Welcome we will get started shortly...

Splunk ITSI Workshop

Presenter:
 Paul Winchester

$16^{\text {th }}$ June 2020

Note: This workshop is based on Splunk's own Splunk4Ninjas - ITSI sessions. Also note: This is not an actual picture of me. But it's quite close...

Register and Create Your Environment

Agenda

- IT Service Intelligence Overview
- Create a Service
- Creation of two KPl's
- Machine Learning
- Apply Adaptive Thresholds
- Predict Analytics
- Deep Dives
- Glass Tables
- Event Analytics Demystified
- Somerford's approach to ITSI

IT Service Intelligence

Complexity obscures the data you need

IT Ops teams continue to struggle to monitor, investigate, analyze \& act

Siloed Views of Data
Too Much Event Noise

The impact can be significant

Putting revenue, customer experience, employee effectiveness \& innovation at risk

Lost
Revenue

Outages and incidents impact the services and apps driving revenues

Poor
Customer
Experiences

Customers click away and brand reputation is damaged

Decreased Employee Effectiveness

Teams thrash, finger-point, and'key employees leave

Struggle to Innovate

IT spends too much time fixing problems instead of innovating and transforming

Why The Old Ways Disappoint

User Experience
Byage, Response Time,
Failed Interactions Code Instrumentation
Usage, Experience,
Performance, Quality

Challenges

Many disparate components- Brittle integrations
- Data is summarized and lost
- Longer root-cause identification
- End-to-end view challenging
- Labor-intensive to manage
- Not agile for digital business

IT Service Intelligence Platform Approach

Splunk IT Service Intelligence

Data-driven service monitoring and analytics

At-a-Glance Problem Analysis

Key Terminology

What is a Service

A logical group of technology components that a user deems important to be monitored together. Services can encompass multiple tiers of the IT domain.

Online Store Service

Database
Service

Mobile App
Service

Call Centre
Service

Service Dependencies

What is a KPI

A Key Performance Indicator and Health Scores constitute the means by which Services are monitored. A KPI is a Splunk saved search in ITSI that helps monitor a specific value.

splunk > turn data it ito dong.

What is a Health Score

A Health score is a score from 0-100 (0 being critical and 100 being normal) that measures the health of a Service. It is calculated based on all KPIs importance and its status.

What is an Entity

An Entity is an optional sub-element of a KPI. A KPI can be filtered by entities. ITSI can import entities from CMDBs \& other sources

Severity *	Entity Name *	Value \uparrow
Critical	(P) mysql-02	Narn 0%
Normal	mysql-01	mounherunty 33.26 \%
Normal	mysql-03	unutunmunny 30.7 \%
Normal	mysql-04	marmainurn 28.05%

ITSI Service Definition

To summarize a service is comprised of:

A Service
Health Score

0 or More
Entities

0 or More
KPls

0 or More
Dependencies

Workshop Back Story

Workshop Back Story

- Buttercup Store has just deployed a new Web service, however the engineers forgot to include database monitoring.
- Splunk administrators have deployed collectors on the infrastructure and have requested that we build a service centric monitoring solution.
- The CxO has just also requested that we include some 'Al' as they read on a website Artificial Intelligence can solve everything!
- The lab exercises start on the back of a service decomposition workshop to identify all the components that make up this service.

Service Decomposition Outcome

Example diagram detailing the content of a service, typically this is a photo of a whiteboard

Let's get stuck in to it!

Point your browser to : http://<aws instance>:8000/en-US/
This will be the link you got when you registered.

splunk>enterprise

Services Exercise

Service Analyzer

The Service Analyzer view provides a visual representation of our services and the KPIs associated KPIs. The highest severity is brought to the top left of each group.
\square Select the 'Default Service Analyzer' view.

- Click on the icon to switch the visualizatior \& tree view

Service Tree

- The Service Analyzer tree view provides a visual representation of our services and the dependencies between them. Using this view you will also see the KPIs, entities, and most critical notable events associated with a service.
- The health of a service is affected by the health of a child service
- The tree can be built manually, however typically this is imported from a CMDB or a search

Service Tree

We can see that there is an issue with the Manufacturing service.
\square Click on the effected service (Manufacturing) to investigate which KPIs have degraded.

- Review which entities are effected.

Services Lab

During the service decomposition workshop we identified a missing 'On-Prem Database' service. In this lab we are going to create this new service, we will review the ITSI DB module and then select a service template.

- To create a service you can use (Technical) KPl's that comes with modules:
- OS: Linux, Unix \& Windows
- Web server: Apache \& Microsoft IIS
- Application server: Tomcat \& Websphere
- Database: Microsoft SQL \& Oracle
- Storage: Netapp ONTAP \& EMC VNX
- Load Balancer: F5 Big IP \& Netscaler
- Virtualisation: VMWare \& Hyper=V

Services Lab

- Select the Configure menu + Services

- Click Create Service > Create Service

Services Lab

- Name the service as 'On-Prem Database'
- Check 'Database' in modules list
- Review the selected KPls
- Do not hit the 'Create’ button!
- ITSI suggests best KPIs for database monitoring

Title*	On-Prem Database		
Description optional			
Team ? Global *			
Manually add service content			
Link service to a service template			
(2) Add prebuilt KPIs from modules			
Application Monitoring Service for Database Instances that provides KPls for Application Servers monitoring popular Database technologies.			
\checkmark Databases		ection	
End User Experience Manag... Database Connection Pool Used \% Load Balancers Database Deadlock Rate Database Query Response Time nc Hacte MAnnitarina			
Cancel			

Services Lab

Instead we are going to utilize the ITSI service templates feature, this will build the service with predefined KPIs.
\square Select 'Link service to a service template’ button

- Choose 'On-Prem Database' template
- Click the 'Enable 7 days of backfill for all Service KPIs' option
- Please note the option is hidden below so you will need to scroll down!
- Click ‘Create’ button

Services Lab

\square The new 'On-Prem Database' service is based on a template, if you review the 'Entities' tab we can see that the entities are already filtered.

On-Prem Database ,
Entities KPIs Service Dependencies Settings Predictive Analytics

Matched Entities

4 Entities			10 per page v
	Aliases	Info	
	10.2.2.1, mysal-01	linux, database, 2.6.32-573.8.1.el6.x86_64, db, mysql-01, sai, eyjob3nOljogim15c3fsitaxiiwgimiwijogijewlijumi4xin0=	
2	10.2.2.2, mysq--02	linux, database, 2.6.32-573.81.el6.x86_64, db, mysql-02, sai, eyjob3nOijogim15c3fsitayiiwgimiwijogjewljiumi4yinO $=$	
3	10.2.2.3, mysq-03	linux, database, 2.6.32-573.8.1.el6.x86_64, db, mysql-03, sai, nvinh 2 nnilinnim15r- 2feltariibuaimhurinnilioudiluminzinn-	

Services Lab

Under the KPIs tab we can see some KPIs that have been inherited from the service template, the padlocks indicate that changes to the template will be pushed to all linked services.

- Click 'Database Queries' KPIs to review.

On-Prem Database,

Service description
Entities Service Dependencies

KPls Clone New - Database Queries.
KPI description
> Search and Calculate
Disk I/O-Read Ops \quad.
> Thresholding
Disk I/O- Write Ops $}$ > Anomaly Detection
Disk Space Used \% 』
Memory Used \% @

Network Throughput - Inbound $_$

Network Throughput - Outbo...

Services Lab

The 'Settings' tab enables configuration of the service attributes. The new (linked) database service is disabled by default.

- Switch to Setting tab
- Toggle status to 'Enable'
- Investigate the effect changing the Importance and Simulated Severity has, on the Simulated Health Score
- Please do NOT enable Service Health Score backfill at this point

- Click the 'Save' button (Bottom-Right)

Services Lab

The new Database service will be a dependency of the Authorization service, any service health changes will be propagated to the parent service(s).

- Select Configure > Services
- Edit the 'Authorization’ service

Services Lab

- Tick 'On-Prem Database’ service
\square Tick the 'ServiceHealthScore'
Add dependencies
- Press ‘Done’ button
- Press 'Save’ button

Check Service Tree

\square Next go to Service Analyzer, and select the service tree
\square Check if the On-Prem database is added

KPI Exercise

KPI Lab

The new 'On-Prem Database' service is based on a template however we need to add an extra ad-hoc KPI to monitor the CPU utilization.
\square Select Configure > Services

- Select the 'On-Prem Database'
\square Select KPI tab
- Click New > Generic KPI
- Set Title to 'CPU Utilization \%'

- Click 'Next' button

KPI Lab

The new KPI source could be driven by a data model, ad-hoc search or a base search. It is always best to utilize base searches as they can return multiple KPI metrics with a single search.

- Click 'Base Search'
- Select ‘All Metrics'
- Select 'Average CPU (Linux)'

Step 2 of 7: Source

- Click 'Next' button

KPI Lab

- There is no option to split this base search.

Split by Entity?	Yes
Entity Split Field?	host
Filter to Entities in	
Service?	Service must have entities to filter by entities.
Entity Filter Field? host	hes

Click 'Next' button

KPI Lab

We need to build the KPI calculation criteria, this includes how often data is collected, the entity calculation and the calculation window.

- We have decided that the metric will be collected every 5 minutes
- We want to perform an Average of the metric
- Over 5 min window

CPU Utilization \%
Step 4 of 7: Calculation
A. Fields are populated from the selected base search.

Explanation of Calculation:
Every 5 minutes take the average of avgcpu for each entity as the entity value then take the average of all entity values as

- Click 'Next' button

KPI Lab

The monitoring and unit fields will be populated from the base search.

- Click 'Next' button

KPI Lab

We want this KPI to use data already ingested in Splunk over the last 7 days.

- Click ‘Enable Backfill’ button

De will leave the backfill period as 7 days

CPU Utilization \%
Step 6 of 7: Optional Setup - Backfill

Backfill?Backfill with last 7 days of data

- Click Next’button

KPI Lab

We need to set some static thresholds for this new KPI

- Increase time to 4 hours
- Add \& configure threshold:
- Critical = 95
- High = 90
- Medium = 85
- Low = 70
- Click 'Finish' button

Aggregate Thresholds Per-Entity Thresholds
Aggregate Threshold Values

KPI Lab

- Note that the new KPI does not have a padlock icon. Inherited KPIs are locked to the service template so when changes are made these are pushed to the linked services, such as the one we are configuring.
- If you edit a locked KPI it will become an orphan and template changes no longer adopted
- Click ‘Save’ button! Bottom Right

Backfill for Database Errors KPI in Database
service for the time period 2019-03-05 11:45:38 to 2019-03-12 11:45:38 completed in 0 minutes 3/12/2019, 11:46:03 AM

KPI Lab

An important dependency for the new 'On-Prem Database' service is response time, in this lab we will add an extra KPI: 'Database Response Time'. For this KPI we use an ad-hoc search.

- Click Configure > Services
- Click ‘On-Prem Database’ \& KPI tab
- Click New KPI > Generic KPI
- Title = 'Database Response Time’

- Click ‘Next' button

KPI Lab

The new KPI source could be driven by a data model, ad-hoc search or a base search. In this instance we will create the KPI using an ad-hoc search.

D Click ‘Ad-hoc Search'

- Enter the following search:
- index=itsidemo sourcetype=stream:mysql query=*
- Enter 'time_taken' as the threshold field
- Click 'Run Search' button to test search
- Click 'Next' button

KPI Lab

We will split this KPI via the database name and filter via ip address.

Database Response Time Step 3 of 7: Entities

- Click Next

KPI Lab

The database response time KPI will have the following calculation options.

Database Response Time
Step 4 of 7: Calculation

Explanation of Calculation:

Every minute take the average of time_taken for each entity as the entity value then take the average of all entity values as the service/aggregate value all over the last 5 minutes. Fill gaps in data with Null values and use a unknown threshold level for them.

Click Next

KPI Lab

We will leave the next screen with the default values.

- Click Next

KPI Lab

We want this KPI to use data already ingested in Splunk over the last 7 days. This historical data will be used in the machine learning labs.

- Click ‘Enable Backfill’ button
- We will leave the backfill period as 7 days
- Click 'Next' button

KPI Lab

We need to set some static thresholds for this new KPI

- Increase time to 4 hours
- Add \& configure threshold:
- High $=360$
- Medium $=310$
- Low = 200
- Click ‘Finish’ button
- Do not forget to click ‘Save’ button!!

Database Response Time
Step 7 of 7: Thresholds

$$
\begin{array}{|l|l}
\hline \text { Aggregate Thresholds } & \text { Per-Entity Thresholds } \\
\hline
\end{array}
$$

Aggregate Threshold Values

KPI Lab

We have two new KPIs for our On-Prem Database service, this new service can utilize past data via the Service Health Score backfill capability.

- Switch to the 'Settings' tab
- Toggle backfill on (last 7 days)
- Click ‘Save’ button

Infrastructure Monitoring

KPI Lab

There are now two new KPIs visible in the Service Analyzer for the On-Prem Database service, these KPIs contain historical data and we can see there is an issue with the CPU data.

- Navigate back to Service Analyzer
- Click ‘On-Prem Database’ service
- Select the new 'CPU Utilization \%' KPI
- Click 'mysql-02' entity

Service Analyzer ,

KPI Lab

The 'Entities Details' view is a high-level dashboard showing metric data for the selected entity.

- Click the Splunk App for Infrastructure for more metric information.

Notable Events

Entity :	
mysq1-02	Nagios Service Check: check_ntp_time on mysq1-02
mysq1-02	Nagios Service Check: check_dhcp on mysq1-02

KPI Lab

The Splunk app for Infrastructure is a workspace to quickly drag and drop metric values.
\square Click the 'analysis' tab to investigate the collected metrics for this entity.

KPI Lab

\square Challenge - If there is time attempt to recreating the following dashboard.

KPI Lab

- Navigate back to ITSI app for remaining labs.

Machine Learning

Skill Areas for Machine Learning at Splunk

ITSI Machine Learning

Predictions Analytics

Adaptive Thresholds What is normal behaviour and what is not normal Ideal for cyclical and dynamic data

Predict Service Health
Score
Predicting events
Trend forecasting
Early warning of failure
Predictive maintenance

Identify peer groups Event correlation Reduce alert noise ITSI Event Analytics

Machine Learning process

Ecosystem

MLTK

Splunk

Splunk's App Ecosystem contains 1000's of free add-ons for getting data in, applying structure and visualizing your data giving you faster time to value.

The Machine Learning Toolkit delivers new SPL commands, custom visualizations, assistants, and examples to explore a variety of ml concepts.

Splunk Enterprise is the mission-critical platform for indexing, searching, analyzing, alerting and visualizing machine data.

Operationalized Data Science

What Data Scientists Really Do

Data Preparation accounts for about 80% of the work of data scientists

What data scientists spend the most time doing

- Building training sets: 3%
- Cleaning and organizing data: 60%
- Collecting data sets; 19%
- Mining data for patterns: 9%
- Refining algorithms: 4\%
- Other: 5%
"Cleaning Big Data: Most Time-Consuming, Least Enjoyable Data Science Task, Survey Says", Forbes Mar 23, 2016

What Data Scientists Really Do

Data Preparation accounts for about 80% of the work of data scientists

What data scientists spend the most time doing

- Building training sets: 3%
- Cleaning and organizing data: 60%
- Collecting data sets; 19%
- Mining data for patterns: 9%
- Refining algorithms: 4\%
- Other: 5%
"Cleaning Big Data: Most Time-Consuming, Least Enjoyable Data Science Task, Survey Says", Forbes Mar 23, 2016

Machine Learning Use Case

- There have been lots of social media comments regarding Buttercup' website availability, especially during the evenings.
\square Luckily the website data is being ingested by Splunk, this sourcetype is called 'access_combined' and contains lots of information.
\square The objective of this exercise to is utilise Splunk ITSI machine learning capabilities to identify normal behaviour for web response time.
\square We will also look to see if the application servers supporting the website are functioning equally.

Machine Learning Lab

The Corporate Website Request KPI has no thresholding for alerting. In this lab we will configure machine learning to understand what normal looks like and alert us when the KPI falls outside this range.
\square Go to the 'default' service analyzer view and expand the tree view

- Click 'Web Front End' service
- Select the 'Web Front End' link

Machine Learning Lab

We need to instruct ITSI to use a template for thresholding, we will be using the adaptive standard deviation 3 hour working week template.

- Select the 'Corporate Website Requests’ KPI

Machine Learning Lab

- Select 'use Thresholding Template' button
\square Review the different options
- Select '3-hour blocks work week'
- (adaptive/stdev)
- Click 'Apply’ button

Machine Learning Lab

The built-in machine learning has configured thresholds, this is broken into 1 -hour time ranges. However we want to use historical data to apply some adaptive thresholding.

- Open the 'Configuration Thresholds for Time Policies’ box
- Review different times
- Choose 'Weekdays, 9am-12am’
- Click ‘Apply Adaptive Thresholding’ button
- Wait 30 Seconds
- Notice threshold
- Click ‘Save' button

Machine Learning Lab

Internal SLAs do not apply on weekends, tracking is still necessary, but management wants deliberately higher values.
We will now modify the new adaptive thresholds to increase the weekend ranges, this will result in a custom template.

- Click on 'Thresholding' arrow
- Review the preview window
- Note weekend range
- Click 'Set Custom Threshold'

Machine Learning Lab

We will now modify the new adaptive thresholds to increase the weekend ranges, this will result in a custom template.

- Expand 'Configure Thresholds for Time Policies'
- Click 'Weekends'
- Move all sliders as show
- Click 'Apply Adaptive Thresholding'

Machine Learning Lab

The preview aggregate threshold window now shows that during the weekend we will not receive an warning alert for the website response time KPI.

- Click 'Save’ button

Deep Dive

Deep Dive Use Case

- Typically when organisations have outages they create a war room to identify the root cause as quickly as possible, this involves bringing together many business \& technical stake holders at great expense.
\square The deep dive capabilities within ITSI brings together multiple data sources into a single visualization. The correlation of data streams enable quick identification of root cause and effect on the business.
- In this lab we will build a deep dive visualization for the new On-Prem Database service, this will bring business and technical KPIs together with raw event data.
\square Extra - Once this lab is completed review the comparisons options.

Deep Dive Lab

- Navigate to the 'Default Service Analyzer' view
- Toggle to 'Tree View' mode
- Click 'On-Prem Database' service
\downarrow Click 'Open all in deep dive'

Deep Dive Lab

This deep dive view is used to bring all the relevant data to run an efficient war room, we can add/remove swim lanes to make the visualization even more useful.

- Select the three swim lanes
- Bulk Actions > Delete

Deep Dive Lab

To understand the impact we need to add some business KPI to this deep dive, this will speed up investigations and diagnosis.

- Either navigate up the service tree or change focus to 'Buttercup Store'
- Click + on the following KPIs;
- Revenue
- Revenue per Order
- Successful Checkouts
- Move lanes as per image

splunk > turn data into doing

Deep Dive Lab

To enable investigation into anomalous activity in your KPIs we can drill down on KPIs to gain deeper insights.
\square Select 'Disk Space used \%'
\square Select the COG icon next to Disk Space used \%
\square Select Lane Overlay options

- Select Enable Overlays 'Yes'

Deep Dive Lab

\square Hover over one of the lines from 'Disk Space Use \%'. Notice the drill down possibility to the Splunk App for Infrastructure

Deep Dive Lab

- Select 'Add Lane’
- Click 'Add Event Lane'

- Input 'Database Service Errors’ Title
- Event Search:
- ‘sourcetype="stream:mysql" status>200’

- Click ‘Create Lane’

Deep Dive Lab

- Extra
- Investigate blue event lane
- Compare to yesterday

CPU Utilization \%
On-Prem Database

- Note: adjust the Time-Picker to only show the last 60 minutes.

Deep Dive Lab

Once you have finished investigating the Deep Dive dashboard

- make sure you click 'Save As'
- And save 'Database Deep Dive - <Your Initials>'

Glass Tables

When to use Glass Tables

- Executive overview and business metrics
- Highly complex and valuable services
- Services that fail often or result in War Rooms
\square Services that have recurring outages
- Main use case to stream-line root cause investigation
- When you want to link to Splunk Enterprise or other tools
- Note : It is best practice to import a background with most of your graphical design, and then drag KPIs onto the canvas.

National Park Visitor Services Parkservices Goalk \quad.

Glass Table Use Case

- The business leaders would like a high-level dashboard showing the key functions and services of the organisation.
\square The objective of this exercise is to complete the existing IT operations dashboard (Digital Transaction Flow) with the new On-Prem Database service healthscore, including a drill down to a deep dive.
\square Second part of this lab is to create a business focus dashboard;
- Import your group logo
- Include several KPIs that only relate to the business
- Keep technical KPIs to a minimum
- Link existing dashboard to one of the services

Glass Table Lab

- Select Glass Table menu
- Edit '4. Digital Transaction Flow’

\square Click \odot icon to fit to page
- Note the tool pallet icons
- KPls can be dragged onto canvas
- Configuration panel on right

Glass Table Lab

- Expand 'On-Prem Database'
- Drag 'ServiceHealthScore onto the canvas
- Configure attributes;
- Label Box = Off
- Scroll down the dialog box
- Drilldown = On
- Select ‘Saved Deep Dive’
- Select 'On-Prem Database DD'
- Change visualisation type
- Single Value
- Click Update

4 - Digital Process Flow with Predictive ,

Glass Table Lab

- Move Database healthscore next to the Database icon (green box)
- On the right-hand panel
- Configure attributes;
- Width = 180
- Height = 180
- Click Update
- Click Save

Glass Table Lab (Extra)

- Now it's your turn...you have 10 minutes
- Google and import your company logo
- Drop onto canvas;
- Couple of icons
- Link them
- Business health scores
- Rename to reflect your business, be creative!

Machine Learning: Predictive Analytics

(or Imminent Outage Prediction)

What's Imminent Outage Prediction?

\square Using historical data from KPIs for a service and some clever ML algorithms, you can sometimes predict an outage 20-30 minutes before it happens!
\square Works best when a service has 5+ good KPIs and 1+ week of historical data

- The algorithm looks for recognizable/predictable KPI behavior, which comes before the service's aggregate health score changes.
- For example: before the last outage, CPU usage went up AND garbage collection times increased AND session counts dropped...

Workshop Use Case

\square The IT operations team are struggling to resolve issues with the company manufacturing service, typically outages are reported via customers contacting the service desk to complain.
\square They would like to use machine learning to predict health score degradation 30 minutes before it causes a service outage.
\square The objective of this lab will be to use the 'Manufacturing' health score to build a predictive algorithm model to predict future issues.

Predictive Analytics Lab

We need to use machine learning to build a model for the Manufacturing service. This model will be used in the second part of this lab.

- Select 'configure' menu
- Pick 'Services' item
- Click edit 'Manufacturing' service
- Select 'Edit' menu

Predictive Analytics Lab

ITSI Predictive Analytics uses machine learning algorithms to predict the future health score of your service. This screen we will train and test different machine learning algorithms to determine which one will give the most accurate prediction.

- Select 'Predictive Analytics’
- Time $=14$ Days
\square Algorithm Type $=$ Regression
- Algorithm = Linear Regression
- Click 'Train' button

Manufacturing

- Once the model has run, investigate below.
- Click ‘Save’

Predictive Analytics Lab

\square Repeat the previous steps for the other two algorithms over 14-day period.

- Random Forest Regressor
- Click 'Train' button
- Remember 'Save’ button!
- Gradient Boosting Regressor
- Click 'Train' button
- Remember 'Save' button!

Predictive Analytics Lab

In this lab we are going to review the predictive analytics value for the Manufacturing service using the recommended model.

- Select Dashboards > Predictive Analytics
\square Select the 'Manufacturing' service
\square Select the recommended algorithm model

50.00

Predictive Analytics Lab

Once we have selected a model ITSI will calculate the future healthscore

- Click 'Cause Analysis' button to review the suggested KPIs

Predictive Analytics Lab

- Click the spyglass to review the SPL
\triangle This SPL is already being used in our glass table

Predictive Analytics Lab

- Select ‘Glass Tables > Digital Transaction Flow with Predictive’
- Click 'Edit' button
- Review the 'Database Future Health-Score attributes'

Machine Learning: Event Analytics

Event Analytics Lab

\square The database team has expressed frustration with alerts originating from Nagios. The high volume of alerts is leading to alert fatigue and they lack the contextual information necessary to make them actionable.
\square While the plan is to consolidate monitoring tools, they have asked if we can provide immediate relief using ITSI to group events together and reduce noise.

- Also, with hundreds of database instances to manage, tracking which alerts are associated to critical systems vs non-critical systems is tribal knowledge for the database team. They love the service tree view in ITSI and asked if it's possible to see the services affected by an alert.
\square Interestingly enough, you heard the same challenges expressed by the web team who uses New Relic to monitor the application code.

Event Analytics Lab

- Often, each team or layer of the stack has their own monitoring tools producing their own alerts. Each tool creating a silo of information that other teams don't get insight.

Silo

Views

Event Analytics Lab

- If we can cluster events by time, we can immediately reduce noise. The two database events in orange happened around the same time and therefore, may very well be related to the same incident

Silo Views

Event Analytics Lab

\square The three events in green occurred later after a pause in the flow of events. Probably a different issue all together. So grouping events together by time is a very powerful noise reduction technique.

Silo Views

Event Analytics Lab

\square We can extend the power of grouping beyond just time to further reduce noise. What if all of the events in orange we associated to the same database instance. Same timeframe... Same instance... that's probably all a related incident.

Silo
 Views

Event Analytics Lab

\square We can extend the grouping across siloed monitoring tools, and across layers of the stack. What if I told you that all the events in orange were associated with machines that run the Buttercup Store.

Silo

 Views

A quick terminology check

Alert - Describes a state change for a target entity

- Examples of different alerts:: Server42 is down, Filesystem is full
Δ Alarm - Specific alert for a target entity, can change severity/state over time
- Example of single alarm: Server42 is "down", then later "up"
\leq Time-series data or Events- The stuff that Splunk indexes
- Includes traditional alerts \& alarms, as well as logged data, metrics, wire data and more
Δ^{\prime} Notable Event - An actionable message (Splunk ITSI \& Splunk ES)
- Intended specifically for humans in Operations
- Episode - a group of Notable Events
- Íncident - Unplanned interruption of an IT or business service
- ServiceNow, Remedy

Event Analytics Lab

In this exercise we will group the database teams Nagios events together based on time and associate them to a service


```
    *)
```



```
    *)
```



```
    *)
```


EA Lab Step 1 : Clean and prepare "raw" alert events

Normalizing $1)$

Filter duplicates

Add Service
Context

| index=itsidemo sourcetype=nagios perfdata=SERVICEPERFDATA

EA Lab Step 2 : Add Normalized Fields

Check raw alerts

Filter

duplicates

Add Service

 ContextGoal: Normalize the data to make it possible to correlate data from different SOUR\&QSrm_severity=case(severity=="CRITICAL",6,severity=="WARNING",4, severity="OK", 2)
| eval norm_instance= src_host
| eval norm_test=name

EA Lab Step 3 : Deduplicate events

```
Check raw alerts
```

Normalizing

Filter duplicates

Goal: Removing duplicated events

| dedup consecutive=true src_host severity name

_time *	name *	norm_instance	severity :	nom_severity :		total \%
2020-04-15 10:02:27.773	check_disk	mysq1-02	ок		2	1
2020-04-15 10:01:27.710	check_disk	mysq1-02	warning		4	1
2020-04-15 09:56:27. 396	check_disk	mysq1-02	ок		2	1
2020-44-15 09:55: 27.334	check_disk	mysal-02	warning		4	1
2020-04-15 99:51: 27.088	check_disk	mysq1-02	ок		2	1
					102	34
				cPrev $1{ }^{2} 3$	3456	Next ${ }^{\text {P }}$

EA Lab Step 4 - Add Service Context

Check raw alerts

Normalizing

Filter duplicates

Add Service

Context

Goal: Add Service Context makes correlation possible for different alerts in a service
| `apply_entity_lookup(host)`
| `get_service_name(serviceid,service_name)`
\square Click on the magnifying glass

Event Analytics Lab

Check raw alerts

- Select the SPL Query and copy to clipboard, we will need it in the next chapter

Event Analytics Lab

In this exercise we will group the database teams Nagios events together based on time and associate them to a service

Event Analytics Lab

- Navigate to Configure -> Correlation Searches
- Create New Search -> Create Correlation Search

Event Analytics Lab: correlation search

- Name your search
- Paste the SPL in search:
index=itsidemo sourcetype=nagios perfdata=SERVICEPERFDATA
| eval norm_severity=case(severity=="CRITICAL",6,severity=="WARNING",4, severity="OK", 2)
| eval norm_instance= src_host
| eval norm_test=name
| dedup consecutive=true src_host severity name
| eval entity__title=norm_instance
| `apply_entity_lookup(host)
| 'get_service_name(serviceid,service_name)
| table _time, name, norm_instance, severity, norm_severity, service_name
- Time range: Last 5 minutes (select 'relative' in time picker)
- Run Every: 5 minutes
\square Entity Lookup Field: host \square to link with th Service Context
- Scroll down

Search Properties

Search ${ }^{*}$ index-itsidemo sourcetype=nagios perfdata=SERVICEPERFDATA | eval
norm_severity=case(severity=="CRITICAL",6,severity=="WARNING"
4, severity="OK", 2)
| eval norm_instance= src_host
| eval norm_test=name
I dedup consecutive=true src_host severity name
| eval entity_title=norm_instance
"apply_entity_lookup(host)"
get_service_name(serviceid,service_name)
I table _time, name, norm_instance, severity, norm_severity, service_name

Run Search ए

Time range Last 5 minutes *

Event Analytics Lab: correlation search

- Populate Notable Event Title Nagios alert from \%norm_instance\%
- Populate Notable Event Desc.

Nagios alert from \%norm_instance\%. \%norm_test (\%severity\%)

- Severity: Advanced Mode
- Severity: \%norm_severity\%
- Save

Save

In this exercise we will group the database teams Nagios events together based on time and associate them to a service

+Add Breaking Condition (OR)

```
```

Service Issues ,

```
Service Issues ,
Notable Event Aggregation Policy description /
Notable Event Aggregation Policy description /
Filtering Criteria Action Rules
Filtering Criteria Action Rules
Filtering Criteria
Filtering Criteria
Create filtering criteria to group notable events into episodes.
Create filtering criteria to group notable events into episodes.
\checkmark \checkmark \text { Include the events if?}
\checkmark \checkmark \text { Include the events if?}
* (severity 
* (severity 
    |\mp@code{severity }
    |\mp@code{severity }
    + Add Rule (OR)
    + Add Rule (OR)
> Smart Mode grouping
> Smart Mode grouping
\checkmark \text { Split events by field?}
\checkmark \text { Split events by field?}
    Split events into multiple episodes by
    Split events into multiple episodes by
    service_name X
    service_name X
\checkmark ~ B r e a k ~ e p i s o d e ? ~
\checkmark ~ B r e a k ~ e p i s o d e ? ~
    > If this episode existed for 36000 second(s)
    > If this episode existed for 36000 second(s)
    > If this episode existed for 36000 second(s) 
```

 > If this episode existed for 36000 second(s)
    ```

\section*{Policies}



Event Analytics Lab: Notable Event Aggregation Policies
- Navigate to Configure -> Notable Event Aggregation Policies
- Edit "Service Issues" policy


\section*{Event Analytics Lab: Notable Event Aggregation} Policies
- Review "Include the events if" configuration
- Review "Split events by field" configuration
- Review "Break episode" configuration
- Modify the "Break episode" configuration
- If the flow of events paused for 3600 seconds
```

Service Issues ,
Notable Event Aggregation Policy description
Filtering Criteria Action Rules
Filtering Criteria
Create filtering criteria to group notable events into episodes.
\checkmark ~ \ ~ I n c l u d e ~ t h e ~ e v e n t s ~ i f ?

| severity | greater than • | Normal \times |
| :--- | :---: | :--- |
| service_nan | matches | . |

+ Add Rule (AND)
+ Add Rule (OR)
Smart Mode grouping
\checkmark ~ S p l i t ~ e v e n t s ~ b y ~ f i e l d ?
service_name }
Break episode?
> If this episode existed for 36000 second(s)

Event Analytics Lab: Notable Event Aggregation Policies

- You can see in the preview results how ITSI is now grouping events together based on your configurations.

Service Issues ,

- Preview Results
- Click Cancel

Event Analytics Lab

In this exercise we will group the database teams Nagios events together based on time and associate them to a service

Event Analytics Lab: Episode View

When notable events are grouped by aggregation policies, the resulting groups are called episodes, you can think of an episode as an incident. The episode review page provides a great deal of information in a heads-up display and is like the cockpit view for Operations teams.

- Navigate to Episode Review
- Note the Noise Reduction

Event Analytics Lab: Episode View

- Scroll down and review list
- Modify filter as shown
- Critical \& High only

Event Analytics Lab: Episode View

We will now review an episode to better understand the flow of events, and we will then ensure someone has ownership.

- Click on 'Authorization Issue' episode
\square Review the details for each tab
- Add your name to the comments
- Change to 'In Progress'
- Review possible Actions

Next Steps

Somerford's Approach to ITSI

SQMERFORD
Somerford's Class Table Methodology

(Innovation
(Innovation
(innovation
(innovation
(a)

(Innovation
(1nnovation
SOMERFORD
Somerford's eless 2 abe Methoorology
SOMERFORD
Somerford's Class Table Methodology
SOMERFORD
Somerford's eless 2 abe Methoorology

Project Phases

| Initiation |
| :--- |
| - Kick-Off Call |
| - Pre-Workshop |
| Planning |
| - ITSI Product |
| Walkthrough |

| Analysis | Data Onboarding
 \& ITSI Installation |
| :--- | :--- |
| - Service
 Identification
 Workshop | - ITSI Installation |
| - Entity Strategy | |
| Workshop | |
| - Service | |
| Decomposition
 Workshops | - Implement Entity |
| Management | |
| Strategy | |

| Delivery |
| :--- |
| - Delivery |
| Planning |
| - ITSI Services |
| Development |
| - Progress Review |
| - ITSI Service |
| Review |
| - ITSI UI |
| Development |

Handover

- Project Closeout
- Enablement
- BAU Transition
- Onboarding Users
- Follow-up Reviews

Service Identification

- Which business and
technology services are candidates?
- Which services shall we do first?

Service Decomposition

- What are the business services to be monitored?
- What technology services make up those business services?
- What are the components of the technology services?
- What do you care about? What are the metrics?
- What are the KPIs?
- What data drives each KPI?

Thank You!

Please get in touch with us
if you have any questions.

paul.winchester@somerfordassociates.com

Somerford Associates Limited

