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ABSTRACT 
This paper presents a case study of the challenges faced in developing a reliable, robust, and accurate 
digital twin system for an automotive shock absorber. Specifically, this digital twin system’s role is to 
estimate the current gas pressure in the reservoir chamber and compare it with the expected pressure. It is 
quantitatively demonstrated that design choices of sensors and algorithms have a significant effect on the 
accuracy of the system which is not proportionate to the hardware costs of the digital twin system. The 
evaluated sensor suites cost is significant, with an overall cost ranging from A$297 to A$4,292, representing 
a 14-fold difference in costs. The study shows that the use of an expansive and costly sensor suite does not 
necessarily reflect proportionately in the accuracy of the system. The algorithms and sensors utilised in the 
digital twin architecture have a significant effect on the accuracy of the system with the RMSE ranging from 
3.83 Bar to 0.85 Bar, a four-fold variation in accuracy. The digital twin approach showed significant benefit 
in accuracy highlighted by the most accurate sensor only approach achieving a RMSE of 2.27 compared to 
the 0.84 of the full digital twin approach. The lowest cost system which maximally utilised Bayesian methods 
and physical modelling generated the second most accurate estimate with a RMSE of 1.4 Bar, 165% of the 
most accurate system, which is still effective for the task, but at 7% of the cost. This demonstrates that by 
leveraging algorithmic development in a hybrid architecture, performance can be significantly improved and 
both dataset sizes and training times for the neural network components can be significantly reduced. 

1.0 INTRODUCTION 

Determining the health and performance of complex systems is challenging, however the use of real-time 
operational reference systems, or digital twins, can aid in this endeavour [1]. As such, digital twins are 
increasingly being employed for condition-based maintenance, performance-based asset management, fault 
detection and performance prediction applications [2]. Such innovative and revolutionary digital twin 
technology can be used for military fleet sustainment to ensure platform safety, providing better information 
on the condition of each asset, reducing maintenance costs, and increasing platform availability by enabling 
better maintenance planning and reducing the occurrence of unanticipated damage.  

In our study we evaluated the design choices available in developing a digital twin and examined the 
consequences of these design choices on hardware costs, development time, and accuracy of the developed 
system. For our case study, we developed a digital twin capable of estimating, in real time, the static gas 
pressure in a reservoir chamber of a shock absorber. This estimate can then be used to determine the current 
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health of the shock absorber by comparing the current pressure with the expected pressure, with any 
differences potentially indicating the loss of gas volume. For the purposes of this paper, we will look at the 
estimated static gas pressure as a measure of the accuracy of the digital twin system. 

2.0 CHALLENGES WITH DEVELOPING DIGITAL TWINS 

Employing digital twins imposes upfront costs, such as software development and sensor integration, and 
therefore, reducing these costs increases system affordability and adoption. While software development 
costs may be significant, such costs can be amortised across many units. The same, however, does not hold 
for the sensors themselves. As such, we will demonstrate the development of a digital twin that balances the 
accuracy and effectiveness of the system with reduced sensor hardware costs. 

2.1 Structured vs Unstructured 
Much of the focus of digital twin development to-date has been on high-level modelling of whole systems 
(e.g., entire vehicles) or end-to-end manufacturing processes. At the component level of service-phase digital 
twins (i.e., for operational and sustainment rather than manufacturing), the emphasis has been on either 
physical modelling of the system or the architecture of neural networks that correlate and infer system states 
based on available measurements. 

The terms structured and unstructured represent the extremes of potential architectures. A classical 
estimation (CE) approach is an example of a fully structured architecture and would employ explicitly 
developed models and estimators to perform the task of estimation. Conversely, a fully connected End-to-
End (E2E) Deep Neural Network (DNN) is an example of a completely unstructured approach. The middle 
ground between these extremes includes systems that employ a hybrid approach [3]. The CE has the benefit 
of predictable performance of the system within a range of operational conditions, however, it has a 
disadvantage in that the system can only incorporate features explicitly encoded into the system. The DNN 
has the advantage that it can potentially encode any information embedded in the data streams from the 
sensors without explicit descriptions of these features, however, the quality of this encoding is dependent on 
the sufficiency of the training dataset. This defines the contrast between these two extremes; CE maximum 
design effort and predictability, with minimum data and computation requirements; E2E-DNN minimum 
design effort and predictability, and maximum data and computation requirements. 

There has been much hype regarding the potential capability of DNNs, but they place the burden of work on 
the data collection and processing steps, which depending on the required levels of accuracy and/or 
robustness, may be significant or even impractical.  

2.2 Deployability in the Field 
As mentioned in Section 2.1, the limitation of an unstructured system is the limited predictability of the 
performance of the system when presented with novel data [4]. This is of particular concern when operating 
in the field where the operational environment cannot be controlled, and the potential permutations of 
sensors states are predominantly unconstrained. Combining the previous two features means that the data 
and processing required to achieve a given performance and reliability are generally significantly higher, or 
possibly unfeasible, for digital twins operating in the field. 

Due to this limitation, the utility of DNN systems is limited when it comes to mission critical systems where 
operating boundaries, and the probability and modes of failure, need to be quantified to the highest level of 
confidence possible. One approach to make DNNs more trusted is to make the internal parameters generated 
reflect real world values. There are various ways to achieve this, such as constraining connectivity to 
neighbouring nodes in the preceding layers, as in Convolutional Neural Networks (CNNs) [5] or forcing 
some nodes of the architecture to generate an explicit real-world value as in hybrid approaches. 
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3.0 DIGITAL TWIN APPROACHES 

While DNNs are in principle capable of producing the desired performance and robustness, given sufficient 
training, the training process can be highly time consuming and demanding in terms of the data set. There is 
a balance to be found between the structured and unstructured approaches to leverage the ability of DNNs to 
extract unidentified features in a given data stream. This has been employed explicitly in the case of shock 
absorbers via various approaches either using splines [6] or piecewise linear functions [7] for averaged 
behaviour with residuals from this developed model estimated by a DNN or alternatively modelling an 
individual component using a DNN [8]. This allows DNNs to be applied to as small as possible part of the 
solution, to minimise the size of the training dataset necessary to achieve the required performance and 
robustness, while maximising the confidence in the behaviour of the DNN. A drawback in the previous 
examples is by using the data driven analytical modelling approach no insight to the functioning of 
individual components can be derived. 

As mentioned previously, a structured approach would entail explicitly describing the relationships between 
input, output, and intermediate states either by explicitly modelling sub-components or utilising constrained 
polynomial as previously demonstrated [6], [7]. When modelling a system as a set of subsystems, equations 
are developed to quantify the exchange and conversion of quantities between these states. These quantities 
and states are generally dependent on the function of the system of interest. Since a shock absorber performs 
a physical task of exerting force on a moving component by converting the energy to heat, a classical 
approach would be to utilise a physics-based modelling approach and model the components that contribute 
to the functioning of this conversion process. This is performed by developing equations that describe the 
inter-relationship between individual damping components, under differing operation conditions, the process 
of conversion to heat and the propagation of this heat though the system to the surrounding environment. 

We illustrate this concept in our case study where we developed a digital twin of a shock absorber for a land-
based vehicle by focusing on the individual mechanical components of the shock absorber. The digital twin 
thus developed infers the current gas pressure in the reserve chamber; something that is vital for 
functionality, but difficult to measure directly in-situ. This pressure estimation was based on immediately 
available sensor information, and model-based information that can be derived from this data, parsed to a 
neural network to perform the inference. Although neural networks can theoretically learn (almost) any 
arbitrary pattern, the size of the network and the training data required can limit this in practice. One way to 
overcome these practical limitations is to pre-process the data, hence outsourcing some of the processing that 
the network would otherwise have to learn. This additional data can then be used as an augmented input to 
the network, thereby reducing the network size, increasing accuracy and/or decreasing training time. 

4.0 EXPERIMENTAL SETUP 

The development of the digital twin required a dataset to validate the empirical models and the estimation 
systems, as well as to train the neural network. The experimental setup consisted of actuating the shock 
absorber on a dynamometer and collecting data that could be directly or indirectly related to the operational 
state of the shock absorber. This could be reasonably expected to be analogous to an instrumented shock 
absorber that is deployable in the field. 

4.1 Dynamometer Testing 
The testing phase consisted of actuating the shock absorber on a dynamometer at three frequencies: 1, 2, and 4 
Hz. These differing frequencies in combination with a fixed peak to peak displacement of 80 mm generates 
different levels of excitation i.e., velocity, and acceleration. These excitations are repeated for varying gas 
pressures in the reserve chamber: 0.5, 4, 7, 10, and 12 (nominal) Bar to emulate different stages of gas leakage.  
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For each of these scenarios, the test started when the shock absorber was within 2oC of ambient temperature 
and was continued until the maximum normal operating temperature, 80oC, was reached, or in the case of the 
1 Hz scenario when the temperature reached equilibrium, at around 60oC. This facilitated the collection of 
data over a typical range of excitations, temperatures, and in the case of a gas leak failure an expected range 
gas of pressures.  

Figure 1 shows the dynamometer system used to excite the shock absorber to generate the above scenarios in 
addition to a diagram that highlights the configuration of sensors used. 

  

Figure 1: Dynamometer test setup and instrumentation diagram Note: the shock absorber in the 
image was not the device under test. 

4.2 Data Collected 
For each of the scenarios, presented in Section 4.1, multiple streams of data were captured from the sensor 
configuration, shown in Figure 1, and is presented in Table 1. This data collection started 1 minute prior to 
the start of each scenario and continued till the termination condition was met, as specified in Section 4.1. 

Table 1: Sensors and Sensed Information. 

Value Rate (Hz) Sensor Notes 

Position 100 suspension travel sensor linear potentiometer 

Acceleration 1000 2x 8G G-Force sensors difference between accelerometers 

Force 50 20 tonne loadcell strain gauge 

Shock Temperature 1 thermocouple K-Type 

Ambient Temperature 1 thermocouple K-Type 
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5.0 ALGORITHM DEVELOPEMENT AND NETWORK TRAINING 

To augment the measurements supplied to the DNN, physics-based modelling and Bayesian estimation were 
used to generate additional data from the stream of available sensor readings. Using this approach, three 
additional sets of information were generated: 

• The velocity of the shock absorber using a Kalman Filter [9]. 

• The nominal behaviour of the shock absorber, using fluid dynamic principles [10]: 

• Force exerted. 

• Heat generated. 

5.1 Velocity Estimation 
Velocity is an essential parameter since the behaviour of a shock absorber is dominated by dissipative forces 
dependent on the velocity. Thus, an accurate measure of velocity would provide a useful metric of the shock 
absorber’s performance and provide critical information to the physics-based model. Directly measuring the 
velocity of the shock absorber arm is, however, difficult. In contrast, position and acceleration sensors are 
relatively inexpensive, easy to install and readily available. An algorithm was selected to explicitly calculate 
the velocity, as the relationship between position, velocity, and acceleration is well known and can be solved 
optimally using a small set of linear algebraic equations, i.e., a Kalman Filter. 

Essentially, the state vector, i.e., the values of interest, to be estimated are position, yt, & velocity, ẏt, of the 
shock absorber extension, and accelerometer bias, ba, of the accelerometer sensors. These are estimated by 
correlating the position sensor, zt, and accelerometers, a1,t-1 & a2,t-1 , with the kinematic position equation and 
the associated velocity equation (1). 

 

(1) 

 

Figure 2: Estimated and measured, via time differencing the potentiometer measurement, 
velocity of the 1Hz test. 
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5.2 Thermal Modelling 
A thermal model of the shock absorber was created to model the heat generated by, and conducted through, 
the shock absorber as the shock absorber was agitated. The model consists of two equations describing the 
relationship of heat transfer. This parametric model was also fitted to the shock absorber test measurements 
generated in its nominal state. 

5.2.1 Thermal Transfer of Kinetic Generated Heat to Oil to Cylinder Body 

The first equation of the thermal model (2) models the rate of change of the temperature of the damping 
fluid, Toil, which is defined by the total heat transfer to the oil and moderated by the mass and thermal 
capacity of the oil, moil, and coil. The heat transfer is determined by the kinetic energy converted to heat, 
Fdampingẏ, and the conduction to the shock cylinder based on the relative temperature, Tcyl - Toil. 

 
(2) 

5.2.2 Thermal Transfer from Cylinder Body to Environment 

The second equation of the thermal model (3) models the rate of change of the temperature of the metal 
cylinder of the shock absorber, Tcyl, which is defined by the total heat transfer to the metal and moderated by 
the mass and thermal capacity of the cylinder, mcyl and ccyl. The heat transfer is determined by the 
temperature difference of the cylinder relative to the damping fluid, Tcyl - Toil, as well as convection and 
radiation to the surrounding environment, Tcyl - Tamb. 

 

 

(3) 

5.2.3 Empirical Estimation 

The model presented, (2)-(3), was fitted to the collected sensor data. The model was fitted by estimating the 
lumped parameters, i.e., moilcoil → A, that minimised the RMSE of the generated cylinder temperature 
profile, Tcyl, in relation to the collected temperature data. The temperature data was the data collected using 
the cylinder thermocouple, for the 1, 2, and 4 Hz scenarios for the nominal operating condition of 12 Bar. 
The model inputs consisted of the sensor data collected from the loadcell, the ambient thermocouple, and the 
velocity as derived in Section 5.1. The output of the fitted model in relation the sensor data is presented in 
Figure 3. 
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Figure 3: Modelled and measured temperature profile of the 1Hz test at nominal gas pressure. 

5.3 Force Modelling 
A common structure of a shock absorber, shown in Figure 4, consists of a piston, a disk like shape partially 
blocking the flow of dampening fluid, attached to a connecting rod, in a cylinder filled with dampening fluid 
connected to a second chamber for holding a reserve oil pressurised by a gas chamber separated by a floating 
piston [11]. The piston, shown in Figure 4(a) in turn has holes, ports, that allow a limited rate of fluid 
through, some of which are in part covered by a shim stack, that deflects due the force exerted by fluid 
pressure created as the piston moves within the cylinder. To generate an estimate of the force expected to be 
generated at any point in time, a first principle parametric physical model of the shock absorber, Figure 4(b), 
was utilised to determine the force generated by the individual components within the shock absorber and 
their individual forces combined to generate an overall force [11]. The model presented here is in principle 
equivalent to the model resented in Reybrouck [12] with functional modifications to extend the applicability 
of the model. There are three types of force generating components in a shock absorber; 

• Port – orifices that limit the flow of the dampening fluid, there are two versions, low speed (leak) 
port and high speed (main) port. There is a pair of each of these ports, one for the compression 
direction and the other for rebound. 

• Shim stack valve – a set of annular springs that are stacked to control the flow of fluid through the 
main port. Similarly, there is a pair of shim stacks, one for the compression direction and the other 
for rebound. 

• Gas pressure – the force generated in extension due to gas pressure in the reserve chamber and 
differential cross-sectional area either side of the piston due to the presence of a connecting rod on 
one side. 

Each of these force components have coefficients that weight the individual terms and have different values 
during compression or rebound motion. A summary of these forces is presented in the following subsections. 
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Figure 4: The shock absorber physical representation. 

  
(a) (b) 

Figure 5: The dampening piston physical and schematic representation. 

5.3.1 Leak Port Force 

Leak port force (4) is the force generated by the leak port fluid restriction in the piston as the fluid attempts 
to bypass the pressure valve formed by the shim stack, depending on port design force can have differing 
relationship to velocity, in this case the force is linearly sensitive to the velocity of the fluid [13], equivalent 
to the velocity of the shock absorber, ẏ. Additionally, due to the relatively small velocities involved, this 
force is also sensitive to the acceleration of the fluid, ÿ, due to hysteresis. 

 (4) 

5.3.2 Main Port Force 

Main port force (5) is the force generated by the fluid restriction in the shock absorber piston that is regulated 
by the shim stack. Due to the fluid dynamics and the geometry of the port [13], the force is sensitive to the 
velocity of the fluid, ẏ, to the power of 1.75, and the fourth root of fluid viscosity. 



Hybrid Neural Network 
and Physics-Based Digital Twins for Condition-Based Maintenance 

STO-MP-AVT-369-25 25 - 9 

 
 

 
 

 (5) 

5.3.3 Shim Valve Force 

Shim valve force (5) is the force due to the shim stack valve. This force manifests itself as flow valve 
regulated by a preloaded spring. 

 (6) 

5.3.4 Gas Pressure Force 

The gas pressure force is the force used to pressurise the damping fluid while allowing the oil to occupy 
more space due to changes in the fluid density or displacement due to shock absorber extension. This force is 
composed of two components, the average gas pressure (7) and the instantaneous gas pressure (8) due to 
changes in extension, y, and adiabatic gas law and the adiabatic index of nitrogen of 1.4. 

 
(7) 

 
(8) 

5.3.5 Overall Force 

The forces generated by the leak port, main port, shim valve, and gas pressure combine to generate the 
overall force generated by the shock absorber (9). The leak port and shim valve act in parallel as the shim 
valve bypasses the leak valve, these forces are combined using an empirical parallel combination of forces 
[6] and this combined force is added to the main port and gas pressure forces due to them acting in series. 

 

(9) 

5.3.6 Empirical Model Fitting 
This parametric force model was then optimised, in combination with the already fitted thermal model, 
Section 5.2, to fit the sensor data recorded during the tests involving the shock absorber in its nominal state, 
i.e., 12 Bar. The relationship between the sensed and modelled force is shown in Figure 6 with the solid 
colour, and the colour bar, representing the modelled data and the dashed lines representing the average force 
measured at each velocity for the four temperature ranges defined by the centroid temperature shown in the 
legend.  
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Figure 6: Modelled and measured force of the 1 Hz test at nominal gas pressure. 

5.4 Neural Network 
The purpose of the neural network is to take various combinations of the sensor data, estimated velocity, and 
modelled thermal and force data, to generate an estimate of the average gas pressure based on immediate 
data, i.e. no memory, recursion or averaging, which could then be used to determine the operational 
condition of the shock absorber, as shown in Figure 7. 

 

 
Figure 7: The digital twin architecture highlighting the network architecture and the connectivity 
of the modelling and estimation algorithms providing additional streams of information to the 
neural network. 

5.4.1 Network Architecture 

The architecture of the DNN was selected to be a feedforward neural network composed of 4 hidden layers 
with 64 nodes each. The method to determine the optimal architecture as well as more detailed analysis of 
the statistical behaviour of the network is outside of the scope of this publication. The overall architecture 
applied in this paper was chosen as it was the most straight forward approach in that any model generated 
data would be applied as additional inputs to the DNN. This architecture allowed the DNN to be treated 
conventional network simplifying the network development and training process. Additionally, simplifying 
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the explicit architecture allowed the analysis to focus on the effect of the derived data on the accuracy of the 
solution. The output layer consisted of one node corresponding to the gas pressure estimate while the input 
layer comprised N nodes corresponding to the number of inputs for the given permutation tested. 

5.4.2 Network Training 

The neural network was presented with data collected from all tested sets of actuation frequency and gas 
pressure with the predefined labels based on the gas pressure measured at the beginning of the test scenario. 
The data was filtered and down sampled such that all the data arrived at the same rate of 50Hz. This dataset 
was randomly partitioned into training and testing sets, sized 75% and 25%, respectively. Each permutation 
of the neural network was then trained on the subset of data streams as defined by the sensor, modelling, 
estimation combination. 

6.0 RESULTS 

The training was completed as specified in Section 5.4.2 and the network RMSE then evaluated using the 
testing set for each of the 13 permutations, the results are presented in Table 2. It can immediately be seen 
that in general the more data inputs that are provided, be it sensor or derived, the more accurate the estimate 
is, but a more detailed look highlights which data streams have the most significant impact on the accuracy 
of the estimate. 

When a loadcell was combined with positional measurements (as in models 3, 7, 9, 11 and, 13) this 
combination generated the most meaningful impact on accuracy This was most notably seen in model 3 
where it is more accurate than any other combination using only two of the available sensor inputs, and with 
only a marginally higher error than using all three kinetic sensors. The only difference in available data 
between models 7 and 9 was that in model 9, the estimated velocity was available from the Kalman Filter, 
while in model 7 the information necessary to infer velocity was available but had to be calculated by the 
network. Providing the velocity directly as an input to the network resulted in a 19% improvement in RMSE. 
Additionally, providing the estimated force from the mechanical model resulted in a 24% improvement from 
the baseline, a further 7% improvement over model 9. Finally, with the addition of the estimates from the 
thermal model, an improvement of 63% over baseline, or a 50% improvement without the thermal model 
was achieved. 

The most significant finding from this experiment was that model 12, despite not utilising the loadcell, 
generated an instantaneous pressure estimate with an RSME of 1.40 bar at 50 Hz. When a moving average 
filter (of 1s) was applied to the estimate of pressure, the RMSE decreased to 0.67 bar. This showed that 
while the loadcell was the single most informative sensor for the network it could be removed without 
critically affecting the resulting system estimations. 

The advantage of avoiding a loadcell in the sensor suite is shown in Table 3. The total cost of the sensors 
used in model 12 was only 7% of the cost of the alternatives that utilised the loadcell. Although model 12 
was less accurate (65% higher RMSE) than model 13, it was sufficient to determine the gas pressure in the 
reserve chamber at a level that easily discriminated the pressure instances used, with the cost savings more 
than making up for the loss of precision. 
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Table 2: Tested permutations of available data to determine the accuracy of the neural network 
utilising combinations of sensor inputs. 

 

Table 3: Shortlist of input permutations of the available sensors and derived data showing the 
significant cost of a loadcell and the ability of model derived estimates to compensate for the 
lack of a load cell. 

 

This study has shown not only the effectiveness of a neural network based digital twin system but that the 
inclusion of selective pre-processing algorithms can substantially improve accuracy. Furthermore, through 
utilisation of system modelling, hardware costs can be reduced by avoiding otherwise essential sensors. 
These results also validate the general approach taken, that by factorising a system into smaller components, 
or features, a hybrid method can be used where the most appropriate algorithm is selected for each of the 
individual components. Thus, classical models should be used where solutions can be easily formulated and 
implemented while neural networks should be used for less well-defined tasks. This results in decreased 
development and training time for the network as well as a more accurate and traceable digital twin. 



Hybrid Neural Network 
and Physics-Based Digital Twins for Condition-Based Maintenance 

STO-MP-AVT-369-25 25 - 13 

 
 

 
 

7.0 CONCLUSION 

The most significant finding from this experiment was that it is possible to indirectly estimate parameter 
measurements from other sensor measurements without incurring the additional expense and complexity of 
fully measuring all parameters. As shown, despite not utilising a loadcell, model 12 generated an 
instantaneous pressure estimate with an RSME of 1.40 bar at 50 Hz. When a moving average filter (of 1s) 
was applied to the estimate of pressure, the RMSE decreased to 0.67 bar. This demonstrated that while the 
loadcell was the single most informative sensors for the network it could be removed without critically 
affecting the resulting system estimations. Finally, the case study presented here also serves as an analogue 
to larger and more complicated systems or platforms, as the factorisation approach presented here can be 
implemented using a variety of metrics including modularity, functional complexity, development time, and 
system risk assessment. 

Our research suggests that when twinning a particular item or component, the most effective approach, in 
terms of accuracy, efficiency and interrogability, is to first factorise the object into elements that are as small 
as possible and optimising the approach for each element individually. These elements should then be 
recombined; with redundant, low contributing or high-cost elements selectively removed to produce a more 
efficient, but still functional digital twin. 
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