156 // complete this section once I have everything else
157 /*
158 * Discord Bot section
159 * minimal bot implemented , only enough to accomplish what I

246

need.
160 */
161
162 // THE FOLLOWING KEYS/ADDRESSES ARE PRIVATE - DO NOT LET ANYONE

ELSE USE THEM.
163 #define DISCORD_BOT_TOKEN "REDACTED"
164 #define DISCORD_WEBHOOK_URL "REDACTED"
165 #define DISCORD_PASTEBIN_URL "REDACTED"
166 #define DISCORD_RAWDATA_URL "REDACTED"
167 #define DISCORD_ALERTS_URL "REDACTED"
168 #define INGENUITY_pfp "https:

//upload.wikimedia.org/wikipedia/␣
commons/5/58/Mars_helicopter_on_sol_46.png"

169
170 // Referencing the Discord API v10 manual , and @Rapptz ’s

discord.py library.
171 //As of writing , no Discord API exists for embedded systems

written in C.
172
173 // Scheduler and state machine :
174 // Fixed list of tasks :
175 #define NUMTASKS 7
176 #define TASK_LOOP_MACH 0
177 #define TASK_LOOP_SCANLORA 1
178 #define TASK_LOOP_MAINSENSE 2
179 #define TASK_LOOP_MACHSTATS 3
180 #define TASK_LOOP_WIFIDELEG 4
181 #define TASK_LOOP_OPSUMMARY 5
182 #define TASK_LOOP_FRAMINTEG 6
183 #define TASK_LOOP_SCANGFSK 7
184 // loop_mach() - prio 0. state transition mechanism
185 // -- also evaluate RAM
186 // loop_scanLora() - prio 1
187 // loop_MainSense() - prio 2
188 // f_discordSend() - prio R.
189 // f_serialWriteOut() - prio R. For debugging.
190 // f_deserializeBuf() - prio R. FRAM deserializer for all

science datastreams
191 // delays in micros64()
192 // if delay == 1, not a routinely called task.
193 static uint64_t sched_blks[NUMTASKS] = {
194 10000ULL , // loop_mach() 10mS - execute almost as often as

possible
195 1000000ULL , // loop_scanLora() 1s
196 120000000 ULL , // loop_MainSense() 120s
197 300000000 ULL , // loop_machstats() 5m

247

198 30000000ULL , // wifi_delegate() 30s
199 7250000000 ULL , // bihourly_summ() 2h 50s
200 3600000000 ULL , // hourly FRAM integrity check
201 // 14400000000 ULL //GPS
202 };
203
204 //"last process run time"
205 // set to initializer that ensures every process runs ONCE after

ooot.
206 static uint64_t lprc[NUMTASKS] {
207 0ULL ,
208 0ULL ,
209 0ULL ,
210 0ULL ,
211 0ULL ,
212 0ULL ,
213 0ULL ,
214 //0ULL
215 };
216
217 // Sensor reads , straight to Serial
218 // Include algorithms internally
219 // Save external variables and configuration to struct , which is

saved
220 //to 0 x000000 to 0 x000FFF reserved block of FRAM
221 // All sensor reads are blocking and gather statistical

information.
222 //To overcome this limitation and make it nonblocking would

require an
223 // FPGA and dedicated I2C lines or multiple dedicated CPUs ,

which , in the
224 // interest of time , will not be done. Remember to talk about

the architecture
225 //in the project paper.
226
227 // All functions are designed to access the global struct , with

ALL raw values
228 // available for extra automated preprocessing/cross -

correlation.
229
230 struct master{
231 //be sure to sync struct with fram after every sensor read ,

doesn ’t matter
232 // small it is
233
234 // Ensure aligned memory access - 4 byte alignment

248

235
236 // Mach State Assessment
237 uint32_t ram0_sz; // I2C FRAM
238 uint32_t ram1_sz; // SPI FRAM
239 uint32_t data_counter_total;
240 uint32_t data_counter_lora;
241 uint32_t ram0_mem_free;
242 uint32_t ram1_mem_free; // VERY IMPORTANT
243 uint64_t lastRecordedMicros;
244 uint8_t lastProcessIDActive;
245 uint8_t lastRecordedExecState;
246 uint32_t powerState;
247 uint16_t ramfree;
248
249 // Last Active Time +/- 2 Mins
250 uint16_t lastYear;
251 uint8_t lastMonth;
252 uint8_t lastDay;
253 uint8_t lastHour;
254 uint8_t lastMinute;
255 uint8_t lastSecond;
256 uint8_t align000;
257
258 // Sensor Configuration (can be dynamically changed)
259 int scd30_num_samps;
260 int adt7410_num_samps;
261 float adt7410_samp_rate;
262 int bme680_num_samps;
263 float bme680_samp_rate;
264 int ccs811_num_samps;
265 float ccs811_samp_rate;
266 int mag_num_samps;
267 float mag_samp_rate;
268
269 // Data SCD30 CO2 sensor
270 float scd30_temp_max;
271 float scd30_temp_min;
272 float scd30_temp_avg;
273 float scd30_temp_stddev;
274 float scd30_rh_max;
275 float scd30_rh_min;
276 float scd30_rh_avg;
277 float scd30_rh_stddev;
278 float scd30_co2_max;
279 float scd30_co2_min;
280 float scd30_co2_avg;

249

281 float scd30_co2_stddev;
282 uint32_t scd30_micros_op;
283
284 // Data ADT7410 prec temperature sensor
285 float adt7410_temp_max;
286 float adt7410_temp_min;
287 float adt7410_temp_avg;
288 float adt7410_temp_stddev;
289 uint32_t adt7410_micros_op;
290
291 // Data BME680 " weather " sensor
292 float bme680_temp_max;
293 float bme680_temp_min;
294 float bme680_temp_avg;
295 float bme680_temp_stddev;
296 float bme680_rh_max;
297 float bme680_rh_min;
298 float bme680_rh_avg;
299 float bme680_rh_stddev;
300 float bme680_prs_max;
301 float bme680_prs_min;
302 float bme680_prs_avg;
303 float bme680_prs_stddev;
304 float bme680_gas_res_max;
305 float bme680_gas_res_min;
306 float bme680_gas_res_avg;
307 float bme680_gas_res_stddev;
308 uint32_t bme680_micros_op;
309
310 // Data CCS811 VOC sensor
311 float ccs811_tvoc_max;
312 float ccs811_tvoc_min;
313 float ccs811_tvoc_avg;
314 float ccs811_tvoc_stddev;
315 float ccs811_eco2_max;
316 float ccs811_eco2_min;
317 float ccs811_eco2_avg;
318 float ccs811_eco2_stddev;
319 uint32_t ccs811_micros_op;
320
321 // Data LIS3MDL Magnetometer
322 float mag_x_max;
323 float mag_x_min;
324 float mag_x_avg;
325 float mag_x_stddev;
326 float mag_y_max;

250

327 float mag_y_min;
328 float mag_y_avg;
329 float mag_y_stddev;
330 float mag_z_max;
331 float mag_z_min;
332 float mag_z_avg;
333 float mag_z_stddev;
334 uint32_t mag_micros_op;
335
336 // Data AS7341 Light sensor
337 uint32_t lss_415nm_abs;
338 uint32_t lss_445nm_abs;
339 uint32_t lss_480nm_abs;
340 uint32_t lss_515nm_abs;
341 uint32_t lss_555nm_abs;
342 uint32_t lss_590nm_abs;
343 uint32_t lss_630nm_abs;
344 uint32_t lss_680nm_abs;
345 uint32_t lss_wband_abs;
346 uint32_t lss_890nm_abs;
347 int32_t lss_415nm_diff;
348 int32_t lss_445nm_diff;
349 int32_t lss_480nm_diff;
350 int32_t lss_515nm_diff;
351 int32_t lss_555nm_diff;
352 int32_t lss_590nm_diff;
353 int32_t lss_630nm_diff;
354 int32_t lss_680nm_diff;
355 int32_t lss_wband_diff;
356 int32_t lss_890nm_diff;
357 uint32_t lss_micros_op;
358
359 // Data GPS
360 float gps_HDOP_avg ;
361 float gps_VDOP_avg ;
362 float gps_PDOP_avg ;
363 float gps_Lat_avg ;
364 float gps_Long_avg ;
365 float gps_HDOP_stddev ;
366 float gps_VDOP_stddev ;
367 float gps_PDOP_stddev ;
368 float gps_Lat_stddev ;
369 float gps_Long_stddev ;
370 int32_t gps_HDOP_max ;
371 int32_t gps_VDOP_max ;
372 int32_t gps_PDOP_max ;

251

373 int32_t gps_Lat_max ;
374 int32_t gps_Long_max ;
375 int32_t gps_HDOP_min ;
376 int32_t gps_VDOP_min ;
377 int32_t gps_PDOP_min ;
378 int32_t gps_Lat_min ;
379 int32_t gps_Long_min ;
380 uint16_t gps_year ;
381 uint8_t gps_month ;
382 uint8_t gps_day ;
383 uint8_t gps_hour ;
384 uint8_t gps_min ;
385 uint8_t gps_sec ;
386 // pad byte:
387 uint8_t nop_pad1 ;
388 // msec time:
389 uint16_t gps_msec ;
390 // pad bytes :
391 uint16_t machine_flags ; // bitmath to access this
392 uint32_t gps_micros_op ;
393
394 // Data INA219 Power :
395 float ina_volt_max ;
396 float ina_volt_min ;
397 float ina_volt_avg ;
398 float ina_volt_sdv ;
399 float ina_curr_max ;
400 float ina_curr_min ;
401 float ina_curr_avg ;
402 float ina_curr_sdv ;
403 float ina_powr_max ;
404 float ina_powr_min ;
405 float ina_powr_avg ;
406 float ina_powr_sdv ;
407 uint32_t ina_micros_op ;
408
409 // Data Inclinometer :
410 uint32_t scl_ms_reported ;
411 int scl_sps ;
412 double scl_temp_raw ;
413 double scl_xt_decim ;
414 double scl_yt_decim ;
415 double scl_zt_decim ;
416 uint32_t scl_micros_op ;
417 float scl_tilt16_max_x;
418 float scl_tilt16_min_x;

252

419 float scl_tilt16_avg_x;
420 float scl_tilt16_sdv_x;
421 float scl_tilt16_max_y;
422 float scl_tilt16_min_y;
423 float scl_tilt16_avg_y;
424 float scl_tilt16_sdv_y;
425 float scl_tilt16_max_z;
426 float scl_tilt16_min_z;
427 float scl_tilt16_avg_z;
428 float scl_tilt16_sdv_z;
429 // Seismometer data - listen for earthquakes or high accel
430 // ideally this will be externally mounted or buried
431 uint32_t scl_sdv_delay_ms;
432 float scl_t16_max_x_mp;
433 float scl_t16_min_x_mp;
434 float scl_t16_sdv_mpdx;
435 float scl_t16_max_y_mp;
436 float scl_t16_min_y_mp;
437 float scl_t16_sdv_mpdy;
438 float scl_t16_max_z_mp;
439 float scl_t16_min_z_mp;
440 float scl_t16_sdv_mpdz;
441 // Fredericks ultra - precision tilt sensor
442 // Zero temperature dependency !
443 float fts_tilt_y1_max ;
444 float fts_tilt_y1_min ;
445 float fts_tilt_y1_avg ;
446 float fts_tilt_y1_sdv ;
447 float fts_tilt_y2_max ;
448 float fts_tilt_y2_min ;
449 float fts_tilt_y2_avg ;
450 float fts_tilt_y2_sdv ;
451
452 // Data Volcanic Gas:
453 int gasv_sps ;
454 float gasv_so2_max ;
455 float gasv_so2_min ;
456 float gasv_so2_avg ;
457 float gasv_so2_sdv ;
458 float gasv_h2s_max ;
459 float gasv_h2s_min ;
460 float gasv_h2s_avg ;
461 float gasv_h2s_sdv ;
462 float gasv_o3_max ;
463 float gasv_o3_min ;
464 float gasv_o3_avg ;

253

465 float gasv_o3_sdv ;
466
467 float gasv_so2_av_v ;
468 float gasv_h2s_av_v ;
469 float gasv_o3_av_v ;
470
471 uint32_t gasv_micros_op ;
472
473 };
474 // prior versions to April 15, 2022 did NOT allocate this as a

static entity.
475 // This could be why the processor hung after about 22 hours.
476 static master m;
477
478 // struct for flags at 0 x1000
479 struct working_flags {
480 // RAM size: 1 BYTE per _bool.
481 bool RES_FRAM_FORMATTED; //if it was JUST formatted. Should

almost never happen.
482 bool RES_NEW_FIRMWARE;
483 bool RES_FRAM_INTEG_CHK_FAILED;
484 bool RES_FRAM_INTEG_MSG_FIRED;
485 bool RES_RESTART_LOW_SRAM;
486 bool SCI_SCL3300_STDDEV_EXCEEDED_CHX;
487 bool SCI_SCL3300_CHX_FIRED;
488 bool SCI_SCL3300_STDDEV_EXCEEDED_CHY;
489 bool SCI_SCL3300_CHY_FIRED;
490 bool SCI_SCL3300_STDDEV_EXCEEDED_CHZ;
491 bool SCI_SCL3300_CHZ_FIRED;
492 bool SCI_ADT7410_HIGH_TEMP_FLAG;
493 bool SCI_ADT7410_HTF_FIRED;
494 bool SCI_ADT7410_LARGE_DT_DT;
495 bool SCI_SCD30_CO2_HIGH_2000_PPM;
496 bool SCI_SCD30_CO2H_FIRED;
497 bool SCI_AS7341_LARGE_DI_DT;
498 uint8_t RES_FIRST_LOOP;
499 uint8_t pad1;
500 bool RES_FRAM_FULL;
501 bool RES_CONNECTED_TO_WIFI;
502
503 int ping_result;
504 int fail_times;
505 int rpt_times;
506 int ping_high;
507 int ping_low;
508 int ping_avg;

254

509
510 // data:
511 float sci_scl3300_sdv_x_prev;
512 float sci_scl3300_sdv_y_prev;
513 float sci_scl3300_sdv_z_prev;
514 float sci_adt7410_avgtmp_prev;
515 float sci_scd30_co2_prev;
516 }; static working_flags w;
517
518 // CRC32 storage for both working structs at 0x2B95:
519 // the known values are computed in RAM , read back , and

validated that they are
520 // the same thing.
521 struct crc32storage {
522 uint32_t crc_master;
523 uint32_t crc_workng;
524 }; static crc32storage c;
525
526 // LoRa node v1 struct :
527 struct LoRa_typeA {
528 uint32_t node_id;
529 int32_t tilt32_x;
530 int32_t tilt32_y;
531 int32_t tilt32_z;
532 int32_t tilt32_max_x;
533 int32_t tilt32_max_y;
534 int32_t tilt32_max_z;
535 int32_t tilt32_min_x;
536 int32_t tilt32_min_y;
537 int32_t tilt32_min_z;
538 uint32_t spect[13];
539 float meas_pressure;
540 float btmp_lower;
541 float meas_humidity;
542 float adt7410;
543 float scltemp;
544 float sysvolt;
545 }; static LoRa_typeA LTA;
546
547 // LoRa node v2 struct :
548
549 // Core and utility functions :
550
551 // actual sync fram instructions :
552 void write_fram(void) {
553 RAM1.writeObject(FRAMA_ADDR_MASTER ,m);

255

554 RAM1.writeObject(FRAMA_ADDR_WFLGS ,w);
555 RAM1.writeObject(FRAMA_ADDR_CRCS ,c);
556 }
557
558 void read_fram(void) {
559 RAM1.readObject(FRAMA_ADDR_MASTER ,m);
560 RAM1.readObject(FRAMA_ADDR_WFLGS ,w);
561 RAM1.readObject(FRAMA_ADDR_CRCS ,c);
562 }
563
564 void printEncryptionType(int thisType) {
565 // read the encryption type and print out the name:
566 switch (thisType) {
567 case ENC_TYPE_WEP:
568 Serial.print("WEP");
569 break;
570 case ENC_TYPE_TKIP:
571 Serial.print("WPA");
572 break;
573 case ENC_TYPE_CCMP:
574 Serial.print("WPA2");
575 break;
576 case ENC_TYPE_NONE:
577 Serial.print("None");
578 break;
579 case ENC_TYPE_AUTO:
580 Serial.print("Auto");
581 break;
582 case ENC_TYPE_UNKNOWN:
583 default:
584 Serial.print("Unknown");
585 break;
586 }
587 }
588
589 void print2Digits(byte thisByte) {
590 if (thisByte < 0xF) {
591 Serial.print("0");
592 }
593 Serial.print(thisByte , HEX);
594 }
595
596 void printMacAddress(byte mac[]) {
597 for (int i = 5; i >= 0; i--) {
598 if (mac[i] < 16) {
599 Serial.print("0");

256

600 }
601 Serial.print(mac[i] , HEX);
602 if (i > 0) {
603 Serial.print(":");
604 }
605 }
606 Serial.println();
607 }
608
609
610 // /memory :
611 // credit Kevin Townsend
612 int32_t readBack(uint32_t addr , int32_t data) {
613 int32_t check = !data;
614 int32_t wrapCheck , backup;
615 RAM.read(addr , (uint8_t *)&backup , sizeof(int32_t));
616 RAM.writeEnable(true);
617 RAM.write(addr , (uint8_t *)&data , sizeof(int32_t));
618 RAM.writeEnable(false);
619 RAM.read(addr , (uint8_t *)&check , sizeof(int32_t));
620 RAM.read(0 , (uint8_t *)&wrapCheck , sizeof(int32_t));
621 RAM.writeEnable(true);
622 RAM.write(addr , (uint8_t *)&backup , sizeof(int32_t));
623 RAM.writeEnable(false);
624 // Check for warparound , address 0 will work anyway
625 if (wrapCheck==check)
626 check = 0;
627 return check;
628 }
629
630 // /memory :
631 // credit Kevin Townsend
632 bool testAddrSize(uint8_t addrSize) {
633 RAM.setAddressSize(addrSize);
634 if (readBack(4 , 0xbeefbead) == 0xbeefbead)
635 return true;
636 return false;
637 }
638
639
640 /*
641 * Credit : Edgar Bonnet - Stack Overflow (2015)
642 * Set millisecond timer on CPU to a specified , uint32_t value.

No particular
643 * use envisioned , but an ability to restore mission time might

be possible.

257

644 * @param ms unsigned milliseconds value
645 */
646 void setMillis(uint32_t ms) {
647 extern uint32_t timer0_millis;
648 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
649 timer0_millis = ms;
650 }
651 }
652
653 /*
654 * 64- bit microsecond timer. Number will roll over after 213

million days.
655 * Best if run on a CPU that can handle sub - microsecond precision

, such as
656 * a Cortex M4 , M7 , or A- series.
657 * MUST CALL TWICE EVERY 71.6 MINUTES TO WORK.
658 */
659 uint64_t micros64(void) {
660 static uint32_t low32 , high32;
661 uint32_t new_low32 = micros();
662 if(new_low32 < low32)high32 ++;
663 low32 = new_low32;
664 return (uint64_t)high32 << 32 | low32;
665 }
666
667 /*
668 * decimal to String , adapted for arduino
669 * @param val Input value , double prec float
670 * @param width Baseline width in characters
671 * @param prec Precision of decimal value
672 * @return String - formatted decimal number of _prec_ precision.
673 */
674 String dtosstrf(double val , signed char width , unsigned char

prec) {
675 asm(".global␣_printf_float");
676 char sout[64];
677 char fmt[20];
678 sprintf(fmt , "%%%d.%df", width , prec);
679 sprintf(sout , fmt , val);
680 String ssout(sout);
681 return ssout;
682 }
683
684 // Print a 64- bit unsigned integer (because Arduino can ’t do

that)
685 // doesn ’t work , have to do this manually

258

686 /*
687 String print64(uint64_t val) {
688 char num[20] ;
689 sprintf(num ,"%" PRIu64 ,val);
690 String out(num);
691 return out;
692 }
693 */
694
695 // Convenience function : microseconds after boot time:
696 // Dependancy : Serial must be enabled before using.
697 // Takes a few uS to execute.
698 void SPTime(String msg) {
699 Serial.print("[");
700 Serial.print(PriUint64 <DEC >(micros64()));
701 Serial.print("]␣");
702 Serial.print(msg);
703 }
704
705 // Same function as above but prints newline :
706 void SPLTime(String msg) {
707 Serial.print("[");
708 Serial.print(PriUint64 <DEC >(micros64()));
709 Serial.print("]␣");
710 Serial.println(msg);
711 }
712
713 //

///

714 // iso8610 format
//

715 // PID: 22
//

716 //
///

717 // Take an RTC and output the current time as an ISO 8610 String
:

718 String rtc_iso8610(RTC_DS3231 &rtcf , bool trailingComma = true
,\

719 bool startup = false) {
720 if(startup == true) m.lastProcessIDActive = 0x22;
721 SYNCFRAM;
722 DateTime nowf = rtcf.now();
723 String iso8610 = "";

259

724 iso8610 += nowf.year() + (String)"-";
725 if(nowf.month() < 10) iso8610 += (String)"0";
726 iso8610 += nowf.month() + (String)"-";
727 if(nowf.day() < 10) iso8610 += (String)"0";
728 iso8610 += nowf.day() + (String)"T";
729 if(nowf.hour() < 10) iso8610 += (String)"0";
730 iso8610 += nowf.hour() + (String)":";
731 if(nowf.minute() < 10) iso8610 += (String)"0";
732 iso8610 += nowf.minute() + (String)":";
733 if(nowf.second() < 10) iso8610 += (String)"0";
734 iso8610 += nowf.second();
735 if(trailingComma) iso8610 += ",";
736 return iso8610;
737 }
738
739 //

///

740 // iso8610 format - discord
//

741 // PID: 22
//

742 //
///

743 // Take an RTC and output the current time as an ISO 8610 String
:

744 String rtcd_iso8610(RTC_DS3231 &rtcf , bool trailingComma = true
,\

745 bool startup = false) {
746 if(startup == false) m.lastProcessIDActive = 0x22;
747 DateTime nowf = rtcf.now();
748 String iso8610 = "";
749 iso8610 += nowf.year() + (String)"-";
750 if(nowf.month() < 10) iso8610 += (String)"0";
751 iso8610 += nowf.month() + (String)"-";
752 if(nowf.day() < 10) iso8610 += (String)"0";
753 iso8610 += nowf.day() + (String)"T";
754 if(nowf.hour() < 10) iso8610 += (String)"0";
755 iso8610 += nowf.hour() + (String)".";
756 if(nowf.minute() < 10) iso8610 += (String)"0";
757 iso8610 += nowf.minute() + (String)".";
758 if(nowf.second() < 10) iso8610 += (String)"0";
759 iso8610 += nowf.second();
760 if(trailingComma) iso8610 += ",";
761 return iso8610;

260

762 }
763
764 //

///

765 // iso8610 format - discord
//

766 // PID: 22
//

767 //
///

768 // Take an RTC and output the current time as an ISO 8610 String
:

769 String rtcd_iso8610(DateTime &nowf , bool trailingComma = true ,\
770 bool startup = false) {
771 if(startup == false) m.lastProcessIDActive = 0x22;
772 String iso8610 = "";
773 iso8610 += nowf.year() + (String)"-";
774 if(nowf.month() < 10) iso8610 += (String)"0";
775 iso8610 += nowf.month() + (String)"-";
776 if(nowf.day() < 10) iso8610 += (String)"0";
777 iso8610 += nowf.day() + (String)"T";
778 if(nowf.hour() < 10) iso8610 += (String)"0";
779 iso8610 += nowf.hour() + (String)".";
780 if(nowf.minute() < 10) iso8610 += (String)"0";
781 iso8610 += nowf.minute() + (String)".";
782 if(nowf.second() < 10) iso8610 += (String)"0";
783 iso8610 += nowf.second();
784 if(trailingComma) iso8610 += ",";
785 return iso8610;
786 }
787
788 // send csv function , general for gateway.
789 /*!
790 * @brief Send CSV string to Discord. General function for
791 * both gateway and node. Retry not implemented in this function

to allow developer
792 * flexibility for retry strategies.
793 * @param token
794 * Set URL for webhook token , HTTP 1.3 format
795 * @param content
796 * Content string - the text. Already formatted for monospaced

text.
797 * Pointer to ADDRESS of existing content string to save RAM.
798 * @param nodeName

261

799 * Name of node for username. Optional.
800 * @param imageUrl
801 * URL to profile picture of current message of bot. Optional.
802 * @param msp
803 * Whether to enclose in monospaced form or not.
804 * @return Returns true on success , false on failure to send.
805 */
806 bool sendDiscordCSV(String token , String content , String

nodeName , String imageUrl , bool msp) {
807 Watchdog.reset();
808 StaticJsonDocument <4096 > NODE; // allocate to stack. ONLY ON

CORTEX M4 , M7 , OR R5 OR BETTER.
809 SPLTime("[DBG]␣Allocated␣JSON␣doc");
810 NODE["username"] = nodeName;
811 NODE["avatar_url"] = imageUrl;
812 if(msp) { NODE["content"] = "‘‘" + content + "‘‘"; }
813 else { NODE["content"] = content; }
814 // JsonArray embeds1 = NODE.createNestedArray(" embeds ");
815 // JsonObject embed_def1 = embeds1.createNestedObject();
816 // embed_def1[" description "] = " Courtyard readings - " + a4;
817 if(client.connect("discord.com", 443)) {
818 WiFi.setLEDs(64 ,255 ,255);
819 // Send HTTP header to Discord :
820 // HTTP header is extremely particular about order of flags ,

and Discord is very particular about using HTTP 1.3
821 client.println("POST␣" + token + "␣HTTP/1.1");
822 client.println("Host:␣discord.com");
823 client.println("Accept:␣*/*");
824 client.println("Content -Type:␣application/json");
825 client.print("Content -Length:␣");
826 // compute length of minified JSON:
827 client.println(measureJson(NODE));
828 client.print("\r\n"); // terminate HEADER by sending a newline
829 // Now send JSON header to Discord :
830 serializeJson(NODE , client); // This sends without any

additional RAM
831 // free((void *) NODE);
832 // timeout implementation - 1 second timeout.
833 uint32_t timeout = millis();
834 uint32_t t_timeout = 1000;
835 WiFi.setLEDs(64 ,0 ,255);
836 while(true) {
837 // deal with satcom latency
838 if(client.available()) {
839 client.stop(); // disconnect !!
840 return true;

262

841 }
842 if(millis() > timeout + t_timeout) return false;
843 }
844 } return false;
845 }
846
847 // matching file size is a REQUIREMENT for Discord.
848 // Function required to determine
849 // Update 29 April : after analysis with a netcat http server , I

determined that
850 // packet retries or fragmentation is critical. If I drop even

ONE packet , or am
851 // even ONE byte off , the Cloudflare frontend rejects the

transfer with a 400
852 // Bad Request.
853 // Fragmentation , in all honesty , is a stretch goal. It requires

a tremendous
854 // amount of work and a major or masters in computer networking.
855 bool sendDiscordFileRNG(String token , String content , String

nodeName , String imageUrl , bool msp , int cont_len) {
856 StaticJsonDocument <4096 > NODE; // allocate to stack. ONLY ON

CORTEX M4 , M7 , OR R5 OR BETTER.
857 NODE["username"] = nodeName;
858 NODE["avatar_url"] = imageUrl;
859 if(msp) { NODE["content"] = "‘‘" + content + "‘‘"; }
860 else { NODE["content"] = content; }
861 // payload_sz = measureJson(client);
862 // payload_sz += 312;
863 if(client.connectSSL("ptb.discord.com", 443)) {
864 WiFi.setLEDs(64 ,255 ,255);
865 // Send HTTP header to Discord :
866 client.println("POST␣" + token + "␣HTTP/1.1");
867 client.println("Host:␣ptb.discord.com");
868 client.println("User -Agent:␣GNU␣GCC");
869 client.println("Accept:␣*/*");
870 client.print("Content -Length:␣");
871 client.println((String)cont_len);
872 client.println("Content -Type:␣multipart/form -data;␣boundary=

--000");
873 client.println();
874 client.println(" ----000");
875 client.println("Content -Disposition:␣form -data;␣name= \"file1

\";␣filename= \" aaa.txt \"");
876 client.println("Content -Type:␣text/plain\r\n");
877 client.println("

aaa

263

\r\n");
878 client.println(" ----000--"); // end of file
879 uint32_t timeout = millis();
880 uint32_t t_timeout = 2000;
881 WiFi.setLEDs(64 ,0 ,255);
882 delay(1000);
883 if(client.available()) {
884 while(client.available() >0) {
885 Serial.write(client.read());
886 }
887 }
888 while(true) {
889 // deal with satcom latency
890 if(client.available()) {
891 client.stop(); // disconnect !!
892 return true;
893 }
894 if(millis() > timeout + t_timeout) return false;
895 }
896 } return false;
897 }
898
899 bool dumpframdiscord(String token , String imageUrl ,bool erase ,

int fudgeFactor) {
900 Watchdog.reset();
901 if(client.connect("ptb.discord.com", 443)) {
902 // Compute the actual number of bytes transmitted :
903 // uint32_t modulo_add = 0;
904 // if(((m.ram1_sz - m.ram1_mem_free) % 256) > 0) modulo_add =

(m.ram1_sz - m.ram1_mem_free) % 256;
905 uint32_t len = (m.ram1_sz -m.ram1_mem_free)+(uint32_t)121+

fudgeFactor/*+ modulo_add */;
906 WiFi.setLEDs(64 ,255 ,255);
907 // Send HTTP header to Discord :
908 client.println("POST␣" + token + "␣HTTP/1.1");
909 client.println("Host:␣ptb.discord.com");
910 client.println("User -Agent:␣GNU␣GCC");
911 client.println("Accept:␣*/*");
912 client.print("Content -Length:␣");
913 client.println((String)len);
914 client.println("Content -Type:␣multipart/form -data;␣boundary=

------000");
915 client.println();
916 client.println(" --------000"); //13 bytes
917 client.println("Content -Disposition:␣form -data;␣name= \"file1

\";␣filename= \" dump.txt \""); //67 bytes

264

918 client.println("Content -Type:␣text/plain\r\n"); //28 bytes
919 // Header total (incl. postamble): 121 bytes
920
921 // fill buffer until buffer is full
922 // The problem here is that I read in 256 byte sectors.

Cloudflare and Discord ALWAYS
923 // expect EXACTLY the number of bytes you say you ’re going to

send.
924 char block_buf[256] = {’\000’};
925 for(uint32_t sz=0;sz <(m.ram1_sz -m.ram1_mem_free);) {
926 RAM.read(sz ,(uint8_t *)block_buf ,sizeof(block_buf) -1);
927 client.write((const char *) block_buf);
928 sz +=sizeof(block_buf);
929 }
930 client.print("\r\n--------000--\r\n"); // end of file
931
932 uint32_t timeout = millis();
933 uint32_t t_timeout = 2000;
934 WiFi.setLEDs(64 ,0 ,255);
935 Watchdog.reset();
936 delay(2000);
937 Serial.println("");
938 if(client.available()) {
939 while(client.available() >0) {
940 Serial.write(client.read());
941 }
942 }
943 while(true) {
944 Watchdog.reset();
945 // deal with satcom latency
946 if(client.available()) {
947 client.stop(); // disconnect !!
948 goto end;
949 }
950 if(millis() > timeout + t_timeout) {
951 SPLTime(F("[discord]␣Failed␣to␣transmit␣file."));
952 goto end;
953 }
954 }
955 }
956 end:
957 // Erase if commanded to do so:
958 if(erase == true) {
959 RAM.writeEnable(true);
960 // wipe:
961 for(uint32_t i=0;i<m.ram1_sz;i++) {

265

962 RAM.write8(i ,’\000’);
963 }
964 RAM.writeEnable(false);
965 m.ram1_mem_free = m.ram1_sz; // set to start
966 SYNCFRAM;
967 }
968 strip.setPixelColor(0 ,0 x00FFFFFF);
969 strip.show();
970 delay(500);
971 strip.setPixelColor(0 ,0);
972 strip.show();
973 return false;
974 }
975
976 #define BYTESPACING 16
977 // Hexdump function :
978 // robj: I2C FRAM object
979 // read_struct_ident : start reading at 0 x000000 instead of 0

x000002
980 String framhexdump(Adafruit_FRAM_I2C &robj , bool

read_struct_ident) {
981 String dump = "";
982 dump += "FRAM␣A␣hexdump :\r\n";
983 uint32_t i = 0;
984 if(read_struct_ident == false) i = 2;
985 for(int j=1;i<sizeof(m);i++, j++) {
986 char tmp;
987 tmp = robj.read(i);
988 if(tmp < 0x10) dump += "0";
989 // the data:
990 dump += String(tmp ,HEX);
991 // padding :
992 if(j == BYTESPACING/4) dump += "␣";
993 if(j == BYTESPACING) {
994 dump += "\r\n";
995 j=0;
996 }
997 }
998 //on return , dump should be deallocated by default , because I

have no
999 // way of manually calling free() after this.

1000 Serial.print(dump);
1001 return dump;
1002 }
1003
1004 // Hexdump FRAM A to Discord. Leverage previously existing

266

function :
1005 bool dumpstructdiscord(String token , String obj , String

nodeName , String imageUrl , bool msp) {
1006
1007 Watchdog.reset();
1008 StaticJsonDocument <6144 > NODE; // allocate to stack. ONLY ON

CORTEX M4 , M7 , OR R5 OR BETTER.
1009 NODE["username"] = nodeName;
1010 NODE["avatar_url"] = imageUrl;
1011 if(msp) { NODE["content"] = "‘‘" + obj + "‘‘"; }
1012 else { NODE["content"] = obj; }
1013 // JsonArray embeds1 = NODE.createNestedArray(" embeds ");
1014 // JsonObject embed_def1 = embeds1.createNestedObject();
1015 // embed_def1[" description "] = " Courtyard readings - " + a4;
1016 if(client.connect("discord.com", 443)) {
1017 WiFi.setLEDs(64 ,255 ,255);
1018 // Send HTTP header to Discord :
1019 // HTTP header is extremely particular about order of flags ,

and Discord is very particular about using HTTP 1.3
1020 client.println("POST␣" + token + "␣HTTP/1.1");
1021 client.println("Host:␣discord.com");
1022 client.println("Accept:␣*/*");
1023 client.println("Content -Type:␣application/json");
1024 client.print("Content -Length:␣");
1025 // compute length of minified JSON:
1026 client.println(measureJson(NODE));
1027 client.print("\r\n"); // terminate HEADER by sending a newline
1028 // Now send JSON header to Discord :
1029 serializeJson(NODE , client); // This sends without any

additional RAM
1030 uint32_t timeout = millis();
1031 //if we don ’t get a response within 1 sec , something ’s wrong
1032 uint32_t t_timeout = 1000;
1033 WiFi.setLEDs(64 ,0 ,255);
1034 while(true) {
1035 // deal with satcom latency
1036 if(client.available()) {
1037 client.stop(); // disconnect !!
1038 return true;
1039 }
1040 if(millis() > timeout + t_timeout) return false;
1041 }
1042 } return false;
1043 return false;
1044 }
1045

267

1046 //04 May 2022: add contingencies
1047 bool dumpframhttp(bool erase) {
1048 Watchdog.reset();
1049 SPTime(F("Pinging␣Cloudflare...\r\n"));
1050 // Rationale : Builtin network conditions analysis to determine

if I should
1051 // send data or not. Expand to dynamic file sizing.
1052 // Analyze ping to Cloudflare (because they ’re always up)
1053 // Expect no greater than 100 ms and no greater than 50ms spread
1054 int ping_result = 0;
1055 int fail_times = 0;
1056 int rpt_times = 8;
1057 int high = 0;
1058 int low = 0;
1059 int avg = 0;
1060 bool send_flag = true;
1061 for(rpt_times = 0; rpt_times < 8; rpt_times ++) {
1062 if(ping_result > 0) {
1063 ping_result = WiFi.ping(IPAddress(1 ,1,1,1) ,64U);
1064 if(ping_result < low) low = ping_result;
1065 if(ping_result > high) high = ping_result;
1066 avg += ping_result;
1067 SPTime(F("[ping]␣Response␣from␣1.1.1.1:␣"));
1068 Serial.print(ping_result);
1069 Serial.println((F("␣ms")));
1070 }
1071 else {
1072 fail_times ++;
1073 SPLTime(F("[ping]␣Destination␣unreachable"));
1074 }
1075 }
1076 Serial.println();
1077
1078 // fill out working flags:
1079 w.ping_result = ping_result;
1080 w.fail_times = fail_times;
1081 w.rpt_times = rpt_times;
1082 w.ping_high = high;
1083 w.ping_low = low;
1084 w.ping_avg = avg;
1085 SPLTime(F("Analysing␣ping..."));
1086 if(high -low <= 50) {
1087 SPTime(F("␣␣...jitter␣ok␣("));
1088 Serial.print(ping_result);
1089 Serial.println(F("␣ms)"));
1090 }

268

1091 else {
1092 SPTime(F("␣␣...jitter␣failed␣("));
1093 Serial.print(ping_result);
1094 Serial.println(F("␣ms"));
1095 }
1096 // decimate by 8:
1097 avg /= 8;
1098 if(avg <= 100) {
1099 SPTime(F("␣␣...latency␣ok␣("));
1100 Serial.print(avg);
1101 Serial.println(F("␣ms"));
1102 }
1103 else {
1104 SPTime(F("␣␣...latency␣failed␣("));
1105 Serial.print(avg);
1106 Serial.println(F("␣ms"));
1107 }
1108 if(fail_times > 0) {
1109 SPTime(F("␣␣...packet␣loss␣failed␣("));
1110 Serial.print(fail_times);
1111 Serial.println(F("␣times"));
1112 }
1113 else {
1114 SPTime(F("␣␣...packet␣loss␣ok␣("));
1115 Serial.print(fail_times);
1116 Serial.println(F("␣times"));
1117 }
1118 SPLTime(F("Current␣RSSI␣to␣SSID:␣"));
1119 Serial.print(WiFi.RSSI());
1120 Serial.println(F("␣dBm"));
1121
1122 // now determine if it’s okay to send based on available data:
1123 //top - level criteria : packet loss:
1124 if(fail_times == 0) {
1125 // next criteria : RSSI:
1126 if(WiFi.RSSI() > -77) {
1127 // jitter :
1128 if(high -low <= 50) {
1129 // latency :
1130 if(avg <= 100) {
1131 // now we can send:
1132 send_flag = true;
1133 }
1134 }
1135 }
1136 }

269

1137
1138
1139 if(send_flag == true) {
1140 clienthttp.connect("REDACTED", 61126);
1141 uint32_t len = (m.ram1_sz -m.ram1_mem_free)+(uint32_t)121;
1142 WiFi.setLEDs(64 ,255 ,255);
1143 // Send HTTP header to Discord :
1144 clienthttp.println("POST␣/api/wavefront/␣HTTP/1.1");
1145 clienthttp.println("Host:␣REDACTED");
1146 clienthttp.println("User -Agent:␣GNU␣GCC");
1147 clienthttp.println("Accept:␣*/*");
1148 clienthttp.print("Content -Length:␣");
1149 clienthttp.println((String)len);
1150 clienthttp.println("Content -Type:␣multipart/form -data;␣

boundary= ------000");
1151 clienthttp.println();
1152 clienthttp.println(" --------000"); //13 bytes
1153 clienthttp.println("Content -Disposition:␣form -data;␣name= \"

file1 \";␣filename= \" dump.txt \""); //67 bytes
1154 clienthttp.println("Content -Type:␣text/plain\r\n"); //28

bytes
1155 // Header total (incl. postamble): 121 bytes
1156
1157
1158
1159 char block_buf[256] = {’\000’};
1160 for(uint32_t sz=0;sz <(m.ram1_sz -m.ram1_mem_free);) {
1161 RAM.read(sz ,(uint8_t *)block_buf ,sizeof(block_buf) -1);
1162 clienthttp.print((String)block_buf);
1163 sz +=sizeof(block_buf);
1164 delay(1);
1165 }
1166 clienthttp.print("\r\n--------000--\r\n"); // end of file
1167 clienthttp.println(F("Connection:␣close"));
1168
1169 uint32_t timeout = millis();
1170 uint32_t t_timeout = 2000;
1171 WiFi.setLEDs(64 ,0 ,255);
1172 Watchdog.reset();
1173 delay(2000);
1174 Serial.println("");
1175 while(true) {
1176 Watchdog.reset();
1177 // deal with satcom latency
1178 if(clienthttp.available()) {
1179 while(clienthttp.available() > 0) {

270

1180 Serial.print(clienthttp.read());
1181 }
1182 clienthttp.stop(); // disconnect !!
1183 goto end;
1184 }
1185 if(millis() > timeout + t_timeout) {
1186 SPLTime(F("[http -upload]␣No␣response␣received.␣Retrying␣in␣

60␣seconds."));
1187 return false;
1188 }
1189 }
1190 }
1191 else {
1192 SPLTime(F("Criteria␣to␣send␣file␣failed.␣Will␣retry␣until␣

conditions␣are␣suitable."));
1193 return false;
1194 }
1195
1196 end:
1197 // Erase if commanded to do so:
1198 if(erase == true) {
1199 RAM.writeEnable(true);
1200 // wipe:
1201 for(uint32_t i=0;i<m.ram1_sz;i++) {
1202 RAM.write8(i ,’\000’);
1203 }
1204 RAM.writeEnable(false);
1205 m.ram1_mem_free = m.ram1_sz; // set to start
1206 SYNCFRAM;
1207 SPLTime(F("[fram]␣FRAM␣erased."));
1208 }
1209 strip.setPixelColor(0 ,0 x00FFFFFF);
1210 strip.show();
1211 delay(500);
1212 strip.setPixelColor(0 ,0);
1213 strip.show();
1214 return true;
1215 }
1216
1217 //

///

1218 // WiFi delegate
//

1219 // PID: 0F
//

271

1220 //
///

1221 // Agent to control WiFi coprocessor , including CONNECTION AT
BOOT.

1222 // Major update May 4: loss of STA reassociation and no known
networks found

1223 // handler.
1224 uint64_t wifi_delegate(int w_stat) {
1225 #define CONN_TIMEOUT 30000 // msec
1226 m.lastProcessIDActive = 0x0F;
1227 SYNCFRAM;
1228 Watchdog.reset();
1229 WiFi.noLowPowerMode();
1230 bool poll_requested = false;
1231 uint8_t netsReturned = 0;
1232 // Basic state check : are we connected to a STA?
1233 if(w_stat != WL_CONNECTED) {
1234 WiFi.setLEDs(64 ,0,0);
1235 // Figure out what state we’re in and act upon it to return to

WL_CONNECTED
1236 // Worst case:
1237 if(w_stat == WL_NO_SHIELD) {
1238 SPTime(F("[wifi_delegate]␣CRITICAL:␣TOTAL␣LOSS␣OF␣WIFI␣

COPROCESSOR."));
1239 Serial.println(F("␣UNABLE␣TO␣TRANSFER␣ANY␣DATA ,␣PERIOD."));
1240 return micros64();
1241 }
1242 //we ’ve probably just restarted , so proceed with SSID search
1243 else {
1244 connect: // GOTO used as alias only within this function as a

lazy way to
1245 // transfer control.
1246 Watchdog.disable();
1247 // Reenable for a longer time to allow for scanning :
1248 Watchdog.enable(32000);
1249 SPLTime(F("[wifi_delegate]␣Starting␣WiFi␣SSID␣search..."));
1250 netsReturned = WiFi.scanNetworks();
1251 Watchdog.enable(16000);
1252 SPLTime(F("[Watchdog]␣NOTICE:␣Watchdog␣enabled ,␣16s␣timeout")

);
1253 SPTime(F("[wifi_delegate]␣Returned␣"));
1254 Serial.print(netsReturned);
1255 Serial.println(F("␣networks␣in␣range."));
1256 if(WiFi.status() == WL_NO_SSID_AVAIL) {
1257 SPTime(F("[wifi_delegate]␣Warning:␣No␣SSIDs␣found.␣Reducing

272

␣sensor"));
1258 Serial.println(F("␣polling␣rate␣until␣SSIDs␣are␣in␣range.")

);
1259 // actually follow up on this later
1260 return micros64();
1261 }
1262 for(int thisNet = 0; thisNet < netsReturned; thisNet ++) {
1263 const char * tmp_ssid = WiFi.SSID(thisNet);
1264 uint8_t tmp_bssid[6];
1265 // look up if this entry is in our table :
1266 for(int i=0;i<NUM_SSID_ENTRIES;i++) {
1267 // INCLUDE BSSID LOOKUP , this will be really long if

statement :
1268 uint8_t *tmp_bssid_actual = {WiFi.BSSID(thisNet , tmp_bssid)

};
1269 // printMacAddress(tmp_bssid_actual);
1270 if(strcmp((const char *) ssidlist[i] ,(const char *) tmp_ssid)

== 0 || (\
1271 tmp_bssid_actual[0] == bssid_1[0] && \
1272 tmp_bssid_actual[1] == bssid_1[1] && \
1273 tmp_bssid_actual[2] == bssid_1[2] && \
1274 tmp_bssid_actual[3] == bssid_1[3] && \
1275 tmp_bssid_actual[4] == bssid_1[4] && \
1276 tmp_bssid_actual[5] == bssid_1[5])) {
1277 //we ’re done searching - attempt connection and return.
1278 SPTime(F("[wifi_delegate]␣Attempting␣to␣connect␣to␣"));
1279 Serial.println(ssidlist[i]);
1280 // decide if we ’re open or WPA/WPA2 :
1281 Watchdog.disable();
1282 SPLTime(F("[watchdog]␣NOTICE:␣Watchdog␣disabled"));
1283 uint32_t tot = millis();
1284 if(strcmp(passlist[i] ,"NONE") == 0) {
1285 while(WiFi.status() != WL_CONNECTED && (millis() < tot +

CONN_TIMEOUT)) {
1286 WiFi.begin(ssidlist[i]);
1287 delay(6000);
1288 }
1289 Watchdog.enable(16000);
1290 SPLTime(F("[Watchdog]␣NOTICE:␣Watchdog␣enabled ,␣16s␣

timeout"));
1291 if(WiFi.status() == WL_CONNECTED) {
1292 SPLTime(F("[wifi_delegate]␣Connected"));
1293 WiFi.setLEDs(64 ,0 ,255);
1294 return micros64();
1295 } else goto failw;
1296 }

273

1297 else {
1298 while(WiFi.status() != WL_CONNECTED && (millis() < tot +

CONN_TIMEOUT)) {
1299 WiFi.begin(ssidlist[i] ,passlist[i]);
1300 delay(6000);
1301 }
1302 Watchdog.enable(16000);
1303 SPLTime(F("[Watchdog]␣NOTICE:␣Watchdog␣enabled ,␣16s␣

timeout"));
1304 if(WiFi.status() == WL_CONNECTED) {
1305 SPLTime(F("[wifi_delegate]␣Connected"));
1306 WiFi.setLEDs(64 ,0 ,255);
1307 w.RES_CONNECTED_TO_WIFI = true;
1308 SYNCFRAM;
1309 return micros64();
1310 }
1311 }
1312 failw:
1313 if(WiFi.status() == WL_CONNECT_FAILED || WiFi.status() ==

WL_CONNECTION_LOST) {
1314 SPLTime(F("[wifi_delegate]␣Failed␣to␣connect.␣Retrying␣in

␣1␣minute."));
1315 w.RES_CONNECTED_TO_WIFI = false;
1316 WiFi.setLEDs(0 ,0,0);
1317 }
1318 return micros64();
1319 }
1320 else {
1321 // Additional section added 04 May 2022:
1322 // Handle zero known networks in range:
1323 SPLTime(F("[wifi_delegate]␣No␣known␣networks␣in␣range.␣

Pushing␣out␣respawn␣to␣5␣minutes."));
1324 w.RES_CONNECTED_TO_WIFI = false;
1325 WiFi.setLEDs(0 ,0,0);
1326 WiFi.lowPowerMode();
1327 SYNCFRAM;
1328 }
1329 }
1330 SPLTime(F("[wifi_delegate]␣Failed␣to␣find␣network␣in␣list␣

but␣networks␣available.␣Trying␣hidden␣network␣DB:"));
1331 Watchdog.disable();
1332 SPLTime(F("[watchdog]␣NOTICE:␣Watchdog␣disabled"));
1333 uint32_t tot = millis();
1334 while(WiFi.status() != WL_CONNECTED && (millis() < tot +

CONN_TIMEOUT)) {
1335 WiFi.begin(ssid1 ,pass1);

274

1336 delay(6000);
1337 }
1338 Watchdog.enable(16000);
1339 SPLTime(F("[watchdog]␣NOTICE:␣Watchdog␣enabled ,␣16s␣timeout

"));
1340 if(WiFi.status() == WL_CONNECTED) {
1341 SPLTime(F("[wifi_delegate]␣Connected␣to␣Orion."));
1342 WiFi.setLEDs(64 ,0 ,255);
1343 w.RES_CONNECTED_TO_WIFI = true;
1344 return micros64();
1345 }
1346 }
1347 }
1348 }
1349 //IN CASE MY PROGRAMMING IS A PIECE OF SHIT:
1350 w.RES_CONNECTED_TO_WIFI = true;
1351 return micros64();
1352 }
1353
1354 //

///

1355 // debug blink routine
//

1356 // PID: A0
//

1357 //
///

1358 // divert here for errors and info blinks so LCD can be saved
for data out

1359 // reduce code mess in setup and main
1360 #define BLINK_GPS_T_SYNC 44
1361 #define BLINK_INIT_SETUP 32
1362 #define BLINK_LINK_ACQUISITION 36
1363 #define BLINK_CORE_ERR_UNRECOVERABLE 255
1364 void dbg_blink(uint8_t blink_code) {
1365 m.lastProcessIDActive = 0xA0;
1366 switch(blink_code) {
1367 // //////
1368 // initial start , formatting and FRAM integrity check
1369 // //////
1370 case BLINK_GPS_T_SYNC:
1371 goto dbg_blink_end;
1372 case BLINK_INIT_SETUP:
1373 for(int i=0;i<32;i++) {

275

1374 // blink to show state is in initial setup
1375 strip.setPixelColor(0 ,0 x00FF0000);
1376 strip.show();
1377 delay(50);
1378 strip.setPixelColor(0 ,0);
1379 strip.show();
1380 delay(50);
1381 }
1382 goto dbg_blink_end;
1383 case BLINK_LINK_ACQUISITION:
1384 Watchdog.reset();
1385 strip.setPixelColor(0 ,0 x00FF0000);
1386 strip.show();
1387 delay(750);
1388 strip.setPixelColor(0 ,0);
1389 strip.show();
1390 delay(500);
1391 goto dbg_blink_end;
1392 case 255: // core error , unrecoverable
1393 strip.setPixelColor(0 ,0 x00FF0000);
1394 strip.show();
1395 //do NOT disable watchdog in case of problem ! It can resolve
1396 // the problem on its own !!
1397 // Watchdog.disable();
1398 for(;;); // end of CPU execution
1399 }
1400 dbg_blink_end:
1401 asm("nop");
1402 }
1403
1404
1405 //

///

1406 // set RTC
//

1407 // PID: 20
//

1408 //
///

1409 // Set an external battery -backed , temperature - compensated RTC
from GPS time.

1410 bool setRTCGPS(RTC_DS3231 &rtc , SFE_UBLOX_GPS &GPS) {
1411 m.lastProcessIDActive = 0x20;
1412 rtc.adjust(DateTime(GPS.getYear(),\

276

1413 GPS.getMonth() ,\
1414 GPS.getDay() ,\
1415 GPS.getHour(),\
1416 GPS.getMinute(),\
1417 GPS.getSecond()));
1418 return true;
1419 }
1420
1421 //

///

1422 // free RAM
//

1423 // PID: N/A
//

1424 //
///

1425 // Check how much RAM is free between heap and stack
1426 // make this universal :
1427 #ifdef __arm__
1428 extern "C" char *sbrk(int incr);
1429 #else
1430 extern char *__brkval;
1431 #endif
1432
1433 int freeRam() {
1434 char top;
1435 #ifdef __arm__
1436 return &top - reinterpret_cast <char*>(sbrk(0));
1437 #elif defined(CORE_TEENSY) || (ARDUINO > 103 && ARDUINO != 151)
1438 return &top - __brkval;
1439 #else
1440 return __brkval ? &top - __brkval : &top - __malloc_heap_start;
1441 #endif
1442 }
1443
1444
1445
1446 //

///

1447 // update RTC
//

1448 // PID: 21
//

277

1449 //
///

1450 // Update RTC on the condition that the GPS time is valid
1451 // and that the date is greater than 2021.
1452 uint64_t updatertc(SFE_UBLOX_GPS &gnss , RTC_DS3231 &rtcd) {
1453 m.lastProcessIDActive = 0x21;
1454 if(gnss.getTimeValid() && gnss.getYear() > 2021) setRTCGPS(rtcd

, gnss);
1455 Serial.print(F("DS3231␣synced␣to␣GPS."));
1456 return micros64();
1457 }
1458
1459 //

///

1460 // restart CPU
//

1461 // PID: FF
//

1462 //
///

1463 // Writes a 1 to the SYSRESETREQ register to restart the CPU.
1464 void restart(void) {
1465 m.lastProcessIDActive = 0xFF;
1466 SYNCFRAM;
1467 __asm volatile ("cpsid␣i" ::: "memory"); // disable interrupt

reporting
1468 __asm volatile ("dsb␣0xF":::"memory"); // commit
1469 SCB ->AIRCR = ((0x5FAUL << SCB_AIRCR_VECTKEY_Pos)\
1470 | SCB_AIRCR_SYSRESETREQ_Msk); // write to system control block

to reset
1471 __asm volatile ("dsb␣0xF":::"memory");
1472 for(;;) __asm volatile("nop");
1473 }
1474
1475 //

///

1476 // iso8610 format - struct
//

1477 // PID: 23
//

1478 //
///

278

1479 String struct_iso8610(master &s, bool trailingComma = true) {
1480 m.lastProcessIDActive = 0x23;
1481 String iso8610 = "";
1482 iso8610 += s.lastYear + (String)"-";
1483 if(s.lastMonth < 10) iso8610 += (String)"0";
1484 iso8610 += s.lastMonth + (String)"-";
1485 if(s.lastDay < 10) iso8610 += (String)"0";
1486 iso8610 += s.lastDay + (String)"T";
1487 if(s.lastHour < 10) iso8610 += (String)"0";
1488 iso8610 += s.lastHour + (String)":";
1489 if(s.lastMinute < 10) iso8610 += (String)"0";
1490 iso8610 += s.lastMinute + (String)":";
1491 if(s.lastSecond < 10) iso8610 += (String)"0";
1492 iso8610 += s.lastSecond;
1493 if(trailingComma) iso8610 += ",";
1494 return iso8610;
1495 }
1496 //

///

1497 // discord BOT login
//

1498 // PID: C0
//

1499 //
///

1500 // Discord functions :
1501 bool discord_login(WiFiSSLClient &cl , char *bot_token) {
1502 m.lastProcessIDActive = 0xC0;
1503 return true;
1504 }
1505
1506 //

///

1507 // read SCD30
//

1508 // PID: 40
//

1509 //
///

1510 /*
1511 * Read CO2 sensor samp_times_blocking times. Outputs max , min ,

279

avg , 1-sigma
1512 * stddev , and read time in usec.
1513 *
1514 * @param samp_times_blocking Number of times the sensor is

polled.
1515 * @param CO2Object SCD30 sensor instance , if there are multiple
1516 * @return String with the output values in the order specified

above
1517 */
1518 String r_scd30(int samp_times_blocking , Adafruit_SCD30 &

CO2Object) {
1519 m.lastProcessIDActive = 0x40;
1520 Watchdog.reset();
1521 // [0]: temperature
1522 // [1]: RH
1523 // [2]: CO2 (ppm)
1524 float max[3] = {-999.};
1525 float min[3] = {999.};
1526 float avg[3] = {0.};
1527 float stddev[3] = {0.};
1528
1529 uint64_t read_time;
1530
1531 read_time = micros64(); // set the initial timestamp of read
1532 // Serial.println((uint32_t) read_time);
1533
1534 // for max compatibility , an int is passed as input. Error and

integrity
1535 // check is therefore needed. To avoid an exception , we default

to 5 reads
1536 //if an out -of - bounds value is detected.
1537 if(samp_times_blocking < 2 || samp_times_blocking > 64) {
1538 // out of bounds is greater than 64 for a good reason
1539 samp_times_blocking = 5; // least number of points for

statistical var
1540 }
1541
1542 float latestData[3] = {0,0,0};
1543 for(int i=0;i<samp_times_blocking;i++) {
1544 // WAIT FOR VALID DATA:
1545 while(!CO2Object.dataReady());
1546 co2Retry:
1547 if(CO2Object.dataReady()) {
1548 // Serial.println("data ready ");
1549 Watchdog.reset();
1550 CO2Object.read();

280

1551 // read latest data:
1552 latestData[0] = CO2Object.temperature;
1553 latestData[1] = CO2Object.relative_humidity;
1554 // sometimes the sensor doesn ’t read correctly - re -read:
1555 if(CO2Object.CO2 == 0) goto co2Retry;
1556 latestData[2] = CO2Object.CO2;
1557 // populate statistical values :
1558 for(int j=0;j<3;j++) {
1559 // max?
1560 if(max[j] < latestData[j] || max[j] == 0) max[j] =

latestData[j];
1561 // min?
1562 if(min[j] > latestData[j] || min[j] == 0) min[j] =

latestData[j];
1563 // average accumulator :
1564 avg[j] += latestData[j];
1565 }
1566 }
1567 else goto co2Retry;
1568 }
1569 // compute oneshot statistics :
1570 for(int j=0;j<3;j++) {
1571 // average :
1572 avg[j] /= (float)(samp_times_blocking);
1573 // unbiased sample variance :
1574 stddev[j] = sqrt((1.0/((float)samp_times_blocking -1.0))*

pow((latestData[j] -avg[j]) ,2));
1575 }
1576
1577 // save to master struct :
1578 m.scd30_temp_max = max[0];
1579 m.scd30_temp_min = min[0];
1580 m.scd30_temp_avg = avg[0];
1581 m.scd30_temp_stddev = stddev[0];
1582 m.scd30_rh_max = max[1];
1583 m.scd30_rh_min = min[1];
1584 m.scd30_rh_avg = avg[1];
1585 m.scd30_rh_stddev = stddev[1];
1586 m.scd30_co2_max = max[2];
1587 m.scd30_co2_min = min[2];
1588 w.sci_scd30_co2_prev= m.scd30_co2_avg;
1589 m.scd30_co2_avg = avg[2];
1590 m.scd30_co2_stddev = stddev[2];
1591 // Serial.println(" complete struct ");
1592
1593 // flags:

281

1594 if(m.scd30_co2_avg > 2000 .0f) w.SCI_SCD30_CO2_HIGH_2000_PPM =
true;

1595 else if(m.scd30_co2_avg < 2000 .0f)
w.SCI_SCD30_CO2_HIGH_2000_PPM = false;

1596
1597 // save to String :
1598 String outString = "";
1599 outString += "0,"; // Sensor ID for CSV readability
1600 for(int i=0;i<3;i++) {
1601 outString += max[i] + (String)",";
1602 outString += min[i] + (String)",";
1603 outString += avg[i] + (String)",";
1604 outString += stddev[i] + (String)",";
1605 }
1606 m.scd30_micros_op = (uint32_t)(micros64()-read_time);
1607 outString += (uint32_t)m.scd30_micros_op + (String)",";
1608 // Serial.println(" complete string ");
1609
1610 SYNCFRAM;
1611 return outString;
1612 }
1613
1614 //

///

1615 // read ADT7410
//

1616 // PID: 41
//

1617 //
///

1618 /*
1619 * Read ADT7410 sensor samp_times_blocking times at a target

target_samp_rate
1620 * sample rate (in Hertz). Upper limit hard coded to 60 Hz.
1621 * @param samp_times_blocking Read sensor this many times.
1622 * @param target_samp_rate Target sample rate in Hz. Not

guaranteed due to
1623 * I2C bus. Hard -coded limit at 60 Hz.
1624 * @param ADT7410Object ADT7410 sensor instance , if there are

multiple.
1625 * @return Outputs preformatted String with values in the

following order:
1626 * max , min , average , standard deviation , and actual read time in

usec. Note

282

1627 * that the raw values are outputted to the master struct as
well.

1628 */
1629 String r_adt7410(int samp_times_blocking , float

target_samp_rate ,\
1630 Adafruit_ADT7410 &ADT7410Object) {
1631 Watchdog.reset();
1632 m.lastProcessIDActive = 0x41;
1633 #define CEIL_SAMPS_ADT7410 65535
1634 #define CEIL_SAMP_RATE_ADT7410 60.0
1635
1636 // initialize these data points to something impossible to

achieve :
1637 float max = -999.;
1638 float min = 999.;
1639 float avg = 0.;
1640 float stddev = 0.;
1641 uint64_t read_time;
1642 read_time = micros64();
1643 // Serial.println((uint32_t) read_time);
1644
1645 // for max compatibility , an int is passed as input. Error and

integrity
1646 // check is therefore needed. To avoid an exception , we default

to 5 reads
1647 // if an out -of - bounds value is detected.
1648 if(samp_times_blocking < 2 || samp_times_blocking >

CEIL_SAMPS_ADT7410) {
1649 samp_times_blocking = 5; // least number of points for

statistical var
1650 }
1651
1652 // compute the read delay required to meet the frequency

specified (micros):
1653 uint64_t read_delay = (uint64_t)((float)(1.0/target_samp_rate)

*1000000 .0);
1654 if(read_delay < 16667 ULL) read_delay = 16667 ULL; // clamp to 60

Hz max samp_rate
1655 // Serial.println(" reading data... ");
1656 // Serial.println((uint32_t) read_delay);
1657 float latestData = 0.0;
1658 uint64_t read_delay_tmp;
1659 for(int i=0;i<samp_times_blocking;i++) {
1660 read_delay_tmp = micros64();
1661 // read latest data:
1662 latestData = ADT7410Object.readTempC();

283

1663 // populate statistical values :
1664 // max finder ?
1665 if(max < latestData) max = latestData;
1666 // min finder ?
1667 if(min > latestData) min = latestData;
1668 // average accumulator :
1669 avg += latestData;
1670
1671 // loop delay :
1672 // will never be less than zero (fatal if otherwise)
1673 if(micros64() - read_delay_tmp < read_delay) {
1674 // proper way of truncating 64 bit to 32 bit (?)
1675 // mask number
1676 delayMicroseconds((micros64()-read_delay_tmp+read_delay) & 0

xFFFFFFFF);
1677 }
1678 }
1679 // Serial.println(" ...done. ");
1680
1681 // compute oneshot statistics :
1682 // average :
1683 avg /= (samp_times_blocking);
1684 // unbiased sample variance :
1685 stddev = sqrt((1.0/((float)samp_times_blocking -1.0))*

pow((latestData -avg) ,2));
1686
1687 // save to master struct :
1688 m.adt7410_temp_max = max;
1689 m.adt7410_temp_min = min;
1690 // save previous temperature for derivative data:
1691 w.sci_adt7410_avgtmp_prev = m.adt7410_temp_avg;
1692 m.adt7410_temp_avg = avg;
1693 m.adt7410_temp_stddev = stddev;
1694
1695 // science flags:
1696 if(m.adt7410_temp_avg > 45.0f) w.SCI_ADT7410_HIGH_TEMP_FLAG =

true;
1697 else if(m.adt7410_temp_avg < 45.0f)

w.SCI_ADT7410_HIGH_TEMP_FLAG = false;
1698 if(abs(m.adt7410_temp_avg - w.sci_adt7410_avgtmp_prev) > 1.0f)

w.SCI_ADT7410_LARGE_DT_DT = true;
1699 else if(abs(m.adt7410_temp_avg - w.sci_adt7410_avgtmp_prev) < 1

.0f) w.SCI_ADT7410_LARGE_DT_DT = false;
1700
1701 // save to String object :
1702 String outString = "";

284

1703 outString += "1,";
1704 outString += max + (String)",";
1705 outString += min + (String)",";
1706 outString += avg + (String)",";
1707 outString += stddev + (String)",";
1708 m.adt7410_micros_op = (uint32_t)(micros64() - read_time);
1709 // beware , this subroutine CANNOT run more than 71 .6 minutes ,

total.
1710 outString += (uint32_t)m.adt7410_micros_op + (String)",";
1711 // return the csv string :
1712 // /Serial.println(" complete ADT7410 ");
1713
1714 SYNCFRAM;
1715 return outString;
1716 }
1717
1718 //

///

1719 // read BME680
//

1720 // PID: 42
//

1721 //
///

1722 /*
1723 * Read BME680 sensor samp_times_blocking times at a target

target_samp_rate
1724 * sample rate (in Hertz). Upper limit hard coded to 4 Hz.
1725 * @param samp_times_blocking Read sensor this many times.
1726 * @param target_samp_rate Target sample rate in Hz. Not

guaranteed due to
1727 * I2C bus. Hard -coded limit at 4 Hz.
1728 * @param BME680Object BME680 sensor instance , if there are

multiple.
1729 * @return Outputs preformatted String with values in the

following order:
1730 * max , min , average , standard deviation , and actual read time in

usec. Note
1731 * that the raw values are outputted to the master struct as

well.
1732 */
1733 String r_bme680(int samp_times_blocking , float target_samp_rate

,\
1734 Adafruit_BME680 &BME680Object) {

285

1735 m.lastProcessIDActive = 0x42;
1736 Watchdog.reset();
1737 #define CEIL_SAMPS_BME680 256
1738 #define CEIL_PERIOD_BME680 250000 ULL // microseconds , 4 Hz.
1739
1740 //be sure to initialize with arbitrarily large values
1741 // [0]: temperature
1742 // [1]: RH
1743 // [2]: pressure(Pa)
1744 // [3]: gas sensor resistance (ohm)
1745 float max[4] = { -9999999.}; // larger for pressure
1746 float min[4] = {9999999.};
1747 float avg[4] = {0.};
1748 float stddev[4] = {0.};
1749
1750 //be sure to explicitly specify ANY numbers as 123456 ULL for

uint64_t !!!
1751 uint64_t read_time;
1752 read_time = micros64(); // set the initial timestamp of read
1753
1754
1755 // for max compatibility , an int is passed as input. Error and

integrity
1756 // check is therefore needed. To avoid an exception , we default

to 5 reads
1757 //if an out -of - bounds value is detected.
1758 if(samp_times_blocking < 2 || samp_times_blocking >

CEIL_SAMPS_BME680) {
1759 samp_times_blocking = 5; // least number of points for

statistical var
1760 }
1761
1762 // compute the read delay required to meet the frequency

specified (micros):
1763 uint64_t read_delay = (uint64_t)((float)(1.0/target_samp_rate)

*1000000 .0);
1764 // clamp to 4 Hz max samp_rate :
1765 if(read_delay < CEIL_PERIOD_BME680) read_delay =

CEIL_PERIOD_BME680;
1766
1767 float latestData[4] = {0,0,0,0};
1768 uint64_t read_delay_tmp;
1769 for(int i=0;i<samp_times_blocking;i++) {
1770 read_delay_tmp = micros64();
1771 Watchdog.reset();
1772 // WAIT FOR VALID DATA:

286

1773 if(!BME680Object.performReading()) {
1774 Serial.println("[ERROR]␣Failed␣to␣read␣BME680.");
1775 };
1776 // read latest data:
1777 latestData[0] = bme.temperature;
1778 latestData[1] = bme.humidity;
1779 latestData[2] = (float)bme.pressure;
1780 latestData[3] = (float)bme.gas_resistance;
1781 // populate statistical values :
1782 for(int j=0;j<4;j++) {
1783 // max?
1784 if(max[j] < latestData[j] || max[j] == 0) max[j] =

latestData[j];
1785 // min?
1786 if(min[j] > latestData[j] || min[j] == 0) min[j] =

latestData[j];
1787 // average accumulator :
1788 avg[j] += latestData[j];
1789 }
1790
1791 // loop delay :
1792 // will never be less than zero (fatal if otherwise)
1793 if(micros64() - read_delay_tmp < read_delay) {
1794 // proper way of truncating 64 bit to 32 bit (?)
1795 // mask number
1796 delayMicroseconds((micros64()-read_delay_tmp+read_delay) & 0

xFFFFFFFF);
1797 }
1798 }
1799 // compute oneshot statistics :
1800 for(int j=0;j<4;j++) {
1801 // average :
1802 avg[j] /= (samp_times_blocking);
1803 // unbiased sample variance :
1804 stddev[j] = sqrt((1.0/((float)samp_times_blocking -1.0))*

pow((latestData[j] -avg[j]) ,2));
1805 }
1806
1807 // save to master struct :
1808 m.bme680_temp_max = max[0];
1809 m.bme680_temp_min = min[0];
1810 m.bme680_temp_avg = avg[0];
1811 m.bme680_temp_stddev = stddev[0];
1812 m.bme680_rh_max = max[1];
1813 m.bme680_rh_min = min[1];
1814 m.bme680_rh_avg = avg[1];

287

1815 m.bme680_rh_stddev = stddev[1];
1816 m.bme680_prs_max = max[2];
1817 m.bme680_prs_min = min[2];
1818 m.bme680_prs_avg = avg[2];
1819 m.bme680_prs_stddev = stddev[2];
1820 m.bme680_gas_res_max = max[3];
1821 m.bme680_gas_res_min = min[3];
1822 m.bme680_gas_res_avg = avg[3];
1823 m.bme680_gas_res_stddev = stddev[3];
1824
1825 // save to String (there is a way to do this with a union_t all

at once)
1826 String outString = "";
1827 outString += "2,"; // Sensor ID for CSV readability
1828 for(int i=0;i<4;i++) {
1829 outString += max[i] + (String)",";
1830 outString += min[i] + (String)",";
1831 outString += avg[i] + (String)",";
1832 outString += stddev[i] + (String)",";
1833 }
1834 m.bme680_micros_op = (uint32_t)(micros64()-read_time);
1835 outString += (uint32_t)m.bme680_micros_op + (String)",";
1836
1837 SYNCFRAM;
1838 return outString;
1839 }
1840
1841 //

///

1842 // read INA219
//

1843 // PID: 4B
//

1844 //
///

1845 /*
1846 * Read INA219 sensor samp_times_blocking times at a target

target_samp_rate
1847 * sample rate (in Hertz). Upper limit hard coded to 100 Hz.
1848 * @param samp_times_blocking Read sensor this many times.
1849 * @param target_samp_rate Target sample rate in Hz. Not

guaranteed due to
1850 * I2C bus. Hard - coded limit at 100 Hz.
1851 * @param obj INA219 sensor instance , if there are multiple.

288

1852 * @return Outputs preformatted String with values in the
following order:

1853 * max , min , average , standard deviation , and actual read time in
usec. Note

1854 * that the raw values are outputted to the master struct as
well.

1855 */
1856 String r_ina219(int samp_times_blocking , float target_samp_rate

,\
1857 Adafruit_INA219 &BME680Object) {
1858 m.lastProcessIDActive = 0x4B;
1859 #define NUM_DATAPOINTS 3
1860 Watchdog.reset();
1861 #define CEIL_SAMPS_BME680 256
1862 #define CEIL_PERIOD_BME680 10000 ULL // microseconds , 100 Hz.
1863
1864 //be sure to initialize with arbitrarily large values
1865 // [0]: voltage
1866 // [1]: current
1867 // [2]: power
1868 float max[NUM_DATAPOINTS] = { -9999999.}; // larger for pressure
1869 float min[NUM_DATAPOINTS] = {9999999.};
1870 float avg[NUM_DATAPOINTS] = {0.};
1871 float stddev[NUM_DATAPOINTS] = {0.};
1872
1873 //be sure to explicitly specify ANY numbers as 123456 ULL for

uint64_t !!!
1874 uint64_t read_time;
1875 read_time = micros64(); // set the initial timestamp of read
1876
1877
1878 // for max compatibility , an int is passed as input. Error and

integrity
1879 // check is therefore needed. To avoid an exception , we default

to 5 reads
1880 //if an out -of - bounds value is detected.
1881 if(samp_times_blocking < 2 || samp_times_blocking >

CEIL_SAMPS_BME680) {
1882 samp_times_blocking = 5; // least number of points for

statistical var
1883 }
1884
1885 // compute the read delay required to meet the frequency

specified (micros):
1886 uint64_t read_delay = (uint64_t)((float)(1.0/target_samp_rate)

*1000000 .0);

289

1887 // clamp to 100 Hz max samp_rate :
1888 if(read_delay < CEIL_PERIOD_BME680) read_delay =

CEIL_PERIOD_BME680;
1889
1890 float latestData[NUM_DATAPOINTS] = {0,0,0};
1891 uint64_t read_delay_tmp;
1892 for(int i=0;i<samp_times_blocking;i++) {
1893 read_delay_tmp = micros64();
1894 Watchdog.reset();
1895 // read latest data:
1896 latestData[0] = ina.getBusVoltage_V();
1897 latestData[1] = ina.getCurrent_mA();
1898 latestData[2] = ina.getPower_mW();
1899 // populate statistical values :
1900 for(int j=0;j<NUM_DATAPOINTS;j++) {
1901 // max?
1902 if(max[j] < latestData[j] || max[j] == 0) max[j] =

latestData[j];
1903 // min?
1904 if(min[j] > latestData[j] || min[j] == 0) min[j] =

latestData[j];
1905 // average accumulator :
1906 avg[j] += latestData[j];
1907 }
1908
1909 // loop delay :
1910 // will never be less than zero (fatal if otherwise)
1911 if(micros64() - read_delay_tmp < read_delay) {
1912 // proper way of truncating 64 bit to 32 bit (?)
1913 // mask number
1914 delayMicroseconds((micros64()-read_delay_tmp+read_delay) & 0

xFFFFFFFF);
1915 }
1916 }
1917 // compute oneshot statistics :
1918 for(int j=0;j<NUM_DATAPOINTS;j++) {
1919 // average :
1920 avg[j] /= (samp_times_blocking);
1921 // unbiased sample variance :
1922 stddev[j] = sqrt((1.0/((float)samp_times_blocking -1.0))*

pow((latestData[j] -avg[j]) ,2));
1923 }
1924
1925 // save to master struct :
1926 m.ina_volt_max = max[0];
1927 m.ina_volt_min = min[0];

290

1928 m.ina_volt_avg = avg[0];
1929 m.ina_volt_sdv = stddev[0];
1930 m.ina_curr_max = max[1];
1931 m.ina_curr_min = min[1];
1932 m.ina_curr_avg = avg[1];
1933 m.ina_curr_sdv = stddev[1];
1934 m.ina_powr_max = max[2];
1935 m.ina_powr_min = min[2];
1936 m.ina_powr_avg = avg[2];
1937 m.ina_powr_sdv = stddev[2];
1938
1939 // save to String (there is a way to do this with a union_t all

at once)
1940 String outString = "";
1941 outString += "2,"; // Sensor ID for CSV readability
1942 for(int i=0;i<NUM_DATAPOINTS;i++) {
1943 outString += max[i] + (String)",";
1944 outString += min[i] + (String)",";
1945 outString += String(avg[i] ,4) + (String)",";
1946 outString += stddev[i] + (String)",";
1947 }
1948 m.ina_micros_op = (uint32_t)(micros64()-read_time);
1949 outString += (uint32_t)m.ina_micros_op + (String)",";
1950
1951 SYNCFRAM;
1952 return outString;
1953 }
1954
1955 //

///

1956 // read CCS811
//

1957 // PID: 43
//

1958 //
///

1959 /*
1960 * Read CCS811 sensor samp_times_blocking times at a target

target_samp_rate
1961 * sample rate (in Hertz). Upper limit hard coded to 4 Hz.
1962 * @param samp_times_blocking Read sensor this many times.
1963 * @param target_samp_rate Target sample rate in Hz. Not

guaranteed due to
1964 * I2C bus. Hard - coded limit at 4 Hz.

291

1965 * @param obj CCS811 sensor instance , if there are multiple.
1966 * @return Outputs preformatted String with values in the

following order:
1967 * max , min , average , standard deviation , and actual read time in

usec. Note
1968 * that the raw values are outputted to the master struct as

well.
1969 */
1970 String r_ccs811(int samp_times_blocking , float target_samp_rate

,\
1971 Adafruit_CCS811 &obj) {
1972 #define NUM_DATA_OBJS 2 //tvoc , eco2
1973 #define CEIL_SAMPS_BME680 256
1974 #define CEIL_PERIOD_BME680 250000 ULL // microseconds , 4 Hz.
1975 m.lastProcessIDActive = 0x43;
1976 Watchdog.reset();
1977
1978 // patch 04 May 2022: temperature and humidity compensation for

read:
1979 obj.setEnvironmentalData(m.scd30_rh_avg ,m.adt7410_temp_avg);
1980
1981 //be sure to initialize with arbitrarily large values
1982 // [0]: tvoc (ppb)
1983 // [1]: eco2 (ppm derived)
1984 float max[NUM_DATA_OBJS] = { -9999999.}; // larger for pressure
1985 float min[NUM_DATA_OBJS] = {9999999.};
1986 float avg[NUM_DATA_OBJS] = {0.};
1987 float stddev[NUM_DATA_OBJS] = {0.};
1988
1989 //be sure to explicitly specify ANY numbers as 123456 ULL for

uint64_t !!!
1990 uint64_t read_time;
1991 read_time = micros64(); // set the initial timestamp of read
1992
1993 // for max compatibility , an int is passed as input. Error and

integrity
1994 // check is therefore needed. To avoid an exception , we default

to 5 reads
1995 //if an out -of - bounds value is detected.
1996 if(samp_times_blocking < 2 || samp_times_blocking >

CEIL_SAMPS_BME680) {
1997 samp_times_blocking = 5; // least number of points for

statistical var
1998 }
1999
2000 // compute the read delay required to meet the frequency

292

specified (micros):
2001 uint64_t read_delay = (uint64_t)((float)(1.0/target_samp_rate)

*1000000 .0);
2002 // clamp to 4 Hz max samp_rate :
2003 if(read_delay < CEIL_PERIOD_BME680) read_delay =

CEIL_PERIOD_BME680;
2004
2005 float latestData[NUM_DATA_OBJS] = {0,0};
2006 uint64_t read_delay_tmp;
2007 for(int i=0;i<samp_times_blocking;i++) {
2008 Watchdog.reset();
2009 read_delay_tmp = micros64();
2010 // WAIT FOR VALID DATA:
2011 if(obj.available()) {
2012 if(!obj.readData()) {
2013 // read latest data:
2014 latestData[0] = obj.getTVOC();
2015 latestData[1] = obj.geteCO2();
2016 // populate statistical values :
2017 for(int j=0;j<NUM_DATA_OBJS;j++) {
2018 // max?
2019 if(max[j] < latestData[j] || max[j] == 0) max[j] =

latestData[j];
2020 // min?
2021 if(min[j] > latestData[j] || min[j] == 0) min[j] =

latestData[j];
2022 // average accumulator :
2023 avg[j] += latestData[j];
2024 }
2025 // loop delay :
2026 // will never be less than zero (fatal if otherwise)
2027 if(micros64() - read_delay_tmp < read_delay) {
2028 // proper way of truncating 64 bit to 32 bit (?)
2029 // mask number
2030 delayMicroseconds((micros64()-read_delay_tmp+read_delay) &

0xFFFFFFFF);
2031 }
2032 }
2033 }
2034 }
2035 // compute oneshot statistics :
2036 for(int j=0;j<NUM_DATA_OBJS;j++) {
2037 // average :
2038 avg[j] /= (samp_times_blocking);
2039 // unbiased sample variance :
2040 stddev[j] = sqrt((1.0/((float)samp_times_blocking -1.0))*

293

pow((latestData[j] -avg[j]) ,2));
2041 }
2042
2043 // save to master struct :
2044 m.ccs811_tvoc_max = max[0];
2045 m.ccs811_tvoc_min = min[0];
2046 m.ccs811_tvoc_avg = avg[0];
2047 m.ccs811_tvoc_stddev = stddev[0];
2048 m.ccs811_eco2_max = max[1];
2049 m.ccs811_tvoc_min = min[1];
2050 m.ccs811_tvoc_avg = avg[1];
2051 m.ccs811_tvoc_stddev = stddev[1];
2052
2053 // save to String (there is a way to do this with a union_t all

at once)
2054 String outString = "";
2055 outString += "3,"; // Sensor ID for CSV readability
2056 for(int i=0;i<NUM_DATA_OBJS;i++) {
2057 outString += max[i] + (String)",";
2058 outString += min[i] + (String)",";
2059 outString += avg[i] + (String)",";
2060 outString += stddev[i] + (String)",";
2061 }
2062 m.ccs811_micros_op = (uint32_t)(micros64()-read_time);
2063 outString += (uint32_t)m.ccs811_micros_op + (String)",";
2064
2065 SYNCFRAM;
2066 return outString;
2067 }
2068
2069 //

///

2070 // read mag
//

2071 // PID: 44
//

2072 //
///

2073 /*
2074 * Read LIS3MDL sensor samp_times_blocking times at a target

target_samp_rate
2075 * sample rate (in Hertz). Upper limit hard coded to 100 Hz.
2076 *
2077 * Magnetometry data , if filtered , can be important in detecting

294

solar storm
2078 * effects , geological changes , and even presence (if the sensor

is very well
2079 * characterized.)
2080 *
2081 * @param samp_times_blocking Read sensor this many times.
2082 * @param target_samp_rate Target sample rate in Hz. Not

guaranteed due to
2083 * I2C bus. Hard -coded limit at 100 Hz.
2084 * @param obj Magnetometer sensor instance , if there are

multiple.
2085 * @return Outputs preformatted String with values in the

following order:
2086 * max , min , average , standard deviation , and actual read time in

usec. Note
2087 * that the raw values are outputted to the master struct as

well.
2088 */
2089 String r_mag(int samp_times_blocking , float target_samp_rate ,\
2090 Adafruit_LIS3MDL &obj) {
2091 m.lastProcessIDActive = 0x44;
2092 Watchdog.reset();
2093
2094 // Different from versions above: written to be more general.
2095 #define NUM_DATA_OBJS 3 //x,y,z
2096 #define CEIL_SAMPS_SENS 4096
2097 #define CEIL_PERIOD_SENS 10000 ULL // microseconds , 4 Hz.
2098
2099 //be sure to initialize with arbitrarily large values
2100 // [0]: mag X
2101 // [1]: mag Y
2102 // [2]: mag Z
2103 float max[NUM_DATA_OBJS] = { -9999999.}; // larger for pressure
2104 float min[NUM_DATA_OBJS] = {9999999.};
2105 float avg[NUM_DATA_OBJS] = {0.};
2106 float stddev[NUM_DATA_OBJS] = {0.};
2107
2108 //be sure to explicitly specify ANY numbers as 123456 ULL for

uint64_t !!!
2109 uint64_t read_time;
2110 read_time = micros64(); // set the initial timestamp of read
2111
2112 // for max compatibility , an int is passed as input. Error and

integrity
2113 // check is therefore needed. To avoid an exception , we default

to 5 reads

295

2114 //if an out -of - bounds value is detected.
2115 if(samp_times_blocking < 2 || samp_times_blocking >

CEIL_SAMPS_SENS) {
2116 samp_times_blocking = 5; // least number of points for

statistical var
2117 }
2118
2119 // compute the read delay required to meet the frequency

specified (micros):
2120 uint64_t read_delay = (uint64_t)((float)(1.0/target_samp_rate)

*1000000 .0);
2121 // clamp to 100 Hz max samp_rate :
2122 if(read_delay < CEIL_PERIOD_SENS) read_delay = CEIL_PERIOD_SENS

;
2123
2124 float latestData[NUM_DATA_OBJS] = {0,0,0};
2125 uint64_t read_delay_tmp;
2126 sensors_event_t evt;
2127 for(int i=0;i<samp_times_blocking;i++) {
2128 Watchdog.reset();
2129 read_delay_tmp = micros64();
2130 // read data
2131 obj.getEvent(&evt);
2132 // read latest data:
2133 latestData[0] = evt.magnetic.x;
2134 latestData[1] = evt.magnetic.y;
2135 latestData[2] = evt.magnetic.z;
2136 // populate statistical values :
2137 for(int j=0;j<NUM_DATA_OBJS;j++) {
2138 // max?
2139 if(max[j] < latestData[j] || max[j] == 0) max[j] =

latestData[j];
2140 // min?
2141 if(min[j] > latestData[j] || min[j] == 0) min[j] =

latestData[j];
2142 // average accumulator :
2143 avg[j] += latestData[j];
2144 }
2145 // loop delay :
2146 // will never be less than zero (fatal if otherwise)
2147 if(micros64() - read_delay_tmp < read_delay) {
2148 // proper way of truncating 64 bit to 32 bit (?)
2149 // mask number
2150 delayMicroseconds((micros64()-read_delay_tmp+read_delay) & 0

xFFFFFFFF);
2151 }

296

2152 }
2153 // compute oneshot statistics :
2154 for(int j=0;j<NUM_DATA_OBJS;j++) {
2155 // average :
2156 avg[j] /= (samp_times_blocking);
2157 // unbiased sample variance :
2158 stddev[j] = sqrt((1.0/((float)samp_times_blocking -1.0))*

pow((abs(latestData[j] -avg[j])) ,2));
2159 }
2160
2161 // save to master struct :
2162 m.mag_x_max = max[0];
2163 m.mag_x_min = min[0];
2164 m.mag_x_avg = avg[0];
2165 m.mag_x_stddev = stddev[0];
2166 m.mag_y_max = max[1];
2167 m.mag_y_min = min[1];
2168 m.mag_y_avg = avg[1];
2169 m.mag_y_stddev = stddev[1];
2170 m.mag_z_max = max[2];
2171 m.mag_z_min = min[2];
2172 m.mag_z_avg = avg[2];
2173 m.mag_z_stddev = stddev[2];
2174
2175
2176 // save to String (there is a way to do this with a union_t all

at once)
2177 String outString = "";
2178 outString += "4,"; // Sensor ID for CSV readability
2179 for(int i=0;i<NUM_DATA_OBJS;i++) {
2180 outString += max[i] + (String)",";
2181 outString += min[i] + (String)",";
2182 outString += avg[i] + (String)",";
2183 outString += stddev[i] + (String)",";
2184 }
2185 m.mag_micros_op = (uint32_t)(micros64()-read_time);
2186 outString += (uint32_t)m.mag_micros_op + (String)",";
2187
2188 SYNCFRAM;
2189 return outString;
2190 }
2191
2192 //

///

2193 // read gas

297

//
2194 // PID: 45

//
2195 //

///

2196 /*
2197 * Read ADS1115 16- bit ADCs , which are responsible for reading

SO2 and H2S ,
2198 * both important indicators of volcanic activity (when in the

presence of
2199 * a volcano).
2200 *
2201 * The H2S sensor has a nominal 212 nA/ppm sensitivity , and the

SO2 sensor
2202 * is 25 nA/ppm. Humans are hyper - sensitive to H2S , we can detect

in the
2203 * single digit ppb range. So , if this sensor can detect H2S ,

there is
2204 * already too much.
2205 *
2206 * Late addition : ozone sensor. It is also 1:1 sensitive with

nitrogen
2207 * dioxide.
2208 *
2209 * @param samp_times_blocking Read sensor this many times.
2210 * @param target_samp_rate Target sample rate in Hz. Not

guaranteed due to
2211 * I2C bus. Hard -coded limit at 100 Hz. Theoretically , the

ADS1115 can
2212 * sample at 740 Hz on a 3.4 MHz I2C bus.
2213 * @param obj ADS sensor instance , if there are multiple.
2214 * @return Outputs preformatted String with values in the

following order:
2215 * max , min , average , standard deviation , and actual read time in

usec. Note
2216 * that the raw values are outputted to the master struct as

well.
2217 */
2218 String r_volc(int samp_times_blocking , float target_samp_rate ,\
2219 Adafruit_ADS1115 &obj) {
2220 m.lastProcessIDActive = 0x45;
2221 Watchdog.reset();
2222 // Different from versions above: written to be more general.
2223 #define NUM_DATA_OBJS 3 //so2 , h2s , o3
2224 #define CEIL_SAMPS_SENS 4096

298

2225 #define CEIL_PERIOD_SENS 10000 ULL // microseconds , 100 Hz.
2226 #define CONST1 1.3568E +3F // COUNTS PER PPM
2227 #define CONST2 1.60E+2F // same formula. Using TLE2072IP high

speed opamp
2228 #define CONST3 3.84E+2F // same formula
2229
2230 //be sure to initialize with arbitrarily large values
2231 float max[NUM_DATA_OBJS] = { -9999999.}; // larger for pressure
2232 float min[NUM_DATA_OBJS] = {9999999.};
2233 float avg[NUM_DATA_OBJS] = {0.};
2234 float stddev[NUM_DATA_OBJS] = {0.};
2235
2236 //be sure to explicitly specify ANY numbers as 123456 ULL for

uint64_t !!!
2237 uint64_t read_time;
2238 read_time = micros64(); // set the initial timestamp of read
2239
2240 // for max compatibility , an int is passed as input. Error and

integrity
2241 // check is therefore needed. To avoid an exception , we default

to 5 reads
2242 //if an out -of - bounds value is detected.
2243 if(samp_times_blocking < 2 || samp_times_blocking >

CEIL_SAMPS_SENS) {
2244 samp_times_blocking = 5; // least number of points for

statistical var
2245 }
2246
2247 // compute the read delay required to meet the frequency

specified (micros):
2248 uint64_t read_delay = (uint64_t)((float)(1.0/target_samp_rate)

*1000000 .0);
2249 // clamp to 100 Hz max samp_rate :
2250 if(read_delay < CEIL_PERIOD_SENS) read_delay = CEIL_PERIOD_SENS

;
2251
2252 float latestData[NUM_DATA_OBJS] = {0,0};
2253 uint64_t read_delay_tmp;
2254 for(int i=0;i<samp_times_blocking;i++) {
2255 Watchdog.reset();
2256 read_delay_tmp = micros64();
2257 // read data
2258 // read latest data:
2259 latestData[0] = (float)obj.readADC_SingleEnded(0); // h2s
2260 latestData[1] = (float)obj.readADC_SingleEnded(1); // so2
2261 latestData[2] = (float)obj.readADC_SingleEnded(2); //o3

299

2262 // populate statistical values :
2263 for(int j=0;j<NUM_DATA_OBJS;j++) {
2264 // max?
2265 if(max[j] < latestData[j] || max[j] == 0) max[j] =

latestData[j];
2266 // min?
2267 if(min[j] > latestData[j] || min[j] == 0) min[j] =

latestData[j];
2268 // average accumulator :
2269 avg[j] += latestData[j];
2270 }
2271 // loop delay :
2272 // will never be less than zero (fatal if otherwise)
2273 if(micros64() - read_delay_tmp < read_delay) {
2274 // proper way of truncating 64 bit to 32 bit
2275 // mask number
2276 delayMicroseconds((micros64()-read_delay_tmp+read_delay) & 0

xFFFFFFFF);
2277 }
2278 }
2279 // compute oneshot statistics :
2280 for(int j=0;j<NUM_DATA_OBJS;j++) {
2281 // average :
2282 avg[j] /= (samp_times_blocking);
2283 // unbiased sample variance :
2284 stddev[j] = sqrt((1.0/((float)samp_times_blocking -1.0))*

pow((abs(latestData[j] -avg[j])) ,2));
2285 }
2286
2287 // save to master struct and convert to ppm
2288 m.gasv_h2s_max = max[0] / CONST1;
2289 m.gasv_h2s_min = min[0] / CONST1;
2290 m.gasv_h2s_avg = avg[0] / CONST1;
2291 m.gasv_h2s_sdv = stddev[0] / CONST1;
2292 m.gasv_so2_max = max[1] / CONST2;
2293 m.gasv_so2_min = min[1] / CONST2;
2294 m.gasv_so2_avg = avg[1] / CONST2;
2295 m.gasv_so2_sdv = stddev[1] / CONST2;
2296 m.gasv_o3_max = max[2] / CONST3;
2297 m.gasv_o3_min = min[2] / CONST3;
2298 m.gasv_o3_avg = avg[2] / CONST3;
2299 m.gasv_o3_sdv = avg[2] / CONST3;
2300 m.gasv_h2s_av_v = obj.computeVolts(avg[0]);
2301 m.gasv_so2_av_v = obj.computeVolts(avg[1]);
2302 m.gasv_o3_av_v = obj.computeVolts(avg[2]);
2303

300

2304
2305 // save to String (there is a way to do this with a union_t all

at once)
2306 String outString = "";
2307 outString += "4,"; // Sensor ID for CSV readability
2308 outString += dtosstrf(m.gasv_h2s_max ,5,6) + (String)",";
2309 outString += dtosstrf(m.gasv_h2s_min ,5,6) + (String)",";
2310 outString += dtosstrf(m.gasv_h2s_avg ,5,6) + (String)",";
2311 outString += dtosstrf(m.gasv_h2s_sdv ,5,6) + (String)",";
2312 outString += dtosstrf(m.gasv_so2_max ,5,6) + (String)",";
2313 outString += dtosstrf(m.gasv_so2_min ,5,6) + (String)",";
2314 outString += dtosstrf(m.gasv_so2_avg ,5,6) + (String)",";
2315 outString += dtosstrf(m.gasv_so2_sdv ,5,6) + (String)",";
2316 outString += dtosstrf(m.gasv_o3_max ,5,6) + (String)",";
2317 outString += dtosstrf(m.gasv_o3_min ,5,6) + (String)",";
2318 outString += dtosstrf(m.gasv_o3_avg ,5,6) + (String)",";
2319 outString += dtosstrf(m.gasv_o3_sdv ,5,6) + (String)",";
2320 outString += dtosstrf(m.gasv_h2s_av_v ,6,6) + (String)",";
2321 outString += dtosstrf(m.gasv_so2_av_v ,6,6) + (String)",";
2322 outString += dtosstrf(m.gasv_o3_av_v ,6,6) + (String)",";
2323 m.gasv_micros_op = (uint32_t)(micros64()-read_time);
2324 outString += (uint32_t)m.gasv_micros_op + (String)",";
2325
2326 SYNCFRAM;
2327 return outString;
2328 }
2329
2330 //

///

2331 // read AS7341
//

2332 // PID: 46
//

2333 //
///

2334 /*!
2335 * Read AS7341 light sensor ‘‘ samp_times_blocking times ‘‘.
2336 * Due to the large number of data points generated by this

sensor , no stats
2337 * will be collected.
2338 *
2339 * This function outputs two sets of data: absolute intensity ,

and a difference
2340 * signal between absolute intensity and LED -on intensity. The

301

larger the
2341 * difference , the more the sensors are optically obstructed. For

rovers and
2342 * base stations , this is a good metric to quantify how dirty

instruments or
2343 * solar panels are.
2344 *
2345 * The extra code here is to auto -set gain.
2346 *
2347 * @param inst Light sensor instance , if there are multiple.
2348 * @param integrationTime Integration time as defined by the

datasheet. Each
2349 * tick is 2.78 microseconds. Leave the default values , as is.
2350 * @param integrationStepSize Integration step size as defined by

the
2351 * datasheet. Leave values as -is.
2352 * @param samp_times Accumulation cycles. Defaults to 16. Clamped

to 64.
2353 * @return Outputs preformatted String with values in the

following order:
2354 * max , min , average , standard deviation , and actual read time in

usec. Note
2355 * that the raw values are outputted to the master struct as

well.
2356 */
2357 String r_as7341(Adafruit_AS7341 &inst , int integrationTime =

50,\
2358 int integrationStepSize = 512, int samp_times = 16) {
2359 m.lastProcessIDActive = 0x46;
2360 Watchdog.reset();
2361 // Clamped to 64x because of the uint32_t limitation
2362 #define MAX_SAMP_TIMES 64
2363
2364 uint64_t read_time;
2365 read_time = micros64(); // set the initial timestamp of read
2366
2367 // clamp samp_times to max if smaller or larger for whatever

reason :
2368 if(samp_times < 2 || samp_times > CEIL_SAMPS_SENS) {
2369 samp_times = 5; // least number of points for statistical var
2370 }
2371
2372 // step 1: determine gain. This takes a relatively long time , if

we do it
2373 // every time we loop... we’re gonna sit in this subroutine for

10x longer

302

2374 // than necessary.
2375
2376 inst.setASTEP(integrationStepSize);
2377 inst.setATIME(integrationTime);
2378 uint16_t mss_raw[13] = {0,0,0,0,0,0,0,0,0,0,0,0}; // temporary

storage before processing
2379 uint32_t integral_accumulator[13] =

{0,0,0,0,0,0,0,0,0,0,0,0,0};
2380 #define TGAIN_CEIL 900
2381 #define TGAIN_FLOOR 512
2382 int currentGain = 0; // start at the MINIMUM gain , and work

itself down from there...
2383 do {
2384 inst.setGain((as7341_gain_t)currentGain);
2385 currentGain ++;
2386 inst.readAllChannels(mss_raw); // perform reading until

sensor is NOT saturated
2387 if(currentGain > 10) break; //we have reached MAXIMUM ADC

gain - 1 ,024 x.
2388 // This simply means it is reading a very dark environment.
2389 } while(mss_raw[0] < TGAIN_FLOOR); // read UV channel to

determine gain
2390
2391 // normalize gain with 512x ADC counts.
2392 uint32_t gainRaw = 0;
2393 switch(currentGain){
2394 case 0:
2395 gainRaw = 1024; break;
2396 case 1:
2397 gainRaw = 512; break;
2398 case 2:
2399 gainRaw = 256; break;
2400 case 3:
2401 gainRaw = 128; break;
2402 case 4:
2403 gainRaw = 64; break;
2404 case 5:
2405 gainRaw = 32; break;
2406 case 6:
2407 gainRaw = 16; break;
2408 case 7:
2409 gainRaw = 8; break;
2410 case 8:
2411 gainRaw = 4; break;
2412 case 9:
2413 gainRaw = 2; break;

303

2414 case 10:
2415 gainRaw = 1; break;
2416 }
2417
2418 // step 2: do first pass for ambient measurement :
2419 for(int i=0; i<samp_times; i++) {
2420 inst.readAllChannels(mss_raw);
2421 // fill integrator vars:
2422 for(int j=0;j<13;j++) {
2423 //no undefined behavior
2424 integral_accumulator[j] += (uint32_t)mss_raw[j];
2425 }
2426 }
2427 // step 2.5: decimate by samp_times
2428 for(int i=0; i<13; i++) {
2429 integral_accumulator[i] /= samp_times;
2430 }
2431 // step 2.75: save to struct :
2432 m.lss_415nm_abs = integral_accumulator[0];
2433 m.lss_445nm_abs = integral_accumulator[1];
2434 m.lss_480nm_abs = integral_accumulator[2];
2435 m.lss_515nm_abs = integral_accumulator[3];
2436 m.lss_555nm_abs = integral_accumulator[6];
2437 m.lss_590nm_abs = integral_accumulator[7];
2438 m.lss_630nm_abs = integral_accumulator[8];
2439 m.lss_680nm_abs = integral_accumulator[9];
2440 m.lss_wband_abs = integral_accumulator[10];
2441 m.lss_890nm_abs = integral_accumulator[11];
2442
2443 Watchdog.reset();
2444 // step 3: do second pass with light on:
2445 inst.setLEDCurrent(100); // milliamps
2446 inst.enableLED(true);
2447 delay(5); // wait to ensure power is stable before reading
2448 for(int i=0;i<samp_times; i++) {
2449 inst.readAllChannels(mss_raw);
2450 // fill integrator vars:
2451 for(int j=0;j<13;j++) {
2452 integral_accumulator[j] += (uint32_t)mss_raw[j];
2453 }
2454 }
2455 inst.enableLED(false);
2456 for(int i=0;i<13;i++) {
2457 integral_accumulator[i] /= samp_times;
2458 }
2459 // save to struct :

304

2460 // current value minus lower value , should yield positive if
obstructed

2461 m.lss_415nm_diff = integral_accumulator[0] - m.lss_415nm_abs;
2462 m.lss_445nm_diff = integral_accumulator[1] - m.lss_445nm_abs;
2463 m.lss_480nm_diff = integral_accumulator[2] - m.lss_480nm_abs;
2464 m.lss_515nm_diff = integral_accumulator[3] - m.lss_515nm_abs;
2465 m.lss_555nm_diff = integral_accumulator[6] - m.lss_555nm_abs;
2466 m.lss_590nm_diff = integral_accumulator[7] - m.lss_590nm_abs;
2467 m.lss_630nm_diff = integral_accumulator[8] - m.lss_630nm_abs;
2468 m.lss_680nm_diff = integral_accumulator[9] - m.lss_680nm_abs;
2469 m.lss_wband_diff = integral_accumulator[10] - m.lss_wband_abs;
2470 m.lss_890nm_diff = integral_accumulator[11] - m.lss_890nm_abs;
2471
2472 // save to String (there is a way to do this with a union_t all

at once)
2473 String outString = "";
2474 outString += "5,"; // Sensor ID for CSV readability
2475 outString += m.lss_415nm_abs + (String)",";
2476 outString += m.lss_445nm_abs + (String)",";
2477 outString += m.lss_480nm_abs + (String)",";
2478 outString += m.lss_515nm_abs + (String)",";
2479 outString += m.lss_555nm_abs + (String)",";
2480 outString += m.lss_590nm_abs + (String)",";
2481 outString += m.lss_630nm_abs + (String)",";
2482 outString += m.lss_680nm_abs + (String)",";
2483 outString += m.lss_wband_abs + (String)",";
2484 outString += m.lss_890nm_abs + (String)",";
2485 outString += m.lss_415nm_diff + (String)",";
2486 outString += m.lss_445nm_diff + (String)",";
2487 outString += m.lss_480nm_diff + (String)",";
2488 outString += m.lss_515nm_diff + (String)",";
2489 outString += m.lss_555nm_diff + (String)",";
2490 outString += m.lss_590nm_diff + (String)",";
2491 outString += m.lss_630nm_diff + (String)",";
2492 outString += m.lss_680nm_diff + (String)",";
2493 outString += m.lss_wband_diff + (String)",";
2494 outString += m.lss_890nm_diff + (String)",";
2495 m.lss_micros_op = (uint32_t)(micros64()-read_time);
2496 outString += (uint32_t)m.lss_micros_op + (String)",";
2497
2498 // Save to FRAM:
2499 SYNCFRAM;
2500
2501 // finally , we are done here.
2502 return outString;
2503 }

305

2504
2505 //

///

2506 // read gps
//

2507 // PID: 47
//

2508 //
///

2509 /*
2510 * Read GPS stats , including H, V, and PDOP. Returns a String

with data ,
2511 * and populates the global struct. Data includes max , min ,

average ,
2512 * and standard deviation.
2513 *
2514 * Edit 09 Apr 2022 - reentrancy issue if reading multiple times.

Issue
2515 * unknown. Even debugged the library itself and unable to

determine issue.
2516 * Edit 02 May 2022 - reentrancy highly likely due to stuck I2C

bus caused by
2517 * display. Removed display but will only sample GPS once an

hour.
2518 *
2519 * @param inst GPS object
2520 * @param samp_times Number of samples for statistical purposes.

Default to 5.
2521 * @return Preformatted string for concatenation. This data goes

before
2522 * all other data in string because it includes date and time.
2523 *
2524 */
2525 uint64_t gpsStats(SFE_UBLOX_GPS &inst , int samp_times) {
2526 m.lastProcessIDActive = 0x47;
2527 SYNCFRAM;
2528 Watchdog.reset();
2529 #define CEIL_SAMPS_SENS 16 // limited by int32_t
2530 #define NUM_DATA_POINTS 5
2531 uint64_t read_time;
2532 read_time = micros64(); // set the initial timestamp of read
2533
2534 // clamp samp_times to max if smaller or larger for whatever

reason :

306

2535 if(samp_times < 2 || samp_times > CEIL_SAMPS_SENS) {
2536 samp_times = 5; // least number of points for statistical var
2537 }
2538 // Serial.println("GPSD1 ");
2539 // get multi - sample data (int32_t):
2540 int64_t accumulator[NUM_DATA_POINTS] = {0,0,0,0,0};
2541 int64_t tmp[NUM_DATA_POINTS] = {0,0,0,0,0};
2542 int64_t max[NUM_DATA_POINTS] = {0,0,0,0,0};
2543 int64_t min[NUM_DATA_POINTS] = {0,0,0,0,0};
2544
2545 // loop has a reentrancy issue
2546 for(int i=0;i<samp_times;i++){
2547 Watchdog.reset();
2548 // read this data only once then do something with it:
2549 tmp[0] = (int64_t)inst.getPositionAccuracy();
2550 tmp[1] = (int64_t)inst.getGroundSpeed();
2551 tmp[2] = (int64_t)inst.getAltitudeMSL();
2552 tmp[3] = (int64_t)inst.getLatitude();
2553 tmp[4] = (int64_t)inst.getLongitude();
2554 // averaging accumulator
2555 for(int j=0;j<NUM_DATA_POINTS;j++) {
2556 accumulator[j] += tmp[j];
2557 // max?
2558 if(max[j] < tmp[j] || max[j] == 0) max[j] = tmp[j];
2559 // min?
2560 if(min[j] > tmp[j] || min[j] == 0) min[j] = tmp[j];
2561 }
2562 // Serial.println("GPSD2 ");
2563 delay(1000);
2564 }
2565 // decimate by samp and save directly to master struct (float):
2566 m.gps_HDOP_avg = (float)(accumulator[0] / samp_times);
2567 m.gps_VDOP_avg = (float)(accumulator[1] / samp_times);
2568 m.gps_PDOP_avg = (float)(accumulator[2] / samp_times);
2569 m.gps_Lat_avg = (float)((accumulator[3] / samp_times)/1E7);
2570 m.gps_Long_avg = (float)((accumulator[4] / samp_times)/1E7);
2571 // Serial.println("GPSD3 ");
2572
2573 // get stddev and save directly to struct (float):
2574 m.gps_HDOP_stddev = (float)(sqrt((1.0/((float)samp_times -1.0))*

pow(abs(tmp[0]\
2575 -m.gps_HDOP_avg) ,2)));
2576 m.gps_VDOP_stddev = (float)(sqrt((1.0/((float)samp_times -1.0))*

pow(abs(tmp[0]\
2577 -m.gps_VDOP_avg) ,2)));
2578 m.gps_PDOP_stddev = (float)(sqrt((1.0/((float)samp_times -1.0))*

307

pow(abs(tmp[0]\
2579 -m.gps_PDOP_avg) ,2)));
2580 m.gps_Lat_stddev = (float)(sqrt((1.0/((float)samp_times -1.0))*

pow(abs(tmp[0]\
2581 -m.gps_Lat_avg) ,2)));
2582 m.gps_Long_stddev = (float)(sqrt((1.0/((float)samp_times -1.0))*

pow(abs(tmp[0]\
2583 -m.gps_HDOP_avg) ,2)));
2584
2585 // Geofence blacklist (my house and other sensitive locations):
2586 if((m.gps_Lat_max/1E7) > REDACTED && (m.gps_Lat_max/1E7) <

REDACTED) m.gps_Lat_max = 90.0f;
2587 if((m.gps_Long_max/1E7) > REDACTED && (m.gps_Long_max/1E7) <

REDACTED) m.gps_Long_max = 0.0f;
2588
2589 // save max , min:
2590 m.gps_HDOP_max = tmp[0];
2591 m.gps_VDOP_max = tmp[1];
2592 m.gps_PDOP_max = tmp[2];
2593 m.gps_Lat_max = tmp[3];
2594 m.gps_Long_max = tmp[4];
2595 m.gps_HDOP_min = min[0];
2596 m.gps_VDOP_min = min[1];
2597 m.gps_PDOP_min = min[2];
2598 m.gps_Lat_min = min[3];
2599 m.gps_Long_min = min[4];
2600
2601 // get time and save to individual variables
2602 m.gps_year = inst.getYear();
2603 m.gps_month = inst.getMonth();
2604 m.gps_day = inst.getDay();
2605 m.gps_hour = inst.getHour();
2606 m.gps_min = inst.getMinute();
2607 m.gps_sec = inst.getSecond();
2608 m.gps_msec = inst.getMillisecond();
2609
2610 // writeout to String :
2611 String outString = "";
2612 outString += "OS*03,"; // Sensor ID for CSV readability
2613 // include leading zeros in date for proper ISO8610 date:
2614 outString += m.gps_year + (String)"-";
2615 if(m.gps_month < 10) outString += (String)"0";
2616 outString += m.gps_month + (String)"-";
2617 if(m.gps_day < 10) outString += (String)"0";
2618 outString += m.gps_day + (String)"T";
2619 if(m.gps_hour < 10) outString += (String)"0";

308

2620 outString += m.gps_hour + (String)":";
2621 if(m.gps_min < 10) outString += (String)"0";
2622 outString += m.gps_min + (String)":";
2623 if(m.gps_sec < 10) outString += (String)"0";
2624 outString += m.gps_sec + (String)".";
2625 if(m.gps_msec < 100) outString += (String)"0";
2626 if(m.gps_msec < 10) outString += (String)"0";
2627 outString += m.gps_msec + (String)",";
2628 outString += m.gps_HDOP_max + (String)",";
2629 outString += m.gps_VDOP_max + (String)",";
2630 outString += m.gps_PDOP_max + (String)",";
2631 outString += m.gps_Lat_max + (String)",";
2632 outString += m.gps_Long_max + (String)",";
2633 m.gps_micros_op = (uint32_t)(micros64()-read_time);
2634 outString += (uint32_t)m.gps_micros_op;
2635 outString += "\r\n";
2636 Serial.print(outString);
2637 // send to SPI RAM:
2638 // Arg1: retrieve head of buffer (size of ram -ram remaining)
2639 // Arg2: typecast to byte
2640 // Arg3: length of String , INCLUDES NULL TERMINATOR !
2641 RAM.writeEnable(true);
2642 RAM.write(m.ram1_sz -m.ram1_mem_free ,\
2643 (const uint8_t *) outString.c_str(),outString.length());
2644 m.ram1_mem_free -= (outString.length()); // bookkeeping
2645 RAM.writeEnable(false);
2646 // destruct and clean up:
2647 // (disabled for now , dangerous operation
2648 // memset((void *)<A , ’\000 ’, sizeof(LTA));
2649 // memset((void *)&buff ,’\000’ , buff.length());
2650 SYNCFRAM;
2651 return micros64();
2652 }
2653
2654 //

///

2655 // read SCL3300 coprocessor
//

2656 // PID: 48
//

2657 //
///

2658 // Read external SCL3300 :
2659 // Passes no inputs.

309

2660 String scl3300_extern(void) {
2661 m.lastProcessIDActive = 0x48;
2662 SYNCFRAM;
2663 Watchdog.reset();
2664 uint64_t read_time = micros64();
2665 // Send specific command :
2666 Watchdog.reset(); //in case we repeat several times
2667 // watchdog will protect anyways if we goto loop too many times
2668 // and include timeout :
2669 uint64_t timeout = micros64();
2670 sclretry:
2671 Serial1.print("<A01 ,A3A >RDALL.IIR300 ,");
2672 // wait for data:
2673 delay(1000);
2674 while(!Serial1.available()) {
2675 strip.setPixelColor(0 ,0 x000000FF);
2676 strip.show();
2677 // try command again
2678 if((micros64() - timeout) > 3000000 ULL) goto sclretry;
2679 }
2680 // read from ring buffer directly
2681
2682 uint32_t msprev = m.scl_ms_reported;
2683 m.scl_ms_reported = Serial1.readStringUntil(’,’).toInt();
2684 m.scl_sps = Serial1.readStringUntil(’,’).toInt();
2685 m.scl_xt_decim = Serial1.readStringUntil(’,’).toDouble();
2686 m.scl_yt_decim = Serial1.readStringUntil(’,’).toDouble();
2687 m.scl_zt_decim = Serial1.readStringUntil(’,’).toDouble();
2688 m.scl_temp_raw = Serial1.readStringUntil(’,’).toDouble();
2689 m.scl_tilt16_max_x = Serial1.readStringUntil(’,’).toFloat();
2690 m.scl_tilt16_min_x = Serial1.readStringUntil(’,’).toFloat();
2691 m.scl_tilt16_avg_x = Serial1.readStringUntil(’,’).toFloat();
2692 // real -time flags:
2693 w.sci_scl3300_sdv_x_prev = m.scl_tilt16_sdv_x;
2694 m.scl_tilt16_sdv_x = Serial1.readStringUntil(’,’).toFloat();
2695 m.scl_tilt16_max_y = Serial1.readStringUntil(’,’).toFloat();
2696 m.scl_tilt16_min_y = Serial1.readStringUntil(’,’).toFloat();
2697 m.scl_tilt16_avg_y = Serial1.readStringUntil(’,’).toFloat();
2698 w.sci_scl3300_sdv_y_prev = m.scl_tilt16_sdv_y;
2699 m.scl_tilt16_sdv_y = Serial1.readStringUntil(’,’).toFloat();
2700 m.scl_tilt16_max_z = Serial1.readStringUntil(’,’).toFloat();
2701 m.scl_tilt16_min_z = Serial1.readStringUntil(’,’).toFloat();
2702 m.scl_tilt16_avg_z = Serial1.readStringUntil(’,’).toFloat();
2703 w.sci_scl3300_sdv_z_prev = m.scl_tilt16_sdv_z;
2704 m.scl_tilt16_sdv_z = Serial1.readStringUntil(’,’).toFloat();
2705

310

2706 // seismometer readback :
2707 m.scl_sdv_delay_ms = m.scl_ms_reported - msprev;
2708 m.scl_t16_max_x_mp = Serial1.readStringUntil(’,’).toFloat();
2709 m.scl_t16_min_x_mp = Serial1.readStringUntil(’,’).toFloat();
2710 m.scl_t16_sdv_mpdx = Serial1.readStringUntil(’,’).toFloat();
2711 m.scl_t16_max_y_mp = Serial1.readStringUntil(’,’).toFloat();
2712 m.scl_t16_min_y_mp = Serial1.readStringUntil(’,’).toFloat();
2713 m.scl_t16_sdv_mpdy = Serial1.readStringUntil(’,’).toFloat();
2714 m.scl_t16_max_z_mp = Serial1.readStringUntil(’,’).toFloat();
2715 m.scl_t16_min_z_mp = Serial1.readStringUntil(’,’).toFloat();
2716 m.scl_t16_sdv_mpdz = Serial1.readStringUntil(’,’).toFloat();
2717 m.scl_micros_op = (uint32_t)(micros64()-read_time);
2718 // clear buffer if there ’s anything left:
2719 Serial1.readString(); // read to the void >:)
2720
2721 // flags section :
2722 if(m.scl_t16_sdv_mpdx > 0.40f)

w.SCI_SCL3300_STDDEV_EXCEEDED_CHX = true;
2723 else if(m.scl_t16_sdv_mpdx < 0.40f)

w.SCI_SCL3300_STDDEV_EXCEEDED_CHX = false;
2724 if(m.scl_t16_sdv_mpdy > 0.40f)

w.SCI_SCL3300_STDDEV_EXCEEDED_CHY = true;
2725 else if(m.scl_t16_sdv_mpdy < 0.40f)

w.SCI_SCL3300_STDDEV_EXCEEDED_CHY = false;
2726 if(m.scl_t16_sdv_mpdz > 0.60f)

w.SCI_SCL3300_STDDEV_EXCEEDED_CHZ = true;
2727 else if(m.scl_t16_sdv_mpdz < 0.60f)

w.SCI_SCL3300_STDDEV_EXCEEDED_CHZ = false;
2728 // now read to String :
2729 String outString = "";
2730 outString += "7,";
2731 outString += m.scl_sps + (String)",";
2732 outString += m.scl_xt_decim + (String)",";
2733 outString += m.scl_yt_decim + (String)",";
2734 outString += m.scl_zt_decim + (String)",";
2735 outString += m.scl_temp_raw + (String)",";
2736 outString += m.scl_tilt16_max_x + (String)",";
2737 outString += m.scl_tilt16_min_x + (String)",";
2738 outString += m.scl_tilt16_avg_x + (String)",";
2739 outString += m.scl_tilt16_sdv_x + (String)",";
2740 outString += m.scl_tilt16_max_y + (String)",";
2741 outString += m.scl_tilt16_min_y + (String)",";
2742 outString += m.scl_tilt16_avg_y + (String)",";
2743 outString += m.scl_tilt16_sdv_y + (String)",";
2744 outString += m.scl_tilt16_max_z + (String)",";
2745 outString += m.scl_tilt16_min_z + (String)",";

311

2746 outString += m.scl_tilt16_avg_z + (String)",";
2747 outString += m.scl_tilt16_sdv_z + (String)",";
2748 outString += m.scl_sdv_delay_ms + (String)",";
2749 outString += m.scl_t16_max_x_mp + (String)",";
2750 outString += m.scl_t16_min_x_mp + (String)",";
2751 outString += m.scl_t16_sdv_mpdx + (String)",";
2752 outString += m.scl_t16_max_y_mp + (String)",";
2753 outString += m.scl_t16_min_y_mp + (String)",";
2754 outString += m.scl_t16_sdv_mpdy + (String)",";
2755 outString += m.scl_t16_max_z_mp + (String)",";
2756 outString += m.scl_t16_min_z_mp + (String)",";
2757 outString += m.scl_t16_sdv_mpdz + (String)",";
2758 outString += m.scl_micros_op;
2759 // SPTime(F(" [SCL3300_read] "));
2760 Serial.println(outString);
2761 strip.setPixelColor(0 ,0);
2762 strip.show();
2763 return outString;
2764
2765 // that ’s all the sensors , folks.
2766 }
2767
2768 //

///

2769 // initial memory formatting
//

2770 // PID: E2
//

2771 //
///

2772 // only execute whenever chip is swapped out!
2773 uint8_t mem_format(void) {
2774 m.lastProcessIDActive = 0xE2;
2775 uint16_t struct_signature = 0x0;
2776 uint32_t ram0sz_tmp = 0x0;
2777 uint32_t ram1sz_tmp = 0x0;
2778 RAM1.readObject(0x0 , struct_signature);
2779 // reading from a struct in FRAM. Knowledge of struct important !
2780 RAM1.readObject(0x0022 , ram0sz_tmp);
2781 RAM1.readObject(0x0006 , ram1sz_tmp);
2782 // check for struct signature , but also check for struct size.

If is 0,
2783 // there ’s a problem and we need to reformat both memory spaces :
2784 if(struct_signature != SM_SIG || (ram0sz_tmp == 0x00 ||

312

ram1sz_tmp == 0x00)) {
2785 // Watchdog.disable();
2786 // initial start: populate values
2787 Serial.print(F("Initial␣start.␣FRAMs␣will␣be␣formatted␣due␣to

␣new␣chip␣or␣fatal␣error.\r"));
2788 // built -in delay on 32
2789 dbg_blink(BLINK_INIT_SETUP);
2790 Serial.println(F("Determining␣FRAM␣sizes ,␣please␣wait..."));
2791
2792 // this section of code: credit Adafruit (Kevin Townsend , Ha

Thach)
2793 // (has some changes to suit my needs)
2794 uint32_t size_fram_i2c = 0;
2795 // figure out size of fram and store to struct later:
2796 //0x2B is what the memory space is " painted " with.
2797 RAM1.write(0x0 ,0x2B);
2798 uint32_t max_addr;
2799 for (max_addr = 1; max_addr < 0xFFFFFF; max_addr ++) {
2800 if (RAM1.read(max_addr) != 0x2B)
2801 continue; // def didnt wrap around yet
2802
2803 // maybe wrapped ? try writing the inverse
2804 if(!RAM1.write(max_addr , (byte)~0x2B)) {
2805 Serial.print("Failed␣to␣write␣address␣0x");
2806 Serial.println(max_addr , HEX);
2807 }
2808 uint8_t val0 = RAM1.read(0);
2809 //re -write the old value
2810 if (!RAM1.write(max_addr , 0x2B)) {
2811 Serial.print("Failed␣to␣re-write␣address␣0x");
2812 Serial.println(max_addr , HEX);
2813 }
2814 // check if addr 0 was changed
2815 if (val0 == (byte)~0x2B) {
2816 Serial.println("Found␣max␣address");
2817 break;
2818 }
2819 }
2820 Serial.print(F("FRAM␣A:"));
2821 Serial.print(max_addr);
2822 Serial.print(F("B"));
2823 // Store known size now:
2824 m.ram0_sz = max_addr;
2825
2826 // format and read back all mem cells. Stop if any write error

appears.

313

2827 // I2C RAM:
2828 Serial.print(F("FRAM␣A␣(I2C␣memcells)␣formatting␣and␣checking

,␣please␣wait..."));
2829 #define RAM_WRITE_ERASE 0x00
2830 for(int i=0;i<m.ram0_sz;i++) {
2831 int retry_cnt = 0;
2832 retry_ram_format:
2833 RAM1.write(i ,RAM_WRITE_ERASE);
2834 // readback :
2835 if(RAM1.read(i) != RAM_WRITE_ERASE) {
2836 // try to write four more times to ensure it wasn ’t bus

noise :
2837 retry_cnt ++;
2838 if(retry_cnt > 4) {
2839 Serial.print(F("RAM␣failure␣at␣0x"));
2840 Serial.print(i , HEX);
2841 //Do not use this line for flight software. Sub for a

bytemask.
2842 dbg_blink(BLINK_CORE_ERR_UNRECOVERABLE);
2843 }
2844 goto retry_ram_format;
2845 }
2846 }
2847 Serial.print(F("done.\r␣FRAM␣A␣formatting␣and␣integrity␣check

␣complete.\r"));
2848 // write out struct signature so we don ’t have to do this

again :
2849 struct_signature = SM_SIG;
2850 RAM1.writeObject(0x000000 , struct_signature);
2851 m.data_counter_total = 0L;
2852 m.data_counter_lora = 0L;
2853 w.RES_FRAM_FORMATTED = true;
2854 SYNCFRAM;
2855
2856 // format and check RAM B:
2857 // different method of checking larger memsize :
2858 Serial.print(F("Getting␣size␣of␣FRAM␣B..."));
2859
2860 max_addr = 0;
2861 while (readBack(max_addr , max_addr) == max_addr) {
2862 max_addr += 256;
2863 }
2864
2865 Serial.print(max_addr);
2866 Serial.println(F("B"));
2867 m.ram1_sz = max_addr;

314

2868 // store to FRAM struct
2869 SYNCFRAM;
2870
2871 Serial.print(F("Formatting␣FRAM␣B,␣please␣wait..."));
2872 // format and integrity check :
2873 RAM.writeEnable(true);
2874 for(int i=0;i<m.ram1_sz;i++) {
2875 int retry_cnt = 0;
2876 retry_ramb_format:
2877 RAM.write8(i ,RAM_WRITE_ERASE);
2878 if(RAM.read8(i) != RAM_WRITE_ERASE) {
2879 retry_cnt ++;
2880 if(retry_cnt > 4) {
2881 Serial.print(F("RAM␣failure␣at␣0x"));
2882 Serial.println(i , HEX);
2883 Serial.println(F("For␣flight␣software ,␣do␣NOT␣suspend.␣The␣

mission␣must␣continue␣under␣any␣circumstance."));
2884 dbg_blink(BLINK_CORE_ERR_UNRECOVERABLE);
2885 // end of execution , cannot continue with corrupt RAM
2886 }
2887 goto retry_ramb_format;
2888 }
2889 }
2890 RAM.writeEnable(false);
2891 m.ram1_mem_free = m.ram1_sz;
2892 Serial.println(F("complete."));
2893 Serial.println(F("FRAM␣init␣complete.␣Restarting..."));
2894 delay(2000);
2895 // record and sync to struct :
2896 Serial.print(F("Synchronizing␣struct..."));
2897 m.lastProcessIDActive = 0xE2;
2898 m.lastRecordedExecState = 0x08; // formatted
2899 SYNCFRAM;
2900 // restart to ensure uncorrupted memory space.
2901 Serial.println(F("done."));
2902 delay(1);
2903 Serial.println(F("MACH␣Reboot"));
2904 restart();
2905 for(;;);
2906 return 0;
2907 }
2908 else {
2909 m.lastProcessIDActive = 0xE2;
2910 m.lastRecordedExecState = 0x01; // data already exists
2911 // SYNCFRAM ;
2912

315

2913 // debug: hexdump FRAM object after every restart. Helps with
debug of a

2914 // troublesome piece of code. Dump to WiFi as well when
implemented.

2915 // malloc() to ensure this is returned to the heap later.
2916 // sanity check: the implementation of malloc works. First

real - world
2917 // implementation of it.
2918 char *dump = (char *) malloc(sizeof(m));
2919 RAM1.read(0x000002 ,(uint8_t *)dump ,sizeof(m));
2920 Serial.print(F("FRAM␣hexdump :\r\n"));
2921 #define BYTESPACING 16
2922 int j=0;
2923 for(int i=0;i<sizeof(m);i++) {
2924 if(dump[i] < (byte)0x10) Serial.print("0");
2925 Serial.print(dump[i] ,HEX);
2926 Serial.print(F("␣"));
2927 j++;
2928 if(j==BYTESPACING) {
2929 Serial.print("\r\n");
2930 j=0;
2931 }
2932 }
2933 free(dump);
2934 return 0;
2935 }
2936 }
2937
2938 //

///

2939 // start routine
//

2940 // PID: E1
//

2941 //
///

2942 // returns 0 for success , > 0 for failure code. Do not execute
more than once.

2943 uint8_t start(void) {
2944 digitalWrite(RFM69_RST , HIGH);
2945 delay(50);
2946 digitalWrite(RFM69_RST , LOW);
2947
2948 rf69.init();

316

2949 rf69.setFrequency(922.5);
2950 rf69.setModemConfig(RH_RF69 :: ModemConfigChoice :: GFSK_Rb2_4Fd4_8

);
2951 //2.4 ksps , 4.8kHz bandwidth
2952 SPLTime(F("GFSK␣command␣uplink␣started␣with␣2.4kSPS␣data␣rate ,␣

4.8kHz␣bandwidth."));
2953 // serials
2954 delay(9950); // wait for user to connect to serial port
2955 // serial speed doesn ’t matter when
2956 Serial.begin(1000000);
2957 Watchdog.enable(16000);
2958 SPLTime(F("[init]␣Early␣watchdog␣started"));
2959 // while(! Serial);
2960 SPLTime(F("Init"));
2961 SPLTime(F("while(!Serial)␣user␣hold␣DISABLED"));
2962 SPLTime(F("Init␣Serial1"));
2963 Serial1.begin(9600); // serial to inclinometer
2964 SPLTime(F("Wavefront␣v6.3"));
2965 SPLTime(F("Stanley␣M.␣Krzesniak"));
2966 SPLTime(F("Copyright␣(C)␣2020 -2022␣Stanley␣M.␣Krzesniak"));
2967 SPLTime(F("All␣rights␣reserved."));
2968
2969 // Watchdog.enable(16000);
2970 delay(500);
2971
2972 SPTime(F("Resetting␣I2C␣lines␣just␣in␣case..."));
2973 // LCD is a POS. Has a stuck bus issue and I don ’t have an

option to power it
2974 // off. Toggle I2C a few dozen times to free it:
2975 // Clock data line as well
2976 //27 April : Permanently removed LCD. Bus gets stuck.
2977 for(int i=0; i<64; i++) {
2978 digitalWrite(27 , LOW);
2979 digitalWrite(26 , LOW);
2980 delayMicroseconds(10);
2981 digitalWrite(27 , HIGH);
2982 digitalWrite(26 , HIGH);
2983 delayMicroseconds(10);
2984 }
2985 Serial.println(F("done."));
2986
2987
2988 strip.begin();
2989 strip.setBrightness(100);
2990 strip.setPixelColor(0 ,0 x00FFFFFF);
2991 strip.show();

317

2992 SPLTime(F("LED␣begin"));
2993 SPTime(F("Waiting␣for␣RAM..."));
2994
2995 if(!RAM.begin()) {
2996 Serial.println(F("FATAL:␣SPI␣RAM␣failed␣to␣start."));
2997 dbg_blink(255);
2998 } else SPLTime(F("SPI␣FRAM␣ok.")); //2Mbit FRAM - SPI
2999 if(!RAM1.begin()) {
3000 Serial.println(F("FATAL:␣I2C␣RAM␣failed␣to␣start."));
3001 } else SPLTime(F("I2C␣FRAM␣ok.")); // 256 Kbit FRAM - I2C.
3002 // Shadow copy of RAM
3003
3004 // COPY FRAM TO RAM IMMEDIATELY :
3005 DLFRAM;
3006 SPLTime(F("Copied␣FRAM␣A␣to␣SRAM"));
3007 SPTime(F("Free␣FRAM:␣"));
3008 Serial.print(m.ram1_mem_free);
3009 Serial.println(F("␣bytes"));
3010 SPLTime(F("If␣this␣number␣is␣zero ,␣bug␣present␣in␣mem␣mgmt."));
3011 w.RES_FIRST_LOOP = true;
3012 SPLTime(F("[init]␣First␣loop␣flag␣set"));
3013 sched_blks[TASK_LOOP_SCANLORA] = 1000000 ULL;
3014 sched_blks[TASK_LOOP_MACHSTATS] = 300000000 ULL;
3015 sched_blks[TASK_LOOP_MAINSENSE] = 120000000 ULL;
3016 sched_blks[TASK_LOOP_WIFIDELEG] = 30000000 ULL;
3017 w.RES_FRAM_FULL = false;
3018 SYNCFRAM;
3019
3020 if(w.RES_FRAM_INTEG_CHK_FAILED == true) {
3021 SPLTime(F("WARNING:␣PREVIOUS␣BOOT\
3022 ␣␣␣␣␣␣␣FRAM␣CHECK␣FAILED!␣MEMORY␣MAY␣BE␣CORRUPT!"));
3023 w.RES_FRAM_INTEG_MSG_FIRED = false;
3024 w.RES_FRAM_INTEG_CHK_FAILED = false;
3025 // reset for now , do something with this later like starting

the formatter
3026 }
3027
3028 // return the last time this unit was active :
3029 SPTime(F("Last␣recorded␣time␣in␣struct:␣"));
3030 Serial.print(struct_iso8610(m ,false));
3031 Serial.println(F("Z"));
3032 Watchdog.reset();
3033
3034 if(!gps.begin()) {
3035 SPLTime(F("FATAL:␣GPS␣failed␣to␣start."));
3036 } else Serial.println(F("GPS␣start␣ok."));

318

3037 gps.setI2COutput(COM_TYPE_UBX); // set as ublox frame output ,
3038 //no NMEA "noise "
3039 //DO NOT write to Flash. This instruction is already in THIS

processor !
3040 // GPS.saveConfiguration();
3041 uint32_t tm = millis();
3042 SPTime(F("Waiting␣for␣valid␣time␣from␣GPS..."));
3043 while(!gps.getTimeValid() && (millis() <= tm + GPS_INIT_TIMEOUT

)) {
3044 dbg_blink(BLINK_LINK_ACQUISITION);
3045 }
3046 Serial.println(F("done."));
3047
3048 if(!rtc.begin()) {
3049 SPLTime(F("FATAL:␣DS3231␣failed␣to␣start."));
3050 strip.setPixelColor(0 ,0 x00FF0000);
3051 strip.setBrightness(16);
3052 if(F_CPU == 48000000L);
3053 strip.show();
3054 dbg_blink(BLINK_CORE_ERR_UNRECOVERABLE);
3055 //we need the RTC in order to function...
3056 } else {
3057 SPLTime(F("DS3231␣started."));
3058 }
3059 m.lastProcessIDActive = 0xE1;
3060 // bug: executed before memory management routine.
3061 // SYNCFRAM ;
3062
3063 rf95.init();
3064 rf95.setFrequency(915.0);
3065 rf95.setModemConfig((RH_RF95 :: ModemConfigChoice)0x60); //61 .25

kHz with
3066 // 4:5 interleave
3067 SPLTime(F("LoRa␣node␣downlink␣started␣with␣19 .2kSPS␣data␣rate ,␣

61 .25kHz␣bandwidth."));
3068
3069 SPLTime(F("Init␣1␣complete."));
3070 return 0;
3071 }
3072
3073 //

///

3074 // start routine 2
//

3075 // PID: E3

319

//
3076 //

///

3077 // science instruments enable and check. Do not halt if
instrument is fouled ,

3078 // just skip with zeroes in string return.
3079
3080 uint8_t startsci(void) {
3081 m.lastProcessIDActive = 0xE3;
3082 SYNCFRAM;
3083
3084 // start INA219 :
3085 ina.begin();
3086 ina.setCalibration_16V_400mA();
3087
3088 // start ADT7410 :
3089 pts.begin();
3090 Serial.println();
3091 Serial.println(F("[SCI_S]␣PTS..."));
3092
3093 // start CO2 sensor :
3094 co2.begin();
3095 Serial.println(F("[SCI_S]␣CO2..."));
3096
3097 // start and configure BME680 :
3098 //do NOT filter or oversample ! my algos will do that already.
3099 // increases read speed.
3100 bme.begin();
3101 bme.setTemperatureOversampling(BME680_OS_1X);
3102 bme.setHumidityOversampling(BME680_OS_1X);
3103 bme.setPressureOversampling(BME680_OS_1X);
3104 bme.setIIRFilterSize(BME680_FILTER_SIZE_3);
3105 bme.setGasHeater(320 , 150); // 320*C for 150 ms
3106 Serial.println(F("[SCI_S]␣BME..."));
3107
3108 // start and configure ADS1115 :
3109 ads.begin(0x4A);
3110 ads.setGain(GAIN_SIXTEEN); // 256 mV full scale
3111 Serial.println(F("[SCI_S]␣ADS..."));
3112
3113 // set up ccs811 gas sensor
3114 // assumed that it is properly wired , etc.
3115 ccs.begin();
3116 ccs.setDriveMode(CCS811_DRIVE_MODE_250MS); // continuous
3117 while(!ccs.available()); // wait for sensor ready

320

3118 Serial.println(F("[SCI_S]␣CCS..."));
3119
3120 // set up magnetometer :
3121 mag.begin_I2C();
3122 mag.setPerformanceMode(LIS3MDL_ULTRAHIGHMODE);
3123 mag.setOperationMode(LIS3MDL_CONTINUOUSMODE);
3124 mag.setDataRate(LIS3MDL_DATARATE_155_HZ);
3125 mag.setRange(LIS3MDL_RANGE_4_GAUSS);
3126 Serial.println(F("[SCI_S]␣MAG..."));
3127
3128 // start light sensor and init to default values
3129 as.begin();
3130 as.setATIME(100);
3131 as.setASTEP(999);
3132 as.setGain(AS7341_GAIN_256X);
3133 Serial.println(F("[SCI_S]␣AS7..."));
3134
3135 // arm and enable watchdog
3136 SPLTime(F("[watchdog]␣Enabling␣watchdog ,␣16s␣timeout"));
3137 Watchdog.enable(16000);
3138
3139 // GPS time sync if lock available :
3140 if(gps.getTimeValid()) {
3141 updatertc(gps ,rtc);
3142 dbg_blink(BLINK_GPS_T_SYNC);
3143 SPTime(F("GPS␣Time␣valid.␣Current␣time:␣"));
3144 Serial.print(rtc_iso8610(rtc ,false ,false));
3145 Serial.println(F("␣Z"));
3146 } else {
3147 SPTime(F("GPS␣Time␣INVALID.␣Current␣RTC␣DS3231␣time:␣"));
3148 Serial.print(rtc_iso8610(rtc , false ,false));
3149 Serial.println(F("␣Z"));
3150 }
3151
3152 SPLTime(F("Science␣init␣complete."));
3153
3154 return 0;
3155 }
3156
3157 //

///

3158 // WiFi start and overall integrity check
//

3159 // No associated PID
//

321

3160 //
///

3161 void startwifi(void) {
3162 SPLTime(F("Starting␣WiFi..."));
3163 // WiFi.setPins(SPIWIFI_SS , SPIWIFI_ACK , ESP32_RESETN ,

ESP32_GPIO0 , &SPI);
3164 WiFi.setPins(ATWIFI_SS ,ATWIFI_ACK ,ATWIFI_RST);
3165 wifi_delegate(WiFi.status());
3166 status = WiFi.status();
3167 if(WiFi.status() == WL_CONNECTED) {
3168 SPTime(F("Sending␣beacons␣to␣Discord..."));
3169 // sendDiscordCSV(DISCORD_ALERTS_URL ," Boot OK"," Wavefront 6.4

", INGENUITY_pfp , false);
3170 // parse compile time into machine - readable date and time to

determine if
3171 //we either crashed or we just uploaded new code:
3172 DateTime compileTime(F(__DATE__), F(__TIME__));
3173
3174 String se = "Boot␣OK.␣Firmware␣compiled␣";
3175 se += rtcd_iso8610(compileTime ,false ,true);
3176 se += "␣last␣active␣PID␣(dec):␣";
3177 se += m.lastProcessIDActive; se += ",";
3178 se += "␣FRAM␣free:␣";
3179 se += m.ram1_mem_free;
3180 se += "␣Bytes.␣Connected␣to␣";
3181 se += String(WiFi.SSID());
3182 se += ",␣RSSI␣";
3183 se += String(WiFi.RSSI());
3184 se += "␣dBm.";
3185 sendDiscordCSV(DISCORD_ALERTS_URL ,se ,"Wavefront␣6.4",

INGENUITY_pfp ,false);
3186 // test if restart was due to user or hang:
3187 // predicated on whether RTC successfully started
3188 DateTime now = rtc.now();
3189 DateTime mdt(m.lastYear ,m.lastMonth ,m.lastDay ,
3190 m.lastHour ,m.lastMinute ,m.lastSecond);
3191 se = "";
3192 int64_t time_compare = (int64_t)compileTime.unixtime()+25200

LL -(int64_t)now.unixtime();
3193 if(time_compare > 900LL) {
3194 se = "[startwifi]␣*Processor␣crashed␣or␣WDT␣timed␣out.*";
3195 SPLTime(F("Processor␣crashed␣message"));
3196 sendDiscordCSV(DISCORD_ALERTS_URL ,se ,"Wavefront␣6.4",

INGENUITY_pfp ,false);
3197 } else {

322

3198 se = "[startwifi]␣*New␣firmware␣loaded.";
3199 w.RES_NEW_FIRMWARE = true;
3200 sendDiscordCSV(DISCORD_ALERTS_URL ,se ,"Wavefront␣6.4",

INGENUITY_pfp ,false);
3201 }
3202 if(w.RES_FRAM_FORMATTED == true && w.RES_NEW_FIRMWARE == true

) {
3203 sendDiscordCSV(DISCORD_ALERTS_URL ,"[mem_init]␣NVRAM␣variable␣

space␣updated.␣FRAM␣A␣and␣FRAM␣B␣formatted.","Wavefront␣6.4",
INGENUITY_pfp ,false);

3204 // clear bit:
3205 w.RES_FRAM_FORMATTED = false;
3206 w.RES_NEW_FIRMWARE = false;
3207 }
3208 else if(w.RES_FRAM_FORMATTED == true && w.RES_NEW_FIRMWARE ==

false) {
3209 String str = "[mem_init]␣** ATTENTION **:␣NVRAM␣REFORMATTED␣

AUTOMATICALLY␣AFTER␣REBOOT␣OR␣CRASH.␣INTERNAL␣I/O␣ERROR␣LIKELY.";
3210 sendDiscordCSV(DISCORD_ALERTS_URL ,str ,"Wavefront␣6.4",

INGENUITY_pfp ,false);
3211 // clear bit:
3212 w.RES_FRAM_FORMATTED = false;
3213 }
3214 else {
3215 // clear it if for whatever reason it didn ’t clear :
3216 w.RES_FRAM_FORMATTED = false;
3217 w.RES_NEW_FIRMWARE = false;
3218 }
3219 // Hexdump :
3220 sendDiscordCSV(DISCORD_PASTEBIN_URL ,framhexdump(RAM1 ,true),"

Wavefront␣6.4",INGENUITY_pfp ,true);
3221 }
3222 }
3223 //

///

3224 // main setup prototype
//

3225 // No associated PID
//

3226 //
///

3227 void setup() {
3228 start(); // start core peripherals , PID E1
3229 mem_format(); // check if formatting is needed (almost never),

323

PID E2
3230 startsci(); // start science instruments
3231 startwifi(); // start wifi chip
3232
3233 Watchdog.reset();
3234 strip.setPixelColor(0 ,0);
3235 strip.show();
3236 Serial.println(PriUint64 <DEC >(micros64()));
3237 Serial.println(F("Setup␣100%␣complete."));
3238 }
3239
3240 //

///

3241 // main science loop
//

3242 // PID: 0E
//

3243 //
///

3244 #define SER_STR_ADDR "OS*01,"
3245 // High level function :
3246 uint64_t loop_MainSense(void) {
3247 // identify packet type to make it easier to process serialized

FRAM buffer
3248 m.lastProcessIDActive = 0x0E;
3249 SYNCFRAM;
3250 String serialSend = SER_STR_ADDR;
3251 // get time from RTC:
3252 serialSend += rtc_iso8610(rtc , true ,false);
3253 uint32_t currentMicros[2] = {0 ,0};
3254 currentMicros[0] = micros64() >> 32;
3255 currentMicros[1] = (uint32_t)micros64();
3256 serialSend += (currentMicros[0]) + (String)",";
3257 serialSend += (currentMicros[1]) + (String)",";
3258 serialSend += r_ina219(30 ,60,ina);
3259 serialSend += r_scd30(6 ,co2);
3260 serialSend += r_adt7410(30 ,60,pts);
3261 serialSend += r_bme680(8 ,4,bme);
3262 serialSend += r_ccs811(10 ,4,ccs);
3263 serialSend += r_mag(128 ,60,mag);
3264 serialSend += r_volc(128 ,60,ads);
3265 serialSend += r_as7341(as ,50 ,512 ,8);
3266 serialSend += scl3300_extern();
3267 serialSend += "\r\n";

324

3268 // send to RAM (serialize):
3269 // (make function later)
3270 m.lastProcessIDActive = 0x0E;
3271 SYNCFRAM;
3272 RAM.writeEnable(true);
3273 RAM.write(m.ram1_sz -m.ram1_mem_free ,\
3274 (const uint8_t *) serialSend.c_str(),serialSend.length());
3275 m.ram1_mem_free -= serialSend.length(); // bookkeeping
3276 m.data_counter_total += serialSend.length();
3277 SYNCFRAM;
3278 RAM.writeEnable(false);
3279 // Send to raw data channel :
3280 if(WiFi.status() == WL_CONNECTED)

sendDiscordCSV(DISCORD_RAWDATA_URL ,serialSend ,"Wavefront␣6.4",
INGENUITY_pfp ,true);

3281 Serial.print(serialSend);
3282 return micros64();
3283 }
3284
3285
3286 //

///

3287 // Deserializer to Serial port
//

3288 // PID: C3
//

3289 //
///

3290 //26 April. HOLD THE DESERIALIZER OFF UNTIL I FIGURE EVERYTHING
ELSE OUT.

3291 // REDACTED
3292 // REALLY difficult.
3293 //28 April. Everything else figured out - clear to go.
3294 // Note 9 April 2023 - never finished this deserializer due to

maintenance error.
3295 /*
3296 uint64_t deser_discord_serial(void) {
3297 m.lastProcessIDActive = 0xC3;
3298 SYNCFRAM ;
3299 //initially just serial port - need a flag to tell it to bypass

discord if
3300 //the WiFi physical layer isn ’t connected (lost connection , etc

)
3301

325

3302 //strategy : Packet reassembly like IP layer. Read in blocks
3303 //Find OS* or LN *:
3304 char * last_sid ;
3305 char sid[3] = "";
3306 int last_did = -1;
3307 char block_buf[256] = { ’\000 ’}; //block buffer. Read in 256-

byte sectors
3308 bool prd = false ; //packet currently being read?
3309
3310 //while we are reading data:
3311 for(uint32_t sz=0;sz <m.ram1_sz - m.ram1_mem_free ;) {
3312 //read sector :
3313 RAM.read(sz , (uint8_t *) block_buf , sizeof(block_buf) -1);
3314 //find the first valid beginning of a frame :
3315 //("*" only occurs in the SID.)
3316 last_sid = strstr((const char *) block_buf ,"*") ;
3317 if(last_sid != NULL) {
3318 prd = true; //start of frame
3319 //if we find the start of a frame , identify the SID:
3320 memcpy((void *)sid , (const void *) last_sid[-2] ,2);
3321 }
3322 //start copying to serial port:
3323 for(int j=0;j< sizeof(block_buf);j++) {
3324
3325 }
3326
3327 if(String(block_buf) .substring(0 ,3)) {
3328 prd = true; //start of frame , read packet
3329
3330 }
3331 sz += sizeof(block_buf);
3332
3333 }
3334
3335 return micros64();
3336 }
3337 */
3338
3339
3340 //

///

3341 // SPI FRAM dump to Serial
//

3342 // PID: C4
//

326

3343 //
///

3344 uint64_t dump_fram_serial(bool erase) {
3345 m.lastProcessIDActive = 0xC4;
3346 SYNCFRAM;
3347
3348 char block_buf[256] = {’\000’}; // block buffer. Read in 256 -

byte sectors
3349 //no third arg , increment manually
3350 // READ ONE BYTE AT A TIME FOR INTEGRITY :
3351 for(uint32_t sz=0;sz <(m.ram1_sz -m.ram1_mem_free);) {
3352 RAM.read(sz ,(uint8_t *)block_buf ,sizeof(block_buf) -1);
3353 Serial.print(String(block_buf));
3354 sz += sizeof(block_buf);
3355 }
3356 Serial.println();
3357 // Erase if commanded to do so:
3358 if(erase == true) {
3359 RAM.writeEnable(true);
3360 // wipe:
3361 for(uint32_t i=0;i<m.ram1_sz;i++) {
3362 RAM.write8(i ,’\000’);
3363 }
3364 RAM.writeEnable(false);
3365 }
3366 m.ram1_mem_free = m.ram1_sz; // set to start
3367 SYNCFRAM;
3368 strip.setPixelColor(0 ,0 x00FFFFFF);
3369 strip.show();
3370 delay(500);
3371 strip.setPixelColor(0 ,0);
3372 strip.show();
3373 SPTime(F("FRAM␣dumped␣to␣Serial.␣FRAM␣B␣"));
3374 if(erase == true) Serial.println(F("erased."));
3375 else Serial.println(F("NOT␣erased."));
3376 return micros64();
3377 }
3378
3379 //

///

3380 // mach stats
//

3381 // PID: 01
//

327

3382 //
///

3383 uint64_t loop_machstats(void) {
3384 Watchdog.reset();
3385 m.lastProcessIDActive = 0x02;
3386 SYNCFRAM;
3387 String tmp = "OS*02,";
3388 tmp += rtc_iso8610(rtc , true ,false);
3389 tmp += m.ramfree; tmp += ",";
3390 tmp += m.data_counter_total; tmp += ",";
3391 tmp += m.data_counter_lora; tmp += ",";
3392 tmp += m.ram1_mem_free; tmp += "\r\n";
3393 SYNCFRAM;
3394 RAM.writeEnable(true);
3395 RAM.write(m.ram1_sz -m.ram1_mem_free ,\
3396 (const uint8_t *) tmp.c_str(),tmp.length());
3397 m.ram1_mem_free -= tmp.length(); // bookkeeping
3398 m.data_counter_total += tmp.length();
3399 DateTime now = rtc.now();
3400 m.lastYear = now.year();
3401 m.lastMonth = now.month();
3402 m.lastDay = now.day();
3403 m.lastHour = now.hour();
3404 m.lastMinute = now.minute();
3405 m.lastSecond = now.second();
3406 SYNCFRAM;
3407 RAM.writeEnable(false);
3408 Serial.print(tmp);
3409 return micros64();
3410 }
3411
3412 //

///

3413 // GFSK modem
//

3414 // PID: 07
//

3415 //
///

3416 // Handles basic commands on GFSK radio.
3417 String gfsk_handler(void) {
3418 String str = "";
3419 uint8_t bbuf[61];

328

3420 if(rf69.available()) {
3421 rf69.recv((uint8_t *)&bbuf ,(uint8_t *)61);
3422 str = String(*bbuf);
3423 }
3424 return str;
3425 }
3426
3427 //

///

3428 // command uplink handler - serial and GFSK modem
//

3429 // PID: 07
//

3430 //
///

3431 // for configuration , etc. Discord bot will have a different
command handler.

3432 uint64_t sercmd_handler(String input = "\t") {
3433 Watchdog.reset();
3434 // list of top -level commands :
3435 // read already protected by internal timeout
3436 bool CMDHDL_GFSK = false;
3437 String r = "";
3438 //If our input is from Serial :
3439 // aka input is default :
3440 if(input == "\t") {
3441 r = Serial.readStringUntil(’\r’);
3442 Serial.print("[CMD]␣");
3443 Serial.println(r);
3444 // dump everything else after carriage return :
3445 while(Serial.available()) {
3446 char dump = Serial.read();
3447 }
3448 }
3449 //if NOT default (from external command seq , like GFSK)
3450 else {
3451 r = input;
3452 // conditional to transmit via GFSK
3453 CMDHDL_GFSK = true;
3454 }
3455
3456 // System management :
3457 if(r.substring(0 ,7) == "restart") {
3458 SPTime(F("[CMD]␣This␣will␣restart␣the␣system.␣Are␣you␣sure?␣"

329

));
3459 #define SP_TIMEOUT 30000000
3460 uint64_t timeout = micros64();
3461 // Disable watchdog , we are in a loop larger than the timeout :
3462 Watchdog.disable();
3463 while(Serial.available() == 0 && (micros64() < timeout +\
3464 (uint64_t)SP_TIMEOUT));
3465 //if serial is still not available , leave loop
3466 if(Serial.available() == 0) {
3467 SPLTime(F("\r\n[CMD]␣Timed␣out ,␣leaving."));
3468 } else {
3469 char c = Serial.read();
3470 if(c == ’Y’) {
3471 Serial.println(c);
3472 SPLTime(F("Restarting..."));
3473 SPLTime(F("MACH␣Reboot"));
3474 rf69.send((const uint8_t *)"REBOOT" ,7);
3475 restart();
3476 }
3477 else if(c == ’N’) {
3478 Serial.println(c);
3479 SPLTime(F("[CMD]␣Aborted."));
3480 // flush buffer
3481 while(Serial.available()) Serial.read();
3482 }
3483 }
3484 }
3485 else if(r.substring(0 ,14) == "nuke47f10a8813") {
3486 sendDiscordCSV(DISCORD_ALERTS_URL ,"[kern]␣Nuke␣command␣

received.␣Restarting␣and␣reformatting␣all␣NVRAM.","Wavefront␣6.4",
INGENUITY_pfp ,false);

3487 RAM1.write(0x0000 ,0x0); // Invalidate RAM.
3488 restart();
3489 }
3490 // FRAM management :
3491 else if(r.substring(0 ,12) == "fram -manage␣") {
3492 r.remove(0 ,12);
3493 if(r.substring(0 ,11) == "dumpserial␣") {
3494 r.remove(0 ,11);
3495 if(r.substring(0 ,5) == "erase") {
3496 r.remove(0 ,5);
3497 rf69.send((const uint8_t *)"ok\r\n" ,5);
3498 dump_fram_serial(true);
3499 }
3500 else if(r.substring(0 ,8) == "no-erase") {
3501 r.remove(0 ,8);

330

3502 rf69.send((const uint8_t *)"ok\r\n" ,5);
3503 dump_fram_serial(false);
3504
3505 }
3506 else if(r.substring(0 ,10) == "dumpstruct") {
3507 r.remove(0 ,10);
3508 char *dump = (char *) malloc(sizeof(m));
3509 RAM1.read(0x000002 ,(uint8_t *)dump ,sizeof(m));
3510 Serial.print(F("FRAM␣hexdump :\r\n"));
3511 #define BYTESPACING 16
3512 int j=0;
3513 for(int i=0;i<sizeof(m);i++) {
3514 if(dump[i] < (byte)0x10) Serial.print("0");
3515 Serial.print(dump[i] ,HEX);
3516 Serial.print(F("␣"));
3517 j++;
3518 if(j==BYTESPACING) {
3519 Serial.print("\r\n");
3520 j=0;
3521 }
3522 }
3523 free(dump);
3524 Serial.println("");
3525 }
3526 }
3527 else if(r.substring(0 ,7) == "ramfree") {
3528 r.remove(0 ,7);
3529 SPTime(F("[CMD]␣FRAM␣free:␣"));
3530 Serial.print(m.ram1_mem_free);
3531 Serial.println(F("␣bytes"));
3532 rf69.send((uint8_t *) String(m.ram1_mem_free).c_str() ,7);
3533 }
3534 SPLTime(F("[CMD]␣ok"));
3535 }
3536 // Discord commands :
3537 else if(r.substring(0 ,8) == "discord␣") {
3538 r.remove(0 ,8);
3539 if(r.substring(0 ,9) == "dumpfram␣") {
3540 r.remove(0 ,9);
3541 if(r.substring(0 ,6) == "erase␣") {
3542 r.remove(0 ,6);
3543 int ff = r.toInt();
3544 if(status == WL_CONNECTED)

dumpframdiscord(DISCORD_RAWDATA_URL\
3545 ,INGENUITY_pfp ,true ,ff);
3546 else SPLTime(F("[discord]␣Error:␣no␣WiFi␣connection␣

331

available."));
3547 SPLTime(F("[discord]␣ok"));
3548 }
3549 else if(r.substring(0 ,9) == "no-erase␣") {
3550 r.remove(0 ,9);
3551 int ff = r.toInt();
3552 if(status == WL_CONNECTED)

dumpframdiscord(DISCORD_RAWDATA_URL\
3553 ,INGENUITY_pfp ,false ,ff);
3554 else SPLTime(F("[discord]␣Error:␣no␣WiFi␣connection␣

available."));
3555 SPLTime(F("[discord]␣ok"));
3556 }
3557 }
3558 else if(r.substring(0 ,6) == "atest␣") {
3559 r.remove(0 ,6);
3560 int fd = r.toInt();
3561 sendDiscordFileRNG(DISCORD_RAWDATA_URL ,"

testaaa1234567890jsonstri\
3562 ␣␣␣␣␣␣␣ngify","Wavefront",INGENUITY_pfp ,false ,fd);
3563 SPLTime(F("[discord][ATEST]␣ok"));
3564 }
3565 }
3566 // HTTP Netcat send (no encryption):
3567 else if(r.substring(0 ,5) == "http␣") {
3568 r.remove(0 ,5);
3569 if(r.substring(0 ,9) == "dumpfram␣") {
3570 r.remove(0 ,9);
3571 if(r.substring(0 ,5) == "erase") {
3572 r.remove(0 ,5);
3573 if(status == WL_CONNECTED) {dumpframhttp(true);
3574 sendDiscordCSV(DISCORD_ALERTS_URL ,"** DEBUG**␣FRAM␣uploaded␣

to\
3575 ␣␣␣␣␣␣␣␣␣REDACTED ,␣erased.","Wavefront␣6.4",INGENUITY_pfp ,false);}
3576 else SPLTime(F("[http]␣Error:␣no␣WiFi␣connection␣available.

"));
3577 SPLTime(F("[http]␣ok"));
3578 }
3579 else if(r.substring(0 ,8) == "no-erase") {
3580 r.remove(0 ,8);
3581 if(status == WL_CONNECTED){ dumpframhttp(false);
3582 sendDiscordCSV(DISCORD_ALERTS_URL ,"** DEBUG**␣FRAM␣uploaded␣

to\
3583 ␣␣␣␣␣␣␣␣␣REDACTED ,␣not␣erased.","Wavefront␣6.4",INGENUITY_pfp ,false)

;}
3584 else SPLTime(F("[discord]␣Error:␣no␣WiFi␣connection␣

332

available."));
3585 SPLTime(F("[http]␣ok"));
3586 }
3587 }
3588 }
3589 else if(r.substring(0 ,10) == "dumpdelays") {
3590 r.remove(0 ,10);
3591 SPLTime(F("[cmd]␣Reading␣RTOS␣delay␣table:"));
3592 for(int i=0;i<NUMTASKS;i++) {
3593 SPTime(F("[cmd]␣Task␣"));
3594 Serial.print(i);
3595 Serial.print(F(":␣"));
3596 Serial.print(PriUint64 <DEC >(sched_blks[i]));
3597 Serial.println(F("␣microsec"));
3598 }
3599 }
3600 else {
3601 Serial.println(("[CMD]␣Invalid␣command␣or␣line␣endings␣not␣

set␣to␣\\r."));
3602 }
3603 return micros64();
3604 }
3605
3606 // Note: can only detect single -bit errors.
3607 // Manchester (???) or Diffie - Hellman can detect and CORRECT

multi -bit errors.
3608 uint64_t fram_integrity_check(void) {
3609 // check master :
3610 uint32_t cksum1 = CRC32 :: calculate((uint8_t *)&m,sizeof(m) -1);
3611 // check working flags:
3612 uint32_t cksum2 = CRC32 :: calculate((uint8_t *)&w,sizeof(w) -1);
3613 c.crc_master = cksum1;
3614 c.crc_workng = cksum2;
3615 // upload FRAM:
3616 SYNCFRAM;
3617 // DOWNLOAD FRAM:
3618 DLFRAM;
3619 //if ANYTHING changed , this should be detected :
3620 // check master :
3621 cksum1 = CRC32:: calculate((uint8_t *)&m,sizeof(m) -1);
3622 // check working flags:
3623 cksum2 = CRC32:: calculate((uint8_t *)&w,sizeof(w) -1);
3624 // compare :
3625 if(cksum1 != c.crc_master) w.RES_FRAM_INTEG_CHK_FAILED = true;
3626 if(cksum2 != c.crc_workng) w.RES_FRAM_INTEG_CHK_FAILED = true;
3627 // What to do about a checksum failure ? Bytemask the error out.

333

Prohibitively
3628 // complicated , but doable. Not a priority for now.
3629 return micros64();
3630 }
3631
3632 // Mercalli index :
3633 //

///

3634 // Mercalli index
//

3635 // PID: N/A
//

3636 //
///

3637 String Mercalli(float raw_scl_val_LSB) {
3638 String str = "";
3639 float v = (1./12000.)*raw_scl_val_LSB;
3640 // based on USGS information on Modified Mercalli intensity

index :
3641 if(v < 0.000464) str = "I";
3642 else if(v >= 0.000464 && v < 0.0015) str = "II";
3643 else if(v >= 0.0015 && v < 0.00297) str = "III";
3644 else if(v >= 0.00297 && v < 0.0276) str = "IV";
3645 else if(v >= 0.0276 && v < 0.115) str = "V";
3646 else if(v >= 0.115 && v < 0.215) str = "VI";
3647 else if(v >= 0.215 && v < 0.401) str = "VII";
3648 else if(v >= 0.401 && v < 0.747) str = "VIII";
3649 else if(v >= 0.747 && v < 1.39) str = "IX";
3650 else if(v >= 1.39) str + "X+";
3651 return str;
3652 }
3653
3654 //

///

3655 // state machine transition
//

3656 // PID: 01
//

3657 //
///

3658 // the MOST important piece of code in this program. It is what
makes this whole

334

3659 // microcontroller run. Essentially the "tier 1" outer loop
program scheduler.

3660 // (Tier 0 is the inner loop scheduler.)
3661 uint64_t loop_mach(void) {
3662 Watchdog.reset();
3663 m.lastProcessIDActive = 0x01;
3664 // get free RAM (do something with this parameter later):
3665 m.ramfree = (uint16_t)freeRam();
3666 if(m.ramfree < 4096) {
3667 sendDiscordCSV(DISCORD_ALERTS_URL ,F("[mach]␣** Notice **:␣

Available␣SRAM␣less␣than␣4K␣due␣to␣long -term␣fragmentation.␣
Restarting␣system."),"Wavefront␣6.4",INGENUITY_pfp ,false);

3668 restart();
3669 }
3670 // this instruction takes a while
3671 SYNCFRAM;
3672 // check if we have a message waiting in serial :
3673 if(Serial.available()) sercmd_handler();
3674
3675 //do we have a message waiting in the GFSK buffer ?
3676 // Calls a periodic function
3677 if(rf69.available()) sercmd_handler(gfsk_handler());
3678
3679 /* State machine transition section */
3680 // Science :
3681 if(w.SCI_SCL3300_STDDEV_EXCEEDED_CHX == true &&

w.SCI_SCL3300_CHX_FIRED == false) {
3682 w.SCI_SCL3300_CHX_FIRED = true;
3683 if(status == WL_CONNECTED)
3684 sendDiscordCSV(DISCORD_ALERTS_URL ,"[sci]␣X-axis␣stddev_t␣

exceeded.␣Value:␣" + String(m.scl_t16_sdv_mpdx) + "␣LSB ,␣" +\
3685 String((double)((1./12000.)*m.scl_t16_sdv_mpdx) ,5) + "*g*␣(MMI␣

" + Mercalli(m.scl_t16_sdv_mpdx) + ")", "Wavefront␣6.4",
INGENUITY_pfp ,false);

3686 }
3687 else if(w.SCI_SCL3300_STDDEV_EXCEEDED_CHX == false)

w.SCI_SCL3300_CHX_FIRED = false;
3688
3689 if(w.SCI_SCL3300_STDDEV_EXCEEDED_CHY == true &&

w.SCI_SCL3300_CHY_FIRED == false) {
3690 w.SCI_SCL3300_CHY_FIRED = true;
3691 if(status == WL_CONNECTED)
3692 sendDiscordCSV(DISCORD_ALERTS_URL ,"[sci]␣Y-axis␣stddev_t␣

exceeded.␣Value:␣" + String(m.scl_t16_sdv_mpdy) + "␣LSB ,␣" +\
3693 String((double)((1./12000.)*m.scl_t16_sdv_mpdy) ,5) + "*g*␣(MMI␣

" + Mercalli(m.scl_t16_sdv_mpdy) + ")", "Wavefront␣6.4",

335

INGENUITY_pfp ,false);
3694 }
3695 else if(w.SCI_SCL3300_STDDEV_EXCEEDED_CHY == false)

w.SCI_SCL3300_CHY_FIRED = false;
3696
3697 if(w.SCI_SCL3300_STDDEV_EXCEEDED_CHZ == true &&

w.SCI_SCL3300_CHZ_FIRED == false) {
3698 w.SCI_SCL3300_CHZ_FIRED = true;
3699 if(status == WL_CONNECTED)
3700 sendDiscordCSV(DISCORD_ALERTS_URL ,"[sci]␣Z-axis␣stddev_t␣

exceeded.␣Value:␣" + String(m.scl_t16_sdv_mpdz) + "␣LSB ,␣" +\
3701 String((double)((1./12000.)*m.scl_t16_sdv_mpdz) ,5) + "*g*␣(MMI␣

" + Mercalli(m.scl_t16_sdv_mpdz) + ")", "Wavefront␣6.4",
INGENUITY_pfp ,false);

3702 }
3703 else if(w.SCI_SCL3300_STDDEV_EXCEEDED_CHZ == false)

w.SCI_SCL3300_CHZ_FIRED = false;
3704
3705 if(w.SCI_ADT7410_HIGH_TEMP_FLAG == true &&

w.SCI_ADT7410_HTF_FIRED == false) {
3706 w.SCI_ADT7410_HTF_FIRED = true;
3707 if(status == WL_CONNECTED)
3708 sendDiscordCSV(DISCORD_ALERTS_URL ,"[sci]␣** ALERT**␣Enclosure␣

temperature␣high!␣Value:␣" + String(m.adt7410_temp_avg) + "␣*C","
Wavefront␣6.4",INGENUITY_pfp ,false);

3709 }
3710 else if(w.SCI_ADT7410_HIGH_TEMP_FLAG == false) {

w.SCI_ADT7410_HTF_FIRED = false ;}
3711
3712 if(w.SCI_SCD30_CO2_HIGH_2000_PPM == true &&

w.SCI_SCD30_CO2H_FIRED == false) {
3713 w.SCI_SCD30_CO2H_FIRED = true;
3714 if(status == WL_CONNECTED)
3715 sendDiscordCSV(DISCORD_ALERTS_URL ,"[sci]␣** ALERT**␣Ambient␣

CO2␣high!␣Value:␣" + String(m.scd30_co2_avg) + "␣ppm","Wavefront␣6
.4",INGENUITY_pfp ,false);

3716 }
3717 else if(w.SCI_SCD30_CO2_HIGH_2000_PPM == false &&

w.SCI_SCD30_CO2H_FIRED == true) {
3718 w.SCI_SCD30_CO2H_FIRED = false;
3719 sendDiscordCSV(DISCORD_ALERTS_URL ,"[sci]␣** ALERT**␣Ambient␣

CO2␣high!␣Value:␣" + String(m.scd30_co2_avg) + "␣ppm","Wavefront␣6
.4",INGENUITY_pfp ,false);

3720 }
3721
3722 // MACH Prio 0: check for FRAM SPI memory usage :

336

3723 // if(m.ram1_mem_free < 5000) deser_discord_serial();
3724 //if nearly out of FRAM , send to riv6n.net :
3725 if(m.ram1_mem_free < 5000) {
3726 w.RES_FRAM_FULL = true;
3727 //if there is no WiFi , do NOT collect data!
3728 if(status == WL_CONNECTED && dumpframhttp(true))

sendDiscordCSV(\
3729 DISCORD_ALERTS_URL ,"FRAM␣successfully␣uploaded␣to␣riv6n.net.\

r\n\
3730 ␣␣␣␣␣‘‘Network␣metrics:␣high:␣" + String(w.ping_high) + "ms,␣low:␣"

+\
3731 String(w.ping_low) + "ms,␣avg:␣" + String(w.ping_avg) + "ms ,␣

pings:␣" +\
3732 String(w.rpt_times) + "/8␣times.","Wavefront␣6.4",INGENUITY_pfp

,false);
3733 else if(status == WL_CONNECTED)

sendDiscordCSV(DISCORD_PASTEBIN_URL ,\
3734 "[mach]␣Network␣conditions␣currently␣unsatisfactory␣to␣upload␣

FRAM.\
3735 ␣␣␣␣␣Retrying␣in␣60␣seconds...","Wavefront␣6.4",INGENUITY_pfp ,false)

;
3736
3737 }
3738 // Power state flag to Discord
3739 if((m.ina_volt_avg < 10.30 && m.ina_volt_avg > 9.41) &&

(m.powerState > 0)) {
3740 m.powerState = 1;
3741 if(status == WL_CONNECTED) sendDiscordCSV(DISCORD_ALERTS_URL ,

"** Attention **:␣Battery␣low!␣Voltage:␣" + String(m.ina_volt_avg) +
"V.","Wavefront␣6.4",INGENUITY_pfp ,false);

3742 }
3743 else if((m.ina_volt_avg < 9.40 && m.ina_volt_avg > 2.00 &&

(m.powerState == 0 || m.powerState == 1))) {
3744 m.powerState = 8;
3745 if(status == WL_CONNECTED) sendDiscordCSV(DISCORD_ALERTS_URL ,

F("** Attention !**:␣Battery␣voltage␣below␣9.40V.␣Undervoltage␣
protection␣will␣activate␣soon␣and␣system␣will␣shut␣down."),"
Wavefront␣6.4",INGENUITY_pfp ,false);

3746 }
3747 else if(m.ina_volt_avg > 10.30 && m.powerState > 0)

m.powerState = 0;
3748 else if(m.ina_volt_avg < 1.99 && m.powerState != 2) {
3749 m.powerState = 2;
3750 if(status == WL_CONNECTED) sendDiscordCSV(DISCORD_ALERTS_URL ,

F("** ALERT **:␣Buck␣regulator␣NOT␣connected␣to␣system!␣Floating␣
ground␣present!"),"Wavefront␣6.4",INGENUITY_pfp ,false);

337

3751 }
3752 // Integrity check:
3753 if(w.RES_FRAM_INTEG_CHK_FAILED == true &&

w.RES_FRAM_INTEG_MSG_FIRED == false) {
3754 if(status == WL_CONNECTED) sendDiscordCSV(DISCORD_ALERTS_URL ,

F("** ALERT **:␣FRAM␣integrity␣check␣failed:␣CRC32␣mismatch␣detected!
␣FRAM␣might␣be␣corrupt!"),"Wavefront␣6.4",INGENUITY_pfp ,false);

3755 w.RES_FRAM_INTEG_MSG_FIRED = true;
3756 }
3757
3758 // WiFi roaming and connection retry:
3759 if(w.RES_CONNECTED_TO_WIFI == false) {
3760 // retry this every 5 minutes for roaming handler
3761 sched_blks[TASK_LOOP_WIFIDELEG] = 300000000 ULL;
3762 //if we have no connection , but we are not full , slow down

data collection !
3763 if(w.RES_FRAM_FULL == false) {
3764 sched_blks[TASK_LOOP_MAINSENSE] = 600000000 ULL; //10 minutes
3765 }
3766 else {
3767 //if we are full , do NOT collect ANY data. Drop LoRa as well.
3768 sched_blks[TASK_LOOP_SCANLORA] = 429648582218 ULL;
3769 sched_blks[TASK_LOOP_MACHSTATS]= 429648582218 ULL;
3770 sched_blks[TASK_LOOP_MAINSENSE]= 492648582218 ULL;
3771 }
3772 }
3773 else {
3774 // reset all loop settings if they were set and we are now

connected and
3775 // uploaded :
3776 sched_blks[TASK_LOOP_SCANLORA] = 1000000 ULL;
3777 sched_blks[TASK_LOOP_MACHSTATS] = 300000000 ULL;
3778 sched_blks[TASK_LOOP_MAINSENSE] = 120000000 ULL;
3779 sched_blks[TASK_LOOP_WIFIDELEG] = 30000000 ULL;
3780 }
3781 return micros64();
3782 }
3783
3784 //

///

3785 // lora scan , for nodes
//

3786 // PID: F6
//

3787 //

338

///

3788 // adapted from standalone version of code
3789 // also follows up with TRANSMIT ack , prototype for param upload
3790 // follow up with 1k2 bps 4/8 FEC NOT 19k2 4/5!
3791 // returns execution time
3792 uint64_t loop_scanLora(void) {
3793 //if not available , return and do something else
3794 m.lastProcessIDActive = 0xF6;
3795 SYNCFRAM;
3796 Watchdog.reset();
3797 if(rf95.available()) {
3798 // Serial.println(F("lora available "));
3799 // ADR feedback algorithm parameters
3800 // Negotiation will substantially increase program complexity

from systems
3801 // engineering perspective
3802 bool adr = false; // ADR supported ?
3803 int32_t relfreqErr = -915000000; //bs initialization
3804 int16_t rssi = -32767;
3805 int8_t snr = -127;
3806 // check RAM availability (it is the function caller ’s

responsibility to
3807 // not overflow the RAM)
3808 // Allow mach to send prio to mem management.
3809 if(m.ram1_mem_free < (uint32_t)1024) return micros64();
3810 //if available , DETERMINE the struct type. Addresses < 0x20

are type A,
3811 //0x21 to 0x3F are type B.
3812 // Need to translate struct to serialized plaintext.
3813 if(rf95.headerFrom() > 0x00 && rf95.headerFrom() < 0x21) {
3814 // constructor
3815 uint8_t datlen = sizeof(LTA);
3816 // decode to struct
3817 if(rf95.recv((uint8_t *)<A , &datlen));
3818 strip.setPixelColor(0 ,0 x00FF00FF);
3819 strip.show();
3820 // populate to intermediate buffer
3821 String buff = "";
3822 // data type preamble (for deserializer):
3823 buff += "LN*";
3824 // preamble address in DEC
3825 buff += rf95.headerFrom(); buff += ",";
3826 // time of receipt (no fram in nodes):
3827 buff += rtc_iso8610(rtc , true ,false);
3828 // last RSSI:

339

3829 rssi = rf95.lastRssi();
3830 buff += rssi; buff += ",";
3831 // last SNR:
3832 snr = rf95.lastSNR();
3833 buff += snr; buff += ",";
3834 // last frequency error:
3835 relfreqErr = rf95.frequencyError();
3836 buff += relfreqErr; buff += ",";
3837 //RX time in local millis()
3838 buff += millis(); buff += ",";
3839 // scientific data
3840 buff += LTA.tilt32_x; buff += ",";
3841 buff += LTA.tilt32_y; buff += ",";
3842 buff += LTA.tilt32_z; buff += ",";
3843 buff += LTA.tilt32_max_x; buff += ",";
3844 buff += LTA.tilt32_min_x; buff += ",";
3845 buff += LTA.tilt32_max_y; buff += ",";
3846 buff += LTA.tilt32_min_y; buff += ",";
3847 buff += LTA.tilt32_max_z; buff += ",";
3848 buff += LTA.tilt32_min_z; buff += ",";
3849 buff += LTA.meas_humidity; buff += ",";
3850 buff += LTA.scltemp; buff += ",";
3851 buff += LTA.adt7410; buff += ",";
3852 buff += dtosstrf(LTA.sysvolt ,4,5); buff += ",";
3853 buff += LTA.meas_pressure; buff += ",";
3854 buff += LTA.btmp_lower; buff += ",";
3855 buff += LTA.spect[0]; buff += ",";
3856 buff += LTA.spect[1]; buff += ",";
3857 buff += LTA.spect[2]; buff += ",";
3858 buff += LTA.spect[3]; buff += ",";
3859 buff += LTA.spect[6]; buff += ",";
3860 buff += LTA.spect[7]; buff += ",";
3861 buff += LTA.spect[8]; buff += ",";
3862 buff += LTA.spect[9]; buff += ",";
3863 buff += LTA.spect[10]; buff += ",";
3864 buff += LTA.spect[11]; buff += ",";
3865 buff += LTA.spect[12]; buff += "\r\n";
3866 // deserialization token is \r.
3867
3868 // send to SPI RAM:
3869 // Arg1: retrieve head of buffer (size of ram -ram remaining)
3870 // Arg2: typecast to byte
3871 // Arg3: length of String , INCLUDES NULL TERMINATOR !
3872 RAM.writeEnable(true);
3873 RAM.write(m.ram1_sz -m.ram1_mem_free ,\
3874 (const uint8_t *) buff.c_str(),buff.length());

340

3875 m.ram1_mem_free -= (buff.length()); // bookkeeping
3876 RAM.writeEnable(false);
3877 // destruct and clean up:
3878 // (disabled for now , dangerous operation
3879 // memset((void *)<A ,’\000’ , sizeof(LTA));
3880 // memset((void *)&buff , ’\000’ , buff.length());
3881 // m.ram1_mem_free -= buff.length();
3882 m.data_counter_lora += buff.length();
3883 SYNCFRAM;
3884 Serial.print(buff);
3885 strip.setPixelColor(0 ,0x0);
3886 strip.show();
3887 }
3888 else if(rf95.headerFrom() >= 0x21 && rf95.headerFrom() < 0x40

) {
3889 // Unimplemented as of April 2022. Node still needs to be

designed.
3890 }
3891 }
3892 // Serial.println(F("lora not available , exiting... "));
3893 return micros64();
3894 }
3895
3896 //

///

3897 // Operational Summary , 4h
//

3898 // PID: F4
//

3899 //
///

3900 uint64_t bihourly_summ(void) {
3901 String su = "Wavefront␣Top -level␣Summary␣as␣of␣";
3902 su += rtc_iso8610(rtc ,false ,false);
3903 su += "␣Z:\r\n";
3904 su += "Total␣data␣processed:␣␣"; su +=

String(m.data_counter_total/1024.0 ,2);\
3905 su += "kB\r\n";
3906 su += "LoRa␣data␣forwarded:␣␣␣"; su +=

String(m.data_counter_lora/1024.0 ,2);\
3907 su += "kB\r\n";
3908 su += "Stack␣RAM␣free:␣␣␣␣␣␣␣␣"; su += String(m.ramfree/1024.0

,3); su +=\
3909 "kB\r\n";

341

3910 su += "FRAM␣free:␣␣␣␣␣␣␣␣␣␣␣␣␣"; su +=
String(m.ram1_mem_free/1024.0 ,2);\

3911 su += "kB\r\n";
3912 su += "Last␣CO2␣average:␣␣␣␣␣␣"; su += m.scd30_co2_avg; su += "

ppm\r\n";
3913 su += "Last␣ambient␣temp:␣␣␣␣␣"; su += m.adt7410_temp_avg; su +

= "*C\r\n";
3914 su += "Last␣int.␣humidity:␣␣␣␣"; su += m.bme680_rh_avg; su += "

%RH\r\n";
3915 su += "Last␣batt.␣voltage:␣␣␣␣"; su += m.ina_volt_avg; su += "V

\r\n";
3916 su += "Last␣hyd␣sulfide:␣␣␣␣␣␣"; su += String(m.gasv_h2s_avg

*1000 ,1);\
3917 su += "ppb\r\n";
3918 su += "Last␣sulf␣dioxide:␣␣␣␣␣"; su += String(m.gasv_so2_avg

*1000 ,1);\
3919 su += "ppb\r\n";
3920 su += "Last␣ozone/nitrous␣ox:␣"; su += String(m.gasv_o3_avg

*-1,3);\
3921 su += "ppm\r\n";
3922 su += "Last␣VOC␣content:␣␣␣␣␣␣"; su += m.ccs811_tvoc_avg; su +=

"ppb\r\n";
3923 su += "Last␣X␣tilt:␣␣␣␣␣␣␣␣␣␣␣"; su +=

String(atan2(m.scl_zt_decim ,\
3924 m.scl_xt_decim)*(360/(2*PI))*60 ,2); su += "␣MOA\r\n";
3925 su += "Last␣Y␣tilt:␣␣␣␣␣␣␣␣␣␣␣"; su +=

String(atan2(m.scl_zt_decim ,\
3926 m.scl_yt_decim)*(360/(2*PI))*60 ,2); su += "␣MOA\r\n";
3927 su += "Last␣checksum␣A:␣␣␣␣␣␣␣"; su += "0x"; su +=

String(c.crc_master ,\
3928 HEX); su += "\r\n";
3929 su += "Last␣checksum␣B:␣␣␣␣␣␣␣"; su += "0x"; su +=

String(c.crc_workng ,\
3930 HEX); su += "\r\n";
3931 //su += "Last reported location :"; su += "\r\n";
3932 // if(m.gps_Lat_max == 0) su += "Not available \r\n";
3933 // else if(m.gps_Lat_max >= 89 .9f && m.gps_Lat_max < 90 .1f) su +

=
3934 //" REDACTED \r\n";
3935 // else {su += " Lat: "; su += (m.gps_Lat_max/1E7); su += "\r\n

";}
3936 // if(m.gps_Long_max == 0) su += "Not available \r\n";
3937 // else if(m.gps_Long_max >= -0.1f && m.gps_Long_max <= 0.1f) su

+=
3938 // " REDACTED \r\n";
3939 // else {su += " Long: "; su += (m.gps_Long_max/1E7); su += "\r

342

\n";}
3940 sendDiscordCSV(DISCORD_ALERTS_URL ,su ,"Wavefront␣6.4",

INGENUITY_pfp ,true);
3941 return micros64();
3942 }
3943
3944
3945 void exec(int pid) {
3946 switch(pid) {
3947 case 0:
3948 // MACH calls one -time , deterministic programs
3949 lprc[0] = loop_mach(); break;
3950 case 1:
3951 lprc[1] = loop_scanLora(); break;
3952 case 2:
3953 lprc[2] = loop_MainSense(); break;
3954 case 3:
3955 lprc[3] = loop_machstats(); break;
3956 case 4:
3957 lprc[4] = wifi_delegate(WiFi.status()); break;
3958 case 5:
3959 lprc[5] = bihourly_summ(); break;
3960 case 6:
3961 lprc[6] = fram_integrity_check(); break;
3962 // case 7:
3963 // lprc[7] = gpsStats(gps ,8); break;
3964 default:
3965 break;
3966 }
3967 }
3968
3969 //do not change func name !!!
3970 // THE scheduler
3971 void tifa(void) {
3972 while(true) {
3973 for(int p=0;p<NUMTASKS;p++) {
3974 if(w.RES_FIRST_LOOP == true) {
3975 exec(p);
3976 }
3977 else if((micros64() >= lprc[p] + sched_blks[p])) {
3978 // Serial.println(micros());
3979 exec(p);
3980 }
3981 Watchdog.reset();
3982 }
3983 w.RES_FIRST_LOOP = false;

343

3984 }
3985 }
3986
3987
3988 EXEC

344

5.

1
2
3
4
5

Gateway Code - Inclinometer and Strong-motion
Seismometer
include < Arduino.h >
include < Wire.h >
include < Adafruit_DotStar.h >
include < SCL3300.h >
// To make this code work on a Raspberry Pi RP2040 , I WILL need

the Arduino
6 // base framework because of Strings. Shouldn ’t be too much of a

problem ,
7 // except for pin assignments depending on the variant.h defined.

The
8 // PIO state logic will be a whole other beast , as that ’s

programmed
9 // in Assembly.

10
11 //C is the best systems programming language , hands down.
12
13 // yes thats right
14 # define main(void) setup(void)
15
16 // networking
17 # define SER_MASTER "A01"
18 # define SER_ADDR "A3A"
19 # define HPIN 13
20 static char *cmd_table[] {
21 "RD1",
22 "RD2",
23 "RD3",
24 "RDALL.INST",
25 "RDALL",
26 "PING",
27 "IIRSET", // set IIR coefficients , returns new and old values
28 "SPS"
29 };
30
31 # define NUMPIXELS 1
32 # define DATAPIN 41
33 # define CLOCKPIN 40
34 Adafruit_DotStar strip(NUMPIXELS , DATAPIN , CLOCKPIN , DOTSTAR_BRG

);
35

345

36 // Third order IIR filter coefficients - initialized
37 // adjustable via command
38 //By default , extremely stiff
39 # define IIR_A1 0.98
40 # define IIR_A2 0.018
41 # define IIR_A3 0.002
42
43 // Hard coded 5th order temperature compensation coefficients.
44 // Experimentally determined through highly controlled
45 // enviromment.
46 // Loaded in via FRAM or mission computer by network command.
47 # define TCT_A0 0.0
48 # define TCT_A1 0.0
49 # define TCT_A2 0.0
50 # define TCT_A3 0.0
51 # define TCT_A4 0.0
52
53 SCL3300 scl0;
54 SCL3300 scl1;
55 SCL3300 scl2;
56
57 // decimal to Arduino string (allocated to stack , not for use on

ATMega series.)
58 String dtosstrf(double val , signed char width , unsigned char

prec) {
59 asm(".global␣_printf_float");
60 char sout[64];
61 char fmt[20];
62 sprintf(fmt , "%%%d.%df", width , prec);
63 sprintf(sout , fmt , val);
64 String ssout(sout);
65 return ssout;
66 }
67
68 // Writes a 1 to the SYSRESETREQ register to restart the CPU.
69 void restart(void) {
70 __asm volatile ("cpsid␣i" ::: "memory"); // disable interrupt

reporting
71 __asm volatile ("dsb␣0xF":::"memory"); // commit
72 SCB ->AIRCR = ((0x5FAUL << SCB_AIRCR_VECTKEY_Pos) |

SCB_AIRCR_SYSRESETREQ_Msk); // write to system control block to
reset

73 __asm volatile ("dsb␣0xF":::"memory");
74 for(;;) __asm volatile("nop");
75 }
76

346

77 // Hardcoded. ALWAYS *to* the master controller. May change if I
do a masterless bus.

78 void send_header(String address) {
79 Serial1.print("<A01 ," + (String)address + (String)">");
80 }
81
82 // Special print function to send with TX line brought high
83 void printAddr(uint32_t MASTxr , String address , String message)

{
84 digitalWrite(MASTxr , HIGH);
85 // potential to bring this time down to 10 uS , but being

extremely
86 // conservative for now
87 delay(1);
88 send_header(address);
89 Serial1.println(message);
90 delay(1);
91 digitalWrite(MASTxr , LOW);
92 }
93
94 // struct to hold all program data
95 // edited 040522 to include 16- bit statistical data with this
96 // significant expansion
97 // 050322: demote ALL double prec floads to singles. takes 4x as

long to process
98 //a double compared to a float.
99 struct seismoStruct {

100 // baseline data:
101 int32_t tiltos32_0x; int32_t tiltos32_0y; int32_t tiltos32_0z;
102 int32_t tiltos32_1x; int32_t tiltos32_1y; int32_t tiltos32_1z;
103 int32_t tiltos32_2x; int32_t tiltos32_2y; int32_t tiltos32_2z;
104 // supplementary seismo data:
105 // added 050322:
106 // reset registers after every read
107 float t16_max_x_mp; float t16_min_x_mp; float t16_sdv_mpdx;
108 float t16_max_y_mp; float t16_min_y_mp; float t16_sdv_mpdy;
109 float t16_max_z_mp; float t16_min_z_mp; float t16_sdv_mpdz;
110 // statistics - max32f :
111 float tilt16_max_x; float tilt16_max_y; float tilt16_max_z;
112 // statistics - min32f :
113 float tilt16_min_x; float tilt16_min_y; float tilt16_min_z;
114 // statistics - avg32f :
115 float tilt16_avg_x; float tilt16_avg_y; float tilt16_avg_z;
116 // statistics - stddevf :
117 float tilt16_sdv_x; float tilt16_sdv_y; float tilt16_sdv_z;
118 //3rd order IIR

347

119 double iirf_x[3]; double iirf_y[3]; double iirf_z[3];
120 double xiir; double yiir; double ziir;
121 uint32_t sps; // samples per sec
122 uint32_t samp_time; // initialize to 2000 msec
123 double iir_coeffs[3];
124 uint32_t tilt0_temp; uint32_t tilt1_temp; uint32_t tilt2_temp;
125 double iirf_t[3]; // temperature long period
126 double tiir;
127 double temperature; // drift correction - ADT7410 controlled
128 uint32_t readComplete;
129 }; static seismoStruct ss;
130
131 // Restart the CPU if a rollover will happen.
132 // Critical due to timing sensitive routines.
133 // Fixable in the future with
134 uint32_t clk_wd(uint32_t delays) {
135 if(millis() > 4200000000) restart();
136 else return millis();
137 }
138
139 // this is a very loaded process , requires 99% of cpu time to be

effective
140 // will result in highly delayed responses on the serial network
141 //i will not be able to read the sensors at 2 ,000 Hz , unless I

can drive the sensors
142 //at 8 MHz. I will try. Edit: can only drive sensors at 333 Hz @

8 MHz.
143 // Ideally , should read at 2 ,000 Hz to achieve the lowest noise

density possible
144
145 /*
146 * Control system :
147 * Some explanataion is needed here so I don ’t forget what I did

, and so I
148 * can document it in the report.
149 *
150 * This computationally inefficient , discrete -time filter

depends on a
151 * priori state information , as any filter does. (Side note ,

this could be
152 * made a Kalman filter if I add a predictor step , but that ’s

useless in the
153 * case of an ultra precision inclinometer.)
154 *
155 * 1. The input data (in int16) is integrated over 2000 msec

into an int32

348

156 * accumulator variable from three precision MEMS
accelerometers.

157 *
158 * 2. The current state of all sensor axes is averaged to create

one 3D
159 * vector.
160 *
161 * 3. The second order value is an average of the a priori state

and the
162 * current state.
163 *
164 * 4. The third order value is the a priori state only.
165 *
166 * 5. All values are summed with their corresponding weights to

form the final
167 * filtered output value.
168 *
169 * 6. The current state is then transferred to the a priori

state variable.
170 *
171 * With a second order filter , the frequency response rolls off

at 20 dB/octave
172 * then 40 dB/octave.
173 */
174 uint32_t reads(uint32_t delay_input) {
175 // for oscilloscope timing analysis
176 digitalWrite(12 , LOW);
177 uint32_t startread = millis();
178 uint32_t samps_taken = 0; // total samples taken
179 // RESET INTEGRATOR !
180 ss.tiltos32_0x = 0;
181 ss.tiltos32_0y = 0;
182 ss.tiltos32_0z = 0;
183 ss.tiltos32_1x = 0;
184 ss.tiltos32_1y = 0;
185 ss.tiltos32_1z = 0;
186 ss.tiltos32_2x = 0;
187 ss.tiltos32_2y = 0;
188 ss.tiltos32_2z = 0;
189 ss.tilt0_temp = 0;
190 ss.tilt1_temp = 0;
191 ss.tilt2_temp = 0;
192
193 // reset stats as well!
194 ss.tilt16_max_x = -99999999.0; ss.tilt16_max_y = -99999999.0;

ss.tilt16_max_z = -99999999.0;

349

195 ss.tilt16_min_x = 99999999 .0; ss.tilt16_min_y = 99999999 .0;
ss.tilt16_min_z = 99999999 .0;

196 ss.tilt16_avg_x = 0.0; ss.tilt16_avg_y = 0.0; ss.tilt16_avg_z
= 0.0;

197 ss.tilt16_sdv_x = 0.0; ss.tilt16_sdv_y = 0.0; ss.tilt16_sdv_z
= 0.0;

198
199 while(millis() <= startread + ss.samp_time) {
200 // obtain sample :
201 if(scl0.available()) {
202 // accumulate to oversampling buffer and convert to int32_t
203 ss.tiltos32_0x += (int32_t)scl0.sclData.AccX;
204 ss.tiltos32_0y += (int32_t)scl0.sclData.AccY;
205 ss.tiltos32_0z += (int32_t)scl0.sclData.AccZ;
206 ss.tilt0_temp += (uint32_t)scl0.sclData.TEMP;
207 }
208 if(scl1.available()) {
209 ss.tiltos32_1x += (int32_t)scl1.sclData.AccX;
210 ss.tiltos32_1y += (int32_t)scl1.sclData.AccY;
211 ss.tiltos32_1z += (int32_t)scl1.sclData.AccZ;
212 ss.tilt1_temp += (uint32_t)scl1.sclData.TEMP;
213 }
214 if(scl2.available()) {
215 ss.tiltos32_2x += (int32_t)scl2.sclData.AccX;
216 ss.tiltos32_2y += (int32_t)scl2.sclData.AccY;
217 ss.tiltos32_2z += (int32_t)scl2.sclData.AccZ;
218 ss.tilt2_temp += (uint32_t)scl2.sclData.TEMP;
219 }
220
221 // estimated 2.7 uS to execute all if statements
222 // concatenate and select maximum values of ALL sensors for

this read cycle :
223 // max:
224 if(scl0.sclData.AccX < scl1.sclData.AccX) ss.tilt16_max_x =

scl1.sclData.AccX;
225 if(scl1.sclData.AccX < scl2.sclData.AccX) ss.tilt16_max_x =

scl2.sclData.AccX;
226 if(scl2.sclData.AccX < scl0.sclData.AccX) ss.tilt16_max_x =

scl0.sclData.AccX;
227 if(scl0.sclData.AccY < scl1.sclData.AccY) ss.tilt16_max_y =

scl1.sclData.AccY;
228 if(scl1.sclData.AccY < scl2.sclData.AccY) ss.tilt16_max_y =

scl2.sclData.AccY;
229 if(scl2.sclData.AccY < scl0.sclData.AccY) ss.tilt16_max_y =

scl0.sclData.AccY;
230 if(scl0.sclData.AccZ < scl1.sclData.AccZ) ss.tilt16_max_z =

350

scl1.sclData.AccZ;
231 if(scl1.sclData.AccZ < scl2.sclData.AccZ) ss.tilt16_max_z =

scl2.sclData.AccZ;
232 if(scl2.sclData.AccZ < scl0.sclData.AccZ) ss.tilt16_max_z =

scl0.sclData.AccZ;
233
234 // min
235 if(scl0.sclData.AccX > scl1.sclData.AccX) ss.tilt16_min_x =

scl1.sclData.AccX;
236 if(scl1.sclData.AccX > scl2.sclData.AccX) ss.tilt16_min_x =

scl2.sclData.AccX;
237 if(scl2.sclData.AccX > scl0.sclData.AccX) ss.tilt16_min_x =

scl0.sclData.AccX;
238 if(scl0.sclData.AccY > scl1.sclData.AccY) ss.tilt16_min_y =

scl1.sclData.AccY;
239 if(scl1.sclData.AccY > scl2.sclData.AccY) ss.tilt16_min_y =

scl2.sclData.AccY;
240 if(scl2.sclData.AccY > scl0.sclData.AccY) ss.tilt16_min_y =

scl0.sclData.AccY;
241 if(scl0.sclData.AccZ > scl1.sclData.AccZ) ss.tilt16_min_z =

scl1.sclData.AccZ;
242 if(scl1.sclData.AccZ > scl2.sclData.AccZ) ss.tilt16_min_z =

scl2.sclData.AccZ;
243 if(scl2.sclData.AccZ > scl0.sclData.AccZ) ss.tilt16_min_z =

scl0.sclData.AccZ;
244 samps_taken ++;
245 }
246 ss.sps = samps_taken/2;
247
248 // avg and stddev :
249 ss.tilt16_avg_x = (float)ss.tiltos32_0x/(float)samps_taken;
250 ss.tilt16_avg_y = (float)ss.tiltos32_0y/(float)samps_taken;
251 ss.tilt16_avg_z = (float)ss.tiltos32_0z/(float)samps_taken;
252 ss.tilt16_sdv_x = sqrt((1.0/((float)samps_taken -1.0))*

pow((abs((float)scl0.sclData.AccX -ss.tilt16_avg_x)) ,2));
253 ss.tilt16_sdv_y = sqrt((1.0/((float)samps_taken -1.0))*

pow((abs((float)scl0.sclData.AccY -ss.tilt16_avg_y)) ,2));
254 ss.tilt16_sdv_z = sqrt((1.0/((float)samps_taken -1.0))*

pow((abs((float)scl0.sclData.AccZ -ss.tilt16_avg_z)) ,2));
255
256 //long -term maxima register
257 if(ss.t16_max_x_mp < ss.tilt16_max_x) ss.t16_max_x_mp =

ss.tilt16_max_x;
258 if(ss.t16_max_y_mp < ss.tilt16_max_y) ss.t16_max_y_mp =

ss.tilt16_max_y;
259 if(ss.t16_max_z_mp < ss.tilt16_max_z) ss.t16_max_z_mp =

351

ss.tilt16_max_z;
260 //long -term minima register
261 if(ss.t16_min_x_mp > ss.tilt16_min_x) ss.t16_min_x_mp =

ss.tilt16_min_x;
262 if(ss.t16_min_y_mp > ss.tilt16_min_y) ss.t16_min_y_mp =

ss.tilt16_min_y;
263 if(ss.t16_min_z_mp > ss.tilt16_min_z) ss.t16_min_z_mp =

ss.tilt16_min_z;
264 //long -term standard deviation register
265 if(ss.t16_sdv_mpdx < ss.tilt16_sdv_x) ss.t16_sdv_mpdx =

ss.tilt16_sdv_x;
266 if(ss.t16_sdv_mpdy < ss.tilt16_sdv_y) ss.t16_sdv_mpdy =

ss.tilt16_sdv_y;
267 if(ss.t16_sdv_mpdz < ss.tilt16_sdv_z) ss.t16_sdv_mpdz =

ss.tilt16_sdv_z;
268
269 // decimate by oversamp_time/samp_time (no way around a

floating pt)
270 // (AFTER oversampled data is taken)
271 // actually what am I thinking ? this can be done without

floating point numbers
272 // Oscilloscope debug: 5 .1msec to execute. (old info as of

050322)
273
274 //X filtered :
275 ss.xiir = ss.iir_coeffs[2]*((double)(ss.tiltos32_0x+

ss.tiltos32_1x+ss.tiltos32_2x)/3.0) +\
276 ss.iir_coeffs[1]*(ss.iirf_x[2]+((double)(ss.tiltos32_0x

+ss.tiltos32_1x+ss.tiltos32_2x)/3.0))/2.0 +\
277 ss.iir_coeffs[0]*(ss.iirf_x[2]);
278 ss.iirf_x[2] = ss.xiir;
279
280 //Y filtered :
281 ss.yiir = ss.iir_coeffs[2]*((double)(ss.tiltos32_0y+

ss.tiltos32_1y+ss.tiltos32_2y)/3.0) +\
282 ss.iir_coeffs[1]*(ss.iirf_y[2]+((double)(ss.tiltos32_0y

+ss.tiltos32_1y+ss.tiltos32_2y)/3.0))/2.0 +\
283 ss.iir_coeffs[0]*(ss.iirf_y[2]);
284 ss.iirf_y[2] = ss.yiir;
285
286 //Z filtered :
287 ss.ziir = ss.iir_coeffs[2]*((double)(ss.tiltos32_0z+

ss.tiltos32_1z+ss.tiltos32_2z)/3.0) +\
288 ss.iir_coeffs[1]*(ss.iirf_z[2]+((double)(ss.tiltos32_0z

+ss.tiltos32_1z+ss.tiltos32_2z)/3.0))/2.0 +\
289 ss.iir_coeffs[0]*(ss.iirf_z[2]);

352

290 ss.iirf_z[2] = ss.ziir;
291
292 // Temperature filtered (REQUIRED for precision corrections !):
293 ss.tiir = ss.iir_coeffs[2]*((double)(ss.tilt0_temp+

ss.tilt1_temp+ss.tilt2_temp)/3.0) +\
294 ss.iir_coeffs[1]*(ss.iirf_t[2]+((double)(ss.tilt0_temp+

ss.tilt1_temp+ss.tilt2_temp)/3.0))/2.0 +\
295 ss.iir_coeffs[0]*(ss.iirf_t[2]);
296 ss.iirf_t[2] = ss.tiir;
297
298 digitalWrite(12 , HIGH);
299 return millis();
300 }
301
302 // command and data handling
303 uint32_t sercom(uint32_t delay_input) {
304 // there is a packet in the buffer waiting
305 if(Serial.available()) {
306 // buffer the string from the hardware serial buffer into RAM

buffer :
307 String buf = "";
308 buf = Serial.readStringUntil(’,’);
309 //if the message is to itself (should never happen),
310 if(buf == ("<" + (String)SER_ADDR)) return millis();
311 // digest the next portion of the packet :
312 buf = Serial.readStringUntil(’>’);
313 //if it is destined to us ,
314 if(buf == SER_ADDR) {
315 strip.setPixelColor(0 ,0 x00FFFFFF);
316 strip.show();
317 buf = Serial.readStringUntil(’,’);
318 // read last recorded tilt value on sensor 1
319 if(buf == cmd_table[0]) {
320 // for type conversion so I don ’t have to make an overloaded

function
321 String tmp;
322 tmp = (String)millis() + "," +\
323 (String)ss.tiltos32_0x + "," +\
324 (String)ss.tiltos32_0y + "," +\
325 (String)ss.tiltos32_0z + "," +\
326 (String)ss.tilt0_temp;
327 printAddr(HPIN , SER_MASTER , tmp);
328 }
329 // read last recorded tilt value on sensor 2
330 else if(buf == cmd_table[1]) {
331 String tmp;

353

332 tmp = (String)millis() + "," +\
333 (String)ss.tiltos32_1x + "," +\
334 (String)ss.tiltos32_1y + "," +\
335 (String)ss.tiltos32_1z + "," +\
336 (String)ss.tilt1_temp;
337 printAddr(HPIN , SER_MASTER , tmp);
338 }
339 // read last recorded tilt value on sensor 3
340 else if(buf == cmd_table[2]) {
341 String tmp;
342 tmp = (String)millis() + "," +\
343 (String)ss.tiltos32_2x + "," +\
344 (String)ss.tiltos32_2y + "," +\
345 (String)ss.tiltos32_2z + "," +\
346 (String)ss.tilt2_temp;
347 printAddr(HPIN , SER_MASTER , tmp);
348 }
349 // read last recorded tilt value averaged among all sensors
350 // include internal temperatures to provide calibration
351 else if(buf == cmd_table[3]) {
352 String tmp;
353 tmp = (String)millis() + "," +\
354 (String)((ss.tiltos32_0x+ss.tiltos32_1x+ss.tiltos32_2x)

/3.0) +\
355 "," +\
356 (String)((ss.tiltos32_0y+ss.tiltos32_1y+ss.tiltos32_2y)

/3.0) +\
357 "," +\
358 (String)((ss.tiltos32_0z+ss.tiltos32_1z+ss.tiltos32_2z)

/3.0);
359 printAddr(HPIN , SER_MASTER , tmp);
360 }
361 // read last 300 second IIR - averaged filter , with all

necessary data to
362 // fully characterize timing , filtering , and temperature
363
364 // edit 040522: everything including the kitchen sink to

provide fine -
365 // grained metrics and possible earthquake and strong - motion

ident.
366 // edit 050322: the kitchen sink wasn ’t enough , need the

whole house
367 //to determine earthquakes (registers for max over

accumulated period)
368 else if(buf == cmd_table[4]) {
369 String tmp;

354

370 tmp = (String)millis() + "," +\
371 (String)ss.sps + "," +\
372 (String)ss.xiir + "," +\
373 (String)ss.yiir + "," +\
374 (String)ss.ziir + "," +\
375 (String)ss.tiir + "," +\
376 (String)ss.tilt16_max_x + "," +\
377 (String)ss.tilt16_min_x + "," +\
378 (String)ss.tilt16_avg_x + "," +\
379 (String)ss.tilt16_sdv_x + "," +\
380 (String)ss.tilt16_max_y + "," +\
381 (String)ss.tilt16_min_y + "," +\
382 (String)ss.tilt16_avg_y + "," +\
383 (String)ss.tilt16_sdv_y + "," +\
384 (String)ss.tilt16_max_z + "," +\
385 (String)ss.tilt16_min_z + "," +\
386 (String)ss.tilt16_avg_z + "," +\
387 (String)ss.tilt16_sdv_z + "," +\
388 (String)ss.t16_max_x_mp + "," +\
389 (String)ss.t16_min_x_mp + "," +\
390 (String)ss.t16_sdv_mpdx + "," +\
391 (String)ss.t16_max_y_mp + "," +\
392 (String)ss.t16_min_y_mp + "," +\
393 (String)ss.t16_sdv_mpdy + "," +\
394 (String)ss.t16_max_z_mp + "," +\
395 (String)ss.t16_min_z_mp + "," +\
396 (String)ss.t16_sdv_mpdz;
397
398 // 060422 - USBSerial diversion. Most sensors and board

fried.
399 // Need to finish off the main instrument : seismometer , which
400 // survived , connected to Raspberry Pi.
401 // Serial1.print(tmp);
402 Serial.println(tmp);
403 // NOW FINALLY RESET THE BUFFERS :
404 ss.t16_sdv_mpdx = 0.0;
405 ss.t16_sdv_mpdy = 0.0;
406 ss.t16_sdv_mpdz = 0.0;
407 ss.t16_max_x_mp = -99999999.0;
408 ss.t16_max_y_mp = -99999999.0;
409 ss.t16_max_z_mp = -99999999.0;
410 ss.t16_min_x_mp = 99999999 .0;
411 ss.t16_min_y_mp = 99999999 .0;
412 ss.t16_min_z_mp = 99999999 .0;
413 // printAddr(HPIN , SER_MASTER , tmp);
414 }

355

415 // ping command , are we ok?
416 else if(buf == cmd_table[5]) {
417 printAddr(HPIN , SER_MASTER , "ok");
418 }
419 else if(buf == cmd_table[6]) {
420 // incremental read of buffer...
421 double tmp[3];
422 //NO ERROR CHECKING ! BEWARE !
423 buf = Serial.readStringUntil(’,’);
424 tmp[0] = buf.toDouble();
425 buf = Serial.readStringUntil(’,’);
426 tmp[1] = buf.toDouble();
427 buf = Serial.readStringUntil(’\n’);
428 tmp[2] = buf.toDouble();
429 // the only check is if it sums to 1.0:
430 if((tmp[0] + tmp[1] + tmp[2]) >= 0.999999 && \
431 (tmp[0] + tmp[1] + tmp[2]) <= 1.000001) {
432 memcpy((void *) ss.iir_coeffs ,(const void *)tmp ,

sizeof(ss.iir_coeffs));
433 printAddr(HPIN , SER_MASTER , "ok");
434 } else printAddr(HPIN , SER_MASTER , "ERROR␣CMD␣6␣-␣INVALID␣

IIR␣FILTER␣COEFFICIENTS");
435 }
436 else if(buf == cmd_table[7]) {
437 String t = (String)ss.sps;
438 printAddr(HPIN , SER_MASTER , t);
439 }
440 }
441 }
442 strip.setPixelColor(0 ,0x0);
443 strip.show();
444 return millis();
445 }
446
447 // Super basic scheduler :
448 // globals
449 # define NUM_PROCESSES 3
450
451 uint32_t delays[] = {
452 500, // Serial communication task | PID 0
453 5, // Murata read - synchronous | PID 1
454 60000 // Clock watchdog | PID 2
455 };
456 uint32_t last_proc_run_time[NUM_PROCESSES] = {
457 0,
458 0,

356

459 0
460 };
461
462 // Executive " lookup table".
463 void exec(int pid) {
464 switch (pid) {
465 case 0:
466 last_proc_run_time[0] = sercom(delays[0]);
467 break;
468 case 1:
469 last_proc_run_time[1] = reads(delays[1]);
470 break;
471 case 2:
472 last_proc_run_time[2] = clk_wd(delays[2]);
473 default:
474 // other instructions take too much time
475 asm("nop");
476 }
477 }
478
479 void scheduler_basic(uint32_t delays_in[]) {
480 // scan if timer on any process is zero:
481 // this will help when there are concurrent processes waiting

to be executed
482 // IMPORTANT : p< NUM_PROC NOT p< =NUM_PROC
483 for(int p=0;p<NUM_PROCESSES;p++) {
484 if(millis() >= last_proc_run_time[p] + delays[p]) {
485 exec(p);
486 }
487 }
488 }
489
490 void main() {
491 // Remember to EXPLICITLY DECLARE MOSFET PIN AS OUTPUT !
492 pinMode(HPIN , OUTPUT);
493 strip.begin();
494 strip.setBrightness(64);
495 strip.setPixelColor(0 ,0 x00FF0000);
496 scl0.begin(A5);
497 scl1.begin(A4);
498 scl2.begin(A3);
499 // struct initializers
500 ss.iir_coeffs[0] = IIR_A1;
501 ss.iir_coeffs[1] = IIR_A2;
502 ss.iir_coeffs[2] = IIR_A3;
503 ss.samp_time = 2000;

357

504 // bulk initialize to 0.0f;
505 memset(ss.iirf_x ,’\x00’,sizeof(ss.iirf_x));
506 memset(ss.iirf_y ,’\x00’,sizeof(ss.iirf_y));
507 memset(ss.iirf_z ,’\x00’,sizeof(ss.iirf_z));
508 Serial1.begin(9600);
509 Serial.begin(1000000);
510 while(true) {
511 scheduler_basic(delays);
512 }
513 }
514
515 void loop() {}

358

6. Node Code - Node Version 2
1 # define LTA_NODE_ID 0x03
2 /*
3 * NINES Node - Serpac RB22
4 * Code v1.1.7 [Deployed]
5 * Stanley Krzesniak
6 * This work is a part of my masters project.
7 *
8 */
9 # include <Arduino.h >

10 # include <nines.h > // yes that ’s right , my own library cause its high
time I have one

11 # include <RH_RF95.h >
12 # include <Adafruit_MS8607.h >
13 # include <Adafruit_Sensor.h >
14 # include <Adafruit_BusIO_Register.h >
15 # include <SPI.h >
16 # include <SCL3300.h >
17 # include "Adafruit_ADT7410.h"
18 # include <Adafruit_SleepyDog.h >
19 # include <Adafruit_AS7341.h >
20
21 Adafruit_MS8607 meas;
22 Adafruit_ADT7410 ts;
23 SCL3300 inclinometer;
24
25 Nines n;
26 Adafruit_AS7341 spect;
27
28 # define RFM95_CS A1
29 # define RFM95_RST A3
30 # define RFM95_INT A2
31
32 RH_RF95 rf95(RFM95_CS , RFM95_INT);
33
34 int gain = 0;
35 double euclidean;
36 int iters = 0;
37
38
39
40 void setup() {
41 // delay(6000);

359

42 // Serial.begin(9600);
43 pinMode(PIN_SERIAL1_TX , OUTPUT);
44 pinMode(A0 , INPUT);
45
46 // Arduino libraries are lying to me. According to the Atmel SAMD21

datasheet , the ADCs are
47 // capable of 16 bit resolution. Good riddance ADS1115.
48 // Values are straight from the chip support headers , from Atmel.
49 analogReadResolution(12);
50 /*
51 ADC -> CTRLB.bit.RESSEL = ADC_CTRLB_RESSEL_16BIT_Val ;
52 while(ADC -> STATUS.bit.SYNCBUSY == 1); //sync
53
54 //Even more insult to injury , THE ADC HAS WIDER GAIN THAN THE

ADS1115 , NOT TO MENTION THE
55 //OPTION TO ** SELECT ** A GAIN.
56 ADC -> INPUTCTRL.bit.GAIN = ADC_INPUTCTRL_GAIN_1X_Val ; //write to

ADC block , 1x gain
57 //ADC -> REFCTRL.bit.REFSEL = ADC_REFCTRL_REFSEL_AREFA_Val ; //select

ADC Ref pin on ItsyBitsy , if needed.
58 while (ADC -> STATUS.bit.SYNCBUSY == 1); //sync
59 */
60
61 digitalWrite(PIN_SERIAL1_TX , LOW); // this pin drives the sleep

enable timer
62 // float volt = ((analogRead(A0)* (1/0.7297297)*3.3)/pow(2. ,12.));
63 // Serial.println(volt);
64 // if(volt <= 3.35) { //if battery is empty , shut down immediately.
65 // digitalWrite(PIN_SERIAL1_TX , HIGH);
66 // while(1);
67 //}
68 // Serial.begin(9600);
69 // while(! Serial);
70
71 if (inclinometer.begin(PIN_SERIAL1_RX) == false) {
72 Serial.println("Murata␣SCL3300␣inclinometer␣not␣connected.");
73 while(1); // Freeze
74 }
75 if(!ts.begin()) {
76 Serial.println("Couldn ’t␣find␣ADT7410!");
77 while(1);
78 }
79 if(!meas.begin()) {
80 Serial.println("Failed␣to␣find␣MS8607␣chip");
81 while(1);
82 }

360

83 if (!spect.begin()){
84 Serial.println("Could␣not␣find␣AS7341");
85 while (1) { delay(10); }
86 }
87 meas.setHumidityResolution(MS8607_HUMIDITY_RESOLUTION_OSR_12b);
88 pinMode(RFM95_RST , OUTPUT);
89 digitalWrite(RFM95_RST , HIGH);
90 delay(10);
91 digitalWrite(RFM95_RST , LOW);
92 delay(10);
93 digitalWrite(RFM95_RST , HIGH);
94 delay(100);
95 if (!rf95.init()) {
96 Serial.println("LoRa␣init␣failed.␣Check␣your␣connections.");
97 while (true); // if failed , do nothing
98 }
99 Watchdog.enable(90000);

100 spect.setLEDCurrent(10);
101 rf95.setFrequency(922.00625);
102 rf95.setModemConfig(RH_RF95 :: Bw31_25Cr48Sf4096); //61 .25 kHz
103 // rf95.setLowDatarate();
104 rf95.setTxPower(0 ,false);
105 // BEFORE UPLOADING , CHANGE THIS VARIABLE !!
106 rf95.setHeaderFrom(LTA_NODE_ID);
107 n.LTA.node_id = LTA_NODE_ID;
108 for(int i=0;i<13;i++) n.LTA.spect[i] = 0; // initialize so we don ’t

integrate on junk from the heap
109 }
110
111 void loop() {
112 Watchdog.reset();
113 // Watchdog.sleep(32000);
114 spect.powerEnable(true);
115 sensors_event_t temp , pressure , humidity;
116 meas.getEvent(&pressure , &temp , &humidity);
117 inclinometer.setFastReadMode(); // set fast read mode , 2000 Hz
118 // Serial.print("X Tilt: ");
119 n.LTA.tilt32_x = 0;
120 n.LTA.tilt32_y = 0;
121 n.LTA.tilt32_z = 0;
122 n.LTA.tilt32_max_x = -32767;
123 n.LTA.tilt32_max_y = -32767;
124 n.LTA.tilt32_max_z = -32767;
125 n.LTA.tilt32_min_x = 32767;
126 n.LTA.tilt32_min_y = 32767;
127 n.LTA.tilt32_min_z = 32767;

361

128 n.LTA.sysvolt = 0.0;
129 // For next version of code , use struct to pack more data.
130 // Incorporate min and max detector , and 16- bit average.
131 // Sets the stage for use as a seismometer in continuous mode.
132 //Done , 111321 .
133 // Serial.println(F(" preloop "));
134 for(int i=0;i <2000;i++) {
135 if(inclinometer.available()) {
136 n.LTA.tilt32_x += (int32_t)inclinometer.sclData.AccX;
137 if(inclinometer.sclData.AccX < n.LTA.tilt32_min_x)

n.LTA.tilt32_min_x = (uint32_t)inclinometer.sclData.AccX;
138 if(inclinometer.sclData.AccX > n.LTA.tilt32_max_x)

n.LTA.tilt32_max_x = (uint32_t)inclinometer.sclData.AccX;
139 n.LTA.tilt32_y += (int32_t)inclinometer.sclData.AccY;
140 if(inclinometer.sclData.AccY < n.LTA.tilt32_min_y)

n.LTA.tilt32_min_y = (uint32_t)inclinometer.sclData.AccY;
141 if(inclinometer.sclData.AccY > n.LTA.tilt32_max_y)

n.LTA.tilt32_max_y = (uint32_t)inclinometer.sclData.AccY;
142 n.LTA.tilt32_z += (int32_t)inclinometer.sclData.AccZ;
143 if(inclinometer.sclData.AccZ < n.LTA.tilt32_min_z)

n.LTA.tilt32_min_z = (uint32_t)inclinometer.sclData.AccZ;
144 if(inclinometer.sclData.AccZ > n.LTA.tilt32_max_z)

n.LTA.tilt32_max_z = (uint32_t)inclinometer.sclData.AccZ;
145
146 // Subject to change. Make function later so there is no

ambiguity with pow(2. , N.).
147 //Also , the internal ADC in this mode is operating on freerun

mode - CTRLB.FREERUN is probably set to 1.
148 // Can decrease system load by async sampling , while the

inclinometer is sampling.
149 n.LTA.sysvolt += (float)((analogRead(A0)*(1/0.7297297)*3.3)

/pow(2. ,12.));
150 delayMicroseconds(120);
151 }
152 }
153 // Serial.println(F(" postloop "));
154 inclinometer.stopFastReadMode();
155 n.LTA.scltemp = inclinometer.getCalculatedTemperatureCelsius();
156 n.LTA.adt7410 = ts.readTempC();
157 // Serial.println(F(" SCL3300 , ADT7410 temperature (C)"));
158 n.LTA.sysvolt /= 2000.0;
159 n.LTA.meas_pressure = pressure.pressure;
160 n.LTA.btmp_lower = temp.temperature;
161 n.LTA.meas_humidity = humidity.relative_humidity;
162 n.AS_AGI(spect ,1500 ,255 , n.LTA.spect ,2); //20 iterations
163 n.LTA.spect[12] = spect.detectFlickerHz();

362

164 spect.enableLED(true);
165 delay(10);
166 spect.enableLED(false);
167 rf95.setTxPower(10);
168 delay(25); // wait for the radio to wake up!
169 // Serial.println(F(" complete data "));
170 /*
171 String discordSend = "";
172 discordSend = "";
173 discordSend += millis(); discordSend += " ,";
174 discordSend += n.LTA.tilt32_x ; discordSend += ",";
175 discordSend += n.LTA.tilt32_y ; discordSend += ",";
176 discordSend += n.LTA.tilt32_z ; discordSend += ",";
177 discordSend += n.LTA.tilt32_max_x ; discordSend += " ,";
178 discordSend += n.LTA.tilt32_min_x ; discordSend += " ,";
179 discordSend += n.LTA.tilt32_max_y ; discordSend += " ,";
180 discordSend += n.LTA.tilt32_min_x ; discordSend += " ,";
181 discordSend += n.LTA.tilt32_max_z ; discordSend += " ,";
182 discordSend += n.LTA.tilt32_min_z ; discordSend += " ,";
183 discordSend += n.LTA.scltemp ; discordSend += ",";
184 discordSend += n.LTA.adt7410 ; discordSend += ",";
185 discordSend += n.LTA.sysvolt ; discordSend += ",";
186 discordSend += n.LTA.meas_pressure ; discordSend += ",";
187 discordSend += n.LTA.btmp_lower ; discordSend += ",";
188 discordSend += n.LTA.spect[0] ; discordSend += ",";
189 discordSend += n.LTA.spect[1] ; discordSend += ",";
190 discordSend += n.LTA.spect[2] ; discordSend += ",";
191 discordSend += n.LTA.spect[3] ; discordSend += ",";
192 discordSend += n.LTA.spect[6] ; discordSend += ",";
193 discordSend += n.LTA.spect[7] ; discordSend += ",";
194 discordSend += n.LTA.spect[8] ; discordSend += ",";
195 discordSend += n.LTA.spect[9] ; discordSend += ",";
196 discordSend += n.LTA.spect[10] ; discordSend += " ,";
197 discordSend += n.LTA.spect[11] ; discordSend += " ,";
198 discordSend += n.LTA.spect[12] ;
199 Serial.println(discordSend);
200 */
201 rf95.send((uint8_t *)&(n.LTA),sizeof(n.LTA));
202 rf95.waitPacketSent(2000); // wait for the packet to be sent to

prevent collision
203 // Serial.println(F("ping "));
204 // sleep sensors :
205 spect.powerEnable(false);
206 rf95.sleep();
207 inclinometer.powerDownMode();
208 // Serial.println(spect.getGain());

363

209 digitalWrite(PIN_SERIAL1_TX , HIGH); //we are done here , turn off
210 while(1); // await power down...
211 }

364

7. ADCS Development - Noise Characterization

1 # include <Arduino.h >
2 # include <ADIS16460.h > // Analog Devices library provided , has a lot

of bugs and had to modify library to get it towork.
3 //# include <Adafruit_SleepyDog.h >
4
5 # define DTR 9u // data ready pin
6 # define CSR 7u // chip select pin
7 # define RST 2u // reset pin
8
9 ADIS16460 IMU; // IMU object

10 uint16_t MSC ,FLTR ,DECR = 0; // register readback variables
11 // int16_t * burstData ; //dynamically allocated var for readback

information
12 // int16_t burstChecksum = 0; //Checksum explicit storage
13 float AXS , AYS , AZS , GXS , GYS , GZS , TEMPS = 0.0; // IMU variables
14 uint16_t printCounter = 0; // microseconds , DO NOT USE FOR FLIGHT

PURPOSES !
15 // variable will roll over after 71.6 minutes and result in

undesirable operation !!!
16 // all variables MUST be initialized to 0, or else a NaN in a divide -

by -zero error will occur.
17 int16_t GX , GY , GZ , AX , AY , AZ , XDANGL , YDANGL , ZDANGL , XDVEL , YDVEL

, ZDVEL , TEMP = 0;
18 uint32_t samps = 0;
19
20 float ax_stat , ay_stat , az_stat = 0.0; // accumulator
21 float gx_stat , gy_stat , gz_stat = 0.0; // accumulator
22 // Correction/offset factor.
23 float AX_zero , AY_zero , AZ_zero = 0.0;
24 float GX_zero , GY_zero , GZ_zero = 0.0;
25 // Sample epoch , to start from zero milliseconds in CSV/DAT file.
26 uint32_t samp_epoch_ms = 0;
27
28 // if we have a problem or we want to restart the program (the CPU),

reset.
29 // This code is functionally equivalent to pressing the hardware

RESET button.
30 void restart(void) {
31 // See the 1 ,200 page interface control document on ATSAMD21G for

more information ,
32 // section on system control block AIRCR register bank.
33

365

34 // Unfortunately , the only way to do this requires assembly
language.

35 __asm volatile ("cpsid␣i" ::: "memory"); // disable interrupt
reporting

36 __asm volatile ("dsb␣0xF":::"memory"); // commit
37 SCB ->AIRCR = ((0x5FAUL << SCB_AIRCR_VECTKEY_Pos)\
38 | SCB_AIRCR_SYSRESETREQ_Msk); // write to system control block 0

x5FA to reset
39 __asm volatile ("dsb␣0xF":::"memory");
40 for(;;) __asm volatile("nop"); //do nothing until system

controller reads the SCB state to restart
41 }
42
43
44 void scaleData() {
45 GXS = IMU.gyroScale(GX); // Scale X Gyro
46 GYS = IMU.gyroScale(GY); // Scale Y Gyro
47 GZS = IMU.gyroScale(GZ); // Scale Z Gyro
48 AXS = IMU.accelScale(AX); // Scale X Accel
49 AYS = IMU.accelScale(AY); // Scale Y Accel
50 AZS = IMU.accelScale(AZ); // Scale Z Accel
51 TEMPS = IMU.tempScale(TEMP); // Scale Temp Sensor
52 }
53
54 // interrupt service routine (ISR), fires on the instant when the imu

is ready to readback
55 void grabData() {
56 //we only need to read what is necessary (the 6-axes for rate and

acceleration), but all the derived velocities and
57 // angular positions are read out to showcase what this IMU is

capable of (it is a true IMU , not just a rate gyro
58 // with accelerometers.)
59 GX = IMU.regRead(X_GYRO_OUT);
60 GY = IMU.regRead(Y_GYRO_OUT);
61 GZ = IMU.regRead(Z_GYRO_OUT);
62 AX = IMU.regRead(X_ACCL_OUT);
63 AY = IMU.regRead(Y_ACCL_OUT);
64 AZ = IMU.regRead(Z_ACCL_OUT);
65 // XDANGL = IMU.regRead(X_DELT_ANG);
66 // YDANGL = IMU.regRead(Y_DELT_ANG);
67 // ZDANGL = IMU.regRead(Z_DELT_ANG);
68 // XDVEL = IMU.regRead(X_DELT_VEL);
69 // YDVEL = IMU.regRead(Y_DELT_VEL);
70 // ZDVEL = IMU.regRead(Z_DELT_VEL);
71 // TEMP = IMU.regRead(TEMP_OUT); //NOT calibrated !
72 scaleData(); // Scale data acquired from the IMU

366

73 // Print ms from epoch(must be initialized):
74 Serial.print(micros() - samp_epoch_ms);
75 Serial.print(",");
76 // Print scaled gyro data
77 Serial.print(String(GXS -GX_zero ,2)); Serial.print(",");
78 gx_stat += GXS -GX_zero;
79 Serial.print(String(GYS -GY_zero ,2)); Serial.print(",");
80 gy_stat += GYS -GX_zero;
81 Serial.print(String(GZS -GZ_zero ,2)); Serial.print(",");
82 gz_stat += GZS -GZ_zero;
83 // Print scaled accel data"
84 Serial.print(String(AXS -AX_zero ,3)); Serial.print(",");
85 ax_stat += AXS -AX_zero;
86 Serial.print(String(AYS -AY_zero ,3)); Serial.print(",");
87 ay_stat += AYS -AY_zero;
88 Serial.print(String(AZS -AZ_zero ,3)); Serial.print("\r\n");
89 az_stat += AZS -AZ_zero;
90 ++ samps;
91 }
92
93 void setup() {
94 // pinMode(RST , OUTPUT);
95 // digitalWrite(RST , HIGH); //enable the IMU
96 digitalWrite(LED_BUILTIN , LOW);
97 Serial.begin(1000000); // max USB Serial speed , bit/s
98 while(!Serial); // wait for serial port
99 Serial.println(F("START"));

100 // Watchdog.enable(6000); //We have a hardware watchdog to ensure
if we freeze , we immediately reset

101 //In the real world , we need something as critical as an IMU to
recover from a frozen state as

102 // quickly as possible.
103 IMU.configSPI(); // set bit order and speed
104 IMU.begin(CSR , DTR , RST);
105 delay(1000);
106 IMU.resetDUT(255);
107 delay(1000);
108 IMU.regWrite(MSC_CTRL , 0xC1); delay(20); // enable data ready , set

polarity
109 IMU.regWrite(FLTR_CTRL , 0x500); delay(20);
110 IMU.regWrite(DEC_RATE , 1); delay(20); // disable decimation

(discrete -time decimation)
111 MSC = IMU.regRead(MSC_CTRL);
112 FLTR = IMU.regRead(FLTR_CTRL);
113 DECR = IMU.regRead(DEC_RATE);
114 Serial.print(F("MSC_CTRL:␣")); Serial.println(MSC , HEX);

367

115 Serial.print(F("FLTR_CTRL:␣")); Serial.println(FLTR , HEX);
116 Serial.print(F("DEC_RATE:␣")); Serial.println(DECR , HEX);
117 delay(2000);
118
119 // manually run the interrupt to gather time - averaged data to

assess if we need to run the autoleveler :
120 #define AUTOLEVEL_SAMPS 1024 // samples
121 // define a temporary float vector to collect integrated data (i.e.

large numbers happen when integrating)
122 float gyro_integrated[3] = {0}; // initialize to zero to prevent

NaN
123 float accel_integrated[3] = {0};
124 // int actual_samps = 0;
125 // integrate for AUTOLEVEL_SAMPS
126 for(int z=0;z<AUTOLEVEL_SAMPS;z++) {
127 gyro_integrated[0] += IMU.regRead(X_GYRO_OUT); // typecast to

floating point from int
128 gyro_integrated[1] += IMU.regRead(Y_GYRO_OUT); // this is so we

can decimate the sample next
129 gyro_integrated[2] += IMU.regRead(Z_GYRO_OUT);
130 accel_integrated[0] += IMU.regRead(X_ACCL_OUT);
131 accel_integrated[1] += IMU.regRead(Y_ACCL_OUT);
132 accel_integrated[2] += IMU.regRead(Z_ACCL_OUT);
133 // wait until the next interrupt is triggered :
134 while(!digitalRead(DTR)); // wait for a state change signifying the

new data is ready
135 }
136
137 // decimate by AUTOLEVEL_SAMPS to get time - averaged data:
138 gyro_integrated[0] = gyro_integrated[0] / AUTOLEVEL_SAMPS;
139 gyro_integrated[1] = gyro_integrated[1] / AUTOLEVEL_SAMPS;
140 gyro_integrated[2] = gyro_integrated[2] / AUTOLEVEL_SAMPS;
141 accel_integrated[0] = accel_integrated[0] / AUTOLEVEL_SAMPS;
142 accel_integrated[1] = accel_integrated[1] / AUTOLEVEL_SAMPS;
143 accel_integrated[2] = accel_integrated[2] / AUTOLEVEL_SAMPS;
144
145 // additional setup: initial autoleveling :
146 #define AUTOLEVEL_GYRO_LIM 1.00 // deg
147 #define AUTOLEVEL_ACCEL_LIM_X_Y 0.05 //G
148 // if any of the conditions are exceeded :
149 if((abs(gyro_integrated[0]) > AUTOLEVEL_GYRO_LIM) ||
150 (abs(gyro_integrated[1]) > AUTOLEVEL_GYRO_LIM) ||
151 (abs(gyro_integrated[2]) > AUTOLEVEL_GYRO_LIM) ||
152 (abs(accel_integrated[0]) > (AUTOLEVEL_ACCEL_LIM_X_Y)) ||
153 (abs(accel_integrated[1]) > (AUTOLEVEL_ACCEL_LIM_X_Y)) ||
154 (abs(accel_integrated[2]) > (1 -AUTOLEVEL_ACCEL_LIM_X_Y))) { //z-

368

axis
155 // perform autoleveling
156 Serial.println(F("Level␣ground␣criteria␣not␣met ,␣autoleveling...."

));
157 //we just did all the hard work , why waste time and sample again?

assuming we are standing still ,
158 // (we DEFINITELY should), use the values we just got as the

correction factor :
159 AX_zero = accel_integrated[0] * 0.00025;
160 Serial.print(F("AX_ZERO:␣")); Serial.print(AX_zero);

Serial.print(F(","));
161 AY_zero = accel_integrated[1] * 0.00025;
162 Serial.print(F("AY_ZERO:␣")); Serial.print(AY_zero);

Serial.print(F(","));
163 AZ_zero = accel_integrated[2] * 0.00025;
164 Serial.print(F("AZ_ZERO:␣")); Serial.print(AZ_zero);

Serial.print(F(","));
165 GX_zero = gyro_integrated[0] * 0.005;
166 Serial.print(F("GX_ZERO:␣")); Serial.print(GX_zero);

Serial.print(F(","));
167 GY_zero = gyro_integrated[1] * 0.005;
168 Serial.print(F("GY_ZERO:␣")); Serial.print(GY_zero);

Serial.print(F(","));
169 GZ_zero = gyro_integrated[2] * 0.005;
170 Serial.print(F("GZ_ZERO:␣")); Serial.println(GZ_zero);
171 Serial.println(F("Done."));
172 }
173 else {
174 Serial.println(F("Level␣ground␣criteria␣met.␣Proceeding."));
175 }
176 delay(1000);
177 Serial.println(F("If␣you␣do␣not␣have␣a␣serial␣terminal␣logging␣

program␣like␣PuTTY␣open ,"));
178 Serial.println(F("unplug␣the␣device␣now␣and␣start␣a␣PuTTY␣session␣

with␣logging."));
179 Serial.println(F("Please␣see␣https:

//cdn.discordapp.com/attachments/677058803681722389/1049778607477751848/image.png
␣for␣an␣example."));

180
181 //we are finished initializing.
182 // attachInterrupt(DTR , grabData , RISING); //specifies the ISR

(interrupt service routine) to get the IMU data for that frame
183
184 }
185
186 # define BFL1 0x500 //1 tap

369

187 # define BFL2 0x501 //2 taps
188 # define BFL3 0x502 //4 taps
189 int filtctrl = 0x500;
190
191
192 void loop() {
193 // make a user interface to streamline collection
194 // Use a very simple method : one letter command. Should be machine

and human friendly.
195 if(Serial.available()) { //if user has input something into serial

port ,
196 detachInterrupt(DTR); //DO NOT PROCESS IMU DATA IF SOMETHING IS

AVAILABLE FROM USER !!
197 char c = Serial.read(); // read a singular character from the ring

buffer to operate on it
198 switch(c) { // decide between all the possible inputs :
199 case ’r’: //"reset "
200 Serial.println(F("Restarting␣device.␣You␣will␣need␣to␣reselect␣

the␣serial␣port"));
201 Serial.println(F("to␣restart␣this␣UI."));
202 delay(1000);
203 restart();
204 break; // for the formality so compiler doesn ’t throw a warning.
205 case ’a’: //" activate ", start collection
206 Serial.println(F("starting␣collection..."));
207 Serial.println(F("==

"));
208 Serial.println(F("TIME(ms),XGYRO ,YGYRO ,ZGYRO ,XACCEL ,YACCEL ,

ZACCEL"));
209 samp_epoch_ms = micros(); // advance counter to start time
210 gx_stat = 0.0; gy_stat = 0.0; gz_stat = 0.0;
211 ax_stat = 0.0; ay_stat = 0.0; az_stat = 0.0;
212 attachInterrupt(DTR , grabData , RISING);
213 break;
214 case ’s’: //"stop" stop collection
215 Serial.println(F("stopped␣collection."));
216 // decimate by samples taken:
217 ax_stat /= samps;
218 ay_stat /= samps;
219 az_stat /= samps;
220 gx_stat /= samps;
221 gy_stat /= samps;
222 gz_stat /= samps;
223 // print statistics :
224 Serial.print(F("ax␣avg:␣")); Serial.println(ax_stat);
225 Serial.print(F("ay␣avg:␣")); Serial.println(ay_stat);

370

226 Serial.print(F("az␣avg:␣")); Serial.println(az_stat);
227 Serial.print(F("gx␣avg:␣")); Serial.println(gx_stat);
228 Serial.print(F("gy␣avg:␣")); Serial.println(gy_stat);
229 Serial.print(F("gz␣avg:␣")); Serial.println(gz_stat);
230 break;
231 case ’1’: // filter control , tap #
232 IMU.regWrite(FLTR_CTRL ,BFL1); delay(20);
233 break;
234 case ’2’: // filter control , tap #
235 IMU.regWrite(FLTR_CTRL ,BFL2); delay(20);
236 break;
237 case ’4’: // filter control , tap #
238 IMU.regWrite(FLTR_CTRL ,BFL3); delay(20);
239 break;
240 default:
241 break;
242 }
243 }
244
245 // detachInterrupt(2);
246
247 // attachInterrupt(DTR , grabData , RISING);
248 }

371

8. SEEDS-A Assembly and Deployment Manual

INSTRUCTION MANUAL FOR ASSEMBLY AND DEPLOYMENT OF

NETWORK

ADAPTED FROM

APOLLO 15-17 ALSEP-MT-03, SECTION 4

372

8.1 Instrument Description

Table 8.1: Gateway

Item Description
Node Enclosure (Box 1) Grey polycarbonate case with TTL Serial

JPEG Camera affixed to top. Contents
include: StratoPi, 12V, and 3.3V converter
Command Data and Handling (CDH) brick,
Li-Po battery, battery charger

Solid State Drive (Box 1) 1 TB Samsung solid state drive
30 W solar panel + Connectors (Box 1) Renogy 30W 12V Monocrystalline Solar

Panel for Node and Cable
BGAN + Cable (Box 1) Inmarsat compact unit comprising of

transceiver and antenna
Wifi antenna (Box 1) Black 915 MHz Whip Tilt Antenna
Mast (Box 3) Steel Tripod Assembly for Gateway
Wind Sonic & Cable (Box 4) Black polycarbonate exterior, 2-axis ultra-

sonic wind sensor and cable connector
Sensor Head Ring + Cable (Box 4) 3D-printed PLA 3-Tiered Ring
Grounding cable Kit (Box 2) 50’Guy Wire, 3 S Hooks, Guy Wire Ring,

6 Clamps

Table 8.2: Node

Item Description
Node Enclosure (Box 2) Grey polycarbonate case with pod bricks

(3) affixed to the top. Contents include:
12V and 3.3V converter, CDH brick, Li-Po
battery, battery charger.

10 W solar panel + Connectors (Box 2) Renogy 10W 12V Monocrystalline Solar
Panel with connectors

Wifi antenna (Box 1) Black 915 MHz Whip Tilt Antenna
Spare Hardware Spare washers and mounting stakes for node

373

8.2 Post-Arrival Conditions and Deployment Risks.

Conditions at Cerro Aguas Calientes and Laguna Lejía impose constraints on

the hardware and deployment crew.

The altitude of Laguna Lejía and base camp is 4,100 meters, which, after

adequate acclimation, should present few risks. Due to this, deployment of Node 042

can occur at any time during the day that is convenient for the expedition leader and

allows for up to two hours of anticipated total deployment time.

The constraints of Cerro Aguas Calientes are severe, and present a high risk.

The altitude of the summit is 5,900 meters, and presents a large contribution to risk

factor. Any crew summiting Aguas Calientes shall acclimate at the altitude of

Laguna Lejía for at least one week, or at least three days with 125 mg acetazolamide.

The physical condition of the summit crew shall be evaluated a day before attempting

a summit. All crew must take 125 mg acetazolamide before summiting; failure to do

so will result in a substantially higher risk of nausea, fatigue, or death.

Aguas Calientes is a stratovolcano, and due to geologically recent eruptions

from itself and the neighboring Lascar volcano, loose igneous rocks on slopes of up to

45 degrees make up the terrain. This presents a risk in terms of safe navigability.

During the day and during high sun angles, extreme UV exposure will occur.

All crew must cover as much skin as possible, especially the face and eyes.

Due to the need for on-site modifications and firmware updates, a crew member

with significant firmware engineering experience and complete familiarity with the

system internals is needed. This member shall rehearse as many expected scenarios as

possible and familiarize themselves with this deployment manual before deployment

to the Atacama Desert as the highly rarefied atmosphere at Cerro Aguas Calientes

will result in significant mental and visual impairment.

374

Network deployment-related events that take place after adequate acclimation

are presented here in the order in which they will be accomplished by the crew:

A. Survey deployment sites to allow for secure equipment mounting to the

ground,

B. Verify equipment layout so as to allow for maximum exposure to solar panels,

C. Deploy equipment in surveyed locations.

8.2.1 Tools used in Deployment.

Table 8.3: Gateway

Tool Purpose
Allen Key Set BGAN Mount
1 kg Hammer to hammer stakes into the ground
6 helical A2 Stainless Stakes To firmly mount antenna tripod to ground

composed of small igneous rock
24 Straight A2 Stainless Stakes with Loops To mount pod, node, and solar panels to

ground
1 Key Switch Key To turn on units
Philips and Flathead Screwdriver Set To tighten internal power blocks and other

components if/as necessary
Soldering Kit To repair or replace wiring to node sensor

head, and to repair electronics in the field
if necessary

Portable Battery with AC Inverter To power soldering iron while in the field
Foldable Standard-Issue Army Shovel To dig out mounting areas as necessary
22AWG Solid-Core Wire To repair electronics as necessary

8.2.2 Repair Procedures.

This procedure assumes that the node head is fully tested and expedition

qualified. If an RJ-11 terminated cable is not included with this node sensor head,

please consult the expedition firmware engineer for assistance in completing this

375

repair in the field. Additionally, this procedure must be performed at the base

camp and NOT at the summit. Physiological limitations prevent

long-duration stays at the summit.

1. Identify the node sensor head by looking for a white, 3D-printed cylinder

with several electronic components in it. Leave this sensor head in its antistatic

packaging for now.

2. Find the tripod with the attached wind sensor. Clipped to the top of it is

the two-part sensor package. Using a small flathead screwdriver, wedge the

screwdriver between the sensor head cap and the mounting base. Work the

screwdriver around the gap until the sensor head cap comes off.

3. Unplug the internal RJ-11 connector and place the sensor head cap into the

Nanuk hard case.

4. Take the replacement sensor head cap and remove the antistatic packaging.

5. Take the roll of gum tape and carefully unroll 600 mm inside the hard case,

which is used to shield the tape from gusts of wind that might carry dust.

6. Stick the end of the tape to the case and use scissors to cut the tape. It

might take a few attempts to cut the tape. 7. Carefully take the stretched out tape

to the sensor head base and wrap it around the circumference of the base. Apply

pressure around the entire tape to secure it.

8. Using the blade of the scissor, peel off the backing slowly from a corner.

Once a large enough surface is peeled with the scissors, use fingers to slowly peel the

wax paper.

9. Once it is fully peeled off, take the scissors and cut the excess tape from the

upper lip of the sensor head base.

10. Take the new sensor head and plug the RJ-11 terminated cable into the

AI04 jack. Be sure this is seated firmly before proceeding.

376

11. Seat the sensor head on the base. Slowly rotate while applying firm

downward pressure on the sensor head.

12. When the sensor head cap cannot go down anymore even after applying a

modest amount of pressure, stop. Take the scissors to pry off any excess gum around

the circumference of the sensor head.

8.2.3 Site survey.

The terrain comprises porous igneous rock, which may largely be aggregate

bigger than pebbles especially at the summit. This will significantly hinder the ability

to mount the equipment to the ground securely.

At the summit of Cerro Simba, two crew members shall walk the entire crater

rim, carefully noting the aggregate size and being especially mindful of the steep

slopes. To aid in choosing a site, one member shall take pictures of a candidate

location, with the lake in the background as a radial reference. At each candidate

location, a crew member shall use a shovel to qualitatively judge the ease of digging.

The most suitable candidate locations shall be marked with a small red survey flag,

so that the crew can come back to the location to deploy the node.

8.2.4 Deployment procedures.

These procedures assume that Boxes 1-4 are fully unpacked.

8.2.4.1 LAKE LEJIA POD.

1. Open the Nanuk hard case and remove Unit 042, which is the larger light

gray polycarbonate case with two metal latches. It does not have a fisheye lens

protruding from the center of the case.

2. Remove eight 300 mm A2 stainless stakes.

377

3. Remove one 10-watt solar panel, which is labeled “Renogy” on the rear of

the unit. The black anodized aluminum stands should already be fastened to the

solar panel unit, and the 3-meter red and black flexible wire pair should already be

fastened.

a. If flexible wire pair is not attached, find the rectangular end of the cable,

and find the rectangular connector on the solar panel. Observe the connector polarity

and plug the connectors in.

4. Using predetermined sunrise and sunset bearings, take the solar panel, four

A2 stainless stakes, and a 1 kg hammer to the site chosen from 1.3 Site Survey. The

solar panel azimuth must be aligned to the median of sunrise and sunset, and the

elevation of the solar panel must be elevated 30 degrees from the horizon to allow for

maximum solar exposure throughout the entire year.

a. Once aligned, take a stake and place it in the hole on the L-bracket of the

lower left leg of the solar panel, marked “1”. Taking care to not strike the solar panel

surface, gently hammer the stake into the ground until the loop of the stake reaches

the surface of the L-bracket.

b. Repeat the previous step going counterclockwise until the solar panel is

firmly secured to the ground.

5. Take the flexible cable pair and string it to the pod site chosen.

6. Take four stakes, the node, and a hammer to the pod site. Level the soil so

that the node unit will be parallel with the horizon. Ensure that there are no large

rocks below the mounting holes in the L-brackets.

a. Once the pod is placed and leveled, start at the lower-left corner L-bracket

marked “1”. Place the stake into the L-bracket hole. Taking the hammer and taking

care not to strike the pod box, gently hammer the stake into the ground until the

loop of the stake reaches the surface of the L-bracket.

378

b. Proceed counterclockwise in the same manner until the node is firmly

secured to the ground.

7. With the solar panel and pod secured to the ground, uncap the round plug

on the pod and uncap the cable. Put the caps in the assembler’s pocket, and plug the

cable into the pod.

8. Open the node by unlatching both steel latches, and take the key taped to

the lower-left corner wall. Replace the tape and close the pod. Insert the key into the

key switch and turn it clockwise 90 degrees. This will turn the pod on. Remove the

key and place it into the assembler’s pocket.

9. Make sure the antenna is perpendicular to the ground before leaving the site.

8.2.4.2 SUMMIT PODS AND NODE.

Assembly team: PLEASE review this section several times before summiting;

the procedure should be memorized and all should be familiar with all components of

the system.

- NODE:

1. Near the chosen site for the node, find a relatively flat location for equipment

staging. Open the Nanuk hard case and remove the Node server unit, which can be

identified as the white polycarbonate case with a fisheye lens in the middle of the lid.

2. Remove 8 straight spikes and 6 helical spikes from the hard case.

3. Take a smartphone and open a compass app. Calibrate the magnetometer

and set the phone inside the hard case. This will allow the phone to obtain a GPS

lock to identify the true North correction.

4. Take the gold-colored tripod containing the attached Explorer 540 modem

and Windsonic wind sensor and move it to the chosen site. If it is very windy,

carefully lay the tripod down, ensuring that the wind sensor does not come into

379

contact with the ground unless it is still wrapped in bubble wrap. If it is not windy,

proceed to the next step.

5. Begin deploying the tripod by pulling the legs apart. The tripod is fully

deployed when the beams attached to each leg and the center collar form a flat plane

perpendicular to the tripod mast.

6. If the bubble wrap has not been removed from the Windsonic wind sensor,

remove it now and place it in the Nanuk hard case. On the Windsonic, identify the

red triangle underneath the lip of the circular reflector. This indicates true North.

Have a crew member retrieve the smartphone from the hard case to find true North.

Now rotate the tripod assembly until the red triangle is facing true North.

7. With the tripod correctly aligned, the tripod must now be levelled and

secured. In the intended tripod leg locations, dig out rocks underneath each leg at up

to 15 cm below the surface. Place the tripod into the holes. If the tripod is not level,

remove rocks from each hole until the tripod is level.

7.1. Take one stainless helical spike and insert it into the mounting hole. While

a crew member holds the tripod, rotate the spike until the end of the spike is reached.

Repeat this process until all spikes are secured. If more leverage is necessary due to

tough soil, take the large Vise-Grip pliers and attach it to the spike to use as a lever.

Apply downward force while rotating.

7.2. Replace the rocks into the holes to cover the tripod legs and spikes.

8. Because the Inmarsat 4 geosynchronous satellite is almost directly above the

Atacama, pointing is very straightforward. Using an M5 Allen key, loosen the nuts on

the elevation plate until the antenna is loose. Point the antenna as far up as allowable

and secure the elevation plate.

9. Take a break for at least 10 minutes before continuing assembly. This will

allow you to regain focus if necessary. Ensure you are not feeling drowsy and/or

380

nauseous; if you feel any of these now or at any time during the installation process,

notify your crew members immediately so a portable compression chamber can be

deployed.

10. Take the node server unit and place it 60 cm away from the center of the

mast, in between two of the legs opposite the Inmarsat antenna. The cable ports

must be facing the mast.

11. A cabling fit check is now necessary. Ensure the cable bundle from the

Inmarsat antenna and white sensor head will reach the server unit with some slack.

The cable bend radius on the Inmarsat modem shall not be smaller than 15 cm; if it

is smaller than this, there is not enough slack. Move the server unit closer to the

mast. Do NOT plug anything in during this step.

12. Take the gray, stiff cable labeled “Ethernet” and remove the rubber

connector guard. Plug the cable into the jack labeled “Ethernet”.

13. Take the white cable labeled “Sensor Head” and remove the rubber

connector guard. Plug the cable into the jack labeled “Sensor Head”.

14. Retrieve the large, 30W solar panel. Do not drag the power cable on the

ground. Using predetermined sunrise and sunset bearings and the predetermined

solar panel location, align the solar panel to the median of sunrise and sunset. Use a

compass app as necessary. Adjust the elevation of the solar panel by moving the legs

so that the elevation is 30 degrees from the horizon. This will allow for maximum

solar exposure throughout the entire year.

14.1. Once aligned, take a stake and place it in the hole on the L-bracket of the

lower left leg of the solar panel, marked “1”. Taking care to not strike the solar panel

surface, gently hammer the stake into the ground until the loop of the stake reaches

the surface of the L-bracket.

14.2. Repeat the previous step going counterclockwise until the solar panel is

381

firmly secured to the ground.

14.3. Stretch the solar panel power cable to the gateway server. Find the final

remaining plug labelled “Solar Input” and plug the cable in.

15. Using the key from the Lake Lejia pod, insert it into the key switch and

rotate 90 degrees. Remove the key. This will turn the system on. Do not perform

post-deployment system checks until at least one hour has passed - this will allow the

system to partly recharge the batteries.

16. The setup is now complete. Ensure all components of the system are

securely fastened to the ground.

- SUMMIT PODS:

Assembler notes: These are the "Block 1.5" pods, assembled post-delivery.

1. Open the Nanuk hard case and remove the small gray polycarbonate boxes.

Each has ABS bricks mounted on the top of their covers.

2. Remove eight stakes, solar panels, hammer, and shovel. Do not drag the

solar panel power cables on the ground.

3. While the site location for these pods are determined at the mission

director’s discretion, locations should be selected that allow maximum solar exposure,

especially if deeper in the crater. This entails placing them on the sunward side of the

crater. Take each pod set to their respective chosen locations.

4. Since the crater walls are very steep and the site is prone to earthquakes,

some preparatory work may be necessary. For pod(s) placed on the steepest portions

of the crater wall, a method needed to protect the pod from rock slides will need to

be developed. Using a shovel, flatten out an area large enough to fit the node, where

it is level with the horizon. Do not throw the soil downslope.

5. Place the pod into the flattened area, and fill the pod in up to the surface of

the polycarbonate lid with the dirt that was placed aside.

382

6. Take the solar panel and identify the small black box on the rear of the solar

panel. This is the junction box. Place the solar panel on the ground, with the short

end down on top of the base of the pod, and the junction box furthest away from the

ground. The solar panel should have a 45 degree angle relative to the horizon; adjust

the angle of the solar panel using the end on the ground as a pivot point and the

solar panel legs to adjust the angle. Make sure the mounting brackets on the base

and legs do not get buried.

6.1. This setup is intended to shield small rocks and gravel from sliding onto

the surface of the sensors in the event of an earthquake or nearby volcanic eruption.

If in the unlikely case that the crater slope is greater than 45 degrees, a keep-out zone

of shallower slope will need to be made. Dig out an area behind the solar panel of at

most a 22 degree slope of 1 meter length from the base of the solar panel. Proceed

slowly, as one will be easily fatigued at this altitude. If fatigued and/or nauseous,

notify crew immediately.

7. With the ground prepared, take a stake and insert it into the L-bracket hole.

Hammer the stake into the ground until the loop is reached. Be careful not to hit the

solar panel while hammering. Repeat for all stakes until the solar panel is firmly

staked to the ground.

8. To allow rocks to flow around the solar panel and node in a rock slide, fill

rocks completely underneath the solar panel. DO NOT tamp down the rocks, as it

may loosen the stakes from the ground.

9. For node(s) that are placed near the shore of the crater lake, the same

procedure can be applied. Note that the lake level changes due to snow and

evaporation; node(s) should be placed far away enough that the lake level will not

reach the node equipment.

10. Take the same key that was used to power on the node and Lake Lejia pod

383

and turn each pod on. This completes the installation.

8.2.4.3 Post-deployment system Check

This procedure in the field will nesure the system is fully operations and is

taking in-situ data. Communication with mission control (MC) at SETI and San Jose

State University is required.

1. When ready, contact the base camp via walkie-talkie to send a text message

via satellite phone or shortwave-band digital to MC to enable the BGAN modem

remotely.

2. After no more than 15 minutes of sending an “on” command to the modem

via Inmarsat, the yellow status light should turn solid on. Communicate this event

back to MC.

3. MC should text back “VPN GREEN” within 10 to 20 minutes of the modem

powering on. When this occurs, wait for MC to text back a full data string to the

base camp from all pods and the node.

4. At the base camp, read the data string. If there are any instances of

65535.00 or any negative values that are not temperature, notify the

firmware engineer at the summit IMMEDIATELY.

5. If the data string test has passed, the system is fully operational. Text

“STATUS 0” to MC to indicate completion of test.

6. Ensure one last time that all systems are fastened on the mountain securely.

	Introduction
	Motivation
	Literature Review
	Lunar Robotic Systems
	Martian Robotic Systems

	Project Proposal
	Methodology

	Problem Scope
	A Word on Management and Expectations
	Political Requirements
	Peer-Reviewed Science Requirements
	Goal II
	Goal III
	Goal IV

	Regulatory Requirements
	Program Formulation

	Work and Cost Breakdown
	Projected Program Lifecycle
	Project and Work Breakdown
	Cost Breakdown

	Conclusion

	Engineering Constraints
	MSPSP
	Inhibit Scheme
	Launch Vehicle Identification
	Launch, Cruise, and Arrival
	Communications
	Power
	Nuclear
	Solar

	Architectural Design Process and Concept of Operations
	Architecture, Version 1
	Architectural Revision Rationale

	Architecture, Version 2
	Architecture, Version 3
	Version 4 and Shinra RTG
	Version 5 and 6 - New Space LSP Version
	Version 7 - Final Version
	Complete Concept of Operations

	Nanoprobe Design, Development, and Testing
	Version 0 - SEEDS-A
	Work Breakdown
	Product Breakdown

	Revision 1
	Revision 2
	Gateway Electronics

	Entry, Descent, and Landing System
	Assumptions and Initial Requirements
	Individual Cases
	Hypersonic, Mach 18 and 9.79
	Mach 2.1
	Mach 1.4 - Parachute Deployed
	Mach 0.16 - Pre-Deployment
	Fuel Margin Validation

	Universal Electrical Power System
	Design
	Dual-Redundant CPU Topology

	System-level I&T Plan

	Next Steps
	Report Work
	Research and Development
	Mission Proposal

	Conclusion
	Appendices
	 Appendix MATLAB (R) 2D hypersonic propagator code
	 Appendix RF Gateway I&T Unit
	 Appendix Etro Thermocouple Test Code
	 Appendix Gateway Code - Main Processor
	 Appendix Gateway Code - Inclinometer and Strong-motion Seismometer
	 Appendix Node Code - Node Version 2
	 Appendix ADCS Development - Noise Characterization
	 Appendix SEEDS-A Assembly and Deployment Manual
	Instrument Description
	Post-Arrival Conditions and Deployment Risks.
	Tools used in Deployment.
	Repair Procedures.
	Site survey.
	Deployment procedures.

