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Technical Memorandum
June 9, 2009

TO: Mike Heyl, Senior Environmental Scientist, Ecological Evaluation Section
Marty Kelly, Ph. D., Manager, Ecological Evaluation Section

THROUGH: Mark Barcelo, P.E., Manager, Hydrologic Evaluation Section

FROM: Ron Basso, P.G., Senior Professional Geologist, Hydrologic Evaluation Section

Subject: Predicted groundwater withdrawal impacts to the Anclote River based on
numerical model results

1.0 Introduction

The Anclote River is located in southwest Pasco County and contains a drainage basin area of 75
square miles upstream of the Elfers gage (Figure 1). Mean annual discharge for the Anclote River
near Elfers gage averaged 64.7 cubic feet per second (cfs) or 42 million gallons per day (mgd) from
1947 through 2006.

Prior to establishment of a Minimum Flow (MF), an evaluation of hydrologic changes in the vicinity
of the river is necessary to determine if the water body has been significantly impacted by existing
groundwater withdrawals. The establishment of the MF for the Anclote River is not part of this
report. This memorandum describes the hydrogeologic setting near the river and provides the
results of several numerical model simulations of predicted stream flow change due to existing
groundwater withdrawals.

2.0 Hydrogeologic Conditions

The hydrogeologic framework of the area includes a surficial sand aquifer system; a discontinuous,
intermediate clay confining unit and the thick carbonate Upper Floridan aquifer (UFA). In general,
the surficial aquifer system is in good hydraulic connection with the underlying UFA because the
clay confining unit is generally thin, discontinuous, and breeched by numerous karst features. The
surficial sand aquifer is generally a few tens of feet thick and overlies the limestone of the UFA that
averages nearly 1,000 feet thick in the area (Miller, 1986). In between these two aquifers is the
Hawthorn Group clay that varies between a few feet to as much as 25 feet thick. Because the clay
unit is breached by buried karst features and has previously been exposed to erosional processes,
preferential pathways locally connect the overlying surficial aquifer to the UFA resulting in
moderate-to-high leakage to the UFA (SWFWMD, 1996). Thus the UFA is defined as a leaky
artesian aquifer system.

The UFA is the principal aquifer in the watershed area and is the major source of water for
municipal water use. Tampa Bay Water, a regional utility service for portions of Hillsborough,
Pasco, and Pinellas Counties, has five major wellfields within or adjacent to the Anclote River
watershed (Figure 1). In the mid-1990s, these wellfields withdrew a total of 65 to 70 mgd of
groundwater from the UFA.

1

Appendix Page 33



_ Starkey
=
jote 4
Anclote River near Elfers e ‘/ 1

|

i

|

i

| -

1 Cosme-Odess: Legend

2) —~ [ ] Public Supply Welfields ||
| f \

3 = Jf : 1 [

Figure 1. Location of Anclote River.

3.0 Numerical Model Results

A number of regional groundwater flow models have included the Anclote River area. Ryder (1982)
simulated the entire extent of the Southwest Florida Water Management District. In 1993, the
District completed the Northern Tampa Bay groundwater flow model that covered a 2,000 square
mile area of Hillsborough, Pinellas, Pasco, and Hernando Counties (SWFWMD, 1993). In 2002, the
USGS simulated the entire Florida peninsula in their Mega Model of regional groundwater flow
(Sepulveda, 2002). The most recent and advanced simulation of southwest Pasco County and the
surrounding area is the Integrated Northern Tampa Bay model. The construction and calibration of
this model was part of a cooperative effort between the SWFWMD and Tampa Bay Water, a
regional water utility that operates 11 major wellfields in the area. The Integrated Northern Tampa
Bay Model covers a 4,000 square-mile area of the Northern Tampa Bay region (Figure 2).

An integrated model represents the most advanced simulation tool available to the scientific
community in water resources investigations. It combines the traditional ground-water flow model
with a surface water model and contains an interprocessor code that links both systems. One of
the many advantages of an integrated model is that it simulates the entire hydrologic system. It
represents the “state-of-art” tool in assessing changes due to rainfall, drainage alterations, and
withdrawals.

The model code used to run the INTB simulation is called the Integrated Hydrologic Model (IHM)
which combines the HSPF surface water code and the MODFLOW ground-water code using
interprocessor software. During the INTB development phase, several new enhancements were
made to move the code toward a more physically-based simulation. The most important of these
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enhancements was the partitioning of the surface into seven major land use segments: urban,
irrigated land, grass/pasture, forested, open water, wetlands, and mining/other. For each land
segment, parameters were applied in the HSPF model consistent with the land cover, depth-to-
water table, and slope. Recharge and ET potential were then passed to each underlying
MODFLOW grid cell based on an area weighted-average of land segment processes above it.
Other new software improvements included a new ET algorithm/hierarchy plus allowing the model
code to transiently vary specific yield and vadose zone storages.

The INTB model contains 172 subbasin delineations in HSPF (Figure 3). There is also an
extensive data input time series of 15-minute rainfall from 300 stations for the period 1989-1998, a
well pumping database that is independent of integration time step (1-7 days), a methodology to
incorporate irrigation flux into the model simulation, construction of an approximate 150,000 river
cell package that allows simulation of hydrography from maijor rivers to small isolated wetlands, and
GIS-based definition of land cover/topography. An empirical estimation of ET was also developed
to constrain model derived ET based on land use and depth-to-water table relationships.

The MODFLOW gridded domain of the INTB contains 207 rows by 183 columns of variable spacing
ranging from 0.25 to one mile. The groundwater portion is comprised of three layers: a surficial
aquifer (layer 1), an intermediate confining unit or aquifer (layer 2), and the Upper Floridan aquifer
(layer 3). The model simulates leakage between layers in a quasi-3D manner through a leakance
coefficient term.

Inactive Model Area

| Ry,

0 35 7 14 Miles
T |

Figure 2. Groundwater grid used in the INTB model.
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Figure 3. HSPF subbasins in the INTB model.

The INTB model is a regional simulation and has been calibrated to meet global metrics. The
model is calibrated using a daily integration step for a transient 10-year period from 1989-1998.
Model-wide mean error for all wells in both the surficial (SAS) and Upper Floridan aquifers is less
than 0.2 feet. Mean absolute error was less than two feet for both the SAS and UFA. Total stream
flow and spring flow mean error averaged for the model domain is each less than 10 percent.

3.1 INTB Model Scenarios

Six different groundwater withdrawal scenarios were run with the INTB model. The first scenario
consisted of simulating the impacts from groundwater withdrawn within the Central West-Central
Florida Groundwater Basin. The area of withdrawals totaled 197 mgd (average 1989-1998
conditions) and is shown in Figure 4. The simulated stream flow hydrograph of the Anclote River at
the Elfers gage showing both current conditions and zero withdrawals within the CWCFGWB is
illustrated in Figure 5. The predicted mean and median stream flow decline for the Anclote River is
17.8 cfs and 8.7 cfs, respectively due to 197 mgd of groundwater extraction in the CWCFGWB.

To estimate the impact of the five major wellfields and also develop a timeline of predicted flow
declines to the Anclote River due to groundwater withdrawals — all five wellfields within or near the
Anclote River basin were modeled in addition to the Eldridge-Wilde, Starkey, and South Pasco
wellfields which were each modeled separately. The final scenario consisted of simulating the
potential impact to the Anclote River from a combination of groundwater withdrawals from Cross
Bar and Cypress Creek wellfields located in central Pasco County. Table 1 summaries the mean
and median flow declines as predicted by the INTB model for each scenario. Figures 6-17 depict
the predicted drawdown in the surficial and Upper Floridan aquifers for each of the six scenarios.
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Central West-Central Florida Groundwater Basin Pumping in the INTB Model

N -
INTB Model A
1989-98 Avg Pumpage = 196.6 mgd
‘ﬁ‘ - 0 35 7 14 Miles
\ N S T T |

Figure 4. INTB scenario 1 where impacts to the hydrologic system were simulated due to groundwater withdrawals of
197 mgd (1989-1998 average) in the shaded area.
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Figure 5. Simulated monthly stream flow change to the Anclote River near Elfers due to 197 mgd of groundwater
withdrawn within the Central West-Central Florida Groundwater Basin.
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Table 1. Description and results of changes to Anclote River stream flow from six different INTB
model scenarios.

Mean Stream Flow Median Stream Flow
Model Groundwater Reduction (cfs) Reduction (cfs)
Scenario Extraction Anclote River near Anclote River near
No. (mgd)* Description Elfers Elfers
Central West-central
1 196.6 Florida Groundwater 17.8 8.7
Basin
Starkey, Eldridge-
Wilde, S. Pasco,
2 67.1 Cosme-Odessa, and 14.4 6.8
Section 21 Wellfields
Cypress Creek and
& 518 Cross Bar Wellfields 04 03
Eldridge-Wilde
4 25.5 Waellfield 3 1.7
5 13.1 South Pasco Wellfield 4.8 1.8
6 12.3 Starkey Wellfield 4.6 2.4

* = 1989-1998 Average Quantities

Predicted Drawdown in the Surficial Aquifer due to Central
West-Central Florida Groundwater Basin Pumping

=

Drawdown (ft)

00-1.0

8 Miles

- [ﬂ -
1
[
|
2R
¥
L]
S ki
INTB Model
10 Year Average Drawdown
Pumpage = 196.6 mgd
L ) -z 7 i

Figure 6. Predicted decline in the Surficial Aquifer due t0197 mgd of groundwater withdrawals within the Central West-
Central Florida Groundwater Basin.
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Predicted Drawdown in the Upper Floridan Aquifer due to Central
West-Central Florida Groundwater Basin Pumping

— - A T
Drawdown (ft) N

00-1.0 ) A

1.1-30

0 2 4 8 Miles

3.1-5.0

51-10.0

10.1-15.0

15.1 -24.0 m;\/

INTB Model
10 Year Average Drawdown
Pumpage = 196.6 mgd
L 1) AN

Figure 7. Predicted decline in the Upper Floridan Aquifer due to 197 mgd of groundwater withdrawals within the Central
West-Central Florida Groundwater Basin.

Predicted Drawdown in the Surficial Aquifer due to Tri-County Wellfields (except NW Hillsborugh)

Drawdown (ft)
0.0-1.0
1.1-3.0
3.1-5.0

5180
P s1-100
B 01-137

INTB Model
10 Year Average Drawdown
Tri-County Wellfields = 67.1mgd

[F- A

L1

0 1.5 3 6 Miles|

@

Figure 8. Predicted decline in the Surficial Aquifer due to 67.1 mgd of groundwater withdrawals from five wellfields
(Eldridge-Wilde, Starkey, Section 21, South Pasco, and Cosme-Odessa).
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Predicted Drawdown in the Upper Flordan Aquifer due to Tri-County Wellfields (except NW Hillsborugh)

Drawdown (ft)

00-
[ REE
31-
5.1-
8.1-

1.0
3.0
5.0
8.0
10.0

10.1-12.0

Bl 2154
I\

A
N

Yo . bs }
< e
@ : ) L«\ N
INTB Model -
10 Year Average Drawdown
Tri-County Wellfields = 67.1mgd

[Fre

>

o
o
w
>
2
2
i

>,
g
f
N
Z

Figure 9. Predicted decline in the Upper Floridan Aquifer due to 67.1 mgd of groundwater withdrawals from five wellfields
(Eldridge-Wilde, Starkey, Section 21, South Pasco, and Cosme-Odessa).

Predicted Drawdown in the SAS due to Cypress Creek & Cross Bar Wellfields

Drawdown (ft)
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21
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Figure 10. Predicted decline in the Surficial Aquifer due to 51.8 mgd of groundwater withdrawals from the Cross Bar and
Cypress Creek wellfields.
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Predicted Drawdown in the UFA due to Cypress Creek & Cross Bar Wellfields

Drawdown (ft)

| o00-10
[ 1130

31-5.0

I s1-100 f
[ 101-150
B 51-200
Bl 01-236

INTB Model
10 Year Average Drawdown
Cypress Ck & Cross Bar Total = 51.8 mgd

Figure 11. Predicted decline in the Upper Floridan Aquifer due to 51.8 mgd of groundwater withdrawals from the Cross
Bar and Cypress Creek wellfields.

Predicted Drawdown in the Surficial Aquifer due to Eldridge-Wilde Wellfield

Drawdown (ft)

[ o00-10
1130
31-50
| | 51-80
| 81-100
[ 101-137

i

o

INTB Model
10 Year Average Drawdown
Eldridge-Wilde = 25.5 mgd

Figure 12. Predicted decline in the Surficial Aquifer due to 25.5 mgd of groundwater withdrawals from Eldridge-Wilde
wellfield.
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Predicted Drawdown in the Upper Floridan aquifer due to Eldridge-Wilde Wellfield
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Figure 13. Predicted decline in the Upper Floridan Aquifer due to 25.5 mgd of groundwater withdrawals from Eldridge-
Wilde wellfield.

Predicted Drawdown in the SAS due to South Pasco Wellfield

Drawdown (ft)
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Figure 14. Predicted decline in the Surficial Aquifer due to 13.1 mgd of groundwater withdrawals from South Pasco
wellfield.
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Predicted Drawdown in the UFA due to South Pasco Wellfield
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Figure 15. Predicted decline in the Upper Floridan Aquifer due to 13.1 mgd of groundwater withdrawals from South Pasco
wellfield.

Predicted Drawdown in the Surficial Aquifer due to Starkey Wellfield
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Figure 16. Predicted decline in the Surficial Aquifer due to 12.3 mgd of groundwater withdrawals from Starkey wellfield.
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Predicted Drawdown in the UFA due to Starkey Wellfield
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Figure 17. Predicted decline in the Upper Floridan Aquifer due to 12.3 mgd of groundwater withdrawals from Starkey
wellfield.

4.0 Estimation of groundwater impacts to Anclote River Flow from 1955 to Present Conditions

The earliest groundwater withdrawals for public supply began as early as the 1930s at Cosme-
Odessa wellfield. However, stream flow measurements did not originate from the Elfers gage on the
Anclote River until 1946. After Cosme-Odessa, the Eldridge—Wilde wellfield began pumping in
1956. Thereafter, Section 21, South Pasco, and the Starkey wellfield initiated withdrawals in 1963,
1973, and 1976, respectively. All five wellfields extracted a combined average of between 65 and
70 mgd during the 1990s. Figure 18 displays the groundwater withdrawal history of the five
wellfields within or near the Anclote River Basin.

To estimate the approximate impact to the Anclote River through time due to groundwater
extraction, a ratio of stream flow decline of the Anclote River at the Elfers gage per one mgd
groundwater withdrawal quantity was calculated for each of the five wellfields based on the scenario
runs (Table 2). In addition to these five wellfields, a little more than three cfs of impact to the
Anclote River is predicted from the model from all other users.

The projected decline in Anclote River stream flow through time was developed by multiplying the
mean and median flow declines per mgd listed in Table 2 by the actual wellfield extraction through
time. The flow decline was estimated beginning in 1955 for five year periods through current 2008
withdrawal conditions. Due to implementation of the partnership plan, TBW’s groundwater
withdrawals declined significantly in 2003 when an offstream reservoir was brought on-line.

The total projected stream flow decline from other users was simply incrementally apportioned
through time from 1955 to the full impact in 1995 since water use history of these withdrawals is
poorly understood. After 1995, other user’s impact was held steady except for slight downward
adjustments due to decreased withdrawals from Cypress Creek and Cross Bar wellfields during
2005 and 2008. The chronological history of projected impacts to Anclote River stream flow is
shown in Figure 18 and summarized in Table 3.
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Figure 18. Groundwater withdrawal history from five wellfields within or near the Anclote River Basin.
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Table 2. Ratio of Anclote River decline per one mgd of groundwater extraction from the five

wellfields.
Mean Stream Median Stream
Mean Stream Flow Reduction Median Stream Flow Reduction
Flow (cfs) Flow Reduction (cfs)
Groundwater | Reduction (cfs) Per MGD of (cfs) Per MGD of
Extraction Anclote River Groundwater Anclote River Groundwater
Wellfield (mgd)* near Elfers Withdrawn near Elfers Withdrawn
Eldridge-
Wilde 255 3 0.11 1.7 0.07
South 13.1 48 0.37 18 0.14
Pasco
Starkey 12.3 4.6 0.37 24 0.20
g"sme‘ 8.1 1 0.12 0.45 0.06
dessa
Se§§'°” 8.1 1 0.12 0.45 0.06
* = 1989-1998 Average Quantities
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Figure 19. Projected decline through time in Anclote River stream flow due to groundwater withdrawals in the region.
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Table 3. Projected decline in mean and median Anclote River stream flow through time due to groundwater withdrawals

Other Other
Groundwater Mean Flow Median Flow Groundwater Groundwater Total Impact Total Impact
Withdrawn Wellfield Impact Wellfield Impact Use Mean Impact Use Median Impact Mean Flow Median Flow
Year (mgd) Wellfields (cfs) (cfs) (cfs) (cfs) (cfs) (cfs)
1955 13 Cosme-Odessa 1.6 0.7 0.4 0.2 2.0 0.2
1960 30 Cosme-Odessa, Eldridge-Wilde 3.6 1.8 0.8 0.5 4.5 2.3
1965 39.3 Cosme-Odessa, Eldridge-Wilde, Sec 21 4.8 2.4 1.3 0.7 6.0 3.1
1970 55.1 Cosme-Odessa, Eldridge-Wilde, Sec 21 6.6 3.4 1.7 1.0 8.3 4.3
1975 64.6 Cosme-Odessa, Eldridge-Wilde, Sec 21, S. Pasco 11.6 5.2 2.1 1.2 13.7 6.4
1980 60.9 Cosme-Odessa, Eldridge-Wilde, Sec 21, S. Pasco, Starkey 11.0 5.1 2.5 1.4 135 6.5
1985 76.4 Cosme-Odessa, Eldridge-Wilde, Sec 21, S. Pasco, Starkey 13.7 6.6 2.9 1.7 16.7 8.3
1995 67.1 Cosme-Odessa, Eldridge-Wilde, Sec 21, S. Pasco, Starkey 14.4 6.8 34 1.9 17.8 8.7
2000 74.4 Cosme-Odessa, Eldridge-Wilde, Sec 21, S. Pasco, Starkey 15.2 71 3.4 1.9 18.6 9.0
2005 39.1 Cosme-Odessa, Eldridge-Wilde, Sec 21, S. Pasco, Starkey 8.7 4.2 3.2* 1.8* 11.9 6.0
2008 31.6 Cosme-Odessa, Eldridge-Wilde, Sec 21, S. Pasco, Starkey 5.8 2.8 3.2* 1.8* 9.0 4.6
* Accounts for reductions in Cypress Creek and Cross Bar wellfields.
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Estimated Flow (cfs)
Lost To Pumpage Impacts

August 25, 2008
(Revised 12/22/2009)

To: Marty Kelly, Ph.D. Director, Minimum Flows and Levels Program

From: Mike Heyl, Chief Environmental Scientist. Ecologic Evaluation Section

Subject: Adjustments to Flow Record for Groundwater Impacts
1.0 Introduction

The headwaters of the Anclote River are in an area of substantial groundwater
withdrawals from the upper Floridan aquifer. During 1995-2005, 67.1 mgd was
withdrawn from in this area. The impact of these withdrawals on Anclote stream flow at
Elfers was estimated by Basso (2007) for five-year increments. Intervening years were
interpolated and are presented in Figure 1 and Table 1. In order to re-create a natural,
unimpacted record of flow for the MFL evaluation, it is necessary to distribute the annual
impacts to daily impacts. Several approaches were investigated and are described in
this technical memorandum.

20
18
16
14
12
10

GW_Loss.gr
) ) ) ) I ) ) ) ) I ) ) ) ) I ) ) ) ) I ) ) ) ) I ) ) ) )

1950 1960 1970 1980 1990 2000 2010
Year

o N M O

Figure 1. Estimate annual average impact of groundwater pumpage on Anclote stream
flow.
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Table 1. Estimated annual average groundwater withdrawal influences to Anclote River

flow at Eflers.

Adjust Adjust Adjust

Year (cfs) Year (cfs) Year (cfs)
1955 2.00 1973 11.54 1991 17.36
1956 2.50 1974 12.62 1992 17.47
1957 3.00 1975 13.70 1993 17.58
1958 3.50 1976 13.66 1994 17.69
1959 4.00 1977 13.62 1995 17.80
1960 4.50 1978 13.58 1996 17.80
1961 4.80 1979 13.54 1997 17.80
1962 5.10 1980 13.50 1998 17.80
1963 5.40 1981 14.14 1999 17.80
1964 5.70 1982 14.78 2000 17.80
1965 6.00 1983 15.42 2001 17.80
1966 6.46 1984 16.06 2002 17.80
1967 6.92 1985 16.70 2003 17.80
1968 7.38 1986 16.81 2004 17.80
1969 7.84 1987 16.92 2005 17.80
1970 8.30 1988 17.03 2006 17.80
1971 9.38 1989 17.14 2007 17.80
1972 10.46 1990 17.25

2.0 Technical Approaches

2.1 Distribution of impacts according to pumpage rates.

Anclote flows have been measured by the USGS at Elfer's (USGS 02310000)

continuously since June 1946. While groundwater pumpage began in 1932,

interpolating from Basso (2007) the estimated groundwater impact in 1957 was a
modest 3 cfs and the period 1947 -1957 (inclusive) was used to represent flows
minimally impacted by groundwater withdrawals. The average flow from January 1 1947
through December 31, 1957 was 71 cfs (median = 16.0 cfs). For contrast, the average
flow for the period 1995-2005 (inclusive) was 68 cfs, but the median was down to 8 cfs.
Figure 2 compares the day of year (DOY) mean and median for these two periods.
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Figure 2. Day of Year Flows (mean and median)* for 1947-57 and 1995 — 2005.

The initial approach to distribute the impacts utilized monthly pump factors derived from
records of pumpage in the well fields from 1955 - 1998. For a given year, each monthly
withdrawal was divided by the annual average pumpage for that year to derive a ratio of
monthly annual average pumpage. These monthly ratios were then summarized to
mean and median values and daily values interpolated. The procedure is illustrated in
Table 2 for mean pumpage factors.

Table 2. Protocol for determining monthly adjustments from observed pumpage.

Daily
Observed Monthly Total Pumpage / Annual Total Pumpage Interpolation
Average
1955 1956 1957 1997 1998 | Monthly 0.917 | 31-Jan
==> v
//
Jan Total 0.975 0.944 0.837 1.022 0.860 0.917 0.916 | 1-Feb
Annual Total
Feb Total 0.940 0.957 0.839 0.980 1.061 0.892 0.915 | 2-Feb
Annual Total \
Mar Total 1.164 1.188 0.883 1.080 0.900 1.0 0.914 | 3-Feb
Annual Total
Apr Total 1.063 1.086 0.830 0.956 1.031 1.094 0.914 | 4-Feb
Annual Total
May Total 1.196 1.162 0.817 1.020 1.098 1.165 0.913 | 5-Feb
Annual Total
Jun Total 1086 | 1000 | 1045 [FXended| 517 | 1053 | 1.043 0912 | 6-Feb
Annual Total ====>
Jul Total 0.869 0.917 0.990 0.971 0.971 0.981 0.911 | 7-Feb
Annual Total
__Aug Total 0.852 0.944 1.028 1.079 0.948 0.947 . B
Annual Total I r;p’
[I=%
Sep Total 0.856 0.824 1.040 1.048 0.943 0.934 Ve
Annual Total
Oct Total 0.967 0.878 1.174 0.967 1.015 1.032 0.893 | 27-Feb
Annual Total
Nov Total 0.983 1.028 1.290 1.007 1.088 0.998 0.893 | 28-Feb
Annual Total
]
Dec Total 1.049 1.063 1.227 0.854 1.032 0.968 0.892 | 29-Feb
Annual Total
1 . .
Median display truncates 26 values above 140 cfs.
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2.2 Distribution of impacts according to stream flow.

A distribution of the withdrawal impacts based on observed daily flow was completed as
a comparison to the distribution derived from pumpage. The annual pumpage impact
was distributed according to the long-term day of year fraction of annual flows as
illustrated in Table 3. The average day of year (DOY) value was calculated for years
1955 through 2005. Each of the DOY averages were then divided by the daily average
flow for the period to arrive at the fraction of flow (relative to long-term daily average)
that occurs at each calendar day as illustrated below in Table 3.

Table 3. Protocol for establishing DOY adjustment factors from stream flow.

Observed Flow (cfs)
Average
DOY Average DOY
1955 1956 1957 2004 2005 ==> Fraction
1Jan 14 6.6 3.6 58 13 43.38 =434/633
2-Jan 13 63 2.9 Ex_t_effjfd 56 13 28.18 =482/633
3Jan 12 6.1 2.7 55 12 29.04 0.77
4Jan 11 58 2.6 54 11 4753 0.75
5.Jan 10 56 25 52 11 43.64 0.69
6-Jan 9.9 54 2.7 53 11 39.38 0.62
m
T
30-Dec 76 36 62 i 2 17 11 47.66 0.75
31-Dec 71 36 53 8 15 9.9 22.99 0.68
e Average Daily Flow
1/1/1955 - 12/31/05 63.29

Using January 6, 2004 as an example, the annual 17.8 cfs pumpage impact (See Table
1) was distributed according to the DOY fraction. Thus, a groundwater adjustment of
11.0 cfs (e.g. 0.62 * 17.8 cfs) was applied to the observed January 6, 2004 flow of 5.3
cfs resulting in an adjusted baseline flow of 16.3 cfs.

2.3 Comparison of adjustment factors.

Groundwater impacts were distributed using the factors derived from both flow and
pumpage records. The results are compared with median and mean DOY observed
values for 1955-2005 in Figure 3. The mean results appear reasonable, but the median
values adjusted with pump factors appears to be inflated and implies dry season flows
on the order of 20 cfs. Such values have rarely been observed (between 1955-2005
less than 19 percent of the Block 1 observed flows are > 20 cfs), and even during the
relatively un-impacted 1947-1957 period as illustrated in Figure 4 only 17% of the
observations were greater than 20 cfs. Given the better dry season fit exhibited, the
observed flow record was adjusted using the DOY factors derived from the flow pattern
instead of the factors derived from pumpage history. Figure 5 provides a comparison of
the corrected and uncorrected flows for 10/1/1955 through 9/30/2007 while Figure 6
illustrates the difference (observed — corrected) in flow for the same period.
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Figure 3. Comparison of 1955-2005 flows adjusted for groundwater withdrawals using factors derived from pumpage and
from seasonal flow patterns.
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Figure 4. Comparison of 1947 — 1957 flows adjusted for groundwater withdrawals using factors derived from pumpage
and from seasonal flow patterns.

D:\Anclote\Report\Appendix\App_10_3_Flow_Corrections\Adj_Flow_TM.doc 08/25/08
Page5/7

Appendix Page 53



10,000

1,000

100

10

Flow (cfs)

0.1

10,000

1,000

100

Flow (cfs)

10

| M | h
il i “ N ’\ ‘ ‘ ‘\ iw «
| d : ] \J}ﬁ‘w \ ‘Yl\ W{ 1“\ \\J
Anclote nr Elfers Y
Observed
Adjusted
Q_Both_55_81.grf
e
N~ (@] — ™ Lo N~ [o0] o N <t O (00} o
o L © © © ©0 © iy iy ~ ~ ~ o0
=1 o] o] C C [ [&] [&] [&] > > > =
© () () a a ] ) ) ) o) ) ) Q
S L L - - ~ a [a o) pa Z z O

}

\

\
Q_Both_81_07.4grf
——

Anclote nr Elfers
Observed

Adjusted

Figure 5. Comparison of observed and adjusted flows at Anclote nr. Elfers (USGS
02310000) 1955 — 2007.
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Figure 6. Estimated difference (cfs) between observed and adjusted flows at Anclote nr
Elfers using flow adjusted protocol described previously

D:\Anclote\Report\Appendix\App_10_3_Flow_Corrections\Adj_Flow_TM.doc 08/25/08
Page 717

Appendix Page 55




Water Quality Moinitoring Sites

Latitude Longitude Distance Erom
Agency / Station Type Station Identifier (decimal (decimal Period of Record
Mouth [km]
degrees N) | degrees W)
USGS Stream Gaging Station Anclote River near Elfers| 28.21389 82.66667 25.67 10/1962 - 9/1999
. . Anclote River at Perrine
USGS Stream Gaging Station 28.19389 82.71861 16.07 10/1982 - 10/2006
Road near Elfers
USGS Stream Gaging Station Anclote River atUS |- 55 15750 |  82.75667 5.46 10/2003 - 10/2006
Alternate 19
USGS Stream Gaging Station Anclote River at Hickory | g 17139 | 8278500 5.46 212004 - 10/2006
Point at Anclote
SWFWMD Synoptic Survey C 28.20691 82.70826 19.74 4/1985
SWFWMD Synoptic Survey B 28.20586 82.70886 19.49 4/1985
SWFWMD Synoptic Survey A 28.20557 82.70981 19.29 4/1985
SWFWMD Synoptic Survey 2 28.20538 82.71072 19.16 3/1985
SWFWMD Synoptic Survey 3 28.20448 82.71110 18.95 3/1985 - 4/1985
. 1/1985 - 5/1985;
SWFWMD Synoptic Survey 4 28.20440 82.71350 18.69 /2004 - 8/2006
SWFWMD Synoptic Survey 5 28.20236 82.71401 18.32 6/1984 - 5/1986
. 6/1984 - 5/1986;
SWFWMD Synoptic Survey 6 28.19853 82.71411 17.76 /2004 - 8/2006
SWFWMD Synoptic Survey 7 28.19993 82.71685 17.33 5/1984 - 5/1986
SWFWMD Synoptic Survey 8 28.19701 82.71963 16.63 5/1984 - 5/1986
. 5/1984 - 5/1986;
SWFWMD Synoptic Survey 9 28.19465 82.71862 16.15 /2004 - 8/2006
. 9/1984 - 5/1986;
SWFWMD Synoptic Survey 10 28.19099 82.71743 15.46 /2004 - 8/2006
SWFWMD Synoptic Survey 11 28.18840 82.71803 15.02 9/1984 - 5/1986
. 3/1985 - 5/1986;
SWFWMD Synoptic Survey 12 28.18487 82.71633 14.54 /2004 - 8/2006
SWFWMD Synoptic Survey 13 28.18308 82.71757 14.08 10/1985
SWFWMD Synoptic Survey 14 28.18122 82.71543 13.64 3/1985 - 5/1986
. 2/1984 - 5/1986;
SWFWMD Synoptic Survey 15 28.17653 82.71719 13.04 /2004 - 8/2006
. 2/1984 - 5/1986;
SWFWMD Synoptic Survey 16 28.17229 82.72184 11.98 /2004 - 8/2006
. 2/1984 - 5/1986;
SWFWMD Synoptic Survey 17 28.17083 82.72484 11.15 8/2004 - 8/2006
SWFWMD Synoptic Survey 18 28.16769 82.72557 10.77 8/1984 - 12/1985
. 3/1984 - 5/1986;
SWFWMD Synoptic Survey 19 28.16861 82.72980 10.30 /2004 - 8/2006
SWFWMD Synoptic Survey 21 28.16566 82.73497 9.92 8/2004 - 8/2006
. 8/1985 - 5/1986;
SWFWMD Synoptic Survey 23 28.16394 82.73994 8.84 /2004 - 8/2006
. 8/1985 - 5/1986;
SWFWMD Synoptic Survey 24 28.15945 82.74396 7.97 8/2004 - 8/2006
. 8/1985 - 5/1986;
SWFWMD Synoptic Survey 25 28.15897 82.74844 7.01 8/2004 - 8/2006
SWFWMD Synoptic Survey 26 28.15928 82.74780 6.94 8/1985
. 8/1985 - 5/1986;
SWFWMD Synoptic Survey 27 28.15775 82.75639 5.47 8/2004 - 8/2006
SWFWMD Synoptic Survey 28 28.15644 82.76738 4.33 8/2004 - 8/2006
SWFWMD Synoptic Survey 29 28.16056 82.77454 3.31 8/2004 - 8/2006
SWFWMD Synoptic Survey 30 28.16728 82.78285 2.19 8/2004 - 8/2006
SWFWMD Synoptic Survey 31 28.17398 82.78937 1.19 8/2004 - 8/2006
SWFWMD Ambient Water Quality 21FLSWFD_FLO0096 28.21417 82.42333 25.67 6/1995 - 9/1997
Pinellas County Ambient Water Quality 21FLPDEM_03 Jan 28.17429 82.72238 12.20 1/2003 - 12/2006
Pinellas County Ambient Water Quality 21FLPDEM_01 Jan 28.15768 82.75675 5.40 1/2003 - 12/2006
FDEP Ambient Water Quality 21FLGW_FLO0096 28.21417 82.66611 25.67 11/1997 - 9/1998
FDEP Ambient Water Quality 21FLA_24040007 28.21436 82.66633 25.67 3/1993 - 7/1995
FDEP Ambient Water Quality 21FLA_24040071 28.21472 82.66583 25.67 3/1997
FDEP Ambient Water Quality 21FLA_24040072 28.21167 82.67333 24.70 3/1997
FDEP Ambient Water Quality 21FLA_24040073 28.21611 82.69306 22.40 3/1997
FDEP Ambient Water Quality 21FLA_24040008 28.17608 82.78964 1.00 3/1993 - 7/1995
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1.0 INTRODUCTION

The Southwest Florida Water Management District (District) is one of five water
management districts charged with protecting and managing the State of Florida's water
resources. One of the District's legislatively mandated responsibilities is to establish
minimum flows and levels for surface water bodies including freshwater streams and the
freshwater inflow to estuarine waters.

The objectives of this project are to quantify relationships between physical parameters,
especially salinity, and the responses of benthic macroinvertebrates in the Anclote River.

1.1 Minimum Flows and Levels

Minimum flows and levels (MFLs) are the “... flow below which significant harm occurs to
the water resources or ecology of the area” (SWFWMD, 2001). Specifically, minimum
flows are defined in Florida Statutes (372.042) as "the limit at which further withdrawals
would be significantly harmful to the water resources or ecology of the area". MFLs may
vary both seasonally and spatially within a river.

The general approach to developing an MFL for an estuarine water body is to establish
defensible quantitative relationships between key ecological components of the system in
question (e.g., freshwater inflow and salinity) and a resource of concern (e.g., benthic
macroinvertebrates). The rationale for this approach is that the inflow regime and the
resultant salinity distributions affect the structure and function of biological communities.

1.2 Benthic Macroinvertebrates

Benthic (bottom-dwelling) organisms are small but important invertebrates that include
organisms such as aquatic insects, worms, snails, clams, and shrimp. The benthos live in or
on the substrates of rivers, estuaries, etc. Benthic organisms are generally sessile, although
some species may undergo migrations into the water column (e.g., amphipod crustaceans)
or produce planktonic larvae (e.g., polychaete worms). As a group, however, they are
relatively sedentary and are considered to be effective integrators of a variety of
environmental factors, including salinity (Boesch and Rosenberg, 1981; U.S.E.P.A., 1999).
Unlike the more vagile nekton, most benthic invertebrates lack the mobility to escape large
or rapid fluctuations in environmental conditions.

Benthic organisms occupy a variety of niches with respect to energy transfer. The benthos
process organic material as detritivores, suspension feeders, and deposit feeders, forming an
essential link in the transfer of energy to secondary consumers including other benthic
organisms, finfish, and avifauna. Tubiculous and fossorial benthic organisms may fulfill an
important role in reworking sediments. In this role as bioturbators, they may bring
suspended sediments into contact with the water column thereby translocating nutrients
and pollutants and oxygenating sediments.
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1.3  Relationships Between Flow and Benthic Macroinvertebrates

With respect to supporting MFL development, the benthos is an important biotic resource
that is responsive to changes in flow regimes. Flow is an influential component of riverine
and estuarine systems. Changes in flow can potentially affect many ecological and
environmental variables.

Flow affects the volume and velocity of the river, which directly affects benthos (Figure 1-1).
Under extremely high flows, benthic organisms may be physically washed out of the
system. Some aquatic insects take advantage of flowing water by undergoing “drift”.
Aquatic drift can reduce overcrowding and facilitate feeding. Additionally, flow affects
salinity, dissolved oxygen, sediments, and nutrients, which also affect the abundance and
distribution of the benthos (Figure 1-1).

Flow
— Salinity |......
. SMOEQ, Uatior
Hypoxia "
[ Dissolved 02 IR - ( Benthos
( bl\\W ..................... >
S bsgggtﬁ..ﬁﬁéila ...... h
| sediments |-
dsQ.\.ﬂge """
|| Nutrients |-
Direct Effect ——— Indirect Effect e .
Figure 1-1. Conceptual diagram showing the direct (solid line) and indirect (dashed line)

effects of flow on benthos.

Salinity is a critical physical factor affecting the biota of tidal rivers. Salinity is largely
influenced by the amount of freshwater inflow entering an estuary, and it is typically
negatively correlated with flow. Salinity can affect the distribution and abundance of
individual species, and the overall composition of the benthic community. During high
flow periods, salinity at a particular location is expected to be lower and may provide new
habitat for the more motile species that are intolerant of elevated salinities. During low
flow periods, saline waters may penetrate further upstream, facilitating habitat expansion for
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estuarine species. Generally, the salinity gradient will shift upstream and downstream
based on flow conditions.

Benthic organisms are limited in their distribution within a tidal river by the physiological
challenges and stresses associated with variable salinity environments. Osmotic limitations
restrict the ability of many freshwater species from using habitats in downstream portions
that are tidally influenced. Marine species also face osmotic problems, which restrict access
to upstream freshwater habitats. True estuarine species typically tolerate a wide-range of
salinities, although they may have discrete “preferences” for optimal reproduction and
growth.

Changes in the timing and amount of freshwater inflow may alter the salinity regime such
that shifts in dominant species occur. The physical environment may become less favorable
for some species and more favorable for others. That is, the “preferred” salinity regime may
now occur at a different time, in a different location, or occupy a smaller area of the system
than currently. For example, the displacement of a particular salinity regime could move it
to a reach of the river where the sedimentary factors are unfavorable (cf. “static” vs.
“dynamic” habitats of Browder and Moore, 1981). Since sediment type is also a key abiotic
factor affecting the structure of benthic communities, community structure could be altered.
Changes in freshwater inflow then may have profound effects in terms of energy flow within
the system as well as the physical reworking of the sediments.

Freshwater flow affects both concentrations and loadings of other water quality constituents
(Boynton and Kemp, 2000; Gillanders and Kingsford, 2002). Dissolved constituents such as
ions, dissolved nutrients, and metals may be diluted at higher flows and concentrated at
lower flows (FDER, 1985; Grabe, 1989). The magnitude and timing of freshwater inflows
affects the amount of nutrients and organic matter that enters a waterway. Thus, increased
productivity may occur some time after a period of increased flows (Kalke and Montagna,
1989; Bate et al., 2002). Sediment loads downstream are also increased during high flows
(e.g, the Mississippi River delta). Loadings of contaminants, including metals and organic
compounds that bind to smaller particles (Seidemann, 1991) are often associated with
increased sediment loads. Additionally, increased sedimentation may suffocate sediment
dwelling organisms.

Freshwater inflow will also affect stream current velocities. Current velocity affects substrate
composition by influencing the available parent material as well as organic inputs. The
main components of substrate composition are grain-size, the interstitial spaces between the
grains, and the presence or absence of organic detritus. Larger grained sediments drop out
from the current first, and are deposited furthest upstream. Finer grained sediments are
carried further downstream, with the finest sediments being carried the furthest. Organic
inputs may be of various sizes, ranging from fallen trees to small organic fragments. The
interstices, or the small spaces between larger grained substrate material, form micro-
habitats that are used by particular benthic organisms; the interstitial spaces also provide an
area for the finer grained organic matter to collect.

Flow can also affect dissolved oxygen concentrations by modifying residence times and by

physically altering stratification conditions. Increased residence times can be associated
with decreased dissolved oxygen.
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Residence time affects the ability of phytoplankton to take up nutrients, as well as the ability
for secondary producers to consume phytoplankton, and this extends to other consumers as
well. Higher flows are associated with increased nutrient loading. Lower flows permit a
longer residence time for chlorophyll and nutrients. During high flow conditions, flushing
is more rapid and residence time in the river is reduced (Peterson and Festa, 1984; Jassby et
al., 1995; Flannery et al., 2002).

1.4  Quantitative Responses of Benthic Macroinvertebrates to Changes in
Freshwater Inflow

Janicki Environmental, Inc. (2007) developed a suite of quantitative tools capable of
supporting the development of MFLs for the District. The expected quantitative responses
of the benthos to changes in freshwater inflow were defined. These quantitative responses
are expected to integrate all of the direct influences of flow changes and the indirect
influences of flow changes (e.g., salinity changes, dissolved oxygen concentration changes).
Quantitative responses were derived in an unbiased manner from a large (>2,000 samples)
database extending over two decades from 12 southwest Florida tidal rivers.

The species that make up estuarine benthic communities exist in a continual state of
change, but the basic structure of the community may be observed to have a relatively
predictable response signal above the often high degree of natural variability.

The spatial and temporal distributions (presence/absence response patterns) of various
organisms within a tidal river can be limited by the physiological challenges and stresses
associated with variable flow environments. True estuarine species are typically euryhaline
and have adaptations that allow them to live within a wide range of salinity conditions.

Species abundances are also affected by the stresses caused by altered flows. Such changes
may affect the success of individual animals within a species, consequently affecting the
overall abundance of that species. For example, while the distribution of a given species
may be determined by salinity, species able to tolerate saline conditions may still be
affected by salinity-related stressors. Species typically have an optimal salinity that is
somewhere within the range of salinity that they may be able to inhabit. The salinity in
which the early life stages of certain species develop, may impact their growth and survival
rates. It will also affect the availability of prey and where adults of the species congregate
and forage.

Community structure, which integrates species presence and abundance, is also dependent
upon the salinity regime. Responses in the benthic community are expected to be the
composite result of the affects of salinity on all the individual species within the
community, as described previously. Community responses include derived metrics such
as taxa richness and diversity and their responses to changes in freshwater inflow.

1.5  Study Area
The Anclote River (Figure 1-2) originates near Land O’ Lakes and enters the Gulf of Mexico

at Tarpon Springs in Pasco County. Fernandez (1990) estimated the river’s watershed to be
290 km?. The Anclote River is tidal approximately 23 kilometers upstream of the mouth of
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river (Fernandez, 1990) (n.b. River Mile 0 in Fernandez (1990)=RKM 1.6 in this report).
The Anclote River is widest (914 m) upstream of U.S. Highway 19 (RKM 8.4), in a large
area of salt marsh. The channel is indistinct and the river becomes extensively braided from
RKM 5.3 to RKM 12 (Figure 1-2). The intake canal for Progress Energy’s Anclote River Plant
is located at RKM 1.

e

Legend
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. Whitcomb 023100
4~ Bayou
(7
Figure 1-2. The Anclote River study area.

Average monthly flows at Elfers (USGS gage 02310025; drainage basin=188 km?), Florida
(1946 to 2004) have ranged from 15 (May) to 181 cfs (September). Fernandez (1990)
estimated that the 5 ppt isohaline was upstream of RKM 12.6 at least 60% of the time.

Beds of submerged aquatic vegetation are found offshore of the mouth upstream to
approximately RKM 2, near the abandoned Stauffer’s site (William Fonferek, ACOE,
personal communication). The longitudinal distribution of emergent vegetation showed
that halophytes (e.g., Rhizopora mangle) were found as far upstream as RKM 11 (U.S. Fish
and Wildlife Service, 1988) after which freshwater vegetation begins to become established
and halophytes are phased out. Field observations by Jeff Winter (PBS&J) and Stephen
Grabe (Janicki Environmental, Inc.) during May 2005 (Figure 1-3) generally confirmed this
relationship. Avicinnia germinans was absent upstream of RKM 9.5, Distichlis spicata by
RKM 10, and Rhizopora mangle by RKM 11. Freshwater species began to appear at RKM
12 (e.g., Typha and Cladium jamaicense), corresponding to the long-term average location
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of the 0.44 ppt isohaline (Fernandez, 1990). The distribution of Juncus roemerianus
overlapped those of both halophytic and halophobic species (Figure 1-3).
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Figure 1-3. Longitudinal distribution of emergent vegetation vs. river kilometer and salinity in
the Anclote River, 2005 (Jeff Winter and Stephen Grabe, field observations, May
2005).

Appendix Page 68



The only known historical survey of benthic macroinvertebrates of the Anclote River estuary
was that done for the District during 1974 by Geraghty and Miller (1976). Quarterly
surveys were made at four locations (from approximately RKM 3 to 19). Peracarid
crustaceans, especially amphipods, were among the dominants on most dates and at most
locations (Table 1-1). Polychaetes were among the dominants at the most upstream station
during the driest months. Insect larvae (Chaoborus sp.) were reported as a dominant as far
downstream as RKM 12.5 at the end of the wet season.

Table 1-1. Anclote River benthos (1974): ranked abundant taxa by month and station
(Geraghty & Miller 1976).
Approximately Approximately . .
Month RKM 3-shallow RKM 3-channel Approximately Approximately
RKM 12.5 RKM 19
(near Stauffers) (near Stauffers)

June Apseudes sp. Apseudes sp. Ampelisca holmesi | Amphipoda
Monocorophium Ampelisca holmesi | Pseudoleptocuma | Apocorophium sp.
acherusicum Metharpinia minor Laeonereis culveri
Amphipoda floridana Amphipoda
Onuphis sp. Amphipod Monocorophium
Ampelisca holmesi acherusicum

August Ampelisca holmesi | Syllidae No dominants Cyathura polita
Amphipoda
Glycinde sp

October Streblospio sp. Typosyllis hyalina | Chaoborus sp. No dominants
Amphicteis Phyllodoce arenae
gunneri
Capitella capitata
Pseudoleptocuma
minor
Ampelisca holmesi

December | Ampelisca holmesi | Tubificidae Streblospio sp. Polydora sp.

Pseudoleptocuma | Aricidea sp. Monocorophium Tubificidae
minor acherusicum Chironomus sp.
Tubificidae
Amphipoda
Apocorophium sp.
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2.0 METHODS

2.1 Study Design

The District funded a survey in 2005 of the distribution of benthic macroinvertebrates in the
Anclote River and how these distributions related to salinity (Janicki Environmental, Inc.,
2005). The benthic community was surveyed twice during 2005, first a “dry season” survey
took place in May and then a “wet season” survey took place in September.

The approach was to divide the river into three strata (Figure 2-1):

e Lower Stratum: RKM --1 to RKM 4 (adjoining Sting Ray Cove to the Alternate 19
Bridge) in 1 RKM intervals. Five samples were collected each season.

e Middle Stratum: RKM 4 to RKM 12 (above Alternate 19 Bridge to upstream of
Belcher Hole, (opposite Melaleuca Drive, Holiday) in 0.5 RKM intervals. Fifteen
samples were collected each season.

e Upper Stratum: RKM 12 to RKM 19 (upstream of Belcher Hole), in T RKM intervals.
Eight samples were collected each season.
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Figure 2-1. Map depicting 2005 sampling locations for benthos in the Anclote River.
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Sample locations along each transect was selected using unbiased methods within the
boxes formed by these transects because:

e There is a dearth of information on the spatial distribution of benthos within the
Anclote River, although there are data (Geraghty and Miller 1976) that show near-
shore densities were much higher than mid-channel densities near RKM 3 in 1974,

e The downstream reach of the river is channelized and the river between the
Alternate 19 and U.S. 19 bridges exhibit more braiding are is quite shallow in some
areas.

2.2 Field Methods

Benthos were collected with a 7.62 cm diameter hand core sampler (area=45.6 cm?). A
second core sample was collected and aliquots were removed for sediment grain size and
organic content analyses. These samples were labeled and stored on ice until transferred to
Mote Marine Laboratory for processing.

All macroinvertebrate samples were processed in a similar manner. Each sample was
bagged with an internal label and magnesium sulfate solution was added to relax the
organisms. Samples were sieved (0.5 mm mesh) to remove finer-grained particles of
sediment and meiofauna and fixed in a 10% solution of buffered formalin and Rose Bengal
stain.

2.3  Laboratory Methods

Macroinvertebrate samples were transferred from the fixative to a preservative (a solution of
50% to 70% isopropanol or ethanol) after at least 48 hours. All organisms were sorted from
the samples, to at least 90% recovery, under a dissecting microscope. Macroinvertebrates
were identified to the lowest practical identification level—typically genus or species. If an
animal was a member of one of the “minor” taxonomic groups, such as the Nemertea,
identifications might only be to that higher taxonomic level.

Sediment samples were analyzed for grain-size composition, skewness, kurtosis, percentage
of organic matter (as loss on ignition; Dean, 1974). Grain-size distribution was measured
by a laser diffraction instrument (Coulter LS-200) by Mote Marine Laboratory.

2.4 Data Analysis Approach
Three generic approaches to analyzing the benthic data were used:

e Several univariate metrics that describe the distribution, abundance, and
composition of the benthos were calculated.

e Regression (linear and logistic) techniques were used to examine associations
between these univariate metrics and several variables that define the habitats in
which the benthos were found.

e Multivariate analyses were used to explore how the benthic community was
organized, spatially and temporally.
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2.4.1 Univariate Metrics
Three univariate metrics for calculated for the Anclote River benthos:

e Dominant taxa were identified by season and stratum. Dominance was calculated as
the geometric mean of the frequency of occurrence (a measure of the distribution in
the river) and relative abundance (a measure of a taxon’s contribution to the river’s
standing crop).

e Species (taxa) richness is the number of distinct species (taxa) identifiable in a
sample. Species or taxa richness is the simplest representation of “diversity”.

e Total benthic abundance (as numbers of individuals/m? is an indicator of the
standing crop of the benthic community. Extremely high or extremely low standing
crop can be indicative of a perturbed environment.

2.4.2 Regression Analyses

The relationships between taxa richness and total abundance and a suite of environmental
variables were evaluated using stepwise multiple linear regression. The environmental
variables considered included:

water temperature, salinity and dissolved oxygen measured at the time of collection,
sample depth,

sediment grain size characteristics, % silt+clay, and % organic matter, and

flow variables (cumulative flows over the 7, 14, 28, 56, and 112 days preceding the
collection of the benthic samples). Montagna and Kalke (1992) used this approach
to examine the effects of flow on the benthos of Texas estuaries.

The p value for a variable to be retained was 0.05.

The relationships between species richness and abundance with salinity also were
evaluated using a polynomial regression approach. The resultant relationships and
equations can be used to predict expected responses of the benthos to a “best fit”
combination of abiotic variables as well as salinity alone.

Janicki Environmental, Inc. (2007) employed univariate logistic regression (Huisman et al.,
1993, Peeters and Gardiniers, 1998, Ysebaert et al., 2002) to estimate the probability of
occurrence as a function of salinity for selected taxa from 12 Gulf Coast tidal rivers. The
“optimum” or “preferred” salinity for each taxon was that with the highest probability of
occurrence. An “optimal habitat range” was then calculated as the salinity +75% of the
optimum (Peeters and Gardiniers, 1998). The taxa selected were based on dominance
ranking.

2.4.3  Multivariate Community Metrics
A set of benthic metrics were identified to quantify the effects of salinity and other variables

on multivariate benthic community structure. These were selected based on benthic
analyses and analytical tools developed by Janicki Environmental, Inc. (2007).

10
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Total abundance (as the number of individuals/m? was 4" root transformed for all
multivariate community analyses. The 4™ root transformation in multivariate analyses
permits a greater number of taxa to influence the results (Clarke and Warwick, 2001). The
use of untransformed data yields results strongly influenced by the most abundant taxa.
Cao et al. (1998) argue that “rare” taxa may be more sensitive to environmental
perturbation than common species. Therefore, an analytical approach that is more
responsive to the “community” rather than to only a few, numerically abundant taxa was
desirable. Thorne et al. (1999) have also demonstrated that the 4™ root transformation is
preferred in multivariate community analyses because it represents a “good compromise
between untransformed and binary data”. Therefore, the 4" root transformation was
employed in the multivariate analyses.

The benthic macroinvertebrate data were stratified a priori into groups by river stratum and
season. Multivariate statistical routines in the PRIMER software package (Clarke and
Warwick, 2001) used in this study included:

e non-metric multidimensional scaling (MDS) - MDS was used to graphically
represent the resemblance of the benthic assemblages within the defined group
(e.g., stratum by season). MDS is an ordination technique in which rank similarities
of a large number of variables are expressed as a two-dimensional map).

e “Similarity Percentage” (SIMPER) - SIMPER objectively identified those taxa that
explained relatively large proportions of the similarity within a group (e.g., lower
stratum in the dry season).

e “Analysis of Similarities” (ANOSIM) - ANOSIM tests the statistical significance of the
pair-wise comparisons of the a priori defined groups.

11
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3.0 RESULTS

This section presents a characterization of the abiotic nature of the Anclote River a
description of the spatial and temporal character of the benthic macroinvertebrate
community, and the relationships between the benthic community structure and several
abiotic variables.

3.1 Abiotic Characteristics

This section describes the salinity, sediment characteristics, and other physicochemical and
flow conditions measured during the two survey periods.

3.1.1 Streamflow

The sampling program was designed to capture any seasonal differences in the benthic
community due to variation on river flow. However, the flows at the USGS Elfers Gauge
(02310000) on the collection dates were somewhat higher in the “dry season” than
occurred in the “wet season” (Table 3-1). Antecedent streamflows for the 7- and 14-day
periods preceding benthic sample collections were similar during both the dry and wet
seasons (Table 3-1). From 28 days through 112 days the wet season flows were higher than
dry season flows. Flows during the 2005 wet season survey were five to ten times that of
the 60-year median; dry season flows were approximately half the 60-year median.

Table 3-1. Mean antecedent inflows (cfs) to the Anclote River (USGS Elfers Gauge 02310000)
for the dates of sample collection for 7, 14, 28, 56, and 112 days preceding benthic sample
collections, by dry and wet season survey periods, 2005.
Days Preceding Dry Season Wet Season
Sample Collection (cfs) (cfs)
0 46 14
7 328 243
14 588 576
28 698 1,350
56 1,000 2,715
112 1,682 6,164

3.1.2 Hydrographic and Sediment Characteristics

Mean values for the measured abiotic variables are shown in Table 3-2. Variables are
summarized by season and by stratum within season. Benthic samples were collected at
water depths ranging between 0.1 and 5.0 meters, with a median depth of 1.1 meters (Table
3-2). The deepest sample location was the dry season collection at RKM 11.0 (Belcher
Hole).

12
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Mean salinities were generally similar between seasons within each stratum (Table 3-2). The
mean salinities declined by between 9 and 17 ppt between strata in each season. Wet and
dry season salinities generally varied by > 10 ppt at RKMs 5-10 and <1 ppt upstream of
RKM 14. DO was somewhat lower during the dry season.

Sediments from the lower stratum were generally very-fine sand-sized sediments (mean ¢ =
3-4) (Table 3-2). The percentage of silt+clay and organic matter in the sediments were was
also generally higher in this portion of the river. The coarsest sediments were found
between RKM 5.5 and 7.5 and at RKM 18.

Table 3-2. Summary of mean (range) bottom water abiotic variables and sediment
characteristics coincident with benthic sample collections in the Anclote River, by
season and stratum, 2005.

Dry Season Wet Season

Variable Lower Middle Upper Lower Middle Upper

Stratum Stratum Stratum Stratum Stratum Stratum
Temperature 27.0 28.4 27.3 29.1 29.7 27.3
(°O) (25.3-28.9) | (27.0-30.8) | (25.1-29.1) | (28.4-30.0) | (29.3-30.2) | (25.3-29.6)
Salinity 26.7 15.3 2.6 27.6 18.8 1.8
(ppt) (17.9-32.4) | (10.9-23.7) (0.2-9.7) (26.4-28.2) (6.1-27.2) (0.1-9.2)
DO 3.5 3.8 3 5.4 5.3 3.1
(mg/L) (1.8-4.8) (3.0-4.8) (2.5-3.8) (4.1-6.6) (2.7-6.5) (2.4-4.0)
Silt + Clay 26.7 7.1 6.8 29.1 10.7 6
(%) (0.5-39.2) (0.8-17.7) (1.9-15.1) (22.8-36.3) (0.5-51.2) (2.5-14.3)
Sediment 3.2 2.5 2.5 3.4 2.6 2.5
Grain Size (2.1-3.9) (1.3-3.4) (1.4-3.2) (3.0-3.8) (1.2-4.3) (2.0-3.1)
(Mean ¢)
Sediment 2.6 0.7 0.7 3.9 2.1 0.6
Organic (0.2-3.7) (0.2-1.7) (0.2-1.4) (0.2-20.9) (0.2-1.3)
Content (%)
Depth 0.7 1.3 1.4 1.7 1.5 1.7
(m) (0.1-1.5) (0.2-5.0) (0.5-2.2) (0.7-3.5) (0.5-3.5) (1.0-2.4)

3.2 Biota

Species characteristic of the Anclote River are identified and compared by season and
location within the river. The relationships between benthic community structure and
several abiotic variables, including salinity, are presented.

3.2.1 Spatial and Seasonal Characteristics of the Dominant Organisms

Examination of the dominant organisms within a community aids in the understanding of
how environmental variation can affect the nature and integrity of that community. The data
from this study show distinct spatial and seasonal differences in the dominant benthic
organisms.
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Overall, the benthos of the Anclote River is a diverse assemblage of taxa comprised of taxa
similar to those of other unimpounded tidal rivers in the District, such as the Little Manatee
River (Janicki Environmental, 2007). In these two rivers, for example, crustaceans comprise
a significant portion of the benthic community as opposed to the predominance of
polychaete worms in the impounded rivers, such as the Lower Hillsborough River and
Tampa Bypass Canal.

Spatially, polychaete worms, Caecum spp. (Gastropoda), the isopod Xenanthura
brevitelson, and the amphipod Ampelisca abdita were typical dominants in the lower
stratum of the Anclote River during this study (Table 3-3). Their dominance declined
upriver. The amphipods Grandidierella bonnieroides and two Apocorophium species were
dominants in the middle stratum (Table 3-3). Apocorophium lacustre dominance declined
and that of the gastropod Pyrgophorus platyrachus increased in the upper stratum (Table 3-
3).

Seasonally, within the lower stratum, Aricidea taylori, Laeonereis culveri, and Xenanthura
were more dominant during the dry season and Caecum spp. were more dominant during
the wet season (Table 3-3). Amphipods were dominant in the middle stratum during both
seasons although there was a species shift. Wet season dominants included Grandidierella
and Apocorophium louisianum whereas Apocorophium lacustre and Cerapus sp. A were
dry season dominants (Table 3-3). Pyrgophorus was highly dominant in the wet season
whereas Grandidierella and Apocorophium louisianum were dominant in the dry season.

Other notable trends included:

e the upstream shift in high dominance scores from the wet season (middle stratum) to
the dry season (upper stratum) by both  Grandidierella and Apocorophium
louisianum;

e the higher dominance scores during the dry season than during the wet season of
eight of the 10 ranked dominant polychaetes in the lower stratum; and

e the six-fold increase in Pyrgophorus dominance from the dry season to the wet
season in the upper stratum.

3.2.2 Spatial and Seasonal Characteristics of Benthic Community of the Anclote River

Numbers of taxa varied seasonally and longitudinally within the Anclote River (Figure 3-1).
Dry season values were higher than wet season values throughout most of the river. In the
dry season, the numbers of taxa were generally higher below RKM 5.5 and between RKM
16 and 17 (Figure 3-1). Numbers of taxa peaked at RKM 3 during the wet season survey.
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Table 3-3. Dominance scores for the dominant macroinvertebrate taxa identified from
infaunal samples collected in the Anclote River, by stratum and season, 2005.

Lower Stratum

Middle Stratum

Upper Stratum

T

axa Wet Season | Dry Season | Wet Season | Dry Season | Wet Season | Dry Season
ANNELIDA
Aricidea taylori 0 25 0 1 0 2
Capitella capitata 0 15 0 7 0 0
Heteromastus 4 16 6 2 0 0
filiformis
Hobsonia florida 0 5 2 3 4 14
Klngbgrgonuphls 7 7 0 0 0 0
simoni
Laeonereis culveri 0 26 5 4 0 5
Leitoscoloplos 0 6 1 10 0 0
robustus
Mediomastus sp. 2 13 10 5 4 0
Prionospio
heterobranchiata 0 13 0 2 0 0
Streblospio . 0 0 7 3 0 2
gynobranchiata
Typanosyllis 11 4 0 0 0 0
prolifera
Tubificidae 0 0 0 0 23 18
MOLLUSCA
Caecum nitidum 14 0 0 0 0 0
Caecum
pulchellum 14 0 ! 8 0 0
Pisidium sp. 0 0 0 0 0 10
Pyrgophorus 0 0 2 0 60 9
platyrachus
CUMACEA
Cyglaspls cf. 0 7 1 8 0 0
varians
ISOPODA
Cyathura polita 9 17 13 0 0
Edotia montosa 2 0 1 5 0 18
Xena_nthura 12 22 3 16 0 0
brevitelson
AMPHIPODA
Amgr:corophlum 0 0 8 16 0 0
ellisi
Ampelisca abdita 20 15 1 2 0 0
Apocorophium 13 0 6 32 0 0
lacustre
Apocorophium 6 0 40 11 15 38
louisianum
Cerapus sp. A 12 3 15 32 0 0
Granq:dlgrella 18 13 52 29 14 50
bonnieroides
INSECTA
Ablabesmyia sp. 0 0 0 0 0 7
Ablabesmyia 0 0 0 0 6
rhamphe
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Table 3-3. Dominance scores for the dominant macroinvertebrate taxa identified from
infaunal samples collected in the Anclote River, by stratum and season, 2005.

T Lower Stratum Middle Stratum Upper Stratum
axa Wet Season | Dry Season | Wet Season | Dry Season | Wet Season | Dry Season
Dubiraphia sp. 0 0 0 0 4 5
Polypedilum 0 0 0 0 0 13
scalaneum
Anclote River
Longitudinal Distribution of Benthic Taxa - 2005
Numbers of Taxa
30
20
10 .
] . .
0+ —— 2 — — — —
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
River Kilometer
SEASON ==« DRY WET
Figure 3-1. Longitudinal distribution of the numbers of benthic taxa in the Anclote River during

the dry and wet season surveys of 2005.

The overall density of benthic macroinvertebrates did not show any consistent longitudinal

pattern during either season (Figure 3-2).

During the wet season, however, four samples

were devoid of live animals. Dry season densities were higher than those of the wet season
throughout most of the river (Figure 3-2).

3.2.3 Relationships Among Univariate Community Metrics and Habitat Variables

Two univariate metrics of community structure were calculated: numbers of taxa (taxa
richness) and total benthic abundance.
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Anclote River
Longitudinal Distribution of Total Numbers of Individuals - 2005
n+1 Numbers m~2
100000
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River Kilometer
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Figure 3-2. Longitudinal distribution of total benthic abundance in the Anclote River during the
dry and wet season surveys of 2005.

Stepwise multiple regression analyses (Table 3-4) showed that:

e overall, variation in the habitat variables explained very little of the observed
variation in either the numbers of taxa or the total abundance of organisms;

e none of the variables had a significant relationship with total abundance of
organisms in the wet season;

e depth was the only variable to have a significant (negative) effect on numbers of
taxa in the dry season;

e numbers of taxa increased as salinity increased in the wet season; and

e total benthic abundance increased with both temperature and decreased with depth
in the dry season.

To further examine the relationships between salinity and both the numbers of taxa and
total abundance of organisms, several nonlinear regression techniques were applied. These
analyses (Table 3-5) showed that:

e overall, variation in salinity explained very little of the observed variation in either
the numbers of taxa or the total abundance of organisms;

e numbers of taxa generally increased with salinity in the dry season; and

e total benthic abundance showed little or no relationship to salinity in either season.
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Table 3-4. Results of stepwise multiple regression analyses that examine the relationship
between the numbers of taxa and the total benthic abundance and several bottom
water and sediment abiotic variables in the Anclote River.

Nurz:_l():;r;(if 11)'axa Equation R?
Wet Season Y=0.31+1.688*Log(Salinity) 0.16
Dry Season Y=1.12 - 0.57*Log(Depth) 0.13
Total Abundance of Organisms Equati R
(Log Individuals + 1/m?) quation
Y =8.38-0.21*Log(Depth) +
Dry Season 8.77* Log(Temr;geratL?re) 0.32

Table 3-5. Results of polynomial regression analyses that examine the relationship
between log (n+ 1) numbers of taxa and total benthic abundance and salinity in the
Anclote River, 2005.

Numbers of Taxa

i 2
(Logn+1) Equation R
Y=0.338 + 1.688*Salinity -0.1645*Salinity? +
et Season 0.004*Salinity’ 0.32
— | * . e * TR
Dry Season Y =9.1-0.387*Salinity + 0.025*Salinity 0.15

0.00028*Salinity?

Total Abundance of
Organisms Equation R?
(Log Individuals + 1/m?

Y =2.49 + 0.29*Salinity -0.103*Salinity? +
0.0006*Salinity’
Y =3.62 -0.008*Salinity + 0.002*Salinity® —
0.00006*Salinity’

Wet Season 0.05

Dry Season 0.04

3.2.4 Multivariate Community Structure

Spatial and seasonal differences in the structure of the Anclote River benthic community
were examined. MDS and several complementary analyses were used to achieve this
objective. Additionally, the association between community structure and various abiotic
variables measured in conjunction with the collection of the benthic samples was also
examined.

An MDS plot is an effective graphical tool to identify samples that aggregated in
multidimensional space. The greater the distance between points (samples) on the MDS
plot, the greater the difference between the samples. Samples with more similar benthic
community structures, therefore, will be found more closely aggregated in the MDS plot.
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The MDS plot generated from the Anclote River benthic data showed that some degree of
discrimination between the dry and wet season samples (Figure 3-3). Within the dry
season, samples were generally segregated by stratum. Conversely, the wet season samples
collected from the middle and upper strata were the most tightly clustered of any group,
indicating they were more similar than other groups of samples. The benthic samples
collected from the lower stratum were more widely dispersed than those from the other
strata.

Transform: Fourth root
Resemblance: 517 Bray Curtis similarity
2D stress: 0.19 || Season-Stratum
® @ Dry-Lower
® B Dry-Middle
B " ® o) ¥ Dry-Upper
= ® O Wet-Lower
o ® O Wet-Middle
|
= - v Wet-Upper
]
n .|:| %g
- m|
v
| - ¥
o v
o
Figure 3-3. MDS plot of the resemblance of benthic stations in the Anclote River 2005, by

season and stratum.

An ANOSIM test was used to examine the significance of the seasonal and spatial
differences in benthic community structure displayed in the MDS plot. The ANOSIM
results show that the spatial differences (i.e., the differences between strata) were generally
more significant during the dry season than in the wet season (Tables 3-6 and 3-7). The
seasonal differences in benthic community structure were more significant in the middle
and upper strata than in the lower stratum.

SIMPER analysis was used to identify those dominant taxa that contributed most to the
differences in the benthic community structure between strata within each season and
between seasons within each stratum (Tables 3-6 and 3-7). The taxa that contributed most
significantly to the differences between seasons and strata included:

e Grandidierella bonnieroides,

o Cerapus sp. A,

e Apocorophium louisianum, and
e Pyrgophorus platyrachis.
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There was evidence of a downstream movement of Grandidierella and Apocorophium
louisianum from the dry season to the wet season. Pyrgophorus was present at relatively
high densities in the upper stratum during the wet season and virtually absent during the
dry season.

Grandidierella was the most abundant species in the middle and upper strata during the wet
season, followed by Apocorophium louisianum. Ampelisca abdita and Xenathura
brevitelson were the most abundant organisms in the lower stratum during the wet season.
Five polychaetes were relatively abundant in the lower stratum during the dry season.
Several peracarid crustaceans (Grandidierella, Cyathura polita, and Cerapus sp. A) were
abundant in the middle stratum during the dry season and less abundant both upstream and
downstream.

The association between various abiotic variables and univariate community metrics was
examined in Section 3.2.4. Here the association between abiotic variable and multivariate
community structure is explored. Note that this is an exploratory analysis and should be
not be interpreted as being “significant” or causative.

A BIO-ENV test showed that location in the river (RKM) was the single variable with the
highest rank correlation to the Bray-Curtis similarity of the benthic community (Table 3-8).
Water temperature and mean ¢ also had relatively high correlations with benthic community
structure. Salinity was not found in any of the “best fit” combinations of up to five variables
(Table 3-8).

3.2.5 Relationships Among Salinity and the Probability of Occurrence of Selected Taxa

The effect of salinity on benthic community structure also depends upon how the
distributions of individual taxa vary with changes in salinity. Logistic regression has been
used to quantify the relationship between salinity and the probability of occurrence of
estuarine biota (Huisman et al., 1993; Peeters and Gardiniers, 1998; Ysebaert et al., 2002).
Janicki Environmental (2007) employed univariate logistic regression to estimate the
probability of occurrence as a function of salinity for selected taxa from 12 Southwest
Florida tidal rivers. The “optimum” or “preferred” salinity was that with the highest
probability of occurrence for that taxon. A “preferred habitat range” was calculated as the
salinity range coincident with the 25™ and 75" percent probability of occurrence (Peeters
and Gardiniers, 1998).
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Table 3.6. Dominant organisms that contribute to between-strata differences in each
season. Probability of significance in parentheses.

Between Strata Differences

Dry Season Wet Season
Species Lower- Middle- Lower- Lower- Middle- Lower-Upper
Middle Upper Upper Middle Upper (0.05)
0.01) (0.01) 0.01) (NS)

Grandidierella

bonnieroides

Apocorophium

louisianum

Cerapus sp. A

Apocorophium
lacustre

Xenanthura
brevitelson

Cyathura polita

Americorophium
ellisi

Laeonereis culveri

Mediomastus sp.

Pyrgophorus
platyrachis

Caecum
pulchellum

Ampelisca abdita

Edotia montosa

Leitoscoloplos
robustus

Heteromastus
filiformis

Hobsonia florida

Capitella capitata
complex

Tubificidae

Cyclaspis cf.
varians

Aricidea taylori
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Table 3.7. Dominant organisms that contribute to between-season
differences in each stratum. Probability of significance in parentheses.

Species

Between Season Differences

Grandidierella
bonnieroides

Apocorophium
louisianum

Cerapus sp. A

Apocorophium
lacustre

Xenanthura
brevitelson

Cyathura polita

Americorophium
ellisi

Laeonereis culveri

Mediomastus sp.

Pyrgophorus
platyrachis

Caecum
pulchellum

Ampelisca abdita

Edotia montosa

Lower Stratum

(0.05)

Middle Stratum Upper Stratum
(0.001) 0.01)

Leitoscoloplos
robustus

Heteromastus
filiformis

Hobsonia florida

Capitella capitata
complex

Tubificidae

Cyclaspis cf.
varians

Aricidea taylori
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Table 3-8. Association (Spearman rank correlations, p) between benthic community
structure in the Anclote River, 2005 and selected abiotic variables.

hl/l;:;:;;egf p RKM Temperature Mean ¢ Depth D(')S;;)gh;d
1 0.35
2 0.35
3 0.35
4 0.33
5 0.31

Figure 3-4 presents a summary of the salinity preference data derived from the univariate
logistic regressions for series of selected benthic taxa. These taxa include several dominant
taxa from the Anclote River, including representatives of taxonomic groups (e.g.,
amphipods such as Grandidierella bonnieroides and Ampelisca abdita) that have been
identified as being preferred prey items by Peebles (2005). Appendix A presents the results
of the logistic regression analyses.

Polypedilum scalaenum larvae were collected in the Anclote River only during the dry
season survey and in the upper stratum (Figure 3-7), where measured salinities ranged from
0.2 to 9.7 ppt (Table 3-2). This group of insect larvae is relatively tolerant of salinities up to
11 ppt (Figure 3-4). Apocorophium louisianum abundance decreased upstream in both
seasons. Highest densities occurred in the lower stratum where salinities exceeded 18 ppt.
This pattern differs from that expected based upon the logistic regression analysis (Figure 3-
5).

Ampelisca abdita | *
Xenanthura | . |
brevitelson

Grandidierelia | . ]
honniaroidas
Edotea moniosa | —*— |

Cyanthura polita |—+— |
Apacorophium |4+7 |

louisianum

L asanerais culven *— |
Fofypediium | . |
scalasnum
l L) L] L] L] I L) L) Ll L] I L) L) L) 1 I L) L] L) L] I L) L L] L] I L) L] L) L I L) L] L) L F

0 5 10 156 20 25 30 35

Salinity (ppt)
Figure 3-4. Summary of salinity optimum (circle), optimal habitat range (solid bar), 10" to 90™

percentile probability of occurrence (thin line), and model domain (open bar) of
salinity for eight selected benthic taxa derived from Janicki Environmental (2007).
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Five of these species had the high end of their optimum habitat range in the polyhaline
salinity range (18-29 ppt) (Janicki Environmental, Inc., 2007) (Figure 3-4).  Laeonereis
culveri was only abundant during the dry season in the lower stratum (Figure 3-5).
Cyathura polita was abundant in both the upper and lower strata, particularly in the dry
season survey (Figure 3-5). Grandidierella bonnieroides abundance decreased upstream
during the dry season (Figure 3-5). Edotia montosa and Xenanthura brevitelson were each
most abundant during the dry season in the upper stratum (Figure 3-5). There was some
evidence that populations of both of these isopods shift downstream during the wet season
and move upstream in the dry season.

The high end of the optimum habitat range for Ampelisca abdita was within the euhaline
salinity ranges (> 29 ppt) (Janicki Environmental, Inc., 2007) (Figure 3-4). Ampelisca abdita
was rarely collected above the lowest stratum in either season (Figure 3-5).

With respect to setting an MFL, several of these species may be provide more information
than others. Edotia montosa and Xenanthura brevitelson showed evidence of moving
upstream during the dry season, when antecedent flows are typically lower than during the
wet season, and downstream during the wet season. Laeonereis culveri showed some
evidence of only being able to establish populations in the Anclote River during the dry
season.
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Figure 3-5.  Mean abundance of selected dominants, by season and stratum.
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4.0 CONCLUSIONS

The following conclusions can be drawn from the analysis of the benthic macroinvertebrate
data:

e The benthic macroinvertebrates in the Anclote River were exposed to a wide range
of salinities during both the dry (range=32 ppt) and wet (range=28 ppt) season
surveys. The greatest (>10 ppt) seasonal range occurred at RKMs 5-10 and the
smallest range (< 1 ppt) occurred upstream of RKM 14.

¢ The Anclote River benthos was dominated by a number of crustacean taxa similar to
that of the unimpounded Little Manatee River, but different from the Lower
Hillsborough River and Tampa Bypass Canal where annelid worms are often
dominant.

e In the dry season the dominant taxa include Grandidierella bonnieroides,
Apocorophium lacustre, and Cerapus sp. A.

e In the wet season the dominant taxa include Apocorophium louisianum and
Pyrgophorus platyrachis.

e Numbers of taxa varied longitudinally within the Anclote River during both seasons.
Dry season values were higher than wet season values at most locations in the river.
Numbers of taxa peaked at RKM 3 during the wet season survey. Numbers of taxa
generally declined upstream of RKM 3, with few taxa reported upstream of RKM 14.

e The total abundance of benthic macroinvertebrates did not show any consistent
upstream-downstream trend during either season.

e Statistically significant relationships between the number of taxa and a number of
habitat variables were found. For example, salinity and depth had significant
relationships with the number of taxa in the wet and dry seasons, respectively.
However, each explained less than 33% of the variance in the number of taxa and,
therefore, application of these relationships to develop an MFL should only be done
considering this low predictive power.

e Similar results were found for the total abundance of organisms. In the dry season
total abundance was positively related to temperature and negatively related to
depth. Again, only a small fraction of the variance was explained by either variable.
In the wet season, no significant relationships were found between total abundance
and any of the habitat variables examined.

e Multivariate community structure, based upon samples stratified by season and river
stratum (lower, middle, and upper), differed for most comparisons of these groups.
The wet season samples collected from the middle and upper strata were more
similar than other groups of samples. These groups were similar because of the
high densities of Grandidierella bonnieroides.

e Location in the river (RKM) was the single abiotic variable with the highest rank
correlation coefficient to multivariate community structure. Secondary factors
included temperature and mean sediment grain size. Salinity measured at the time
of collection was not among the key variables associated with community structure.

e Fourteen taxa common in the Anclote River were found to have significant
relationships between salinity and their probability of occurrence, based upon a
regional analysis of these relationships.

e The benthic community as a whole showed significant changes seasonally and
spatially. The benthic community in the lower stratum generally differed from that
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found in the upper strata. The multivariate analyses, in conjunction with plots
showing seasonal and spatial abundances suggested that several species exhibited
upstream-downstream shifts in abundance. Such shifts in the populations of
selected species may be more useful than other techniques in evaluating the benthic
response to an altered flow regime.
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5.0 APPLICATION OF QUANTITATIVE DATA ANALYSES TO MFL
DETERMINATION

The analyses reported above were performed to describe the seasonal and spatial nature of
the benthic macroinvertebrate community in the Manatee and Braden rivers. The analyses
were also performed with the objective of identifying defensible, quantifiable relationships
between benthic community integrity and freshwater flows or some surrogate of flow such
as salinity. While statistically significant relationships between the number of taxa and the
total abundance of organisms and several habitat variables were found, the underlying
equations had little predictive power. Therefore, other variables or combinations of
variables have greater influence on the variability in the number of taxa and total
abundance than salinity. Application of these relationships to develop an MFL should only
be done considering this low predictive power.

The distribution of the bivalve Corbicula fluminea—and perhaps Polymesoda caroliniana,
may be useful in evaluating a biotic response to an altered salinity flow regime. Corbicula
will likely find available habitat reduced if freshwater inflow is reduced. Subtidal
populations of Polymesoda, perhaps more than intertidal populations, may expand their
distribution upstream under reduced flows.
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APPENDIX A

Logistic Regression: Regression Coefficients and Statistics for Selected
Taxa Based on Data from 12 Southwest Florida Tidal Rivers
(Source: Janicki Environmental, Inc., 2007)
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Logistic regression was used by Janicki Environmental, Inc. (2007) to model relationships
between salinity and the probability of occurrence for selected benthic species from 12
southwest Florida tidal rivers. Several species were characteristic of the Anclote River in
2005 and the summary statistics are tabulated below. Samples were coded as
presence/absence for each species of interest. Using the Logit function:

g0 = log lpi = By +B,x +B,x>
— P

where:

X = salinity

p(y) = probability of a species being present, as a function of x
g(y) = transformation of the odds of species occurrence

Bo, 31, and B2 regression coefficients

Estimates of the log odds of occurrence based on linear regression coefficients for salinity
were developed. The log odds can be equated to a probability of occurrence as follows:

Py = :
l+exp(—a—LF1 X1-f2 X ... —PiXx)
Taxon Variable DF Parameter Estimate S.E. Wald X2 Pr >X?
Ampelisca abdita Intercept 1 -3.0596 | 0.16 382.4 0.000
salinity 1 0.1871 | 0.02 64.7 0.000
salinity? 1 -0.0036 | 0.00 21.9 0.000
Apocorophium Intercept 1 -3.1130 | 0.17 317.6 0.000
louisianum salinity 1 0.1362 | 0.04 1.1 0.001
salinity? 1 -0.0061 0.00 12.8 0.000
Edotea montosa Intercept 1 -2.5859 | 0.13 373.8 0.000
salinity 1 0.1872 0.02 56.6 0.000
salinity? 1 -0.0058 | 0.00 399 0.000
Grandidierella Intercept 1 -1.3713 | 0.09 249.3 0.000
bonnieroides salinity 1 0.1140 | 0.02 36.8 0.000
salinity? 1 -0.0038 | 0.00 28.2 0.000
Laeonereis culveri | Intercept 1 -0.6309 | 0.08 68.3 0.000
salinity 1 0.0646 | 0.02 11.3 0.001
salinity? 1 -0.0037 | 0.00 23.6 0.000
Polypedium Intercept 1 -1.2298 | 0.09 183.4 0.000
scalaenum Group [ salinity 1 0.0757 | 0.04 3.7 0.053
salinity? 1 -0.0095 | 0.00 17.7 0.000
Xenanthura Intercept 1 -4.2657 | 0.28 235.2 0.000
brevitelson salinity 1 0.2640 | 0.04 43.2 0.000
salinity? 1 -0.0065 | 0.00 24.4 0.000
Cyathura polita Intercept 1 -1.5114 | 0.09 281.7 0.000
salinity 1 0.1012 0.02 23.8 0.000
salinity? 1 -0.0041 0.01 25.1 0.000
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SUMMARY

Quantitative ecological criteria are needed to establish minimum flows and levels
for rivers and streams within the Southwest Florida Water Management District
(SWFWMD), as well as for the more general purpose of improving overall management
of aquatic ecosystems. As part of the approach to obtaining these criteria, the impacts of
managed freshwater inflows on downstream estuaries are being assessed. A 12-month
study of freshwater inflow effects on habitat use by estuarine organisms in the Anclote

River estuary was undertaken from October 2004 to September 2005.

The general objective of the present data analysis was to identify patterns of
estuarine habitat use and organism abundance under variable freshwater inflow
conditions and to evaluate responses. Systematic monitoring was performed to develop
a predictive capability for evaluating potential impacts of proposed freshwater
withdrawals and, in the process, to contribute to baseline data. The predictive aspect
involves development of regressions that describe variation in organism distribution and
abundance as a function of natural variation in inflows. These regressions can be
applied to any proposed alterations of freshwater inflows that fall within the range of

natural variation documented during the data collection period.

For sampling purposes, the tidal Anclote River and nearby Gulf of Mexico were
divided into six zones from which plankton net, seine net and trawl samples were taken
on a monthly basis. Salinity, water temperature, dissolved oxygen and pH
measurements were taken in association with each net deployment. Daily freshwater
inflow estimates for the Anclote estuary were derived from gauged streamflow records.
A large body of descriptive habitat-use information was generated and is presented in

accompanying appendices.

Larval gobies and anchovies dominated the plankton net’s larval fish catch.
Gobies of the genera Gobiosoma and Microgobius were dominant in comparable
proportions, and the anchovies were strongly dominated by the bay anchovy (Anchoa
mitchilli). Other abundant larval fishes included silversides (Menidia spp.) and skilletfish
(Gobiesox strumosus). Juvenile spot (Leiostomus xanthurus) were abundant relative to

iv
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other tidal rivers in west-central Florida. Spot spawn far offshore and move landward
during the late larval and early juvenile stages. One possibility is that the proximity of the
Anclote survey area to the open Gulf of Mexico resulted in high juvenile recruitment of
spot into the area. The plankton-net invertebrate catch was dominated by gammaridean
amphipods, larval crabs (decapod zoeae), larval shrimps (decapod mysis) and by river-
plume taxa such as the copepods Acartia tonsa and Labidocera aestiva, the
chaetognaths Sagitta spp., the planktonic shrimp Lucifer faxoni, and the ostracod
Parasterope pollex. The strong representation of river-plume taxa occurred because two
stations were located in the open gulf near the river mouth (i.e., they were in the river
plume). The amphipods were most abundant in the brackish marshes and in the
channel downstream of the marshes, as is commonly observed in other estuaries.

Seine fish collections were dominated by spot (Leiostomus xanuthurus), pinfish
(Lagodon rhomboides), bay anchovy (Anchoa mitchilli), and eucinostomus mojarras
(Eucinostomus spp.). These taxa comprised over 84% of total seine catch of fishes. Fish
collections from deeper, trawled areas were dominated by pinfish, spot, bay anchovy,
and eucinostomus mojarras. These taxa comprised over 86% of total trawl catch of
fishes. Invertebrates collected by seines were dominated by daggerblade grass shrimp
(Palaemonetes pugio) and brackish grass shrimp (P. intermedius)—these two species
formed nearly 94% of the invertebrate seine catch; invertebrate trawl catches primarily
consisted of arrow shrimp (Tozeuma carolinense), brackish grass shrimp, pink shrimp
(Farfantepenaeus duorarum), and longtail grass shrimp (Periclimenes longicaudatus),
which together comprised nearly 98% of total trawl catch of invertebrates.

Use of the area as spawning habitat was indicated by the presence of fish eggs or
newly hatched larvae. The eggs of unidentified herrings (clupeids), the bay anchovy
(Anchoa mitchilli), the striped anchovy (A. hepsetus), silversides (Menidia spp.) and
unidentified sciaenid fishes were collected from the survey area. Sciaenid eggs were by
far the most abundant egg type, followed by eggs of the bay anchovy — both types were
most abundant in the Gulf of Mexico and in the lower part of the tidal river. If it is
assumed that the relative abundances of different species of early-stage sciaenid larvae

reflect relative spawning intensity, then the kingfishes (Menticirrhus spp.) are the
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sciaenids that are most likely to have spawned in this area. Larval distributions suggest
that blennies, the lined sole (Achirus lineatus) and the hogchoker (Trinectes maculatus)
spawned near the river mouth, whereas skilletfish (Gobiesox strumosus) and gobies
(primarily Microgobius spp. and Gobiosoma spp., but also Bathygobius soporator) may
have spawned within the interior of the tidal river. The repeated collection of very small
juveniles of live-bearing Gulf pipefish (Syngnathus scovelli) within the interior of the tidal
river suggests that this species is also reproducing within the local area.

Estuary-dependent taxa are spawned at seaward locations and migrate into tidal
rivers during the late larval or early juvenile stage, whereas estuary-resident taxa are
present within tidal rivers throughout their life cycles. The number of estuary-dependent
taxa using the study area as a nursery is somewhat greater than resident taxa: overall,
six of the ten most abundant taxa in deeper habitats and seven of the ten most abundant
taxa in nearshore habitats can be considered estuary-dependent. There are
considerable differences in abundance: estuary-dependents constituted nearly 86% of
the total abundance of the top ten most abundant taxa in seined areas, and over 83% of
total abundance of top ten taxa in trawled areas. These dependents were mostly
offshore spawners and included taxa of commercial importance (i.e., pink shrimp) and
taxa of ecological importance due to high abundance (i.e., spot, pinfish, eucinostomus
mojarras, tidewater mojarra, and silver jenny). The juvenile nursery habitats for selected
species were characterized from seine and trawl data in terms of preference for
shallower or deeper areas, zone of the study area, type of shoreline, and salinity.

Based on plankton-net data, alteration of flows would appear to have the lowest
potential for impacting many taxa during the period from December through March,
which is the period when the fewest estuarine taxa were present. The highest potential
to impact many species would appear to be from June through October. Some species
were present throughout the year, whereas others had more seasonal spawning and
recruitment patterns.

Based on seine or trawl collections, there were few clear seasonal patterns of
taxon richness in the Anclote River estuarine system, undoubtedly due to the relatively

short duration of sampling and the unusual hydrological conditions encountered. Monthly
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taxon richness in seined areas was quite variable—the longest single period of relatively
high richness was from October—December; in deeper (trawled) habitats, the
September—February period had greatest taxon richness. Overall abundances and
abundances of newly recruiting nekton taxa indicate extensive use of the study area
during all months, however. Thus, we tentatively conclude that the period from October
to February appears to have the greatest potential for negative effects of anthropogenic
change to the tidal river inflow, at least in terms of impacting the most species. There is
no time of the year when inflow reduction would not have the potential to affect
economically or ecologically important taxa, however.

Ten (26%) of the 38 plankton-net taxa evaluated for distribution responses to
freshwater inflow exhibited significant responses. Nine of these were negative
responses, wherein animals moved downstream as inflows increased. Downstream
movement is the typical inflow response seen in tidal rivers on Florida’s west coast.
Overall, the time lags associated with these responses were highly variable, with many
occurring within a seasonal time frame.

The relatively short time series (12 months) did not produce a wide variety of flow
conditions over which to assess organism distribution responses. Just over one-half
(51%) of the 35 pseudo-species/gear combinations (hereafter simply referred to as
‘pseudo-species’) evaluated for distributional responses to freshwater inflow exhibited
significant response for at least one lagged flow period. The best-fitting models were
widely dispersed among inflow lag periods. Responses to inflow within each life-history
category were largely associated with different lag periods: short (0—14 days) for
residents, medium (21-91 days) to long (98—364 days) for estuarine spawners, and long
(98-364 days) for offshore spawners. The maijority of the best models that included long
lag periods involved offshore spawners. Nearly 90 percent of the significant responses
were negative (i.e., animals moved upstream with decreasing freshwater inflow). The
pseudo-species’ centers of abundance may have shifted downstream during periods of
higher inflow because individuals were seeking areas with more suitable salinities,
although some physical displacement during periods of extremely high flows cannot be

discounted for smaller individuals.
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Sixteen (42%) of the 38 plankton-net taxa evaluated for abundance relationships
with freshwater inflow exhibited significant responses. All of these were positive
responses (i.e., increased abundance with increased inflow). Although it is unusual for
all of the responses to be positive, there are two conditions that would favor this
condition. Negative responses are usually caused by elevated flows washing river-
plume taxa away from the river mouth and out of the survey area. In the present case,
however, (1) the study area did not experience strongly elevated inflows during the
survey, and (2) there were stations in the receiving body of water (the Gulf of Mexico)
that could intercept washed-out organisms. In fact, several river-plume species had
positive responses, including the ostracod Sarsiella zostericola, the copepod Labidocera
aestiva, postlarvae of the shrimp Hippolyte spp., the chaetognaths Sagitta spp. and bay
anchovy adults, Anchoa mitchilli. Organisms that typically congregate within the interiors
of tidal rivers also had positive responses, including estuarine mysids (Americamysis
almyra adults, Americamysis juveniles, Bowmaniella dissimilis), gammaridean
amphipods, bay anchovy juveniles and polychaetes. In general, it could be concluded
that these positive results were observed — despite the short duration of the study -
because there was substantial variation in inflow and because the survey area was
geographically scaled to the spatial range of freshwater influence on distribution. Only
two of the positive responders, dipteran pupae and chironomid larvae, belong to groups
that are primarily freshwater groups.

None of the time lags in the plankton-net distribution responses was short enough
to be considered a catchability response (i.e., organisms fleeing the effects of sudden
floods and thereby becoming more vulnerable to collection). A few lags were seasonal
in nature, but most occurred over time frames that would be expected from true
population responses.

As noted for distribution responses to freshwater inflow, the relatively short time
series of sampling did not give a wide variety of flows over which to assess abundance
responses; results should therefore be interpreted with caution. Among the 38 pseudo-
species considered in these analyses, abundances of 60.5% were significantly related to

average inflow. The greatest proportion of variance in abundance was explained by
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linear models for 10 pseudo-species and by quadratic models for 13 pseudo-species. Of
the 10 linear models, three were negative relationships, indicating increasing abundance
with decreasing inflow, and seven were positive relationships, indicating increasing
abundance with increasing inflow. Almost half (46.1%) of quadratic models suggested
greatest abundance at intermediate inflows (‘intermediate-maximum’). Of the remaining
quadratic models, three suggested least abundance at intermediate inflow (‘intermediate-
minimum’), two suggested greatest abundance at higher flow levels, and one indicated
greatest abundance at the lower levels of inflow. The percentage of significant
abundance responses to inflow ranged from 56% of tested pseudo-species in estuarine
spawners to 65% in offshore spawners. Offshore and estuarine spawners tended to
exhibit intermediate-maximum or positive responses to inflow, whereas tidal-river
residents also showed intermediate-minimum responses to inflow. The majority of the
best-fitting regression models incorporated longer lags for all life history categories, but
this trend was most pronounced for estuarine and offshore spawners. An increase in
abundance with increased flow may suggest beneficial aspects of increased nutrient
input, for example, or perhaps better detection of the tidal-river nursery area.
Intermediate-minimum relationships, where abundance is greatest at either low or high
flows and least at intermediate flows, are difficult to explain in ecological terms.
Intermediate-maximum relationships, which are opposite in nature to intermediate-
minimum relationships, perhaps indicate differing forces operating at opposite ends of
the inflow spectrum. At low flows, opportunities for either chemical detection of tidal
nursery habitats or selective tidal-stream transport may be reduced, and at high flows,
physical displacement may occur, or perhaps undesirable properties of fresher water

(e.g., low pH) become more prominent.

Appendix Page 105



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

2.1.1.

2.5.1.1.

3.1.1.

3.2.1.

3.6.1.1.

3.6.1.2.

3.6.2.1

3.6.2.2.

3.6.2.3.

3.7.2.1

3.8.2.1.

3.8.2.2.

LIST OF FIGURES

Map Of SUIVEY area. .........ooevveiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee e 5

Fish-stage designations, using the bay anchovy as
AN EXAMPIE. e 14

Anclote river gauged streamflow and collection dates. ............. 22

Electronic meter data associated with the plankton-net
surveys of the tidal Anclote RiVer. ..........ccccccociiiis 26

Number of taxa collected per month by plankton net. ............... 30

Examples of species-specific seasonality from plankton-
Net data. ... 31

Number of taxa collected per month by seine and trawil............ 33

Top three months of relative abundance for all individuals
collected in seines (S) and trawls (T). ........euvveeemmmmienmmnniiinininnnns 34

Months of occurrence (™) and peak abundance (®) for
new recruits collected by seine and trawl. .................c.....n. 35

Summary of linear regression results assessing
distribution (kmy) in relation to inflow and lag period................. 39

Summary of regression results assessing abundance

(N) in relation to iNflOW. ... 46

Summary of regression results assessing abundance

(N) in relation to inflow and lag period. .........ccoovvveeveiiiieiiieeenn.n. 47

Appendix Page 106



Table 2.2.1.

Table 2.5.1.1.

Table 3.2.1.

Table 3.4.1.

Table 3.7.1.1.

Table 3.7.2.1.

Table 3.8.1.1.

Table 3.8.2.1.

LIST OF TABLES

Distribution of sampling effort within the tidal Anclote River

(October 2004-September 2005). ......ccvvveveeviieeiiiiiieiiieieeeeeee.

Length-based staging conventions used to define

developmental stage lImits. .........ccooooviiiiiiii e,

Electronic meter summary statistics during plankton

net deployment............ooo

Relative abundance of larval stages for non-freshwater
fishes with a collection frequency >10 for the larval-

stage aggregate. ........coo o

Plankton-net organism distribution (kmy) responses
to mean freshwater inflow (Ln F), ranked by linear

regresSSiON SIOPE. ..o

Best-fit seine and trawl-based pseudo-species
distributional response to continuously-lagged mean
freshwater inflow (In(km,) vs. In(inflow)) for the

Anclote River estuary. .........oooooiiiiiiiiii

Plankton-net organism abundance responses to mean

freshwater inflow (Ln F), ranked by linear regression slope.

Best-fit seine and trawl-based pseudo-species
abundance (N ) response to continuously-lagged mean
freshwater inflow [In(cpue) vs. In(inflow)] for the

Anclote River estuary. .........cooooiiiiiiiiii

Xi

Appendix Page 107

..... 8

..... 13

..... 27

..... 36

..... 38

..... 41

..... 44



1.0 INTRODUCTION

Rivers export nutrients, detritus, and other productivity promoting materials to the
estuary and sea. Freshwater inflows also strongly influence the stratification and
circulation of coastal waters, which in itself may have profound effects on coastal
ecosystems (Mann and Lazier 1996). Estuary-related fisheries constitute a very large
portion of the total weight of the U.S. fisheries yield (66% of finfish and shellfish harvest,
Day et al. 1989; 82% of finfish harvest, Imperial et al. 1992). The contribution of estuary-
related fisheries is consistently high among U.S. states that border the Gulf of Mexico,
where the estimates typically exceed 80% of the total weight of the catch (Day et al.
1989). Examples from around the world indicate that these high fisheries productivities
are not guaranteed, however. In many locations, large amounts of fresh water have been
diverted from estuaries to generate hydroelectric power or to provide water for agricultural
and municipal use. Mann and Lazier (1996) reviewed cases where freshwater diversions
were followed by the collapse of downstream fisheries in San Francisco Bay, the Nile
River delta, James Bay, Canada, and at several inland seas in the former U.S.S.R. Sinha
et al. (1996) documented a reversal of this trend where an increase in fisheries landings
followed an increase in freshwater delivery to the coast.

Fishery yields around the world are often positively correlated with freshwater
discharge at the coast (Drinkwater 1986). These correlations are often strongest when
they are lagged by the age of the harvested animal. In south Florida, Browder (1985)
correlated 14 years of pink shrimp landings with lagged water levels in the Everglades.
Associations between river discharge and fisheries harvests have also been identified for
various locations in the northern and western Gulf of Mexico (Day et al. 1989, Grimes
2001). Surprisingly, discharge-harvest correlations sometimes extend to non-estuarine
species. Sutcliffe (1972, 1973) reported lagged correlations between discharge of the St.
Lawrence River and the harvest of non-estuarine species such as American lobster and

haddock. In recognition of the potential complexities behind these correlations,
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Drinkwater (1986) advised that the effect of freshwater inflows be considered on a
species-by-species basis.

Freshwater influence on coastal ecosystems extends beyond its immediate effects
on fisheries. Because of the intricate nature of many food web interactions, changes in
the abundance of even a single species may be propagated along numerous pathways,
some anticipated and some not, eventually causing potentially large changes in the
abundance of birds, marine mammals and other groups of special concern (Christensen
1998, Okey and Pauly 1999). Mann and Lazier (1996) concluded “one lesson is clear: a
major change in the circulation pattern of an estuary brought about by damming the
freshwater flows, a tidal dam, or other engineering projects may well have far reaching
effects on the primary and secondary productivity of the system.”

This project was conducted to support the establishment of minimum flows for the
Anclote River estuarine system by the Southwest Florida Water Management District
(SWFWMD). Minimum flows are defined in Florida Statutes (373.042) as the “limit at
which further withdrawals would be significantly harmful to the water resources or ecology
of the area.” In the process of establishing minimum flows for an estuarine system, the
SWFWMD evaluates the effects of the freshwater inflows on ecological resources and
processes in the receiving estuary. The findings of this project will be used by the
SWFWMD to evaluate the fish nursery function of the Anclote River estuary in relation to
freshwater inflows. It is not the purpose of this project to determine the level of effect that
constitutes significant harm, as that determination will be made by the Governing Board of
the SWFWMD.
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1.1 Objectives

This project uses plankton-net, seine, and trawl surveys to document the
abundance and distribution of fishes and invertebrates that use the tidal Anclote River as
habitat. There were several objectives for this project. One was to produce a descriptive
database that could serve as a baseline for comparison with future ecological change.
These baseline data also provide seasonality records that identify the times of year when
the risk of adverse impacts would be greatest for specific organisms.

Another principal objective was to develop regressions to model the responses of
estuarine organisms to variations in freshwater inflows. The resulting models would then
be available for evaluating proposed minimum flows or the potential impacts of proposed
freshwater management plans. These models were developed for both estuarine fishes
and the invertebrate prey groups that sustain young fishes while they occupy estuarine

nursery habitats.
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2.0 METHODS

21 Study Area

The Anclote River watershed occupies parts of Pasco, Pinellas and Hillsborough
counties in west central Florida. Watershed area above the Elfers gauge is 186 km? (73
mi?). River length is approximately 55 km, with estuarine waters occupying the lower 16
km (Fig. 2.1.1). At Tarpon Springs, near the river's mouth at the Gulf of Mexico, the semi-
diurnal tide has a range of <1.9 m. Bottom substrates in the tidal river are dominated by
mud, sand, shell and limestone.

Mangrove shorelines (black mangrove, Avicennia germinans, and red mangrove,
Rhizophora mangle) are primarily limited to the Gulf of Mexico shore and the lower 3 km
of river. Patches of submerged aquatic vegetation are common in the Gulf of Mexico and
near the river mouth. Between 5.4 and 10 km upstream, there are >2 km? of brackish
marsh, dominated by black rush (Juncus roemarianus). |Isolated areas of higher elevation
upstream of 10 km are vegetated by coastal-hammock trees and shrubs.
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Fig. 2.1.1. Map of survey area, including sampling zones (circled numbers) and zone
boundaries (yellow lines).
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2.2  Survey Design

Three gear types were implemented to monitor organism distributions: a plankton
net deployed during nighttime flood tides and a bag seine and otter trawl deployed during
the day under variable tide stages. The plankton net surveys were conducted by the
University of South Florida College of Marine Science, and the seine and trawl surveys
were conducted by the Fisheries-Independent Monitoring (FIM) program of the Fish and
Wildlife Research Institute (Florida Fish and Wildlife Conservation Commission).

The small organisms collected at night by the plankton net represent a combination
of the zooplankton and hyperbenthos communities. The term zooplankton includes all
weakly swimming animals that suspend in the water column during one or more life
stages. The distribution of such animals is largely subject to the motion of the waters in
which they live. The term hyperbenthos applies to animals that are associated with the
bottom but tend to suspend above it, rising higher into the water column at night or during
certain times of year (vertical migrators). The permanent hyperbenthos of estuaries (non-
transient hyperbenthos) tends to be dominated by peracarid crustaceans, especially
mysids and amphipods (Mees et al. 1993). Many types of hyperbenthos are capable of
actively positioning themselves at different places along the estuarine gradient by
selectively occupying opposing tidal flows.

The faunal mixture that forms in the nighttime water column includes the planktonic
eggs and larvae of fishes (ichthyoplankton). One of the most common reasons for using
plankton nets to survey estuarine waters is to study ichthyoplankton. Although fish eggs
and larvae are the intended focus of such studies, invertebrate plankton and
hyperbenthos almost always dominate the samples numerically. The invertebrate catch
largely consists of organisms that serve as important food for juvenile estuary-dependent
and estuary-resident fishes. In an effort to characterize the invertebrate catch more
completely, all water-column animals collected by the plankton net were enumerated at a

practical taxonomic level.
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Seines and trawls were used to survey larger organisms that typically evade
plankton nets. Generally speaking, the data from seine hauls document habitat use by
shallow-water organisms whereas the data from trawls document habitat use in deeper
areas. The dominant catch for both gear types is juvenile fishes, although the adults of
smaller species are also commonly caught. The seines and trawls also regularly collect a
few of the larger macroinvertebrate species from tidal rivers, notably juvenile and adult
blue crabs (Callinectes sapidus) and juvenile pink shrimp (Farfantepenaeus duorarum).

Monthly sampling in the Anclote River and Gulf of Mexico began in October 2004
and ended in September 2005. The study area was divided into six collection zones (Fig.
2.1.1, Table 2.2.1). Two plankton-net tows, two seine hauls and two trawl deployments
were made each month in each zone. The locations for seine and trawl deployment were
randomly selected within each zone during each survey, whereas the plankton-net
collections were made at fixed stations. The longitudinal position of each station was
measured as the distance from the mouth of the tidal river, following the geometric
centerline of the channel. Seines in the Gulf zone were set along the shoreline, including

island shorelines.
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Table 2.2.1. Distribution of sampling effort within the tidal Anclote River (October 2004—September 2005).

Zone position is measured relative to the river mouth.

River km Plankton | Seine | Trawl
-1.8-0.0 (Guilf) 24 24 12
0.0-2.4 24 24 12
2.4-5.4 24 24 12
5.4-9.8 24 24 | 12
9.8-13.2 24 24 12
13.2-16.1 24 24 12
Totals 144 144 72
2.3 Plankton Net Specifications and Deployment

The plankton gear consisted of a 0.5-m-mouth-diameter 500-pym-mesh conical
(3:1) plankton net equipped with a 3-pt nylon bridle, a calibrated flow meter (General
Oceanics model 2030R or SeaGear model MF315), a 1-liter plastic cod-end jar, and a 9-
kg (20-Ib.) weight. The net was deployed between low slack and high slack tide, with
sampling beginning within two hours after sunset and typically ending less than four hours
later. Tow duration was 5 min, with tow time being divided equally among bottom, mid-
water and surface depths. The fishing depth of the weighted net was controlled by

adjusting the length of the tow line while using tachometer readings to maintain a
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constant line angle. The tow line was attached to a winch located on the gunnel near
the transom. Placement of the winch in this location caused asymmetry in the steering
of the boat, which caused propeller turbulence to be directed away from the towed net.
Tow speed was approximately 1.3 m s, resulting in a tow length of >400 m over water
and a typical filtration of 70-80 m?. Upon retrieval of the net, the flowmeter reading was
recorded, and the contents of the net were rinsed into the cod-end jar using an electric
wash-down pump and hose with an adjustable nozzle. The samples were preserved in
6-10% formalin in ambient saline.

The net was cleaned between surveys using an enzyme solution that dissolves
organic deposits. Salinity, temperature, pH and dissolved oxygen were measured at

one-meter intervals from surface to bottom after each plankton-net deployment.

24 Seine and Trawl Specifications and Deployment

The gear used in all seine collections was a 21.3-m center-bag seine with 3.2-
mm mesh and leads spaced every 150 mm. To deploy the seine in riverine
environments (i.e., shorelines with water depth <1.8 m in the study area), the boat
dropped off a member of the seine crew near the shoreline with one end of the seine,
and the boat then payed out the net in a semicircle until the boat reached a second
drop-off point near the shoreline. The lead line was retrieved simultaneously from both
ends, with effort made to keep the lead line in contact with the bottom. This process
forced the catch into the bag portion of the seine. Area sampled by each boat-deployed
seine collection was approximately 68 m?.

The 6.1-m otter trawl had 38-mm stretched mesh, a 3.2-mm mesh liner, and a
tickler chain. It was towed in deeper areas (= 1.8 m, < 7.6 m) for five minutes in a
straight line; when a suitably deep site could not be found and depths were between 1.0
and 1.8 m, the trawl was towed in an arc. Tow speed averaged 0.6 m s, resulting in a
typical tow length of about 180 m. Trawl width averaged 4 m, giving an approximate

area sampled by a typical tow of 720 m?>. Salinity, temperature, pH, and dissolved
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oxygen were measured at the surface and at 1-m intervals to the bottom in association

with each gear deployment.

2.5 Plankton Sample Processing

All aquatic taxa collected by the plankton net were identified and counted, except
for invertebrate eggs and organisms that were attached to debris (sessile stages of
barnacles, bryozoans, sponges, tunicates and sessile coelenterates). During sorting,
the data were entered directly into an electronic database via programmable keyboards
that interfaced with a macro-driven spreadsheet. Photomicrographs of representative
specimens were compiled into a reference atlas that was used for quality-control
purposes.

Most organisms collected by the plankton net fell within the size range of 0.5-50
mm. This size range spans three orders of magnitude, and includes mesozooplankton
(0.2-20 mm) macrozooplankton/micronekton (>20 mm) and analogous sizes of
hyperbenthos. To prevent larger objects from visually obscuring smaller ones during
sample processing, all samples were separated into two size fractions using stacked
sieves with mesh openings of 4 mm and 250 ym. The >4 mm fraction primarily
consisted of juvenile and adult fishes, large macroinvertebrates and large particulate
organic matter. In most cases, the fishes and macroinvertebrates in the >4 mm fraction
could be identified and enumerated without the aid of microscopes.

A microscope magnification of 7-12X was used to enumerate organisms in the
>250 um fraction, with zoom magnifications as high as 90X being available for
identifying individual specimens. The >250 um fraction was usually sorted in two
stages. In the first sorting stage, the entire sample was processed as 10-15 ml aliquots
that were scanned in succession using a gridded petri dish. Only relatively uncommon
taxa (n<50) were enumerated during this first stage. After the entire sample had been
processed in this manner, the collective volume of the aliquots was recorded within a
graduated mixing cylinder, the sample was inverted repeatedly, and then a single 30-60
ml aliquot was poured. The aliquot volume typically represented about 12-50% of the

entire sample volume. The second sorting stage consisted of enumerating the relatively

10
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abundant taxa within this single aliquot. The second sorting stage was not required for
all samples. The second stage was, however, sometimes extended to less abundant

taxa (n<50) that were exceptionally small or were otherwise difficult to enumerate.

2.5.1 Staging Conventions.

All fishes were classified according to developmental stage (Fig. 2.5.1.1), where

preflexion larval stage = the period between hatching and notochord
flexion; the tip of the straight notochord is the most distal osteological
feature.

flexion larval stage = the period during notochord flexion; the upturned
notochord or urostyle is the most distal osteological feature.

postflexion larval stage = the period between completion of flexion and
the juvenile stage; the hypural bones are the most distal osteological
feature.

metamorphic stage (clupeid fishes) = the stage after postflexion stage
during which body depth increases to adult proportions (ends at juvenile
stage).

juvenile stage = the period beginning with attainment of meristic
characters and body shape comparable to adult fish and ending with
sexual maturity.

Decapod larvae were classified as zoea, megalopa or mysis stages. These
terms are used as terms of convenience and should not be interpreted as technical
definitions. Planktonic larvae belonging to Anomura and Brachyura (crabs) were called
zoea. Individuals from these groups displaying the planktonic to benthic transitional
morphologies were classified as megalopae. All other decapod larvae (shrimps) were
classified as mysis stages until the uropods differentiated into exopods and endopods (5
total elements in the telsonic fan), after which they were classified as postlarvae until

they reached the juvenile stage. The juvenile stage was characterized by resemblance

11
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to small (immature) adults. Under this system, the juvenile shrimp stage (e.qg., for
Palaemonetes) is equivalent to the postlarval designation used by some authors.

In many fish species, the juvenile stage is difficult to distinguish from other
stages. Atits lower limit, the juvenile stage may lack a clear developmental juncture
that distinguishes it from the postflexion or metamorphic stage. Likewise, at its upper
limit, more than one length at maturity may be reported for a single species or the
reported length at maturity may differ between males and females. To avoid
inconsistency in the staging process, length-based staging conventions were applied to
the more common taxa. These staging conventions agree with stage designations used
by the U.S. Fish and Wildlife Service (e.g., Jones et al. 1978). The list in Table 2.5.1.1
is comprehensive, representing the conventions that have been required to date by
various surveys. Some of the species or stages in the list were not encountered during

the surveys covered by this report.
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Table 2.5.1.1. Length-based staging conventions used to define developmental stage limits. Fish lengths
are standard length (SL) and shrimp length is total length.

Postflexion-juvenile transition (mm): Juvenile-adult transition (mm):

Lucania parva 10 Anchoa mitchilli 30
Menidia spp. 10 Lucania parva 15
Eucinostomus spp. 10 Gambusia holbrooki 15
Lagodon rhomboides 10 Heterandria formosa 10
Bairdiella chrysoura 10 Menidia spp. 35
Cynoscion arenarius 10 Eucinostomus spp. 50
Cynoscion nebulosus 10 Gobiosoma bosc 20
Sciaenops ocellatus 10 Gobiosoma robustum 20
Menticirrhus spp. 10 Microgobius gulosus 20
Leiostomus xanthurus 15 Microgobius thalassinus 20
Orthopristis chrysoptera 15 Gobiesox strumosus 35
Achirus lineatus 5 Trinectes maculatus 35
Trinectes maculatus 5 Palaemonetes pugio 20
Gobiesox strumosus 5 Membras matrtinica 50
Eugerres plumieri 10 Syngnathus spp. 80
Prionotus spp. 10 Poecilia latipinna 30
Symphurus plagiusa 10 Anchoa hepsetus 75
Anchoa mitchilli 15
Sphoeroides spp. 10
Chilomycterus schoepfii 10
Lepomis spp. 10
Micropterus salmoides 10 Metamorph-juvenile transition (mm):
Membras matrtinica 10
Chloroscombrus chrysurus 10 Brevoortia spp. 30
Hemicaranx amblyrhynchus 10 Dorosoma petenense 30
Micropogonias undulatus 15
Chaetodipterus faber 5

13

Appendix Page 120



1 mm

flexion larva

1 mm

postflexion larva

juvenile 1 mm

adult

Fig. 2.5.1.1. Fish-stage designations, using the bay anchovy as an example. Specimens measured 4.6,
7.0, 10.5, 16, and 33 mm standard length.
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2.6 Seine and Trawl Sample Processing

Fish and selected crustaceans collected in seine and trawl samples were
removed from the net into a bucket and processed onboard. Animals were identified to
lowest practical taxonomic category, generally species. Representative samples (three
individuals of each species from each gear on each sampling trip) were brought back to
the FWC/FWRI laboratory to confirm field identification. Species for which field
identification was uncertain were also brought back to the laboratory. A maximum of 10
measurements (mm) were made per taxon, unless distinct cohorts were identifiable, in
which case a maximum of 10 measurements were taken from each cohort; for certain
economically valuable fish species, twenty individuals were measured. Standard length
(SL) was used for fish, post-orbital head length (POHL) for pink shrimp, and carapace
width (CW) for crabs. Animals that were not measured were identified and counted.
When large numbers of individuals (>> 1,000) were captured, the total number was
estimated by fractional expansion of sub-sampled portions of the total catch split with a
modified Motoda box splitter (Winner and McMichael, 1997). Animals not chosen for
further laboratory examination were returned to the river.

Due to frequent hybridization and/or extreme difficulty in the identification of
smaller individuals, members of several abundant species complexes were not
identified to species. We did not separate menhaden, Brevoortia, species. Brevoortia
patronus and B. smithi frequently hybridize, and juveniles of the hybrids and the parent
species are difficult to identify (Dahlberg, 1970). Brevoortia smithi and hybrids may be
the most abundant forms on the Gulf coast of the Florida peninsula, especially in tidal
rivers (Dahlberg, 1970), and we treated them as one functional group. The two
abundant silverside species (genus Menidia) tend to hybridize, form all-female clones,
and occur in great abundance that renders identification to species impractical due to
the nature of the diagnostic characters (Duggins et al., 1986; Echelle and Echelle, 1997;
Chernoff, personal communication). Species-level identification of mojarras (genus
Eucinostomus) was limited to individuals = 40 mm SL due to great difficulty in
separating E. gula and E. harengulus below this size (Matheson, personal observation).

The term “eucinostomus mojarras” is used for these small specimens. Species-level
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identification of gobies of the genus Gobiosoma (i.e., G. robustum and G. bosc) used in
analyses were limited to individuals = 20 mm SL for the same reason; these are
hereafter referred to as “gobiosoma gobies”. Similarly, needlefishes (Strongylura spp.)

other than S. notata were only identified to species at lengths = 100 mm SL.

2.7 Data Analysis
2.7.1 Freshwater Inflow (F).

Inflow rates to the study area include data from one gauged streamflow site,
USGS site 02310000 (Anclote River near Elfers). All flow rates were expressed as

average daily flows in cubic feet per second (cfs).

2.7.2 Organism-Weighted Salinity (Sy).

The central salinity tendency for catch-per-unit-effort (CPUE) was calculated as
S-U
5, 26V

YU
where U is CPUE (No. m™ for plankton data and No. 100 m™ for seine and trawl data)

and S is water-column average salinity during deployment.

2.7.3 Center of CPUE (kmy).

The central geographic tendency for CPUE was calculated as

> (km-U)
U

km, =

where km is distance from the river mouth.
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2.7.4 Organism Number (N) and Relative Abundance (N ).

Using plankton-net data, the total number of organisms in the Anclote study area

was estimated by summing the products of mean organism density (U, as No. m™) and
tide-corrected water volume (V) from the six collection zones as
N=>(UV)

Volumes corresponding to NGVD were contoured (Surfer 7, Golden Software,
kriging method, linear semivariogram model) using bathymetric transects provided by
SWFWMD, and these volumes were then adjusted to the actual water level at the time
of collection using data from the water-level recorder at Alt. US Hwy 19 (USGS gauge
02310175). The following water bodies were not included in the area and volume
calculations: Kreamer Bayou inside a line extending from Ferguson Pt. to Chesapeake
Pt., Tarpon Bayou inside a line extending from Chesapeake Pt. to a point of land west-
southwest of the Sponge Docks (28° 9.34’ N, 82° 45.07° W), the embayment on the
north shore near Anclote Road, Salt Lake starting at its northern shoreline, the power
plant canal, residential canals, and all adjoining creeks and embayments that are not
part of the conveying channel. The latter group does not exclude channels that are part
of the divided channel system; these were included.

Within the tidal river, zone-specific volume increased in a nonlinear manner in the
downstream direction. The volume of Zone 1, which was in open water and therefore
had an ecologically arbitrary seaward boundary, was extrapolated from a regression of
trends in estimated zone volume within the river (average estimated zone volume =
[1463 - 222.7 x zone number]?, n=5, r?=0.98, p=0.001). Extrapolation of this relationship
to zone number 1, followed by division by an average depth of 0.98 meter NGVD (from
USGS topo maps), resulted in an area for Zone 1 equivalent to 1.5 km?. The two
plankton stations in Zone 1 were 0.8 km apart, with the seaward-most station being 1.8
km offshore of the river mouth. Zone 1 was therefore represented by a 1 km wide
rectangle centered longitudinally on the navigational channel from the river mouth to a
distance 2.3 km offshore.

For seine and trawl data, relative abundance (mean number per 100 m? sampled

area) in the Gulf and Anclote River zones was calculated for each month as
17
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N =100 x Vo

total

where Nt = total number of animals captured in that month and A;. is the total area

sampled in that month. N is also occasionally referred to as CPUE in some instances.
2.7.5 Inflow Response Regressions.

Regressions were run for kmyon F, Non F,and Non F. N, N, kmy (seine/trawl
data only) and F were Ln-transformed prior to regression to improve normality. To avoid
censoring zero values in seine and trawl regressions, a constant of 1 was added to N
and F, and an additional constant, 1.79, was added to all kmy values (all gears) to
adjust for negative values when taxa were centered below the mouth of the river.

Regressions using plankton-net data were limited to taxa that were encountered
during a minimum of 10 of the monthly surveys. The fits of the following regression
models were compared to determine if an alternative model produced consistently
better fit than the linear model (Y = a + b*F):

Square root-Y: Y = (a + b*F)"2
Exponential: Y = exp(a + b*F)
Reciprocal-Y: Y = 1/(a + b*F)
Square root-F: Y = a + b*sqrt(F)
Reciprocal-F: Y =a + b/F
Double reciprocal: Y = 1/(a + b/F)
Logarithmic-F: Y = a + b*In(F)
Multiplicative: Y = a*F*b
S-curve: Y = exp(a + b/F)

where Y is kmy or N. In these regressions, F was represented by same-day inflow and
by mean inflows extending as far back as 120 days prior to the sampling date. The
combination of consecutive dates that produced the maximum regression fit was used
to model the N and kmy responses to F for each taxon. This approach provided an
indication of the temporal responsiveness of the various taxa to inflow variations. An
organism was considered to be responsive if the regression slope was significantly

different from zero at p<0.05.
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Seine and trawl regressions were limited to taxa that were reasonably abundant
(total abundance>100 in seines, >50 in trawls) and frequently collected (present in at
least 3% of collections for each gear). Monthly length-frequency plots (Appendix C)
were examined in order to assign appropriate size classes (‘pseudo-species’) and
recruitment windows for each of these taxa. For distribution regressions (kmy), all
months were considered when a pseudo-species was collected in at least one sample
from that month. For abundance regressions (N ), all samples collected within a
determined recruitment period from monthly length-frequency plots (Appendix C) were
considered. Mean flows from the date of sampling, as well as continuously lagged
weekly averages from the day of sampling to 365 d before sampling (i.e., average flow
of sampling day and preceding 6 days, average flow of sampling day and preceding 13

days, etc.), were considered and linear and quadratic regressions were evaluated.

2.7.6 Data Limitations and Gear Biases.

All nets used to sample aquatic organisms are size selective. Small organisms
pass through the meshes and large organisms evade the gear altogether. Intermediate-
sized organisms are either fully retained or partially retained. When retention is partial,
abundance becomes relative. However, temporal or spatial comparisons can still be
made because, for a given deployment method and size of organism, the selection
process can usually be assumed to have constant characteristics over space and time.
The 500-um plankton gear retains a wide range of organism sizes completely, yet it
should be kept in mind that many estimates of organism density and total number are
relative rather than absolute. Organism measurements from Little Manatee River and
Tampa Bay plankton samples (Peebles 1996) indicate that the following taxa will be
collected selectively by 500-um mesh: marine-derived cyclopoid copepods, some
cladocerans, some ostracods, harpacticoid copepods, cirriped nauplii and cypris larvae,
the larvacean Oikopleura dioica, some decapod zoeae, and some adult calanoid
copepods. Taxa that are more completely retained include: cumaceans, chaetognaths,
insect larvae, fish eggs, most fish larvae and postlarvae, some juvenile fishes,

gammaridean amphipods, decapod mysis larvae, most decapod megalopae, mysids,
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isopods, and the juveniles and adults of most shrimps. This partitioning represents a
very general guide to the relative selectivities of commonly caught organisms.

The plankton nets were deployed during nighttime flood tides because larval
fishes and invertebrates are generally more abundant in the water column at night
(Colton et al. 1961, Temple and Fisher 1965, Williams and Bynum 1972, Wilkins and
Lewis 1971, Fore and Baxter 1972, Hobson and Chess 1976, Alldredge and King 1985,
Peebles 1987, Haney 1988, Lyczkowski-Shultz and Steen 1991, Olmi 1994) and during
specific tide stages (Wilkins and Lewis 1971, King 1971, Peebles 1987, Olmi 1994,
Morgan 1995a, 1995b). Organisms that selectively occupy the water column during
flood tides tend to move upstream, and organisms that occupy the water column during
all tidal stages tend to have little net horizontal movement other than that caused by net
estuarine outflow (Cronin 1982, McCleave and Kleckner 1982, Olmi 1994). The
plankton catch was therefore biased toward organisms that were either invading the
tidal rivers or were attempting to maintain position within the tidal rivers. This bias
would tend to exclude the youngest larvae of some estuarine crabs, which are released
at high tide to facilitate export downstream with the ebb tide (Morgan 1995a). However,
as the young crabs undergo their return migrations at later larval stages, they become
most available for collection during nighttime flood tides (Olmi 1994, Morgan 1995b).

Seines and trawls tend to primarily collect small fish, either adults of small-bodied
species or juveniles of larger taxa. Trawls tend to capture larger fish than seines
(Nelson and Leffler, 2001), and whether this is due to gear characteristics or preferred
use of channel habitat by larger fish is uncertain. Sampling efficiency inevitably varies
by species and size class (Rozas and Minello, 1997), but we assume reasonable
consistency between samples collected with a given gear type. We acknowledge that
movement of various taxa (e.g. killifishes, Fundulidae and Cyprinodontidae) into
emergent vegetation at high water levels occurs (Rozas and Minello, 1997) and could

complicate interpretation of some results.
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3.0 RESULTS AND DISCUSSION

3.1 Streamflow Status During Survey Years

During the one-year survey period (October 2004 through September 2005),
flows averaged 40 cfs (Fig. 3.1.1). However, there was a large disparity in the strengths
of the two summer rainy seasons that influenced the biological databases. During the
period of July through September, 2004, gauged streamflow averaged 505 cfs, whereas
the average for the same period in 2005 was 57 cfs, a full order of magnitude lower.
This provided a good comparison of biological responses during an otherwise

abbreviated survey duration.

3.2 Physico-chemical Conditions

Summary statistics from the electronic meter data collected during plankton
sampling are presented in Table 3.2.1. Temperatures underwent seasonal variation
within a typical range (Fig. 3.2.1). The two summer peaks in freshwater inflow (Fig.
3.1.1) reduced average salinities, with the reduction in October 2004 being much
stronger than the reduction in September 2005. The lowest pH was also observed in
October 2004, in agreement with inflow’s effect of increasing overall respiration rates
within the estuary. Hypoxia was not a chronic problem in the Anclote River. The lowest
dissolved oxygen (DO) levels were observed during the rainy season of 2005 in reaches
upstream of km 5 (Table 3.2.1). Hypoxia may have also occurred during the rainy
season of 2004, as DO levels were still somewhat reduced during October, 2004. DO
only occasionally reached strong supersaturation levels, which suggests that microalgal
blooms sometimes occur, but not as commonly as in tidal rivers such as the Alafia and
Hillsborough Rivers (Peebles 2005, MacDonald et al. 2005).

21

Appendix Page 128



2500 ] .
i A Plankton collection date
2000
—~~ :
% ]
~ 1500
O] i
e
m 4
- i
< 1000
O ]
L i
500 W\[\
O—,\J A A A A Aa A A A A A
A A AL A A A A A
S - - - - > L ' I Yo N U I U M Vo TN o TN U M o M U
O O O O O O O O OO O OO O O o o
~ NN NN NN N NN N NN YN N NN N Y N~
OO T O O NAN—TOANT~— «— O O O 0 ©
N N N N N N N N N ANANANANAN T~ -
~ N SN N SN N N N S Y s s N~
O N 0 OO O -~ N «~ N O < IO © ~ 0 O O
~ T T <~

Fig. 3.1.1. Anclote River gauged streamflow and collection dates.

Plankton collection dates:

10-06-2004
11-22-2004
12-08-2004
1-24-2005
2-23-2005
3-09-2005
4-25-2005
5-23-2005
6-20-2005
7-06-2005
8-17-2005
9-28-2005
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Seine and trawl collection dates:

10-18-2004, 10-19-2004

11-09-2004, 11-10-2004

12-09-2004

1-19-2005, 1-20-2004

2-15-2005
3-15-2005
-05-2005
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Anclote River
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Fig. 3.2.1. Electronic meter data associated with the plankton-net surveys of the tidal
Anclote River, where the cross identifies the mean, the horizontal line identifies the
median, the box delimits the interquartile range, and the whiskers delimit the total range.
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3.3 Catch Composition

3.3.1 Fishes.

3.3.1.1 Plankton net. Larval gobies and anchovies dominated the larval fish catch
(Table A1). Gobies of the genera Gobiosoma and Microgobius were dominant in
comparable proportions, and the anchovies were dominated by the bay anchovy
(Anchoa mitchilli). Other abundant larval fishes included silversides (Menidia spp.) and
skilletfish (Gobiesox strumosus). Menidia can be exceptionally abundant within
estuaries, but can also complete their life cycle within fresh water. Juvenile spot
(Leiostomus xanthurus) were abundant relative to other tidal rivers in west-central
Florida. Spot spawn far offshore and move landward during the late larval and early
juvenile stages. Perhaps the proximity of the Anclote survey area to the Gulf of Mexico

resulted in high juvenile recruitment of spot into the area.

3.3.1.2 Seine. The seine catch (Table B1) was dominated by spot (Leiostomus
xanthurus), pinfish (Lagodon rhomboides), bay anchovy (Anchoa mitchilli), and
eucinostomus mojarras (Eucinostomus spp.). These taxa comprised over 84% of total

seine catch of fishes.

3.3.1.3 Trawl. The trawl catch (Table B2) was dominated by pinfish, spot, bay anchovy,
and eucinostomus mojarras. These taxa comprised over 86% of total trawl catch of

fishes.

3.3.2. Invertebrates.

3.3.2.1. Plankton net. The plankton-net invertebrate catch (Table A1) was dominated
by gammaridean amphipods, larval crabs (decapod zoeae), larval shrimps (decapod
mysis) and by river-plume taxa such as the copepods Acartia tonsa and Labidocera
aestiva, the chaetognaths Sagitta spp., the planktonic shrimp Lucifer faxoni, and the

ostracod Parasterope pollex. The strong representation of river-plume taxa occurred
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because two stations were located in the open gulf near the river mouth (i.e., they were
in the river plume, Table A3). The amphipods were most abundant in the brackish
marshes and in the channel downstream of the marshes, as is commonly observed in
other estuaries. The mysid Americamysis almyra is often a numerical dominant in
estuaries supplied by surface runoff, but was not as strongly dominant in the tidal

Anclote River.

3.3.2.2 Seine. The seine catch (Table B1) was dominated by daggerblade grass
shrimp (Palaemonetes pugio) and brackish grass shrimp (P. intermedius), which

together comprised nearly 94% of the invertebrate catch.

3.3.2.3 Trawl. The trawl catch (Table B2) was dominated by arrow shrimp (Tozeuma
carolinense), brackish grass shrimp, pink shrimp (Farfantepenaeus duorarum), and
longtail grass shrimp (Periclimenes longicaudatus). These taxa comprised nearly 98%

of total trawl catch of invertebrates.

3.4 Use of Area as Spawning Habitat

The eggs of unidentified herrings (clupeids), the bay anchovy (Anchoa mitchilli),
the striped anchovy (A. hepsetus), silversides (Menidia spp.) and unidentified sciaenid
fishes were collected from the survey area (Table A1). Sciaenid eggs were by far the
most abundant egg type, followed by eggs of the bay anchovy — both types were most
abundant in the Gulf of Mexico and in the lower part of the tidal river (Table A3). Ifitis
assumed that the relative abundances of different species of early-stage sciaenid larvae
reflect relative spawning intensity, then the kingfishes (Menticirrhus spp.) are the
sciaenids that are most likely to have spawned in this area (Tables A3 and 3.4.1). The
data in Tables A3 and 3.4.1 also suggest that blennies, the lined sole (Achirus lineatus)
and the hogchoker (Trinectes maculatus) spawned near the river mouth, whereas
skilletfish (Gobiesox strumosus) and gobies (primarily Microgobius spp. and Gobiosoma

spp., but also Bathygobius soporator) may have spawned within the interior of the tidal
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river. The repeated collection of very small juveniles of live-bearing Gulf pipefish
(Syngnathus scovelli) within the interior of the tidal river suggests that this species is
also reproducing within the local area. A review of trends in spawning habitat among

coastal fishes is presented by Peebles and Flannery (1992).

Table 3.4.1. Relative abundance of larval stages for non-freshwater fishes with a collection frequency
>10 for the larval-stage aggregate, where Pre = preflexion (youngest larval stage), Flex = flexion stage
(intermediate larval stage) and Post = postflexion (oldest larval stage). X identifies the most abundant
stage and x indicates that the stage was present.

Taxon Common Name Pre Flex Post
Anchoa spp. anchovies X X X
Gobiesox strumosus skilletfish X X

Menidia spp. silversides X X X
Menticirrhus spp. kingfishes X X X
blenniids blennies X X
gobiids gobies X X X
Achirus lineatus lined sole X X X
Trinectes maculatus hogchoker X X X
Brevoortia spp. menhaden X X
Elops saurus ladyfish X

3.5 Use of Area as Nursery Habitat

The number of estuary-dependent taxa using the study area as a nursery is
somewhat greater than resident taxa: overall, six of the ten most abundant taxa in
deeper habitats and seven of the ten most abundant taxa in nearshore habitats can be
considered estuary-dependent. There are considerable differences in abundance:

estuary-dependents constituted nearly 86% of the total abundance of the top ten most
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abundant taxa in seined areas, and over 83% of total abundance of top ten taxa in
trawled areas. These dependents were mostly offshore spawners and included taxa of
commercial importance (i.e., pink shrimp) and taxa of ecological importance due to high
abundance (i.e., spot, pinfish, eucinostomus mojarras, tidewater mojarra, and silver

jenny).
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3.6 Seasonality

3.6.1. Plankton Net.

The number of taxa collected during an individual survey is not a true measure of
species richness because many taxa could not be identified to species level.
Nevertheless, this index produces a clear seasonal pattern. Specifically, more taxa
tend to be collected during the warmer months than during winter (Fig. 3.6.1.1).

Species diversity tends to be highest near the mouths of tidal rivers due to an
increased presence of marine-derived species and at the upstream end due to the
presence of freshwater species. This creates a low-diversity zone in the middle reaches
of tidal rivers (Merriner et al. 1976). Changes in streamflow can shift this pattern
downstream or upstream.

For a given species of fish, the length of the spawning season tends to become
shorter at the more northerly locations within a species’ geographic range, but the time
of year when spawning takes place is otherwise consistent for a given species. Among
species with long or year-round spawning seasons, local conditions have been
observed to have a strong influence on egg production within the spawning season
(Peebles 2002). Local influences include seasonally anomalous water temperature,
seasonal variation in the abundance of prey, and seasonal variation in retention or
transport of eggs and larvae after spawning. The latter processes (prey availability and
retention and transport) are influenced by freshwater inflows at the coast.

Alteration of flows would appear to have the lowest potential for impacting many
taxa during the period from December through March, which is the period when the
fewest estuarine taxa were present. The highest potential to impact many species
would appear to be from June through October. Some species were present throughout
the year (bay anchovy, Fig. 3.6.1.2), whereas others had more seasonal spawning and

recruitment patterns (menhaden and kingfish, Fig. 3.6.1.2).
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Fig. 3.6.1.1. Number of taxa collected per month by plankton net.
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Fig. 3.6.1.2. Examples of species-specific seasonality from plankton-net data.
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3.6.2. Seine and Trawl.

Few clear seasonal patterns of taxon richness were evident in the Anclote River
estuarine system (Fig. 3.6.2.1), which may be attributed to both the relatively short
duration of sampling and the unusual hydrological conditions encountered during the
study. Monthly taxon richness in seined areas was quite variable—the longest single
period of relatively high richness was from October—December; in deeper (trawled)
habitats, the September—February period had greatest taxon richness. Overall
abundances and abundances of new recruits of nekton taxa indicate extensive use of
the study area during all months (see Appendix C), but temporal resource partitioning
among species is evident (i.e., there is a seasonal succession of species that may allow
estuaries to annually support a greater abundance of animals than if all species were
present simultaneously). Twenty-seven taxa were deemed abundant enough to
determine seasonality in either the deeper, trawled habitats or in shallow, seined
habitats (i.e., total catch of at least 100 individuals in seined habitats or 50 individuals in
trawled habitats and occurrence in 23% of samples). If the top months with maximum
abundance for each of these taxa are considered (Fig. 3.6.2.2), then peaks for residents
occurred throughout the year. Estuarine spawners had peak periods of abundance from
fall to spring. Offshore spawners had peaks in abundance that tended to be
concentrated from late summer/early fall to spring. Among new recruits (i.e., the
smallest two or three 5-mm size classes captured by our gears), peak recruitment
periods varied among life-history categories (Fig. 3.6.2.3): of the 16 taxa for which these
trends could be judged, offshore spawners tended to recruit in winter, while residents
tended to recruit in late summer and fall; there were relatively few data that could be

assessed for estuarine spawners.
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Fig. 3.6.2.2. Top months of relative abundance for all individuals collected in seines (S) and trawls (T).
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Fig. 3.6.2.3. Months of occurrence (™) and peak abundance (M) for new recruits collected by seine and

trawl.
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3.7 Distribution (km,) Responses to Freshwater Inflow

3.7.1 Plankton Net.

Ten (26%) of the 38 plankton-net taxa evaluated for distribution responses
to freshwater inflow exhibited significant responses. Nine of these were negative
responses, wherein animals moved downstream as inflows increased (Table
3.7.1.1). Downstream movement is the typical inflow response seen in tidal
rivers on Florida’s west coast. The exception was upstream movement by the
copepod Pseudodiaptomus coronatus. This relationship had the second lowest
fit of the significant relationships and may be spurious. This common species is
regarded as being bottom-oriented, which may have made it prone to upstream
displacement if freshwater inflow created two-layered circulation in the tidal river
(i.e., bottom water moving upstream to replace surface water moving
downstream). Overall, time lags for the responses were highly variable, with

many occurring within a seasonal time frame.

Table 3.7.1.1. Plankton-net organism distribution (kmy) responses to mean freshwater inflow (Ln
F), ranked by linear regression slope. Other regression statistics are sample size (n), intercept
(Int.), slope probability (P) and fit (adjusted 7, as %). D is the number of daily inflow values used
to calculate mean freshwater inflow. None of the time series data appeared to be serially

correlated (Durbin-Watson statistic, p>0.05 for all taxa).

Description Common Name n Int. Slope P I8 D
Pseudodiaptomus coronatus copepod 12 -6.098 2494 0.0422 35 120
Labidocera aestiva copepods 12 0.929 -0.346 0.0470 34 120
chaetognaths, sagittid arrow worms 10 0.859 -0.402 0.0197 43 1
gastropods, opisthobranch sea slugs 12 5.295 -0.977 0.0065 54 70
Edotea triloba isopod 12 12.722  -1.233 0.0086 51 61
Anchoa mitchilli juveniles bay anchovy 11 16.540 -1.684 0.0001 79 7
Americamysis almyra opossum shrimp, mysid 12 17.034 -1.774 0.0006 70 33
ostracods, podocopid ostracods, seed shrimps 12 18.472 -2.511 0.0302 39 106
gobiid preflexion larvae gobies 12 16.838 -2.668 0.0048 65 117
unidentified Americamysis juveniles opossum shrimps, mysids 12 20.430 -3.050 0.0000 89 31
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3.7.2 Seine and Trawl.

The relatively short time series (12 months) did not produce a wide variety
of flow conditions over which to assess organism distribution responses. Just
over one-half (51%) of the 35 pseudo-species/gear combinations (hereafter
simply referred to as ‘pseudo-species’) evaluated for distributional responses to
freshwater inflow exhibited significant response for at least one lagged flow
period. For the purposes of this discussion, we refer only to the best models for
each of the 18 pseudo-species (i.e., statistically significant [a<0.05] models with
normally distributed residuals that explain the greatest proportion of the variance
[highest r? value] for each pseudo-species) (Table 3.7.2.1). Best models are
plotted in Appendix G.

The best models were widely dispersed among inflow lag periods (Fig.
3.7.2.1). Inflow lag periods are characterized as either short (0-14 days), medium
(21-91 days), or long (98-364 days). Responses to inflow within each life-history
category were largely associated with different lag periods: primarily short for
residents, medium to long for estuarine spawners, and most commonly long for
offshore spawners.

Nearly 90 percent of the significant responses were negative (i.e., animals
moved upstream with decreasing freshwater inflow). The strongest negative
responses (high adjusted r* values) were found in offshore or estuarine spawners
(Table 3.7.2.1); this is mostly because these species tended to have fewer
regression points to fit (because of relatively short periods of non-zero
abundance) and also because there were 13 pseudo-species from these life-
history categories and only five tidal-river residents. The pseudo-species’ centers
of abundance may have shifted downstream during periods of higher inflow
because individuals were seeking areas with preferred salinities, although some
physical displacement during periods of extremely high flows cannot be

discounted for smaller individuals.
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Distribution vs. Average Inflow (linear)
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Fig. 3.7.2.1. Summary of linear regression results assessing distribution (kmy) in relation to inflow

and lag period.
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3.8 Abundance (N, N ) Responses to Freshwater Inflow

3.8.1 Plankton Net.

Sixteen (42%) of the 38 plankton-net taxa evaluated for abundance relationships
with freshwater inflow exhibited significant responses (Table 3.8.1.1). All of these were
positive responses. Although it is unusual for all of the responses to be positive, there
are two conditions that would favor this condition. Negative responses are usually
caused by elevated flows washing river-plume taxa away from the river mouth and out
of the survey area. In the present case, however, (1) the study area did not experience
strongly elevated inflows during the survey, and (2) there were stations in the receiving
body of water (the Gulf of Mexico) that could intercept washed-out taxa. In fact, several
river-plume species had positive responses, including the ostracod Sarsiella zostericola,
the copepod Labidocera aestiva, postlarvae of the shrimp Hippolyte spp., the
chaetognaths Sagitta spp. and bay anchovy adults, Anchoa mitchilli. Organisms that
typically congregate within the interiors of tidal rivers also had positive responses,
including estuarine mysids (Americamysis almyra adults, Americamysis juveniles,
Bowmaniella dissimilis), gammaridean amphipods, bay anchovy juveniles and
polychaetes. In general, it could be concluded that these positive results were observed
— despite the short duration of the study - because there was substantial variation in
inflow and because the survey area was geographically scaled to the spatial range of
freshwater influence on distribution (stations were also positioned in the receiving body).
Only two of the positive responders, dipteran pupae and chironomid larvae, belong to
groups that are primarily freshwater groups.

None of the time lags was short enough to be considered a catchability response
(i.e., organisms fleeing the effects of sudden floods and thereby becoming more
vulnerable to collection). A few lags were seasonal in nature, but most occurred over

time frames that would be expected from true population responses.
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Table 3.8.1.1. Plankton-net organism abundance responses to mean freshwater inflow (Ln F), ranked by

linear regression slope. Other regression statistics are sample size (n), intercept (Int.), slope probability

(P) and fit (adjusted 2, as %). DW identifies where serial correlation is possible (x indicates p<0.05 for

Durbin-Watson statistic). D is the number of daily inflow values used to calculate mean freshwater inflow.

Description Common Name n Int. Slope P r2 DW D
Sarsiella zostericola ostracod, seed shrimp 10 5.387 1.723 0.0464 41 31
Americamysis almyra opossum shrimp, mysid 12 6.512 1.695 0.0010 68 23
dipterans, pupae flies, mosquitoes 11 4.005 1.218 0.0061 59 X 48
Labidocera aestiva copepod 12 10.353 1.112 0.0223 42 23
Hippolyte zostericola postlarvae zostera shrimp 12 10.258 1.048 0.0062 54 X 94
unidentified Americamysis juveniles opossum shrimps, mysids 12 8.654 0.981 0.0321 38 X 25
branchiurans, Argulus spp. fish lice 11 7.084 0.933 0.0024 66 X 120
amphipods, gammaridean amphipods 12 13.942 0.902 0.0004 73 93
Anchoa mitchilli juveniles bay anchovy 12 7.502 0.826 0.0386 36 120
decapod megalopae post-zoea crab larvae 10 11.217 0.790 0.0128 56 39
Bowmaniella dissimilis opossum shrimp, mysid 12 11.164 0.756 0.0070 53 38
amphipods, caprellid skeleton shrimps 11 9.166 0.737 0.0034 63 94
dipterans, chironomid larvae midges 12 6.691 0.666 0.0035 59 75
Anchoa mitchilli adults bay anchovy 11 7.454 0.635 0.0232 45 22
chaetognaths, Sagitta spp. arrow worms 12 13.114 0.578 0.0196 44 120
polychaetes sand worms, tube worms 12 11.313 0.539 0.0008 69 93
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3.8.2 Seine and Trawl.

As noted for distribution responses to freshwater inflow, the relatively short time
series of sampling did not give a wide variety of flows over which to assess abundance
responses; results should therefore be interpreted with caution. Among the 38 pseudo-
species considered in these analyses, abundances of 60.5% were significantly related
to average inflow (Table 3.8.2.1). The greatest proportion of variance in abundance was
explained by linear models for 10 pseudo-species and by quadratic models for 13
pseudo-species. Of the 10 linear models, three were negative relationships, indicating
increasing abundance with decreasing inflow, and seven were positive relationships,
indicating increasing abundance with increasing inflow. Almost half (46.1%) of quadratic
models suggested greatest abundance at intermediate inflows (‘intermediate-
maximum’). Of the remaining quadratic models, three suggested least abundance at
intermediate inflow (‘intermediate-minimum’), two suggested greatest abundance at
higher flow levels, and one indicated greatest abundance at the lower levels of inflow.
The percentage of significant abundance responses to inflow ranged from 56% of tested
pseudo-species in estuarine spawners to 65% in offshore spawners. Offshore and
estuarine spawners tended to exhibit intermediate-maximum or positive responses to
inflow, whereas tidal-river residents also showed intermediate-minimum responses to
inflow (Fig. 3.8.2.1). All best models are plotted in Appendix I.

The maijority of the best-fitting regression models incorporated longer lags for all
life history categories, but this trend was most pronounced for estuarine and offshore
spawners (Fig. 3.8.2.2). Best models incorporated lagged inflows ranging from 14 to
287 days for residents, 161 to 245 days for estuarine spawners, and 21 to 357 days for
offshore spawners.

Potentially spurious regression results (e.g., Figs. 11, 111, and 117) are unlikely to
be biologically meaningful and should be interpreted cautiously. The nine strongest
abundance-inflow relationships—those where inflow explained a sizeable portion of
variance (r*>~50%) in at least six data points—mostly involved offshore-spawning
species but also included some tidal-river residents. Relationships of abundance to flow

in these nine pseudo-species were positive (Figs. 12, 114, 115, and 121), intermediate-
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minimum (Figs. 18 and 118), or intermediate-maximum (Figs. 13, 110, and 120). An
increase in abundance with increased flow may suggest beneficial aspects of increased
nutrient input, for example, or perhaps better detection of the tidal-river nursery area.
Intermediate-minimum relationships, where abundance is greatest at either low or high
flows and least at intermediate flows, are difficult to explain in ecological terms.
Intermediate-maximum relationships, which are opposite in nature to intermediate-
minimum relationships, perhaps indicate differing forces operating at opposite ends of
the inflow spectrum. At low flows, opportunities for either chemical detection of tidal
nursery habitats or selective tidal-stream transport may be reduced, and at high flows,
physical displacement may occur, or perhaps undesirable properties of fresher water

(e.g., low pH) become more prominent.
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Abundance vs. Average Inflow
(best models for each of 38 pseudospecies)
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Fig. 3.8.2.1. Summary of regression results assessing abundance (N ) in relation to inflow. Positive and
negative indicate increase and decrease in abundance with increasing inflow, respectively, while

intermediate indicates maximum or minimum abundance at intermediate inflows.
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Abundance vs. Average Inflow
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Fig. 3.8.2.2. Summary of regression results assessing abundance (N ) in relation to inflow and lag
period.
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4.0 CONCLUSIONS

4.1 Descriptive Observations

1.) Dominant Catch. Larval gobies and anchovies dominated the planktonic
(larval) fish catch. Gobies of the genera Gobiosoma and Microgobius were
dominant in comparable proportions, and the anchovies were dominated by the
bay anchovy (Anchoa mitchilli). Other abundant larval fishes included silversides
(Menidia spp.) and skilletfish (Gobiesox strumosus). Juvenile spot (Leiostomus
xanthurus) were abundant in the plankton-net catch relative to other tidal rivers in
west-central Florida. Seine fish collections were dominated by spot (Leiostomus
xanuthurus), pinfish (Lagodon rhomboides), bay anchovy (Anchoa mitchilli), and
eucinostomus mojarras (Eucinostomus spp.). Fish collections from deeper,
trawled areas were also dominated by pinfish, spot, bay anchovy, and
eucinostomus mojarras.

The plankton-net invertebrate catch was dominated by gammaridean
amphipods, larval crabs, larval shrimps and by river-plume taxa such as the
copepods Acartia tonsa and Labidocera aestiva, the chaetognaths Sagitta spp.,
the planktonic shrimp Lucifer faxoni, and the ostracod Parasterope pollex. The
strong representation of river-plume taxa occurred because two stations were
located in the river plume. Invertebrates collected by seines were dominated by
daggerblade grass shrimp (Palaemonetes pugio) and brackish grass shrimp (P.
intermedius); invertebrate trawl catches primarily consisted of arrow shrimp
(Tozeuma carolinense), brackish grass shrimp, pink shrimp (Farfantepenaeus
duorarum), and longtail grass shrimp (Periclimenes longicaudatus).

2.) Use of Area as Spawning Habitat. The eggs of unidentified herrings
(clupeids), the bay anchovy (Anchoa mitchilli), the striped anchovy (A. hepsetus),
silversides (Menidia spp.) and unidentified sciaenid fishes were collected from
the survey area (Table A1). Sciaenid eggs were by far the most abundant egg
type, followed by eggs of the bay anchovy — both types were most abundant in

the Gulf of Mexico and in the lower part of the tidal river. If it is assumed that the
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relative abundances of different species of early-stage sciaenid larvae reflect
relative spawning intensity, then the kingfishes (Menticirrhus spp.) are the
sciaenids that are most likely to have spawned in this area. Blennies, the lined
sole (Achirus lineatus) and the hogchoker (Trinectes maculatus) spawned near
the river mouth, whereas skilletfish (Gobiesox strumosus) and gobies (primarily
Microgobius spp. and Gobiosoma spp., but also Bathygobius soporator) may
have spawned within the interior of the tidal river. The repeated collection of very
small juveniles of live-bearing Gulf pipefish (Syngnathus scovelli) within the
interior of the tidal river suggests that this species is also reproducing within the
local area.

3.) Use of Area as Nursery Habitat. The number of estuary-dependent taxa
using the study area as a nursery is somewhat greater than resident taxa:
overall, six of the ten most abundant taxa in deeper habitats and seven of the ten
most abundant taxa in nearshore habitats can be considered estuary-dependent.
There are considerable differences in abundance: estuary-dependents
constituted nearly 86% of the total abundance of the top ten most abundant taxa
in seined areas, and over 83% of total abundance of top ten taxa in trawled
areas. These dependents were mostly offshore spawners and included taxa of
commercial importance (i.e., pink shrimp) and taxa of ecological importance due
to high abundance (i.e., spot, pinfish, eucinostomus mojarras, tidewater mojarra,
and silver jenny). The juvenile nursery habitats for selected species were
characterized from seine and trawl data in terms of preference for shallower or
deeper areas, zone of the study area, type of shoreline, and salinity (Appendices
D and E). Distribution of fishes within the Anclote River Estuary as determined
from this study compares very well with distributions noted in the same estuary
by Szedlmayer (1991). The studies differ in that Szedimayer (1991) observed
dominance of the nearshore fish assemblages by residents (primarily silversides,
which constituted nearly 80% of total catch), whereas we noted greater
abundance of transient, estuary-dependent species.

4.) Plankton Catch Seasonality. Alteration of flows would appear to have

the lowest potential for impacting many taxa during the period from December
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through March, which is the period when the fewest estuarine taxa were present.
The highest potential to impact many species would appear to be from June
through October. Some species were present throughout the year, whereas
others had more seasonal spawning and recruitment patterns.

5.)  Seine and Trawl Catch Seasonality. Based on seine or trawl collections,
there were few clear seasonal patterns of taxon richness in the Anclote River
estuarine system, undoubtedly due to the relatively short duration of sampling
and the unusual hydrological conditions encountered. Monthly taxon richness in
seined areas was quite variable—the longest single period of relatively high
richness was from October—-December; in deeper (trawled) habitats, the
September—February period had greatest taxon richness. Overall abundances
and abundances of newly recruiting nekton taxa indicate extensive use of the
study area during all months, however. Thus, we tentatively conclude that the
period from October to February appears to have the greatest potential for
negative effects of anthropogenic change to the tidal river inflow, at least in terms
of impacting the most species. There is no time of the year when inflow reduction
would not have the potential to affect economically or ecologically important taxa,

however.

4.2 Responses to Freshwater Inflow

1.) Plankton Catch Distribution Responses. Ten (26%) of the 38 plankton-
net taxa evaluated for distribution responses to freshwater inflow exhibited
significant responses. Nine of these were negative responses, wherein animals
moved downstream as inflows increased. Downstream movement is the typical
inflow response seen in tidal rivers on Florida’s west coast. Overall, time lags for
the responses were highly variable, with many occurring within a seasonal time
frame.

2.) Seine and Trawl Catch Distribution Responses. The relatively short
time series (12 months) did not produce a wide variety of flow conditions over

which to assess organism distribution responses. Just over one-half (51%) of the
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35 pseudo-species/gear combinations (hereafter simply referred to as ‘pseudo-
species’) evaluated for distributional responses to freshwater inflow exhibited
significant response for at least one lagged flow period. The best-fitting models
were widely dispersed among inflow lag periods. Responses to inflow within each
life-history category were largely associated with different lag periods: short (0—
14 days) for residents, medium (21-91 days) to long (98-364 days) for estuarine
spawners, and long (98-364 days) for offshore spawners. The great majority of
the best models that included long lag periods involved offshore spawners.
Ninety-four percent of the significant responses were negative (i.e., animals
moved upstream with decreasing freshwater inflow). The pseudo-species’
centers of abundance may have shifted downstream during periods of higher
inflow because individuals were seeking areas with more suitable salinities,
although some physical displacement during periods of extremely high flows
cannot be discounted for smaller individuals.

3.) Plankton Catch Abundance Responses. Sixteen (42%) of the 38
plankton-net taxa evaluated for abundance relationships with freshwater inflow
exhibited significant responses. All of these were positive responses. Several
river-plume species had positive responses, including the ostracod Sarsiella
zostericola, the copepod Labidocera aestiva, postlarvae of the shrimp Hippolyte
spp., the chaetognaths Sagitta spp. and bay anchovy adults, Anchoa mitchilli.
Organisms that typically congregate within the interiors of tidal rivers also had
positive responses, including estuarine mysids (Americamysis almyra adults,
Americamysis juveniles, Bowmaniella dissimilis), gammaridean amphipods, bay
anchovy juveniles and polychaetes. Only two of the positive responders,
dipteran pupae and chironomid larvae, belong to groups that are primarily
freshwater groups. None of the time lags was short enough to be considered a
catchability response (i.e., organisms fleeing the effects of sudden floods and
thereby becoming more vulnerable to collection). A few lags were seasonal in
nature, but most occurred over time frames that would be expected from true
population responses.

4.) Seine and Trawl Catch Abundance Responses. As noted for
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distribution responses to freshwater inflow, the relatively short time series of
sampling did not give a wide variety of flows over which to assess abundance
responses; results should therefore be interpreted with caution. Offshore and
estuarine spawners tended to exhibit intermediate-maximum or positive
responses to inflow, whereas tidal-river residents also showed intermediate-
minimum responses to inflow. The maijority of the best-fitting regression models
incorporated longer lags for all life history categories, but this trend was most
pronounced for estuarine and offshore spawners. An increase in abundance with
increased flow may suggest beneficial aspects of increased nutrient input, for
example, or perhaps better detection of the tidal-river nursery area. Intermediate-
minimum relationships, where abundance is greatest at either low or high flows
and least at intermediate flows, are difficult to explain in ecological terms.
Intermediate-maximum relationships, which are opposite in nature to
intermediate-minimum relationships, perhaps indicate differing forces operating
at opposite ends of the inflow spectrum. At low flows, opportunities for either
chemical detection of tidal nursery habitats or selective tidal-stream transport
may be reduced, and at high flows, physical displacement may occur, or perhaps

undesirable properties of fresher water (e.g., low pH) become more prominent.
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Plankton-net catch statistics (October 2004 through September 2005, n=144 samples)

Taxon

foraminiferans

Liriope tetraphylla

Clytia sp.

medusa sp. a

medusa sp. ¢

medusa sp. d

medusa sp. e

medusa, Bougainvillia sp.
medusa, Obelia sp.
Mnemiopsis mccradyi

Beroe ovata

turbellarians

nemerteans

nematodes

polychaetes

oligochaetes

hirudinoideans

Simocephalus vetulus
Grimaldina brazzai

llyocryptus sp.

Sida crystallina

Latona setifera

Penilia avirostris

Latonopsis fasciculata
Euryalona occidentalis

Leydigia sp.

Evadne tergestina

decapod zoeae

decapod mysis

decapod megalopae

shrimps, unidentified postlarvae
penaeid postlarvae

penaeid metamorphs
Farfantepenaeus duorarum juveniles
Lucifer faxoni mysis

Lucifer faxoni juveniles and adults
Palaemon floridanus adults
Palaemonetes spp. postlarvae
Palaemonetes pugio juveniles
Palaemonetes pugio adults
Palaemonetes vulgaris adults
Periclimenes longicaudatus juveniles
alphaeid postlarvae

alphaeid juveniles

Alpheus viridari juveniles
Hippolyte zostericola postlarvae
Hippolyte zostericola juveniles
Hippolyte zostericola adults
Thor sp. juveniles

Latreutes parvulus postlarvae
Tozeuma carolinense postlarvae
Tozeuma carolinense juveniles
Tozeuma carolinense adults
processid postlarvae
Ambidexter symmetricus postlarvae
Ambidexter symmetricus juveniles
Callianassa spp. juveniles
Upogebia spp. postlarvae
Upogebia spp. juveniles
paguroid megalops larvae
paguroid juveniles

Table A1, page 1 of 5.

Common Name

foraminiferans
hydromedusa
hydromedusa
hydromedusa
hydromedusa
hydromedusa
hydromedusa
hydromedusa
hydromedusa

comb jelly, ctenophore
sea walnut, ctenophore
flatworms

ribbon worms
roundworms, threadworms
sand worms, tube worms
freshwater worms
leeches

water flea

water flea

water flea

water flea

water flea

water flea

water flea

water flea

water flea

water flea

crab larvae

shrimp larvae
post-zoea crab larvae
shrimps

penaeid shrimps
penaeid shrimps

pink shrimp

shrimp

shrimp

Florida grass shrimp
grass shrimp
daggerblade grass shrimp
daggerblade grass shrimp
grass shrimp

longtail grass shrimp
snapping shrimps
snhapping shrimps
snapping shrimp
zostera shrimp
zostera shrimp
zostera shrimp
shrimp

sargassum shrimp
arrow shrimp

arrow shrimp

arrow shrimp

night shrimps

shrimp

shrimp

ghost shrimps

mud shrimps

mud shrimps

hermit crabs

hermit crabs

A-2

Organisms are listed in phylogenetic order.

Number  Collection
Collected Frequency

42 13

11 4
462 19
166 6
17 5

16 3
43 7
12 7

5 3

79 5

1 1

8 5

2 2
114 28
2,541 115
65 16

5 4
1,363 17
1 1
157 6
5 5

9 2

30 6
46 5

8 2

2 2

16 3
129,227 135
33,773 132
2,944 82
16 4

3 1

75 18
17 10
78 8
7,921 62
1 1

201 41
31 18

5 4

1 1

27 1"
217 26
3 3

1 1
5,038 66
143 29
9 4

1 1

2 1

7 2
253 14
85 6
147 18
122 12
26 9

1 1

21 7
26 1"
36 4
828 24
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Kmu
(km)

Su Mean CPUE
(psu) (No./10°* m?3)

291
27.2
12.3
7.3
27.9
17.9
14.0
27.0
32.2
16.8
21.2
23.2
21
24.6
124
3.9
4.1
0.3
0.1
0.1

0.1

24.8
26.0
32.1
30.0
30.8
23.9
28.6

0.4
26.0
18.1
28.8
30.6

4.21
1.21
39.80
15.73
1.87
1.69
4.00
1.03
0.47
7.06
0.09
0.77
0.18
10.87
243.99
5.50
0.47
119.32
0.08
13.74
0.44
0.82
2.82
4.12
0.70
0.18
1.46
11748.57
3132.71
280.98
1.72
0.25
8.45
1.73
8.64
728.90
0.09
19.24
2.85
0.44
0.10
2.79
22.73
0.28
0.08
501.53
14.68
0.84
0.10
0.15
0.69
25.73
10.76
13.98
12.76
2.60
0.09
2.01
2.38
3.67
72.65

Max CPUE
(No./10°* m3)

232.77
88.39
2435.29
1453.15
88.39
116.63
240.32
71.35
28.61
421.96
12.84
27.70
13.72
197.58
13701.21
328.89
29.97
9473.81
12.18
1177.01
13.02
106.37
153.65
399.75
74.30
14.10
125.71
84175.05
64863.87
5005.17
139.33
35.68
436.69
63.17
487.98
24712.61
12.67
231.34
132.29
26.69
15.07
94.45
769.41
14.18
11.07
8900.17
795.51
53.04
14.85
2214
73.82
2255.52
935.77
534.96
400.93
133.63
12.90
118.12
65.65
191.53
3289.10



Plankton-net catch statistics (October 2004 through September 2005, n=144 samples)

Taxon

Callinectes sapidus juveniles
Callinectes sapidus adults
Portunus sp. juveniles
Pinnixa sp. a juveniles
Pinnixa sayana juveniles
unidentified Americamysis juveniles
Americamysis almyra
Americamysis bahia
Americamysis stucki
Bowmaniella dissimilis
Mysidopsis mortenseni
Taphromysis bowmani
cumaceans

Sinelobus stanfordi
Apseudes sp.

Hargeria rapax

Cyathura polita
Xenanthura brevitelson
Munna reynoldsi
Anopsilana jones|
cymothoid sp. a (Lironeca) juveniles
Cassidinidea ovalis
Harrieta faxoni
Sphaeroma quadridentata
Sphaeroma terebrans
Sphaeroma walkeri
Edotea triloba
Erichsonella attenuata
Erichsonella filiforme
amphipods, gammaridean
amphipods, caprellid
cirriped nauplius stage
branchiurans, Argulus spp.
Alteutha sp.

unidentified harpacticoids
siphonostomatids
Monstrilla sp.
Macrocyclops albidus
Mesocyclops edax
Oithona spp.
Orthocyclops modestus
Saphirella spp.
paracalanids

Acartia tonsa

Calanopia americana
Centropages hamatus
Centropages velificatus
Diaptomus spp.
Eucalanus sp.
Eurytemora affinis
Labidocera aestiva
Osphranticum labronectum
Pseudodiaptomus coronatus
Temora turbinata
myodocopod sp. a
Euconchoecia chierchiae
Sarsiella zostericola
Parasterope pollex
ostracods, podocopid
collembolas, podurid
ephemeropteran larvae

Table A1, page 2 of 5.

Organisms are listed in phylogenetic order.

Common Name

blue crab

blue crab

swimming crab

pea crab

pea crab

opossum shrimps, mysids
opossum shrimp, mysid
opossum shrimp, mysid
opossum shrimp, mysid
opossum shrimp, mysid
opossum shrimp, mysid
opossum shrimp, mysid
cumaceans

tanaid

tanaid

tanaid

isopod

isopod

isopod

isopod

isopod

isopod

isopod

isopod

isopod

isopod

isopod

isopod

isopod

amphipods

skeleton shrimps
barnacles

fish lice

copepod

copepods

parasitic copepods
copepod

copepods

copepod

copepods

copepod

copepods

copepods

copepod

copepod

copepod

copepod

copepods

copepod

copepod

copepod

copepod

copepod

copepod
ostracod, seed shrimp
ostracod, seed shrimp
ostracod, seed shrimp
ostracod, seed shrimp
ostracods, seed shrimps
springtails

mayflies

A-3

Number

Collection

Collected Frequency

146

1

9

4

2
3,384
8,024
1

2,719
104

1
235,817
295

76

136

1

272

198
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29
1
5
1
2

Kmu
(km)

Su Mean CPUE
(psu) (No./10°* m?3)

17.4
26.9
22.6
20.0
28.8

8.6

8.4
21.5
26.4
12.6
26.6
10.3
23.3

7.4
23.7
21.2
12.8
20.1

0.7

4.2
19.7
17.5
29.4
21.5

4.3
21.7

7.3
26.3
246
17.5
271
26.7
25.6
23.6
27.5
291
30.7

1.0

1.4
253

1.0

6.2
255
28.4
29.2
22.4
27.8

24
25.7

1.5
25.8

5.4
20.6
27.2
26.9
25.2
28.6
26.9
141

1.8

0.7

14.16
0.10
0.95
0.41
0.18

313.24
738.69
0.08
21.93
677.67
0.17
36.68
591.81
3.20
272

30.07
2.57
2.67

64.17
0.18
8.50
2.46

19.22
1.92

20.74
0.09

233.83
9.72

0.08
22386.56

28.87
8.61

13.85
0.10

26.81

18.76
0.50
2.58
3.58
3.29
1.05
3.33
1.94

2630.40

83.83
1.47
9.07
0.20
0.27
0.72

567.39
0.17

14.68
8.45
2.25
0.09

14.44

246.81
8.83
0.27
6.10

Max CPUE
(No./10°* m3)

468.55
13.68
59.40
59.40
14.30

8649.70
23200.90
11.63
826.81
14156.79
24.22
1047.62
14862.52
64.48

103.93

429.02
84.87
73.44

7442.85
13.79

113.41
65.65

696.66
89.08

705.06
12.33

17139.52

375.03

11.80
552672.94

393.53

583.15

316.57
13.81

506.30

528.08
30.33
75.94

111.46

236.23
25.44

104.91

135.84

40528.43
2358.40
62.95

214.06
14.99
28.02
38.20

16639.60
24.74

920.65

293.33

118.12
13.26

495.58

6055.12

173.50
13.02

172.85



Plankton-net catch statistics (October 2004 through September 2005, n=144 samples)

Taxon

odonates, anisopteran larvae
odonates, zygopteran larvae
hemipterans, corixid adults
hemipterans, gerrid adults
coleopterans, curculionid adults
coleopterans, elmid larvae
coleopterans, elmid adults
coleopterans, gyrinid larvae
coleopterans, dytiscid adults
dipterans, pupae

dipterans, ceratopogonid larvae
dipteran, Chaoborus punctipennis larvae
dipterans, chironomid larvae
dipterans, sciomyzid larvae
trichopteran larvae

pycnogonids

Limulus polyphemus larvae

acari

gastropods, prosobranch
gastropods, opisthobranch
pelecypods

ophiopluteus larvae

ophiuroidean juveniles

brachiopod, Glottidia pyramidata larvae
chaetognaths, sagittid

ascidiacean larvae
appendicularian, Oikopleura dioica
Branchiostoma floridae

Elops saurus postflexion larvae
Elops saurus juveniles

Myrophis punctatus postflexion larvae
Myrophis punctatus metamorphs
Myrophis punctatus juveniles
clupeid eggs

clupeid preflexion larvae
Brevoortia spp. flexion larvae
Brevoortia spp. postflexion larvae
Brevoortia spp. metamorphs
Harengula jaguana postflexion larvae
Harengula jaguana metamorphs
Opisthonema oglinum juveniles
Anchoa spp. preflexion larvae
Anchoa spp. flexion larvae
Anchoa spp. juveniles

Anchoa hepsetus eggs

Anchoa mitchilli eggs

Anchoa mitchilli postflexion larvae
Anchoa mitchilli juveniles

Anchoa mitchilli adults
Notemigonus crysoleucas flexion larvae
Synodus foetens juveniles
Gobiesox strumosus preflexion larvae
Gobiesox strumosus flexion larvae
Lucania parva postflexion larvae
Lucania parva adults

Gambusia holbrooki juveniles
Heterandria formosa juveniles
Menidia spp. eggs

Menidia spp. preflexion larvae
Menidia spp. flexion larvae
Menidia spp. postflexion larvae

Table A1, page 3 of 5.

Common Name

dragonflies
damselflies

water boatmen
water striders
beetles

riffle beetles

riffle beetles
whirligig beetles
predaceous diving beetles
flies, mosquitoes
biting midges
phantom midge
midges

marsh flies
caddisflies

sea spiders
horsehoe crab
water mites

snails

sea slugs

clams, mussels, oysters
brittlestars
brittlestars

lamp shell

arrow worms
tunicate larvae
larvacean

lancelet

ladyfish

ladyfish

speckled worm eel
speckled worm eel
speckled worm eel
herrings

herrings
menhaden
menhaden
menhaden

scaled sardine
scaled sardine
Atlantic thread herring
anchovies
anchovies
anchovies

striped anchovy
bay anchovy

bay anchovy

bay anchovy

bay anchovy
golden shiner
inshore lizardfish
skilletfish
skilletfish
rainwater killifish
rainwater killifish
eastern mosquitofish
least killifish
silversides
silversides
silversides
silversides

A-4

Organisms are listed in phylogenetic order.

Number  Collection
Collected Frequency

1 1

9 4

1 1

2 1

1 1

2 1

6 2

2 1

1 1
393 32
4 3
105 18
425 43
1 1
22 8
534 16
116 17
36 12
1,066 80
120 39
881 67
12 2
10 5
18 6
9,752 95
2 2
9,055 33
2 1
28 15
1 1
21 2
2 2

8 4
14 4
20 3
2 1
42 13
8 7
96 5
1 1

1 1
133 25
103 15
1 1

1 1
465 13
92 27
1,246 68
101 39
1 1

3 3
138 39
15 6
1 1

1 1

2 1

1 1

1 1
149 39
8 5

1 1
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Kmu
(km)

151
12.0
13.3
151
151
15.1
1.2
151

6.0
13.6
13.3
111
13.4
151
14.2

Su Mean CPUE Max CPUE
(psu) (No./10°*m?3) (No./10°* m?)

0.09
0.82
0.09
0.20
0.10
0.18
0.53
0.18
0.10
35.27
0.35
9.16
38.49
0.09
1.99
50.41
11.38
3.24
103.59
11.08
84.01
1.07
1.00
1.77
922.84
0.18
890.56
0.21
2.51
0.10
1.70
0.17
0.70
1.23
1.82
0.16
3.74
0.72
8.22
0.09
0.10
12.16
9.32
0.10
0.08
41.03
8.62
113.03
9.12
0.09
0.26
12.41
1.37
0.10
0.09
0.18
0.09
0.09
12.90
0.71
0.09

12.38
49.48
12.66
28.90
14.10
26.45
49.83
25.44
14.38
804.96
24.74
298.96
1005.08
13.22
72.26
3308.33
576.74
193.52
3599.00
311.46
3918.66
109.23
53.72
59.40
18088.49
14.46
36804.95
29.70
79.11
13.85
219.56
12.67
51.37
74.80
192.92
23.11
103.48
25.18
547.24
12.73
14.85
356.77
24433
14.09
11.74
4864.68
190.35
2470.17
149.86
13.35
14.64
231.78
91.91
14.99
12.73
25.31
12.72
13.54
320.41
26.70
13.51



Plankton-net catch statistics (October 2004 through September 2005, n=144 samples)

Table A1, page 4 of 5.

Organisms are listed in phylogenetic order.

Taxon

Menidia spp. juveniles

Menidia spp. adults

Membras martinica preflexion larvae
fish eggs, percomorph

Hippocampus erectus juveniles
Hippocampus erectus adults
Hippocampus zosterae juveniles
Syngnathus floridae juveniles
Syngnathus floridae adults
Syngnathus louisianae juveniles
Syngnathus scovelli juveniles
Prionotus spp. preflexion larvae
Prionotus tribulus juveniles

Lepomis spp. flexion larvae
Oligoplites saurus preflexion larvae
Oligoplites saurus flexion larvae
Oligoplites saurus postflexion larvae
Oligoplites saurus juveniles

gerreid preflexion larvae
Eucinostomus spp. postflexion larvae
Eucinostomus spp. juveniles
Orthopristis chrysoptera flexion larvae
Orthopristis chrysoptera postflexion larvae
Orthopristis chrysoptera juveniles

Archosargus probatocephalus postflexion larv:

Lagodon rhomboides postflexion larvae
Lagodon rhomboides juveniles
Bairdiella chrysoura flexion larvae
Cynoscion arenarius preflexion larvae
Cynoscion nebulosus preflexion larvae
Cynoscion nebulosus juveniles
Leiostomus xanthurus postflexion larvae
Leiostomus xanthurus juveniles
Menticirrhus spp. preflexion larvae
Menticirrhus spp. flexion larvae
Menticirrhus spp. postflexion larvae
Sciaenops ocellatus flexion larvae
Sciaenops ocellatus postflexion larvae
Mugil cephalus juveniles

Mugil curema juveniles

blenniid preflexion larvae
Hypsoblennius spp. postflexion larvae
gobiid preflexion larvae

gobiid flexion larvae

gobiid postflexion larvae

Bathygobius soporator preflexion larvae
Bathygobius soporator flexion larvae
Gobionellus spp. postflexion larvae
Gobionellus oceanicus juveniles
Gobiosoma spp. postflexion larvae
Gobiosoma bosc juveniles

Gobiosoma robustum juveniles
Microgobius spp. flexion larvae
Microgobius spp. postflexion larvae
Microgobius spp. juveniles
Microgobius gulosus juveniles
Paralichthys spp. juveniles

Achirus lineatus preflexion larvae
Achirus lineatus flexion larvae

Achirus lineatus postflexion larvae
Trinectes maculatus preflexion larvae

Common Name Number

Collection

Collected Frequency

silversides

silversides

rough silverside
sciaenid eggs (primarily)
lined seahorse

lined seahorse

19,99

sand seatrout
spotted seatrout
spotted seatrout

6

1

7

5

1

1
dwarf seahorse 1
dusky pipefish 7
dusky pipefish 1
chain pipefish 3
gulf pipefish 15
searobins 1
bighead searobin 2
sunfishes 1
leatherjack 3
leatherjack 1
leatherjack 1
leatherjack 1
mojjaras 2
mojarras 29
mojarras 43
pigfish 1
pigfish 1
pigfish 3
sheepshead 2
pinfish 14
pinfish 102
silver perch 1

3

1

1
spot 3
spot 241
kingfishes 72
kingfishes 11
kingfishes 5
red drum 2
red drum 4
striped mullet 4
white mullet 2
blennies 82
blennies 1
gobies 1,249
gobies 382
gobies 6
frillfin goby 7
frillfin goby 1
gobies 2
highfin goby 1
gobies 361
naked goby 2
code goby 2
gobies 352
gobies 222
gobies 20
clown goby 21
flounders 15
lined sole 70
lined sole 8
lined sole 4
hogchoker 28

A-5
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14.5
15.1
3.0
0.8
-1.0
-1.8
-1.8
27
-1.8
-1.8
2.9

Su Mean CPUE Max CPUE
(psu) (No./10°*m?3) (No./10°* m?)

1.5

4.0
24.4
26.8
29.8
253
25.3
23.4
33.0
30.1
22.5
32.6
17.5

0.1
25.0
21.5
27.0
10.6
20.0
22.0
10.7
19.8
27.0
21.9
27.0
26.7
21.0
21.5
28.1
33.0

1.4
16.1
15.3
28.0
255
1.3
14.0
125
12.6
23.6
25.7
32.2
14.1
21.8
18.7
23.8
23.6
21.4

5.2
21.2
141
13.0
17.0
124
20.0

5.9
21.4
28.3
27.4
27.0
26.8

0.55
0.10
0.54
1854.32
0.10
0.12
0.12
0.66
0.10
0.43
1.49
0.09
0.19
0.09
0.25
0.08
0.10
0.09
0.20
2.82
417
0.09
0.09
0.24
0.17
1.39
9.10
0.08
0.25
0.10
0.09
0.27
21.57
6.46
0.95
0.47
0.20
0.36
0.34
0.19
7.24
0.10
113.03
34.97
0.62
0.63
0.09
0.18
0.09
32.91
0.20
0.20
32.44
20.55
2.04
1.88
1.30
6.06
0.73
0.35
2.52

26.59
13.72
24.70
47274.78
15.07
16.66
16.66
28.92
14.46
62.38
73.44
13.54
13.54
13.30
23.27
11.63
14.29
12.95
29.38
144.19
164.29
13.19
12.47
34.67
24.93
92.88
323.57
11.63
24.70
14.46
13.35
13.19
843.48
251.42
35.68
29.28
28.29
25.27
12.93
27.62
165.23
14.30
1083.96
503.85
59.40
25.20
12.60
13.54
12.64
773.01
28.18
14.18
652.99
493.12
293.76
91.13
64.67
321.10
28.23
24.22
107.03



Plankton-net catch statistics (October 2004 through September 2005, n=144 samples)

Taxon

Trinectes maculatus flexion larvae
Trinectes maculatus postflexion larvae
Trinectes maculatus juveniles
Stephanolepis hispidus juveniles
Chilomycterus schoepfii juveniles
unidentified preflexion larvae

Table A1, page 5 of 5.

Organisms are listed in phylogenetic order.

Common Name

hogchoker
hogchoker
hogchoker

Number

Collection

Collected Frequency

planehead filefish
striped burrfish

fish
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NN
N-=_wWwhrow

A wNNW®

Kmu
(km)

1.0
4.9
1.8
-0.6
6.0
-1.0

Su Mean CPUE Max CPUE
(psu) (No./10°*m?3) (No./10°* m?)

247
13.7

7.2
30.2
20.0
32.6

0.52
1.42
1.34
0.36
0.09
0.19

35.81
99.26
82.34
20.79
13.68
27.08
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Table B1, page 1 of 2.

Seine catch statistics (October 2004 through September 2005, n=144).

Taxon

Farfantepenaeus duorarum
Palaemonetes intermedius
Palaemonetes paludosus
Palaemonetes pugio
Palaemon floridanus
Alpheus spp.

Tozeuma carolinense
Ambidexter symmetricus
Callinectes sapidus
Rhinoptera bonasus
Amia calva

Elops saurus

Brevoortia spp.
Harengula jaguana
Anchoa hepsetus
Anchoa mitchilli
Synodus foetens
Notropis petersoni
Loricariidae spp.
Opsanus beta
Hyporhamphus unifasciatus
Hyporhamphus meeki
Strongylura spp.
Strongylura marina
Strongylura notata
Strongylura timucu
Cyprinodon variegatus
Fundulus confluentus
Fundulus similis
Fundulus grandis
Lucania parva

Lucania goodei
Floridichthys carpio
Gambusia holbrooki
Poecilia latipinna
Menidia spp.
Labidesthes sicculus
Syngnathus floridae
Syngnathus louisianae
Syngnathus scovelli
Prionotus tribulus
Centropomus undecimalis
Lepomis spp.

Lepomis auritus
Lepomis gulosus
Lepomis macrochirus
Lepomis marginatus
Lepomis microlophus
Lepomis punctatus
Micropterus salmoides
Etheostoma fusiforme
Caranx hippos

Organisms are listed in phylogenetic order.

Common Name

Pink shrimp

Brackish grass shrimp
Riverine grass shrimp
Daggerblade grass shrimp
Florida grass shrimp
Snapping shrimp
Arrow shrimp

Night shrimp

Blue crab

Cownose ray

Bowfin

Ladyfish

Menhadens

Scaled sardine
Striped anchovy

Bay anchovy
Inshore lizardfish
Coastal shiner
Suckermouth catfish
Gulf toadfish
Silverstripe halfbeak
False silverstripe halfbeak
Needlefishes
Atlantic needlefish
Redfin needlefish
Timucu

Sheepshead minnow
Marsh killifish
Striped killifish

Gulf killifish
Rainwater Kkillifish
Bluefin killifish
Goldspotted killifish
Eastern mosquitofish
Sailfin molly
Silversides

Brook silverside
Dusky pipefish
Chain pipefish

Gulf pipefish
Bighead searobin
Common snook
Sunfishes

Redbreast sunfish
Warmouth

Bluegill

Dollar sunfish
Redear sunfish
Spotted sunfish
Largemouth bass
Swamp darter
Crevalle jack

Number
Collected
80
1268

3
4101

5919

836

W= A

294
1044
777
143
3422
210

N~NOOo O
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Collection
Frequency

23
27

1
32

N = [©)]

.J;.poooog_\m_\_x_\_xmc)@_x_\@_\@_\m_\_;_\_;

A
DO O,

AW
oo aNN B

ANOANDRaAaANARMIWa

km

4.405
2.551
2.49
13.41
0.06
3.32
-0.77
0.8
5.18
1.09
15.74
10.39
5.449
2.68
1.73
5.058
5.178
15.72
13.22
10.39
-0.96
-1.68
1.833
4.55
2474
2.637
1.072
11.77
3.631
4124
2.419
15.98
1.204
15.71
11.94
7.925
14.95
8.02
3.96
3.931
4.038
5.586
15.37
16.09
16.09
14.81
15.38
15.78
16.09
14.18
15.19
13.69

Su

18.1
21.9
241
4.35
27.9
24.2
25
22.6
18.3
31.1
0.96
0.3
16.5
21.8
24.5
18.6
21.6
0.78
0.1
0.3
32.5
32.6
26.8
27.4
23.8
23.3
26.5
7.95
22.2
16.9
19.9
0.32
241
1.04
9.13
15.8
1.96
22.3
16.9
19.1
19.9
17.9
0.19
0.3
0.3
1.39
0.36
0.25
0.3
2.02
1.02
5.75

Mean CPUE Max CPUE
(km) (psu) (No./100m?) (No./100m?)

0.82
12.95
0.03
41.88
0.02
0.01
0.02
0.01
2.72
0.01
0.04
0.02
0.41
0.01
0.16
60.45
0.35
8.54
0.01
0.01
0.01
0.01
0.03
0.01
2.02
0.11
0.55
0.04
0.10
0.66
0.89
3.00
10.66
7.94
1.46
34.95
2.14
0.01
0.05
0.41
0.06
0.05
0.07
0.02
0.02
1.57
0.18
0.11
0.02
0.15
0.03
0.01

26.47
727.94
4.41
1702.94
2.94
1.47
2.94
1.47
66.18
1.47
2.94
2.94
55.88
1.47
23.53
5748.53
4.41
732.35
1.47
1.47
1.47
1.47
2.94
1.47
30.88
4.41
29.41
1.47
8.82
29.41
26.47
354.41
332.35
486.76
101.47
439.71
77.94
1.47
4.41
26.47
2.94
2.94
5.88
2.94
2.94
75.00
13.24
13.24
2.94
4.41
2.94
1.47



Table B1, page 2 of 2.

Seine catch statistics (October 2004 through September 2005, n=144).

Taxon

Caranx latus

Oligoplites saurus
Trachinotus falcatus
Lutjanus griseus
Eucinostomus spp.
Eucinostomus gula
Eucinostomus harengulus
Eugerres plumieri
Haemulon plumieri
Orthopristis chrysoptera
Lagodon rhomboides

Archosargus probatocephalus

Diplodus holbrooki
Cynoscion nebulosus
Bairdiella chrysoura
Leiostomus xanthurus
Menticirrhus saxatilis
Sciaenops ocellatus
Cichlasoma spp.
Tilapia spp.

Tilapia melanotheron
Mugil cephalus

Mugil curema

Mugil gyrans
Sphyraena borealis
Sphyraena barracuda
Astroscopus y-graecum
Ctenogobius boleosoma
Ctenogobius smaragdus
Gobiosoma spp.
Gobiosoma bosc
Gobiosoma robustum
Gobiosoma longipala
Microgobius gulosus
Paralichthys albigutta
Trinectes maculatus
Achirus lineatus
Stephanolepis hispidus
Sphoeroides nephelus

Organisms are listed in phylogenetic order.

Common Name

Horse-eye jack
Leatherjack

Permit

Gray snapper
Eucinostomus mojarras
Silver jenny
Tidewater mojarra
Striped mojarra
White grunt

Pigfish

Pinfish
Sheepshead
Spottail pinfish
Spotted seatrout
Silver perch

Spot

Northern kingfish
Red drum
Cichlasoma cichlids
Tilapias

Blackchin tilapia
Striped mullet
White mullet
Whirligig mullet
Northern sennet
Great barracuda
Southern stargazer
Darter goby
Emerald goby
Gobiosoma gobies
Naked goby

Code goby
Twoscale goby
Clown goby

Gulf flounder
Hogchoker

Lined sole
Planehead filefish
Southern puffer
Unidentified species

Number

Collection

Collected Frequency

B-3

1
27

7

4
4458
1453
1453
23

40
11463

18

12
316
26259
10

13
1747

42

SR
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1
15
4
2
85
62

~

w

_

w
NR2ANOO A2 aaOwWoOaANaINaA® 2O

N = N
O NOW

1

km

10.09
3.515
3.317
4.243
8.484
3.012
8.01
12.77
-1.69
3.34
4.431
8.528
-1.16
4.818
2.14
5.641
1.7
7.346
11.45
13.57
13.69
14.11
6.09
3.201
4.02
3.07
2.35
2.77
1.84
11.8
11.59
2.89
-0.08
12.2
3.254
13.84
5.314
7.308
2.376
5.34

Su

10.8
235
22.2
11.9
12.9
23.3
16.8
4.94
31.7
27.2
21.6
12.6
30.4
14.2
17
17.6
245
14.6
8.8
0.53
5.75
3.87
13.6
22
30.8
18.4
255
31.7
271
4.06
7.6
17.6
28.3
4.67
231
3.73
17.6
8.83
23.2
211

Mean CPUE Max CPUE
(km) (psu) (No./100m?) (No./100m?)

0.01
0.28
0.07
0.04
45.53
14.84
14.84
0.23
0.01
0.41
117.06
0.08
0.18
0.12
3.23
268.17
0.01
0.10
0.13
0.02
0.01
17.84
0.06
0.43
0.06
0.01
0.01
0.02
0.01
0.18
0.43
0.02
0.01
1.40
0.09
0.94
0.12
0.04
0.93
0.01

1.47
7.35
5.88
4.41
416.18
185.29
173.53
11.76
1.47
38.24
2979.41
2.94
8.82
8.82
464.71
6458.82
1.47
4.41
19.12
1.47
1.47
920.59
4.41
35.29
8.82
1.47
1.47
2.94
1.47
11.76
11.76
1.47
1.47
61.76
2.94
14.71
4.41
4.41
19.12
1.47



Table B2, page 1 of 2.
Trawl catch statistics (October 2004 through September 2005, n=72).

Organisms are listed in phylogenetic order.

Number Collection kmy Sy Mean CPUE Max CPUE

Taxon Common Name Collected Frequency (km) (psu) (No./100m?) (No./100m?)
Farfantepenaeus duorarum Pink shrimp 210 19 3.406 22.1 0.40 11.60
Palaemonetes intermedius Brackish grass shrimp 379 7 0468 29 0.88 59.87
Palaemonetes pugio Daggerblade grass shrimp 8 2 15.02 043 0.02 1.08
Periclimenes longicaudatus Longtail grass shrimp 107 3 -1.37 29 0.20 8.36
Palaemon floridanus Florida grass shrimp 4 2 -1.47 281 0.01 0.40
Alpheus spp. Snapping shrimp 1 1 0.37 29.2 0.00 0.17
Hippolyte zostericola Zostera shrimp 15 4 -13 289 0.03 0.94
Lysmata wurdemanni Peppermint shrimp 1 1 -1.24 289 0.00 0.13
Lysmata rathbunae Rathbun cleaner shrimp 1 1 157 29 0.00 0.13
Tozeuma carolinense Arrow shrimp 872 6 -15 29 1.64 102.27
Thor dobkini Squat grass shrimp 6 1 157 29 0.01 0.81
Callinectes sapidus Blue crab 107 7 3.805 22.5 0.21 1.72
Callinectes ornatus Shelligs 1 1 513 44 0.00 0.15
Dasyatis sabina Atlantic stingray 7 7 5157 215 0.01 0.17
Dasyatis say Bluntnose stingray 2 2 2457 23 0.00 0.15
Lepisosteus osseus Longnose gar 4 3 1091 94 0.01 0.27
Amia calva Bowfin 1 11487 03 0.00 0.15
Elops saurus Ladyfish 1 11511 05 0.00 0.27
Anchoa mitchilli Bay anchovy 888 3 12.68 5.93 213 75.33
Synodus foetens Inshore lizardfish 36 2 4855 21.6 0.07 0.75
Ariopsis felis Hardhead catfish 8 3 3.841 17.6 0.02 0.54
Opsanus beta Gulf toadfish 15 5 -1.28 271 0.04 2.02
Gobiesox strumosus Skilletfish 1 1 5.02 226 0.00 0.13
Ogcocephalus radiatus Polka-dot batfish 1 1 -1.44 30.6 0.00 0.13
Urophycis floridana Southern hake 3 2 -045 276 0.01 0.27
Lucania parva Rainwater killifish 119 4 125 26.6 0.36 25.18
Menidia spp. Silversides 1 1 -1.04 26.2 0.00 0.13
Labidesthes sicculus Brook silverside 1 1 13.54 3.13 0.00 0.15
Syngnathus floridae Dusky pipefish 41 9 -0.88 279 0.08 1.89
Syngnathus louisianae Chain pipefish 6 3 3.317 245 0.01 0.40
Syngnathus scovelli Gulf pipefish 14 8 1.587 279 0.03 0.67
Hippocampus erectus Lined seahorse 1 1 1.09 275 0.00 0.13
Scorpaena brasiliensis Barbfish 8 3 -1.36 28.3 0.02 0.54
Prionotus scitulus Leopard searobin 14 8 1525 27 0.03 0.49
Prionotus tribulus Bighead searobin 13 7 7.654 191 0.03 0.75
Serranidae spp. Sea basses 1 1 -1.54 253 0.00 0.15
Centropristis striata Black sea bass 22 5 -139 28 0.05 1.21
Diplectrum formosum Sand perch 3 1 129 28 0.01 0.51
Lepomis macrochirus Bluegill 14 4 14.85 0.54 0.03 1.35
Lepomis marginatus Dollar sunfish 1 11487 03 0.00 0.15
Micropterus salmoides Largemouth bass 7 2 14.82 0.39 0.01 0.60
Lutjanus griseus Gray snhapper 9 8 0.059 24 0.02 0.30
Lutjanus synagris Lane snapper 8 4 1175 25.6 0.01 0.40
Ocyurus chrysurus Yellowtail snapper 7 1 037 29.2 0.02 1.18
Eucinostomus spp. Eucinostomus mojarras 849 8 8.651 12.3 1.69 51.42
Eucinostomus gula Silver jenny 172 4 0.096 28.5 0.34 11.54
Eucinostomus harengulus Tidewater mojarra 33 6 125 4.09 0.07 3.75
Diapterus plumieri Striped mojarra 3 11487 03 0.01 0.45
Haemulon plumieri White grunt 33 6 -13 274 0.07 2.16
Orthopristis chrysoptera Pigfish 50 7 -095 274 0.10 2.70
Lagodon rhomboides Pinfish 2788 28 0.492 26.1 5.79 84.70
Archosargus probatocephalus Sheepshead 48 13 4.078 21.3 0.09 2.02
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Table B2, page 2 of 2.

Trawl catch statistics (October 2004 through September 2005, n=72).

Taxon

Diplodus holbrooki
Calamus arctifrons
Cynoscion nebulosus
Bairdiella chrysoura
Leiostomus xanthurus
Menticirrhus americanus
Menticirrhus saxatilis
Pogonias cromis
Sciaenops ocellatus
Chaetodipterus faber
Sphyraena barracuda
Lachnolaimus maximus
Nicholsina usta
Paraclinus fasciatus
Gobiosoma spp.
Gobiosoma bosc
Gobiosoma robustum
Microgobius gulosus
Paralichthys albigutta
Ancylopsetta quadrocellata
Trinectes maculatus
Achirus lineatus
Symphurus plagiusa
Monacanthidae spp.
Aluterus schoepfii
Monacanthus ciliatus
Stephanolepis hispidus
Acanthostracion quadricornis
Sphoeroides nephelus
Chilomycterus schoepfii

Organisms are listed in phylogenetic order.

Common Name

Spottail pinfish
Grass porgy
Spotted seatrout
Silver perch

Spot

Southern kingfish
Northern kingfish
Black drum

Red drum

Atlantic spadefish
Great barracuda
Hogfish

Emerald parrotfish
Banded blenny
Gobiosoma gobies
Naked goby

Code goby

Clown goby

Gulf flounder
Ocellated flounder
Hogchoker

Lined sole

Blackcheek tonguefish

Filefishes
Orange filefish
Fringed filefish
Planehead filefish
Scrawled cowfish
Southern puffer
Striped burrfish

Number

16

2

16
28
2354
13

-

NOO—_20W-=_NON
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Collection

RN

_

= N

Collected Frequency

W_2BDBDDPRW_2200IOO2ANWW_LAW_L,OA_2=2DNNNDNN_2BAARANO 2 W

kmy Sy Mean CPUE Max CPUE
(km) (psu) (No./100m?) (No./100m?)

-1.38 26.2 0.04 1.80
231 241 0.00 0.27
3.372 18.1 0.03 0.94
-1.12 26 0.06 2.25
6.821 16.6 5.08 142.26
4978 20.3 0.03 0.81
6.4 23.9 0.00 0.13
462 122 0.00 0.13
10.14 6.15 0.02 0.94
1.265 24.2 0.00 0.13
-1.54 253 0.00 0.15
-1.54 253 0.01 0.45
-1.02 28.4 0.02 0.54
-1.29 26.5 0.00 0.22
0.647 24.9 0.01 0.67
14.76 0.5 0.00 0.30
-0.49 27.6 0.03 1.35
11.92 7.03 0.07 1.95
1.801 27 0.06 0.51
-0.09 28.6 0.00 0.13
10.83 7.32 0.06 2.25
1.104 26.4 0.01 0.25
2.318 22.5 0.04 0.67
-1.54 253 0.01 1.05
-0.94 324 0.00 0.15
-1.44 26.1 0.02 0.75
-0.68 27.2 0.06 2.02
-1.12 277 0.01 0.30
24 246 0.15 1.21
-0.21 28.3 0.06 1.08
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Taxon

Farfantepenaeus duorarum
Palaemonetes intermedius
Palaemonetes paludosus
Palaemonetes pugio
Palaemon floridanus
Alpheus spp.

Tozeuma carolinense
Ambidexter symmetricus
Callinectes sapidus
Rhinoptera bonasus
Amia calva

Elops saurus

Brevoortia spp.
Harengula jaguana
Anchoa hepsetus
Anchoa mitchilli

Synodus foetens
Notropis petersoni
Loricariidae spp.
Opsanus beta
Hyporhamphus unifasciatus
Hyporhamphus meeki
Strongylura spp.
Strongylura marina
Strongylura notata
Strongylura timucu
Cyprinodon variegatus
Fundulus confluentus
Fundulus similis
Fundulus grandis
Lucania parva

Lucania goodei
Floridichthys carpio
Gambusia holbrooki
Poecilia latipinna
Menidia spp.
Labidesthes sicculus
Syngnathus floridae
Syngnathus louisianae
Syngnathus scovelli
Prionotus tribulus
Centropomus undecimalis
Lepomis spp.

Lepomis auritus

Lepomis gulosus
Lepomis macrochirus
Lepomis marginatus
Lepomis microlophus
Lepomis punctatus
Micropterus salmoides
Etheostoma fusiforme
Caranx hippos

Caranx latus

Oligoplites saurus
Trachinotus falcatus
Lutjanus griseus
Eucinostomus spp.
Eucinostomus gula
Eucinostomus harengulus

Table B5, page 1 of 2. Location-specific seine catch.

Data are presented as mean number per 100m?.

Organisms are listed in phylogenetic order.

Common Name

Pink shrimp

Brackish grass shrimp
Riverine grass shrimp
Daggerblade grass shrimp
Florida grass shrimp
Snapping shrimp
Arrow shrimp

Night shrimp

Blue crab

Cownose ray

Bowfin

Ladyfish

Menhadens

Scaled sardine
Striped anchovy

Bay anchovy

Inshore lizardfish
Coastal shiner
Suckermouth catfish
Gulf toadfish
Silverstripe halfbeak
False silverstripe halfbeak
Needlefishes
Atlantic needlefish
Redfin needlefish
Timucu

Sheepshead minnow
Marsh killifish
Striped killifish

Gulf killifish
Rainwater killifish
Bluefin Killifish
Goldspotted killifish
Eastern mosquitofish
Sailfin molly
Silversides

Brook silverside
Dusky pipefish

Chain pipefish

Gulf pipefish
Bighead searobin
Common snook
Sunfishes

Redbreast sunfish
Warmouth

Bluegill

Dollar sunfish
Redear sunfish
Spotted sunfish
Largemouth bass
Swamp darter
Crevalle jack
Horse-eye jack
Leatherjack

Permit

Gray snapper
Eucinostomus mojarras
Silver jenny
Tidewater mojarra

Location (km from mouth)

-1.8-0.0 0.0-24 2.4-5.4
0.368 1.042 1.838
7.966 4779 63.664
0.000 0.000 0.184
0.000 0.061 0.000
0.000 0.123 0.000
0.000 0.000 0.061
0.123 0.000 0.000
0.000 0.061 0.000
0.551 5.821 4.228
0.000 0.061 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.061 2.328
0.000 0.000 0.061
0.000 0.980 0.000
0.000 66.176 242.463
0.245 0.184 0.797
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.061 0.000 0.000
0.061 0.000 0.000
0.000 0.184 0.000
0.000 0.000 0.061
4.105 2.145 3.431
0.061 0.368 0.184
2.206 0.797 0.000
0.000 0.000 0.000
0.000 0.123 0.490
1.225 0.797 0.551
2.512 1.838 0.123
0.000 0.000 0.000

24.510 21.140 18.260
0.000 0.000 0.000
0.000 0.061 0.000
0.858 39.767 22.488
0.000 0.000 0.000
0.000 0.000 0.000
0.061 0.000 0.184
0.123 1.409 0.368
0.000 0.000 0.306
0.123 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.061 0.735 0.490
0.000 0.306 0.061
0.061 0.000 0.000

16.789 25.735 46.385
6.740 26.532 49.755
0.000 7.047 25.000
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5.4-9.8

1.287
1.287
0.000
0.674
0.000
0.000
0.000
0.000
1.287
0.000
0.000
0.000
0.000
0.000
0.000
45.772
0.551
0.000
0.000
0.000
0.000
0.000
0.000
0.000
2.206
0.061
0.061
0.000
0.000
0.429
0.000
0.000
0.061
0.000
0.061
59.130
0.000
0.061
0.000
0.123
0.061
0.061
0.000
0.000
0.000
0.061
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.245
0.061
0.184
24.755
5.944
22.120

9.8-13.2

0.368
0.000
0.000
118.260
0.000
0.000
0.000
0.000
3.309
0.000
0.000
0.123
0.000
0.000
0.000
5.760
0.306
0.000
0.000
0.061
0.000
0.000
0.000
0.000
0.245
0.000
0.245
0.184
0.000
0.919
0.858
0.061
0.000
0.061
6.066
51.961
0.000
0.000
0.061
0.429
0.000
0.123
0.000
0.000
0.000
0.306
0.000
0.000
0.000
0.184
0.000
0.000
0.061
0.123
0.000
0.000
103.983
0.061
22.733

13.2-16.1

0.000
0.000
0.000
132.292
0.000
0.000
0.000
0.000
1.103
0.000
0.245
0.000
0.061
0.000
0.000
2.512
0.000
51.225
0.061
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.061
0.000
0.061
0.000
17.953
0.000
47.549
2.574
35.478
12.868
0.000
0.000
0.000
0.000
0.000
0.429
0.123
0.123
9.069
1.103
0.674
0.123
0.735
0.184
0.061
0.000
0.000
0.000
0.000
55.515
0.000
12.132



Taxon

Eugerres plumieri
Haemulon plumieri
Orthopristis chrysoptera
Lagodon rhomboides

Archosargus probatocephalus

Diplodus holbrooki
Cynoscion nebulosus
Bairdiella chrysoura
Leiostomus xanthurus
Menticirrhus saxatilis
Sciaenops ocellatus
Cichlasoma spp.
Tilapia spp.

Tilapia melanotheron
Mugil cephalus

Mugil curema

Mugil gyrans
Sphyraena borealis
Sphyraena barracuda
Astroscopus y-graecum
Ctenogobius boleosoma
Ctenogobius smaragdus
Gobiosoma spp.
Gobiosoma bosc
Gobiosoma robustum
Gobiosoma longipala
Microgobius gulosus
Paralichthys albigutta
Trinectes maculatus
Achirus lineatus
Stephanolepis hispidus
Sphoeroides nephelus

Table B5, page 2 of 2. Location-specific seine catch.

Data are presented as mean number per 100m?.

Organisms are listed in phylogenetic order.

Common Name

Striped mojarra
White grunt
Pigfish

Pinfish
Sheepshead
Spottail pinfish
Spotted seatrout
Silver perch

Spot

Northern kingfish
Red drum
Cichlasoma cichlids
Tilapias

Blackchin tilapia
Striped mullet
White mullet
Whirligig mullet
Northern sennet
Great barracuda
Southern stargazer
Darter goby
Emerald goby
Gobiosoma gobies
Naked goby

Code goby
Twoscale goby
Clown goby

Gulf flounder
Hogchoker

Lined sole
Planehead filefish
Southern puffer
Unidentified species

Location (km from mouth)

-1.8-0.0 0.0-24
0.000 0.000
0.061 0.000
0.000 0.797

89.093 80.699
0.000 0.061
1.103 0.000
0.000 0.123
0.000 19.363

173.591 415.931
0.000 0.061
0.184 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.797 0.061
0.000 0.061
0.306 0.368
0.000 0.000
0.000 0.000
0.000 0.061
0.000 0.000
0.000 0.061
0.000 0.000
0.000 0.061
0.000 0.000
0.061 0.000
0.000 0.123
0.000 0.245
0.000 0.000
0.000 0.061
0.000 0.061
0.490 3.064
0.000 0.000
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24-54

0.000
0.000
1.654
367.279
0.000
0.000
0.368
0.000
295.956
0.000
0.000
0.000
0.000
0.000
4.718
0.000
1.593
0.368
0.061
0.000
0.123
0.000
0.123
0.245
0.123
0.000
0.245
0.184
0.000
0.368
0.000
1.532
0.061

5.4-9.8

0.184
0.000
0.000
73.407
0.245
0.000
0.184
0.000
112.316
0.000
0.000
0.000
0.000
0.000
0.490
0.306
0.184
0.000
0.000
0.000
0.000
0.000
0.123
0.306
0.000
0.000
0.368
0.123
0.123
0.245
0.184
0.306
0.000

9.8-13.2

0.490
0.000
0.000
89.461
0.184
0.000
0.061
0.000
541.238
0.000
0.368
0.797
0.061
0.000
16.912
0.000
0.123
0.000
0.000
0.000
0.000
0.000
0.123
0.858
0.000
0.000
4.841
0.000
1.348
0.061
0.000
0.184
0.000

13.2-16.1

0.735
0.000
0.000
2.451
0.000
0.000
0.000
0.000
69.975
0.000
0.061
0.000
0.061
0.061
84.069
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.735
1.103
0.000
0.000
2.819
0.000
4.167
0.000
0.000
0.000
0.000



Taxon

Farfantepenaeus duorarum
Palaemonetes intermedius
Palaemonetes pugio
Periclimenes longicaudatus
Palaemon floridanus
Alpheus spp.

Hippolyte zostericola
Lysmata wurdemanni
Lysmata rathbunae
Tozeuma carolinense
Thor dobkini

Callinectes sapidus
Callinectes ornatus
Dasyatis sabina
Dasyatis say
Lepisosteus osseus
Amia calva

Elops saurus

Anchoa mitchilli
Synodus foetens
Ariopsis felis

Opsanus beta

Gobiesox strumosus
Ogcocephalus radiatus
Urophycis floridana
Lucania parva

Menidia spp.
Labidesthes sicculus
Syngnathus floridae
Syngnathus louisianae
Syngnathus scovelli
Hippocampus erectus
Scorpaena brasiliensis
Prionotus scitulus
Prionotus tribulus
Serranidae spp.
Centropristis striata
Diplectrum formosum
Lepomis macrochirus
Lepomis marginatus
Micropterus salmoides
Lutjanus griseus
Lutjanus synagris
Ocyurus chrysurus
Eucinostomus spp.
Eucinostomus gula
Eucinostomus harengulus
Diapterus plumieri
Haemulon plumieri
Orthopristis chrysoptera
Lagodon rhomboides
Archosargus probatocephalus
Diplodus holbrooki
Calamus arctifrons
Cynoscion nebulosus
Bairdiella chrysoura
Leiostomus xanthurus
Menticirrhus americanus
Menticirrhus saxatilis

Table B6, page 1 of 2. Location-specific trawl catch.

Data are presented as mean number per 100m?.

Organisms are listed in phylogenetic order.

Location (km from mouth)

Common Name -1.8-0.0 0.0-2.4
Pink shrimp 0.166 0.390
Brackish grass shrimp 0.012 5.124
Daggerblade grass shrimp 0.000 0.000
Longtail grass shrimp 1.209 0.000
Florida grass shrimp 0.052 0.000
Snapping shrimp 0.000 0.014
Zostera shrimp 0.179 0.011
Peppermint shrimp 0.011 0.000
Rathbun cleaner shrimp 0.011 0.000
Arrow shrimp 9.730 0.112
Squat grass shrimp 0.067 0.000
Blue crab 0.120 0.263
Shelligs 0.000 0.000
Atlantic stingray 0.011 0.014
Bluntnose stingray 0.000 0.011
Longnose gar 0.000 0.000
Bowfin 0.000 0.000
Ladyfish 0.000 0.000
Bay anchovy 0.000 0.090
Inshore lizardfish 0.037 0.079
Hardhead catfish 0.000 0.045
Gulf toadfish 0.244 0.000
Skilletfish 0.000 0.000
Polka-dot batfish 0.011 0.000
Southern hake 0.022 0.014
Rainwater killifish 2.161 0.022
Silversides 0.011 0.000
Brook silverside 0.000 0.000
Dusky pipefish 0.386 0.082
Chain pipefish 0.000 0.034
Gulf pipefish 0.000 0.135
Lined seahorse 0.000 0.011
Barbfish 0.095 0.000
Leopard searobin 0.048 0.039
Bighead searobin 0.000 0.014
Sea basses 0.012 0.000
Black sea bass 0.277 0.000
Sand perch 0.042 0.000
Bluegill 0.000 0.000
Dollar sunfish 0.000 0.000
Largemouth bass 0.000 0.000
Gray snapper 0.080 0.024
Lane snapper 0.034 0.022
Yellowtail snapper 0.000 0.098
Eucinostomus mojarras 0.978 1.430
Silver jenny 1.187 0.800
Tidewater mojarra 0.025 0.011
Striped mojarra 0.000 0.000
White grunt 0.411 0.000
Pigfish 0.533 0.079
Pinfish 20.049 4.253
Sheepshead 0.000 0.376
Spottail pinfish 0.249 0.000
Grass porgy 0.000 0.022
Spotted seatrout 0.019 0.093
Silver perch 0.315 0.011
Spot 0.000 6.282
Southern kingfish 0.000 0.000
Northern kingfish 0.000 0.000
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24-54

1.835
0.137
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.627
0.012
0.023
0.012
0.000
0.000
0.000
1.046
0.108
0.025
0.000
0.011
0.000
0.000
0.000
0.000
0.000
0.010
0.020
0.023
0.000
0.000
0.076
0.020
0.000
0.000
0.000
0.000
0.000
0.000
0.012
0.034
0.000
1.726
0.070
0.036
0.000
0.000
0.000
10.137
0.060
0.000
0.000
0.074
0.012
12.028
0.154
0.000

5.4-9.8

0.027
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.180
0.000
0.022
0.000
0.012
0.000
0.000
0.195
0.184
0.025
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.010
0.000
0.000
0.000
0.073
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.055
0.000
0.000
0.000
0.000
0.000
0.056
0.044
0.000
0.000
0.000
0.000
0.161
0.000
0.011

9.8-13.2

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.045
0.000
0.012
0.000
0.034
0.000
0.000
1.990
0.011
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.011
0.000
0.000
0.000
0.000
0.049
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
1.066
0.000
0.022
0.000
0.000
0.000
0.175
0.081
0.000
0.000
0.011
0.000
8.253
0.000
0.000

13.2-16.1

0.000
0.000
0.140
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.042
0.000
0.000
0.000
0.000
0.012
0.022
9.485
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.012
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.171
0.012
0.087
0.000
0.000
0.000
4.868
0.000
0.312
0.037
0.000
0.000
0.069
0.000
0.000
0.000
0.000
0.000
3.746
0.000
0.000



Taxon

Pogonias cromis
Sciaenops ocellatus
Chaetodipterus faber
Sphyraena barracuda
Lachnolaimus maximus
Nicholsina usta
Paraclinus fasciatus
Gobiosoma spp.
Gobiosoma bosc
Gobiosoma robustum
Microgobius gulosus
Paralichthys albigutta
Ancylopsetta quadrocellata
Trinectes maculatus
Achirus lineatus
Symphurus plagiusa
Monacanthidae spp.
Aluterus schoepfii
Monacanthus ciliatus
Stephanolepis hispidus
Acanthostracion quadricornis
Sphoeroides nephelus
Chilomycterus schoepfii

Table B6, page 2 of 2. Location-specific trawl catch.

Data are presented as mean number per 100m?.

Organisms are listed in phylogenetic order.

Common Name

Black drum

Red drum

Atlantic spadefish
Great barracuda
Hogfish

Emerald parrotfish
Banded blenny
Gobiosoma gobies
Naked goby

Code goby

Clown goby

Gulf flounder
Ocellated flounder
Hogchoker

Lined sole
Blackcheek tonguefish
Filefishes

Orange filefish
Fringed filefish
Planehead filefish
Scrawled cowfish
Southern puffer
Striped burrfish

Location (km from mouth)

-1.8-0.0 0.0-2.4
0.000 0.011
0.000 0.000
0.000 0.022
0.012 0.000
0.037 0.000
0.106 0.000
0.019 0.000
0.069 0.000
0.000 0.000
0.112 0.096
0.014 0.020
0.038 0.146
0.011 0.000
0.070 0.000
0.014 0.034
0.056 0.043
0.087 0.000
0.012 0.000
0.096 0.000
0.294 0.079
0.047 0.011
0.139 0.258
0.207 0.141
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24-54

0.000
0.000
0.000
0.000
0.000
0.010
0.000
0.000
0.000
0.000
0.023
0.151
0.000
0.021
0.020
0.168
0.000
0.000
0.000
0.011
0.000
0.520
0.012

5.4-9.8

0.011
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.022
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

9.8-13.2

0.000
0.101
0.000
0.000
0.000
0.000
0.000
0.011
0.000
0.000
0.115
0.000
0.000
0.012
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.011
0.000

13.2-16.1

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.025
0.000
0.221
0.000
0.000
0.260
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000



Appendix C:

Length-frequency plots for selected taxa
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Callinectes sapidus (Blue crab)

January

Size class mid-point (mm)
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Anchoa mitchilli (Bay anchovy)
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Fig. C3. Monthly length frequencies of Bay anchovy collected
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Notropis petersoni (Coastal shiner)
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