

GAMMA – A platform independent framework for

reusable authentication, authorization, and auditing components

Dissertation zur Erlangung des akademischen Grades

Doktor der technischen Wissenschaften

im Doktoratsstudium der technischen Wissenschaften

Angefertigt am Institut für Anwendungsorientierte Wissensverarbeitung

Betreuung:

a.Univ.-Prof. Dr. Josef Küng

Von:

Dipl.Ing.(FH) Stefan Probst

Gutachter

a.Univ.-Prof. Dr. Josef Küng

a.Univ.-Prof. Mag. Dr. Werner Retschitzegger

Linz, Oktober, 2004

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbstständig und
ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht
benutzt bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich
gemacht habe.

_________________________ _________________________

Datum, Ort Unterschrift

Kurzfassung

Sicherheit ist in der heutigen weltweit vernetzten Zeit zu einem wichtigen
Bestandteil jeder Softwareapplikation geworden. Obwohl wir aus dem Bereich der
Mainframe Computer über bewährte Konzepte für Zugriffskontrollen verfügen,
fehlen uns immer noch ausreichende Mechanismen die in modernen
Softwarearchitekturen eingesetzt werden können. Zudem können wir die Situation
beobachten, dass Sicherheit oftmals nachträglich in existierende Produkte eingebaut
wird, was oftmals zu Problemen in der Software oder in den
Sicherheitsmechanismen selbst führt. Ein Grund dafür könnte das Fehlen
ausreichender wiederverwendbarer Sicherheitskomponenten sein. Ein anderer Grund
liegt sicherlich darin, dass heutige Anwendungen unterschiedliche Anforderungen an
die Sicherheit stellen, die oftmals nicht mit den gleichen Mechanismen realisiert
werden können. All dies führt dazu, dass Sicherheit heute oftmals direkt im Code
realisiert wird. Da der Code nun mit speziellen Sicherheitsanweisungen angereichert
ist, die zum einen sowohl applikationsspezifisch, zum anderen aber auch
kundenspezifisch sind, vermindert diese Methodik die Wiederverwendbarkeit,
Wartbarkeit und Flexibilität des Codes. Gerade im Bereich der
komponentenorientierten Softwareentwicklung sind diese Aspekte enorm wichtig
weshalb die Sicherheitslogik strikt von der Anwendungslogik getrennt werden muss.

In dieser Dissertation wird GAMMA, ein plattform- und architekturneutrales
Rahmenwerk vorgestellt, das wiederverwendbare Komponenten zur Authent-
ifizierung, Autorisierung und Protokollierung anbietet. Alle Komponenten basieren
auf deklarativer Sicherheit die eine vollständige Abkapselung von Anwendungs- und
Sicherheitslogik erlaubt. Diese Abkapselung ermöglicht in weiterer Folge die
Erstellung von hoch flexiblem, wiederverwendbarem und trotzdem sicherem Code.
Die Realisierbarkeit dieses Rahmenwerks wird dann anhand zweier
Referenzimplementierungen bewiesen, die zahlreiche wiederverwendbare
Sicherheitskomponenten anbieten die direkt und intuitiv in Softwareprogramme
integriert werden können.

Abstract

Security is nowadays recognized as an absolute need in software development.
Although thoroughly researched concepts for access control exist that have been
proven in mainframe computing, we still lack of adequate mechanisms that can be
used in today’s development of modern software architectures. However, currently
we face the situation that security mechanisms have often been added to existing
software causing many of the well-known deficiencies found in software products.
One reason may be the lack of appropriate reusable components that support
application developers. Another reason might be that applications have diverse
security requirements that cannot be handled adequately. Thus, security is often
addressed and implemented directly into the code, reducing reusability,
maintainability, and flexibility aspects. However, with rise of component-based
software development security models needs to be made available for reuse,
encapsulating the security logic from the business logic.

This thesis presents GAMMA, a platform and architecture neutral framework, that
offers reusable authentication, authorization, and auditing mechanisms by providing
declarative security mechanisms. Declarative security allows the decoupling of
security logic completely from the application logic, allowing to write highly
flexible, reusable but still security aware software components and applications.
Furthermore, this concept is proven by presenting a reference implementation of this
framework which offers several ready-to-use but still extensible authentication,
authorization, and auditing mechanisms that can be transparently integrated into
applications.

Thanks and Acknowledgements

This thesis took a long time to write. Many people helped, both directly and
indirectly for which I’m very thankful.

First and foremost I thank my mentor and internal supervisor Dr. Wolfgang Essmayr
for his contribution towards my education and being a good discussion partner for
various security aspects. Of course I want to say thank you to both of my academic
supervisors, namely a.Univ.Prof. Dr. Josef Küng, and a.Univ.Prof. Mag. Dr. Werner
Retschitzegger who provided helpful reviews and hints which helped me writing this
thesis. Furthermore, I acknowledge Dr. Dagmar Auer, who provided me with very
helpful feedback concerning the thesis but also new ideas concerning the work itself.

Additionally, I thank my research colleagues for great discussions and new ideas
concerning the appliance of the GAMMA framework. Especially I want to mention
Thomas Ziebermayr for discussing the idea of applying the framework to the Web
Service technology, Rudolf Ramler for finding new ideas about how to test security
and the resulting code, and Mario Pichler for evaluating the use of GAMMA in the
area of ubiquitous computing or peer to peer networks.

This work would not have been possible without the support of the Software
Competence Center Hagenberg, where I got the unique opportunity to participate in
a strategic security research project and the SCCH PhD program.

Finally, I thank my family, especially my mother Liane Probst, who always
supported me during my entire studies.

Table of Contents

1 Introduction.. 1
1.1 Problem Statement..1
1.2 Goals...2
1.3 Basic Terminology..3
1.4 Structure ...6

2 State of the Art in Security Modeling .. 7
2.1 The Security Levels ..7
2.2 Security Modeling ..8
2.3 Discretionary Access Control (DAC) Models14
2.4 Mandatory Access Control (MAC) Models15
2.5 Role-based Access Control (RBAC) Models18
2.6 RBAC-related Models ..29
2.7 Other Models ..32
2.8 Security Modeling in Practice ..33
2.9 Support for Security Modeling through Development Platforms.......40
2.10 Related Work..51
2.11 Summary...56

3 GAMMA.. 58
3.1 Objective...58
3.2 Concept...59
3.3 Summary...95

4 Reference Implementation ... 96
4.1 The JGAMMA Reference Implementation ..96
4.2 Usage of JGAMMA..112
4.3 Extending the JGAMMA Framework ..125
4.4 The GAMMA.net Reference Implementation..................................137
4.5 Summary...143

5 Assessment and Comparison ... 144
5.1 Discussion of GAMMA ...144
5.2 Open Issues in GAMMA..147
5.3 Experiences...151
5.4 Comparison...152
5.5 Summary...157

6 Conclusion ... 159
6.1 Summary...159
6.2 Results ..160
6.3 Future Work..161

7 Lists.. 163
7.1 List of Figures...163
7.2 List of Listings..164
7.3 List of Tables ..165
7.4 Literature ..165

Chapter 1: Introduction Page 1

1 Introduction

This work aims to present a framework that allows the transparent and active
integration of reusable security components. Current available solutions require
either extra effort when trying to secure an application (programmatic security) or
address special target environments thus requiring a special underlying platform or
architecture.

The work presented here tries to overcome existing shortcomings by providing a
security environment that protects application objects. This environment is neatly
integrated into the target application which enables the transparent use of the
framework. In fact, the application developer does not have to put extra effort into
application development since security is established outside the application.

1.1 Problem Statement

Security is an absolute need in today’s software applications. Especially web-based
or web-integrated software applications need sophisticated security mechanisms
(compare to Kabay). Various security mechanisms and products are nowadays
available enabling a secure communication via the Web. Although modern
programming environments start to offer security mechanisms to protect the
application itself, there is still a lack of transparently and efficiently supporting the
developer to establish adequate security models, since existing solutions are most of
the time not expressive enough or cannot be sufficiently adapted to complex
application requirements. Furthermore, solutions provided from today’s software
environments require programmatic security instead of more flexible declarative
security.

Experiences gained from software engineering show the need for reusable security
components that can be neatly and transparently integrated into the software
development process, beginning already at the early steps. This means that a set of
security components is available, which can be first used in a generic way and then
can be adapted to the evolving security requirements during any stage of the
development cycle. In order to address various application domains, these

Chapter 1: Introduction Page 2

components should be architecture neutral, meaning that the concept itself can be
realized in various programming environments and operating systems. Consequently,
the mechanisms must be independent from the programming language, meaning that
they must not rely on any special mechanism provided by a certain programming
language (e.g. Java sandbox).

A lot of sophisticated security models have been published within the last years.
Security models combine various mechanisms in order to enforce some security
requirements, stated in a so-called security policy. However, today’s software
products have complex security requirements which often cannot be covered with a
single security model. Although not supported by most systems, a combination of
various models would help to solve many problems and address complex security
requirements.

1.2 Goals

Looking at all requirements stated above, the aim of this work is to provide a concept
that allows the easy integration of security components to software applications. The
main goals are to provide:

• A Platform and architecture neutral framework that supports various kinds of
application and target domains,

• Active support for application developers that allows an easy integration of
security models into applications. This means that application developers are
supported in all stages of software development by providing adequate security
components that can be adapted to the current stage of the software life cycle.

• Multiple or customized security models to address any kind of security
requirements, providing components for authentication, access control, and
auditing.

• Declarative security mechanisms that decouple security from application logic on
one side and allow the adaptation of the security components at any time on the
other side. Declarative security prospects a maximum of flexibility and
adaptability of the security models and mechanisms (see Probst and Küng, 2004).
Thus, providing declarative security mechanisms is the most important goal of
this work.

Chapter 1: Introduction Page 3

In order to meet all the goals presented above, the framework must be:

• Generic: being appropriate to arbitrary application domains.
• Ready-to-use: a set of state-of-the-art security models (e.g., RBAC, DAC) that

can be directly and easily utilized requiring only minimal effort for
modifications.

• Expressive: the security concepts implemented within the framework should be
semantically rich, covering a range of improvements over the state of the art.

• Adaptable: the supplied security models can be tailored to specific requirements
of the application domain for instance, multiple models may be combined
simultaneously.

• Extensible: since security is a rapidly changing field in computer science, the
framework must allow the integration of modern and new security concepts (e.g.,
biometric authentication). Ideally, these concepts can be introduced without the
need for re-learning anything about the framework.

• Enforceable: the framework should meet all of these requirements in an efficient
and reliable way contributing to the trustworthiness of (electronic) business
applications.

• Flexible: security requirements often change during the lifetime of a software
application. The framework should be flexible enough to address changes in the
underlying security policy at any time of the software’s lifecycle.

The practical relevance is shown by a reference implementation based on Java. Java
has the advantage of being independent from the underlying hardware and operating
system. Since the framework aims to be independent of a certain programming
language, the feasibility of providing a reference implementation using the Microsoft
.NET framework is also investigated. Although not a complete implementation is
provided, this work shows how the core parts and the main features can be realized
in .NET.

1.3 Basic Terminology

The following explains important terms which are essential to understand the
framework, its motivation and idea.

Chapter 1: Introduction Page 4

1.3.1 Security Policy

Gollmann (1999) defines the term security policy as follows: A security policy is a
set of rules that state which actions are permitted and which actions are prohibited.
The domain of a security policy is the set of entities, i.e. users, data objects,
machines, that are governed by the policy.

In other words, a security policy defines the boundaries and the security-relevant
conditions of a software application.

1.3.2 Security Models

Castano et al. (1995) describe security models as follows: A security model provides
a semantically rich representation in that it allows functional and structural properties
of the security system to be described. A security model allows the developers to
give a high-level definition of the protection requirements and system policies as
well as producing a concise and precise description of the desired system behavior.

Another definition is taken from Gollmann (1999): A security model enables the
formulation of a security policy by describing the entities governed by the policy and
stating the rules that constitute the policy.

In our context, we can see a security model as a means that consists of various
security mechanisms and states how these mechanisms have to be used in order to
meet the requirements stated in the security policy.

1.3.3 Programmatic Security

Programmatic security means that the application developer addresses the security
requirements directly in the code. Thus, the code is filled up with statements that
verify the user’s privileges. Programmatic security allows to address complex and
very specific security requirements but since the code is popped up with security
statements, the reusability of the code and the flexibility of the underlying security
policy is decreased. Since security checks are hard-coded in the application logic, the
resulting software has to be changed every time the security requirements change. In
other words, security has to be programmed into the code which has negative impacts
on reusability of the code on the one hand and results in a practice of permanently re-
inventing the wheel on the other hand.

Chapter 1: Introduction Page 5

1.3.4 Declarative Security

Declarative security on the other hand defines the security policy outside the
application’s code. However, the privileges of a user depend on the current security
policy. Since the code does not contain any application or domain-specific security
code, the code can be reused more efficiently. Furthermore, if the security policy
changes, only the policy file has to be modified – not the code. This allows more
flexibility to changes, thus having a positive impact on maintenance aspects.
Nevertheless, since declarative security is more general than programmatic security,
it is harder to provide appropriate solutions that are adaptable to various security
requirements and application domains.

1.3.5 Programmatic versus Declarative Security

The difference between programmatic and declarative security is best demonstrated
by a simple example. Let us assume a company where certain financial aspects (e.g.
settling accounts) are done by the secretary. Using programmatic security, the
method that realizes the settling of accounts has a statement that says that only a user
who acts as a secretary is allowed to execute the following code segment. In the case
of declarative security, the policy file states that the method for settling accounts can
only be called by the secretary. The environment ensures that this method can only be
invoked if the calling user acts as a “secretary”. The method itself does not perform
any further security checks.

Both solutions are adequate and ensure that only a secretary can settle accounts. The
difference becomes visible when the security requirements changes later on. Let us
now assume that the company mandates a consultant who needs to proof the settling
of accounts. Thus, also the consultant must be able to invoke the appropriate method.
Using programmatic security, the code must be modified by allowing the function
secretary and consultant, recompiled and retested. Declarative security requires only
a simple entry in the policy file stating that secretary and consultants are allowed to
call the method. No recompilation or modification in the application code is
necessary.

This example shows on a small scale the advantages and importance of declarative
security. Nonetheless, as mentioned above, such declarative security is hard to
achieve since a special environment is needed that externally steers the application.
In fact, there exists only few solutions that support such declarative security.

Chapter 1: Introduction Page 6

1.4 Structure

The remainder of this work is structured as follows:

Chapter 2 discusses the necessary basis for understanding the work presented in this
thesis. In fact, security models are discussed which form the basis for developing
security aware applications. Chapter 3 then presents GAMMA, a framework that
actively supports software developers and architects in integrating security
mechanisms into their applications. Furthermore, a reference implementation of
GAMMA is presented, showing the feasibility of the framework. Chapter 4 discusses
the work and compares the framework to existing solutions. Finally, Chapter 5
contains a concluding discussion.

Chapter 2: State of the Art in Security Modeling Page 7

2 State of the Art in Security
Modeling

The work presented in this thesis aims to provide a framework for integrating various
what security models represent or how they are used in today’s software applications.
This chapter introduces the modeling of security requirements and shows the
practical relevance of security models. Furthermore, similar or related approaches to
the aimed GAMMA framework are presented. Since GAMMA is designed to support
developers in integrating security, a study of the offered security mechanisms of
today’s most frequently used development platforms is done. In a second step,
related work with similar goals are presented and analyzed. The result of this study
leads to the requirements that needs to be addressed in GAMMA. In order to
compare GAMMA with existing solutions in Chapter 4, a criteria catalogue is
presented.

2.1 The Security Levels

Before looking at security models and modeling in detail, an overview of the
different security levels is given. As illustrated in Figure 1, there are several levels of
security mechanisms (see also Probst et al., 2002). Depending on the degree of the
integration of security mechanisms into the application, one decides between lower-
level security mechanisms and high-level security mechanisms.

Figure 1: Levels of security mechanisms

Auditing

Cryptography
(e.g., Hashing, Encryption, Digital Signatures, Certificates)

Communication Security
(e.g., VPN, IPsec, SSL/TLS, S/MIME, Firewalls)

Authentication
(e.g., Password, Challenge-

Response, Biometrics, Kerberos)

Authorization and Access Control
(e.g., DAC, RBAC, MAC)

Auditing

Cryptography
(e.g., Hashing, Encryption, Digital Signatures, Certificates)

Communication Security
(e.g., VPN, IPsec, SSL/TLS, S/MIME, Firewalls)

Authentication
(e.g., Password, Challenge-

Response, Biometrics, Kerberos)

Authorization and Access Control
(e.g., DAC, RBAC, MAC)

Chapter 2: State of the Art in Security Modeling Page 8

Lower level security mechanisms are decoupled from the application itself and
provide a common base for secure transmission of data or the secure usage of IT
equipment. Lower level security mechanisms consists of two levels, the
Cryptography and the Communication Security level. The cryptography level offers
various – often mathematical – means and algorithms for realizing different security
requirements like the calculation of one-way hash codes, chipper codes, digital
signatures or certificates. The communication security level uses these offered
algorithms to secure the communication between different IT components or the
related data flow. Products and techniques like Virtual Private Networks (VPNs),
IPSec, or SSL rely on cryptography algorithms in order to do their work.

High-level security relies on the mechanisms provided by the lower level security
and establishes the possibility to secure software applications. The three main
components are Authentication, Auditing, and Authorization and Access Control.
According to Sandhu and Samarati (1996) these mechanisms are the core features of
high-level security and form a security model. Especially in the field of lower level
security, reusable components for the development of security-aware applications are
available. At the higher levels adequate components often require a specific platform
and/or architecture and are most of the time not expressive enough or too restrictive.
Thus, this work concentrates on high-level security components and presents an
architecture that allows the reuse of components at this level.

2.2 Security Modeling

As described above, security modeling combines the high-level security mechanisms
in order to provide a secure environment in software applications. Before security
modeling is explained in detail, some definitions of security modeling are given.

“The objective of security modeling is to produce a high-level, software independent
conceptual model, starting with requirements specifications that describe what needs
to be protected in a system. A security model describes functional and structural
properties of the security system. At design time of an application, the security model
allows developers to give a high-level definition of the protection requirements and
system policies as well as a concise and precise description of the desired system
behavior” (in Essmayr et al, 2004).

“If we assume the existence of a set of objects, which can be intuitively viewed as
consisting of information receptacles, and a set of subjects, which can be intuitively

Chapter 2: State of the Art in Security Modeling Page 9

viewed as consisting of agents who can operate on objects in various ways, security
is the problem of appropriately governing subjects’ access to objects” (McLean,
1990).

Thus security models can be seen as a means of enforcement of the system wide
security policy. In fact, they try to represent matter of facts or procedures known
from the real world (e.g. the analogy of possessing something). Using such security
models allows the application developer to address security requirements already at
the early stages of the software development cycle.

2.2.1 Parts of a Security Model

Generally, a security model is stated in terms of subjects, objects and authorizations
as shown in Figure 2.

Subjects Objects

Authorization

access
administrate

auditing

access control

integrity / consistency
constraints

authentication

administrate

Figure 2: Generic security model

Subjects are the active entities within an application that are able to process data.
These are not necessarily only users, since processes also perform access operations
on objects. However, since processes are always acting on behalf of a user, the access
privileges of a process should not exceed the privileges of its initiator. Objects are
passive entities that contains data. This data has to be protected in order to enforce
confidentiality. This protection is expressed by authorizations that state the actions a
subject can perform on an object. Thus, each access limitation can be expressed as a
tuple that consists of at least one subject, one object, and one authorization.
However, in practice it is not as simple as it may look like. Not every object in an
application domain has to be protected, so the security model must be aware of
having protected and unprotected objects. Furthermore, in object-oriented
environments subjects are often regarded as objects too, depending on the current
view on the subject. On the other side, a passive object can become active when

Chapter 2: State of the Art in Security Modeling Page 10

calling certain processing methods and thus has to be regarded as subject too. All
these issues must be addressed by the security model as well which makes the
development and usage of such models sometimes a challenge.

2.2.2 Mechanisms in Security Models

A security model consists of several mechanisms to enforce the underlying security
policy. These mechanisms were already presented at a glance above. The following
contains a more detailed view on this mechanisms which is mostly taken from
Sandhu and Samarati (1996).

• Authentication is the process of verifying a subject’s identity. In particular, the
authentication may be one of user-to-process or process-to-process
authentication. User authentication mechanisms typically base the decision on
something the user knows (e.g., password, PIN code), something the user has
(e.g. private key on a smart card), or something the user is (e.g. biometric
signature of a fingerprint) (see Essmayr et al, 2004). Thus, a security model is
able to state which rules are obligatory and which can be omitted during the
access checking mechanism. A subject is understood as an active entity within an
application that is able to process data.

• Authorization and Access Control determines, if a certain subject has appropriate
permissions to access an object. This determination is based on a system-wide
security policy which is stated and enforced through the security model. An
object is understood as a passive entity that contains data. This data has to be
protected in order to enforce confidentiality.

• The Auditing mechanism gathers data about activities in the system in order to
detect violations of the security policy or failures of the security model. The
analysis of the resulting audit trail can be done offline at a later point in time or
online in real-time. The latter allows a direct view on the system’s state and
allows the recognitions of deviations from the normal state immediately. These
systems are known as Intrusion Detection.

The authentication mechanism thus forms the central part of the security model since
all other mechanisms depend on it. Authorization is impossible without knowing the
subject that wants to process a certain object. Furthermore, it is rather unmeaning to
audit successful or failed access checks without knowing the initiator.

Depending on the target system (e.g. databases) further mechanisms are often
included for covering special aspects of the target environment. In fact, integrity and

Chapter 2: State of the Art in Security Modeling Page 11

consistency constraints can also be regarded as a part of a security model. Since this
work concentrates on authorization and access control aspects, such enhanced
mechanisms are only mentioned when appropriate.

2.2.3 Classification of Security Models

Security models can be classified according two major categories, depending on how
they handle authorization and how the administration is done (Fernandez et al.,
1996).

The authorization handling of security models can be classified according to the
following three approaches:

• Authorization-rule based models: These models express authorizations in form of
rules specifying the type of access each subject has to a particular object. The
minimal form of such a rule consists of a subject, an object and the authorized
type of access. Depending on the idea behind the model, rules may contain
additional information for administration purposes such as a grantor, an owner,
or any other administrative predicate.

• Multi-level models: These models assign security levels to subjects and objects
and regulate the information flow between these security levels. Multi-level
models are very restrictive and secure but often difficult to apply in real-world
applications since there is often no such clear notation of security levels.

• Mixture of authorization-rule based and multi-level models: Some models
combine the authorization-rule based and multi-level approaches in order to
enhance the capabilities of the security model. In fact, each security level then
maintains authorization rules that additionally regulate the access of its subjects.

According to the administration aspect, security models can be classified into the
following three categories:

• Decentralized administrated models: These models do not have a central
manager, instead there are many subjects that are able to alter access rules. In
fact, these models follow the ownership paradigm, saying that subjects own
objects they have created. Thus the owner is the only entity that is able to state
who else is allowed to use the object. Decentralized administration of
authorization is rather flexible and takes care of particular requirements of
individual subjects. However, since permissions can be passed on to third
subjects, the problem of cascading and cyclic authorizations arises. Furthermore,

Chapter 2: State of the Art in Security Modeling Page 12

decentralized authorization may contradict the situation in many enterprises,
where information is owned by the whole enterprise rather than by several
individuals.

• Centralized administrated models: These models have a central manager who
administrates subjects, objects, and the related authorizations. The advantage of
these models is the easy administration and the clear view of the current
authorization state within the model. Furthermore, the problem of cascading or
cyclic authorizations does not exist. The disadvantage of these models is their
inflexibility, since subjects have to negotiate with the central administration unit
when they need access to particular objects.

• Mixture of decentralized and centralized administrated models: Some security
models combine the two administration approaches and their advantages. In these
models subjects are centrally authorized for a number of objects but still manage
their own objects, which may be shared with other subjects.

The combination of the different authorization and administration approaches is
illustrated in Figure 3. Some famous security models are placed within the
dimensions described above in the diagram with respect to their authorization and
administration approach. These security models are described later in this chapter in
detail.

 authorization

administration

multi-level

authorization-rule

decentralized centralized mixed

mixed

Discretionary
Access Controls

e.g. Role-Based
Access Controls

Mandatory Access
Controls

e.g. Bell La Padula
Model

e.g. Personal
Model of Data

Figure 3: Different approaches to authorization and administration

2.2.4 Security Models at Work

Knowing the different approaches of security models, the question arises, how these
models work and make their access decisions. It is understood that the decision

Chapter 2: State of the Art in Security Modeling Page 13

finding will vary from model to model depending on their approaches, but in
principle they perform their work very similar. Each security model contains a
decision base that is consulted when the model has to decide, whether to grant or
deny a specific action. According to the entries in the decision base the model is able
to make such decisions.

In the case of multilevel models, these entries state the allowed flow of information
between the various security levels. In order to make a final decision, the security
model must know the assigned security levels of the subject and the object. Knowing
these levels, the model can consult its decision base and determine if the planned
flow of information is conform to the model’s policy.

In the case of authorization-rule based models the decision base consists of a set of
authorization rules. Each rule consists at least of a subject, an object, and an
authorization stating that the given subject has a specific authorization on an object.
In order to make a final decision, the security model consults all fitting rules for a
specific access request. If a matching rule is found, the model’s decision is derived
from the authorization. Thus, the question arises what to do if no appropriate rule is
found, since it is nearly impossible to state a rule for each access situation. This
problem is solved by specifying a world assumption, which can be either open or
closed. An open world assumption means that everything is allowed by default and
the model’s rules restrict access to objects. Within the closed world assumption
everything is denied by default whereas the model’s rules grant access to objects.
However, both assumptions have positive and negative authorizations in order to
provide more flexibility. In those models the assumption only defines the default
behavior specifying which access decision has to be made when no appropriate rule
is found.

The most frequently used security models are decentralized, authorization-rule based
models, which are commonly referred to as discretionary access control (DAC)
models. In military environments, however, a centralized, multi-level approach is
used, which is commonly referred to as mandatory access controls (MAC).
Particular representatives of DAC and MAC models are roughly mentioned in the
following subchapters. A detailed description can be found in Castano et al. (1995).
Centralized, authorization-rule based security models have received new interest
lately due to role-based access control (RBAC). Since the RBAC model is one of the
most important security models, this model is discussed in more detail than DAC and
MAC.

Chapter 2: State of the Art in Security Modeling Page 14

2.3 Discretionary Access Control (DAC) Models

Discretionary security models grant the access of users to data on the basis of the
user’s identity. Since this model is authorization-rule based, the decision base
consists of a set of rules whereas the rules specify the types of access the user is
allowed to activate for a certain object. Any request of the user for an object is
checked against specified authorizations, which grant or deny access to the data. The
possessor of an object has the overall control on his object and can exclusively
decide who else can access the object.

Discretionary models generally allow a user to authorize access to the data to other
users. The most common form of administration is the ownership paradigm where
the creator of an object is allowed to grant or revoke access to his object.
Discretionary models represent a flexible way to enforce different protection
requirements. The following subchapters contain a list of existing DAC approaches.

2.3.1 Access Matrix Model

The access matrix model states the authorization base using a matrix correlating the
subjects, objects and the authorizations owned by each subject on each object. An
entry in the matrix contains the access modes of a subject on an object. The set of
access modes depends on the type of the objects and the system functionalities. The
authorization state can be modified by a set of commands. Commands are composed
of a sequence of primitive operations that modify the access matrix.

2.3.2 Take-Grant Model

The Take-Grant model can be considered as an extension of the access matrix model.
The difference lies in the representation of the access rules. In fact, authorizations in
the system are represented by a graph structure, since this representation is more
efficient and saves required memory space. The graph itself can be easily represented
by its adjacency matrix whose entries represent the values of the arcs labels. The
state of the system is described by a triple, containing a set of subjects, a set of
objects and a graph describing the system’s authorization state. The graph’s nodes
represent the subjects and objects of the system.

Chapter 2: State of the Art in Security Modeling Page 15

2.3.3 Acten Model

The Acten model is based on the Take-Grant model but includes further
administrative privileges and predicates on authorizations. Thus the Acten model
allows a strict separation between administration and access control.

2.3.4 Wood et al. Model

The Wood et al. model considers the three-level architecture of the ANSI/SPARC
proposal for databases which separates the database into three levels:

• External level: the user’s view on the database
• Conceptual level: representation of the data stored in the database
• Internal level: physical storing of the database

Although there are three levels, the Wood et al. model only considers a relational
model on the external level and an entity-relationship model on the conceptual level.
The model treats the problems of authorization at different levels, of inter-level
consistency as well as the issue of access decisions. Subjects are categorized into
authorizers, who administer the authorizations, and the users, who access data
according to the authorizations specified by the authorizers.

The model assumes that any operation on an external object can be mapped to a set
of operations on one or more conceptual objects. Therefore a mapping function has
to be defined for each table in the system.

Authorizations are described by access rules, which state that a subject can exercise a
specific access mode on an object under conditions expressed by predicates. An
authorizer, who is in charge of applying the security policies of the organization,
defines access rules. The model considers a closed world assumption. Absence of a
rule granting a subject access to a conceptual object implies that this subject has no
access to any of the occurrences of that object through any external view.

2.4 Mandatory Access Control (MAC) Models

Mandatory security models grant access to data by the individuals on the basis of the
classifications of subjects and objects in the system. Thus, each subject and object
must be categorized to a certain security level. In fact, each subject and object is
marked with a security stamp defining the current security level. The decision base of

Chapter 2: State of the Art in Security Modeling Page 16

the model consists of several mathematical relations between subjects and objects on
the basis of the security level classification. Access is only granted if the appropriate
mathematical relations between the subject and the object are fulfilled.

The following subchapters mention some concrete implementations of MAC models.
Since MAC models are very restrictive, they are often combined with other
approaches (e.g. DAC). If such combinations exist, the combination and the resulting
advantage is also mentioned.

2.4.1 Bell-LaPadula Model

The idea of the Bell-LaPadula model was born during the early stages of multi-user
operating systems. The model is dedicated to protecting the secrecy of objects in
restricting the flow of information within a lattice of security levels. In order to do
this, the model classifies objects and subjects (MAC) on the one hand and on the
other hand it uses an additional access control matrix (DAC) since the classification
is to restrictive in the field of operating systems.

In its core functionality, the model categorizes each subject and object into various
security levels. The model restricts the flow of information between security levels
by allowing only certain directions of information flow. The security model controls
each access of a subject on an object. If the resulting flow violates the security policy
stated in the model’s decision base, the model intercepts the information flow and the
access is denied.

In principle, the model allows information flow from only between similar levels or
from lower levels to higher levels. This avoids unwanted disclosure of classified
information. However, for flexibility purposes the model allows that subjects can
change their level temporarily between predefined borders.

2.4.2 Biba Model

The Biba model extends the Bell-LaPadula model by introducing integrity functions.
Subjects and objects are now categorized into integrity levels. The information flow
is only allowed from higher levels to lower levels (no write up) which is regulated
through static integrity rules. These integrity rules also address aspects like
unauthorized copying of information. If a subject opens an object A for reading
purposes, the subject can write to another object B only if object A resides in the
same or in a higher integrity level than object B.

Chapter 2: State of the Art in Security Modeling Page 17

For more flexibility, dynamic integrity rules allow subjects to adjust their integrity
level within a previously defined border. This enables a subject to deliver a message
to a higher classified subject.

Another interesting point is the support of delegation of rights which is often
required by operating systems. The Biba model treats users as well as processes as
subjects resulting in the scenario that subjects (processes) can act on behalf of other
subjects (users).

2.4.3 Dion Model

The Dion model proposes a clear mandatory policy, which protects the secrecy as
well as the integrity of data. Basically it combines the principles for controlling
secrecy of the Bell-LaPadula model with the principles of the strict integrity of the
Biba model. The most significant characteristic is that the information flow between
subjects and objects is not allowed. Flow of information is only allowed between
objects whereas a subject’s task is to establish connections between several objects.
The security model verifies if a subject is allowed to establish a connection between
two objects or not. This decision is based on the security levels of the subject and the
participating objects.

2.4.4 The Sea View Model

The Secure Data View (Sea View) model grants access to the data stored in a
database on the basis of mandatory as well as discretionary policies. It is formulated
in two layers: the MAC (Mandatory Access Control) model and the TCB (Trusted
Computing Base) model. The TCB model is layered on top of the MAC model. In
fact, all the information of the TCB is stored in objects mediated by the MAC
reference monitor.

2.4.5 The Jajodia and Sandhu Model

The Jajodia and Sandhu model is based on the security classifications introduced in
the Bell-LaPadula model. Since this model deals with multilevel data, it extends the
standard relational model to include classification labels and poly-instantiation. This
allows that a stored object can be assigned multiple times to different security levels.

Chapter 2: State of the Art in Security Modeling Page 18

2.4.6 Smith and Winslett Model

The Smith and Winslett model is based on the concept of belief. This model assumes
that a database is a set of ordinary relation databases, one database for each level in
the security lattice. The database at a given level contains the total beliefs of the
subjects of that level and reflects the state of the world in the schema. A subject
believes the contents of the database at its own level and sees what it and the subjects
at lower levels believe. Of course, believe conditions have to be integrated into
operations of subjects on objects.

2.4.7 The Lattice Model for Flow Control

All models presented by now are limiting access according the direction of
information flow by allowing the flow of information only in specified directions.
The Lattice Model for Flow Control undermine this strict direction approach by
introducing access rights that represent information flows and their directions. The
model bases on a mathematical structure which formulates the requirements needed
for secure information flows. This is done by categorizing objects into classes. The
model itself defines secure routes between those classes. During the access checking
mechanism, the object validates if access is done using secure routes.

2.5 Role-based Access Control (RBAC) Models

During the study it was pointed out that the role-based access control (RBAC) model
seems to be the most promising approach for addressing security needs in today’s
software applications (see Sandhu et al, 2000; Sandhu 1996). Thus, this subchapter
gives a detailed and thoroughly description of RBAC, its use, advantages, and
disadvantages.

RBAC is one of the most flexible security models with respect to authorization and
can already be found in modern information and operating systems (e.g., Windows
NT, Novell Netware, Oracle DBMS). The two major advantages of RBAC are:

• RBAC clearly separates between the questions what has to be done and who has
to do it in that is assigns users to roles and defines permissions on roles, which in
turn take effect when users activate the corresponding role.

• RBAC allows a clear distinction of the object model of an application from the
subject and authorization model. The object model gives a view on objects to
protect (e.g., tables, columns, entities), the subject model provides an image of

Chapter 2: State of the Art in Security Modeling Page 19

the active entities within a system (e.g., users, processes), and the authorization
model describes how access between subjects and objects and the administration
of it are regulated.

2.5.1 RBAC at a Glance

In principle, permissions are not assigned to users anymore but to roles which can be
seen as functions or tasks within the software system. On one side, this has a positive
effect on the administration, since often a task within a system is performed by
multiple persons which need the same set of permissions. On the other side the
administration is relieved when an individual changes his position within the
enterprise and performs other tasks since the administration just has to modify the
person-role assignment and not the more complex person-permission assignments.
Another point is that the grouping of individuals with the same tasks into roles result
in a smaller decision base which in fact increases performance during access
checking. In comparison to the access matrix model, there has to be a single rule for
each person within a department of an organization although these persons are
performing the same tasks and thus need to have the same permissions. Of course,
the rule base can become very large depending on the size of the department, having
a lot of rules which differ only by stating different subjects. Using RBAC, such a rule
base consists only of a single rule stating that members of the department have the
required privileges.

2.5.2 What is RBAC?

RBAC is a proven technology for large-scale authorization that reduces the costs of
administering access control policies, as well as making the process less error-prone
(compare to Sandhu et al., 2000; Gavrila and Barkley, 1998). With RBAC, system
administrators create roles according to the job functions performed in a company or
organization, grant permissions to those roles and then assign users to the roles on
the basis of their specific job responsibilities and qualifications. Thus, roles define
the authority of users, the competence that users have and the trust that the company
gives to the users. Roles define both, the specific individuals allowed to access
objects and to which extend or in which mode they are allowed to access the object
(see Sandhu and Coyne, 1996). Access decisions are based on the roles a user has
activated (compare to Sandhu et al., 2000).

Chapter 2: State of the Art in Security Modeling Page 20

There are three important relationships used in RBAC: the user / role relationship,
the role / role relationship and the role / permission relationship as shown in
Figure 4. Within the user / role relationship, the user is assigned to a role and is
granted the permissions defined in the role. The role / role relationship allows to
build role-hierarchies by assigning a role A to another role B. After this assignment,
B combines the permissions of A and B. The role / permission relationship assigns
roles to permissions, which basically consist of an object and a corresponding access
mode. The particular structure of permissions depends on the object model of the
application domain.

User Role PermissionRole / Permission
Relationship

User / Role
Relationship

Role / Role
Relationship

Figure 4: Relationships used in RBAC

RBAC also supports separation of duties, which provides the administrator with
enhanced capabilities to specify and enforce enterprise policies compared to existing
access control standards (see Sandhu et al., 2000).

Currently, considerable effort is conducted in order to standardize RBAC
characteristics and concepts. The NIST model of RBAC (shown in Sandhu et al.
2000) is organized into four levels of increasing functional capabilities called flat
RBAC, hierarchical RBAC, constrained RBAC and symmetric RBAC. These models
are described in detail later. For a formal specification of RBAC please refer to
Gavrila and Barkley (1998).

2.5.3 Characteristics of RBAC

In the following the characteristics of RBAC concerning its properties and
administration issues are described.

2.5.3.1 Entities of RBAC

The basic RBAC model consists of four entities: users, roles, permissions, and
sessions.

Users and Roles: A user is a subject, which is accessing different, protected objects.
A role is a named job function that describes the authority, trust, responsibility, and
competence of a role member.

Chapter 2: State of the Art in Security Modeling Page 21

Permissions: A permission is an approval of a particular mode of access to one or
more objects in the system. Permissions describe which actions can be done on a
protected object. Permissions can apply to single objects or to many. Both,
permissions and users are assigned to roles. These assignments in turn define the
scope of access rights a user has with respect to an object. Per definition, the user
assignment and permission assignment relations are many-to-many relationships.

Sessions: Users establish sessions during which they may activate a subset of the
roles they belong to. A session maps one user to possibly many roles, which results
in the fact that multiple roles can be activated simultaneously and every session is
assigned with a single user. A user might have multiple sessions opened
simultaneously. A user belonging to several roles can invoke any subset of them that
enables tasks to be accomplished in a session. In other words, sessions allow a
dynamic activation of user privileges (see Sandhu and Coyne, 1996).

2.5.3.2 RBAC Properties

Sandhu et al. (2000) point out various properties of the NIST’s RBAC model.

Scalability: The notion of scalability is multi-dimensional. RBAC provides
scalability with respect to the number of roles, number of permissions, size of the
role hierarchy, limits on user-role assignments, etc.

Authentication: RBAC does not address the issue of authentication. This issue is
outside the scope of an access control model and is part of the system architecture,
although authentication is absolute necessary for an appropriate work of an access
control model.

Negative authorization: RBAC is based on permissions that confer the ability to do
something on holders of the permission. RBAC does not contain negative
authorizations (prohibitions), which deny access allowing to specify exceptions to
the regular case.

Nature of permissions: The nature of permissions is not specified in the RBAC
model. Permissions can be fine-grained or coarse-grained. Permissions can also be
customized. The exact nature of permissions is determined by the nature of the
application product.

Role activation: RBAC does not specify the ability of a user to select which roles
are activated in a particular session. The only requirement is that it should be

Chapter 2: State of the Art in Security Modeling Page 22

possible to allow a user to activate multiple roles simultaneously. It does not matter if
the user is able to activate explicitly roles or if all roles are automatically activated by
the system. The type of activation is scope of the system’s vendor.

Role engineering: RBAC does not provide guidelines for designing roles and
assigning permissions and users to roles. This activity is called role engineering.
This issue is outside the scope of RBAC.

Role revocation: Neither the semantics of role revocation in the RBAC model, nor a
specified revocation behavior is defined. However, this is an important issue to
which vendors and users of RBAC products must pay careful attention.

2.5.3.3 RBAC Constraints

Since permissions are organized into tasks by using roles, conflicts of interests are
more evident than if dealing with permissions on an individual basis. In fact, a
conflict of interest among permissions on an individual basis is hard if not
impossible to determine at all. Using separation of duties among roles (i.e., defining
mutually exclusive roles) provides the administrator with enhanced capabilities to
specify and enforce enterprise policies. Since RBAC has static (user-role
membership) and dynamic (role activation) aspects, the following two possibilities
can be distinguished accordingly:

• Static Separation of Duties (SSD): is based on user-role membership. SSD
enforces constraints on the assignment of users to roles. This means that if a user
is authorized as a member of one role, the user is prohibited from being a
member of a second role. Constraints are inherited within a role hierarchy.

• Dynamic Separation of Duties (DSD): is based on role activation. DSD is used,
when a user is authorized for roles which must not be activated simultaneously.
DSD is necessary to prohibit a user to undergo a policy requirement by activating
another role.

Additionally to mutual exclusion constraints there may be further constraints
specified for RBAC environments, which are not yet standardized within the NIST
reference models.

• Cardinality / Conditionality constraints: defining the minimum or maximum
number of users that may or must be assigned to particular roles respectively may
or must activate particular roles so that the corresponding permissions take effect.
For instance, think of a role “board member” that requires a minimum number of

Chapter 2: State of the Art in Security Modeling Page 23

four members from which at least two have to be present (i.e. activated the role)
in order to make a decision.

• Time constraints: defining the periods of time when users may activate particular
roles. For instance, it may be feasible that an employee may activate those roles
which enable access to company relevant information only within the office
hours.

• Location constraints: defining the physical places (i.e. IP addresses or domain
names) from which particular roles may be activated. For instance, particular
system administration tasks may be required to be done at a particular computer
that is physically better protected than ordinary workstations.

• History constraints: defining constraints that relate to states of the past. Such
kinds of constraints allow specifying a sequence of role activations or user-role
membership (e.g. becoming a project manager requires to be senior software
engineer).

Logically, any of these constraints may be combined with others within an RBAC
environment though there is a tradeoff between the flexibility achieved with these
constraints and the complexity to administrate and understand the effective
authorization state.

2.5.3.4 Administration of RBAC

The administrative task of RBAC can be summarized as follows:

• Defining roles and organizing them within a hierarchy. For a detailed discussion
of adding, removing or maintaining roles please refer to Nyanchama and Osborn
(1994), who introduce a role graph to facilitate role administration.

• Defining constraints like static or dynamic separation of duties.
• Assigning permissions to roles. The structure of permissions depends on the

object model that should be protected.
• Granting and revoking membership to the set of specified named roles within the

system (see Ferraiolo and Kuhn, 1992). When a new employee enters the
company, the administrator simply adds this person to one or more existing roles
according to the users tasks and needs. Similarly, the users can be removed from
a role when they leave the company or added to new roles when their function
changes.

One of RBAC’s biggest advantages is its easy administration, but managing a large
number of roles can still be a difficult task. Sandhu and Coyne (1996) show how

Chapter 2: State of the Art in Security Modeling Page 24

RBAC might be used to manage itself. An administrative role hierarchy is
introduced, which is mapped to a subset of the role hierarchy it manages.

2.5.3.5 Coexistence with MAC / DAC

Mandatory Access Control (MAC) controls access on the basis of security levels to
which subjects an object is assigned. Discretionary Access Control (DAC) controls
access to an object on the basis of an individual’s permissions and / or prohibitions.
RBAC is an independent component of these access controls, but can coexist with
MAC and DAC if desired. In such a case, access is only allowed if permitted by
RBAC, MAC and DAC. However, RBAC is more general than MAC or DAC. In
any case, RBAC can be used to enforce MAC and DAC policies as shown in Osborn
et al. (2000). The authors point out the possibilities and configurations necessary to
use RBAC in the sense of MAC or DAC.

2.5.4 Reasons to use RBAC

Nowadays, the trend is to use application-independent facilities to support many
applications with minimal customization. RBAC is providing such facilities.
Moreover, sophisticated versions of RBAC include the capability to establish
relations between roles, between permissions and roles, and between users and roles.
For example, two roles can be established as mutual exclusive – the same user is not
allowed to activate both. Roles can also acquire inheritance relations, whereby one
role inherits permissions assigned to a parent role.

A study made at NIST (see Ferraiolo et al., 1993) indicates that permissions assigned
to roles, unlike user membership in roles, tend to change relatively slow. Because
RBAC is able to predefine role-permission relationships, it makes it simple to assign
users to predefined roles.

Access control policy is embodied in RBAC components such as role-permission,
user-role and role-role relationships. RBAC components can be configured directly
by the system administrator or indirectly by appropriate roles as delegated by the
system administrator. Because the access control policy can change over the system
life cycle, RBAC offers a key benefit through its ability to modify access control to
meet changing organizational needs. Because RBAC is not the overall solution
(RBAC does not attempt to directly control the permissions for an event sequence
within a workflow) other forms of access control can be layered on top of RBAC to
extend its facilities.

Chapter 2: State of the Art in Security Modeling Page 25

2.5.5 The NIST Model for RBAC

In Sandhu et al. (2000), a unified standard in RBAC is presented: the so-called NIST
Model for RBAC. This model is organized into four levels of increasing functional
capabilities, which are flat RBAC, hierarchical RBAC, constrained RBAC, and
symmetric RBAC. These levels are cumulative – each level adds exactly one new
requirement. In the following the four levels are briefly presented.

2.5.5.1 Flat RBAC

User Role Permission

* *

membership authorization

* *

*
Session

* *
activation

User:Session: 1:n

Figure 5: Flat RBAC

Figure 5 shows flat RBAC, which defines the essential aspects of RBAC. The basic
principle is that users are assigned to roles (user/role assignment, indicated through
the membership association), permissions are assigned to roles (permission/role
assignment, indicated through the authorization association) and users gain
permissions defined in the role(s) they activate. A user can activate several roles
within a session (indicated through the n-ary activation association). It is required
that these assignments are many-to-many relationships. This results in the fact that a
user can be assigned to many roles and a role can contain several permissions. Flat
RBAC requires a user/role review whereas the roles assigned to a specific user can
be determined as well as users assigned to a specific role. Similarly, flat RBAC
requires a permission/role review. Finally, flat RBAC requires that users can
simultaneously exercise permissions of multiple roles they belong to.

Flat RBAC represents the traditional group-based access control as it can be found in
various operating systems (e.g., Novell Netware, Windows NT). The requirements of
flat RBAC are obvious and obligatory for any form of RBAC. According to Sandhu
et al. (2000), the main issue in defining flat RBAC is to determine which features to
exclude.

Chapter 2: State of the Art in Security Modeling Page 26

2.5.5.2 Hierarchical RBAC

User Role Permission

* *

membership authorization

* *

*

Session

* *
activation

User:Session: 1:n

+super-role 1 +sub-role*

Figure 6: Hierarchical RBAC

Hierarchical RBAC supports role hierarchies. This is shown by the sub-role / super-
role association in Figure 6. A hierarchy defines a seniority relation between roles,
whereas senior roles acquire the permissions of their juniors. In fact, the NIST model
recognizes two sub-levels:

• General Hierarchical RBAC: provides support for an arbitrary partial order to
serve as the role hierarchy.

• Restricted Hierarchical RBAC: provides restrictions on the role hierarchy.
Hierarchies are limited to simple structures such as trees or inverted trees.

Role hierarchies can be:

• Inheritance hierarchies whereby activation of a role implies activation of all
junior roles,

• Activation hierarchies whereby without the implication of the activation of all
junior roles (each junior role must be explicitly activated to enable its
permissions in a session) or

• A mixture of both.

Chapter 2: State of the Art in Security Modeling Page 27

2.5.5.3 Constrained RBAC

{DSD
Constraints}

User Role Permission

* *

membership authorization

* *

*

Session

* *
activation

User:Session: 1:n

+super-role 1 +sub-role*

{SSD
Constraints}

Figure 7: Constrained RBAC

Figure 7 shows a diagram of constrained RBAC. Within constrained RBAC there is
the possibility of separation of duties (SOD). SOD is a technique for reducing the
possibility of fraud and accidental damage. It spreads responsibility and authority for
an action or task over multiple users thereby the risk of committing a fraudulent act
by an individual is reduced. Many different SOD requirements have been identified.
The most important ones have already been described in Chapter 2.5.3. In Figure 7,
static separation of duties is shown through the SSD constraints and dynamic
separation of duties is shown through the DSD constraints.

Sophisticated access control products should support constrained RBAC since it
provides very useful methods for implementing the system’s policy.

2.5.5.4 Symmetric RBAC

Symmetric RBAC adds requirements for permission/role review similar to the
user/role review introduced in flat RBAC. Thus the roles to which a particular
permission is assigned can be determined as well as permissions assigned to a
specific role. The implementation of this requirement is rather difficult in large-scale
distributed systems, thus it is seldom integrated in today’s software applications.

2.5.6 Discussion of RBAC

In the following the advantages and disadvantages of the RBAC model are discussed.

Chapter 2: State of the Art in Security Modeling Page 28

2.5.6.1 Advantages of RBAC

One of RBAC’s biggest advantage is the easy administration of RBAC since there is
a strict separation between users, functions (roles) and permissions. This simplifies
the permission management since the assignment of permissions to roles or functions
within the enterprise is done in a natural way. RBAC’s notation of roles is done in an
enterprise or organizational concept. It reflects the view of permissions from the
enterprise perspective.

RBAC provides a solid base with a rich set of functions for the enforcement of
policies. This makes RBAC more scalable than other security models. Furthermore,
RBAC is policy-neutral which means that RBAC is a means for articulating policies
rather than embodying a particular security policy. The policy enforced in a system is
a result of the precise configuration and interaction of RBAC components.

Finally, there exists a standardization for RBAC (compare the NIST model for
RBAC, Sandhu et al., 2000).

2.5.6.2 Shortcomings of RBAC

On the other hand RBAC has some disadvantages. There are a lot of restrictions, thus
not every security policy can be enforced using RBAC. A lot of needs resulted in
several extensions as presented in Chapter 2.6.

RABC asserts that it reflects the structure of an enterprise within its security model.
In fact, modern enterprises are often organized in sub-structures like departments,
projects, etc. that cannot yet be handled adequately by the available concepts for role-
hierarchies. Other extensions or concepts (e.g. role-templates) are necessary to
handle such structures.

The relationship between discretionary and role-based models is not well understood,
yet. A lot of RBAC implementations allow for posing permissions on roles and users
as well, which contradicts the pure RBAC requirements. It is feasible to argue that a
clear concept for the coexistence of discretionary and role-based aspects within one
security model is needed for the near future in order to prevent further impure RBAC
implementations. On the other hand it has been shown that RBAC without DAC
features is too restrictive in order to meet today’s security requirements.

Role-hierarchies are a natural part of advanced RBAC models. However, the
relationships between roles may be much more complex than simple generalization

Chapter 2: State of the Art in Security Modeling Page 29

hierarchies. Roles may also participate in part-of relationships, which effectively
leads to virtual roles (i.e. roles used for structuring cannot be activated directly by
individuals). These virtual roles are also called tasks and received considerable
research interest from workflow management groups (e.g. Castano and Fugini,
1998). Regarding virtual roles from the direction of the role/permission-relationship
(i.e. from the permission side) virtual roles can be also called named permissions.

Furthermore, special constraints for the user-role membership are feasible thinking of
default roles that are automatically activated if the user does not explicitly activate
particular roles or proxy membership, which allows particular users to activate a role
if other users are temporarily not available (e.g., system administrator). Within an
increasingly mobile and networked world the definition of “socially established”
roles (e.g., medical doctor, lawyer, professor) would be a substantial benefit. Those
kinds of roles allow the specification of special permissions to a priori unknown
individuals. Herzberg et al. (2000) and Opplinger et al. (2000) provide first concepts
contributing to that idea.

Finally, modern software development is done in an object-oriented and component-
based way. Today’s software development has to deal with complex objects and
subjects in distributed environments. RBAC lacks supporting these technologies,
which also raises the need for extended RBAC models (e.g., OOAC, OBBAC).

2.6 RBAC-related Models

Since RBAC alone is not able to deal with all requirements of modern software
applications, other RBAC related models and extensions have gained interests. Some
of them are presented in this chapter.

2.6.1 Role Templates

Enterprises often entail recurring sub-structures like departments or projects. Using
RBAC, these sub-structures are mapped to roles. However, roles are not adequately
enough since each time a new instance of the structure is created (e.g. a new project
starts), the whole role-administration has to be done (define a new role, assign
members, assign permissions). Essmayr et al. (1998) propose an extension to the
RBAC model which addresses this administration effort for recurring role-
hierarchies, called role templates.

Chapter 2: State of the Art in Security Modeling Page 30

Role templates define a general hierarchy for recurring sub-structures. When a role
template is instantiated it produces concrete roles within the role hierarchy with
unique names.

The advantage of this approach is the reduction of administrational effort.
Furthermore, instantiating a role template is less vulnerable to errors and can be done
automatically.

Giuri and Igilo (1997) use role templates for providing content-based access controls.
The authors describe a model that provides special mechanisms for the definition of
content-based access control policies. This is done by using parameterized privileges
to restrict the access on subsets of objects, and the concept of role templates to
support composition and encapsulation of parameterized privileges. Such
parameterized privileges are restricted privileges that contain a set of unbound
variables. However, these privileges can be used by the access control system only if
they are fully specified.

2.6.2 Team-based Access Control (TMAC)

Thomas (1997) presents TMAC, an approach to apply RBAC in collaborative
environments. A team is understood as a collection of users in specific roles with the
objective of accomplishing a specific task or goal. The motivation of TMAC is the
need for a hybrid access control model that incorporates the advantages of broad
role-based permissions across object types, context recognition associated with
collaborative tasks, and the ability to apply this context to decisions for permission
activation. Thus TMAC supports role-based, scalable permission assignment but also
fine-grained, runtime permission activation at the level of individual users and
objects. The basic idea in TMAC is to use RBAC to define a set of permissions
across the domains of the total set of roles in the information system and the set of
object types. The approach is well summarized in Essmayr et al. (Essmayr, 2004).

2.6.3 Role- and Task-based Model (R&T model)

The R&T model (compare Schier, 1998) aims to bind permissions to tasks instead of
roles. Tasks can be performed by different roles. Roles are also authorized for
subjects and describe a structure for actions executing procedures on defined objects.
The basic idea is to provide an extra dynamic aspect during access checking. Within
RBAC, dynamic separation of duties means that a user cannot activate two
conflicting roles at the same time. However, the R&T model addresses the issue that

Chapter 2: State of the Art in Security Modeling Page 31

two roles are only conflicting in certain tasks, thus separation of duties should also
consider the current context of the user. For example, a bank clerk can open the
accounts of two competitors only if he performs statistical analyses (task 1) but not
when performing comparisons between the results of the companies (task 2). Thus, a
conflict of interest between the two roles arises only when the clerk is performing the
second task but not within the first one.

The R&T model provides administrators with the capability to define who can
perform what kind of actions, when and on which objects. Furthermore, the model
itself is more dynamical by taking the current task of the user into consideration
when making access decisions.

2.6.4 Object-Based Access Control (OBBAC)

Since today’s software development is done in an object or component oriented way,
there is also a need for object oriented concepts in authorization models (Izaki et al,
2000). The OBBAC model (Tenday et al., 1999) presents a way to specify an RBAC-
conform security policy in an object oriented way, addressing object oriented
concepts.

Technically, in an object oriented system a subject delivers a message to an object
that processes this message and modifies its state or other objects. Thus an object can
become a subject and the other way round.

The OOBAC model is based on the association of security labels to subject and
object operations. The model allows then the operation according to the value of the
security label of the calling subject.

2.6.5 Object-Oriented Access Control (OOAC)

Another approach to support object-oriented concepts in RBAC is presented in
Essmayr et al. (1997). The authors show the integration of access control
mechanisms in object-oriented and relational databases.

The presented OOAC model intercepts messages sent from the subject to the object
and validates this message if it is conform to the security policy. If so, the message is
delivered to the target object and can be processed. If denied, the message is blocked
and an access control exception is raised.

Chapter 2: State of the Art in Security Modeling Page 32

2.7 Other Models

This subchapter presents other existing models that do not fit into one of the
approaches presented above (MAC, DAC, RBAC). However, most of these models
follow a certain purpose rendering them useable only for specific applications or
security requirements.

2.7.1 Chinese Wall

The Chinese Wall model addresses conflicts of interest when accessing data. The
model considers existing access rules of certain subjects and restricts access to other
objects according to these rules. The model follows the idea that users build up a
wall around the data-objects they need, thus denying access requests that cause
conflicts. A good example is a consulting company. If this company consults an
enterprise A and an enterprise B whereas A is a direct competitor of B, no member of
the consulting company is allowed to consult A and B because of the danger of not-
allowed information transfer.

Related objects (e.g. data of a certain company) are grouped into so-called company
datasets. Furthermore, conflict classes are maintained that store conflicting datasets.
An important point is that not only the current state of the system is relevant for
decisions but also actions performed in the past (history).

Access to an object is only allowed if the object’s dataset belongs the subject or if the
subject is not member of any conflict class mapped to the object (direct conflicts).
Additionally, the access control system checks, if the accessing subject has not
accessed another object from a conflicting dataset in the past (indirect conflicts).
Dynamic rules address the problem of accessing data via a third party. For example,
it is possible that two competitors have their accounts at the same bank. The bank
clerk has access to both data. The model allows access to an object only if no other
object can be read that is related to a conflicting dataset.

The properties of this model require the evaluation of each access check dynamically.
This means that the access control engine must check each relation of the subject and
object and must consider and resolve the history of the subject which has negative
influence on the performance of this model.

Chapter 2: State of the Art in Security Modeling Page 33

2.7.2 Personal Knowledge Approach

The personal knowledge approach (Pernul, 1994) focuses on protecting the privacy
of individuals by restricting access to personal information in order to ensure the
right of individuals. Privacy is understood as the right of an individual to choose
which elements of his personal life may be disclosed. In the personal knowledge
approach users and security objects are represented by an encapsulated person-object.
The data part of this object corresponds to the individual’s knowledge and the
relationship to other persons whereas the operation part of the object corresponds to
the possible actions which an individual may perform.

The problem of this approach is the limited usage since it addresses only the
protection of an individual’s data.

2.7.3 Clark and Wilson

The Clark and Wilson model addresses the integrity of data processed by
applications. The model defines a set of transactions that manipulates data. These
transactions are implemented in programs. The decision base of this model states that
subjects are allowed to invoke certain transactions, thus the subject can invoke
transactions but never get direct access to the object. If the subject needs the data
stored in an object, it must access this data via a specific transaction. In fact, subjects
are assigned to roles. Based on this assignment, users have to perform certain
business functions which are mapped to database functions. It is therefore essential to
state which user is acting in which role at what time and what transactions have to be
carried out (Pernul, 1994).

The advantage lies in the fact that the model does not need to know the protected
data itself since the data is abstracted by access transactions. The model itself
considers data as trustworthy but does not trust the user. Thus the main problem of
this model is the transfer from non trusted user input to trusted data. This is done by
verification and transformation processes which are realized outside the model and
are thus the weak point of this security model.

2.8 Security Modeling in Practice

Most of the presented security models are not fully applicable in practice. Often
mixtures and combinations of the presented security models are used in order to
cover complex security requirements or to provide more flexibility. Thus, this

Chapter 2: State of the Art in Security Modeling Page 34

subchapter discusses reasons why there is a gap between theory and practice and then
shows how various security models are used in common software applications and
their architectures.

2.8.1 Theory versus Practice

Security models in practice often differ from theory as they need to be less restrictive
or more flexible. The RBAC model for example enables the assignment of
authorizations to roles but not to users. Sandhu and Ahn (1998) describe the
integration of RBAC in operating systems like Windows or UNIX. User-groups are
described as the concept of roles. Both systems additionally allow the assignment of
authorizations to users since only the assignment to groups (or roles) would be too
restrictive.

Another reason is that software systems must often stay compatible to previous
versions. RBAC has four levels whereas practical implementations often only
support the first level. Again, Windows 2000 is a good example for this. After the
installation of Active Directory1 Windows is operating in the so called mixed mode
which guarantees compatibility to older Windows NT domain controllers. Within
this mode, only flat RBAC is supported with simple user groups and users to which
permissions can be assigned. After switching to native mode, group hierarchies are
supported too, which can be seen as hierarchical RBAC. Switching to this mode
means loosing compatibility to older versions of Windows.

Furthermore, the complexity of some security models e.g., symmetric RBAC, or the
lattice model for flow control are hard to realize and thus would result in high costs.
Therefore, it is a common practice to choose easier models or to skip some model
features.

The following contains a study of the integration of various security models into
today’s existing software environments and applications.

2.8.2 Microsoft Windows (2000, XP)

The operating system Windows realizes a combination of DAC and RBAC
mechanisms. Each resource within the system is assigned to a user, the owner of the
resource. The owner is allowed to control access to his resource and to pass access

1 Windows becomes a domain controller after the installation of Active Directory.

Chapter 2: State of the Art in Security Modeling Page 35

rights to other users within the system (see Figure 8). The ownership can be taken by
an authorized person such as the system administrator. Taking ownership is also an
authorization that can be given to any user of the system. These features are clearly
DAC mechanisms.

Figure 8: Ownership of a system resource in Windows

Nevertheless, authorizations can also be given to groups. Sandhu and Ahn (1998)
state that groups can be seen as roles which leads to the assumption that Windows
also provides RBAC features. Moreover, Windows 2000 supports role hierarchies
because groups can be members of other groups. Windows only allows the activation
of multiple groups at a single point in time since all groups a user belongs to are
activated at login time. An explicit de-/activation of a single role is not supported.

The authorization model of Windows is centralized managed by having build-in
administrator accounts. However, through membership of these administrator
accounts, a decentralized management could also be implemented (delegation).
Additionally the active directory can be scaled by separating the authorization base
into subunits.

Summing up, one can say that Windows uses a combination of DAC and RBAC
whereas the DAC model dominates over the RBAC mechanisms in order to meet the
C2 security classification of the Department of Defense. Thus the owner of a

Chapter 2: State of the Art in Security Modeling Page 36

resource will always have the permission to modify access privileges although the
role he is in denies this.

2.8.3 UNIX

Like Windows, UNIX heavily relies on the concept of owners. Each file in the
system is assigned to an owner and a single user-group. The granularity of the UNIX
authorization splits up into three categories:

• Permissions valid for the owner of the resource,
• The assigned user-group, and
• All the others.

Unlike in Windows, the granularity of UNIX is exclusive, which means that not the
sum of all permissions is taken but the permissions defined for the user’s category.
For example, if read access is allowed to the group but not to the owner and the user
is the owner, read access is denied although he is in the assigned user-group.

Ownership is assigned exclusively by the superuser (root). The owner itself is
allowed to modify access privileges (read, write, and execute) onto his resource.

Permission Owner Group

Figure 9: Permissions within the UNIX operating system

As already mentioned, UNIX supports the usage of groups which can be seen as roles
(compare Sandhu and Ahn, 1998). UNIX itself does not support group hierarchies,
thus only flat RBAC is realized in the system. The authorization model is strictly
centralized since only a single user (root) is able to manage user and group accounts.
However, the idea behind the RBAC model is that administration tasks are done by
using an administrative role which is not supported in UNIX. Another issue is that
UNIX supports only the membership of 16 or 32 (depending on the derivate) users
per group. Sandhu and Ahn (1998) present a role-based extension to the system
which supports a larger group-membership, group hierarchies and decentralized
administration facilities.

Chapter 2: State of the Art in Security Modeling Page 37

Summing up one can say that UNIX heavily relies on the DAC approach whereas –
when seeing groups as roles – only very few features of RBAC are supported.

The following contains a study of the integration of security mechanisms in relational
database management systems. The RBAC aspects are taken from Ramaswamy and
Sandhu (1998), whereas the study is extended by presenting other (e.g. DAC)
approaches.

2.8.4 Informix DBMS

The Informix database provides a DAC model where the owner of a database
resource is allowed to grant access to other users.

Informix also supports the RBAC model. A role can be granted to a single user,
another role, a list of users, or to all users. A user can be granted to more than one
role. Users who have been granted a role can further grant that role to another party
or delete it. Informix has the restriction that a user can have only one role active in a
single point in time. This implies that a user can act only in one role at any moment.
Furthermore, there are no facilities to specify a default role to activate after login.

Informix provides features which enable nested roles (i.e. role hierarchies). However,
there are no features to specify mutual exclusive roles, therefore no support for static
separation of duties is available. There is no cardinality constraint to restrict the
maximum or minimum number of users for a role. Dynamic separation of duties is
not directly supported since multiple roles cannot be activated.

Privileges are subdivided into three different categories:

• Database-level privileges,
• Table-level privileges, and
• Execute privileges.

Database-level privileges refer to privileges needed to connect to a database, add new
objects and perform administrative functions like security management or space
management. Table-level privileges are needed for data transaction and querying.
The execute privilege is needed to be able to execute stored procedures. The database
administrator and the owner of a database object can grant privileges to a role and
can revoke that privilege later on.

Chapter 2: State of the Art in Security Modeling Page 38

Summing up, Informix provides DAC and RBAC concepts. The RBAC itself
supports role hierarchies but a user cannot act in more than one role at the same time.
This can be quite a challenge in system administration since required permissions for
different tasks must be assigned to single roles.

2.8.5 Sybase DBMS

Sybase also offers a combination of DAC and RBAC. Like Informix, an owner of a
resource can grant access to his objects to other users. Furthermore, Sybase also
allows granting access to a group of users.

In the case of RBAC, the Sybase DBMS comes with a set of predefined roles, the so-
called system roles. These roles are the sa-role (System Administrator) for managing
and maintaining all databases, the sso-role (System Security Officer) for performing
security-related tasks and the oper-role (Operator) for backup and loading databases
system-wide.

Within Sybase, a role can be granted to one or more users and any user can be
granted more than one role, which is done by the System Security Officer. It is not
possible for a user who has been granted a user-defined role to propagate that role to
other users. This results in a stronger control over role assignments and proliferation.
Sybase allows users to activate multiple roles in a user session. The activation
process is required only for user-defined roles since system roles are automatically
activated. It is possible to set up a default list of roles to be activated at the login
time.

A role created can be granted to other roles and so a role hierarchy can be
implemented. Sybase has the ability of defining two types of mutual role exclusion:
static exclusion if a user cannot be granted both roles and dynamic exclusion if a user
cannot activate or enable both roles at the same time. This feature allows static and
dynamic separation of duties.

Sybase categorizes privileges in object access permissions and object creation
permissions. Object access permissions are necessary to access data whereas object
creation permissions grant the right to use commands that create objects. Both
categories can be granted to roles. Since creation permissions cannot be granted with
the grant option, the privileges to create new database objects cannot be propagated
to other roles or users, thus only the System Security Officer can grant certain roles
the permission to create new objects.

Chapter 2: State of the Art in Security Modeling Page 39

Again, one can clearly see that a combination of DAC and RBAC mechanisms is
required. The RBAC model is quite mature since it supports role hierarchies and
separation of duties.

2.8.6 Oracle Enterprise Server (DBMS)

The Oracle Enterprise server database management service supports both, DAC and
RBAC mechanisms. Within the DAC model, the owner can give other users access
to his resource using the GRANT statement. Furthermore, Oracle has a strong support
of the RBAC model. Oracle supports role hierarchies and the delegation of rights by
a special permission (admin option). Users who have been granted a role with this
admin option can grant their roles to other users or roles. Additionally the user can
steer the activation of roles at runtime since there are statements for the activation
and deactivation of roles. Separation of duties is not supported.

Permissions can be defined on database objects or on the system whereas latter can
be done only by users which have the admin option. Permissions on database objects
can be assigned by the owner or by being member of a role that has the appropriate
rights. System privileges are necessary to execute system commands. Object
privileges allow users to perform actions on specific tables, views, sequences, or
stored procedures.

Summing up one clearly sees that Oracle has a good integration of DAC and RBAC
concepts whereas the RBAC implementation is very mature.

2.8.7 Summary

Summing up we can say that RBAC is not implemented very well in today’s
software products although the support in DBMSs is quite mature. We can think of
various reasons for the lack of RBAC implementation. Windows for example aims to
reach C2-level security and one of its most important requirements is that an owner
of a resource must be able to control access to the resource – based on individuals
and not on roles. Another reason is that design objectives want to reach other goals
than RBAC; RBAC-related concepts have only been added later to those products.

In the case of operating systems, permissions can be granted to individual users as
well as groups. Groups can be seen as roles but being able to assign permissions to
individual users is not foreseen in RBAC. The activation of groups is done

Chapter 2: State of the Art in Security Modeling Page 40

automatically (all groups are activated at login time) but an explicit activation is not
possible resulting in a lack of facilities for separation of duties.

One clearly sees that all presented products require a combination of DAC and
RBAC, since RBAC alone would be too restrictive. Thus, this shows that the aimed
solution needs to offer the possibility to combine several models to cover any
security requirements. Furthermore, the aimed solution must provide a mature RBAC
model, offering several aspects like separation of duties or role hierarchies, since
RBAC is recognized as one of today’s most important security models.

2.9 Support for Security Modeling through Development
Platforms

Up to now, several security models and their presence in today’s software
applications have been presented. However, when talking about reusable security
components, it is more interesting to know which support is provided by the
development platforms. Thus, this subchapter concentrates on the support of
developing security models using today’s most important software development
environments, namely the Java Platform (J2SE, J2EE) and Microsoft’s .NET
framework. Each platform and its offered mechanisms are presented first. Then a
discussion follows showing the advantages and disadvantages. This will lead up to
the motivation for GAMMA, a framework presented in Chapter 3, which offers
reusable and transparent security components for application development.

2.9.1 Java 2 Standard Edition (J2SE)

Sun’s Java 2 Platform (Sun, 1999) offers in its core a security model which only
addresses the execution of code. This security model consists of the well known
sandbox model and the so-called protection domains.

2.9.1.1 Sandbox Model

The sandbox model ensures that code is executed in a protected environment from
which access to system resources like the file system or the network is very limited.
This model is used when loading and executing applets over the Internet, where the
code origin is unknown, thus the code is not trusted.

Chapter 2: State of the Art in Security Modeling Page 41

2.9.1.2 Protection Domains

The sandbox model is too restrictive for local applications, thus a second
mechanism, namely the protection domains, is used to categorize code according to
its origin. Privileges can then be assigned to these protection domains, allowing local
code to access more resources (e.g. the local file system) and restrict mobile code
obtained via the Internet.

2.9.1.3 Byte-Code Verifier

The byte code verifier screens the code to be sure that it was produced by a
trustworthy compiler. This component checks the statements in the code if they are
correct and do not produce an undefined or faulty state of the system.

2.9.1.4 Permissions

Permissions represent access to various system resources (e.g., files, network
sockets) and are the core of Java’s security system. Denials are not available, thus
negative authorization does not exist within the Java security system. Furthermore,
permissions are assigned to classes, meaning that a certain Java class is able to do
something, not a specific user. Thus, the security system restricts Java classes, not
users.

2.9.1.5 Policy

Mapping permissions to classes forms a policy, stating which classes may access
which resources. A policy file is used to configure this policy for a particular
implementation. This file can be manipulated either by using a text editor or by the
graphical policytool which is part of the software development kit for Java.

2.9.1.6 Extensions

Java does not initially support security at a higher logical level. Thus the application
developer has only limited means to integrate a security model. More complex
mechanisms are provided as add-on libraries like the Java Authentication and
Authorization Service (JAAS) that neatly integrates into the Java environment.
Moreover, JAAS is part of the J2SE since JDK 1.4.

Chapter 2: State of the Art in Security Modeling Page 42

JAAS (JAAS, 2000; Lai et al., 1999) is designed to address multi-user environments
by providing a framework and standard programming interface for authenticating
users and assigning access privileges.

JAAS also addresses the problem that a subject may have multiple user-names.
Nowadays, it is common that a user has different account names for various services.
Thus, JAAS maps so-called principals which represents an account to a single
subject. These principals have to be authenticated before the mapping to the subject
is done. The authentication can be realized using multiple authorization modules.
JAAS is therefore using plug-able modules (PAM, see Samar, 1996) which conform
to the Generic Security Services Application Programmer’s Interface (GSS-API, see
Linn, 1997) and the Security Layer Application Programmer’s Interface (SASL, see
Myers, 1997) which provide a common base for various authentication systems. This
enables single sign-on capabilities through the exchange of authentication tokens
among various systems (e.g. the underlying operating system).

JAAS supports RBAC but in fact, it does not differ between roles, groups, and users.
JAAS generalizes the different subject-classes to principals. Within the policy,
access restrictions using permissions can only be made using these principals.
Moreover, permissions only address limitations to use external resources. Restricting
the execution of certain code parts has to be implemented by the programmer, e.g.
code has to be added to check if the current user has a requested principal identity.

Another important part of a security system is the auditing component. Java provides
a logging API (in java.util.logging) that offers logging and auditing
mechanisms.

2.9.1.7 Discussion

Java is one of today’s most common programming platform. Concerning security,
Java concentrates on code security, meaning that Java protects its virtual machine
against malicious code by providing a restricted environment (sandbox). The core
Java security mechanisms do not address user-based security, thus it is not possible
to formulate access restrictions on code pieces for certain users.

However, the Java Authorization and Authentication Service (JAAS) extends the
core Java security by providing user-based security mechanisms. JAAS offers only
programmatic security mechanisms, thus the application developer has to address
security issues and has to make assumptions about the security requirements in the

Chapter 2: State of the Art in Security Modeling Page 43

target environment. Furthermore, if security requirements change over the lifetime of
the software, the software has to be touched to modify the security relevant
statements. This has negative impact on the maintainability, as well as on the
reusability and flexibility of the resulting components and software pieces.

Another point is that JAAS only offers RBAC mechanisms whereas the realization is
not conform to the NIST standard of RBAC. Other models can be realized using the
JAAS mechanisms. This results in huge effort and restrictions as JAAS makes no
distinction between various subject types. Thus a role, a group, or a user is the same
for Java, since the security checks are done on the basis of principals and all subjects
are mapped to such principals. This makes it tough to implement multiple security
models (e.g., RBAC, DAC) and combine them, since a clear distinction between
roles (used in the RBAC model) and users (used in the DAC model) is required.

However, the concept of principals as followed in Java has advantages. Principals
allow more flexible models. For example, principals enable a role-based model
where authorizations can be assigned to both, roles and users – thus a combination of
DAC and RBAC characteristics. Having principals, an easy implementation of such a
DAC-enhanced RBAC model can be provided.

2.9.2 Java 2 Enterprise Edition (J2EE)

The J2EE is the Java platform specially designed for enterprise servers (e.g., Bea
WebLogic, IBM WebSphere). J2EE bases upon all mechanisms provided by the
J2SE platform thus there is support for the sandbox model and the protection
domains. However, J2EE provides additional support for security models which can
be neatly integrated into applications (see Jendrock et al. 2002). For example,
Enterprise Java Beans which are part of J2EE specify a role-based access control
model which restricts the execution of methods on the basis of the role a user is
acting in. Furthermore, this role definition and assignment is done declaratively
which provides more flexibility and enables a later change in the security policy
without having to modify the application.

2.9.2.1 Security Architecture

The J2EE security architecture consists of several layers, namely the Transport level
security, the Container security services and the EJB or web-tier Security model. The
Transport-layer security provides secure transfer of data over TCP/IP, using
encryption techniques. The Container security services enforces the security policy

Chapter 2: State of the Art in Security Modeling Page 44

specified in the deployment descriptor of a web application. It is up to the container
to protect the Java Virtual Machine and the host machine from unauthorized access
by other applications. However, the J2EE standard does not prescribe how this
protection has to be implemented, thus the security has to be provided with vendor
specific solutions. The EJB or web-tier Security model is similar to the JAAS
extension, offering roles to which principals are mapped and then evaluated by the
container. J2EE Security Enforcement is done by the containers not by the
components. This means that the container knows the security policy, the subjects
and objects and monitors access to the methods of an object. The objects do not need
to know anything about security because security is enforced outside the object.

2.9.2.2 Authorization (Access Control) Model

As mentioned above, J2EE uses declarative security, meaning that the code is
protected externally, thus the code does not address access control itself. The big
advantage of declarative security is enhanced reusability and flexibility, since only
the externally stated security policy file has to be modified, if the security
requirements change, the code itself does not need to be touched. Another advantage
is that this model allows a clear separation of developer and domain expert tasks.

However, the declarative security mechanisms currently provided in J2EE are not
expressiveness enough. For example, there is no possibility to use constraints for
further restricting access (see Ziebermayr and Probst, 2004). Thus, it is only possible
to grant a role the execution of a method or not. Often it is required to restrict access
on the basis of the member of a role. In a banking application, the role customer is
granted access on the method ViewAccount(accountNo). It cannot be stated
within J2EE, that a certain customer is only allowed to see his account, since J2EE
evaluates access limitations on the basis of roles, not on individual users.

In order to address such access limitations, again programmatic security must be
used, losing most of the advantages provided by declarative security mechanisms.
Using programmatic security, the programmer has to fill his code with security
regulation statements, which are very similar to the JAAS extension.

2.9.2.3 Authentication

Authentication within the J2EE environment is done by the container, thus the
authentication scheme itself is container-specific. There are two possible
authentication schemes. The first option is that the web-tier collects information

Chapter 2: State of the Art in Security Modeling Page 45

about a user and forwards them to the EJB-tier which then performs the
authentication. The second possibility is that the web-tier collects information about
a user and authenticates the user already in this stage. After authentication, the web-
tier sends the identity of the user to the EJB-tier whereas the EJB-tier trusts the
authentication performed at the web-tier.

The J2EE standard recommends several authentication mechanisms, but it is up to
the vendor which mechanisms are supported. The recommended mechanisms are a
simple username and password combination, X.509 certificates, or the integration
into a Kerberos environment (the container must accept Kerberos tickets).

2.9.2.4 Discussion

The J2EE platform addresses mainly the usage of Java in the field of application
servers. Thus, the J2EE extends the standard mechanisms of J2SE protecting not
only the virtual machine but also the running applications within the J2EE
environment.

J2EE provides declarative security mechanisms, allowing that the active security
policy can be defined outside the application. This provides more flexibility, since
the security policy can be changed anytime without having to touch the code.
Furthermore, the code is not enriched with application-specific security statements,
thus the code can be easily reused in other applications. However, the declarative
security mechanisms provided in J2EE are not expressiveness enough to address
more complex, security policies. In the case of a banking application, these
declarative mechanisms would restrict the execution of a method depending on the
role membership of an user (e.g. customer). This is not appropriate since the user
should only be able to access his account. Thus, programmatic security is needed to
be used to express those requirements. The programmatic security allows to enhance
declarative security with constraints, resulting that J2EE offers better and more
adequate means of implementing security than the J2SE platform. However,
especially the mixture of programmatic and declarative security can become
confusing, since the application developer has to address the constraints of a security
policy by hand whereas the security policy itself is defined outside the application
and can differ at the customer site from the developer’s assumptions. Moreover, the
advantages of declarative security mechanisms are lost if the programmatic
mechanisms are directly related to declarative ones.

Chapter 2: State of the Art in Security Modeling Page 46

Another point is that J2EE only provides a RBAC model out of the box. Other
models can be implemented but only by using programmatic security mechanisms,
losing again all advantages of declarative security.

An important issue when using J2EE security is the target environment of the J2EE
platform. It is understood that mechanisms and security models implemented using
the J2EE platform are only applicable in the field of application server, requiring a
J2EE conform application server product. Thus, these mechanisms are not
architecture and platform neutral and can only be used for a certain application
domain.

Finally, J2EE only recommends certain mechanisms whereas it is up to the vendor of
an application server which mechanisms are really supported (e.g. authentication
mechanisms). This results in the fact that an application developer cannot be sure
which mechanisms he can use. More important, applications can easily become
dependent on a certain application server implementation.

2.9.3 Microsoft .NET

Another key-player in development platforms is the Microsoft .NET framework. This
framework offers a wide variety of security features which enable the
implementation and integration of high-level security models into applications. The
following gives an overview on these mechanisms, describes their purposes and their
usage. Detailed information can be found in Foundstone Inc. & CORE Security
Technologies (2001).

2.9.3.1 Code Management

Within the .NET framework, code is executed in the Common Language Runtime
(CLR). From the viewpoint of security, the CLR ensures that code can only act
within a boundary defined through the security policy. Since all managed code is
compiled and executed by the CLR, the CRL can react on unforeseen or malicious
behavior of the code and take countermeasures. Thus, the CLR is responsible for
access checking since all managed code has to pass it. However, .NET also offers the
possibility of unmanaged code which bypasses the CLR and is executed directly on
the machine. This code cannot be restricted by the CLR. Generally, unmanaged code
should be avoided.

Chapter 2: State of the Art in Security Modeling Page 47

2.9.3.2 Evidence-based Security

Evidence-based security classifies code according to different criteria. It is up to the
code to prove its trustworthiness by bringing an evidence. Depending on the
conclusiveness of the code, it underlies certain user-defined restrictions. These
restrictions are formulated in a security policy, which states what resources the code
may access (e.g., usage of DNS-Server, file system, the system’s registry), preventing
software from errantly or malicious harming the integrity of data.

The policy is defined using permissions. Permissions describe a resource and the
associated rights, and implement methods for demanding and asserting access. Thus
there exist several permissions for different resources. Furthermore, the developer
can extend the set of permissions to include application-defined resources and
regulate access on them. This enables an adaptable security model to the aimed
target-domain and can cover more complex security requirements of the application.
Again, the CLR ensures that code is only loaded and executed if it has the sufficient
permissions.

As mentioned above, the code must provide an evidence so that the CLR can assign
the permissions defined in the security policy to the code. Evidence can come from
several sources:

• Cryptographically sealed namespaces (strong names): Each class is part of a
namespace. Namespaces can be sealed cryptographically by the user.

• Software publisher identity (Authenticode®)
• Code origin (URL, site, Internet Explorer Zone): The classification is based on

the code origin. The security policy can classify code according to the URL or
site it was loaded or according to the Internet Explorer Zone (Intranet, Internet,
Local).

2.9.3.3 Code Access Security

The Code Access Security (CAS) is the enforcement engine that ensures that code
does not exceed its granted permissions while it is executed. Code is permanently
analyzed during runtime, to ensure that all operations are granted the needed
permissions. Furthermore, CAS initiates a stack walk. This checks that each code in
the call-chain has the demanded permission granted, not just the immediate caller.
Stack walking prevents so-called luring attacks in which untrustworthy code attempts
to trick code with greater access rights to call a protected object and bypass security
restrictions.

Chapter 2: State of the Art in Security Modeling Page 48

2.9.3.4 Verification Process

The Verification Process addresses frequently but problematic errors like memory or
buffer overflows or undefined process states. During the execution through the
interpreter, the code is analyzed in order to detect such errors and immediately
stopped if a certain operation would cause an undefined or faulty state.

2.9.3.5 Role-based Security

All points presented up to now are more security mechanisms than security models,
but form a solid base for the development or integration of security models. It is up
to the developer to build a security model using these mechanisms on the one hand,
or to use the existing role-based access control model on the other hand. The RBAC
model itself was already introduced earlier in this chapter. .NET provides
hierarchical RBAC meaning that roles can contain a hierarchical structure.
Nevertheless, constrained RBAC can be implemented with minor efforts by
introducing verification processes for constraints.

The access verification procedure can be done in various ways, depending on the
application domain. For standalone applications, the access verification procedure
can rely on existing access control lists within the file system or is directly steered by
calling the system function IsUserInRole(). This function is directly
implemented in the code, protecting a code piece according to the caller’s roles. The
method itself determines the current user’s roles and compare, if the user is a
member of the required role. Depending on the membership, the function returns
true (user is member) or false (user is not member). Normally, this function is
integrated in an if-statement, thus the code-execution can be made dependent on the
user’s membership of certain roles. In the case of web applications, URL
Authorization can be used, where access can be granted or revoked specifically by
mapping users and roles to pieces of the URI namespace, including the request
method (e.g., GET, HEAD, POST).

As mentioned in the initial discussion of security models, authentication is essential
for a security model. Microsoft .NET provides various ways of authentication,
realized through a set of authentication providers:

• Form-based (Cookie) Authentication: This provider invokes a specific HTML
form on the client side. The user can then supply logon credentials and post them
to the server which processes these token and performs the authentication. The
credentials can be checked against different sources, such as a SQL database or a

Chapter 2: State of the Art in Security Modeling Page 49

MS-Exchange directory. In order to avoid multiple login dialogs during a session,
the credentials are stored within a cookie, valid for a single user-session. The
credentials are transmitted in clear-text, thus it is essential to use secure means of
transmission (e.g. SSL).

• Microsoft Passport Authentication: This is a centralized authentication service
provided by Microsoft offering single sign on capabilities for member-sites.

• Internet Information Server Authentication Mechanisms: The Internet
Information Server provides several authentication mechanisms which can be
used by .NET. These mechanisms include Basic Authentication, NTLM,
Kerberos, Digest Authentication, and X.509 Certificates. For Basic
Authentication and X.509 Certificates, the use of SSL is essential in order to
provide a secure authentication. However, it is also advisable to use SSL for each
authentication mechanism in order to avoid brute force attacks.

• Windows Authentication: The .NET framework can also rely on the Windows
Authentication Mechanisms provided through the operating system. These
mechanisms include Kerberos, NTLM, and X.509 Certificates.

• Custom Authentication: Developers can additionally write custom authentication
and authorization code which can then be combined with the existing
mechanism. Authentication providers can be configured per application and per
virtual directory.

2.9.3.6 Other Security Mechanisms

The .NET framework additionally offers security mechanisms that are not part of the
security model. They realize low-level security but can be used to realize a secure
transmission of authentication tokens or to provide a solid base for a distributed
security model. These mechanisms enable a direct integration into the Active
Directory of a Windows 2000 domain, provide asymmetric (RSA, DAS) and
symmetric (DES, 3-DES, RC2) encryption, hashing algorithms (MD5, SHA1, SHA-
256, XMLDSIG), or supporting mechanisms for the Kerberos Protocol which
enables a secure authentication.

2.9.3.7 Discussion

Currently the .NET framework becomes a big competitor to the Java platform. In
comparison to the Java platform, .NET offers security on the basis of users and code,
whereas the offered mechanisms are quite mature and very expressive. The .NET
framework offers declarative and programmatic security mechanisms, whereas in the
context of user-based security only the later is appropriate. Declarative security is

Chapter 2: State of the Art in Security Modeling Page 50

provided using customized attributes which can be defined in .NET. Customized
attributes are placed within the code above the declaration of a method. Such
attributes contain information that is evaluated by the just in time compiler. Currently
these attributes allow the restriction of code, not the definition of access rules for
users. However, it is imaginable to extend the .NET framework by a attribute-
verificator that evaluates declarative access rules defined in the custom attributes.
The programmatic security mechanisms are used by the integrated role-based access
control model. Thus, the developer enriches his code with security-relevant
statements, asking the runtime environment if the caller of the method is member of
a required role. Depending on the role membership, code fragments are then
executed or skipped. Like in Java, this programmatic security has negative impact on
reusability and flexibility since the code must be touched every time the security
policy is changing.

The .NET framework offers a role-based access control model. Other models can be
implemented, with huge effort, since all programmatic mechanisms rely on the role-
based model.

Another issue is the dependence on the .NET platform and the Microsoft
environment. It is understood that the .NET environment can be easily and
outstanding integrated into the Microsoft world. This results in the fact that better
mechanisms can only be used wisely when relying on Microsoft products.
Authentication is a good example. Simple authentication mechanisms (username and
password) can be used with any product, better authentication mechanisms like
NTLM or Windows Authentication can only be used in a Microsoft Windows
environment. Furthermore, secure authentication and single sign-on using the
Kerberos protocol can be done in any Kerberos environment. This integration is
especially easy when using the Microsoft Kerberos implementation which is heavily
used in Windows 2000 domains.

2.9.4 Summary

As shown in this subchapter, today’s most used development platforms, namely
Sun’s Java and Microsoft’s .NET supports developer in integrating security into their
applications. However, both platforms have some weaknesses with negative impact
on either the reusability or the flexibility of the resulting code. In the case of Java
(J2SE), extensions (JAAS) are needed to offer programmatic security mechanisms.
J2EE provides much better declarative security mechanisms, however they are not

Chapter 2: State of the Art in Security Modeling Page 51

expressive enough in order to address all security requirements. The .NET platform
on the other hand comes with a rich set of mechanisms, however, again only
programmatic security can be meaningful used in application development.
Furthermore, security mechanisms offered are not platform independent, since they
require either the Java or the .NET platform. In the case of J2EE there is an
additional dependence on the used application server.

Thus, the aimed work tries to exceed the current limitations by providing reusable
security mechanisms with flexibility as well as platform and architecture
independence. This can only be archived by declarative security mechanisms that
extend the used target environment.

Furthermore, today’s programming environments only support the RBAC model.
Thus, supporting multiple security models that are conform to existing standards and
work cooperatively is another goal of this work. This raises the issue of needing a
conflict solution mechanism if the models in use have different considerations about
granting or denying access. The concept and realization of such a solution is shown
beginning with the next chapter. However, before concentrating on our solution, an
overview on related or similar work is given.

2.10 Related Work

The work described in this thesis tries to support software developers in integrating
security into their applications. Thus, we looked on existing solutions for distributed
authorization (compare Essmayr et al., 2001) and concentrated on solutions which
can be used by software developers in order to enhance their applications with
security mechanisms. Thus, the following will contain an overview on existing
solutions.

2.10.1 RBAC Framework for Network Enterprises

Thomsen et al. (1998) define a framework for integrating RBAC into networked
enterprises. Therefore they introduce seven abstract layers which are structured
according to the responsibilities of the local system administrator and the application
developer.

The first four layers deal with application specific constraints whereas the remaining
layers focus on site-specific constraints. The intention of this approach is that
application developers are creating the complex, application-specific security

Chapter 2: State of the Art in Security Modeling Page 52

constraints because application developers are the people who understand the
application and its security requirements best. Administrators know the local security
policy, thus they are able to manage the common site-specific constraints.

The layers themselves differ in the degree of granularity (e.g., objects, methods, a set
of methods, application). An interesting fact is that authorizations can not only be
assigned to an object and all its methods, but also to a group of methods. Another
interesting feature is that the framework also provides a graphical policy setup tool,
called NAPOLEON. This tool in combination with the layered framework allows
that security policy managers can focus on the level of details they are familiar with,
modifying details only as necessary.

2.10.2 RBAC Implementation Project (RIP)

Giuri (1998) shows a way to integrate the RBAC model into the standard Java
platform (JDK 1.2). This is done by extending Java’s standard mechanisms. The
paper shows an implementation of a JDK extension in order to enable RBAC
mechanisms within Java code, the so-called RBAC Implementation Project (RIP).
RIP is an activity mainly devoted to the study and implementation of extension for
available systems (e.g. Java) to provide affordable state-of-the-art role-based access
control mechanisms.

The RBAC extension for Java follows the approach, that roles are derived from
permission classes. RBAC itself is realized by providing a checking algorithm that
controls and evaluates these role permissions. The extension allows a hierarchical
role-structure, separation of duties, and constrained roles.

In comparison to JAAS (available for newer JDK versions), RIP offers on the one
hand role-hierarchies and mechanisms for realizing separation of duties which is not
supported by JAAS. JAAS, on the other hand, is not restricted to the role-based
model but allows the realization of any security model, thus offering more flexibility
and opens new ways for security and access control ideas.

2.10.3 Framework for Implementing RBAC using CORBA Security Services

Beznosov and Deng (1999) present a framework for implementing RBAC
mechanisms using the CORBA security services. The authors use the security
architecture of CORBA (the so-called CORBA security services) and extend them in
order to use roles as subjects. CORBA itself sees users as principals, having a

Chapter 2: State of the Art in Security Modeling Page 53

component that authenticates principals (PrincipalAuthenticator) and another
component that maps users to principals (UserSponsor). These components must be
adapted, so that they can work with roles as well.

Within the paper, only flat RBAC and hierarchical RBAC are described. However,
the authors show that other levels of RBAC can be implemented as well, requiring
additional effort.

2.10.4 JSEF Framework

JSEF (Hauswirth et al., 2000) is a security framework that extends the Java 2 security
architecture with higher-level security management and maintenance facilities
especially for mobile code. The key features of JSEF are the hierarchical security
policy supporting local, user-specific and global security policies, the system-wide
security policy maintenance as well as concepts for user profiles and hierarchical user
groups. The configuration of the security policy and the framework is done by
graphical tools that generate XML documents.

The policy model of JSEF is derived from Java’s standard policy model. This model
provides enhanced policy semantics, a separation of local and global policy settings,
and a dynamic policy negotiation component. JSEF supports positive and negative
authorizations, called additive and subtractive permissions. The subtractive
permissions always overrule the additive ones. These permissions and other JSEF
mechanisms realize a RBAC-conform security model.

During runtime, a secure environment is established in which the mobile code is
executed. As mentioned above, JSEF has different policies, namely the local, user-
specific, and global security policy. The final policy valid for the secure environment
is constructed by merging all these policies. A specialized security manager enforces
the security by monitoring access to system resources and verify and check the
properties of the mobile code during the runtime, avoiding malicious or non allowed
statements.

As mentioned above, JSEF is concentrating on protecting mobile code. The
framework just supports RBAC, other access control models or combinations of
multiple security models are not supported. The interesting thing about JSEF is its
ability to have a system-wide policy, able to merge global and local policy settings.

Chapter 2: State of the Art in Security Modeling Page 54

2.10.5 Kava Security Infrastructure

Kava (Welch and Stroud, 1999) is a security infrastructure that provides support for
various security models and mechanisms in Java. The basic idea behind Kava is the
use of a meta-object protocol that provides flexible and fine-grained control over the
execution of components. This meta-object protocol maintains a meta-level security
architecture that supports various security models.

Security is enforced through inserting security checks into the compiled code. This is
done by using byte-code transformation which is steered by the meta-object protocol
and the related meta-level security architecture. This results in the fact that Kava
controls the invocation of methods, the object initialization and finalization, and state
updates of the Java objects.

The approach used in Kava is the modification of the Java byte-code. Thus, the
approach can only be applied to platforms, which use such an intermediate,
interpretable language. Furthermore, this approach is not transparent to the developer
since it is done in an extra step, outside of the developer’s control. This can lead to
unforeseeable behavior of the application, especially when relying on reusable
components obtained from somewhere else. On the other side, Kava allows the
realization and integration of various security models by providing an appropriate
meta-level security architecture.

2.10.6 Other Related Work

The two systems presented below cannot be directly compared to the aimed
GAMMA framework since they realize a distributed authorization solution instead of
providing a supporting means for developers to integrate security models into
applications. However, these systems were analyzed since important input can be
gained from their architecture in providing modular security components.

SESAME (Ashley and Vandequauver, 1998; McMahon, 1994) provides an
infrastructure for authentication, authorization and access control, as well as auditing.
The system bases upon Kerberos and realizes a distributed security system. SESAME
does not allow a customized security model nor the change of the underlying security
model. Applications can use SESAME as a single-sign on facility, however it has not
especially been developed for supporting application development by reusable
components.

Chapter 2: State of the Art in Security Modeling Page 55

The Adage system (Zurko et al., 1999) provides authentication, authorization and
access control, and auditing in distributed environments. Application developers can
integrate this system and use its components via Adage’s Application Programming
Interface (API). Initially, RBAC is defined as Adage’s security model but other
models can be defined, requiring substantial effort to provide them. Nevertheless,
Adage’s architecture gives important input due to its modular structure that enables
flexible and adaptable authorization solutions.

2.10.7 Discussion

A lot of work has already been done in order to provide security mechanisms that can
be used in application development. However, each solution has its advantages and
shortcomings which motivates the idea to develop a framework that actively supports
application developers in integrating security models and mechanisms during the
software creation process.

Such a framework has several requirements, which can be taken as criteria when
looking and evaluating existing solutions.

First, the solution must actively support the developer during all stages of software
development. Optimally, the application developer can choose which security
model(s) he want to use and can define the security policy constantly during
development. Furthermore, it should be possible to choose from different security
policies in order to set up test cases for the software. During the early stages in the
development process, there will be only assumptions concerning the security policy
or the policy will not be addressed at all. Active support means that it should be
possible to follow a security policy that allows all which seems to the application
developer as if there is no security model active.

All these requirements can only be addressed by providing declarative security
mechanisms. Thus, it is necessary to know, how security mechanisms can be
integrated into the application (programmatic or declarative). Furthermore, it is
interesting to know who is responsible for setting up the security policy.

Second, the solution should not require special environments which influence the
aimed application domain. Thus, the solution should work with several platforms or
provide its own environment that is applicable to various application domains.

Chapter 2: State of the Art in Security Modeling Page 56

An important point is the expressiveness of the security mechanisms. This means on
the one hand that the security model must be aware and control all access to sensitive
data, on the other hand the expressiveness of a security model states how mature the
mechanisms are implemented and which features are available in order to address
complex security requirements.

Another required feature is the support of multiple models. This requirements was
already motivated when looking at today’s software products and their security
mechanisms. It was seen, that for example operating systems combine the ownership
paradigm (DAC model) with the role-based model (RBAC), which provides much
more flexibility and allows an easier administration. These criterions motivate the
development of a new security framework called GAMMA (Generic Authorization
Mechanisms for Multi-tier Applications) which is presented in detail in the following
chapters. Chapter 5 then compares this framework with the aimed GAMMA security
framework.

2.11 Summary

Within this chapter, security models, the idea behind them, and the need for them
were presented. Furthermore, it was shown how security models are realized in
today’s software applications. Since this work concentrates on how security can be
easily addressed in the software development process, the third part of this chapter
showed the various ways how security mechanisms can be integrated into
applications by software developers. This was done by analyzing how today’s
software development environments address this task by presenting some solutions
that aims to facilitate such an integration.

The discussion showed that existing solutions still have some open issues when
actively supporting application developers to realize security aware applications.
Most solutions as well as today’s software development environments, only support
a certain security model whereas the usage of multiple models to cover more
complex security requirements is hard or impossible to achieve. Another issue is that
these solutions are often designed for a special platform or environment (e.g. Java)
which often restricts the application domain. However, the most important point is
the integration of these solutions into applications. Programmatic mechanisms can
address complex requirements on the one hand but have negative impacts on
reusability and flexibility on the other hand. Declarative security is often too
restrictive or not expressive enough to address more complex requirements. Most of

Chapter 2: State of the Art in Security Modeling Page 57

the presented related work extends the standard Java security policy mechanisms in
order to provide such a declarative security. This means that the user has to provide
customized permissions that can be granted to a class or method which is rather a
static assignment. Dynamic aspects such as activating or deactivating a role,
separation of duties, or simple time constraints cannot be addressed using this policy
facility.

Thus, the reader can easily see the need for a more intuitive solution that supports the
developer in integrating security and provides an architecture and platform neutral
set of reusable security components, mechanisms, and models that can be easily
integrated into software applications. It is understood that these goals can only be
achieved meaningful if the solution provides declarative mechanisms that allow
flexibility and reusability on the one hand and that are expressive enough to cover
also complex security requirements. Especially when trying to address complex
security mechanisms, it must be a clear goal to support multiple or customized
security models. Last but not least, the provided solution must be extremely
extendable in order to provide a means that can be adapted to various application
domains and future needs.

All these issues raised the idea to develop a new framework, called GAMMA,
whereas the main motivation was to overcome these existing issues. The following
chapter introduces the concept and design of GAMMA, its design goals and
components. Chapter 4 then explains realization aspects and presents the JGAMMA
reference implementation.

Chapter 3: GAMMA Page 58

3 GAMMA

GAMMA (Generic Authorization Mechanisms for Multi-Tier Applications) is a
security framework that helps to provide ready-to-use and adaptable security
components and models.

This chapter introduces the GAMMA framework, describes its objectives, the
architecture and components of the framework, and shows how security is enforced
using the framework’s mechanisms. This leads to Chapter 4 which presents the
JGAMMA and GAMMA.net reference implementations that prove the framework’s
applicability. A short survey on GAMMA can be found in Probst et al. (2002).

3.1 Objective

The main objective of GAMMA is to provide ready-to-use security components that
actively support application developers in integrating security mechanisms into their
applications. Active support means that the application developer can rely on the
security components already at the early stages of the development process. In fact,
the framework must be able to provide a set of generic and common security
components that can be transparently integrated into the application. As the
application grows, it must be possible to adapt the security components without
major effort to the evolving code. This is only possible by providing declarative
security mechanisms which are steered outside the application by a security policy
file. Decoupling the security layer from the application allows a maximum of
flexibility on the one hand but allows on the other hand addressing complex security
requirements of different application domains.

In order to make the framework usable, it must be able to address different
application domains. Thus, the framework must provide generic mechanisms that do
not require special architectures or platforms. As a result, the second objective of the
GAMMA framework is to provide a platform and architecture neutral solution,
meaning that GAMMA’s concept can be realized in modern programming languages
and environments. It is understood that reference implementations in certain
programming languages will consider existing security mechanism and base on them,

Chapter 3: GAMMA Page 59

as long as they are not in direct conflict with the platform neutral concept of
GAMMA.

Another important point is that GAMMA must be highly extendable. This is
necessary to reach the goal that GAMMA can be taken for any application domain,
but also to allow the easy integration of new security models and mechanisms. Since
security mechanisms will evolve in future, the integration of new mechanisms, ideas
and concepts is very important to make the framework future-oriented and highly
usable.

As mentioned in Chapter 2, a lot of today’s software applications require a
combination of two or more security models (e.g. RBAC and DAC combination).
GAMMA must support such model combinations by providing ready-to-use models
that can cooperate. Since conflicts are likely, the framework must provide adequate
mechanisms to solve access decision conflicts of the various models in use.

3.2 Concept

This subchapter presents the architecture and design of the GAMMA framework, as
well as the various mechanisms for providing security. Furthermore, it is shown how
the objectives described in the previous subchapter – namely active development
support, platform and architecture neutrality, expressive security mechanisms, the
support of multiple models, and most importantly the support of declarative security
– are reached by the concepts used in the framework.

3.2.1 System Context

The GAMMA framework provides the skeleton for security mechanisms such as
authentication, authorization, and auditing.

The users of the framework are categorized into five groups as illustrated in Figure
10. This categorization is not intended to be exclusive, it is a categorization of
interaction rather than of users and many users will belong to several groups.

• Framework architects are responsible for the design, implementation,
maintenance as well as further development of the framework.

• Model providers are responsible for introducing new security models into the
framework. The model can be introduced into the framework without modifying

Chapter 3: GAMMA Page 60

the framework kernel. The framework kernel can only be modified by the
framework architects.

• Business application developers are interested in developing software using the
framework by integrating security mechanisms into their business applications. If
they put anything into the framework, it is in terms of new ideas and visions that
will be realized by framework developers.

• Security administrators are responsible for setting up the framework’s
mechanisms by administrating the single point of administration. Primarily, their
work consists of realizing the security policy in defining the access rights and the
mapping between the several domains and layers. In principle, they will work
together with the business application developers.

• Arbitrary users of business applications: Any software written using GAMMA
contains security mechanisms. The connection between users of these software
products and the framework is the increased confidence in the software they are
using.

Business
Application
Developers

Users of
Business

Applications

Security
Administrators

Framework
Architects

GAMMA
Framework

Securtiy
Model

Providers

Figure 10: User groups for the GAMMA framework

3.2.2 Requirements to the Framework

In order to identify all requirements, several projects were analyzed and discussed.
The analysis provided information about requirements, necessary issues, wishes, and
nice-to-have features. The following contains a short description of the three systems
that were analyzed.

3.2.2.1 Web-based Time Management

During a month, employees record their timetables. Each employee is the owner of
his timetable, thus he has the full control over the document. The employee can pass

Chapter 3: GAMMA Page 61

various rights to his document to third persons. This requirement can be best realized
using the discretionary access control model.

Figure 11: Sequence of web-based time management system

Additionally, there exists the restriction that the employee’s project manager has
always the right to read the timetable. This requirement can be best realized by
additionally introducing the role-based access control model. The role “Project
Manager” has always the right to read the timetables of his employees.

Thus, it is necessary that the security mechanism knows that the RBAC model is
stronger than the DAC model. Although the employee has the full control over his
document, he cannot deny the project manager’s read access.

Furthermore, there is a big change in the access control schema, caused by a timely
event. At the end of a month, the owner loses his full control over the timetable
document. The dual access control model is changed into a single RBAC model. The
role “secretary” now has full control over the document and is the only subject that is
able to do modifications. The owner and the project manager have read-only access
or when granted by the secretary also restricted write access. Subjects that had access
to the object before – granted by the owner – now lose their access privileges.

3.2.2.2 FAW TISCover

TISCover is a web-based traveling guide system that allows an easy online
reservation for hotels. Members can make offers by providing information within a
TISPackage. First, the system administrator creates such a TISPackage. The system
administrator has full rights over this package, thus he is able to grant / revoke rights

Chapter 3: GAMMA Page 62

on the package to other subadmins. A subadmin then sells a package to a TISUser
who becomes the owner of this package. Per default – as long as there is no other
specification – the owner has full rights over the package, except the right to grant
access to other users. If other users have to access the package, the subadmin has to
grant access. This access is only content-based, thus only content of the package can
be changed. A user then interacts with the content in the package and gets results of
the interaction. If the subadmin has the right “helpdesk”, he is able to take over the
function of the owner or other TISUsers who have access to the package in order to
perform some administration tasks on the content of the package.

Figure 12: Sequence of TISCover System

In general, the assignment of rights can be separated into the following subjects:

• the system administrator has the rights to administer the system and adjust or
modify the system environment,

• the subadmin, who is able to modify the system environment for the areas he is
assigned to, and

• the TISPackage that contains rights based on its content.

Chapter 3: GAMMA Page 63

On top of the subject-hierarchy there is the TISUser from whom all other roles are
derived. The assignment of rights is done on the level of TISPackages, which means
that it is defined who is able to access which content of the package.

Rights are hierarchically inherited. A member of a higher hierarchy-level has
automatically all rights of the members of a lower level. However, there are rights
that can be inherited and rights that cannot. This requires additional flexibility of the
permission hierarchy.

Objects within packages inherit the rights of the package. An explicit assignment of
permissions is not provided.

3.2.2.3 SCCH Intranet Project

The SCCH Intranet project aims to provide a platform for corporate intranets. The
case study concentrated on the planned security layer of this Intranet project. The
general concept is described in Figure 13.

Figure 13: Sequence of proxy concept

The client or subject wants access to a data object. This object is stored persistently
and must be retrieved via a data source first. Thus the client invokes the
getObject() method on the persistence manager. The persistence manager
contacts in a first step the data source and delegates the load request. If the data
object is not yet loaded, the persistence manager creates a new instance of the data

Chapter 3: GAMMA Page 64

object. Instead of returning a direct reference to the data object, the persistence
manager contacts the security monitor and requests a proxy for the data object. The
security monitor checks if there exists a proxy for the requesting subject. If so, it
returns a reference to the proxy; if not, the security monitor generates a new proxy
and returns it to the persistence manager. The persistence manager returns the
retrieved proxy reference to the client.

If the client wants to invoke a method or retrieve a member variable of the data
object, it has to pass the proxy-class to the data object are made through the proxy.
The proxy invokes an access control check on the security monitor. Only if the check
succeeds, the proxy retrieves the requested member from the data object. Since the
retrieved member can be also a complex object, it is sometimes necessary to contact
the security monitor which generates a proxy for the retrieved member object. The
proxy itself returns a proxy to the requested member object. Once again, all access is
done via proxies.

Within the system, there are various levels of permissions. Levels are depending on
the granularity of the security object.

• Permission at attribute level: These permissions define, if a subject can read or
write an attribute of an object. If the subject has insufficient permissions, an
exception is thrown.

• Permission at instance level: These permissions define, if a subject can access a
reference or instance of an object. In order to be able to gain a reference, the
subject must have at least the read permission to an object, otherwise the security
monitor’s getProxy() method returns null. Without the write permission,
the subject is not able to write attributes of the object, except this is explicitly
granted at the attribute level.

• Permission at class level: These permissions define, if a subject can access
objects of a certain type. A subject which is denied access at this level cannot
access any concrete instance of the class as long as there are no explicit
permissions at instance level.

• Permissions at class and attribute level: These permissions define the default
behavior when access requests to attributes of objects are made. These
permissions can be overwritten using permissions at object or attribute level.

Chapter 3: GAMMA Page 65

3.2.2.4 Identified Security Requirements

During the studies, a lot of security requirements were identified. Since some cases
require specialized security components, the requirements were generalized and are
described in the following.

Combinable security models: Sometimes it is necessary that one or more models
are combined and work together at the same time. In this case, it must be possible to
specify, which model is dominating in which respect. Since each model has
evaluation rules which are looked up when verifying a request, the domination of the
model defines the order of the rules lookup. Each model must be expressed in rules
containing constraints and model-specific data, whereas special rules regulate the
coexistence between the models. The access controller is delegating access requests
to the models in the specified order. The models evaluate the request according to the
rules. This evaluation depends on the assumption of the security model. There are
two possible assumptions: the open and closed world assumption. Within the open
world assumption all accesses are granted except those which are explicitly denied
by rules. This requires prohibitions (negative authorization). The closed world
assumption denies all requests except those which are explicitly granted by rules.
According to the evaluation result of the rules, the model returns a positive answer (a
rule was found which grants the request), a negative answer (a rule was found which
denies the request) or no answer (no rule was found). If the model returns a positive
or negative answer, the request is granted or permitted. If the model returns no
answer, the request is sent to the next model. If all models return no answer, the
request is evaluated according to the world assumption.

Constraints: Constraints realize restrictions within a security model. Constraints
could be categorized into two groups: model dependent constraints that are only
applicable to a certain security model and model independent constraints that can be
used with various security models. However, model independent constraints must
react on events which are raised by specific security models. In the following there
are some examples for such constraints. This list is understood as a basic set of
constraints. The framework itself should provide an abstract base class for a later
implementation of additional constraints.

• Model dependent constraints: These constraints depend on a specific security
model. Since the role-based access control model (RBAC) is especially addressed
in this work due to its importance, only RBAC-related constraints are mentioned.
The most important constraint within the RBAC model is the so-called separation

Chapter 3: GAMMA Page 66

of duties. Depending on the time this constraint is active (runtime or
administration-time), one distinguishes between static and dynamic separation of
duties. Both constraints deal with conflicts of interests in a role-based system.
Static separation of duties (SSD) prevents conflicts of interests by constraining
the assignment of users to roles. This means that if a user is authorized as a
member of one role, the user cannot be a member of a conflicting second role.
This constraint is defined already before the administrator assigns users to roles,
preventing the administrator to assign a user to conflicting roles. Dynamic
separation of duties (DSD) deals with the issue of conflicting roles at runtime. It
is possible that two roles are not directly in a conflicting state but only if a
member activates these two roles at the same time, the conflict arises. However,
it is allowed that the user may activate the second role if he deactivates the first
role before. Since the conflict arises at runtime, no objections are made if the
administrator is assigning the user to both roles.

• Model independent constraints: These constraints are independent from the
current active model. Nonetheless, they are in a certain relationship with the
security models since these have to interpret the constraints correctly and
determine the effects on the model. Model independent constraints should be
encapsulated from the security models and provide a generic interface which is
then used by the current active security model. Examples of such constraints are
the time constraint restricting access depending on the current time, location
constraint restricting access depending on the location of the subject, history
constraint restricting access on the subject’s history of actions.

Inheritance and granularity of permissions: Containers, like the TISPackage, are
special components containing a set of other objects. Permissions are assigned only
to the container. Objects within the container inherit automatically the permissions
assigned to the container they reside in. However, it is sometimes necessary to
override this permission inheritance and provide means for defining a new
permission assignment for sub-containers or items.

The concept is similar to the Windows NT file permission assignment. Permissions
assigned to a folder are automatically reflected to all items within this folder
(subfolders and files). However, it is possible to assign other permissions to files or
to subfolders. In the latter case, items in the subfolders reflect the permissions
assigned to the subfolder.

Chapter 3: GAMMA Page 67

Security Model Requirements: Since security models form the central part in
access control, it is important to identify requirements to these models. Each model
comes with its specific requirements which cannot be identified completely in
advance. It is the model provider’s task to identify these requirements and develop
the security model following GAMMA design patterns. The following illustrates this
issue according to two examples.

Within the discretionary access control (DAC) model, it might be necessary that the
ownership privilege is circulating between various users within the system. This
means that the administrator of a system can revoke the ownership privilege from a
user and grant this privilege to another user. This process also includes a variety of
dangers and requires special treatments. Methods and ways must be defined when the
ownership privilege is removed and assigned to another user. Since the owner is
allowed to grant individual rights to other users, these permissions must also be
treated (e.g. revoked). In fact, there exist several possibilities how to treat the
revocation of ownership (cascading deletion, deletion without cascading, deletion
without effects). It is up to the model provider which possibilities are supported by
his model.

In the case of RBAC, the model can be expressed as a structure of graphs (e.g.,
authorization, role-hierarchy). The graph realizes the inheritance relation of each
hierarchy. Since multiple-inheritance should be supported – at least within the role
hierarchy – a simple tree structure is not sufficient. However, it should also be
possible to model the hierarchy using a tree or other graph structure. Thus, this model
requires a flexible structure of graphs.

Restricted inheritance of permissions: When building up the permission hierarchy
it is sometimes necessary to restrict the inheritance of permission, especially when
supporting multiple inheritance. When building up the permission hierarchy, means
to define the restriction of inheritance within the role- and permission hierarchy are
necessary.

Restricting result sets: Access control does not only mean to restrict the calling of
specific methods, also the returning result must be controlled. Depending on the
permissions a request may return different results. This can be realized either by
filtering data already at the data producer’s side (e.g. on the server) or by the local
access control system (e.g. remove non-allowed data before forwarded to the
application). For the sake of performance and transport security, the first solution

Chapter 3: GAMMA Page 68

should be aimed. However, it is not always possible to influence the data producer,
thus sometimes the second solution is required.

Transparent security mechanisms: Security mechanisms should be transparent and
neatly integrated into the development of the application. In the optimal case, the
developer does not need to take special care of the security mechanisms. This means
that it should not be necessary to write special code in order to integrate security
mechanisms. The security mechanisms should be present in an encapsulated layer
which can be changed at any time. It is rather unrealistic that the final security policy
is already available at development time. Thus the security mechanisms should
support a modifiable policy, enabling security administrators at the target’s site to
define the security policy according to their needs. The security policy is defined in
external files and described by all the parts of the security description language
(SDL).

However, it is impossible to hide security completely from the developer. The aim is
to relieve the developer from the burden to implement security components and to
make the integration as easy as possible. This can be reached by offering various
security components and objects from which the developer can derive and generate
secured objects. The framework must then take care that these secured objects are
integrated into and protected by the GAMMA framework.

Flexible security mechanisms: Since security requirements can change over the
lifetime of an application, the mechanisms must be adaptable. For the sake of
maintenance and reuse, the optimal case contains declarative security mechanisms.

3.2.3 Architecture

This subchapter deals with the overall architecture of the GAMMA framework. First
it motivates the major design criteria of the framework. Furthermore, it contains the
component diagram listing the various framework components, showing their
interactions, relationships, navigability, and usage.

3.2.3.1 Major Design Criteria

The following lists the major design criteria that must be considered to meet the
requirements stated above.

Clear separation between “data models”: In order to introduce new security
models, separating the underlying data models is necessary. Each security model has

Chapter 3: GAMMA Page 69

at least a subject-, an object, and an authorization model. A constraint model can be
added too. These models have to be clearly separated so that each data model can be
changed or extended. The concrete security model realizes the interaction between
these data models.

Common base for all security models: To allow an easy extension of the
framework, each security model must have a common base. Our framework does this
by transforming each model into a rule base. The rule base has a standardized layout
and contains access rule entries. If a model needs a completely new rule base, it can
extend the standard one and provide its own rule base. Invoking the check methods
of the entries (e.g., permission, constraint) performs the rule checking.

Encapsulated “extension code” localized in defined places: One of the design
goals is to provide a highly extensible framework. However, extensions of the
framework must be coordinated. Therefore various roles for extending the
framework were introduced. Each role can only extend the framework in defined
places. The framework architect has a specific knowledge of the framework and can
extend the infrastructure and framework components. On the other side, the model
provider does not have specific knowledge about the structure of the framework, thus
the role is only allowed to introduce new models and model-related components.

Well defined “interfaces” and as “generic” as possible: Each component of the
architecture will implement a number of interfaces used for interacting with the other
components. Each interface consists of a set of functions which are specialized for
some type of interactions. The intention is to define these interfaces in a way as
generic as possible. That is, they should be independent of the actual component’s
implementation and also of the concrete data types that will be added by the users
when customizing the framework.

Separation between “persistent data” and “transient data”: In order to remain
independent from the physical storage of data, the persistent data must be separated
from the transient representation. In fact, for each transient storage there would be a
component which is aware of obtaining the data from various persistent storages.
Thus a base class is provided containing the transient storage. Implementations will
deal with obtaining the data from various kinds of physical storages (e.g., XML-file,
database, operating system).

Re-use standard components: The intention is to provide a generic framework that
is neatly integrated into the used programming platform. The framework itself is

Chapter 3: GAMMA Page 70

understood as a concept that enables the easy integration of security components into
applications. Reference implementations, written in a specific programming
language, prove the applicability of the framework. It is foreseeable that these
programming languages already offer some security components. The intention is to
analyze these features and integrate them as good as possible into the reference
implementation. Furthermore, the framework must base upon existing technology to
provide state-of-the art work. This means that security models have to be
implemented according to standards or to use open and widely accepted formats (e.g.
XML).

3.2.3.2 Security Definition Language

The security definition language (SDL), based on the XML standard, is responsible
for the configuration of the framework. It deals with the models which have to be
initialized as well as with the security policy. Furthermore, it states which data
provider is used for gathering the framework’s required information.

As already mentioned, the models which act within the GAMMA framework are the
essential part of the SDL. The order in which the different models appear within the
SDL file defines the policy. Furthermore the world-assumption is assigned to each
model (closed world or open world; see Chapter 2.2.4).

The values which are provided by the configuration file represent classes which are
loaded by the framework itself. Using this mechanism, it is guaranteed that the
framework acts as generic as possible, a separate class can be taken for each data
provider.

3.2.3.3 Component Diagram

Before the components are described in detail, the main components of the
framework are shown using a component diagram (Figure 14). The diagram
illustrates the decomposition of the system.

The various framework components are described in detail in the next subchapter.
They are not meant to be complete and in their final form. In fact, the shown
components are the basis for the framework.

Chapter 3: GAMMA Page 71

Figure 14: Component Diagram of GAMMA

3.2.3.4 Classification of Components

In the following the main components which will form the kernel of the architecture
are shown. These components are categorized according to their supplier role on the
one hand, and according to their functionality on the other hand. Some components
are thus listed twice because various users will extend different functionality within
the components.

Table 1 shows the components which are visible for and thus extendable by the
application developers. Developers are able to integrate new data providers which
cover storage formats that are used at the customer’s site. Furthermore, the Secure
Object Data Provider is able to manipulate the various instances of secure objects
which implement the business logic.

Table 2 lists the components which are maintained by the framework architects.
These components mainly reside in the framework’s kernel. An extension requires
in-depth knowledge of the framework and its mechanisms.

Chapter 3: GAMMA Page 72

Subject Data Provider Retrieves subjects from a persistent storage and transforms
them into a transient representation. Furthermore, it creates
subject instances. For each type of storage the framework
user can implement his own Subject Data Provider. Usually
there is one Subject Data Provider per model.

Secure Object Data
Provider

Retrieves secure objects from a persistent storage and
transforms them into a transient representation. Furthermore,
it creates secure object instances. For each type of storage
and for each concrete implementation of secure objects the
framework user can implement his own Secure Object Data
Provider. Since an application can have various secure
objects, several Secure Object Data Providers can be used by
a single application.

Authorization Data
Provider

Retrieves authorizations from a persistent storage and
transforms them into a transient representation. Furthermore,
it creates authorization instances. For each type of storage
the framework user can implement his own Authorization
Data Provider. Usually there is one Authorization Data
Provider per application.

Constraint Data
Provider

Retrieves constraints from a persistent storage and
transforms them into a transient representation. Furthermore,
it creates constraint instances. For each type of storage the
framework user can implement his own Constraint Data
Provider. Usually there is one Constraint Data Provider per
application.

ACL Data Provider Retrieves ACL entries from a persistent storage and
transforms them into a transient representation. Usually there
is one ACL Data Provider per model.

Table 1: Components supplied for the application developers

Chapter 3: GAMMA Page 73

Security Manager One per application. Manages the whole application and
connects the three tasks authorization, authentication, and
auditing.

Security Data
Provider

One per application. Retrieves the security policy, expressed
in the configuration file and sets up the framework and
security models using the SDL and data providers.

ACL Manipulator One per Rule Base / Model. Creates and manages the rules
for the Rule Base.

Subject Realizes actors and entities of the system.

Secure Object Provides a base class for all objects which shall be protected.

Authorization Realizes a concrete access right onto a resource.

Constraint Restricts actions within the system or enables additional
restrictions in access rules.

Access Controller One per application: Receives access requests and dispatches
them to the current active models and controls the
combination of security models.

Access Control
Context

One per request: Realizes a transient store for access pattern
tuples and further meta information.

Rule Base One per Model: Realizes a transient storage containing
access rules valid for a security model.

Constraint Verificator One per Model: Realizes a transient store containing
constraints valid for a certain rule within the Rule Base.

Proxy Generator One per application: Is aware of generating Secure Object
Wrappers (Proxies) for Secure Objects.

Secure Object
Wrapper

Realizes a proxy to a Secure Object.

Table 2: Components supplied for the framework architects

Chapter 3: GAMMA Page 74

Model providers mainly extend the framework by introducing new security models
and their semantics. Table 3 shows the components which are mainly used to realize
security models.

Model Provides an abstract base class for a concrete security model.
In principal, it realizes a real world security model.

Subject Data Provider Normally one per Model: Transfers subjects out of a
persistent storage into the model. Furthermore, it prepares
subject data for models (e.g. users are assigned to roles and
roles are forwarded to the model).

Object Data Provider Normally one per Model: is the connection between the
application and the security model. The application
developer can request protection for an object using the
Object Data Provider. Furthermore, it prepares objects for
models (e.g. assigning a security level when using MAC).

Authorization Data
Provider

Only for special use: Transfers authorization data into the
model and prepares them for the model. A specialized
Authorization Data Provider can prepare certain
authorizations for concrete models.

Constraint Data
Provider

Only for special use: Transfers constraints into the model
and prepares them for the model. A specialized Constraint
Data Provider can translate model-independent constraints
into model-dependent ones.

ACL Data Provider Normally one per Model: Transfers ACL entries into the
model and prepares them for the model. Special models need
special ACL entries which vary from the defined structure.
These entries can be realized using a model dependent ACL
Data Provider.

Table 3: Components supplied for the Model Provider

Chapter 3: GAMMA Page 75

3.2.4 Security Mechanisms

This subsection presents an overview on the security mechanisms offered by
GAMMA but also shows how these mechanisms work together.

In principle, GAMMA offers components for authentication, authorization and
access control, and auditing which are described in Chapter 3.2.5. During the
interaction with the framework, the user must be first authenticated. This is necessary
since all other components rely on this authentication. Both, authorization and
auditing components must know the user that performs certain actions.

The user’s identity is first proofed by the authentication component. In order to use
the framework, the user must provide a valid identity (e.g. username) and a
corresponding identifier (e.g. password). The framework evaluates these tokens
within the authentication component. GAMMA allows various authentication
methods due to its open architecture and the support of the GSS-API (see Linn,
1997).

Access control is done in various steps: In general, a subject wants to access an
object in a certain way. The requested operation on the object defines the necessary
authorization that is needed in order to fulfill the task.

Primarily, the security manager – which represents the interface to the client –
receives a request from an authenticated subject for a certain operation on an object.
This request is delegated to the access controller that passes the request to all active
models – in the order that is specified in the security policy. Each model searches for
a subject/object pattern in the rule base, which matches the request. The search
process returns a list of possible authorizations that are defined for the subject/object
combination. Each authorization is explicitly checked by invoking the
authorization’s checkAccess() method. Depending on the result and the world
assumption of the model, the authorization check is either positive (access is granted)
or negative (access is denied). However, it is possible to define additional constraints
that further restrict a specified access operation to an object by a subject. Thus, each
related constraint is evaluated. Again, the decision is delegated by invoking the
checkAccess() method of the constraint object. If both, the authorization and the
constraint grant access, access to the object is permitted. This result is returned to the
access controller and then returned to the security manager. The mechanism is
illustrated in Figure 15.

Chapter 3: GAMMA Page 76

TimeConstraint

08:00 – 12:00

CheckAccess(s, o, p); bool

true/false

Rule Base

S O A Constraints

AccessControl Context
+Subject
+SecureObject
+Method

uses

CheckAccess(...)

Authorization.

Object

Person o;

...

setName()

Model

process
request 1

2

3

4

5

6

NO_RULE_FOUND
GENERAL_RULE_AUTHORIZATION

…
EXACT_RULE_AUTHORIZATION

…
ACCESS_GRANTED

ACCESS_DENIED

Figure 15: Access Checking mechanism

3.2.5 Components

This subchapter discusses the various components of the framework in more detail.
Since a lot of abstract base classes are provided, which must be inherited for
realizing concrete tasks, these are described as well as final components which
perform various tasks. The usage of the components will be explicitly mentioned.

3.2.5.1 Security Data Provider

The Security Data Provider is responsible for managing the setup of the framework
and takes care that the security policy defined in the Security Definition Language
(SDL) is transferred from its persistent representation into the transient storages of
the framework.

The main task of the Security Data Provider is to read the configuration file which is
created by the security administrator. According to the entries of the configuration
file, the Security Data Provider retrieves the actual security policy and the
combination and relationship of models. Furthermore, the configuration file contains
references to the data provider for each model which are responsible for retrieving
the data. Thus the Security Data Provider is responsible for setting up and controlling
the model’s data provider.

The Security Data Provider interacts with the ACL Data Provider from which it gets
ACL Tuples. The Security Data Provider fills the tuples with object references to

Chapter 3: GAMMA Page 77

subjects, secure objects, authorizations, and constraints. These objects are created by
the corresponding data providers. If a tuple cannot be resolved due to missing entities
within the data store, the tuple is removed and ignored. However, it is imaginable
that an entry in the audit trail is created to document this incident. In a last step the
Security Data Provider delivers the filled tuple to the appropriate model which in fact
transfers the tuple into the Rule Base using the ACL Manipulator.

Since the flow of SDL data is bi-directional, the Security Data Provider is also aware
of retrieving the tuples from the model respectively from the Rule Base and split
them into their parts. Each part is handed over to the appropriate provider which is
aware of writing the data back into the persistent storage. Additionally, since the
Security Data Provider is responsible for the setup of the framework, it offers a
means for storing modifications of the configuration back to the configuration file.
Thus, it has to interact with the access controller for transferring the current security
policy.

Dependencies: The Security Data Provider depends on the configuration file and the
data providers.

Context: The Security Data Provider interacts with the Access Controller, the
models, the configuration file and the various data providers.

Interfaces: The Security Data Provider provides the following interfaces:

• ISecurityDataProvider defines the functionality of the security data
provider, thus it contains all methods necessary for manipulating the security
policy (SDL).

• IFrameworkConfiguration defines methods necessary for handling the
framework’s configuration file and the setup of the framework’s components
(especially models and data providers).

3.2.5.2 ACL Data Provider

The ACL Data Provider retrieves ACL tuples in the form of subject, object,
authorization, and constraint from the persistent ACL storage (SDL). The tuple
contains references to the requested objects that are resolved by the Security Data
Provider and replaced by object references retrieved from the data providers. Only
secure objects are replaced by placeholders (containing the hash code) and can be
referenced only at runtime.

Chapter 3: GAMMA Page 78

When writing the tuples to the persistent storage, the ACL Data Provider assigns
object references within the tuple. The objects are stored using the data providers.

In fact, the ACL Data Provider is an abstract base class for retrieving ACL data.
Concrete implementations cover different storage types.

Dependencies: The ACL Data Provider depends on the ACL storage and the
Security Data Provider.

Context: The ACL Data Provider interacts with the Security Data Provider,
providing the ACL entries.

Interfaces: The ACL Data Provider provides the following interfaces:

• IACLDataProvider defines the functionality of the ACL Data Provider such
as managing and manipulating ACL tuples.

• IStorage defines storage capabilities.

3.2.5.3 Subject Data Provider

The Subject Data Provider realizes an abstract base class for retrieving subject data.
Concrete implementations will deal with two main topics: retrieval from different
storage types and retrieval of different subject types. In fact, security models have
their own requirements to subjects. An RBAC model needs roles as subjects whereas
a DAC needs users. Each concrete data provider has to manipulate its data so that it
fits into the model. For example the role data provider has to provide roles as
subjects but is also responsible for the role user mapping. This is done in the way that
the subject data provider obtains a reference to the model and therefore can interact
with the model. On the other hand, subject data can be stored in various physical data
storages (e.g., database, operating system, LDAP) thus different providers are needed
which are aware of handling such storages.

The Subject Data Provider retrieves subject data from a storage. Then it creates an
instance of a subject class, feeding this instance with all data retrieved from the
storage. The object reference is given to the Security Data Provider and stored in the
Security Data Provider’s tuple.

Dependencies: The Subject Data Provider depends on the subject storage, on the
Subject component, on the Security Data Provider, and on the Model.

Chapter 3: GAMMA Page 79

Context: The Subject Data Provider interacts with the Security Data Provider,
providing the subject data and the Model in order to perform a model specific user
mapping.

Interfaces: The Subject Data Provider provides the following interfaces:

• ISubjectDataProvider defines the functionality of the Subject Data
Provider such as managing subjects out of a storage.

• ISubjectQuery defines query possibilities for subjects used by the various
concrete security models.

• IStorage defines storage capabilities.

3.2.5.4 Object Data Provider

The word object is used in the following in the sense of objects containing sensible
data that needs to be protected by the security system. The Object Data Provider
offers an interface for transferring an object’s hash code to the Rule Base. Whenever
an application programmer creates a new object and wants to protect it, the object is
given to the Object Data Provider which reads out the hash code and provides it to
the Security Data Provider.

Tuples (Subject, Secure Object, Permission, Constraints) do not contain object
references themselves but a unique id, identifying the object. The Object Data
Provider is only used when creating new objects during run-time.

Dependencies: The Object Data Provider depends on the object storage, the Secure
Object Component, and on the Security Data Provider.

Context: The Object Data Provider interacts with the Security Data Provider,
providing the object data.

Interfaces: The Object Data Provider provides the following interfaces:

• IObjectDataProvider defines the functionality of the Object Data Provider
such as managing and registering objects to the security system.

• IStorage defines storage capabilities.

Chapter 3: GAMMA Page 80

3.2.5.5 Authorization Data Provider

The Authorization Data Provider realizes an abstract base class for retrieving
authorizations. Authorizations can be either positive (permissions) or negative
(prohibitions). Concrete implementations will cover various storage types. The
Authorization Data Provider transforms transient authorization data out of and into a
persistent storage. When retrieving the data out of a storage it creates an instance of
the authorization object and initializes the object. The authorization object reference
is then given to the Security Data Provider and stored in the Security Data Provider’s
tuple.

Dependencies: The Authorization Data Provider depends on the authorization
storage, the concrete Authorization component, and on the Security Data Provider.

Context: The Authorization Data Provider interacts with the Security Data Provider,
providing the authorization data.

Interfaces: The Authorization Data Provider provides the following interfaces:

• IAuthorizationDataProvider defines the functionality of the
Authorization Data Provider such as handling and managing authorizations
obtained from a storage.

• IStorage defines storage capabilities.

3.2.5.6 Constraint Data Provider

The Constraint Data Provider realizes an abstract base class for retrieving
constraints. There are various kinds of constraints which will be mentioned later in
this chapter. Concrete implementations will cover various storage types. The
Constraint Data Provider can retrieve constraint data from or store it into a persistent
storage. It is aware of creating instances of the constraint objects using the right
subclass and initializes the object. The type is received from the storage. The
constraint object reference is then given to the Security Data Provider and stored in
its tuple. Figure 16 shows an example representation of persistent constraint data in a
database. The Constraint Data Provider knows which concrete constraint class has to
be used by interpreting the type. The Constraint data is stored as meta data within the
database. This data is interpreted by the constraint component which queries through
the meta data.

Chapter 3: GAMMA Page 81

 Database
ID Type M1 Mn
101 2 14:00
102 1 193.xx ...

Type
TypID Constraint
1 Location
2 Time
3 History

M2
15:00
193.xx

Figure 16: Example representation of persistent constraint data

Dependencies: The Constraint Data Provider depends on the constraint storage, the
concrete Constraint component, and on the Security Data Provider.

Context: The Constraint Data Provider interacts with the Security Data Provider,
providing the constraint data.

Interfaces: The Constraint Data Provider provides the following interfaces:

• IConstraintDataProvider defines the functionality of the Constraint
Data Provider such as handling and managing constraints obtained from a
storage.

• IStorage defines storage capabilities.

3.2.5.7 User Data Provider

The User Data Provider (UDP) is a special subject data provider, providing subjects
for a model. Since each model needs users, this is the only realized subcomponent of
the subject data provider which is part of the framework kernel. The UDP obtains
user data from a persistent storage and provides these data within a transient storage.
For each type of persistent storage a concrete implementation of the UDP must be
provided. Since the transient storage is independent from the persistent storage and
looks equal for each storage type, the transient storage is implemented in the base
class.

Dependencies: The UDP depends on the Subject Data Provider.

Context: The UDP works together with the Subject Data Provider, thus also with the
Security Data Provider which is responsible for writing the subject references to the
ACL tuples.

Interfaces: Since the UDP is a special subject data provider, it provides the same
interfaces.

Chapter 3: GAMMA Page 82

3.2.5.8 Model

The Model component is the abstract base class for a concrete security model. It
collects subjects, objects, authorizations, and constraints from the Security Data
Provider and transfers them to the Rule Base respectively the Constraint Verificator
using the ACL Manipulator. The model has to be aware of the underlying assumption
to perform the access control. When the model is delegated to check access requests,
it generates a search pattern and executes the pattern matching process in the Rule
Base. Then the result is evaluated according to the world assumption and one of the
following results is returned:

• True: when a rule was found and access is granted
• False: when a rule was found and access is denied
• Weak True: when no rule was found in an open world assumption
• Weak False: when no rule was found in a closed world assumption

Furthermore, the model is responsible for model specific tasks (e.g., role activation,
owner grants permissions to another subject).

Dependencies: The Model depends on the Access controller, the Subject, Object,
Permission, and Constraint component.

Context: The Model interacts with the Rule Base, the Constraint Verificator, and the
ACL Manipulator.

Interfaces: The Model provides the following interfaces:

• IModel defines the functionality of the Model component such as the
management of security models. Furthermore, it contains the access check
functionality for a security model. The Access Controller will delegate the access
check via this interface.

• ISecurityDataManipulaton defines the functionality of obtaining
security data from the Security Data Provider. The security data is then forwarded
to the ACL Manipulator (IRuleManagement interface).

3.2.5.9 Security Manager

The Security Manager is the central manager of the framework. It controls all
security components. Requests are posted to the security manager, whereas the
security manager dispatches them to the corresponding components. Moreover, it
handles the interaction of the authentication, access control, and auditing part. The

Chapter 3: GAMMA Page 83

security manager has a bootstrapping method which initializes the standard
components of the framework.

Dependencies: None.

Context: The Security Manager controls the whole framework. Thus it interacts with
all parts and components of it. Furthermore, it is the interface to the framework’s
clients.

Interfaces: The Security Manager provides the following interface:

• ISecurityManager defines the functionality of the Security Manager. In
fact, the framework user (the program using the framework) will interact with the
GAMMA framework only via this interface.

3.2.5.10 ACL Manipulator

The ACL Manipulator creates and manages the rules for the Rule Base. Thus, it
manages the transient storage of the Rule Base. In principal, the Rule Base has to be
changed according to the following incidents:

• Change request from an authorized subject (e.g. owner grants rights to another
person). The subject may differ depending on the current model in use.

• Creation of new objects which have to be protected.

The ACL Manipulator creates an entry in the Rule Base (rule) with the information
obtained from the Model respective the Security Data Provider.

For generating the rule, the component uses subject, object, and authorization
information. For each entry in the Rule Base it assigns an identification number
which provides the connection to the list stored in the Constraint Verificator. Within
the same step the entries (tuples) in the Constraint Verificator are created containing
the identification number of the Rule Base and the constraint objects.

Typical tasks of the ACL manipulator are:

• Add a rule to the Rule Base
• Modify a rule within the Rule Base
• Remove a rule from the Rule Base

Chapter 3: GAMMA Page 84

Performing tasks on a rule implies the modification of the corresponding entries in
the Constraint Verificator.

Dependencies: The Model uses the ACL Manipulator for generating the Rule Base.

Context: The ACL Manipulator interacts with the Constraints Verificator, the
Security Data Provider, Subject, Object, Authorization, Constraint, Rule Base, and
the Model Component.

Interfaces: The ACL Manipulator provides the following interfaces:

• IACLManipulator defines the functionality of the ACL Manipulator. The
model component is communicating with the ACL Manipulator via this interface.

• IRuleManagement defines the functionality for creating and managing rules
which are then given to the Rule Base (via the IChangeRuleBase interface).

3.2.5.11 Subject

This component realizes actors and entities of the system, such as persons, processes,
or model specific entities (e.g. roles).

Sometimes a subject executes a method on an object which requires access to
another object. In order to perform this task, there are two possibilities:

1.) The object becomes a subject and the access control is done by verifying if the
corresponding object has the right to access the other object.

2.) The first object is calling the method of the second object on behalf of the
subject. Therefore, the subject needs sufficient access rights to the second object.
This method is called transitive access.

In the case of accessing an object transitively, the subject of the first object is taken
for access control decision (compare to Figure 17). This subject, as a part of the
request parameters, is stored in the Access Control Context. When access to the
second object is requested, the access controller gets the subject from the Access
Control Context and checks whether or not the subject is allowed to call the method
on the second object.

Chapter 3: GAMMA Page 85

Requires results
from Obj. Y,

transitive object

access

Object X Object Y

Security Manager request Obj. x

access
Object

Figure 17: Transitive Object Access

Subjects are both, model specific and general (e.g. users). An abstract base class is
provided for implementing new types of subjects (compare to Figure 18).

 Subject

Role Process User

Figure 18: Abstract base class and concrete subclasses for subjects

Dependencies: None.

Context: Since subjects are one of the most important components, they interact
with nearly every other component. In fact, they interact with the Security Manager,
the ACL Manipulator, the Access Controller, the Constraint Verificator, the Subject
Data Provider, the Model and its Rule Base, and the Access Control Context.

Interfaces: The Subject component provides the following interface:

• ISubject defines the functionality of the subject component.

3.2.5.12 Secure Object

The Secure Object is the base class for all objects to be protected by the GAMMA
system. It is necessary that a client does not obtain a direct reference to the object. By
declaring the constructor private, only a privileged component can create the Secure
Object. This raises the need for a factory (see Gamma et al, 1995), which constructs
the secure object and returns an appropriate wrapper. In fact, the Proxy Generator is
responsible for the task of creating the object or obtaining a reference if the object
already exists.

Chapter 3: GAMMA Page 86

Dependencies: The Secure Object depends on the Proxy Generator and the Secure
Object Wrapper.

Context: The secure object interacts with the Proxy Generator, the Secure Object
Wrapper, the Object Data Provider, the Model, and the Access Controller.

Interfaces: The Secure Object component provides the following interface:

• ISecureObject defines the functionality of the secure object component.

3.2.5.13 Authorization

The Authorization Component realizes access rights onto resources. Authorizations
are logically separated from the security model. This separation enables the use of
the same authorization component in various security models. Authorizations are
based upon Secure Objects not upon subjects. Thus, authorizations are assigned to
objects, stating the allowed actions on the object that can be done by certain subjects.

Authorizations are implemented and have a defined meaning for a given object. To
separate the authorization logic from the object model, each authorization component
must implement the authorization semantic itself. Thus, the component provides a
checkAccess() method. This method is called when access needs to be
validated. In fact, the authorization component decides itself whether access can be
granted or not.

Authorizations can be either positive or negative. Positive authorizations are called
permissions whereas negative authorizations are called prohibitions. Authorizations
are used within the Rule Base. The Rule Base contains tuple entries containing a
Subject, Object, and Authorization. If a subject requests access, it generates a pattern
that is compared to the entries in the Rule Base. If a fitting entry is found, the Rule
Base delegates the evaluation to the Authorization object that offers this
checkAccess() method. The method interprets subject and object according to
the authorization model. In fact, it uses meta information for verifying the possibility
of accessing the resource in the requested way. Dependent on the type of
Authorization, the object tells the Rule Base if access is granted or denied. In order to
perform its work, the component resolves the granularity of the object that is divided
into the following levels:

• Class: Permissions are defined for classes, so each instance (object) inherits the
permissions defined on the class

Chapter 3: GAMMA Page 87

• Object: Permissions are defined for a concrete object instance.
• Method: Access to a method of a class or object is requested.
• Member: Access to a member variable is requested.

When the granularity is resolved, the check method analyzes the protected resource
and determines if access is possible. If, for example, read access is requested and
granted by the security policy on object level but the object does not provide any
means for obtaining information (e.g. get-methods), access cannot be granted and has
to be denied. The check method returns true if access can be granted, otherwise false.

However, the authorization component is an abstract base class for various access
rights. The framework will provide some basis authorizations which can be either
positive (permission) or negative (prohibition) depending on the model’s world
assumption (e.g., read, write, execute for the object access; read, write, modify,
execute for file access). Such authorizations are called assumption-based
authorizations. The presence of an authorization means that the rule falsifies the
model’s world assumption, saying that a privilege should allow something in a
closed world or the very same privilege should deny something in an open world.

By extending the Authorization component, individual authorizations can be created.

Dependencies: The Authorization component depends on the Authorization Data
Provider which provides the authorization data and creates the object.

Context: The Authorization component interacts with the Security Manager, the
ACL Manipulator, the Access Controller, the Rule Base, the Access Control Context,
and the Authorization Data Provider.

Interfaces: The Authorization component provides the following interfaces:

• IAuthorization defines the functionality of the authorization component.
• ICheckRule is used to delegate the access check evaluation. This interface

defines the functionality to evaluate access requests according to the
authorization.

3.2.5.14 Permission

A Permission component explicitly grants access to a resource. Thus, the permission
does not base on the model’s assumption. If the Rule Base finds a rule which permits

Chapter 3: GAMMA Page 88

access, the access is granted to the corresponding subject. If no rule is found, the
model relies on its world assumption.

Dependencies: The Permission component depends on the Authorization
component.

Context: The Permission component interacts with the Security Manager, the ACL
Manipulator, the Access Controller, the Rule Base, the Access Control Context, and
the Authorization Data Provider.

Interfaces: The Permission component is a specialized authorization thus it provides
the same interfaces.

3.2.5.15 Prohibitions

Prohibitions explicitly deny access to a resource. Like the Permission component,
prohibitions do not base on the model’s assumption. If the rule base finds a rule
which prohibits access, the access is denied to the subject. If no rule is found, the
model relies on its world assumption.

Dependencies: The Prohibition component depends on the Authorization
component.

Context: The Prohibition component interacts with the Security Manager, the ACL
Manipulator, the Access controller, the Rule Base, the Access Control Context, and
the Authorization Data Provider.

Interfaces: The Prohibition component is a specialized authorization thus it provides
the same interfaces.

3.2.5.16 Constraints

Constraints restrict certain actions within the system. Constraints define conditions
which allow or deny the execution of certain tasks, thus there are positive and
negative constraints. Furthermore one differentiates model specific constraints and
model unspecific constraints.

Model specific constraints influence only actions and tasks of the security model and
are defined and implemented by the model provider. Examples for such constraints
are separation of duties, respective static separation of duties and dynamic separation
of duties. Model unspecific constraints are independent from the current active

Chapter 3: GAMMA Page 89

security model and influence the application as a whole. These constraints are
defined and implemented by the framework architect. The independent constraints
are further classified according to their function. Examples are location-based
constraints (e.g. logins are only allowed from specific IP addressed) and time based
constraints (e.g., access to resource is not allowed from 8pm to 6am, access is only
allowed over a duration of 2 hours after login).

Constraints are verified by the Constraint Verificator which checks the constraint
condition after successful verification through the access controller. Constraint
information are provided through the access control context which contains
information needed by the constraint to verify the access request.

The Constraint Verificator delegates the verification task to the constraint which
provides a check method. This method returns true if the current rule is valid and
thus should be considered.

Dependencies: None.

Context: The Constraint component interacts with the Rule Base, the Model, the
Security Data Provider, the ACL Manipulator, and the Constraint Data Provider.
Furthermore, for gathering information about the access request, the Constraint
component has to interact with the Access Control Context. Since constraints may
depend on permissions, the constraints also interact with the Authorization
component.

Interfaces: The Constraint component provides the following interfaces:

• IConstraint defines the functionality of the constraint component.
• ICheckRule is used to delegate the access check evaluation. This interface

defines the functionality to evaluate access requests according to the constraint.

3.2.5.17 Access Controller

The Access Controller receives access requests and dispatches them to the current
active models. The request parameters are stored in the Access Control Context
which is considered when access control decisions are made. Furthermore the Access
Controller is responsible for delegating the authorization checks to the models
corresponding to the policy stated in the SDL. The Access Controller dispatches the
requests to the active models in the order specified in the SDL and awaits the result
of the rule evaluation. A model can return one of the four values “access granted”,

Chapter 3: GAMMA Page 90

“access denied”, “weak access granted”, or “weak access denied”. If a strong result is
returned the access controller stops the request handling and returns the result to the
security manager. If a weak result is returned, the next active model is contacted. The
first weak result is valid in the case of there is no strong result returned by any
model.

Finally, the access controller is responsible for the security layer which contains the
various proxy classes. Thus, it controls and invokes the Proxy Generator which
generates Secure Object Wrappers. The Access Controller returns these wrapper
classes to the requesting subject.

Dependencies: The Access Controller depends on the Security Manager and the
Model for handling access requests and the Proxy Generator for generating secure
objects.

Context: The Access Controller interacts with the Security Manager which manages
the overall security within the system, the Model to which it delegates access
requests, the Access Control Context storing information for further access requests
and constraint evaluations, and Subjects, Objects, and Authorizations.

Interfaces: The Access Controller provides the following interfaces:

• IAccessController defines the functionality of the Access Controller. The
Security Manager interacts with the Access Controller via this interface.

• IACCManagement provides an interface to the Access Control Context.

3.2.5.18 Access Control Context

The Access Control Context realizes a transient store for access pattern tuples
(subject, object, authorization) and further meta information (e.g., target, host, time).
The Access Control Pattern provides information for requesting meta information for
constraints or authorizations. The meta information is extensible and can contain
further entries in the context. This information is stored in a sort of list and the
corresponding constraint or authorization objects can retrieve the information via
access methods.

Dependencies: The Access Control Context depends on the Model, Subjects,
Objects, and Authorizations.

Chapter 3: GAMMA Page 91

Context: The Access Control Context interacts with Permissions, Subjects, and
Objects which are stored in the access control context store. Furthermore, the store
can contain framework independent data within its list. The Rule Base respective
Authorizations and Constraints components can obtain this information for their
check methods.

Interfaces: The Access Control Context provides the following interface:

• IAccessControlContext defines the functionality of the Access Control
Context. The Access Controller interacts with the Access Control Context via
this interface.

3.2.5.19 Rule Base

The Rule Base is a transient storage including tuples in the form of an id, a Subject,
an Object, a Class, or a Method, and a certain Authorization. The id of each tuple is
used for referencing entries within a Constraint Verificator object. The constraint
reference is not mandatory, as not each subject or object has constraints.

Generally, the Rule Base is a transient store that contains an integrator which accepts
a pattern containing the search condition for a rule. Furthermore, the Rule Base is
aware of adding and removing model based rule tuples. The Rule Base itself is
managed by its corresponding Model component. In fact, every Model has its own
Rule Base containing the Model’s specific data.

Every model has to break down its structures to the Rule Base. In detail this means
that for every model subjects, authorizations, and constraints have to be implemented
which are stored within the Rule Base.

Dependencies: The Rule Base depends on the Model component since every Model
has its own Rule Base. Furthermore, the ACLManipulator component is
responsible for the dynamic behavior of the Rule Base.

Context: The Rule Base interacts with the Model, Subjects, Secure Objects,
Authorizations, and the Constraint Verificator.

Interfaces: The Rule Base provides the following interfaces:

• IRuleBase defines the functionality of the Rule Base. The ACL Manipulator
interacts with the Rule Base via this interface.

Chapter 3: GAMMA Page 92

• IQueryRuleBase provides querying functionality within the Rule Base. The
Model performs its pattern matching process via this interface.

• IStorage defines storage capabilities.

3.2.5.20 Constraint Verificator

The Constraint Verificator component owns a transient storage including tuples
consisting of an id and a Constraint. The Verificatior proves the validity of a
Constraint by calling the Constraint’s check method.

A further task of the Constraint Verificator is the management of the transient
storage which holds the id-Constraint tuples.

Dependencies: The Constraint Verificator depends on the Rule Base and the Model.

Context: The Constraint Verificator interacts with the Rule Base, Constraints,
Authorizations, Subjects, and Secure Objects. Furthermore, the ACL Manipulator is
responsible for managing the changes within the Rule Base – respectively the
Constraint Verificator. The Constraint Data Provider maps the persistent
representation of the constraints to transient ones. The Access Control Context, as
the storage for a request, provides further information for the built-in check method.

Interfaces: The Constraint Verificator provides the following interfaces:

• IConstraintVerificator defines the functionality of the Constraint
Verificator.

• ICheckConstraints is used for the interaction with the Constraint
Verificator. This interface provides querying functionality within the constraint
storage. The Model and the Rule Base perform their pattern matching process via
this interface.

3.2.5.21 Proxy Generator

On request of the Access Controller, the Proxy Generator generates a Secure Object
Wrapper. If the object to protect already exists, a reference to it is obtained,
otherwise the object is created. Using runtime meta-information, a proxy (Secure
Object Wrapper) is created which contains the method stubs of the protected object.
These stubs perform security checks and invoke the object’s corresponding method if
the check is positive.

Chapter 3: GAMMA Page 93

Dependencies: The Proxy Generator depends on the Secure Object and the Secure
Object Wrapper.

Interfaces: The Proxy Generator provides the following interface:

• IProxyGenerator defines the functionality of the Proxy Generator. The
Access Controller uses this interface to perform the proxy generation task.

3.2.5.22 Secure Object Wrapper

The Secure Object Wrapper realizes a proxy to a Secure Object. It contains stubs to
the Secure Object’s methods. The structure of the method stubs can be described as
following: First, a security check is done which examines whether the subject is
allowed to call the Secure Object’s method. The Access Controller is responsible for
determining the access control conditions. If the check is positive, the real method of
the Secure Object is invoked in a second step (compare Figure 19).

 Subject

getName() {
 return this.name;
}

Secure Object Wrapper Secure Object
String getName() {
 if AccessController.check() {
 return secureObject.getName();
}

Figure 19: Secure Object Wrapper

Dependencies: The Secure Object Wrapper depends on the Secure Object, the
Access Controller, and the Proxy Generator.

Context: The Secure Object Wrapper interacts with the Secure Object, the Access
Controller, and the Proxy Generator.

Interfaces: The Secure Object Wrapper provides the following interfaces:

• ISecureObject defines the functionality of the Secure Object Wrapper. Since
each Secure Object Wrapper is a proxy to a Secure Object, the Secure Object and
the Secure Object Wrapper implements the same interfaces.

3.2.6 What GAMMA Can Do

GAMMA is a generic, adaptable, extensible, and modular framework for integrating
security in business applications. GAMMA allows the efficient re-use of existing

Chapter 3: GAMMA Page 94

security mechanisms in any kind of business applications. Moreover, GAMMA can
be adapted to specific application domains and thus supports application developers
in increasing their software quality.

In general, GAMMA can be used for any kind of applications. However, certain
types of applications need a specific adoption of the framework which can be done
by extending the framework’s components.

GAMMA is typically used in server environments. Objects residing at the server are
protected by the GAMMA environment and can be accessed by clients using the
framework client (GAMMAClient component). However, since GAMMA
concentrates on high-level security it takes security at a lower level for granted. If an
underlying component is not secure (e.g., operating system, database), GAMMA will
not provide adequate security.

3.2.7 Integration of GAMMA into Applications

GAMMA integrates by introducing a new layer to a multi-tier architecture. This new
layer is placed between the data and the business logic that processes the data. Thus
the business logic is only allowed to access the data if the security system renders the
access positive. By defining the access privileges via a declarative language, the
application does not need to know anything about security restrictions or
requirements. The security policy is enforced by the security layer.

Backend Layer

Business Layer

Infrastructure (Data Provider)

Access
Control

Authen-
tication Auditing

Security Manager

Security Connector

Application Layer

S
ec

ur
ity

 L
ay

er

Figure 20: Layered architecture of GAMMA

Chapter 3: GAMMA Page 95

3.3 Summary

This chapter presented the design of GAMMA, a framework that enables declarative
security mechanisms in applications. The main objective of this framework is to
provide reusable but flexible security components out of the box. In order to make
the framework usable for various application domains, declarative security
requirements must be offered that do not need a special underlying architecture or
platform.

The framework consists of several reusable components that handle infrastructure
and security enforcement. The overall design but also the functionality of the various
framework components was discussed in this chapter. Especially the enforcement of
the security mechanisms by integrating a new security layer that contains the objects
to protect was presented and its realization aspects explained. Decoupling the
security layer from the application allows a maximum of flexibility on the one hand
but allows on the other hand to address complex security requirements of different
application domains.

The next chapter discusses the realization aspects by presenting the JGAMMA
reference implementation. The implementation is based on the Java platform,
However, in order to prove the platform- and architecture neutrality, a second
reference implementation that bases upon the Microsoft .NET framework is
presented and discussed.

Chapter 4: Reference Implementation Page 96

4 Reference Implementation

This chapter describes the realization of the GAMMA concept using the Java
platform. First, realization aspects are described, illustrating how the concept was
realized in Java. Second, the use of the JGAMMA reference implementation is
shown by means of a demonstrator application. Finally, the architecture and platform
neutrality of the GAMMA framework is proved by presenting a second reference
implementation realized in the Microsoft .NET platform.

4.1 The JGAMMA Reference Implementation

The framework is separated into eight major packages and several sub packages, as
shown in Figure 21. Each of these packages contain a set of classes that realize a
specified task within the framework.

Figure 21: Package structure of the JGAMMA framework

• auditing: This package contains classes that are responsible for generating
audit trails. Messages are sent to the auditing component which sends the
message to all registered audit handlers. Before the message is stored or printed,
each audit handler filters the message according to its category or priority.
o auditHandler: This package contains a set of ready-to-use audit handlers.

Chapter 4: Reference Implementation Page 97

o filters: This package contains a set of ready-to-use filters for any audit
handler.

• client: This package contains all client-side classes, thus it has to be
distributed to the client that is using the framework.

• extension: This package and its sub packages contain extensions to the
framework. Framework developers and end users can install plug-ins or
extension packages here. The content of this package depends on the installed
framework extensions.

• interfaces: This package contains all interfaces of the framework
components.

• kernel: This package contains the core classes of the framework. These classes
should not be modified in order to gain forward compatibility with future
releases. However, user-defined classes can be derived from these classes and be
stored in the extension or models package.
o DataProvider: This package contains ready-to-use data providers for

obtaining security information (SDL and object information) out of storages.
• models: This package contains the various security models. New models can be

placed in sub packages.
o DAC: All classes necessary for using the Discretionary Access Control model.
o RBAC: All classes necessary for using the Role-Based Access Control model.

• SDL: the classes in this package build up a runtime meta model of the application
(from the SDL-file) and are necessary for configuration and control of the
framework.

• server: This package realizes the server-sided communication between client
and server.

The framework itself base upon various third party libraries that provide low-level
security. These libraries are located in the “ext” subdirectory (Bouncy-Castle
Cryptography Library) or are part of Sun’s Java 2 SDK Version 1.4.x.

4.1.1 Infrastructure Components

As mentioned earlier, the framework consists of security and infrastructure
components. The infrastructure components are responsible to set up the framework
and to allow communication between components within the framework and other
systems. This allows the integration into existing environments by exchanging
information from and to back-end systems. Furthermore, the infrastructure

Chapter 4: Reference Implementation Page 98

components enable the use of enterprise-wide used security systems like LDAP
directories or the user database in operating or database management systems.

4.1.1.1 Security Definition Language

The security definition language (SDL) forms the main part of the infrastructure
components and is based on the XML standard. In fact, it is used to configure the
framework, the models in use, and the security policy for a specific application.
Furthermore, the SDL states which data providers are used for gathering the
information for working with the framework.

The main advantage of GAMMA is the capability to use more than one security
model simultaneously. The SDL defines which models are used and their order. The
order is important to enable appropriate conflict resolution mechanisms if two or
more models return conflicting results. Moreover, a world-assumption is assigned to
each model, which can either be a closed or an open world assumption. Within the
closed world assumption everything is prohibited unless explicit permissions exists,
an open world assumption allows all operations unless they are explicitly prohibited.

The SDL is defined in an XML document. The structure of the document is shown in
Listing 1. The italic written text is a place holder for concrete identifiers.

<?xml version="1.0" encoding="UTF-8"?>
<security-policy>
 <gamma application="ApplicationName">
 <models>
 <model type="model’s class name"
 assumption="worldassumption"
 modelname="model’s name">
 <data-provider type="provider’s class name">
 <document>filename or specification</document>
 </data-provider>
 </model>
 </models>
 </gamma>
</security-policy>

Listing 1: SDL Sample

As one can easily see, the SDL consists of a single general tag (<security-
policy>). This tag defines the scope of the security definition. Within this tag,
there can be one or more instances of the application tag (<gamma
application>), each specifying the security policy for a single application. The
application tag requires an application name that identifies the business application.
This identifier is used as a link between the security policy file and the target

Chapter 4: Reference Implementation Page 99

application. Within this tag, the used security models are defined. This is done by
specifying a model by using the <models> tag. Each model must have the
following properties:

• type, specifying the Java class name that implements the model (e.g.
at.scch.jgamma.models.DAC.DACModel),

• assumption, stating the model’s world assumption whereas valid values are
either open or closed,

• modelname, identifying the model within the application. The application can
then query through the model’s decision base via this name.

4.1.1.2 Data Providers

Data for each model is obtained from a persistent storage. These storages can differ
in their structure. Furthermore, it is possible to retrieve data from various storages
using so-called data providers. These data providers must be specified for each
model within the model tag. Data providers are specified using a data-provider tag.
Each type of data provider has its own tag (that is presented below) but they all have
the same structure. The tag takes just one property, the type property that specifies
the class that has to be loaded. Within the data provider tag, the document is
specified that provides the connection between the data provider and the concrete
storage location. The structure of the tag’s content depends on the data provider (e.g.,
SQL statement, filename).

In order to work, a model needs following data providers:

• ACL Data Provider (specified via the <acl-data-provider> tag): is
responsible for retrieving access control lists from a persistent storage. This list
contains references to subjects, objects, authorizations, and constraints and has to
be read first for each model.

• Authorization Data Provider (specified via the <authorization-
data-provider> tag): retrieves authorization objects from a persistent
storage.

• Object Data Provider (specified via the <object-data-provider>
tag): retrieves the objects that have to be secured.

• Subject Data Provider (specified via the <subject-data-

provider> tag): retrieves the active entities (subjects) that want to access
secure objects.

Chapter 4: Reference Implementation Page 100

• Constraint Data Provider (specified via the <constraint-data-
provider> tag): retrieves constraints that restrict authorizations.

Data providers are per default bidirectional which means that they are able to write
modified data back to the storage. The implementation of such custom data providers
is presented in Chapter 4.3.4.

4.1.2 Client/Server Architecture

The other infrastructure components enable the connection between the application
and the GAMMA framework. At runtime, the framework introduces a new security
layer that holds the objects to protect. The access to these objects is regulated by the
framework. Thus, it is necessary to have a connector to this layer, the so called
GAMMAClient. Currently the communication between the application and the
security layer is done using RMI. This allows the simple distribution of the
application and the security components to various machines. In fact, the GAMMA
framework should be installed on a trusted machine since a local installation can be
circumvented by the operating system’s administrator account. It is understood that
appropriate measures must be taken in order to make this communication secure (e.g.
use encrypted sockets for RMI). The GAMMAClient is the single class that has to
be integrated into the business application. In fact, this component is able to perform
a login to the framework and manage the user account. The login method of the
GAMMAClient returns an interface to the security manager which forms the central
part of the framework. The security manager receives all client calls and dispatches
them to the appropriate security components of the framework.

The counterpart of the GAMMAClient is the GAMMAServer which resides already
in the security layer. In fact, this component starts the framework by creating a
security manager and sets up the communication facility (RMI) that is used by the
client. The GAMMAServer is the bootstrap process of the framework and is
detached by the security manager after the initialization completed.

4.1.3 Authentication

In order to interact with the framework, a user must be authenticated. This is
automatically done by invoking the GAMMAClient’s login() method. Since the
server supports multiple authentication methods, it is hard to determine for the client
which method to use. The problem is caused by the fact that the client has to send
different authentication data to the server, depending on the server’s method. In the

Chapter 4: Reference Implementation Page 101

case of a simple username/password authentication, the client has to send this data to
the server using a secure channel. Using the secure Kerberos method, the client has
to gain tickets first and send these tickets to the server whereas the tickets are
generated by a server that is not part of the GAMMA framework. Currently, the
method to use has to be stated in the client application by calling the appropriate
login method of the GAMMAClient component.

However, in future releases the server will send authentication code to the client that
is executed at the client side. This code then gathers the required authentication
tokens and forwards them to the server. This will enable additional flexibility and
protection since the authentication method can be changed anytime and the client
only sends the information which is required for a correct authentication.

The authentication itself is done by the GAMMA framework. The framework
provides an abstract authentication component (kernel.Authentication).
Concrete implementations will cover different authentication methods. Currently, the
framework is available with a simple PasswordAuthentication and a secure
but more complex KerberosAuthentication. Each authentication component
must implement the IAuthentication interface, that states the methods that are
used by the framework to ensure the correct proof of identification of a user. Besides
the pure authentication, the component is able to manage the user store that contains
the various identities of the framework users. This is necessary since these storages
will differ in their structure. On the other hand, delegating the management of the
user store to the authentication component itself allows concepts like single sign on
where the component interacts with the underlying operating system by consulting
the operating system’s user database and login state.

4.1.4 Auditing

The auditing component is responsible for gathering framework information and
write them into a log. In fact, each framework component interacts with the auditing
facility by sending messages to it. The auditing in GAMMA is highly extensible,
supporting various output streams with specific filters. Thus, various
AuditHandlers can be registered within the auditing component whereas
concrete handlers enable the use of a specific output media (e.g., database, screen,
logfile). When a new message arrives, the Auditing component dispatches the
message to all registered AuditHandlers. Each AuditHandler can contain
various AuditFilters, allowing a customization of the audit trail. Filters restrict

Chapter 4: Reference Implementation Page 102

framework or security messages and / or the message type. This enables the usage of
customized audit trails like printing only critical security messages on the server
console, writing all security messages into a security log file and writing all
framework relevant messages to another log file. Furthermore, this enables the
integration of an Intrusion Detection System that acts as an AuditHandler and
collects all messages which are evaluated and searched for attack patterns. The
overall function of the Auditing component can be seen in Figure 22.

Handler Handler HandlerHandler Handler Handler

Figure 22: Auditing

In order to enable filtering mechanisms, the audit messages have a defined structure.
Each message is formulated by creating an AuditMessage object that contains the
following information:

• Message Priority: defines the type of message whereas valid options are:
o MSG_DEBUG: containing a message for debugging purposes,
o MSG_INFORMATION: containing a message that informs the user /

administrator about something,
o MSG_WARNING: containing a message that indicates that something occurred

which can result in problems,
o MSG_ERROR: containing a message that indicates that something went

wrong, and
o MSG_FATAL: containing a message that resulted from a serious misbehavior

of the system.
• Message Category: defines which part of the framework produced the message

whereas valid options are:
o MSG_FRAMEWORK: indicating that the message affects the framework, its

components, and/or the infrastructure components,

Chapter 4: Reference Implementation Page 103

o MSG_SECURITY: indicating that the message was produced by a security
component (e.g. result of access checking).

• The message specified by a string.

4.1.5 Authorization and Access Control

Although authentication and auditing are required parts of a security framework,
GAMMA concentrates on authorization and access control. The basic idea of how to
protect business objects is to put them into a secure environment and monitor access
to these objects. In fact, GAMMA intercepts each call to the protected object and
forwards it to the access control engine. This interception and forward mechanism
has to be done automatically, thus several components are required which enable a
transparent and enforceable protection of business objects.

If a subject accesses an object in terms of calling an object’s method, the invocation
request is forwarded by the GAMMAClient to the security manager. The security
manager then forwards the request to the access controller which is set up according
to the current active security policy. This policy states which models are intact and
their domination order. According to this domination order, the request is passed to
the models by the access controller. Each model searches its decision base now for
an appropriate axiom, stating whether the model grants or denies access to the object.

In the case of rule-based models (e.g., DAC, RBAC), the decision base is stated in
terms of a rule base that contains access rules consisting of a subject, an object, an
authorization, and optional a set of constraints. Rules can be expressed generally on
whole classes, object instances, and methods or fields of an object. Classes are
specified by their full qualified class name (e.g. at.scch.object.TestClass),
object instances are identified by an object id which is assigned during the creation of
the instance. Furthermore, the framework offers the possibility to assign the
authorization to a specific method of an object by allowing the definition of a method
signature. This enables the possibility to state access limitations at different
granularity levels which raises the need for conflict resolution. A possible conflict
resolution method is presented later in this chapter.

As already mentioned, the decision depends on the assigned authorization. In order to
provide extensibility and flexibility, GAMMA does not provide a defined, restricted
set of authorization. As a matter of fact, the authorizations know their meaning and
are thus the only part within the access control that is able to state whether access
should be granted or not. In order to do this, an appropriate checkAccess()

Chapter 4: Reference Implementation Page 104

method must be provided that gathers information about the requested access and
determines whether this access should be granted or not. This requires that the
authorization component knows what it stands for and thus which information flow
should be allowed or rejected. In fact, the checkAccess() method validates the
meta information passed through the AccessControlContext and analyzes the
request. The following contains a list of possible authorization return values. The
determination of the authorization result is normally triggered by consulting all
appropriate rules of a model’s rule base, thus there is a tight connection between
rules and authorizations.

NO_RULE_FOUND This result indicates that the rule has no
effect on the access decision. This case
must be considered, since the rule base is
not able to interpret the authorization’s
meaning and forwards access requests to
all rules that are stated for a certain
subject / object combination.

GENERAL_RULE_AUTHORIZATION This result indicates that an assumption-
based authorization is applicable for the
access request, but the authorization is
assigned on a general granularity level
(class or object instance), thus it is
possible that it is overruled by a more
concrete rule.

GENEARL_RULE_PERMISSION This result indicates that the rule fits the
access request and contains a permission
on a general granularity level, thus the
rule grants access. However, it is
possible that it is overruled by a more
concrete rule.

GENERAL_RULE_PROHIBITION This result indicates that the rule fits the
access request and contains a
prohibition, thus the rule denies access.
However, it is possible that it is
overruled by a more concrete rule.

Chapter 4: Reference Implementation Page 105

EXACT_RULE_AUTHORIZATION This result indicates that an assumption-
based authorization is specified on a
specific granularity level (field or
method), thus overruling all general
rules. Again, the result depends on the
model’s world assumption.

EXACT_RULE_PERMISSION This result indicates that a permission is
specified on a specific granularity level,
thus it overrules all general rules.

EXACT_RULE_PROHIBITION This result indicates that a prohibition is
specified on a specific granularity level,
thus it overrules all general rules.

ACCESS_DENIED This result indicates that access is
absolutely denied. This result is only
returned if the access checking
mechanism could not be completed due
to an error or inconsistency of an
authorization component.

Table 4: Possible set of authorization return values

Since various rules can return different results, a conflict resolution strategy is
necessary. In fact, it is up to the model provider to define such a strategy. However,
to find a trade-off between security and flexibility, we suppose the strategy of rating
results. Authorizations that depend on the model’s world assumption are in our
opinion not as expressive as permissions and prohibitions. Therefore we give them
the lowest priority. Permissions are more expressive than assumption-based
authorizations but less significant than prohibitions. As a consequence, prohibitions
have the highest priority. Furthermore, the result bases upon the expressiveness of
the rule. As already mentioned, the framework deals with general rules and specific
ones. Of course, specific rules are stronger than general rules, hence specific rules
always displace general rules. This rating can also be seen from the order how the
results are mentioned in Table 4.

Chapter 4: Reference Implementation Page 106

4.1.6 Flexible Access Control

Sometimes it is not sufficient enough to simply assign authorizations to a subject /
object combination. This is especially true when trying to restrict authorizations on
the base of additional constraints (e.g., time, location). GAMMA enables this by
allowing the optional assignment of a set of constraint components to each access
rule. Again, the constraint is responsible for expressing its semantics, providing a
checkAccess() method that returns whether the constraint grants or denies the
execution of the rule. After validating the authorization positively, the model calls
the checkAccess() method of each constraint that is defined for the rule. Other
than the authorization, each constraint can only return true saying that the rule is
valid or false expressing that the rule should not be considered. The rule itself is
only evaluated if every specified constraint returns true.

Although the majority of access control models are rule-based, there exist other types
of models that do not have a rule-base. These models must have similar mechanisms
like described above. It is easily imaginable that such models consider axioms
whereas these axioms are similar to rules within a rule base.

4.1.7 Security Enforcement

After describing how models find a decision whether to grant or deny a requested
access operation, the question of security enforcement still remains open. In fact, the
framework must provide adequate mechanisms which ensure that access requests are
intercepted and forwarded to the security manager which invokes the access checking
mechanism. Furthermore, it is understood that this interception must be somewhere
between the client and the server.

To ensure security, the client never gets a real instance of the protected object. As
mentioned above, the main idea is to keep objects in a secure place and to intercept
all incoming and outgoing calls. On the other side, the client must have some objects
in order to work.

A proxy controls access to an object with the help of a prefixed representative object
(Gamma et al., 1995). Access to the real object is only possibly through the proxy.
GAMMA protects data objects that contain sensitive information by automatically
generating proxy objects and returns them instead of the real objects. Accessing these
objects via the proxy directly invokes the access control mechanism because the
proxy encapsulate the logic of forwarding all methods to the security manager

Chapter 4: Reference Implementation Page 107

instead of calling the object directly. Since the real objects are kept in a separate
space and can only be accessed through proxies, an application cannot circumvent
the access control mechanism. However, for the application the proxy seems to be its
real correspondent, meaning that an application developer does not have to make
additional effort in developing his application.

public static Object newInstance(Object obj)
 throws InvocationTargetException {

 HashSet saveInterfaces = new HashSet();

 // add all interfaces of obj because a proxy only interacts per
 // interfaces
 addInterfaces(obj, saveInterfaces); (1)

 // add the interfaces of SecureObjectProxy
 Class[] temp = new Class[saveInterfaces.size()];
 int j =0;
 for (Iterator i = saveInterfaces.iterator(); i.hasNext();) {
 temp[j] = (Class) i.next(); (2)
 j++;
 }

 // Create a new Proxy instance using reflection
 return java.lang.reflect.Proxy.newProxyInstance((3)
 obj.getClass().getClassLoader(),
 temp,
 new SecureObjectProxy(obj));
}

Listing 2: Java Code that generates a proxy

Starting with Version 2, Java allows the automatic generation of proxy objects.
Listing 2 shows an implementation of a generic proxy generator. The method returns
a proxy to a given object instance. A proxy in Java only communicates with other
classes via interfaces. Thus it is necessary that the encapsulating object does not
interact with other objects by object references but by using interfaces. Furthermore,
the proxy must provide the same interfaces like the encapsulating object. In a first
step, the interfaces of the original object are determined using Java’s reflection
mechanism. This is done by calling the getInterface() method of the
encapsulating Java class and all its super classes (see Listing 3). Since reflection only
returns interface objects rather than required interface classes, these interfaces are
casted to classes in a second step. The proxy is generated in a third step by calling the
newProxyInstance() method of Java’s Proxy class.

Chapter 4: Reference Implementation Page 108

protected static void addInterfaces(Object obj, HashSet saveInterfaces)
{
 Class[] interfaces = obj.getClass().getInterfaces();
 for (int i = 0; i < interfaces.length; i++) {
 saveInterfaces.add(interfaces[i]);
 }

 Class superClass = obj.getClass().getSuperclass();
 while (superClass != null) {
 for (int i = 0; i < superClass.getInterfaces().length; i++) {
 saveInterfaces.add(superClass.getInterfaces()[i]);
 }
 superClass = superClass.getSuperclass();
 }
}

Listing 3: Determine an object’s interfaces

public Object invoke(Object proxy, Method m, Object[] args)
 throws GAMMASecurityException, Throwable {

 at.scch.jgamma.interfaces.ISecurityManager securityManager =
 this.getSecurityManager(); (1)

 // get the subject’s (caller’s) identity
 IGAMMAObject identity = GAMMAClient.getIdentity(securityManager);

 String signature = null;
 try {
 // Create a signature of the method
 signature = computeSignature(m, securityManager); (2)
 } catch (Exception e) {
 throw new RuntimeException(...);
 }

 // Check the access Access
 StringBuffer b = null;
 try {
 // Get the Subject represented by the account.
 String account = identity.getName();
 IGAMMAObject subject = securityManager.getSubjectByName(account);
 if (subject == null) {
 // do some audit and return...
 ...
 return null;
 }

 // Call the checkAccess remote-method of the SecurityManager
 if (securityManager.checkAccess(subject,
 (IGAMMAObject) this.secureObject, signature)) { (3)
 return m.invoke(this.secureObject, args); (4)
 } else {
 // do some audit and throw security exception...
 ...
 throw new GAMMASecurityException(“...”);
 }
 } catch (Exception e) {
 ...
 }
}

Listing 4: Enforce security checks during proxy invocation

Chapter 4: Reference Implementation Page 109

Implementing Java’s InvocationHandler interface, the corresponding proxy
object is capable to influence the method invocation of the encapsulated object. This
interface requires the implementation of the invoke() method that is called when
the proxy is accessed and directed to forward the invocation request to the real
object. Thus, this is the right place to delegate the request to the security manager
which in turn checks if the caller is allowed to perform the method call or not.
Listing 4 shows a very simplified implementation of this mechanism.

First, the proxy gains a reference to the security manager. In a second step, the proxy
generates a signature that represents the method. This is necessary since the security
manager has to determine the exact method that is about to be called by the client. In
a third step the access checking mechanism is invoked by calling the
checkAccess() method of the security manager. If this method returns the value
true, indicating that access is granted, the proxy invokes the corresponding method
of the real object in a forth step.

Using Java, it is thus not necessary to provide a GAMMA Proxy Generator. Security
is enforced by keeping objects in a secure place where the objects can only be
contacted by passing the security checking mechanism.

4.1.8 Ensuring Flexibility

To provide GAMMA’s flexibility, a mechanism is necessary to introspect objects at
runtime. This is necessary to generate proxies as described above, and to load user-
defined framework extensions (e.g., new access control models, data providers,
authorizations). As already described above, the components to use are described
with the SDL and can change during the lifetime of an application. In fact, the SDL
states which components have to be used by specifying their class names. During the
initialization of the framework, the settings are determined and the appropriate
classes are loaded. The use of Java’s reflection mechanism makes this easy.

Listing 5 demonstrates how a specific model is generated based on the SDL. The
model’s class name is passed to the method via the SDL meta data (SDLModel). In
a first step, a reference to a Java ClassLoader is obtained. After loading the class
(step 2), the appropriate constructor is determined (step 3), taking the arguments
specified in the SDL metadata. The model is then created by calling the determined
constructor (step 4). Finally, the creation process of the necessary data providers is
invoked.

Chapter 4: Reference Implementation Page 110

protected Model createModel(SDLModel sdlModel) {
 String modelName = sdlModel.getType();
 classLoader = this.getClass().getClassLoader(); (1)
 try {
 Class modelClass = classLoader.loadClass(modelName); (2)

 // get the constructor with the parameter SDLModel
 Class[] parameters = new Class[] {sdlModel.getClass()};
 Constructor constructor =
 modelClass.getDeclaredConstructor(parameters); (3)

 // convert the parametes of the type Class to the Type Object
 Object[] parameterlist = new Object[] {sdlModel};

 // create a new Model instance, set the DataProviders
 Model m = (Model) constructor.newInstance(parameterlist); (4)
 // create the dataProviders
 if (m.createDataProviders(classLoader)) { (5)
 return m;
 } else {
 return null;
 }
 } catch (Exception e) {
 auditing.doAudit(new AuditMessage(AuditMessage.MSG_FATAL,
 AuditMessage.MSG_FRAMEWORK,
 “... MESSAGE ...”));
 return null;
 }
}

Listing 5: Dynamic creation of a model

4.1.9 Security Models

Security models form the central part of the access control engine. Since several
security models exist, the framework must allow the integration of new security
models. In fact, the framework provides an abstract base class Model that is able to
perform basic operations such as managing the corresponding data providers, rule
management, and the initialization process of the model-related components. Model
implementations (e.g., RBAC, DAC) extend this generic base class by adding model-
related semantics.

In the case of the DAC model, the semantics must be able to express the ownership
paradigm. There are various ways to do this. The current implementation adds
specific rules consisting of a subject, an object, and an authorization indicating that a
subject owns a certain object. In fact, a new authorization, called the
OwnerPermission is used to express this ownership paradigm. The presence of
such a rule (Subject, SecureObject, OwnerPermission) expresses that the
mentioned subject can administrate the associated object, thus the model only allows

Chapter 4: Reference Implementation Page 111

this specific subject to add, edit, or remove rules into the rule-base for the
aforementioned object.

The RBAC model requires more complex additions since a new subject-type, namely
the role, must be added and administration aspects according to roles, user to role
mapping, and authorization to role mapping must be considered. The current
implementation introduces a new secure object, called RBACAdminObject that is
able to perform administrative tasks according to role management. Allowing access
to this object by assigning the RoleManagementPermission to a role indicates
that users assigned to the related role stated in this rule are allowed to perform
administrative tasks within the RBAC model. This is only one possible way, showing
the various realization options for a model provider.

The implementation of new models is shown in detail in Chapter 4.3.1.

4.1.10 Separation of Duties

GAMMA provides hierarchical RBAC conforming to NIST-Standard (level 3). This
includes static as well as dynamic separation of duties (SOD).

For static SOD the RoleDataProvider parses the RBAC security policy file,
containing XML nodes that express SOD constraints. The method isExcluded()
of the class Role checks the mutual exclusion of two roles. Thus, the sequence in
the XML file is very important since the first role found in this file is assigned to the
user and for each additional roles the SOD checks are done.

Dynamic SOD means that a user cannot activate two conflicting roles at the same
time. In this case the first activated role remains active whereas the model prevents
the activation of other conflicting roles.

When using the DataProvider one must pay attention to the order of the
statements expressing these SOD constraints. The nodes <static_SOD> and
<dynamic_SOD> must be stated before the <role_user_assignment> since
the model must be aware of static separation of duties already before the first role is
activated.

Chapter 4: Reference Implementation Page 112

4.2 Usage of JGAMMA

This subchapter shows how GAMMA can be integrated into applications and which
steps are necessary to use GAMMA. This integration will be demonstrated by an
example.

4.2.1 The Vision Demonstrator

This example illustrates a simple but distributed time management system that has
certain security requirements. First, the combination of different security models is
shown. Second, the use of GAMMA in distributed environments using a client-
server communication is presented. Furthermore, the example uses constraints
rendering models inactive depending on the system time. The aim of the example is
to clearly show which requirements could be addressed using GAMMA and how
such a solution looks like.

During a month an employee records his activities in a company. He is allowed to
grant access to other people according to his discretionary power. This requirement is
best realized using a DAC (discretionary access control) model. However, there are
other people in the company that are assigned to a specific task. For example, there is
the secretary who needs full access to the timetable at the end of the month.
Furthermore, the project manager requires read access already during the month in
order to be able to track the project’s progress. These requirements are best realized
by using roles within an RBAC model. Thus the overall requirement is that there
have to be two models active at the same time. The first model (DAC) is rendered
inactive after a certain time period (at the end of the month) – at the same time all
access rules must be disabled. An important requirement is that the owner should not
be able to overrule the other active model in order to deny access to the secretary or
to his project manager. As one can see, there are several complex requirements to the
security policy.

4.2.2 Step 1: Writing the Application

To integrate GAMMA into applications, the application’s design must follow some
conventions. To provide protected objects, their classes must inherit from a special
class named SecureObject. If this is not possible, these objects must at least
implement the interface ISecureObject and provide some basic logic in their
constructor (registering the resulting object into the GAMMA security layer). Since

Chapter 4: Reference Implementation Page 113

the object is moved to the security layer and proxies are returned, an appropriate
interface to the object must be provided, containing all methods that should be
callable from outside. This interface must be inherited from ISecureObject for
protection reasons, and from the java.rmi.Remote interface since the proxies
communicate with the security layer using RMI. As a matter of fact, each method of
this interface must throw a RemoteException (see Listing 6).

package at.scch.timemanagement;

import at.scch.jgamma.interfaces.ISecureObject;
import java.rmi.Remote;

public interface ICalendarPeriodObject
 extends ISecureObject, Remote {

 public void addCalendarItem(ICalendarObject item)
 throws RemoteException;

 public void removeCalendarItem(int index)
 throws RemoteException;

 public CalendarObject getCalendarItem(int index)
 throws RemoteException;

 public int getSize() throws RemoteException;

 public void setMonth(int month) throws RemoteException;

 public int getMonth() throws RemoteException;
}

Listing 6: Interface of CalendarPeriodObject

The current version of the framework requires SecureObjects and subclasses to
be remote objects. This enables the modification of objects that are residing in the
security layer because object references are used. Earlier versions of the framework
used object copies rather than references, therefore the user got only copies and
changes did not reflect in the framework. By defining the SecureObjects as
remote objects, RMI stubs and skeletons have to be created for each object that is
derived from the SecureObject base class.

Listing 7 shows an object that is used in the Vision Demonstrator and is protected by
the GAMMA framework. The code additionally illustrates the specifications an
object must meet. First, it is recommended that the object is derived form the
SecureObject class. As already mentioned, the second requirement is that the
object must implement an interface that contains the accessible methods. The
appropriate interface is shown in Listing 6.

Chapter 4: Reference Implementation Page 114

package at.scch.timemanagement;

import at.scch.jgamma.interfaces.ISecureObject;
import at.scch.jgamma.kernel.SecureObject;
import java.util.Vector;

public class CalendarPeriodObject
 extends SecureObject (1)
 implements ICalendarPeriodObject { (2)

 private Vector calendarObjects;
 private int month;

 public CalendarPeriodObject(String name)
 throws RemoteException { (3)
 super(name);
 calendarObjects = new Vector();
 }

 public CalendarPeriodObject(String name, String id) (4)
 throws RemoteException {
 super(name, id);
 calendarObjects = new Vector();
 }

 public void setMonth(int month) throws RemoteException {
 this.month = month;
 }

 public int getMonth() throws RemoteException {
 return this.month;
 }

 public void addCalendarItem(ICalendarObject item)
 throws RemoteException {
 calendarObjects.add(item);
 }

 public void removeCalendarItem(int index)
 throws RemoteException {
 calendarObjects.remove(index);
 }

 public CalendarObject getCalendarItem(int index)
 throws RemoteException {
 return (CalendarObject)calendarObjects.get(index);
 }

 public int getSize()throws RemoteException {
 return calendarObjects.size();
 }
}

Listing 7: CalendarPeriodObject

The last requirement is the definition and implementation of constructors that are
defined for each object. Since the framework uses factory methods for creating
secure objects to register them in the security layer, the framework can only create
instances of well-formed constructors that meet the GAMMA specification. In fact,
the framework specifies at least two constructors:

Chapter 4: Reference Implementation Page 115

• The first constructor (3) takes a single name that is used for locating the object
within the framework.

• The second constructor (4) additionally takes an id that is used when loading
already created classes. Each object is identified via the id rather that its name,
allowing to restrict access to an object instance.

If the constructor has to set properties of the class, a third constructor that takes a
name, the id of the object, and arbitrary parameters has to be implemented. This
constructor must then call the constructor of the base class with the parameters name
and id.

In order to use the build-in data providers (e.g. the XML data provider), additional
specification must be followed. The classes must be implemented as Java Beans,
meaning that each field must be accessible via setter and getter methods. The data
providers are only able to store fields that are related to Java standard types
(primitive data types like int, long, and wrapper classes like Integer, Long,
String). Other types require the extension of the data providers, introducing
methods that are aware of how to store these types.

After creating the objects, an instance of the GAMMAClient class is required for
each user that accesses the framework. This class holds the identity of a user so that
the framework knows which user requests access. Furthermore, the GAMMAClient
class is the connection between the client application and the GAMMA framework.

4.2.2.1 Scope of objects

When writing the application, the decision has to be made on which side (server or
client) the component is actually running. Depending on this decision, the framework
can access server-side components either directly, or by using a RMI reference to the
server’s security manager (client-side) which is of course slower that the direct
reference. The following demonstrates the difference between these two access
modes considering the dispatching of audit messages as example.

Server Side: Components that reside on the server side only need a reference to the
security manager. Listing 8 illustrates this by calling the static method
getSecurityManager() which returns the server’s active security manager
component.

Chapter 4: Reference Implementation Page 116

at.scch.jgamma.kernel.SecurityManager securityManager = null;
try {
 securityManager =
 at.scch.jgamma.kernel.SecurityManager.getSecurityManager(
 "applicationname", "application.properties");
catch (Exception e) { … }

Listing 8: Obtaining a reference to the security manager on the server side

After obtaining the reference, all other framework components can be instantiated
directly via the security manager.

Auditing audit = securityManager.getAuditing();
audit.doAudit(new AuditMessage(AuditMessage.MSG_DEBUG,
 AuditMessage.MSG_Framework,
 “Hello GAMMA-World!”);

Listing 9: Use of auditing component on server side

Client Side: Each client needs a connection to the server’s security manager. This
reference can be obtained by using RMI communication. In order to hide the
complexity, GAMMA provides the GAMMAApplication class that is part of the
Vision Demonstrator example, but can be used in any kind of application. Listing 10
shows the implementation, describing the necessary steps in order to provide a
connection between the application and the GAMMA framework.

When the class is created, it tries to obtain a reference to the server’s security
manager (1). This is done by using the RMI’s lookup method. This method requires a
URL of the server and the registration name. The URL is passed as a parameter to the
constructor whereas the registration name is always GAMMAFramework.

If more than one GAMMA server are started on a single machine, these servers must
use different registration names. In this case a customized version of the
GAMMAApplication class has to be provided that uses the appropriate registration
name.

The class provides a single method, named login() that handles a login-request of
an application user. A user is identified via an account name and an identifier. The
account name is used throughout the framework and identifies a user. The identifier
may vary according to the used authentication method. In the default case this will be
a password but since the parameter can take any Java object, the identifier can
change depending on the authentication component.

Chapter 4: Reference Implementation Page 117

import at.scch.jgamma.interfaces.ISecurityManager;
import at.scch.jgamma.interfaces.IGAMMAObject;
import at.scch.jgamma.client.GAMMAClient;
import java.rmi.RemoteException;
import java.rmi.Naming;

public class GAMMAApplication {
 /**
 local reference to server's security manager
 */
 protected ISecurityManager secMgr = null;

 /**
 Constructor: Creates a GAMMAApplication object that contains a reference
 to the server's security manager. All requests to the framework are posted
 to this object which delegates the request to the server.
 @param server Name (URL) of the server to which the client should connect.
 @exception java.lang.Exception: is raised if the creation or
 connection failed.
 */
 public GAMMAApplication(String server) throws Exception {
 try {
 // connect to the server using the name "GAMMAFramework".
 secMgr = (ISecurityManager)Naming.lookup(server + (1)
 "/GAMMAFramework");
 } catch (Exception e) {
 throw e;
 }
 }

 /**
 Handles the login into the framework. Each user is identified
 via an account and an identifier. The account is the name of the user, the
 identifier may change according to the used authentication mechanism
 (password, PKI, biometric token, etc.).
 @param account Accountname of user.
 @param identifier Authentication token (e.g. password)
 @return The method returns "true" if the login is completed, otherwise
 "false".
 @exception java.lang.Exception: is raised if the connection
 failed or an error occured on the server-side.
 */
 public boolean login(String account, Object identifier)
 throws Exception {
 try {
 return GAMMAClient.setIdentity(secMgr,
 (IGAMMAObject)secMgr.checkIdentifier(account,
 identifier));
 } catch (Exception e) {
 throw e;
 }
 }
}

Listing 10: Usage of auditing component on server side

For security purposes, some components are passed as copies instead of references.
This can result in the problem that two or more instances of a component exist at the
same time and that requests are not handled at the server side but rather on the object
copy. Thus, the security manager provides a set of methods that forwards request to
the appropriate server component. Listing 11 shows how to send an audit message to
the server. Instead of obtaining a direct reference to the component, the request is

Chapter 4: Reference Implementation Page 118

posted to a method of the security manager which in turn provides the connection to
the server.

application.secMgr.doAudit(new AuditMessage(
 AuditMessage.MSG_DEBUG,
 AuditMessage.MSG_FRAMEWORK,
 “Hello GAMMA-World!”));

Listing 11: Usage of auditing component on client side

4.2.3 Step 2: Configure the Security Policy

After writing the application’s classes, the security policy has to be configured
according to the application’s needs. This is done by modifying the SDL file. The
SDL was already explained in Chapter 3.2.3. The following concentrates on the
configuration of the SDL according to the demonstration application. The
appropriate SDL is shown in Listing 12. The SDL file starts with the <security-
policy> tag (1). Each entry in the file must be within the security-policy section.
The tag itself contains security policies for various GAMMA applications. Each
security policy is defined within the <gamma application> tag (2). All models
must be defined within the <models> tag (3). The type of model to use, its
assumption, and its logical name are defined using the <model> tag (4). Within this
tag, all data providers and the model’s properties are listed. Each model needs an
ACL data provider (5) that provides ACL entries, an authorization data provider (7)
that provides authorization components and definitions, an object data provider (8)
that retrieves objects out of a persistent storage, secures them and writes them back
when necessary, a subject data provider (9) retrieving a list of subjects that may
access protected objects and a constraint data provider (10) that retrieves constraint
objects and their definition out of a storage.

Each data provider section holds a <document> tag (6) that contains a description
of how data can be retrieved. This tag is used by the corresponding data provider and
differs from the type of data provider in use. In the example, the data providers
obtain information from XML files. Thus, the <document> tag references to the
XML file that should be loaded by the provider. Other data providers, such as
database data providers, use different content or tags (e.g. an SQL statement). The set
of supported tags and the required content is defined by the data provider.

Chapter 4: Reference Implementation Page 119

<?xml version="1.0" encoding="UTF-8"?>
<security-policy> (1)
 <gamma application="ApplicationName"> (2)
 <models> (3)
 <model type="at.scch.jgamma.models.DAC.DACModel" (4)
 assumption="open" modelname="DACModel0">
 <acl-data-provider type= "at.scch.jgamma.kernel. (5)
 DataProvider.XmlACLDataProvider">
 <document>XmlAcl_dac.xml</document> (6)
 </acl-data-provider>
 <authorization-data-provider type="at.scch.jgamma. (7)
 kernel.DataProvider.XmlAuthorizationDataProvider">
 <document>XmlAuthorizations_dac.xml</document>
 </authorization-data-provider>
 <object-data-provider type="at.scch.jgamma.kernel. (8)
 DataProvider.XmlSecureObjectDataProvider">
 <document>XmlObjects_dac.xml</document>
 </object-data-provider>
 <subject-data-provider type="at.scch.jgamma. (9)
 kernel.DataProvider.XmlSubjectDataProvider">
 <document>XmlSubjects_dac.xml</document>
 </subject-data-provider>
 <Constraint-data-provider type="at.scch.jgamma. (10)
 kernel.DataProvider.XmlConstraintDataProvider">
 <document>XmlConstraints_dac.xml</document>
 </Constraint-data-provider>
 </model>

 <model type="at.scch.jgamma.models.RBAC.RBACModel" (4)
 assumption="open" modelname="RBACModel0">
 <acl-data-provider type="at.scch.jgamma.kernel. (5)
 DataProvider.XmlACLDataProvider">
 <document>XmlAcl.xml</document>
 </acl-data-provider>
 <authorization-data-provider type="at.scch.jgamma. (6)
 kernel.DataProvider.XmlAuthorizationDataProvider">
 <document>XmlAuthorizations.xml</document>
 </authorization-data-provider>
 <object-data-provider type="at.scch.jgamma.kernel. (7)
 DataProvider.XmlSecureObjectDataProvider">
 <document>XmlObjects.xml</document>
 </object-data-provider>
 <subject-data-provider type="at.scch.jgamma. (8)
 models.RBAC.XmlRoleDataProvider">
 <document>XmlRoles.xml</document>
 </subject-data-provider>
 <Constraint-data-provider type="at.scch.jgamma. (9)
 kernel.DataProvider.XmlConstraintDataProvider">
 <document>XmlConstraints.xml</document>
 </Constraint-data-provider>
 </model>
 </models>
 </gamma>
</security-policy>

Listing 12: Demonstrator’s security policy

Chapter 4: Reference Implementation Page 120

4.2.4 Step 3: Framework Configuration

After specifying the security policy, the framework must be configured in order to
work correctly. This is done by modifying some Java property files that setup the
framework’s components. Again, the property files depend on the set of components
that are in use. The options supported by the property file depend on the effectively
used components, thus the following samples are related to the default components
of GAMMA.

The configuration starts with a special property file that configures the generic setup
of the framework. The filename is passed as an argument when creating the
framework’s security manager (refer to Listing 8). It contains the setup of the
security manager and the three major components of the framework, namely the
access controller, the auditing component, and the authentication component.

SecurityManager = at.scch.jgamma.kernel.SecurityManager
AccessController = at.scch.jgamma.kernel.AccessController
AccessCtrlConfig = SDLGAMMAConfig.xml
Auditing = at.scch.jgamma.auditing.Auditing
AuditingConfig = auditing.properties
Authentication = at.scch.jgamma.kernel.PasswordAuthentication
AuthenticationConfig = authentication.properties

Listing 13: Framework configuration property file

The framework configuration property file (Listing 13) consists of seven lines,
whereas each component, except the security manager, takes two lines. The first line
points to the Java class that realizes the component’s task, the second one points to
the configuration file of this component. In the presented example, the standard
access controller is used (at.scch.jgamma.kernel.AccessController).
The access controller’s configuration is defined by the security policy that is stated
within the SDL. The SDL to use is declared in the third line within the framework
property file. Auditing is also done using the standard GAMMA auditing component.
The configuration is defined in another property file (auditing.properties).
Finally, the authentication method is specified by the last two lines. In the shown
example, a simple password authentication is realized.

As one can easily see, the framework configuration property file points to various
other property files that handle the set up of subcomponents. Since the SDL was
already described earlier, the following will concentrate on the setup of the auditing
and the authorization components.

Chapter 4: Reference Implementation Page 121

4.2.4.1 Usage of the Auditing Component

In general, the framework sends messages to the auditing component which
generates an audit trail according to the defined settings. The auditing component
holds a list of audit handlers that are aware of treating the messages according to
their output medium. These handlers are defined within the auditing component’s
property file (Listing 14).

Handler1 = at.scch.jgamma.auditing.auditHandlers.AuditHandlerStdOut
Handler1.Properties = Handler1.properties

Listing 14: Content of “auditing.properties”

Listing 14 shows the definition of a single audit handler. Each audit handler needs
the same two lines whereas each line has the format key = value. The key for an
audit handler can be arbitrary but it is recommended to use the naming convention
“Handler” followed by an increasing number. The second line takes a reference to a
property file describing the settings of this handler. The content of such a property
file is shown in Listing 15.

Filter1 = at.scch.jgamma.auditing.filters.AuditFilterAcceptAll

Listing 15: Content of “Handler1.properties”

The property file of an audit handler contains a list of filters. A message is sent to
each filter before it is finally dispatched by the audit handler. Filters have the ability
to remove unwanted or uninteresting messages. Each line in the file contains a
reference to an audit-filter class. Again, it is recommended to use the naming
convention “Filter” followed by an increasing number as the key.

4.2.4.2 Usage of the Authentication Component

Extensions to the framework allow the use of various authentication methods.
Currently, the framework provides password and Kerberos authentication. The
authentication method to use is defined in the framework configuration file.

Password Authentication: In order to use password authentication, the framework
configuration file has to look like Listing 16.

Authentication = at.scch.jgamma.kernel.PasswordAuthentication
AuthenticationConfig = authentication.properties

Listing 16: Excerpt of the framework configuration file “application.properties”

Chapter 4: Reference Implementation Page 122

The second line points to the property file that contains the settings of the password
authentication component. The content of this property file is shown in Listing 17.

File = authentication.dat

Listing 17: Content of “authentication.properties”

The file contains a single entry pointing to the file that holds a list of the framework
users and a hash-code generated from their passwords.

Kerberos Authentication: To use Kerberos authentication, a special environment
offering Kerberos infrastructure is required. Various modern operating systems (e.g.,
Windows 2000, Solaris 8, Linux) provide such environments. The environment has
to be set up before Kerberos authentication can be used in GAMMA. Furthermore,
the subjects used in GAMMA must be added to the Kerberos database as principals.
Listing 18 shows the necessary entries in the framework configuration file that
enable Kerberos authentication.

Authentication = at.scch.jgamma.kernel.KerberosAuthentication
AuthenticationConfig = kerberosAuthentication.properties

Listing 18: Excerpt of framework configuration file “application.properties”

The second line of this configuration file points to the property file that contains the
settings of the Kerberos authentication component. This property file is shown in
Listing 19.

CallbackHandler = com.sun.security.auth.callback.TextCallbackHandler
ServerName=GAMMAServer
ClientName=GAMMAClient
character that seperates the username from the Kerberos
domain_realm
depends on the platform @ is used under Windows
Delimiter=@

Listing 19: Content of “kerberosAuthentication.properties”

This property file contains specific entries that define the behaviour of the Kerberos
system. The definition of the callback handler defines which method should be used
when the user is prompted for typing username and password.

Kerberos is integrated using JAAS (Java Authentication and Authorization Services).
Of course, JAAS must be configured in order to initiate the correct authentication
method. Listing 20 shows the default configuration file for Kerberos authentication
within the GAMMA framework.

Chapter 4: Reference Implementation Page 123

GAMMAClient {
 com.sun.security.auth.module.Krb5LoginModule required
 storeKey=true;
 };
GAMMAServer {
 com.sun.security.auth.module.Krb5LoginModule required
 storeKey=true;
 };

other {
 com.sun.security.auth.module.Krb5LoginModule required
 storeKey=true;
 };

Listing 20: JAAS configuration file

Vendor specific settings for the Kerberos system must be placed in an extra file
which is then passed as a VM argument when starting the GAMMA server. Listing
21 illustrates a sample Kerberos configuration file for Sun’s SEAM Kerberos system.

 [libdefaults]
 default_realm = GAMMA.SCCH.AT

[realms]
 GAMMA.SCCH.AT = {
 kdc = authserver
 kdc = authserver
 admin_server = authserver
 }

[domain_realm]
 .gamma.scch.at = GAMMA.SCCH.AT

[logging]
 default = FILE:/var/krb5/kdc.log
 kdc = FILE:/var/krb5/kdc.log
 kdc_rotate = {
 period = 1d
 versions = 10
 }

[appdefaults]
 gkadmin = {
 help_url = http://localhost:8888/ab2/coll.384.2/SEAM
 }
 kinit = {
 renewable = true
 forwardable= true
 }

Listing 21: Sample Kerberos configuration file (for Sun’s SEAM on Solaris 8)

4.2.5 Step 4: Staring the Application

Starting the server requires a running RMI registry. This has to be done first. Thus
we propose to create a batch-file that first starts the RMI registry and afterwards the

Chapter 4: Reference Implementation Page 124

server. It is necessary that the Java classpath points to all framework components
that are used and to the user-defined GAMMA objects. After starting the server,
various clients can be started. Both, the server and the client require some arguments
that have to be passed when starting them.

4.2.5.1 Server Startup

When starting the server, a Java security policy has to be provided that allows the use
of RMI. The file containing this policy is passed as a VM argument when starting
Java (-Dsecurity.policy=filename). The server itself is started by
executing the at.scch.jgamma.server.GAMMAServer class. This class
takes two additional arguments. The first argument is the application name which is
used to find the appropriate section and thus the correct setup within the GAMMA
security description language. The second argument is a reference to the
application’s configuration file.

If Kerberos is used, additional VM arguments have to be provided. These are mainly
references to the additionally needed configuration files.

4.2.5.2 Client Startup

Since the client interacts with the server via RMI, a security policy must be provided
that allows RMI. Like on the server side, this policy file is passed as a VM argument
when starting Java.

In order to enable the client to locate the server, the server’s URL must be provided.
There are two possibilities:

• Early versions of GAMMA provided this information in the file
Client.properties. This file contains an entry GAMMAServer=url.
When the client is started, it consults this file to obtain the server’s URL.

• The second possibility is passing the URL directly as a VM argument. This is
done by adding the following VM parameter -DGAMMAServer=//URL. The
Client.properties file is not needed anymore.

The client is started by executing the client’s Java class. Since this class is written by
the application developer, required parameters depend on this class.

Chapter 4: Reference Implementation Page 125

4.3 Extending the JGAMMA Framework

One of the most important tasks when using the GAMMA framework is the
possibility to extend the framework’s components. It is maybe the case that a
complex application needs its own security protection mechanisms that are not
already implemented in GAMMA. The framework is designed to be highly flexible
and extensible. The Vision Demonstrator example presented in Chapter 4.2.1 stresses
this need by having the problem of rendering the DAC model invalid after a certain
time period. This problem can be solved using two different approaches. First, a time
constraint can be inserted in each rule when the user creates a new rule (e.g. when an
object is created or when access is granted to a third person). Since this requirement
is specific to the Vision Demonstrator, this is a valid way of solving the problem.
However, a second approach is to extend the framework by introducing a new model,
namely the ConstraintDACModel class. This model automatically adds a time
constraint to each rule that is created within the model. On one hand, the advantage is
that the application does not have to deal with this special issue since the model
fulfills the requirement. On the other hand, which is by the way the main reason why
this method was chosen, this method clearly shows how the framework can be
extended by a new model.

4.3.1 Implementing a New Model

The implemented model is mainly a DAC model and deals with the same issues but
has a single additional requirement, namely to render rules inactive after some time
period. Thus the model is derived from the existing DACModel class which provides
a full working DAC model. Thus, extending the model means to overwrite or add
new methods that cover the additional requirement.

Listing 22 shows code extracted from the ConstrainedDACModel class. A new
model must inherit from the Model class (residing in the package
at.scch.jgamma.kernel) or one of its subclasses. Since we extend the DAC
model, we decided to inherit our new model from the existing DACModel class (1).
By convention, the constructor for each model has to take an instance of the
SDLModel class as parameter (2). This parameter represents the connection to the
SDL and its meta model. In fact, the meta model influences the creation and settings
of the model component.

Inheriting from an existing class or the abstract base class defines which methods
have to be overwritten and which methods should be replaced by the new model. In

Chapter 4: Reference Implementation Page 126

the case of the presented example, only the addRule() method has to be
overwritten (3). This method is originally defined in the Model class and already
overwritten in the DACModel component. Within this method, the logic of the new
mechanism is implemented by adding a time constraint to each rule that is added to
the model. Some code snippets are shown in Listing 22 that are often used. First, it is
shown how the identity of the internal user (the user that starts the server process) is
determined. This identity is obtained by the security manager requesting the user
identity from the authentication component (5). The code shown here does not work
in distributed environments where multiple users access the framework. Determine
the user’s identity in a distributed environment is shown in Listing 23.

Another important fact is that models or other framework components always receive
proxies to protected objects. In order to evaluate or work with objects, these have to
be resolved first within the server. The resolving mechanism uses the corresponding
data provider to obtain a real object reference (6). This mechanism only works on the
server side since clients do not have a reference to the various data providers for
security purposes.

Below, the logic of the method is implemented. Within the aimed DAC-like model,
only owners of objects are allowed to modify the access privileges. Thus, it must be
checked if the current identity is really the owner of the object (7). If so, the subject
is allowed to perform several things, in the presented case a date and time-based
constraint (8) is automatically generated and added as a constraint to the created
access rule (9).

The mechanism of auditing is shown in (10). A reference to the audit component is
obtained by requesting it from the security manager (4).

public class ConstrainedDACModel
 extends DACModel { (1)

 public ConstrainedDACModel(SDLModel sdlModel) { (2)
 super(sdlModel);
 }

 public boolean addRule(IGAMMAObject subject, (3)
 IGAMMAObject secureObject,
 Object methodField,
 IAuthorization authorization,
 IConstraint constraint) {

 audit = (4)
 at.scch.jgamma.kernel.SecurityManager.
 getSecurityManager().getAuditing();
...
 IGAMMAObject identity = null;

Chapter 4: Reference Implementation Page 127

 // If this method is invoked by the server get the account using
 // the SecurityManger (Remote interface).

 identity = (IGAMMAObject) (5)
 at.scch.jgamma.kernel.SecurityManager.
 getSecurityManager().getIdentity();

 // get the SecureObject out of the SecureObjectProxy
 String id = secureObject.getID(); (6)
 IGAMMAObject obj = this.getObjectDataProvider(
).findObject(id);

 // Find a rule specifying the ownership of the subject to the
 // SecureObject obj.
 if (isOwner(identity, obj)) { (7)
 String monthName = "";
 int month = -1;

 if (obj instanceof CalendarPeriodObject) {
 if (obj.getName().indexOf("January")==0) {
 monthName = "January";
 month = Calendar.JANUARY;
 } else if (obj.getName().indexOf("February")==0) {
 monthName = "February";
 month = Calendar.FEBRUARY;
 }
 ...
 else if (obj.getName().indexOf("December")==0) {
 monthName = "December";
 month = Calendar.DECEMBER;
 } else {
 return false;
 }

 // Create time-based constraint (for current month only!)
 DateTimeConstraint c = (DateTimeConstraint) (8)
 this.insertNewConstraint(
 "TimeConstraint-"+monthName,
 "at.scch.jgamma.extension.constraints. "+
 "DateTimeConstraint");

 if (c == null) {
 c = (DateTimeConstraint)
 this.getConstraintDataProvider(
).getConstraintByName("TimeConstraint-"+
 monthName);
 }

 Calendar cal = new GregorianCalendar();
 cal.set(Calendar.MONTH, month);
 c.setStartDate(cal.get(Calendar.YEAR),
 month,
 cal.getActualMinimum(Calendar.DAY_OF_MONTH),
 cal.getActualMinimum(Calendar.HOUR),
 cal.getActualMinimum(Calendar.MINUTE),
 cal.getActualMinimum(Calendar.SECOND));

 c.setEndDate(cal.get(Calendar.YEAR),
 month,
 cal.getActualMaximum(Calendar.DAY_OF_MONTH),
 cal.getActualMaximum(Calendar.HOUR),
 cal.getActualMaximum(Calendar.MINUTE),
 cal.getActualMaximum(Calendar.SECOND));

Chapter 4: Reference Implementation Page 128

 if (super.addRule(subject,
 obj,
 methodField,
 authorization,
 constraint)) {
 // add automatically time constraint
 return super.addRule(subject, obj,
 methodField,
 authorization, c); (9)
 } else {
 return false;
 }
 } else {
 // in our case return false because we want only
 // CalendarPeriodObjects in the rule base. If other
 // objects are supported, call here addRule!
 return false;
 }
 } else {
 audit.doAudit((10)
 new AuditMessage(AuditMessage.MSG_ERROR,
 AuditMessage.MSG_SECURITY,
 this.getClass() + ".addRule => " +
 identity.getID() + " does not have " +
 "OwnerPermission for " +
 obj.getID()));
 return false;
 }
 } catch (Exception e) {
 audit.doAudit(
 new AuditMessage(AuditMessage.MSG_ERROR,
 AuditMessage.MSG_FRAMEWORK,
 this.getClass() + ".addRule" +
 e.fillInStackTrace().toString()));
 return false;
 }
 }
}

Listing 22: Code extract from ConstrainedDACModel

As mentioned above, the presented mechanism to obtain the user’s identity only
works on the server side. Each method that needs the user’s identity is offered twice
within the framework, with an additional set of parameters. Listing 23 shows the part
of obtaining the client’s user identity within the addRule() method.

public boolean addRule(IGAMMAObject caller, (1)
 IGAMMAObject subject,
 IGAMMAObject secureObject,
 Object methodField,
 IAuthorization authorization,
 IConstraint constraint) {

 if (isOwner(caller, obj)) { (2)
 ...
 }
}

Listing 23: Determining a user in a distributed environment

Chapter 4: Reference Implementation Page 129

As one can see, the method has an additional parameter indicating the caller of the
routine (1) that represents the client user’s identity. Since the identity is already
resolved it can be directly integrated in security checks as this is shown in (2).
Offering two methods is necessary since the latter method enables the framework to
hide the complexity of RMI and network communication from the end user.

4.3.2 Implement a New Constraint

Often application developers have to deal with the challenge that access should
generally be granted but additionally restricted – depending on the current time, the
location of the user, or other properties. In GAMMA, access privileges are generally
defined using access rules in the form of a subject, object (optional, an object’s
method can be stated), and authorization tuple. Each tuple defines that a subject has a
certain authorization on a specified object (or a method of an object). Additionally,
GAMMA offers the possibility to restrict each rule by a set of constraints.
Constraints decide whether an access rule is currently valid and thus should be
considered or not.

Users can implement constraints according to their needs. In the following, the
realization of the date- and time-based constraint is shown that is used in the Vision
Demonstrator. A code extract of this constraint class is illustrated in Listing 24.

Each constraint must inherit from the Constraint base class that is located in the
package at.scch.jgamma.kernel (1). In general, a constraint must implement
at least two constructors and the checkAccess() method according to the
framework’s conventions – but additional constructors with user-defined parameters
are allowed (see Chapter 4.2.2). The first constructor takes a single parameter that is
a string indicating the constraint’s name (2). Each constraint is identified within the
framework via a unique id. When calling the constructor (2) a new id is computed
and assigned. However, when loading the constraint from a persistent storage, the
existing id should be assigned, thus there exists a second constructor that takes the
name and the id of the constraint (3). These two constructors must be specified.
However, additional constructors that contain user-defined parameters can be
implemented, yet some GAMMA design guidelines are followed. It is required that
the first parameter must be the name of the constraint. The second parameter can be
either the first user-defined parameter (4) or the constraint’s id (5). Since the
constraint’s id is of the type string, the restriction applies that there cannot be a user-
defined constructor that takes a string as its single user-defined parameter.

Chapter 4: Reference Implementation Page 130

public class DateTimeConstraint extends Constraint { (1)

 protected Date startDate;
 protected Date endDate;

 public DateTimeConstraint(String name) { (2)
 super(name);
 }

 public DateTimeConstraint(String name, String id) { (3)
 super(name, id);
 }

 public DateTimeConstraint(String name, (4)
 Date startDate,
 Date endDate) {
 super(name);
 this.startDate = startDate;
 this.endDate = endDate;
 }

 public DateTimeConstraint(String name, (5)
 String id,
 Date startDate,
 Date endDate) {
 super(name, id);
 this.startDate = startDate;
 this.endDate = endDate;
 }

 /**
 * Method used by the Rulebase to determine whether access should be
 * granted or not.
 * @param obj Object to be accessed.
 * @return true if access can be granted, false if not.
 */
 public boolean checkAccess(Object obj) { (6)
 Date currentDate = new Date(); // get current DateTime

 if ((startDate == null) || (endDate == null))
 return false;

 if ((currentDate.after(startDate)) &&
 (currentDate.before(endDate))) {
 // between start- and endDate, thus allow access.
 return true;
 } else {
 return false;
 }
 }
... (7)
}

Listing 24: DateTime Constraint

When an access is checked, each constraint that is assigned to a valid rule is
contacted. In fact, the constraint’s checkAccess() method is called (6). This
method has to determine, whether access to an object is granted or not. The
checkAcces() method realizes the logic of a constraint and is the only part in the
constraint that knows what the constraint means to the framework. The method

Chapter 4: Reference Implementation Page 131

receives the object that is to be accessed as a parameter and can make object-
dependent decisions.

In the presented example, the constraint defines a validity period. This period has a
start and an end date. Within the checkAccess() method, these dates are
compared to the current server date and access is granted if the current date is
between the validity period. The checkAccess() method returns the Boolean
value true if the access rule applies. If the constraint decides that the access rule
does not apply (e.g. because the time has expired), it returns false.

As mentioned above, each constraint of a rule is contacted. Only if all constraints
return the value true, the rule applies. Furthermore, constraints can also restrict
other kinds of authorizations like prohibitions or access denials (e.g. access to an
object should be denied from 8:00pm to 10:00pm).

4.3.3 Implementing a New Authorization

Similar to constraints, the authorization set can also be extended with user-defined
authorizations. An authorization defines a privilege that a subject has on an object.
The type of privilege is specified in the concrete authorization component.
Furthermore, one has to decide if an authorization should permit something
(permission) or should prohibit something (prohibition). Sometimes, the decision
depends on the model’s world assumption saying that a privilege in an open world
assumption should permit something and the very same privilege should allow
something in a closed world assumption. These authorizations are called assumption-
based authorizations. The realization aspects are explained later.

First, the implementation of an authorization that specifies the privilege to grant
access to an object to other users within a DAC model is presented. Since this task
can be only performed by an owner of an object, this authorization is called owner
permission. Listing 25 shows how this permission can be implemented.

Although it seems that the owner permission grants full access to the object, this
permission only states that a subject is allowed to manage the authorization
assignment to other subjects on the specified object.

Each authorization component must inherit from the abstract base class
Authorization (1) that is located in package at.scch.jgamma.kernel. By
convention, authorizations must have at least two constructors. The first constructor

Chapter 4: Reference Implementation Page 132

takes a single parameter containing the name of the authorization component (3).
When a specific id has to be assigned to the component, the second constructor is
issued which takes the name and the id as parameters (4). In the presented example a
customized constructor is provided (2) that calls the parent’s constructor with the
authorization’s specific name.

public class OwnerPermission extends Authorization { (1)

 public OwnerPermission() { (2)
 super("OwnerPermission");
 }

 public OwnerPermission(String name) { (3)
 super(name);
 }

 public OwnerPermission(String name, String id) { (4)
 super(name, id);
 }

 /**
 * Checks if the access for a Subject, a SecureObject a Method
 * or Field (stored in the Object context) is allowed for an
 * OwnerPermission object.
 * @param soa A SOATriple containing subject, object, authorization
 * @param context The data necessary for the access check.
 * @return GAMMADefinition.ACCESS_GRANTED because if a Rule is found
 * for the Subject to the SecureObject with an OwnerPermission the
 * access is granted independent on the world assumption of the
 * model.
 */
 public int checkAccess(Object soa, Object context) { (5)
 return GAMMADefinition.ACCESS_GRANTED; (6)
 }
}

Listing 25: Permission indicating ownership privilege

When access checking is done, a valid subject-object-authorization triple is located
and evaluated. Since the access checking mechanism does not know what the user-
defined authorizations allow, it contacts the corresponding authorization component
to ask, whether access should be granted or not. This is done by invoking the
component’s checkAccess() method (5), passing the subject-object-
authorization triple and the access control context that contains additional
information. These parameters can be taken when more complicated access control
decisions have to be made. The OwnerPermission simply states that a certain
subject has ownership privilege over a specified object. Thus, if there exists an entry
indicating a subject-object-OwnerPermission, the subject is owner of the object.

Since the owner privilege depends on the presence of the OwnerPermission, the
implementation is rather easy and only grants access (6). More complicated

Chapter 4: Reference Implementation Page 133

authorizations will have a more complex algorithm to determine whether access
should be granted or not. However, the authorization must always return a value that
indicates whether access can be granted or not. Authorizations can return various
values, depending on how exact the rule is that was found (see Table 4). It is the task
of the authorization programmer to determine which result should be returned.

The result of the authorization is determined by the access control model. Thus, the
result is not mandatory by default. Using GAMMA’s standard conflict resolution,
other models are contacted if a weak result (no rule found) is returned. Strong results
do not consider the opinion of other models but directly return access decisions.
Furthermore, rules can be stated on exact or general level whereas general rules are
overridden by exact authorizations.

4.3.4 Implementing a New Data Provider

On the one hand, new components (such as Constraints, Authorizations) need
appropriate data providers since their data must be storable within the SDL. On the
other hand, one might use other storage techniques (such as databases or LDAP
directory). This can be realized by extending the framework with new data providers.
Furthermore, each category of framework components that can be retrieved from a
storage has its own data provider base class. This section shows the implementation
of an XML-based authorization data provider (Listing 26).

Each data provider must inherit from the corresponding base class (1). The base class
is located in the at.scch.jgamma.kernel.DataProvider package and is
capable of retrieving a certain type of security information:

• ACLDataProvider: Retrieves Access Control Lists data (subject-object-
authorization-constraint relations).

• AuthorizationDataProvider: Retrieves authorization objects.
• ConstraintDataProvider: Retrieves constraint objects.
• ObjectDataProvider: Retrieves objects containing data that is protected by

the framework.
• SubjectDataProvider: Retrieves subjects that are active entities within the

security system.
• SecurityDataProvider: This special data provider reads, writes, and

manages the SDL and creates the models and their five other data providers
mentioned above. The security data provider is the only data provider that should
not be extended or overwritten by framework users!

Chapter 4: Reference Implementation Page 134

Like all other components, also constructors of data provider must follow a
framework convention. The constructor of a data provider takes a single parameter of
the type SDLDataProvider, containing the SDL’s meta information (e.g.,
document name, SQL-statement) concerning the data provider (2).

public class XmlAuthorizationDataProvider
 extends AuthorizationDataProvider { (1)

 public XmlAuthorizationDataProvider(
 SDLDataProvider sdlDataProvider) { (2)
 super(sdlDataProvider);
 }

 /**
 * Writes the xml file containing all Authorizations.
 * @return true if the writing succeeds otherwise false.
 */
 protected boolean writeAuthorizations() { (3)
 this.createDomTree();
 String fileName =
 super.sdlDataProvider.getProperty("document"); (4)
 return this.writeDocument(fileName, document); (5)
 }

 /**
 * Parses the xml File containing data for the Authorizations
 * and creates a DOM-Tree, which is saved in the Document document.
 * This document is recursively traversed by the method
 * traverseTree, where the Authorizations are created.
 * @return true if the reading succeeds otherwise false.
 */
 protected boolean readAuthorizations() { (6)
 ...
 }

 /**
 * Traverses the DOM-Tree and creates the appropriate Authorization
 * using data in the DOM-Tree and insert it in Authorization.
 * @param n The actual node of the DOMTree to traverse.
 */
 protected void traverseTree(Node n) { (7)
 ...
 Authorization authorization =
 (Authorization) createAuthorization(name, id); (8)
 if (authorization != null) {
 authorizations.put(authorization.getID(), (9)
 authorization);
 }
 }
}

Listing 26: DateTimeConstraint’s data provider

Data Providers are able to write / read objects to / from a storage. Thus some
methods have to be overridden which are declared as abstract in the base class. In the
example, the writeAuthorization() method that writes objects into the
storage (3) and the readAuthorization() method that reads objects form the

Chapter 4: Reference Implementation Page 135

storage (6) have to be overwritten. The content of these methods depends on the type
of data provider.

However, it is often necessary to access the SDL’s meta information within the
methods (see (4)). Within the example, the information stored in the <document>
tag of the data provider definition is obtained (see also contents and structure of the
SDL).

When reading objects from the storage – as done in the example by traversing the
XML DOM-tree (7) – these objects have to be created and registered. Each data
provider holds a registry (a list) of registered objects it is responsible for. This
registry is realized in the base class of the data providers. When an object is read, it
has to be created using a factory method (8) that takes the name and id of the object
that is created. If the creation process succeeds, the object has to be registered in the
data provider’s registry (9). The registry itself is a Hashtable using the object’s id
as a key and the object itself as value. This registry is also called the transient object
storage.

4.3.5 Implementing New Auditing Components

Using auditing, the framework tracks activities within the framework system. The
framework has a central auditing component where various audit handlers can be
registered. When a new audit message arrives, the audit component sends the
message to each audit handler that can decide if it processes the message or not. The
decision is made by registering various filters within the audit hander. The audit
component can be extended by implementing new handlers (that handle new output
media) and new filters.

4.3.5.1 Adding a New Audit Handler

Listing 27 shows the implementation of a simple audit handler that prints the
messages on the console. When implementing a new audit handler, only a few things
have to be done. First, the handler must inherit from the AuditHandler base class
that can be found in the package at.scch.jgamma.auditing (1). Second,
constructors and methods have to be implemented. The constructor does not take any
parameters and is created by the framework (2). The only method that has to be
implemented is the doAudit() method (3) that takes a message as its single parameter

and prints it on the output media.

Chapter 4: Reference Implementation Page 136

public class AuditHandlerStdOut extends AuditHandler { (1)

 public AuditHandlerStdOut() { (2)
 }

 public void doAudit(AuditMessage msg) { (3)
 System.out.println(msg.toString());
 }
}

Listing 27: Simple Audit Handler

The writer of an audit handler does not have to cope with the problem of filtering
messages since this is done in the base class (AuditHandler). The definition
which audit handler should be used and the assignment of filters to audit handlers is
done via the framework configuration (see Chapter 4.2.4).

4.3.5.2 Adding a New Audit Filter

Audit filters allow the customization of the AuditHandler according to the user’s
needs. Listing 28 shows a filter that accepts only messages that are classified as
security-relevant audit trails.

Each audit filter must inherit from the AuditFilter base class that is located in
the at.scch.jgamma.auditing package (1). Like the audit handler
component, only the standard constructor (constructor with no parameters) is
allowed.

public class AuditFilterAcceptSecurity
 extends AuditFilter { (1)

 /**
 * Method, that decides if the message should be removed according
 * to the filter or not. If the message has to be removed, the
 * method returns true, otherwise false.
 * @param Message that can be filtered.
 * @return true if message should be removed, otherwise false.
 */
 public boolean filtered(AuditMessage msg) { (2)
 if (msg.getMessageCategory() ==
 AuditMessage.MSG_SECURITY) { (3)
 // do not filter message
 return false; (4)
 } else
 // filter message (remove it!)
 return true; (5)
 }
}

Listing 28: Filter that accepts security messages only

Chapter 4: Reference Implementation Page 137

When filtering is done, the handler calls the filtered() method (2) to determine
if a message should be removed (filtered) or not. The method takes the message as a
parameter and can determine the filtering decision according to the message’s
properties. In the presented example, only messages are accepted that are categorized
as security relevant information (3). The method can return two values. If the
message should be passed to the audit handler for output reasons, the method returns
false which indicates that the filter does not remove the message (4). If the filter
decides to remove the message, the method returns true (5).

4.3.6 Modifying Existing Components

It is often necessary to modify existing components. In the current version of the
framework, the communication between clients and the server is done using RMI.
Objects are never passed to the client, instead a reference to a proxy is passed that
represents the protected object. Accessing the object is only possible via the proxy
and accessing the proxy results in an access check.

In principle, framework components can be arbitrarily replaced as long as they
implement the correct interfaces. However, framework developers must pay great
attention to the distribution aspect since the clients interact with the framework via
RMI. Thus, objects that should be passed per reference must be declared as remote,
requiring adequate stub and skeleton classes. Without these classes, RMI and the
framework cannot work with object references. Furthermore, developers must always
return proxies to the protected objects rather than references.

In order to remain compatible with future releases of the framework, we recommend
to extend the framework only at the defined places.

4.4 The GAMMA.net Reference Implementation

One of the most important design goals was to establish a platform- and architecture
neutral framework. As mentioned in Chapter 3, this means that the GAMMA
framework can be realized in various programming languages. In order to prove this
statement, the core of GAMMA was ported to the Microsoft .NET platform. The
framework uses existing security mechanisms, bases on them, and provides the same
declarative security mechanisms and models like the Java reference implementation.

GAMMA was not completely ported but a feasibility study was started showing that
the core concepts are realizable in .NET. Due to the design of .NET slight differences

Chapter 4: Reference Implementation Page 138

exist compared to the Java version that affects the framework’s core classes, and
additional mechanisms are possible that extend the framework’s functionality.

4.4.1 Compatibility Classes

In order to make the port easier, a new namespace was introduced that contains a set
of helper-classes which re-implement some Java mechanisms. These helpers are now
presented.

4.4.1.1 ClassLoader

Both, the Java and the .NET implementation must use reflection mechanisms in
order to provide the necessary flexibility. In Java, loading a class is very easy by
telling the ClassLoader which class to load. The single requirement in Java is
that the target class must be locatable via Java’s classpath. In .NET, the
reflection mechanism requires additional information concerning the loaded
assemblies. In fact, the user must look for the class to load (called Type in .NET) in
each active assembly requiring an iteration process. Listing 29 shows the process of
loading a class in .NET whereas the Java counterpart is illustrated in Listing 30.

For simplicity, the GAMMA.net implementation provides a ClassLoader
component that behaves like the Java class loader.

public static Type LoadClass(string className)
{
 // get all active assemblies
 Assembly[] asms = AppDomain.CurrentDomain.GetAssemblies();
 Type type = null;

 // look for type definition in all assemblies
 foreach(Assembly asm in asms)
 {
 try
 {
 type = asm.GetType(className);
 if (type != null)
 {
 break;
 }
 }
 catch
 {
 // Not found in this assembly, try next one.
 }
 }
 return type;
}

Listing 29: Loading a class dynamically in .NET

Chapter 4: Reference Implementation Page 139

public static Class loadClass(string className) {
 // get the class loader
 ClassLoader classLoader = this.getClass().getClassLoader();
 try {
 return classLoader.loadClass(className);
 }
 catch (Exception e) {
 ...
 return null;
 }
}

Listing 30: Loading a class dynamically in Java

4.4.1.2 Properties

The Java version of the framework is mainly configured using Java properties files.
Such properties files do not exist in .NET out of the box. Thus a Properties
component was implemented that allows the configuration of the .NET components
using the same file format like the Java properties files. This allows the straight
forward usage of the JGAMMA’s configuration files for the GAMMA.net
implementation.

4.4.1.3 StringTokenizer

The framework, in special the rule base, stores a lot of meta information concerning
access checks in the form of strings. A good example is the definition of a rule that
protects a method of an object. The method is specified by a signature, defining the
method’s name and its parameter. This information is necessary since various
methods with the same name but different parameters can exist due to method
overloading. The method information is stored as a string in the rule base. During the
access checking mechanism, the rule’s information must be compared to the access
request. In order to do this, the method’s signature must be parsed and the tokens
must then be compared. Java offers an easy to use StringTokenizer which
performs this task. Within .NET, tokenizers exists but are complex and difficult to
use. Thus, the GAMMA.net framework provides an additional helper class that re-
implements the Java’s easy to use StringTokenizer.

4.4.2 Security Components

In principle, the design prescribes the realization of the components in a concrete
development platform. However, slight differences between various platforms exist
due to their peculiarities. The following shows the implementation aspects of
GAMMA’s security components using the Microsoft .NET platform.

Chapter 4: Reference Implementation Page 140

4.4.2.1 Security Manager

Like in Java, the security manager represents the single entry point for client
applications by accepting requests and forwards them to the appropriate security
components. The implementation is straight forward to the Java platform.

4.4.2.2 Auditing

The implementation of the Auditing component is also straight forward. However,
using .NET makes it very easy to use the Windows event logging facility as an output
media for security and framework messages. However, careful considerations
concerning filters must be done since GAMMA is very verbose and produces a lot of
debugging messages.

4.4.2.3 Authentication

The effort of providing authentication components depends on the concrete
authentication method. Providing a simple password authentication is an easy task
whereas using the more complex Kerberos authentication is quite challenging.
However, .NET makes it very easy to access the security manager of the Windows
operating system, allowing single-sign on, the integration into the MS Active
Directory, or the Kerberos authentication that is used in Windows 2000 domains.

4.4.2.4 Access Controller

The realization of the access controller is similar to the Java implementation. Also
the AccessControlContext that contains an access request’s meta information
is straight forward since this component only holds a list that is filled with
information. Both, .NET and Java provide adequate collection classes out of the box
that can be used for realizing this component.

4.4.2.5 Model

In principle, the implementation of security models is straight forward to the Java
implementation. However, differences exist in the related data providers because in
Java they create objects out of the storage and store them in the rule base. In .NET,
the data provider generate objects out of the storage but store the object id as a string
in the rule base. Storing a string instead of an object reference keeps the rule base
small and allows quicker processing of the rules. In Java, object references are
compared whereas in .NET efficient string pattern matching methods are used. This

Chapter 4: Reference Implementation Page 141

difference results from the fact that Java uses the proxy concept to ensure security
whereas in .NET other mechanisms are used that renders the proxy concept
unnecessary.

4.4.2.6 Rule Base

The rules stored in the rule base are tuples in the form of a subject, an object,
optionally a field or method, a certain authorization and an optional list of
constraints. The .NET implementation of the rule base is slightly different to the Java
implementation. In Java, generally object references are stored in the rule base.
However, methods cannot be stored since the Method object is not serializable and
the rule base resides in another layer than the objects. Thus, it is necessary to store a
method signature that references the aimed method. Out of the signature the real
method is located using Java’s reflection mechanisms. As already mentioned, in
.NET only signatures are stored. However, the invocation of the method on the client
side already works with the method signature and not with a method object like this
is done in Java. Thus, there is no need to locate the method object since the whole
system already works with signatures instead of references.

Furthermore, Java object references are stored in the rule base. Like this is done with
methods, the .NET access mechanism uses strings for specifying objects, the so
called URIs. A client accesses a certain object on the server by this URI. Access
decisions can now be based on these URIs which require no additional converting
mechanisms and thus increase performance. When access checking is done, the client
passes the URI of the requested object and the appropriate rules are investigated.

The performance is noticeable increased since the overhead of locating objects and
methods is not present and the checking mechanism is replaced by efficient pattern
matching mechanisms.

4.4.2.7 Security Data Provider

The security data provider reads an XML file that contains the SDL and thus the
settings of the framework. Both, JGAMMA and GAMMA.net can use the same
XML file since the file’s structure is obligatory. However, differences in the
implementations of the data provider result from the different XML libraries and
components provided by the platforms.

Chapter 4: Reference Implementation Page 142

4.4.2.8 Security Objects

protected SecureObject(string name, string id)
{
 this.name = name;
 this.id = new UniqueName(id);

 try
 {
 RemotingConfiguration.RegisterWellKnownServiceType(
 typeof(SecureObject), this.getID(),
 WellKnownObjectMode.Singleton); (1)
 }
 catch (Exception e)
 {
 ...
 }
}

Listing 31: Registering a Secure Object in .NET

The subject, secure object, authorization, and constraint component are very similar.
In fact, only the secure object differs in the implementation since distribution issues
must be considered. In Java, the base class (SecureObject) handles the
registration of the secure objects and enables RMI usage (see Listing 32/(1)). .NET
also requires appropriate mechanisms in order to enable .NET remoting, the
distribution mechanism used in the .NET platform. The object must be derived from
the MarshalByRefObject in order to use object references instead of copies.
Furthermore, the object must be registered as a well known service type (see Listing
31/(1)).

public SecureObject(String name, String id)
 throws GAMMAIllegalCreationException,
 java.rmi.RemoteException {
 super(name, id);
 java.rmi.server.UnicastRemoteObject.exportObject(this); (1)
}

Listing 32: Registering a Secure Object in Java

4.4.3 Security Enforcement

GAMMA protects its objects by returning a reference (proxy) to the client instead of
the object. When the client accesses this reference, the access is redirected to the
access controller. Java provides mechanisms that enable the automatic generation of
such proxy objects. As already described above, the forwarding of the method call is
intercepted and redirected to the security engine. Only if the access controller grants
access, the method call is really invoked.

Chapter 4: Reference Implementation Page 143

.NET remoting provides the more sophisticated mechanisms of message sinks.
Again, automatically created proxies reside on the client side. If a client invokes a
method on proxy objects, invocation messages are created and passed over the wire.
In fact, the whole communication between distributed objects is done by creating and
handling messages. These messages can be intercepted, analyzed, and modified by
message sinks, both on the server and on the client side. GAMMA.net provides a
server sink that intercepts all method calls to objects residing on the server. The sink
provider first consults the access controller in order to determine whether to pass the
method call request to the object or not. If the access controller grants access, the
sink provider let pass the message and the method is called on the object. If the
access controller denies access, the sink provider removes the message and thus the
method is not invoked on the protected object.

4.5 Summary

Within this chapter, the realization aspects were shown by providing a reference
implementation using the Java language. The JGAMMA framework offers various
security components that can be directly and transparently used when developing
Java applications. Furthermore, the underlying security policy and thus the settings of
the security components can be changed anytime without having to modify the
application’s code. Thus, the resulting application can be adapted to the customer’s
specific security requirements.

The practical aspects of the framework were presented by giving an idea how the
usage and integration of the JGAMMA reference implementation looks like. Thus,
first the use of the standard components was shown by the Vision Demonstrator
example. The special security requirements of the example were documented with
the extension of the framework. Thus this chapter gives an idea which effort is
necessary to provide new framework components like security models,
authorizations, constraints, or data providers.

In order to prove the architecture and platform independence, a second reference
implementation was presented that was realized using the Microsoft .NET platform.

The next chapter discusses GAMMA and its realization aspects in detail by
comparing the initial goals with the reached result.

Chapter 5: Assessment and Comparison Page 144

5 Assessment and Comparison

This chapter discusses the GAMMA framework, shows some experiences and gives
an outlook for future work. In special, GAMMA is compared to existing solutions,
showing the practical relevance. Furthermore, open issues are identified and
realization ideas are given. Before a concluding comparison to already existing
products is done, experiences made during the work are stated.

5.1 Discussion of GAMMA

This subchapter discusses the GAMMA framework. First, the work is compared to
the aimed goals. Before discussing open issues in the next subchapter, a feature list
of the current reference implementation is given. Some remaining work will then
lead to the open issues which are presented later in this chapter.

5.1.1 Reached Goals

GAMMA aims to provide declarative security mechanisms that can be easily
integrated into business applications. Moreover, due to its architecture and platform
neutral concept, GAMMA can be used for various application domains. The highly
extensible and flexible architecture allows the customization of the framework to the
developers needs. In the following, these objectives are compared against the
GAMMA framework and its realization.

5.1.1.1 Active Support for Application Developers

The success of the framework depends on the provided support for application
developers. In general, application developers do not want to spend much time in
security design and considerations. Actively supporting the developer means that the
integration of security components is a transparent task and possible already at the
early stages of the development process. GAMMA provides a set of ready to use
security components for authentication, authorization and auditing. These
components can be directly integrated into applications, moreover the necessary
infrastructure is already provided by the framework. For standard purposes, only

Chapter 5: Assessment and Comparison Page 145

minor modifications have to be done, mostly by providing the appropriate
configuration (properties files). The integration is a straight forward task. In order to
use the framework components, the developer only has to follow the GAMMA
design guidelines which are anyway conform to the design principles of modern
developing platforms. For example, JGAMMA requires the user to write Java beans
which is anyway common for Java classes. Furthermore, JGAMMA requires that
developers program to an interface and not to implementations, which is a common
practice for a good software design too. Thus, an advantage of GAMMA is that it
requires a good design of the target application.

The only weakness is, that both reference implementations recommend that the
business objects to protect must be derived from a framework base class. Sometimes
deriving from this object is not possible since many modern programming languages
do not support multiple inheritance. Thus, additionally interfaces are provided which
allow the interaction with the GAMMA framework but require manual effort of the
application developer.

However, deriving from this base class hides the whole complex logic of declarative
security mechanisms from the application developer. The application developer does
not need to address certain security requirements within the code. In fact, the actual
security requirements are expressed outside the code in the security policy.

5.1.1.2 Flexible Security Mechanisms

Security mechanisms must be flexible and adaptable to the target environment and
the software’s needs. In fact, GAMMA provides a highly flexible security
infrastructure that can be adapted to any user needs. This goal is reached by strictly
decoupling the security layer from the application. Since security requirements are
expressed outside the code and the code itself does not contain a single security
statement, the provided solution can be adapted to the customer’s needs without
having to touch any application code. Furthermore, the security requirements can be
expressed by the customer, since the security policy can be modified at any time
during the software lifecycle. This increases the maintainability and reusability of the
resulting code.

5.1.1.3 Open and Neutral Architecture

One of GAMMA’s design goals is to provide an open and extendable architecture. In
fact, GAMMA offers a set of components that interact via defined interfaces.

Chapter 5: Assessment and Comparison Page 146

Providing adequate implementations to these interfaces allows framework developers
to extend the framework by introducing new components (e.g., models, data
providers, subjects, authorizations, constraints) or to replace components as a whole.

During the design of the architecture, careful considerations were made that the
framework does not require special architectures or platforms. This enables the
framework to be adaptable to any kind of application domain (e.g., server
applications, Web Services, stand-alone).

The open and independent architecture was proven by providing two reference
implementations, using Sun’s Java and Microsoft’s .NET platforms.

5.1.2 Features Supported in the Current Release

In general, GAMMA is just a concept that enables the usage of reusable security
components. Thus, the framework consists only of a kernel that provides an adequate
infrastructure. The reference implementation comes with a set of features like ready
to use security models, data providers for various storage formats, and other directly
usable security components. The current reference implementation (Version 1)
supports the following features:

5.1.2.1 Access Control Models

• DAC (Discretionary Access Control) model, providing ownership and delegation
of authorizations.

• Hierarchical RBAC (Role-Based Access Control) model, conforming to NIST-
Standard (level 3), supporting static and dynamic separation of duties.

• Arbitrary role-hierarchies with user-defined activation behavior of subordinated
roles and authorization inheritance.

5.1.2.2 Advanced Access Control Mechanisms

• Constraints that allow a finer regulation of access regulations.
• Time-Constraints, restricting access axioms and rules according to the system

time.
• Mixed Authorization, expressing positive (permissions), negative (prohibitions)

and assumption-based privileges.

Chapter 5: Assessment and Comparison Page 147

5.1.2.3 Authentication Mechanisms

• Password Authentication.
• Distributed Authentication featuring Kerberos authentication systems.

5.1.2.4 Framework Infrastructure

• Flexible auditing system, supporting various output media and allowing user-
defined message filtering.

• XML data provider, allowing to read / store authorization data from / into XML
files.

• Security policy expressed in XML language (SDL).
• Support for distributed applications (RMI or .NET remoting).

5.1.3 Features Not Yet Supported

Following features are not yet supported but are subjects for future releases:

• Cascading revocation of authorizations in DAC model.
• Cardinality / conditionality constraints.
• Additional data provider (e.g., ODBC/JDBC/SQL, LDAP, NTLM).
• Additional security models and / or extensions of current models (e.g., MAC,

RBAC, role-templates, proxy roles, virtual roles, social roles).
• Building blocks for special application domains (e.g., Web Services, Topic

Maps, Data Warehouses).
• Intrusion Detection.

Summing up, the objectives of the GAMMA framework were reached. Furthermore,
providing two reference implementations prove GAMMA’s ideas and concepts
feasible. However, there are still some issues that may be addressed in the future.
Thus, the next subchapter discusses some open issues and provides an outlook to
future work.

5.2 Open Issues in GAMMA

Several ideas and features remain open and are not yet implemented. This subchapter
discusses them and describes ideas concerning the realization aspects.

Chapter 5: Assessment and Comparison Page 148

5.2.1 Authentication

The actual authentication component in the current implementation is set up by the
framework configuration file. In a web environment this might be inadequate since
the client does not know which method is actually used. The problem results in the
fact that each authentication component awaits a semantically correct identity and
identifier. The identity is the name of a subject, thus differences between various
authentication methods are improbably. Conversely, the structure and content of the
identifier will vary depending on the actual component. Using a password
authentication awaits a simple string containing the password, Kerberos on the other
hand requires a valid ticket that was generated by a trusted ticket granting server.

The problem results in the fact that the authentication mechanism can change over
the lifetime of a server application without explicitly notifying the clients. Thus,
some client might provide wrong authentication data resulting in errors and logon
denials.

A better solution might be that the client generates a request that asks for the
authentication method that is currently used. The server then generates an answer,
telling the client which data is required. The client can then send the correct
identifier.

5.2.2 Customized Security Models

Practical experiences show, that security models presented in scientific literature
often require extensions in order to meet today’s security requirements. As
mentioned in Chapter 2, many software applications require a combination of DAC
and RABC mechanisms, following the idea of ownership but allowing the
assignment of privileges to roles or user groups.

Currently, these requirements can be met by using GAMMA’s features to combine
models. However, providing a role-based DAC model that allows the assignment of
privileges on users and roles would increase the usability significantly.

This model could be realized by integrating the RBAC concepts into the DAC
model. In fact this requires that the resulting model must accept two types of
subjects, namely users and roles. The establishment of such a new model is a straight
forward task since the required classes and components already exists, only an
extension to the evaluation logic of the rule base is required.

Chapter 5: Assessment and Comparison Page 149

5.2.3 Multi-level Security Models

Currently, only rule-based security models are supported. However, sometimes
access decisions are made by classifying subjects and objects like in MAC models.

MAC models use axioms that state the allowed information flow instead of rules.
Such models can be realized by providing an axiom-based decision engine which is
the counterpart of the rule base. However, the mechanism of evaluating access is the
same, since the final decision is made in the access controller component whereas
each model only proposes a decision.

5.2.4 Standardized Security Language

The reference implementations of GAMMA currently use a proprietary XML file for
describing the security policy. Recently, several standards bodies, including OASIS
(Organization for the Advancement of Structured Information Standards), IETF
(Internet Engineering Task Force) and W3C (Word Wide Web Consortium), have
proposed XML-based security standards. The most relevant with respect to
authorization and access control are SAML (Security Assertion Markup Language)
and XACML (eXtensible Access Control Markup Language), both driven by OASIS
technical committees.

SAML (Oasis, 2004) is an XML-based framework for exchanging security
information about authentication acts performed by subjects, attributes of subjects,
and authorization decisions about whether subjects are allowed to access certain
resources or not.

The purpose of XACML (Oasis, 2003) is the definition of a core schema and
corresponding namespaces for the expression of authorization policies in XML
against objects that are represented in XML.

At the time starting to develop GAMMA, these standards were not available or at
least not stable enough to consider integration into GAMMA. However, due to the
open architecture, appropriate data providers could be easily realized allowing the
integration of SAML or XACML. Especially supporting SAML is a quite interesting
task since this would enable a better integration into existing security systems.

Chapter 5: Assessment and Comparison Page 150

5.2.5 Performance Aspects

Initially, the idea of the reference implementations was to prove the feasibility of the
GAMMA concept. Although the current version exceed this initial goal by providing
already a good base for the development of secure applications, some performance
aspects remains open. The security manager as the single entry point is rather a
bottleneck for large-scaled applications, requiring scalability mechanisms.

Scalability can be introduced by enabling clustering of GAMMA instances. Several
instances of GAMMA servers could be used, each dealing with a subset of the
authorization base. For example, one might assign users to a specific server instance.
However, the idea of clustering requires synchronization and replication mechanisms
between the instances.

The most time consuming part during access checking is the evaluation of the rules
or axioms stated in the model’s decision base. Keeping the decision base small
significantly reduces processing time. Ensuring that only the required rules or axioms
are present in the decision base would increase the overall performance. This can be
done by loading the rules or axioms that are related to a user at the login-time of this
user and remove them when the user logs off.

5.2.6 Intrusion Detection

Although not implemented, the design of GAMMA allows the easy implementation
of intrusion detection facilities. In fact, the framework generates a very verbose audit
trail. Intrusion Detection can be realized by providing a specialized audit handler that
analyzed all messages and searches for patterns that indicate a possible attack.
Furthermore, these audit handlers can communicate with the framework, enabling
intelligent reactions to possible attacks.

5.2.7 Graphical User Interface

Providing an appropriate security policy and framework configuration is a quite
challenging and error-prone task. Mistakes in the policy and the configuration can
result in security breaches and thus in financial or data losses. Thus, a graphical user
interface that supports the security administrator in establishing a security policy and
the developer in configuring the framework would greatly improve the usability and
the overall security of the system. Currently, a set of common dialogs for rule

Chapter 5: Assessment and Comparison Page 151

management and other security actions are provided within the Vision Demonstrator
example (see Figure 23).

Figure 23: GUI components used in Vision Demonstrator

The provided GUI components are designed to perform modifications within the
authorization base or to perform runtime actions. However, they could be easily used
to build a GUI editor that allows the framework configuration and security policy
management.

5.2.8 Secure Audit Trails

Currently, audit trails are stored in a file or printed on the console, depending on the
audit handler in use. However, since audit trails contain security relevant
information, it makes sense to protect these data. Thus, future audit handlers will be
able to encrypt the generated audit trail and protect them by signatures.

5.3 Experiences

The following contains some experiences gained during the design and development
of the GAMMA framework.

The first experience gained is that decoupling the security completely from the
business logic is quite a challenging task. The advantages of declarative security are
obvious, still many application developers strive to use programmatic security
instead. The reason lies in the complexity of declarative security and the necessary
effort to provide a solid base for these mechanisms. In the case of GAMMA, huge
efforts were necessary to provide such declarative security mechanisms and make
them as transparent as possible to application developers.

Chapter 5: Assessment and Comparison Page 152

Secondly, the aim to provide a platform and architecture neutral framework requires
a lot of work and a good design. Based on a good design, the implementation of
JGAMMA and GAMMA.net was a straight forward process, still allowing the
integration of platform specific mechanisms (e.g., JAAS, .NET remoting).

After providing the first release, efforts were made to replace RMI within the
JGAMMA reference implementation. However, studies showed that the replacement
is possible but increases either the overhead of communication or huge efforts with
minor gains. Thus, RMI is still used in the current version of the framework.

In the case of the .NET reference implementation, some interesting experiences were
made. Using the .NET remoting mechanisms open new and more efficient ways to
perform security checks (e.g. by providing sink providers). Furthermore, since these
messages are already in an appropriate format, more efficient methods (e.g. pattern
matching) can be used to find valid rules within the rule base. Thus, we await a
significant increase in performance within the .NET reference implementation.
Moreover, .NET provides several security mechanisms out of the box. In special,
.NET offers a ready-to-use RBAC model. First, efforts were made to integrate this
model into GAMMA. However, since this native RBAC model relies and requires
programmatic security concepts, the integration was not possible. Thus, the .NET
reference implementation comes with its own RBAC model, which can result in
misunderstandings and confusions by application developers.

5.4 Comparison

After discussion the GAMMA framework, a final comparison to similar solutions is
done. The criteria catalogue for this comparison was already presented in Chapter 2.
However, the following contains a short description of the criteria which are the base
for the comparison.

5.4.1 Criteria Catalogue

The first criterion Development Support addresses the mechanisms and facilities that
are offered to help developers integrating security into their application. The main
focus of the presented work is to actively support application developers in writing
security-aware applications. This criterion analyzes the degree of intuitive and
transparent integration of security mechanisms into the application. Since this

Chapter 5: Assessment and Comparison Page 153

represents the most important feature and thus is a knock-out criterion, the result can
be either yes (developer is supported in any form) or no.

The criterion Integration of Security Mechanisms into the Application analyzes how
security mechanisms must be integrated into applications. In fact, there are only two
possibilities, namely programmatic or declarative.

In order to make the product usable for various application domains, the solution
must be application and platform independent. Dependencies are listed within the
criterion Application / Platform Independence.

The criterion Expressiveness of Mechanisms rates the offered facilities, procedures,
and mechanisms that enforce the provided security. These mechanisms can help
administrators in defining the security policy, provide testing facilities for the
security environment, mechanisms that enforce the security policy, etc. Depending
on the offered mechanisms, the products are ranked with the values low, moderate,
and high.

Chapter 2 clearly showed the need of today’s software products to support multiple
security models. Thus, the criterion Support of Multiple Models states whether the
product supports a single or multiple security models. Products can be scored with
yes if they support multiple models, or no if not.

After presenting the criterion catalogue, the related work that was presented in
Chapter 2 is now compared against the here presented GAMMA framework.

5.4.1.1 Development Support

The RBAC framework for Network Enterprises addresses only the creation of
security polices but does not provide reusable components. Thus, there is no active
support for developing security-aware applications. The RBAC Implementation
Project provides a RBAC implementation for the Java platform by offering reusable
components that can be used during the development of a Java application. The same
can be said of the RBAC framework using CORBA security services. Furthermore,
this solution addresses issues related to object-oriented programming and distributed
software applications. JSEF provides a secure environment for Java code loaded
from the Web. Although the architecture can also be used for other application
domains, the framework does not provide mechanisms that can be integrated into
applications. Using Kava, the developer must provide a meta-object protocol,
specifying the security requirements of the application. The security is then checked

Chapter 5: Assessment and Comparison Page 154

in an extra step by transforming the Java byte-code. In the case of Kava, the
developer has support but the support is not really transparent and can become
confusing or raise issues, especially when using COTS2 libraries or components.

The overall design goal of GAMMA is to actively support developers in integrating
security. This is achieved by providing reusable components that can be transparently
integrated into applications, already at the early stages of the software development
process. To provide reusability, transparent integration and high degree of flexibility,
decoupling the security from the application by providing a security layer that
enforces the security policy, while the code does not contain any security relevant
statements.

5.4.1.2 Integration of Security Mechanisms into the Application

When looking at the integration aspects, one decides between programmatic and
declarative security mechanisms. Descriptive mechanisms provide more flexibility
but are harder to realize, thus often programmatic mechanisms are used.

Since the RBAC framework for Network Enterprises does not provide reusable
components, the integration has to be done programmatically. However, it is
assumable to implement declarative security components that are conform to the
gained security policy, thus no clear statement concerning the integration aspect can
be made. The RBAC Implementation Project allows the declarative usage of RBAC
mechanisms within Java. Access permissions are defined using the standard Java
security policy file that lies outside the application. The security mechanisms of the
RBAC framework using CORBA are also steered by an external policy file that
contains the authorization rules. JSEF sets up a secure environment according to an
externally defined security policy. The framework itself provides only limited
mechanisms for security, thus it uses declarative security. However, this security
cannot be used for application development but only for setting up a secure
environment. In the case of Kava it is not easy to clearly state whether it uses
declarative or programmatic security. The security mechanisms are steered externally
by the meta-object protocol which can be seen as declarative security. On the other
side, the meta-object protocol must be implemented by the developer which is clearly
a programmatic act.

2 COTS: Commercial Of The Shelf

Chapter 5: Assessment and Comparison Page 155

The advantages of declarative security mechanisms were already stressed out several
times in this work. Thus, it is understood that another very important design goal of
GAMMA is the use of declarative security mechanisms for providing a maximum of
flexibility and reusability. In fact, the security policy of the security layer that
enforces access limitations is described outside the code. The policy can be stated for
each application, thus one policy can cover multiple applications and their different
security requirements. Furthermore, changes in the policy influence the behavior of
the security layer and thus the access checking mechanism without having to modify
the application’s code.

5.4.1.3 Application / Platform Independence

The RBAC framework for Network Enterprises aims to provide a RBAC model in a
distributed environment. Thus, the model depends on the used distribution
mechanism. The authors state that the most important distribution mechanisms at the
time written their work were Microsoft’s DCOM and CORBA. The RBAC
Implementation Project enables the usage of RBAC in Java, thus it is restricted to the
Java platform. Furthermore, the concept can only be applied to the Java platform,
since Java mechanisms are taken and enhanced with RBAC mechanisms. The RBAC
framework using CORBA requires CORBA and cannot be applied only to
environments that use CORBA for distribution. JSEF and Kava are both designed for
the Java platform. JSEF is further restricted only to a subset of Java since it addresses
the protection and access control on mobile code. Kava requires an intermediate
language that can be modified by introducing security checks directly in the already
compiled code.

GAMMA is a concept for providing reusable security components. The concept does
not require any special architecture or platform. In fact, during the design phase a lot
of attention was paid to allow an implementation in any programming language.
However, it is understood that a concrete reference implementation (e.g. JGAMMA
in Java) realizes the framework components using the Java language, thus depending
on the Java platform.

5.4.1.4 Expressiveness of Mechanisms

The RBAC framework for Network Enterprises provides expressiveness of the aimed
security policy creation by allowing that the underlying security policy is formulated
by the right people. Furthermore, access privileges can be assigned at various
abstraction levels of the target environment. The RBAC Implementation Project aims

Chapter 5: Assessment and Comparison Page 156

to provide a well implemented RBAC model which is reached by offering role
hierarchies and separation of duties mechanisms. The RBAC framework using
CORBA has only a moderate expressiveness in its current implementation, since only
flat and hierarchical RBAC are supported. JSEF offers positive and negative
authorizations and a hierarchical policy which allow to cover simple and complex
security requirements. Since Kava is adding its security checks directly into the
compiled code, it has a high expressiveness since mechanisms cannot be easily
bypassed.

The expressiveness in GAMMA is realized by providing mature security models on
the one side and protecting the objects by a secure environment on the other side.
Security models provided in GAMMA are conform to existing standards and have a
high degree of realization (e.g. constrained RBAC). GAMMA protects sensitive
objects by moving them into a secure environment established and controlled by the
GAMMA framework. Applications are getting proxies instead of the real objects.
Such proxies look like the real object but contain no data. When a proxy is accessed,
it forwards the access request to the corresponding, real object. GAMMA intercepts
this forwarding mechanism and invokes an access checking mechanism. If access is
granted by the security models, the proxy is allowed to contact the real object. This
approach ensures that every access to an object must pass the access checking
mechanisms of GAMMA, otherwise no data is returned.

5.4.1.5 Support of Multiple Models

The RBAC framework for Network Enterprises, the RBAC Implementation Project
and the RBAC framework using CORBA were designed to provide RBAC
mechanisms in the target environment. Thus it is understood that no other security
models than RBAC are supported. JSEF also offers only RBAC mechanisms. Kava
allows various security models and also a combination of them. However, they must
be implemented by stating them using the meta-object protocol which can be a
difficult and time-consuming task.

GAMMA offers multiple security models (e.g., DAC, RBAC) and allows any
combination of them having different world assumptions. Moreover, new or
customized models can be introduced by extending the GAMMA framework. Having
multiple models with optionally different world assumptions raises the possibility of
conflicts among these models. Thus, GAMMA also provides a conflict resolution
mechanism.

Chapter 5: Assessment and Comparison Page 157

5.4.2 Comparison

Criterion

Solution

RBAC for
Network

Ent.

RIP RBAC
using

CORBA

JSEF KAVA GAMMA

Development
Support

 *

Integration N/A decl.# decl.# N/A decl.§ decl.

Dependencies Distr. Mech. Java CORBA Java Java

Expressiveness high high moderate high high high

Multiple Models

* not very transparent
not very expressive
§ no clear statement possible

Table 5: Comparison of Authorization Solutions

5.5 Summary

This chapter discussed the presented framework GAMMA and compared the initial
goals with the reached results. The discussion showed that the goals are reached and
that it is possible to use the framework or its concepts and ideas for realizing
security-aware applications.

However, still some open issues remain which are also listed in this chapter. These
issues address some missing aspects of the framework. Conversely, ideas are
presented that show how these issues can be realized, extending the functionality of
the framework and increasing the practice relevance.

Finally, the GAMMA framework is compared against similar solutions. The
comparison was made using a criteria catalogue, evaluating some functionality that is
required in order to provide reusable components that can be neatly and easily
integrated into software applications.

Chapter 5: Assessment and Comparison Page 158

The next and last chapter contains a general conclusion, giving an overall summary
of this thesis and the aspects shown, and provides and outlook that states further
steps and tasks to be realized within the GAMMA framework.

Chapter 6: Conclusion Page 159

6 Conclusion

This chapter contains an overall summary of the presented work here and shows the
results and some experiences made during the work was done. Finally, some future
work is mentioned, showing possible directions for increasing the usability and
maturity level of the GAMMA framework.

6.1 Summary

Today, addressing security is an absolute need in software development. However,
the most used software development platforms do not provide adequate mechanisms
that allow an easy development of secure software applications. In fact, developers
are forced to address security by providing special security statements that enforce a
certain security policy. As showed in the introduction, this programmatic security

comes with a lot of disadvantages. Thus, there is a need for security mechanisms that protect
code and resources but which are provided and maintained outside the application.

Chapter 1 identified various goals which have to be met in order to provide a good means
for developing secure software applications. According to Probst and Küng (2004), these
goals can only be reached by providing declarative security mechanisms which allow on the
one hand greater flexibility, reusability, and maintainability to the code, and on the other
hand enable developers to write their code in a natural way. In fact, security is done by an
additional security layer that holds all business objects and monitors all access
requests to them. Since the business objects do not contain any security code, the
reusability is significantly increased. Declarative security also stands for flexibility,
since the security policy can be changed anytime, allowing the customer to adapt the
security requirements to his site. Summing up, declarative security helps to develop
secure, flexible, and maintainable software applications. The importance of
declarative security mechanism as described in this work and its practical relevance
can easily be seen since huge efforts are undertaken nowadays in providing such
mechanisms. In fact, it is foreseeable that future releases of operating systems and
programming environments will provide adequate solutions for providing declarative
security.

Chapter 6: Conclusion Page 160

As a matter of fact, this work presents an approach that offers declarative but
expressive security mechanisms providing a range of high-level security components
and models like they were described in Chapter 2, including discretionary access
control (DAC), role-based access control (RBAC), and the possibility to use multiple
authorization models. In order to make these components expressive enough to cover
also complex requirements, the models support positive and negative authorizations
and further access constraints like separation of duties or time-based access
limitations.

During the work, a framework was established which aims to actively support
application developers in integrating security already at the early stages of the
software engineering process, whereas the usage of these mechanisms is as
transparent as possible, hiding the complexity of security from the framework users.
Since today’s software development is faced with the problem of having different
target software architectures (e.g., standalone, web-based, client/server), it was one
of the framework’s most important design goals to be highly flexible and adaptable.
In order to fulfill these requirements, it was necessary that the framework did not
depend on a specific architecture and platform. In fact, the framework must be
realizable on various platforms. This is shown by providing two reference
implementations whereas the first is implemented using the Java platform and the
second is realized within the Microsoft .NET environment.

6.2 Results

As mentioned above, the overall goal of the work was to provide adequate
mechanisms for realizing various security components. This work presents a
conceptual framework, called GAMMA, that enables the usage of declarative
security mechanisms within modern software applications. This is done by providing
an infrastructure that introduce a new security layer which encapsulate the business
objects to protect from the application. Transparent mechanisms ensures that the
developer does not have to perform extra steps in order to rely on the offered security
components.

In order to establish such a framework, declarative security mechanisms are
necessary. As this thesis shows, offering such declarative mechanisms goes ahead
with an enormous initial work, providing an appropriate infrastructure and security
components. However, having the framework significantly relieves application
developers since they do not address security requirements in special during the

Chapter 6: Conclusion Page 161

coding phase. In fact, security can be done by the right people since the final security
policy can be defined by the customer himself. In general, the initial costs of
providing once a framework are rapidly compensated because many applications can
rely on these mechanisms and the expenses for implementing these applications is
reduced. Having programmatic security on the other side would mean constant
expenses during application development and extra costs when maintaining or
installing the application on other sites with different security requirements.

The highly flexible architecture brings another advantage since the framework can be
embedded in various existing security infrastructure components (e.g., Kerberos
authentication system, single-sign-on via operating system).

Having a platform and architecture neutral design enables the framework to be used
in various application domains. In fact, the framework can be used in standalone
applications as well as in server environments or as a base for Web Service
development. As a result, the presented framework provides a solid base for today’s
and tomorrow’s secure software development.

Finally, the feasibility of the framework was proven by providing two reference
implementations. Using the Java language, the JGAMMA reference implementation
enables developers to use declarative security mechanisms within the Java platform.
Furthermore, the architecture and platform neutrality aspect was proven by providing
a second reference implementation basing upon Microsoft’s .NET technology.

6.3 Future Work

The future work separates itself into two major parts. On the one hand, currently we
have to face new computer usage scenarios that come with specialized security
requirements (e.g. Web Services, see Ziebermayr and Probst, 2004). On the other
hand, we identified some issues on the current framework that have to be addressed
in order to increase its usability.

Within the scientific area, we are currently working on testing approaches and
models for security components. These approaches covers the right and thus secure
usage of the framework as well as the integration and extension of new components.
It is understood that introducing new components can open the risk of possible
security breaches, thus we want to provide adequate testing mechanisms.

Chapter 6: Conclusion Page 162

Another important issue is the integration of a standardized security language in
order to make the framework compatible to other security systems. Thus, currently
SAML (see Oasis, 2004) is investigated that allows exchanging security information
about authentication and access control decisions.

Since currently a lot of research is done on providing new security mechanisms for
specialized target environments (e.g., peer to peer networks, mobile computing, Web
Services), it is desirable to extend the framework’s mechanisms by providing new
components or specialized security models and authorization mechanisms.

In the field of providing a mature product, there are also still some open issues which
are discussed in Chapter 4.2.

In order to make the framework usable in productive server environments, some
performance aspects needs to be addressed. However, Chapter 4.2 already shows
solutions to the existing problems which increase the scalability and overall
performance of the security engine.

Another important point is the complexity of the framework setup. In the current
version, these settings must be done in various files, defining the security policy on
the one hand, and the components setup on the other hand. Providing a graphical
administration tool for defining the security policy and the setup of the framework
would significantly increase the usability. Furthermore, most of today’s security
breaches result from wrong configured software programs, thus from the security
perspective it is absolutely necessary to provide adequate mechanisms that support
the creation and verification of the framework’s configuration.

Summarizing, the work presented in this thesis allows an easy integration of reusable
security components into various kinds of software applications. The framework’s
design and the various offered mechanisms enable the straight forward development
of secure software by reducing the costs since security can be taken as granted.
Although some issues remains that have to be addressed in order to use the
framework in a productive environment, the mature level is very high and only minor
efforts must be taken in order to provide a solid base for the development of security-
aware software applications.

Chapter 7: Lists Page 163

7 Lists

7.1 List of Figures

Figure 1: Levels of security mechanisms ...7
Figure 2: Generic security model ...9
Figure 3: Different approaches to authorization and administration..........................12
Figure 4: Relationships used in RBAC ..20
Figure 5: Flat RBAC ..25
Figure 6: Hierarchical RBAC...26
Figure 7: Constrained RBAC ...27
Figure 8: Ownership of a system resource in Windows...35
Figure 9: Permissions within the UNIX operating system...36
Figure 10: User groups for the GAMMA framework ..60
Figure 11: Sequence of web-based time management system61
Figure 12: Sequence of TISCover System ...62
Figure 13: Sequence of proxy concept ...63
Figure 14: Component Diagram of GAMMA..71
Figure 15: Access Checking mechanism..76
Figure 16: Example representation of persistent constraint data81
Figure 17: Transitive Object Access ..85
Figure 18: Abstract base class and concrete subclasses for subjects..........................85
Figure 19: Secure Object Wrapper...93
Figure 20: Layered architecture of GAMMA...94
Figure 21: Package structure of the JGAMMA framework96
Figure 22: Auditing ..102
Figure 23: GUI components used in Vision Demonstrator151

Chapter 7: Lists Page 164

7.2 List of Listings

Listing 1: SDL Sample ...98
Listing 2: Java Code that generates a proxy...107
Listing 3: Determine an object’s interfaces..108
Listing 4: Enforce security checks during proxy invocation108
Listing 5: Dynamic creation of a model ...110
Listing 6: Interface of CalendarPeriodObject...113
Listing 7: CalendarPeriodObject ..114
Listing 8: Obtaining a reference to the security manager on the server side............116
Listing 9: Use of auditing component on server side...116
Listing 10: Usage of auditing component on server side ...117
Listing 11: Usage of auditing component on client side ..118
Listing 12: Demonstrator’s security policy ..119
Listing 13: Framework configuration property file..120
Listing 14: Content of “auditing.properties”..121
Listing 15: Content of “Handler1.properties” ..121
Listing 16: Excerpt of the framework configuration file “application.properties” ..121
Listing 17: Content of “authentication.properties” ..122
Listing 18: Excerpt of framework configuration file “application.properties”122
Listing 19: Content of “kerberosAuthentication.properties”122
Listing 20: JAAS configuration file ...123
Listing 21: Sample Kerberos configuration file (for Sun’s SEAM on Solaris 8)123
Listing 22: Code extract from ConstrainedDACModel ...128
Listing 23: Determining a user in a distributed environment...................................128
Listing 24: DateTime Constraint..130
Listing 25: Permission indicating ownership privilege..132
Listing 26: DateTimeConstraint’s data provider..134
Listing 27: Simple Audit Handler ..136
Listing 28: Filter that accepts security messages only..136
Listing 29: Loading a class dynamically in .NET ..138
Listing 30: Loading a class dynamically in Java ..139
Listing 31: Registering a Secure Object in .NET...142
Listing 32: Registering a Secure Object in Java...142

Chapter 7: Lists Page 165

7.3 List of Tables

Table 1: Components supplied for the application developers72
Table 2: Components supplied for the framework architects.....................................73
Table 3: Components supplied for the Model Provider ...74
Table 4: Possible set of authorization return values...105
Table 5: Comparison of Authorization Solutions ..157

7.4 Literature

Ashley P., Vandequauver M. (1998): Intranet Security – The SESAME Approach.
Kluwer Academic Publishing, 1998.

Beznosov K., Deng Y. (1999): A Framework for Implementing Role-Based Access
Control using CORBA Security Service, Proc. 4th ACM Workshop on Role-Based
Access Control, Fairfax, VA, USA, Oct. 28-29, 1999.

Castano S., Fugini M., Martella G., Samarati P. (1995): Database Security. Addison-
Wesley, 1995. ISBN 0-201-59375-0.

Castano S., Fugini M. (1998): Rules and Patterns for Security in Workflow Systems,
Proc. 12th IFIP WG 11.3 Working Conf. on Database Security, Chalkidiki, Greece,
July 15-17, 1998.

Essmayr W., Pernul G., Tjoa A-M. (1997): Access Controls by Object-Oriented
Concepts, Proc. 11th IFIP WG 11.3 Working Conf. on Database Security, Lake
Tahoe, California, USA, Aug. 1997.

Essmayr W., Kapsammer E., Wagner R., Tjoa A. (1998) Using Role-Templates for
Handling Recurring Role Structures. Proc. 12th IFIP WG 11.3 Working Conf. on
Database Security, Chalkidiki, Greece, July 15-17, 1998.

Essmayr W., Probst S., Weippl E. (2001): A Comparison of Distributed
Authorization Solutions, Proc. 3rd Int. Conference on Information Integration and
Web-based Applications & Services (IIWAS), Linz, Austria, Sept. 10th-12th, 2001.

Essmayr W., Probst S., Weippl E. (2004): Role-based Access Controls: Status,
Dissemination, and Prospects for Generic Security Mechanisms, Electronic
Commerce Research, Kluwer Academic Publishers 4(1), pp 127-156, Jan. 2004

Chapter 7: Lists Page 166

Fernandez E., Nair K., Larrondo-Petrie M., Xu Y. (1996): High-Level Security Issues
in Multimedia/Hypertext Systems. Proc. IFIP TC6/TC11 Int. Conf. on
Communications and Multimedia Security, Essen, Germany, 1996.

Ferraiolo D., Kuhn R. (1992): Role-Based Access Control (RBAC), Proc. 15th
NIST-NSA National Computer Security Conf. pp. 554-563., Baltimore, Maryland,
Oct. 13-16, 1992.

Ferraiolo D., Gilbert D., Lynch N. (1993): An Examination of Federal and
Commercial Access Control Policy Needs. Proc. NIST-NCSC National Computer
Security Conf., National Inst. Standards and Technology, Gaithersburg, Md., pp. 107-
116, 1993.

Foundstone Inc., CORE Security Technologies (2001): Security in the Microsoft®
.NET Framework, http://www.foundstone.com/pdf/dotnet-security-framework.pdf
(last accessed on May 31., 2002).

Gamma E., Helm R., Johnson R., Vlissides J. (1996): Design Patterns. ISBN 0-201-
63361-2, Addison-Wesley, 1995.

Gavrila S., Barkley J. (1998): Formal Specification for Role Based Access Control
User/Role and Role/Role Relationship Management, Proc. 3rd ACM Workshop on
Role-Based Access Control, Fairfax, VA, USA, 1998.

Giuri L., Igilo P. (1997): Role Templates for Content-Based Access Control, Proc.
2nd ACM Workshop on Role-Based Access Control (RBAC'97), Fairfax, VA, USA,
Nov. 6-7, 1997.

Giuri L. (1998): Role-Based Access Control in Java, Proc. 3rd ACM Workshop on
Role-Based Access Control, Fairfax, VA, USA, Oct. 22-23, 1998.

Gollmann D. (1999): Computer Security. John Wiley & Sons, 1999, ISBN 0-471-
97844-2.

Hauswith M., Kerer C., Kurmanowytsch R., (2000): A flexible and extensible
security framework for Java code, Proc. 9th International World Wide Web
Conference, Amsterdam, May 2000.

Herzberg A., Mihaeli J., Mass Y., Naor D., Ravid Y. (2000): Access Control Meets
Public Key Infrastructure, Or: Assigning Roles to Strangers, Proc. IEEE Symposium
on Security and Privacy, May 14-17, 2000, Oakland, California, USA.

Chapter 7: Lists Page 167

Izaki K., Tanaka K., Takizawa M. (2000): Access Control Model in Object-Oriented
Systems, 7th International Conference on Parallel and Distributed Systems:
ICPADS’00 Workshop, IEEE 2000.

JAAS (2000): Java Authentication and Authorization Service 1.0, Developer’s
Guide, http://java.sun.com/security/jaas/doc/api.html (last visited Dec. 13, 2001)

Jendrock E., Bodoff S., Green D., Haase K., Pawlan M., Stearns B. (2002): The
J2EE Tutorial, ISBN 0-201-79168-4, Addison Wesley, 2002.

Kabay M., Identification, Authentication and Authorization on the World Wide Web,
White Paper; http://secinf.net/info/www/iaa/iaawww.shtml (last visited 30.01.2002)

Lai C., Gong L., Koved L., Nadalin A., Schemers R. (1999): User Authentication and
Authorization in the Java Platform, Proc. 15th Annual Computer Security
Applications Conference, Phoenix, AZ, USA, December 1999.

Linn J. (1997): RFC 2078 – Generic Security Service Application Program Interface,
Version 2, Request for Comments 2078, Internet Engineering Task Force, January
1997.

McLean J., (1990): The Specification and Modeling of Computer Security, IEEE
Computer 23(1): 9-16, 1990.

McMahon P. (1994): SESAME V2 Public Key and Authorization Extensions to
Kerberos, Proc. ISOC Symposium, 1994.

Myers J. (1997): Simple Authentication and Security Layer (SASL), Request for
Comments 2222, Internet Engineering Task Force, October 1997.

Nyanchama M., Osborn S. (1994): Database Security VIII: Status and Prospects, IFIP
Working Conf. On Database Security, In Proc. 15th Annual computer Security
Applications Conference, North-Holland, 1994.

Oasis (2003): eXtensible Access Control Markup Language (XACML) Version 1.1,
Committee Specification, 07. August 2003, http://www.oasis-open.org/committees/
xacml/repository/cs-xacml-specification-1.1.pdf.

Oasis (2004): Technical Overview of the OASIS Security Assertion Markup
Language (SAML) V.1., Draft 04, 30 March 2004, http://www.oasis-open.org/
committees/documents.php?wg_abbrev=security.

Chapter 7: Lists Page 168

Oppliger R., Pernul G., Strauss C. (2000): Using Attribute Certificates to Implement
Role-Based Authorization and Access Controls, Proc. Fachtagung Sicherheit in
Informationssystemen (SIS), Zürich, Schweiz, 5.-6. Okt. 2000.

Osborn S., Sandhu R., Munawer Q. (2000): Configuring Role-Based Access Control
to Enforce Mandatory and Discretionary Access Control Policies, ACM Transaction
on Information and System Security, Vol. 3, No. 2, pp. 85-206, May 2000.

Pernul G. (1994): Database Security, Advances in Computers, Vol. 38, Academic
Press, ISBN 0-12-012138-7

Probst S., Essmayr W., Weippl E. (2002): Reusable Components for Developing
Security-Aware Applications, Proc. 18th Annual Computer Security Applications
Conference (ACSAC), Las Vegas, NV, Dec. 9-13, 2002.

Probst S., Küng J. (2004): The need for declarative security mechanisms, Proc. 30th
EUROMICRO, Rennes, France, Sept. 2004.

Ramaswamy C., Sandhu R. (1998): Role-Based Access Control Features in
Commercial Database Management Systems, Proc. 21st NIST-NCSC National
Information System Security Conference, pp. 503-511, Arlington, VA, October 5-8,
1998.

Samar V. (1996): Unified Login with Pluggable Authentication Modules (PAM),
Proc. of the 3rd ACM conference on computer and communication security, New
Delhi, India, 1996.

Sandhu R. (1996): Role-Based Access Control Models, IEEE Computer, Vol. 29,
No. 2, Feb. 1996.

Sandhu R., Coyne E. (1996): Role-Based Access Control Models. IEEE Computer,
Vol. 29, No. 2. Feb. 1996.

Sandhu R., Samarati P. (1996): Authentication, Access Control, and Audit, ACM
Computing Surveys, Vol. 28, No. 1, March 1996.

Sandhu R., Ahn G. (1998): Group Hierarchies With Decentralized User Assignment
in Windows NT, Proc. International Association of Science and Technology for
Development (IASTED), Conference on Software Engineering, Las Vegas, October
1998.

Chapter 7: Lists Page 169

Sandhu R., Ahn G. (1998): Decentralized Group Hierarchies in Unix: An
Experiment and Lessons Learned. Proc. 21st NIST-NCSC National Information
System Security Conference, Arlington, VA, October 5-8, 1998.

Sandhu R., Ferraiolo D., Kuhn R. (2000): The NIST Model for Role-based Access
Control: Towards a Unified Standard, Proc. of 5th ACM Workshop on Role-Based
Access Control, July 2000.

Schier K. (1998): Multifunctional Smartcards for Electronic Commerce - Application
of the Role and Task Based Security Model, Proc. 14th ACSAC, Scottsdale, Arizona,
Dec. 7-11, 1998.

Sun Microsystems (1999): Java Security Architecture,
http://java.sun.com/j2se/1.4/docs/guide/security/spec/security-specTOC.fm.html (last
accessed on May 31, 2002).

Tenday J., Quisquater J., Lobelle M. (1999): Deriving a Role-Based Access Control
Model from the OBBAC Model, Proc. IEEE 8th Int. Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, Palo Alto, CA, USA,
June 16-18, 1999.

Thomas R. (1997): Team-based Access Control (TMAC): A Primitive for Applying
Role-based Access Controls in Collaborative Environments, RBAC 97 Fairfax Va
USA, ACM 0-89791-985-8/97/11. 1997.

Thomsen D., O’Brien D., Bogle J. (1998): Role-Based Access Control Framework
for Network Enterprises, Proc. 14th Annual Computer Security Applications
Conference, Scottsdale, Ariziona, Dec. 7-11, 1998.

Welch I., Stroud R. (1999): Supporting Real World Security Models in Java, Proc.
7th IEEE Workshop on Future Trends in Distributed Computing Systems, Dec. 20,
1999, Tunisia, South Africa.

Ziebermayr T, Probst S. (2004): Web Service Authorization Framework, Proc. of
ICWS, San Diego, 2004.

Zurko M., Simon R., Sanfilippo T. (1999): A User-Centered, Modular Authorization
Service Build on an RBAC Foundation, Proc. IEEE Symposium on Security and
Privacy, Berkley, CA, USA, May 1999.

Appendix Page 170

Appendix: Curriculum Vitae

Personal Data Name Dipl.Ing.(FH) Stefan Probst
 Birthday 24.07.1978 in Vienna, Austria
 Address Weingarten 6 / 7

4232 Hagenberg
 Maritial status Single
Education 07.1992 Finished secondary school in Oberschützen
 06.1996 General qualification for university

entrance (Matura) at BORG Güssing with
focus on informatics

 06.2000 Diploma at the university of applied
science for software engineering in
Hagenberg

 11.2004 Finished PhD studies at the Johannes
Kepler University in Linz

Diploma
Thesis

Topic Study the applicability of the Java language
for developing large scale software systems
in the context of high-energy physics.

Dissertation Topic GAMMA – A platform independent
framework for reusable authentication,
authorization, and auditing components.

Professional
Experience

08.1997 – 09.1997 Internship at AUTECH GmbH, Radolfzell,
Germany

 08.1999 – 05.2000 Pratical semester and diploma thesis at the
“European Organization for Nuclear
Research” (CERN) in Geneva, Switzerland

 09.2000 – 08.2004 Member of Scientific Staff at the Software
Competence Center Hagenberg, starting
with January 2001 project manager of
strategic project GAMMA

 starting with 10.2001 Lecturer at the university of applied science
in Hagenberg in the fields operating
systems, network technology, formal
languages and compiler construction, and
distributed software systems.

 starting with 10.2003 IT-Security consulting for small and
medium sized companies

 starting with 10.2004 Microsoft High School Advisor (Western
Austria)

