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1. Intrcduction

This talk is devoted to a dispersion approach to weak interactions at high energy. There
are two kinds of problems which will be touched upon:

1. Asymptotic bounds on the total cross section.

2. Higher-order weak interactions at finite energy.

The first problem arises from the fact that for weak interactions at high energy massless-
particle (neutrino) exchange may be essential while most of the results of the theory of dispersion
relations are valid only in the case of finite masses. In particular, the derivation of the Froissart
bound depends on this assumption. The proper generalization of these results still represents a
challenge to the theorists. Some asymptotic bounds obtained so far will be discussed at the end of
the talk.

As for the application of dispersion relations to higher-order weak interactions, the hopes
are high now that they will never be needed for this purpose. Indeed, if pertubative-type models
of weak interactions are valid, dispersion relations for weak interactions will play a subordinate,
if any, role.

Experimentally, however, there is no single piece of information which compels us to accept
these models. So far weak processes are well described by the lowest-order interaction. For
conventional theories it is difficult to incorporate this simple picture both at low and high energies:
if one tries pertubative calculations with cut-off or introduces new particles higher-order correc-
tions are large unless the cut-off or masses of new particles are small,

If, however, the cross section of weak interaction continues to grow with energy and no new
particles are produced, we will presumably be forced to say that there is some mystery (symmetry)
about coupling constants which makes thern small and universal. The unitarity condition and dis-
persion relations will then suggest themselves as a model-independent approach to weak inter-
actions.

In the applications discuesed below dispersion relations with two subtractions are mostly
used. The four-fermion coupling constants are considered here to be subtraction terms, any hope
of calculating them being abandoned. The emphasis is made instead on terms of next order in

energy which are assumed to be digpersive,

1. Pomeranchuk's Relation

Dispersion relations were first applied to weak interactions at high energy by Pomeranchuk. t

He realized that the dispersion approach provides us with a model-independent connection between

the low~ and high-energy behavior of the amplitudes of weak interactions.

*Report of work of A. D, Dolgov, L. B. Okun, and V. 1. Zakharov.
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Indeed, let us imagine that starting from some energy 8, the total cross section of weak

interactions becomes large. For simplicity we assume also that it is equal to a constant % at
higher energies (see Fig. 1). In what way would it affect the amplitude at low energy? To answer
this question let us calculate the dispersion contribution A(z) coming from s' > g

find that for t=0
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where A( ) stands for amplitude of pointlike four-fermion interaction and is equal to 4N2G.
Through some positivity condition it can be shown that this correction to the lowest-order
amplitude due to the contribution of &' > 8, cannot be cancelled out by other pieces of the disper-
sion integral so that Eq. (1) gives a lower bound on the correction. Pomeranchuk also found the

correction to dA(”/dt and showed it is more sensitive to the value of 9y

III. At What Energy Can Weak Interactions Become Strong?

Equation (1) was used by Pomeranchuk to answer just this question, Up to now no sign of
the presence of the A‘z) term hasg been found. If we turn to consideration of vp - vp scattering, it
is safe to say that for 8 < 10 GeVz the ratio of the amplitudes A(vp - vp)/A(vn — up) is less than
or equal to unity. From Eq. (1) we learn then that the total cross section of weak interaction can
~m,
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be comparable to the total cross section of strong interaction (cr ) only at an energy squared

0 N
5 2
8,2 10° GeV . (2)
L (2} (1) -1
In paper” it was assumed that A'"'/A <1uptos~G  and was concluded that
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Up to now we used dispersion relations for forward scattering to estimate A(Z). Let us turn
now to the discussion of the t-dependence of the amplitude and for simplicity let us consider first
the case of lepton-lepton scattering. Then, in the lowest-order weak scattering proceeds via a
single partial wave and the t-dependence of the amplitude is very smooth. This is not true for the
dispersive correction A(Z). Indeed, this correction arises from the dispersion contribution of
high energies and reflecta the structure of the amplitude at these energics. We assumed that the
cross section at high energy is large; this implies a sharp t-dependence of the amplitude. As far
as we agsume the cross section to be a constant at s' > Sy it is natural to expect that the t-
dependence factorizes out and for some region of t can be approximated by an exponential function,

In this way we come to the conclusion that

A(Z) -1

-t
~ exp(—). -t Mo, . (4)
teff eff 0

(t)

Since existing experimental data on lepton-lepton scattering are very poor, Eq. (4) does not
help directly to improve the bound (2} on 8y obtatned above. However, Eq. (4) shows that at small
energies there should exist some sort of halo with radius of order 'Jao- . [If one considers it to be
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unacceptable from a theoretical point of view, then s, can be pushed to infinity to cancel the con-

tribution of high energies by a factor s/s0 (see Eq. (10j] .

A somewhat more conservative point of view is to allow the long-range forces introduced by
A(Z) to be comparable in strength with long-range forces arising from hadron exchange in higher
orders in weak interactions. It still restricts possible value of 54 severely. We would like, how-
ever, not to use additional theoretical assumptions and stick to bound (2).

For lepton-hadron scattering the situation is even more complicated since it is not clear how

one can distinguish between the damping factor (4) and the usual form factor.

IV. Model of Strongly Interacting W-Bosons

Appelquist and (.T-oldmanZ have observed that the amplitude of elastic scattering will become
rather large at NAL energies if W-bosons have strong pairwise interaction with hadrons (see also
Bjorken's Lecture in ErevanB).

Indeed, in this case the cross section increases promptly once production of real W-bosons

is possible (see Fig. 2). Roughly speaking, we haves

s,~m 2 (5)
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where g is the semiweak coupling constant. Then, Eq. (1) gives

(2) a0
A trong
(i) ~ stro 16)
A 4N2
2
which is independent of the mass of W-boson | as far as Gmw < 1) and is rather large. A more
accurate calculation of the graph (Fig. 2) reduces the estimate (6) somewhat, but still for ¥ =50
v
GeV g(vp = vp) and o(vn ~ pp) are comparable if astrong ~1 mb.

Digpersion relations were also used to pose the problem of damping higher-order effects in

this model (see Ref. 3).

V. General Form of Amplitude of Weak Interactions at Low Energy

For a more detailed discussion we need now better understanding of the structure of A(Z'.

The problem is to describe the corrections in a model-independent way without refering to any
dynamical calculations. An example of such a description is provided by an amplitude of non-

relativistic scattering at low cnergy

i
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where E is the energy and a is the scattering length.

Somewhat similar formulas can be obtained for weak interactions at low energy. The differ-
ence is that several GeV (perhaps even 100 GeV) is still a "low" energy for weak interactions.

1t is reasonable therefore to consider the interaction of massless particles to simplify the

+ - . . 4,5
formulae. In the case of elastic e e scattering we have in the second order
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Alee - ee) = Zst (t 1n —} +uln :A—u)+possible contact term, {8)
3
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where In A is some parameter; t and u are the energy squared in annihilation channels.

Equation (8) is a general one in the same sense as Eq. (7) is: it keeps all the terms of the
second order in s, t and satisfies the unitarity condition in thig approximation. For sufficiently
low 8 it is surely valid provided that there are no neutral weak currents which give a contribution
to the unitarity sum comparable with that of the vv intermediate state (see Fig. 3).

Termas of the third order in s, t can be described in the same way4' 5 with more parameters

entering the game. TFor the terms of higher order the calculation has not been tried yet.

VI. Dispersion Sum Rule for In A

Expanding a dispersion relation with two subtractions in powers of s and comparing the re-

sult with Eq. (8) one readily obtains
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and the dependence of In A on & is just superficial.

This sum rule gives the parameter In A which represents the cut-off in pertubative calcula-
tions in terms of integral over the total cross section. It is a generalization of Eq. (1) which keeps
the contribution of intermediate energies.

Any violation of Eq. {9) would imply the violation of dispersion relations with two subtractions.
Because the integrand of the first term in rhs of Eq. (9)--the only one where integration extends to
infinity-~-is positive such a violation, if it exists, has a chance to be established at finite energies.

Terms of higher order in the expansion of the amplitude at low energies can also be ex-
pressed in terms of some dispersive integrals. In particular, the coefficients of an expansion in

powers of t are given by

/——dn“““'t' ds (10)
3 n 2
dt™ - =0 8
which by virtue of the inequality6
dn_A(B.'l) > Const * 86 n+t (11)
n - tot

dt

depends most crucially on the total cross section at high energy. In an explicit form such repre-
sentations were obtained for terms of the third order. In higher orders the problem is to isolate
the singularity of the amplitude at t=0 connected with massless particle exchange so as to make

the derivative in t meaningful.
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VII. Dispersion Sum Rule for Fermi Constant G

Up to now the constant G was treated as a subtraction constant. If there exist dispersion
relations with one subtraction then the constant G can be represented as anintegralo(the difference

of total cross sections of particle and antiparticle interactions:
14 [®ds[_ tot tot
G-m‘é e G\TE (8) Uv& (E)]. {12)

It is worth noting that even if this dispersion integral is convergent it is not excluded that some
constant should be added to the rhs of Eq. (12). The absence of this constant ig an additional
asgumption needed to derive representation (12).

According to paper, 7 a dispersion sum rule for the constant G can be obtained even in the
case of two Bubtractions. To this end one should consider the dispersion relation for the modulus
of amplitude and its phase. According to paper7 there are no zeros in the upper half plane if dis-
persion relations with two subtractions are valid and masses of particles are kept zero. Then
there are no arbitrary constants in the dispersion representations for modulus and phase. As a

result the following sum rule arises:

@
ds
/—zln
0 8

which becomes an inequality if the number of subtractions is larger than two.

—5 5 G (13)
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VIIl. Weak Interaction of Colliding Beams with Energy 102 -103 GeV

If the Fermi coupling constant G provides the only energy scale inherent to weak interactions,
experimental investigation of weak processes at energies s ~G-’ will become imperative. By
virtue of the vnitarity condition these are the energies where higher-order corrections should be
noticeable.

There exist some plans for constructing colliding beams with energy ~100 GeV to probe weak
interactions. These are for lepton~lepton beams in Erevan and Novosibirsk and for proton-proton
beams at Brookhaven.

The formulae obtained above may be useful to expose general features of such experiments
and, later, to provide a framework for analyzing the resulta.4

Let ug consider the simplest case of e+e_ elastic scattering. It is easy to guess that the
second -order weak and electromagnetic amplitudes become comparable to each other at large

momentum transfer if

2 - _Gs
f{ (8) ~ « where fi(a)_ —611»JE' (14)

1‘1 being the partial-wave amplitude of e+e- - v¥ annihilation (in the lowest order only the partial
wave with j=1 is different from zero).

This guesas can be checked by calculating the imaginary part (see Fig. 3) which is uniquely
determined in terms of constant G. By retaining the imaginary part only one obtains a lower

bound on the weak cross section. It turns out that this lower bound equals the electromagnetic
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differential cross section for 6=90° at an energy of 225 GeV, the corresponding cross section
beingz - 1073

The measurement of the real part which is not predicted would provide us with the knowledge

7 2
cm’ /sr.

of some integral of the total cross section[see Eq. (9)]. Higher-order corrections are presumably
smaller by the factor f‘ ~a. Thus, for such energies some kind of pertubation treatment could
be applicable and for the whole range of energies and angles the scattering amplitude is expected
to be described by a single parameter In A,

A more detailed presentation of the same problems can be found in Ref. 4. In particular,

the last paper listed in this reference deals with electromagnetic corrections of higher order.

IX. Long-Range Forces and Weak Interactions at High Energies

Up to now dispersion relations with two subtractions at t < D were used. We are going to dis-~
cuss now the validity of this assumption. The problem, as was already mentioned in the introduc-
tion, is that long-range forces arising from massless-particle exchange may resgult in rapidly
growing total cross sections and invalidate dispersion relations.

It is quite clear that in general when massless~particle exchange ig taken into account it is
impossible to obtain any bound on the cross section. It is sufficient to say that photon exchange
results in an infinite cross section. However, in the case of weak interactions arguments can be
presented in favor of dispersion relations with two subtractions. The idea is that in the case of
weak interactions the long-range forces are not so important because they arise from exchange of
two apin 1/2 particles (neutrinos),

Just to show how this idea can work let us start with a very crude consideration. The ampli-
tude corresponding to the simplest graph with exchange of massless particles (see Fig. 4) is pro-

portional to
2
A~G stint. (15)

The partial-wave amplitudes corresponding to this expression for large j are given by

ijstzj—4. {(16)

For large enough j one could hope that this calculation is sensible. For smaller j, fj is larger
than unity according to Eq. (16} and the calculation is senseless. For such j we use only the uni-
tarity condition tj =< 1. As a result the partial-wave amplitudes are given by the curve on Fig, 5.

It is clear that the cross section is of the order
2. .2
e~ R~ /s, (17)

where jo stands for such j that fj ~1 according to Eq. (16). Finally, we obtain
o™~ G, (18)

and, thus, the cross section is rather small, despite the long-range effects.
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8
X. Asymptotic Bound on the Total Cross Section: o (8) < 5“3

By formalizing the consideration of the preceding section it is possible to obtain the bound
quoted in the title of the section. To give an idea of the derivation let us briefly outline one of the
proofs of the Froissart bound in the case of strong interactions.

We assume that there exist dispersion relations with a finite number of subtractions for t < 0
(in the case of massless-particle exchange this agsumption is still awalting for approval or dis-
approval from axiomatic field theory).

For the sake of definiteness we start from dispersion relations with two subtractions, which,

rather symbolically, can be written as

ReA(s, t) = ReA(0, t) + sReA' (0, t) +%‘/‘ 45" ImASL ) | tettrcut term. (19)
(s'-8) 8

Let us now differentiate this relation with respect to t at t=0. It can be shown that the order of
integrating over s' and differentiating in t may be interchanged and we come to an integral of
dnA(s, t)/dtnxtzo. By virtue of relation (11) this derivative is bounded from below by scnﬂ(s).
Thus, one comes to the conclusion that the integral of any power of the total cross section is conver -
gent. This rules outacross section growing as any power of s, To establish the (11'15)2 factor in
the Froissart bound a more refined consideration is required, but hereafter we omit the Ins factors.

So far strong interactions were considered. Where does this proof fail in the case of weak
interactions? The answer to thia question is that for weak interactions the amplitude is nonanalytic
at t =0 because of massless-particle exchange and some derivatives juat do not exist.

The singularity at t=0 is rather mild, however. The simplest graph discussed in the pre-
ceeding section contains t: Int but it depends on s linearly and is absorbed into the subtraction term
in the dispersion relations in s. For the graphs depending nontrivially on s it can be shown that
the singular part of the amplitude is proportional to tz, so that the second derivative exists (in
neglect of Int terms). Assuming that the same is true for the total amplitude we come to the
agymptotic bound o (s) < si 13.

To summarize, the bound

a(s) < 51/3

B—a
foliows from two assumptionsa:

a) there exist dispersion relations with finite number of subtractions for t < 0.

b) the singularity of the total amplitude at t=0 is given by singularities of separate Feynman
graphs.

XI. Two-Particle Exchange

If one believes that long-range forces arising from two massless-particle exchange in t-
channel are most important some further progress can be reached. The point is that in this case
the singularity of the amplitude can be studied in more detail by means of the Mandelstam repre-

gentation for the double spectral function
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where AB and Au are imaginary parts of the amplitude in the 8- and u-channel, s, and &, are the

1
energiea of the upper and lower blocks of the graph of Fig. 6.

Possible values of 8,8, are constrained by the condition s <5, 45,-8, <st. Ifs-tia

2 1,2 1 "2
very large then 8y and s, are large. If s:tis small then at least 8, Or 8, is algo small. In the
former case As can be replaced by its asympototic value, while in the latter case at least As or
1

A82 is described by low-energy representation (28)‘ )
Ap the imaginary part is proportional to 8~ at small energies p (s,t) i8 proportional to t~ for
amall 5-t, in agreement with general remarkg made in the preceeding section about the character
of the singularity at amall t.

For large values of s-t the anawer may be represented in the form

ol ty~ (817" f f -"_d&é. (21)

where {t was assumed that asymptotically A - s"“. Equation (21) was first obtained by Rajaramm9
(let us notice, however, that the upper limits of integration over %, y in Ref. 9 were erroneously
put to be equal to infinity).

The integral over x, y in Eq. (21) contains a logarithmic factor but it is not essential for

+
future analysis, What is essential is that the ratio of p (3, t) and Aa contains a factor t* ! if Aa

is asymptotically proportional to 5“1.

XIl. Asymptotic Bounds on the Total Cross Section: s_‘ S a(8) = SO

If one assumes that the two-particle intermediate state dominates the unitarity condition at
small t and that there exist dispersion relations in s for positive t, some arguments in favor of the
bounds quoted above can be given. The lower bound, as noticed by Anselm and Gribov, 10 is
virtually contained in a paper of Gribov and Pomeranchuk (1962}. 1" The upper bound was obtained
first by Rajaramlmio and discusased in Ref. 12.

In both cases Eq. (21) is used and at small t the imaginary part AS (t, 8) is replaced by its
optical value.

Then, if the croas section is falling faster than s_i the imaginary part in t of As contains
according to (21) factor t7€ (e > 0) as compared with Aﬁ itself and this is inconsistent for t - 0.

In this way the lower bound arises.

To present the argument against growing a cross section we should notice first that if the
cross gsection is growing as some power of 8 then the effective value of t should fall at least as the
same power of 8. Otherwise, the elastic cross section is larger than the total cross section.

Indeed,
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2
. |ImA(s, t=0) " 2

ee SZ teﬁ‘ %e < %ot ® (22)
and

terr 8

With this information in hand we see that p (5, t) is small as compared with AE for t ~teff‘
and it is plausible that it cannot feed the growing cross section.

To realize this idea Rajaraman calculated first the potential as a function of AE and then, in
the eikonal representation, As as a function of the potential. The result of the calculation is a
selfconsistency condition. This condition cannot be satisfied unless o (8) ia not growing asymp-
totically. The weak point of this derivation is that the potential is determined from p (s, t) through
a dispersion integral in s at fixed t. However, for g tending to infinity any finite t becomes much
larger than tef!‘ which falls as some power of B. For such s replacement of As by its optical value
to calculate p(8,t) is not justified and, strictly speaking, there is no selfconsistency condition.

This problem was studied in detail in paperiz and it was found that this difficulty can be
overcome and shown that up to possible logarithmic factors the cross section is bounded by a con-
atant. The most essential assumptions are the use of dispersion relations in s for positive t and
dominance of two-particle intermediate states in the t~channel unitarity sum up to t(s) ~ P [1/6(8)],
u(s) - sa, € and a being positive numbers. It is worth emphasizing once more that to obtain this

1
bound much stronger assumptions are needed than those used to derive the bound o (8) < 8 /3.
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