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CHAPTER 5  DIRECT DAMAGES FROM 
WILDLAND FIRE 

5.1 INTRODUCTION 

The primary focus of this assessment is a quantitative analysis of the smoke impacts, on both air 
quality and health, from wildland fires. As detailed in the conceptual framework outlined in Chapter 2, in 
the process of examining the trade-offs between prescribed fire and wildfire it is also important to 
consider the potential effects, both positive and negative, of the fire itself. Although it is not possible in 
this assessment to quantify these effects because location-specific data are limited, the qualitative 
characterization of these additional effects helps add context to the overall examination of the trade-offs 
of smoke impacts due to different fire management strategies. 

This chapter discusses the direct fire damages (value of economic loss) that are often experienced 
as a result of wildland fire. As detailed in Chapter 6 and quantitatively examined in Chapter 8, the health 
effects and overall population impacts of smoke exposure are well characterized. Although there are 
ecological benefits to fire (see Chapter 3), severe wildfires can adversely affect ecosystems, lead to 
substantial effects on public welfare, and incur societal costs (Table 5-1). In considering the costs incurred 
from wildfires, preparedness, mitigation, and suppression efforts are included, along with numerous 
losses that have substantial effects on society. The following chapter provides a broad discussion of these 
additional effects often experienced because of wildfires. 

5.2 ECONOMIC BURDEN OF WILDFIRE 

The National Institute of Standards and Technology (NIST) Special Publication 1215 (Thomas et 
al., 2017) quantified the burden on the U.S. economy from wildfires. The economic burden includes 
wildfire-induced damages and losses, and also the management costs to suppress and mitigate ignition 
and fire spread (see Table 5-1). The annualized burden was estimated to be between $71.1 billion to 
$347.8 billion in 2016 dollars ($77.4 billion to $378.7 billion in 2020 dollars). The estimates were based 
on literature or data available in early to mid-2017. Not included, for example, were recent catastrophic 
wildfire incidents. [Note, however, the estimates in Thomas et al. (2017) were significantly larger than the 
previous estimates found in the NIST Special Publication 1130 Hamins et al. (2012)]. 
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Table 5-1 The economic burden of wildland fires. 

Costs Losses 

Prevention Direct 

• Education and training • Deaths and injuries 

• Detection • Psychological effects 

• Enforcement • Structure and infrastructure loss 

• Equipment • Environmental impact 

Mitigation • Habitat and wildlife loss 

• Fuels management • Timber loss 

• Insurance • Agricultural loss 

• Disaster assistance Indirect 

Suppression • General economic impacts 

• Federal • Evacuation costs 

• State • Accelerated economic decline 

• Municipal (paid) • Utility and pipeline interruption 

• Rural (volunteer) • Transportation interruption 

Cross-cutting • Government service interruption 

• Legal • Psychological effects (loss of amenities) 

• R&D • Housing market impact 

• Building codes and standards • Loss of ecosystem service 

• Regulations • Increase risk of other hazards 

• Loss of tax base 

• Health effects from fire retardant use 

R&D = research and development. 
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Based on National Oceanic and Atmosphere Administration (NOAA) billion-dollar weather and 
climate disaster data (Smith, 2020), which include direct losses from insured and uninsured sources, the 
largest losses from billion-dollar wildfire disasters have all come since 2017 (Figure 5-1; note: there were 
no billion-dollar events prior to 1991). Since 1980, no year experienced more than a single billion-dollar 
wildfire disaster (direct losses from a single-event), meaning each year represents a single event in 
Figure 5-1. Accounting for more than just direct losses, Wang et al. (2020) measured the economic 
ramifications of the 17 largest wildfires in California during 2018 and estimated their direct, indirect, and 
health costs. The study authors estimated wildfires to have caused $148.5 billion ($126.1 billion to 
$192.9 billion, 95% confidence interval) in losses associated with direct capital losses ($27.7 billion), 
health effects ($32.2 billion), and indirect economic effects [$88.6 billion; Wang et al. (2020)]. 

 

Source: Developed from data presented in Smith (2020) 

Figure 5-1 Billion-dollar wildfire event losses (1980−2020). 
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The economic burden from wildfire seems to have been increasing over time. Although the 
wildfires of the last few years have been particularly devastating, the increasing ability in measurement 
science to better account for the effects of wildfires can also partly explain the increase in reported costs 
and losses. In particular, until recently, the economic loss due to human-health effects from wildfire 
smoke has been underappreciated. 

The next section discusses economic issues related to wildfire management, followed by a section 
on management costs, and then a section covering economic issues related to valuing wildfire net value 
change (NVC). 

5.2.1 ECONOMICS OF WILDFIRE: MANAGEMENT IMPLICATIONS 

Economics is a discipline concerned with the allocation of scare resources and the understanding 
of trade-offs. Central to the economics of wildfire management is the search for the understanding of 
trade-offs between management inputs (e.g., prevention and suppression) and the consequences of 
unwanted wildfire ignitions (e.g., life-safety, acres burned, structure loss). The economics of wildfire 
management is not a new concept. Headley (1916) discussed ideas of suppression effectiveness, 
efficiency, and waste of effort. Sparhawk (1925) introduced the idea of the “Cost plus Loss” (C+L) model 
as the management trade-off between prevention and “prefire suppression activities” (e.g., fuels 
management) expenditures, suppression expenditures, and wildfire losses. A central finding of the C+L 
model is that prevention and prefire suppression expenditures can be selected to minimize the sum of all 
costs (i.e., prevention, prefire suppression activities, and suppression spending) plus the resulting wildfire 
losses to identify the optimal level of management effort. The optimal level corresponds with the C+L 
minimum, and it can be shown that at the minimum, any other allocation of management resources will 
result in either (1) an increase in spending that exceeds the expected avoided loss or (2) a reduction in 
spending that surpasses an increase in expected loss. This concept of the C+L model is depicted in 
Figure 5-2, where the inputs of prefire suppression activities and suppression are independent inputs, and 
prefire suppression activities expenditures are held constant (Donovan and Rideout, 2003; Sparhawk, 
1925). Suppression costs increase with increases in suppression effort, while the value of corresponding 
loss decreases. The minimum point of the (suppression) cost plus loss curve reveals the economically 
optimal level of suppression effort (holding prefire suppression activities constant). 

The C+L model has been revised several times [e.g., Gorte (2013); Gorte and Gorte (1979)], with 
modern depictions acknowledging the potential for positive effects of wildfires, necessitating a change in 
the term “loss” to “NVC” (Rideout and Omi, 1990; Simard, 1976). Although the graphical depiction of 
the C+NVC is useful for illustration, it is less useful for identifying the minimum C+NVC when 
presuppression expenditures are allowed to be unconstrained. Further, because management activities and 
recent wildfire activity can have lasting effects on the fuels, affecting future wildfire risk (Prestemon et 
al., 2002), intertemporal optimization is required. Intertemporal optimization introduces additional 
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considerations such as discounting and risk perception, which affect the optimal timing of forest 
management activities (Mercer et al., 2007; Amacher et al., 2005a, b). 

There are two immediate challenges making the optimal levels of intervention difficult to 
determine. First, an understanding of the functional relationship between wildfire management activities 
and the resulting NVC is needed. Second, and perhaps more fundamental, is that many of the effects from 
wildfire are not well known or measured, particularly indirect or cascading effects. However, additional 
challenges include (1) the costs and losses are not incurred by the same subsets of the population, creating 
equity concerns and barriers to aligning economic interests and (2) the spatial, temporal, and economic 
boundaries of the C+L loss model are hard to define. Many of the sections that follow build from work 
detailed in the NIST Special Publication 1215 (Thomas et al., 2017) and describe categories of the costs 
and losses associated with wildland fire for the U.S. 

 

Figure 5-2 Illustrative example of the Cost plus Loss (C+L) Model of wildfire 
management. 
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5.2.2 MANAGEMENT COST CATEGORIES 

Management cost categories include those expenditures spent on preparing for, mitigating, 
suppressing, and recovering from wildfires. Presuppression activities include prevention and 
preparedness. Suppression accounts for firefighter labor, equipment, firefighter training and wellness 
programs, as well as the monetary equivalence of volunteer time from local, nonpaid fire departments. 
Post-fire rehabilitation and recovery include efforts to return lands to prefire functionality. The 
“cross-cutting” cost category includes activities that impact multiple management activities; for 
example, research and development efforts result in more effective suppression technologies, improved 
building codes, and fire-resistant building products. 

5.2.2.1 PREPAREDNESS AND PREVENTION 

At the federal level, prevention and mitigation activities, including wildfire detection and 
education, are aggregated together in budget line items as “preparedness.” Preparedness is considered to 
be “comprise[d] [of] a range of tasks to ensure readiness for wildfire response, including workforce 
preparation, equipment and resource management, and wildfire outlook conditions for forecasting” 
(Hoover, 2020). For Fiscal Year (FY) 2020, preparedness spending was $1.672 billion dollars in total for 
the U.S. Forest Service (USFS; 80%) and the Department of the Interior [DOI; 20%; Hoover (2020)]. 

Wildfire prevention activities include awareness efforts to promote fire safety to reduce 
unintentional wildfire ignitions. Awareness programs, such as public service announcements and media 
spots, community townhall-style presentations by wildfire prevention specialists, distribution of 
brochures and flyers containing educational messaging, and community wildfire hazard assessment 
performed by risk specialists have all been shown to reduce the number of human-caused unintentional 
wildfire starts and generate positive economic return on investment (Prestemon et al., 2010). For example, 
Prestemon et al. (2010) estimated that the benefit-cost ratio of prevention to be 35 to 1 on the margin. Abt 
et al. (2015), who also accounted for law enforcement efforts and intentionally set wildfires, found 
benefits were 5 to 38 times larger than prevention costs. Prevention efforts have been shown to have 
differential effects that vary by ignition cause type [e.g., escaped campfire, debris fire; Butry and 
Prestemon (2019); Abt et al. (2015)], and the timing of activities can be exploited to yield larger 
economic benefits (Butry et al., 2010b; Butry et al., 2010a) or coupled with other risk reduction activities, 
such as fuels management (Butry et al., 2010b). 

Early wildfire warning and detection systems, including aerial and satellite technologies, can lead 
to improved firefighting response time, limiting fire growth after ignition or assist in monitoring wildfire 
progression, and increase suppression effectiveness (Cardil et al., 2019). Satellite-based wildfire detection 
information has been shown to improve fire commanders’ decision making during suppression activities, 
yielding better firefighting safety and economic outcomes (Herr et al., 2020). Steele and Stier (1998) 
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found that wildfire surveillance from fixed lookouts yielded benefit-cost ratios of 6 to 1 in terms of 
reduced suppression costs and property losses. 

Wildfire risk assessments and related tools can be used to identify occurrences of elevated 
temporal or spatial (landscape-level) risks, by examining factors such as prior wildfire history, weather, 
climate, fuel conditions, and socioeconomic factors. Such information can be used to inform decisions on 
the prepositioning of mitigation and suppression resources (Bayham et al., 2020; Thomas et al., 2011; 
Prestemon and Butry, 2005). Improved suppression response time can yield economic benefits by 
reducing burned areas (Cardil et al., 2019). 

5.2.2.2 MITIGATION 

Mitigation activities are designed to reduce the consequences from wildfire (e.g., area burned, 
value of economic loss). For wildfires, the primary mitigation approaches are fuels management, 
insurance, and disaster assistance. 

5.2.2.2.1 FUELS MANAGEMENT 

Fuels management activities result in the reduction of hazardous fuels in forests. This can be 
accomplished by a number of methods, including prescribed burning and mechanical and chemical 
thinning of materials (as discussed in Chapter 3). In FY 2020, the federal government spent 
$194.0 million on the line item “hazardous fuels/fuels management” on federal lands and the line item 
“other Forest Service wildfire appropriations,” which also includes fuels management that amounted to 
$545.3 million (Hoover, 2020). Fuels management spending is not readily available at the state, local, and 
private levels, nationally. 

There is statistical evidence that fuel treatments can impact wildfire behavior (Mercer et al., 2007; 
Prestemon et al., 2002), resulting in suppression cost savings in excess of treatment costs (Thompson et 
al., 2017; Taylor et al., 2013; Butry, 2009). However, some research suggests that fuel treatments may 
lead to increased suppression spending, due to more aggressive suppression strategies as an option in 
treated landscapes [e.g., see Belval et al. (2019); Loomis et al. (2019); Rideout and Ziesler (2008)]. 
Research into optimization has shown that with careful planning, fuel treatments can be leveraged to yield 
larger economics returns, when considering timing (Butry et al., 2010a) or when allowing for the sale of 
harvested materials after forest thinning (Prestemon et al., 2012). Beyond avoided suppression costs, 
Huang et al. (2013) identified additional benefits that included fatalities avoided, timber loss avoided, 
avoided regional economic impacts, rehabilitation costs avoided, and loss of carbon storage avoided. In 
addition, Houtman et al. (2013) considered the impact of “free” fuel treatments (i.e., wildfire that are 
allowed to continue to burn to achieve multiple objectives which can include resource benefits) on future 
suppression costs avoided and found instances of large economic returns. However, policies allowing for 
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more wildfires to burn (wildland fire use), instead of immediate suppression actions, may be more 
economically favorable with a low or zero discount rate. Furthermore, wildland fire use is controversial 
and carries inherent risk. Current federal fire management policy, for example, allows for limited 
wildland fire use (i.e., as long as the managers determine that it would not endanger the public). To 
increase the amount of wildland fire use, the risk thresholds would need to be relaxed, potentially 
resulting in more unintended losses of people, structures, and resources [see Houtman (2011)]. 

Fuel modification also occurs on private land, often as part of a program to create an area around 
a structure designed to reduce wildfire ignition and spread (i.e., “defensible space”). The major barriers to 
use of defensible-space programs are related to cost, aesthetics, and privacy (Absher et al., 2013; Kyle et 
al., 2010; Absher et al., 2009). For some, climate change and risk perceptions have lessened some of the 
resistance (Wolters et al., 2017), while for others it is a familiarity with the programs and expectations of 
its effectiveness that have led to acceptance. Stockmann et al. (2010) evaluated the cost-effectiveness of 
various homeowner risk reduction strategies including fuels management and structure hardening. They 
found that fuel reduction within 61 m (200 ft) of the house was the most cost-effective. Nevertheless, 
homeowner actions to reduce wildfire risk are potentially limited by the homeowners’ own inaccurate 
assessment of risk factors [e.g., Champ et al. (2009)]. 

5.2.2.2.2 INSURANCE 

In measuring the U.S. fire problem, the cost of insurance has typically been calculated as the 
difference between premiums paid in and claims paid out (Hall, 2014), which constitutes overhead costs. 
These costs would include employees’ wages, underwriting expenses, administrative expenses, taxes, 
real-estate expenses, legal expenses, and cost of capital. There are a number of insurance markets that are 
exposed to wildland fire, including homeowner’s insurance, commercial insurance, automobile insurance 
(Hall, 2014), health and life insurance, and reinsurance markets. Frequently, wildfire losses are reported 
as direct, insured losses. 

Although insurance could be part of the solution to increased efforts to reduce overall risk to 
wildland fire on private lands, very few firms offer insurance focused, in particular, on forests (Chen et 
al., 2014). A leading limiting factor to widespread adoption of such insurance is a lack of actuarial 
information on wildfire risk at fine spatiotemporal scales. There is additionally a need to develop a better 
understanding of the approaches for reducing moral hazard and adverse selection in the issuance of 
policies. As a result, policies tend to be expensive and out of reach of small forestland owners, meaning 
that an insurance-based incentive structure for reducing overall wildfire risks on private lands remains 
elusive. 
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5.2.2.2.3 DISASTER ASSISTANCE 

Disaster assistance is financial assistance provided by the federal government following a disaster 
declaration. Because assistance can be used for things such as temporary housing, lodging expenses, 
repair, replacement, housing construction, child-care, medical expenses, household items, clean-up, fuel, 
vehicles, moving expenses, and other necessary expenses determined by the Federal Emergency 
Management Agency (FEMA), care needs to be taken in tracking the economic burden of wildfires 
because counting these costs or reimbursements directly and also as disaster assistance may result in 
double counting. 

5.2.2.3 SUPPRESSION 

In FY 2020, at the federal level, suppression spending exceeded $1.4 billion dollars, split between 
the USFS (73%) and the DOI [27%; Hoover (2020)]. These are resources used for firefighting. State 
suppression expenditures are estimated at $1 to 2 billion per year (Gorte, 2013). 

An estimate for local (municipal) fire departments is more difficult to determine. An 
approximation can be calculated assuming the cost of wildfire prevention and suppression is proportional 
to the incident volume of fire involving wildland fuels. In 2014, based on Zhuang et al. (2017), it is 
estimated that career fire department expenditures amounted to $41.9 billion ($46.21 billion in 2020 
dollars), and the value of volunteer (rural) fire departments is estimated at $46.9 billion [see “Method 5” 
used in Zhuang et al. (2017); $51.72 billion]. Based on call volume (27.8 million calls) reported to the 
National Fire Incident Reporting System (NFIRS) from 2018, fires involving natural vegetation 
represented 0.8% of all calls (20% of all fire incidents). In combination with fire department expenditures, 
this information could be used to estimate the amount spent to suppress wildland fires in local 
jurisdictions. 

Gebert et al. (2007) found suppression spending to be impacted by burned area, suppression 
strategy, and region of the country. Statistical models developed to forecast USFS suppression costs by 
region of the country show that forecasted suppression spending is influenced by factors such as prior 
suppression expenditures, sea surface temperatures, and weather [e.g., temperature and precipitation; 
Gebert and Black (2012); Abt et al. (2009)]. The models found that suppression strategy influences total 
suppression costs for large wildfires, with direct suppression being the most expensive on a 
per-acre-burned and per-day basis but leads to smaller wildfire sizes and duration. However, studies have 
found that overall suppression strategy can be complicated by other factors, which also impact total 
suppression expenditures. For example, Liang et al. (2008) found that the percentage of private land 
within the burned area influenced suppression expenditures on large wildfires, while Rossi and Kuusela 
(2020) indicated that management risk attitudes (risk aversion) affected expenditures. 
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5.2.2.4 POST-FIRE REHABILITATION AND RECOVERY 

Post-fire rehabilitation is funded at the federal level as part of “other activities,” and in FY 2020 
the other activities amounted to $41.9 million. This accounts for costs associated with landscape-level 
restoration activities. Also included in this line item are activities related to research and development, 
construction and maintenance of fire facilities, and forest health management (Hoover, 2020). 

5.2.2.5 CROSS-CUTTING COST CATEGORIES 

Some costs cut across various organizations and categories. These include legal costs, research, 
and regulations. Legal costs include the prosecution, defense, and incarceration of fire-setters. In 2019, 
there were 785,500 prisoners in local prisons [all crimes; Zeng and Minton (2021)]. In 2019, there were 
1,430,805 prisoners in federal and state facilities, with 0.9% sentenced for “other” property crimes, which 
include arson [all types; Carson (2020)]. The Bureau of Prisons (2018) estimated that the average cost of 
incarceration for a federal inmate in FY 2016 was $36,299.25 ($39,566.18 in 2020 dollars). 

Many public and nonprofit organizations are involved in research and development to reduce the 
costs and losses associated with wildland fires. For federal research and science agencies, some of these 
costs are included in the $41.9 million “other activities” listed above (Hoover, 2020). 

Each state has its own building codes and fire regulations, based on the international model 
codes. In addition, some consumer products are built for fire safety. Zhuang et al. (2017) estimated in 
2014 that fire-safety related costs for building construction were $57.4 billion ($63.30 billion in 2020 
dollars) and for consumer products were $54.0 billion ($59.55 billion in 2020 dollars). This includes fire 
safety from all ignition and risk sources. In a study comparing the construction costs of a typical house 
with a “wildfire-resistant” house, Quarles and Pohl (2018) found that the costs of components are slightly 
less expensive for the wildfire-resistant house ($79,230 vs. $81,140). The cost components included the 
roof, exterior walls, deck, and landscaping. The largest savings were found for the exterior walls, which 
more than offset increases to the other components. 

5.2.3 WILDFIRE LOSS CATEGORIES 

Wildfire-induced losses are grouped into two categories: direct and indirect. Direct losses are 
those that occur as a primary result of wildfire (e.g., structure loss), while indirect losses are those that 
occur as a secondary, or cascading, result of wildfire (e.g., economic downturn due to business structure 
loss). Indirect losses are often more difficult to quantify due to latency and many may only be realized 
years after the wildfire. 
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5.2.3.1 DIRECT LOSSES 

5.2.3.1.1 FATALITIES AND INJURIES 

The National Fire Protection Association (NFPA) reported 80 civilian (nonfire-service) fatalities 
and 700 injuries in 2019 from fire incidents reported as “outside and other fires” (Ahrens and Evarts, 
2020). The “outside and other fire” incident type includes wildland, grass, crop, timber, and rubbish fires. 
The estimates are based on a survey to U.S. fire departments, meaning the fatalities and injuries would 
tend to include those observed or reported immediately following the fire incident. Long-term health 
consequences made worse due to fire exposure, but not known until well after the incident, would not be 
captured. In 2017, there were 10 firefighter deaths associated with wildland suppression activities (USFA, 
2018). The Incident Management Situation Report system, which tracks data on wildfires in federal 
jurisdictions, includes firefighter injuries. From 2003 to 2007, an average of 260 injuries per year were 
reported (Britton, 2010). 

5.2.3.1.2 PSYCHOLOGICAL EFFECTS 

Studies from wildfires have found depression, post-traumatic stress disorder (PTSD), and other 
anxiety disorders to have resulted from exposure to wildfire events. Estimates for civilian rates of PTSD 
and other anxiety disorders after a disaster range from 30% (Cole, 2011) to 60% (Kuligowski, 2017), with 
effects sometimes taking years to manifest (Kuligowski, 2017). For first responders, rates of PTSD have 
been estimated to occur in up to 20% of firefighters and paramedics (Rahman, 2016). 

5.2.3.1.3 STRUCTURE AND INFRASTRUCTURE LOSS 

The National Interagency Coordination Center (NICC) reported 963 structures lost by wildfire in 
2019, under the annual average of 2,593 (NICC, 2019). NICC reported 25,790 structures lost in 2018 
(NICC, 2018) and 12,306 structures lost in 2017 (NICC, 2017). NICC does not provide dollar lost 
estimates. 

5.2.3.1.4 ENVIRONMENTAL EFFECTS 

Environmental effects can take many forms, including effects on vegetation, soil as well as 
erosion, watershed including increased sediment deposition, and carbon sequestration. Vegetation loss 
can create the need to reseed and regrow forest and grasslands. Soil degradation can result in poor soil 
nutrients and vegetation growth. Both vegetation and soil loss can result in erosion and increase the risk 
of flooding and debris flow (Ren et al., 2011; Benda et al., 2003). Trees sequester carbon and provide 
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oxygen, but carbon can be released to the atmosphere if trees are burned. Wildfires can decrease water 
quality by introducing carbon, metals, other containments, and changes to nutrients, which can affect 
aquatic ecosystems and drinking water (Rhoades et al., 2019b). In addition to increased treatment costs 
for potable water, poor water quality can impact agricultural and industrial operations (Bladon et al., 
2014). Treatment costs include the increased need to remove solids and dissolved organic carbon in water 
impacted by discharge from burned forests and wildlands (Emelko et al., 2011). However, traditional 
water quality protection strategies may fail to recognize the effects from wildfire that would result in the 
need for water treatment (Emelko et al., 2011). 

5.2.3.1.5 TIMBER AND AGRICULTURAL LOSS 

Wildfires on lands managed for timber and agricultural purpose result in business losses. The 
1998 Florida wildfires resulted in pine timber damage of between $300 to $500 million in 1998 dollars 
($479 to 798 million), which represented over half of the quantified costs and losses of the wildfire event 
(Butry et al., 2001). The timber losses were from two effects: (1) value from the physical loss of timber 
and (2) a price increase, due to scarcity, after all salvageable timber was sold. Prestemon et al. (2006) 
evaluated salvage harvest scenarios following the 2000 Bitterroot wildfire and found similar (direction of) 
effects to consumers, owners of damaged stands, and owners of undamaged stands. They demonstrated 
that the value of timber lost due to wildfire could be more than offset (in general welfare effects) through 
salvage. 

5.2.3.2 INDIRECT LOSSES 

5.2.3.2.1 GENERAL ECONOMIC IMPACTS 

Wildfires, and disasters in general, can have long lasting impacts on an economy. They can 
include business interruption (temporary and permanent closures) and effects that disrupt the supply 
chain. Supply chain disruption can affect businesses and customers far removed from the wildfire 
threatened areas. 

Butry et al. (2001) found the 1998 Florida wildfires impacted the tourism and service sectors. In 
an analysis of the 2002 Hayman Fire in Colorado, Kent et al. (2003) found the wildfire induced overall 
employment growth of 0.5%, by creating shifts in the economy resulting in a decline in average wages by 
3%. Focusing on employment and wage dynamics, Davis et al. (2014) examined the impact of the 2008 
large wildfires in Trinity County, CA. They found that employment in the natural resource sector 
increased by 30%, while average wages fell by 19%; whereas wage growth was experienced in the other 
sectors, again demonstrating disparate effects. Borgschulte et al. (In Press) found that wildfire smoke 
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impacts annual labor income and employment in the U.S. and estimates the economic loss to be four 
times that from mortality ($83 billion in 2020 dollars). 

Nielsen-Pincus et al. (2014) explored the economic impacts of large wildfires (fires where 
suppression exceed $1.0 million) in the western U.S. states by economic sector. For counties with 
populations under 250,000, they found sectors with employment increases included natural resources and 
mining; trade, transportation, and utilities; information services; financial services; and federal 
employment. Sectors that lost employment included construction, manufacturing, professional and 
business services, education and health services, and leisure and hospitality services. For larger counties, 
total employment was reduced after a large wildfire by 0.04%. 

Loomis et al. (2001) found in a study of visitors to forests in Colorado that hikers and mountain 
bikers responded with fewer visits in areas with crown fires, but the time since the fire also played a role. 
Englin et al. (2008) and Englin et al. (2001) found the linkage to recreation demand is time dependent, 
with recent wildfires correlated with increased visitation and older wildfires linked to fewer, with Englin 
et al. (2001) also noting a rebound effect with the oldest wildfires. Hesseln et al. (2003) found crown and 
prescribed fires reduced visitation but consumer surplus differed between hikers (increased) and mountain 
bikers (decreased) in New Mexico. In Montana, Hesseln et al. (2004) found hikers decreased visitations 
after a crown fire, but increased visitations after a prescribed fire. They found mountain bikers displayed 
the opposite pattern. 

5.2.3.2.2 EVACUATIONS 

Evacuation costs include temporary lodging and travel to and from the impacted area. Kent et al. 
(2003) found the Hayman Fire in Colorado resulted in other expenditures, which included evacuation, that 
were estimated to be up to $14 million ($19.5 million in 2020 dollars). In addition to expenditures, 
McCaffrey et al. (2015) mentioned the nonmonetary expenditures, including the “logistical” and 
“emotional” toll of fire evacuation. 

5.2.3.2.3 LOST NATURAL AMENITIES 

National forests provide a stream of values including historic, use and recreational, and existence 
(value someone places on knowing something exists whether or not they may ever visit or use). Some of 
these values can be monetized in the form of entrance and use fees. The National Parks were estimated to 
be worth $92 billion dollars [$100 billion in 2020 dollars; Haefele et al. (2016)]. 
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5.2.3.2.4 HOUSING MARKET 

Hedonic analyses that relate home sales prices to nonmarket amenities and other property 
attributes can detect the values of environmental goods and services not directly traded in markets. 
Several studies have evaluated the effect of wildfire risk on home sales prices, with the expectation that 
higher risk lowers sales prices, all else being equal. Loomis (2004) compared housing sale prices before 
and after the 1996 Buffalo Creek Fire (Colorado) and found a price decline between 13 to 15% of 
undamaged homes near the wildfire. Kim and Wells (2005), in a study of the greater Flagstaff area 
(Arizona), found moderate crown canopy closure (40 to 69%) was preferred by home buyers; whereas 
high crown canopy closure (70% and higher), which posed a higher wildfire risk, was shown to decrease 
sale prices. 

Meldrum et al. (2015) explored whether wildfire risk perceptions of residents of homes in Ouray 
County, in southwestern Colorado, aligned with professionals’ data-based assessments of wildfire risk 
based on features of the home and property, including whether the property had vegetation nearby. 
Residents underestimated the risks of wildfire nearby. In many other aspects of the property’s features, 
residents’ perceptions were generally not highly correlated with the assessments of the professionals. The 
implication is that economic motivations to undertake risk-reduction efforts would be lower if risk were 
more accurately quantified by residents. Donovan et al. (2007) compared housing sales prices before and 
after homes were rated based on wildfire risk in Colorado Springs, CO. They found that the availability of 
risk information was correlated with a decrease of a representative home sales value by 13.7%. Champ et 
al. (2009) explored whether home prices in Colorado Springs, CO were aligned with risks of wildfire. 
They found that homebuyers prefer risky locations due to their favorable amenities (e.g., topography) but 
that homebuyers were less cognizant of wildfire risks than objective assessments would identify. 
Although these homebuyers preferred less fire-prone building materials, they tended to undervalue 
features of their properties from the perspective of wildfire risk reduction. 

Hjerpe et al. (2016), in a study of house prices in four western cities, found that the sales of 
homes with medium forest density (34 to 66%) within 100 m of a house was associated with lower sales 
prices; yet, homes with high forest density (67% and greater) within 500 m of a house was associated 
with higher sales prices. Stetler et al. (2010) estimated home sales prices in Montana and found that 
distance to the wildfire, time since, size of fire, and whether the home was within sight distance of the 
wildfire affected home sales, for an average price loss of −13.7% for a home within 5 km of the fire. 

Kalhor et al. (2018) evaluated the impact of visible fire scars from the 2000 Cerro Grande Fire 
(New Mexico) on assessed house values in 2013. They found the impact of the previous damage equated 
to a 1.7 to 4.4% decline in assessed house value, while measures of future wildfire risk were found to be 
correlated to an increase in assessed house value by 0.3 to 0.4%. The latter impact was attributed to the 
crown area likely accounting for the aesthetic value of vegetation. 
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5.2.3.2.5 LOSS OF ECOSYSTEM SERVICES 

Ecosystem services are generally defined as “any positive benefit that wildlife or ecosystems 
provides to people” (NWF, 2017). Few studies exist on a national scale. Most tend to be regional in scope 
and not specific to wildfire. For example, Loomis et al. (2000) evaluated the value of better watershed 
services for a 45-mile section of the Platte River, Desvousges et al. (1983) valued lake preservation, 
Moore and McCarl (1987) valued the preservation of the Mono Lake ecosystem, and Hanemann et al. 
(1991) valued increased salmon stock in the San Joaquin River. Such examples provide methods that 
could be used to value avoided losses to ecosystem services from wildfire mitigation. 

Wildfire Fire and Prescribed Fire Effects on Forest Health and Wildlife 

Studies in the ponderosa pine ecoregion of California, Oregon, and Washington have shown that 
fire management based on low-intensity prescribed fire coupled with mechanical thinning can, over time, 
approximate historical landscape conditions that are much less susceptible to catastrophic fires (Prichard 
et al., 2017a; Prichard et al., 2017b; Allen et al., 2002). Where it is feasible to use such practices, 
low-severity fires can promote important wildlife habitat and forest health benefits (Pausas and Keeley, 
2019). These ecological benefits include improvements in habitat quality for threatened and endangered 
species (Pausas and Keeley, 2019); reductions in ground layer and understory “ladder” fuels; reduced 
losses of forest floor nutrient capital and water holding capacity (Murphy et al., 2006); and increased 
forest resistance to drought, pests, and diseases, all of which are being exacerbated by climate change 
(Spies et al., 2019; Vose et al., 2019). 

To date, prescribed low-intensity fire and thinning treatments have not been adopted into local, 
state, and federal forest management practices at a scale necessary to affect the overall fire deficit, and 
associated fuel load excess, in western forests. The potential effects of ignoring the fire deficit is 
underscored by the growing body of evidence for the role of climate change in amplifying recent 
increases in the frequency and intensity of wildland fires (Kolden, 2019; Abatzoglou and Williams, 2016) 
and consequent effects on ecological benefits associated with low-intensity fire regimes. 

Water Resources 

Wildfire can both directly and indirectly affect water resources as well. Direct effects can occur 
via downwind smoke and ash deposition on the surface of water bodies (see Section 6.4), and damage to 
drinking water infrastructure. Indirectly, fire affects water resources primarily through increased runoff of 
water and other materials into nearby water bodies. Together, these direct and indirect effects can alter the 
physical, chemical, and biological characteristics of water resources, and by doing so, impact their end 
use, such as for recreation, aquatic life, and drinking water. 
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The direct effects of fire on drinking water infrastructure is an area of rising concern. For 
example, fires can damage water treatment facilities or water supply lines. In two locations in California 
(Santa Rosa and Paradise), benzene and other volatile organic compounds (VOCs) were detected in 
tapwater post-fire, with concentrations of benzene exceeding federal and state drinking water standards 
(Proctor et al., 2020). This was likely caused by the partial melting of plastic water-supply lines to homes 
and infiltration of hot gas and other materials when the supply system became depressurized (Proctor et 
al., 2020). As fires become more frequent, they are increasingly likely to burn into urbanized areas, and 
direct effects on drinking water infrastructure could become more common. 

The indirect effects of fire are more widespread, including the indirect effects on water bodies 
used as drinking water sources. Fire-prone ecosystems are major sources of the national water supply. 
Fire effects on forested watersheds are particularly concerning because these watersheds provide much of 
the drinking water consumed in the lower 48 states (Liu et al., In Press). Most of these watersheds are at 
high risk from wildfire now or in the near future (Hallema et al., 2018). 

Fire can impact the physical supply and timing of water delivery by altering runoff and 
streamflow. The loss of ground layer vegetation and canopy leaf biomass reduces interception and 
evapotranspiration, increasing runoff (Stevens, 2013; Seibert et al., 2010). Moreover, on some soil types, 
intense wildfires can dramatically increase runoff by increasing water repellency of near-surface soil 
layers, a condition that can persist for years (Certini, 2005). Depending on fire severity, rainfall patterns, 
and watershed soil and land cover characteristics, post-fire streamflow can increase in the days, months, 
and years following fire (Niemeyer et al., 2020). Severe fires can also increase the risk of downstream 
flooding (Stevens, 2013). Additionally, fire can alter the amount and timing of snowmelt. For instance, 
mountain snowpack beneath charred forests absorbed more solar energy, causing earlier melt and snow 
disappearance in >11% of forests in the western seasonal snow zone over the past two decades (Gleason 
et al., 2019). Fire and climate change effects on snowpack can also have a substantial impact on late 
summer runoff when it is most needed by fish and wildlife (Pausas and Keeley, 2019). 

By increasing runoff and flow, fires can also increase erosion and delivery of sediments, ash, and 
other constituents to downslope ecosystems. The increased sediment loads and land destabilization that 
can occur post-fire (Ren et al., 2011; Benda et al., 2003) may be characterized by a large influx of 
suspended solids to headwater streams (Rinne, 1996). Although not always (Cawson et al., 2013), effects 
can often depend on fire severity, with greater sediment erosion associated with higher severity fires 
(Benavides-Solorio and MacDonald, 2005). A wide variety of chemical constituents are often mobilized 
along with the sediments and ash. This includes nutrients and cations, heavy metals, organic compounds, 
like polycyclic aromatic hydrocarbons (PAHs), and dissolved organic carbon (Smith et al., 2011). Besides 
direct additions to water resources, fire can indirectly increase disinfection byproducts (DBPs), 
compounds that form during drinking water treatment when disinfectants (e.g., chlorine, chloramine) 
react with organic carbon and nitrogen compounds present in higher concentrations post-fire (Bladon et 
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al., 2014). Some DBPs pose health risks, with the potential to cause certain cancers, reproductive issues, 
and anemia. 

Encroachment of wildfire into the wildland-urban interface (WUI) can also release largely 
unknown types and quantities of anthropogenic contaminants into streams. Combustion of houses, 
buildings, vehicles, waste sites and other infrastructure present risks from hazardous chemicals, such as 
benzene and VOCs, as well as heavy metals (Proctor et al., 2020; Uzun et al., 2020). Finally, the use of 
fire retardants may also increase nutrient and chemical loading to post-fire landscapes. 

Beyond physical and chemical changes, fires can also indirectly alter biological assemblages in 
downstream waters. Fire can increase coarse woody debris in streams (Young, 1994), positively 
impacting long-term habitat for fish, yet over the shorter term, fish and macroinvertebrate populations 
typically decline post-fire [e.g., Rinne (1996)]. Concomitantly, burning in riparian areas can increase light 
levels to streams, and studies have often recorded increases in stream temperatures post-fire 
[e.g., Dunham et al. (2007)]. This could negatively affect cold-water fish species, like salmonids (Beakes 
et al., 2014). Combined with the increased light and temperature, an influx of nutrients and sediment can 
also promote harmful algal blooms and the production of cyanotoxins (Bladon et al., 2014; Smith et al., 
2011). These cyanotoxins both contaminate drinking water and negatively affect aquatic life. 

While wildfire has been a part of the natural ecology of many ecosystems for millennia, an 
increase in fire frequency, area burned, and/or severity can have deleterious effects on water resources, 
altering their physical, chemical, and biological characteristics. In general, the more severe the fire, the 
more likely downstream waters will be affected, with greater potential for flooding, higher sediment 
loads, and other effects on water quality. By contrast, lower severity fires could positively effect 
downstream water users because the effect on water quality may be lower while water supply is 
temporarily increased. Effects following fire are generally most pronounced in the first few years but may 
persist for more than a decade in some cases (Rhoades et al., 2019a; Smith et al., 2011). Increased 
concentrations of nutrients, heavy metals, organic compounds like benzene, and DBPs pose particular 
risks, along with increased algal blooms and cyanotoxins. Communities will need to be aware―and plan 
for―the potential for post-fire contamination of water resources, especially following severe fire. The 
provisioning of safe drinking water from burned watersheds may require additional treatment 
infrastructure and increased operations and maintenance costs to remediate effects. 

5.2.3.2.6 OTHER EFFECTS 

Other effects of wildfire include accelerated economic decline, loss of utilities and transportation 
systems, disruption to government services, interference with military operations (e.g., smoke visibility 
issues), cascading natural hazard risks (e.g., increase risk of mudslide or growth of invasive species), loss 
of tax base due to housing and building stock, and health and environmental effects from fire retardants. 
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Many of these effects are not well defined or monetized. (Focused on California, CCST (2020) provides a 
discussion on some of these categories and others.) 

5.2.4 MAGNITUDES, GAPS, AND UNCERTAINTY 

Table 5-2 shows estimated magnitudes of value of the costs and losses and levels of uncertainty 
in their measurement or ability to measure at a national scale [reproduced from Thomas et al. (2017)]. 
The estimated magnitudes and uncertainties were based on the values found in the report, and where not 
available, were estimated using expert judgment of the report authors. The largest cost and loss categories 
were fuel treatments and defensible space, suppression, economic value of deaths and injuries, evacuation 
costs, and effects on the housing market. The largest sources of uncertainty tended to be indirect 
economic effects, insurance, and some of the cross-cutting categories (e.g., building codes and standards, 
regulations). 

Although there is significant literature detailing components of the costs and losses associated 
with wildland fire, producing an annual national estimate, which could be tracked over time to evaluate 
management success, is difficult at this time without introducing large sources of uncertainty in the 
estimates. However, it does appear that the economic burden from wildland fire is increasing over time. 

Table 5-2 Magnitude and uncertainty associated with the economic burden of 
wildfire at the national level.

  Order of Magnitude Uncertainty 

Costs 

Preparedness $$$$ ? 

Mitigation 

Fuels management     

Fuel treatments (Rx fire, thinning) $$$ ? 

Defensible space/firewise $$$$ ??? 

Insurance $$ ???? 

Disaster assistance $ ?? 

Suppression 

Fire departments (labor, equipment, 
training) 

    

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=7978345
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=7266541
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  Order of Magnitude Uncertainty 

Federal $$$$ ? 

State $$$$ ? 

Municipal (professional) $$$$ ??? 

Rural (volunteer) $$$$ ??? 

Cross-cutting 

Legal     

Prosecution $$ ?? 

Incarceration $$$ ?? 

Civil/liability $$ ???? 

Science/research and development $$ ??? 

Building codes and standards $$ ???? 

Regulations (e.g., zoning) $$ ???? 

Losses 

Direct 

Deaths and injuries (civilian and 
firefighter) 

$$$$ ?? 

Psychological effects (PTSD) $$ ??? 

Structure and infrastructure loss $$$ ??? 

Environmental impact $$$ ???? 

Habitat and wildlife loss $$ ???? 

Timber loss $$$$ ??? 

Agriculture loss $$$ ???? 

Remediation/cleanup $$ ??? 

Indirect 

General economic impacts (business 
interruption, tourism, supply chain) 

$$$ ???? 

Evacuation costs $$$$ ??? 
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  Order of Magnitude Uncertainty 

Accelerated economic decline of 
community 

$$$ ???? 

Utility and pipeline interruption 
(electricity, gas, water, oil) 

$$$ ???? 

Transportation interruption (e.g., roads 
and rail) 

$$ ???? 

Government service interruption 
(including education) 

$$ ???? 

Psychological effects (loss of natural 
amenities) 

$$ ???? 

Housing market impact (loss due to fire 
risk) 

$$$$ ??? 

Loss of ecosystem services 
(e.g., watershed/water service) 

$$$ ???? 

Increased risk of other hazards 
(e.g., mudslide, invasive species) 

$$$ ???? 

Decrease in tax base (structure loss or 
decline in value of structure) 

$$$ ??? 

Decrease in government services $$$ ???? 

Health/environmental effects from use 
of fire retardants/suppressants 

$$$ ???? 

PTSD = post-traumatic stress disorder; Rx = prescribed. 
Note: Classification of “order of magnitude”: $ = <millions; $$ = 10s millions; $$$ = 100s millions; $$$$ = billions; 
“uncertainty”: ? = low; ?? = medium; ??? = high; ???? = unknown. 
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