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10- HYPERBOLICTRAJECTORIES  (e >1)

If     , the orbit formula describes the geometry of 
the hyperbola

(1)

 The system consist of two symmetric curves

 One of the occupied by the orbiting body, the other one 
is its empty, mathematical image 
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10- HYPERBOLICTRAJECTORIES  (e >1)

 Clearly:
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 We denote this value of true anomaly since the radial distance 
approaches infinity as the true anomaly approaches

(2)

 is known as the true of the asymptote.

 Observe that       lies between       and      

 From trigonometry it follow that (3)
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10- HYPERBOLICTRAJECTORIES  (e >1)

 For the physical trajectory is the occupied 
hyperbola I (on the left) 

 For hyperbola II- the vacant orbit around 
the empty focus      - is traced out. (NOTE17,P69,{1})  

 Periapsis P lies on the apse line on the physical hyperbola I, 
whereas apoapsis A lies on the apse line on the vacant orbit.

 The point halfway between periapsis and apoapsis is the 
center C of the hyperbola.
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10- HYPERBOLICTRAJECTORIES  (e >1)

 The asymptotes intersect at C, making angle      with the apse 
line. 

(2)

 The angle     between the asymptotes is called the turn angle

 The turn angle is the angle through which the velocity vector 
of the orbiting body is rotated as it rounds the attracting body 
at F and heads back towards infinity.
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 The distance    from the focus F to the periapsis is given by 

10- HYPERBOLICTRAJECTORIES  (e >1)

 The distance    from the focus F to the periapsis is given by 
equation: 

 The radial coordinate      of apoapsis is found by setting 

in equation:

(6)

 so

 Observe that     is negative, since         for the hyperbola. That 
means the apoapse lies to the right of the focus F 

(7)
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 We see that the distance 2a from periapse P to apoapse A is:

10- HYPERBOLICTRAJECTORIES  (e >1)

 We see that the distance 2a from periapse P to apoapse A is:

 Substituting equation (6) , (7) yields

 So the orbit formula may be written for the hyperbola

(8)

(9)
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 From equation (g) it follows that: (10)

(11)

10- HYPERBOLICTRAJECTORIES  (e >1)

 The distance b, from periapsis to an asymptote measured 
perpendicular to the apse line; is the semiminor axis of the 
hyperbola

 The length b is

(12)
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 The distance between the asymptote and a parallel line 

10- HYPERBOLICTRAJECTORIES  (e >1)

 The distance between the asymptote and a parallel line 
through the focus is called the aiming radius

 We see that

(10)

(4)

(3)

(2)
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 Finally:

 Comparing this result with equation 12, it is clear that the 
aiming radius equals the length of the semiminor axis of 
the hyperbola.

(13)

As with the ellipse and 

10- HYPERBOLICTRAJECTORIES  (e >1)

As with the ellipse and 
the parabola, we can 
express the polar form of 
the equation of the 
hyperbola in a cartesian 
coordinate system whose 
origin is in this case 
midway between the two 
foci.

Page 168 / 338



 From the figure it is 

apparent that:

(14)

(15)

10- HYPERBOLICTRAJECTORIES  (e >1)

 Using equation (9),(10), 

(14) we obtain:

 substituting equation (9) and (12) in (15) we obtain:
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 It follows that: 

10- HYPERBOLICTRAJECTORIES  (e >1)

 That is,

 this is the familiar equation of hyperbola which is 

symmetric about x and y exes, with intercept on the x axis.

(16)
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 The specific energy of the hyperbolic trajectory is:

(17)

10- HYPERBOLICTRAJECTORIES  (e >1)

 The specific energy of a hyperbolic orbit is clearly positive 
and independent of the eccentricity.

 The conservation of energy for a hyperbolic trajectory is:

 Let     denote the speed at which a body on a hyperbolic path 
arrives at infinity so:

(18)

(18) (19)
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 In terms of we may write equation (18) as:

 is called the hyperbolic excess speed. 

10- HYPERBOLICTRAJECTORIES  (e >1)

 Substituting the expression for escape speed, we obtain 
for a hyperbolic trajectory

 This equation clearly shows that the hyperbolic excess 
speed        represent the excess kinetic energy over that 
which is required to simply escape from the center of 
attraction.

(19)
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 The square of is denoted      , and is known as the 
characteristic energy

 is a measure of the energy required for an 
interplanetary mission and      is also a measure of

(20)

10- HYPERBOLICTRAJECTORIES  (e >1)

interplanetary mission and      is also a measure of
maximum energy a launch vehicle can import to a 
spacecraft of a given mass

 can be find also:

(21)
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 The figure shows a range of trajectories, from a circle 
through hyperbolas, all having common focus and 
periapsis

10- HYPERBOLICTRAJECTORIES  (e >1)
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 At given point of a spacecraft�s geocentric trajectory, the
radius is 14600km, the speed is 8.6km/s, and the flight path
angle is . Show that the path is a hyperbola and calculate
the following: (a) (b) angular momentum, © true
anomaly, (d) eccentricity, (e) radius of perigee, (f) turn angle,
(g) semimajor axis, and (h) aiming radius.

EXAMPLE ?.1

10- HYPERBOLICTRAJECTORIES  (e >1)

(g) semimajor axis, and (h) aiming radius.

to determine the type of the trajectory, calculate the escape
speed at the given radius.

Since the escape speed is less than the spacecraft�s speed of
8.6km/s, the path is a hyperbola.
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(a) the hyperbolic excess velocity is found from equation

(19),

EXAMPLE ?.1EXAMPLE ?.1

From equation (20) it follows that

10- HYPERBOLICTRAJECTORIES  (e >1)

From equation (20) it follows that

(b) Knowing the speed and the flight path angle, we can obtain

both and

Then equation * provides us with the angular momentum,
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(c) Evaluating the orbit equation at the given location on the
trajectory, we get

EXAMPLE ?.1EXAMPLE ?.1

From which

10- HYPERBOLICTRAJECTORIES  (e >1)

The radial component of velocity is given by equation

, so that with (a) and (c), we obtain

From which

or

Computing the ratio of (e) to (d) yields
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(d) We substitute the true anomaly back into either (d) or (e) to
find the eccentricity,

EXAMPLE ?.1EXAMPLE ?.1

(e) The radius of perigee can now be found from the orbit
equation,

10- HYPERBOLICTRAJECTORIES  (e >1)

(f) The formula for turn angle is equation , from
which

(g) The semimajor axis of the hyperbola is found in equation

(h) According to equation , the aiming radius is
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