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"The sea, once it casts its spell, holds one in its net of wonder forever." 

Jacques Yves Cousteau
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Summary

Technological development and increased availability of remotely operated vehicles (ROVs) and
manned submersibles have significantly increased accessibility to deep environments revealing
the presence of rich and diverse macrobenthic assemblages dominated by suspension feeders.
These assemblages have been largely exposed to the impacts of fishing activities (especially bot-
tom trawling) in the Mediterranean Sea. Consequently, it is currently urgent to increase knowl-
edge on their distribution, as well as on the ecology and biology of the main species that
constitute these macrobenthic assemblages in order to implement effective management and
conservation measures. This thesis addressed the characterization of macrobenthic assemblages
in the continental shelf and upper slope (40–360 m depth) of the Menorca Channel through a
multidisciplinary approach at different ecological levels. 

Six macrobenthic assemblages mainly segregated by substrate and depth. Hard substrates
hosted sponge grounds and coral gardens, whereas crinoid and brachiopod beds occurred on
soft sediments. Highest diversity values were found in the shelf edge, probably as a consequence
of the bottom heterogeneity and the constant hydrodynamic conditions. Gorgonians were one
of the most important and diverse bioengineering organisms in the Menorca Channel, forming
dense assemblages that extended over vast areas. Gorgonian assemblages on the continental
shelf and upper slope were mostly monospecific, whereas shelf edge assemblages were highly
multispecific. Small colonies were dominant throughout the studied bathymetric range, but in
deeper environments intermediate and large colonies were more abundant. The good preserva-
tion state of most of the observed benthic assemblages and gorgonian populations is probably
related to the low pressure of bottom trawling, which is mostly concentrated in deeper areas of
the continental and the exceptional fishing practices exerted by the local artisanal fisherman.
Paramuricea macrospina is the most abundant gorgonian species in the Menorca Channel.
Throughout its distribution, three different chromatic forms were observed. Two forms occurred
on the continental shelf, and a third occurred on the shelf edge. Colony shape, sclerite size and
shape, and the genetic variability of mitochondrial markers were compared to elucidate if these
chromatic forms represented different taxonomic units. Colony morphology barely changed
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among the three forms resulting as a high conservative character. Conversely, sclerite size and
shape significantly differed amongst the three forms, possibly conditioned by genetic and envi-
ronmental factors. However, no significant differences were observed in the studied mitochondrial
markers. The reproductive cycle, energy storage and metabolic requirements of P. macrospina
showed significant differences compared to Mediterranean coastal gorgonians. Its reproductive
cycle was delayed 2–3 months respect to shallow species, possibly following the late summer
increase in seawater temperature occurring on the Mediterranean continental shelf. Moreover,
internal brooding in P. macrospina contrasts with surface brooding in the congeneric Paramuricea
clavata. Lipid content was lower and more constant in P. macrospina than in shallow species, and
∂13C and ∂15N composition showed almost no seasonal variation, suggesting that food availability
in the continental shelf is lower but more constant than in shallower environments. The high olig-
otrophic conditions of the Balearic Sea apparently contrasts with the high abundance and diversity
of active and passive suspension feeders observed in the Menorca Channel. Indeed, the down-
ward particle fluxes quantified during two consecutive years in the Menorca Canyon were com-
paratively low within the Mediterranean context, reflecting the oligotrophic nature of the study
area and the lack of continental inputs of particulate matter. Hydrodynamic settings and physical
processes that cause sediment resuspension appeared to be more important than surface pri-
mary production in the control of the magnitude and composition of the total mass flux in the
study area, likely playing a major role in determining the distribution of the macrobenthic assem-
blages.
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Resum

Les millores tecnològiques i la major disponibilitat de vehicles operats remotament (ROVs) i sub-
marins tripulats han incrementat l’accessibilitat a entorns profunds, revelant la presència asso-
ciacions d’organismes bentòniques riques i diverses, dominades per suspensívors. Aquestes
agregacions han estat altament impactades per la pesca (en especial el ròssec) al Mediterrani.
És urgent incrementar el coneixement, sobre la distribució d’aquestes associacions i aspectes
claus de la biologia i ecologia de les principals espècies que les constitueixen per tal d’establir
mesures de conservació efectives. En aquesta tesi es caracteritzen les associacions bentòniques
de la plataforma i talús continentals del Canal de Menorca a través d’una aproximació multidisci-
plinària a diferents nivells ecològics. 

S’han identificat sis associacions bentòniques diferents, que es diferencien principalment pel
tipus de substrat i el rang batimètric. En els substrats durs s'hi ha trobat fons d’esponges i coralls,
en els fons tous s’hi han trobat camps de crinoïdeus i braquiòpodes. Al marge continental s’hi
concentren la diversitat més elevada, probablement resultant de l’heterogeneïtat ambiental i l’hi-
drodinamisme d’aquest entorn. Al Canal de Menorca les gorgònies són un dels organismes bio-
enginyers més importants i diversos, formant  denses agregacions sobre amplies zones. Les
agregacions de gorgònies a la plataforma i part superior del talús eren principalment monoespe-
cífiques, mentre que les del marge continental eren multiespecífiques. Les colònies petites eren
les més abundants al llarg de tot el rang batimètric. Tot i així, en entorns profunds les colònies
mitjanes i grans incrementaven la seva abundància. El bon estat de les associacions bentòniques
i les poblacions de gorgònies probablement resulta de la baixa pressió del ròssec, que es con-
centra a major fondària, i a les pràctiques excepcionals dels pescadors artesanals. Paramuricea
macrospina és la gorgònia més abundant del Canal de Menorca. Al llarg de la seva distribució ba-
timètrica es varen observar tres variants cromàtiques diferents. Dues es varen trobar a la plata-
forma i una tercera es trobà al marge continental. Per tal d’esbrinar si les diferents variants eren
unitats taxonòmiques diferents s’han estudiat la forma colonial, la variabilitat de tamany i formes
dels esclerits així com la variabilitat en marcadors mitocondrials. Es va detectar molt poca varia-
bilitat en la morfologia colonial de les tres variants, suggerint que és un caràcter conservatiu. El
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tamany i la morfologia dels esclerits diferia significativament entre les tres variants, suggerint
que estan influenciats per factors ambientals i genètics. No es varen trobar diferències entre els
tres marcadors mitocondrials. S’ha avaluat el cicle reproductor, l’acúmul energètic i les necessitats
metabòlics de P. macrospina. El cicle reproductiu d’aquesta espècia està retardat 2–3 mesos res-
pecte les espècies de gorgònia mediterrànies somes. Aquesta situació podria sorgir de l’augment
tardà de la temperatura de l’aigua a la plataforma continental mediterrània. El fet que P. macros-
pina sigui una internal brooder contrasta amb que Paramuricea clavata sigui una surface brooder.
El contingut lipídic de P. macrospina és més baix però més constant que el d’espècies somes
mediterrànies. D'altra banda  la composició de la ∂13C i la ∂15N gariebé no presentaven fluctuacions
estacionals. Suggerint que la disponibilitat d’aliment a la plataforma és més baixa però més cons-
tant que en entorns somers. Al marge sud del Canal de Menorca hi trobem el Canyó de Menorca.
Tot i l’elevada oligotròfia del mar Balear, les associacions d’organismes bentònics a la capçalera
del canyó i proximitats són d’una elevada riquesa. Per aquest motiu s’ha avaluat el flux de partí-
cules durant dos anys consecutius al canyó. Els fluxos recollits eren comparativament inferiors
que els registrats en d’altres canyons mediterranis, reflectint la manca d’aportacions continentals
i l’oligotròfia de l’àrea d’estudi. Els processos físics que causaven resuspensió i diferents parà-
metres hidrodinàmics, semblen ser més importants en el control, la magnitud i la composició
del flux de partícules que no pas la producció primària superficial. Aquest resultats suggereixen
que els fluxos de partícules en canyons insulars Mediterranis, sense sistemes fluvials importants,
són semblants als observats en el mar profund, però segurament juguen un paper important en
la distribució d’associacions d’organismes macrobentònics. 
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Introduction

Benthic assemblages in shallow environments
have received plenty of attention due to the
wide diffusion of SCUBA diving. The recent
technological development and increased avail-
ability of video-equipped towed gears, remotely
operated vehicles (ROVs), manned submersibles
and autonomous under water vehicles (AUVs)
have remarkably increased accessibility to deep
environments, allowing the direct observation
and quantitative study of benthic assemblages
(e.g. Miller et al., 2012; White et al., 2012;
Pineda et al., 2016). Several surveys using
ROVs and manned submersible vehicles have
been carried out in the deep sea, below a
depth of 150 m (Sink et al., 2006). Conversely,
continental shelf and upper slopes have received
relatively less attention (Cau et al., 2015).

Highly diverse benthic assemblages dominated
by passive (e.g. gorgonians, corals, black corals)
and active (e.g. sponges, brachiopods) benthic
suspension feeders have been recently found
in continental shelf, slopes and seamounts
worldwide (e.g. Clark et al., 2010; Kenchington
et al., 2013; Buhl-Mortensen et al., 2016). In
these deep environments, hydrodynamic
processes provide high and stable food supply
allowing the development of dense aggregations

of suspension feeders, such as crinoid beds,
sponge grounds, coral gardens and cold-water
coral reefs (Lavaleye et al., 2002; Rice, 1990;
Thiem et al., 2006). Benthic suspension feeders
induce a significant flow of matter and energy
from the pelagic to the benthic system by
capturing plankton and particulate organic mat-
ter, playing a remarkable role in the ben-
thopelagic coupling and biogeochemical cycles
(e.g. Bell, 2008; Cathalot et al., 2015). From a
structural point of view, they play an important
ecological role by forming complex three-di-
mensional structures that may provide shelter,
enhance food availability and act as nursery
grounds for numerous associated species (Bo
et al., 2015; Buhl-Mortensen and Mortensen,
2005; Henry et al., 2013). Consequently, high
diversity and biomass of associated fauna is
promoted in these benthic assemblages (Bea-
zley et al., 2013). Amongst the associated fauna
there are numerous decapod and fish species
of commercial interest, which are targeted by
the fishing industry (Clark and O’Driscoll, 2003;
Colloca et al., 2004; Shester and Ayers, 2005).
Consequently, many sponge grounds, coral
gardens and cold-water coral reefs have been
widely degraded due to the repeated exposure
to destructive fishing activities, such us bottom
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trawling and long line fishing (Althaus et al.,
2009; Taylor et al., 2013). Due to the slow
growth and high longevity of most of the mac-
robenthic species that constitute these as-
semblages, their recovery may last centuries
to millennia (Clark et al., 2016).

In the Mediterranean Sea, the first studies
concerning benthic assemblages on the conti-
nental shelf and upper slope date back to the
1950s, when the Swiss engineer August Piccard
performed several dives in areas of the Western
Mediterranean Sea (Martin, 1960). However, it
was not until the 1960s and 1970s when the
first bionomical studies with detailed charac-
terizations of deep Mediterranean benthic as-
semblages were performed (e.g. Pérès and Pi-
card, 1964; Pérès, 1967; Vacelet, 1969; Fredj,

1972). These studies were based on the obser-
vations made on board of the manned sub-
mersible Scoupe Plongeante, developed by
the French marine pioneer Jacks Costeau (Laban
et al., 1963). After 1970s, research concerning
deep Mediterranean benthic environments
abruptly decreased, mainly due to the technical
difficulties and high economic costs that imply
working in deep-waters. During this period,
most research derived from by-cached or with-
drawn by blind destructive techniques (Relini
et al., 1986; Gili et al., 1987). It was not until
the 2000s when the increased affordability of
ROVs and manned submersibles, and the in-
creasing interest for cold-water corals, reinforced
research in deep Mediterranean benthic envi-
ronments (Taviani et al., 2005; Rossi et al.,
2008; Orejas et al., 2009). In recent years,
ROVs and manned submersibles have been
used to characterize benthic assemblages on
the continental shelf and slopes, reporting the
presence of rich and dense assemblages such
as coral gardens, sponge grounds or bryozoan
beds (e.g. Bo et al., 2013, 2011; Fabri et al.,
2014; Michez et al., 2014; Cau et al., 2015).
However, in many cases these assemblages
also presented clear signs of fishing derived
damages (Orejas et al., 2009; Bo et al., 2014;
Fabri et al., 2014; Angiolillo et al., 2015) (Fig. 2).

The increasing demand for fishing resources
in Mediterranean countries, has lead to an in-
tensification of fishing activities, resulting in
overexploitation of fish stocks and the severe
damage of benthic habitats, turning the Mediter-
ranean Sea in one of the most impacted sea
in the world (Lotze et al., 2011; Coll et al.,
2012). Bottom trawling fishing has gradually
increased in intensity since the first half of the
20th century, progressively expanding to greater
depth (Sacchi, 2008). Consequently, decades
of chronic trawling have widely impacted large
areas of the Mediterranean continental shelf
and slope (e.g. Fabri et al., 2014), probably
constraining the presence of macrobenthic as-
semblages to remote (Díaz et al., 2015) or in-
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Fig. 1. a) the remotely operated vehicle NEMO (G.
Newman) b) the manned submersible JAGO (IFM-GE-
OMAR) used during the field work of this thesis.



accessible areas (Bo et al., 2015). The vulnera-
bility and low resilience of these assemblages
(Althaus et al., 2009) have motivated the im-
plementation of management measures, such
as the restriction in the use of bottom trawling
and other bottom contact gears (Pipitone et
al., 2000) and the establishment of large marine
protected areas on continental shelf and slope
(Barberá et al., 2012). The European Union
Natura 2000 initiative has developed a strong
policy framework to deal with the multiple
challenges that shallow and deep marine envi-
ronments are facing, and ensure a sustain-
able-based approach for their marine resources
(http://ec.europa.eu/environment/nature/natu-
ra2000/marine/index_en.htm9). From 2009 to
2014, the LIFE+ INDEMARES project has
been studying deep benthic environments on
Spain’s territorial waters in order to contribute
to the protection and sustainable use of 10
different sites of community interest (Fig. 3)

that eventually will become special areas of
conservation. These areas represent an in-
crement of more than 7 million hectares to
the Spanish Natura 2000 Network, covering
more than 8% of Spain territorial waters
(http://www.indemares.es/en/project/descrip-
tion). Ultimately, the LIFE+ INDEMARES project
laid the foundation for future management
plans for Natura 2000 marine areas. Moreover
the project also contributes to fulfill the objective
established by the Convention on Biological
Diversity from the United Nations, to reach
the goal of protecting 10% of coastal and
marine areas by 2020 (https://www.cbd.int/2011-
2020/goals). Amongst the 10 areas studied in
the LIFE+ INDEMARES project, the Menorca
Channel covers a vast extension of the conti-
nental shelf and upper slope between the
Mallorca and Menorca Islands (Balearic Archi-
pelago) from 40 to 360 m depth.
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Fig. 2. a) Colony of the cold-water coral Dendrophylia cornigera entangled in a long line b) A large sponge Haliclona
magna cut by a long line c) Long lines in a coral garden d) Trammel net entangled in the gorgonian Paramuricea
clavata. Scale bar = 10 cm. 



GENERAL OBJECTIVES

The present thesis addressed the characteri-
zation of the benthic assemblages in the con-
tinental shelf and upper slope of the Menorca
Channel by means of five different studies:

Chapter 1 - Macrobenthic assemblages on
the Mediterranean continental shelf edge and
upper slope (Menorca Channel, Western
Mediterranean Sea).

This study focuses on the exploration of the
deep continental shelf and upper slope of the

Menorca Channel in order (1) to characterize
the composition of the macrobenthic assem-
blages, (2) to asses their geographical and ba-
thymetric distribution, (3) to quantify their bio-
diversity variation with depth, and finally (4) to
discuss the possible relationship between mac-
robenthic assemblages distribution and the
pressure of bottom trawling fishing in the area.

Chapter 2 - Diversity, distribution and population
size structure of deep Mediterranean gorgonian
assemblages (Menorca Channel, Western
Mediterranean Sea).

Gorgonians resulted to be the most relevant
macrobenthic species forming highly diverse
and dense assemblages in the Menorca Chan-
nel. This study aimed at (1) characterize the di-
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Fig. 3. Project LIFE+ INDEMARES study areas (http://www.indemares.es/areas-marinas).



versity and quantify the abundance of gorgonians
species on a large area of the continental shelf
and upper slope at 40–360 m depth, (2) assess
their geographical and vertical distribution, (3)
explore their population size structure, and (4)
to gain insight into the possible factors affecting
their abundance and distribution.

Chapter 3 - Morphological and molecular vari-
ability of the gorgonian Paramuricea macrospina
on the Mediterranean continental shelf (Menor-
ca Channel, Western Mediterranean Sea).

Paramuricea macrospina resulted to be the
most abundant gorgonian species in the Menor-
ca Channel. Throughout its range of distribution,
three different chromatic forms were observed.
Two forms occurred on the continental shelf,
and a third one occurred deeper on the shelf
edge. This study aims to elucidate if the different
P. macrospina chromatic forms represent distinct
taxonomic units, by exploring differences in
their (1) colony shape, (2) sclerite size and
shape, and (3) genetic variability in mitochondrial
markers (msh1, Igr1 and COI).

Chapter 4 - Reproductive cycle, energy storage
and metabolic requirements of the gorgonian
Paramuricea macrospina from the Mediter-
ranean continental shelf (Menorca Channel,
Western Mediterranean Sea).

The aim of this chapter was to explore, for the
first time, the reproductive ecology and the
dynamic of energy storage and metabolic de-
mands of a Mediterranean gorgonian on the
continental shelf. For this purpose, the annual
development of sexual products, lipid content,
free fatty acid content and composition, and
stable isotope (δ13C and δ15N) composition
were assessed over an annual cycle in the
gorgonian P. macrospina from 70 m depth, to
address the following questions: (1) Are there
differences in the reproductive timing and go-
nadal output compared to shallow species?
(2) Are there differences in the annual dynamic

of energy storage and metabolic requirements
compared to shallow species? (3) How are
the gorgonian reproductive cycle, energy storage
and metabolic demands related in the Mediter-
ranean continental shelf environment?

Chapter 5 - Composition and temporal variability
of particle fluxes in an insular canyon of the
northwestern Mediterranean Sea.

The Baleric Archipelago is one of the most
oligotrophic environments in the Western
Mediterranean Sea. The only submarine canyon
of the Archipelago is the Menorca Canyon.
Despite the high oligotrophy of the Balearic
Sea, benthic assemblages around the Menorca
Canyon are highly diverse, with dense gorgonian
and black coral assemblages. This study explored
the environmental characteristics and flux of
organic matter in which these communities
thrive by characterizing (1) the temporal variability
of downward particle fluxes, (2) assessing
their geochemical and macroscopic composition,
(3) identifying the main processes that modulate
particle fluxes in the Menorca Canyon, and (4)
compare the studied canyon with previous re-
search developed in the Mediterranean Sea.
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ABSTRACT

Highly diverse macrobenthic assemblages dominated by passive and active suspension feeders have been
recently reported in shelf edge environments of the Mediterranean Sea. Due to the frequent association with
species of commercial interest, these assemblages have been heavily impacted by fishing practices. The
vulnerability and low resilience of these assemblages, composed mainly by long-living and slow-growing
species, have motivated the implementation of management measures such as the restriction of bottom
trawling fishing, and the establishment of large protected areas including deep environments. The Menorca
Channel is one of these large areas recently included in the protection frame of the European Union Natura
2000 network. Quantitative analysis of video transects recorded at 95–360 m depth by manned submersible
and remotely operated vehicles were used to characterize macrobenthic assemblages, and assess their
geographical and bathymetric distribution. Six different assemblages were identified, mainly segregated by
substrate and depth. Hard substrates hosted coral gardens and sponge grounds, whereas soft sediments were
mainly characterized by vast extensions of the crinoid Leptometra phalangium and the brachiopod Gryphus
vitreus. The good preservation of most of the observed assemblages is probably related to the low pressure of
bottom trawling fishing in this area, mainly concentrated deeper, on the continental slope. Because of their
biological and ecological value, management and conservation measures need to be established to preserve
these benthic assemblages.
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1. INTRODUCTION

Knowledge about macrobenthic assemblages
in coastal areas has greatly increased during the
past decades thanks to the wide diffusion of
SCUBA diving; conversely, continental shelf and
slope have received relative less attention due
to the difficulties related to working in deep en-
vironments (Cau et al., 2015). However, the most
recent technological developments and in-
creased availability of remotely operated vehicles
(ROVs), manned submersibles and video-
equipped towed gears have significantly in-
creased accessibility to these deep environ-
ments, allowing the direct observation and
quantitative study of macrobenthic assemblages
(e.g. Etiope et al., 2010; Buhl-Mortensen et al.,
2016). Rich and high diverse macrobenthic as-
semblages mostly dominated by passive (e.g.
gorgonians, corals and black corals) and active
(e.g. sponges) suspension feeders (e.g. Emig,
1997; Bo et al., 2013; Bertolino et al., 2013), have
been recently reported on the continental shelf,
slope and seamounts in several locations of the
Mediterranean Sea (Bo et al., 2009; 2012; 2015;
Deidun et al., 2014). These assemblages have
shown to provide habitat (Mastrototaro et al.,
2010; Porteiro et al., 2013) and act as nurseries
(Colloca et al., 2004; Bo et al., 2015) for a wide
variety of associated species, many of which
are of commercial interest (Abella et al., 2005;
Maynou and Cartes, 2012). 

Due to their distribution deeper than 50 m, these
assemblages have been largely exposed to the
impacts of bottom trawling (Maynou and Cartes,
2012; Fabri et al., 2014) and, to a lesser extent,
long-line and trammel net fishing (Orejas et al.,
2009; Sampaio et al., 2012; Mytilineou et al.,
2014). These fishing practices have dramatic ef-
fects on macrobenthic species, which are often

removed or severely damaged (Fosså et al., 2002;
Mytilineou et al., 2014), resulting in a decline in
the biodiversity and abundance of the associated
fauna (Althaus et al., 2009; Clark et al., 2016). In
the Mediterranean Sea, bottom trawling has pro-
gressively increased in intensity since the first
half of the 20th century, progressively expanding
to greater depth (Sacchi, 2008). Consequently,
decades of chronic trawling have widely impacted
large areas of the Mediterranean continental shelf
and slope (e.g. Fabri et al., 2014), reducing the
presence of relatively well preserved macroben-
thic assemblages to remote (Díaz et al., 2015) or
inaccessible areas (Bo et al., 2015). The ecological
effects of bottom trawling are extremely long
lasting, as no signs of recovery of macrobenthic
assemblages have been observed in areas closed
to trawling after more then ten years (Althaus et
al., 2009; Williams et al., 2010). Due to the slow-
growth and high longevity of most of the mac-
robenthic species that constitute these assem-
blages, it has been suggested that their possible
recovery may take centuries to millennia (Clark
et al., 2016).

The vulnerability and low resilience of these
communities (Althaus et al., 2009) have moti-
vated the recent implementation of manage-
ment measures, such as the restriction in the
use of bottom trawling and other bottom contact
gears (Pipitone et al., 2000; Armstrong et al.,
2014), and the establishment of managed and
protected areas on continental shelf, continental
slope (Spalding et al., 2013; Bennecke and
Metaxas, 2016) and seamounts (Sheppard et
al., 2012; Huvene et al., 2016) worldwide. Deep-
water protected areas are often much more ex-
tensive than coastal ones (De Santo, 2013;
Spalding et al., 2013; Bennecke and Metaxas,
2016). Large marine protected areas extend over
wide bathymetrical and geographical range, cov-
ering several habitat types (Fernandes et al.,
2005; Sheppard et al., 2012) and offering refuge
to a wide variety of mobile and sessile species
with high larval dispersal (Roberts et al., 2003).
In the Mediterranean Sea, marine protected ar-
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eas are mostly restricted to littoral environments
(e.g. Francour et al., 2001). However, the estab-
lishment of large marine protected areas (>100
km2), covering large areas of continental shelf
and slope, has been recently proposed as a
tool for the ecosystem based management
of marine resources and environments (Eu-
ropean Union, Natura 2000 network,
h ttp : / /www.eea .eu ropa .eu /da t a - and -
maps/data/natura-2). The Menorca Channel (Fig.
1) is one of these large area recently included
in the protection frame of the European Union
Natura 2000 network. Previous studies have in-
vestigated and characterized benthic assem-
blages in the coastal (e.g. Coma et al., 2006)
and shallow continental shelf (<100 m) (e.g. Jo-
her et al., 2012; Barberá et al., 2012) of the
Menorca Channel. Conversely, composition and
distribution of benthic assemblages on the deep
continental shelf and upper slope still remain
widely unknown. This information is basic for
the establishment of effective management and
conservation measures, as well as to monitor
their effectiveness. 

To this purpose, the aims of this study were:
(1) to characterize the composition of mac-
robenthic assemblages on the deep continental
shelf and upper slope of the Menorca Channel,
(2) to asses their geographical and bathymetric
distribution, (3) to quantify their biodiversity
variation with depth, and finally (4) to identify a
potential relationship between macrobenthic
assemblages distribution and the pressure of
bottom trawling fishing in the area.

2. MATERIALS AND METHODS

2.1 Study area 

The Menorca Channel is located in the West-
ern Mediterranean Sea between Mallorca and

Menorca Islands (39° 53’ 0.73” N, 3° 29’
51.16” E) (Fig. 1a), as part of the Balearic
Promontory (Acosta et al., 2002). The study
area covered the deep continental shelf (90–
110 m), the shelf edge (110–180 m) and the
upper slope (180–350 m) of the channel. The
continental shelf is characterized by smooth re-
liefs covered by maërl beds alternated with
coralligenous outcropping rocks and detritic
coarse sediments (Barberá et al., 2012). Fine
sands cover vast areas of the northern conti-
nental shelf at 100–110 m depth. Smooth re-
liefs and large extensions of detritic sediments
with few isolated patches of outcropping rocks
characterize most of the shelf edge and conti-
nental slope. Only near Cap Formentor (Fig.
1b) and in the Menorca Canyon (Fig. 1c)
sharply edged rock outcroppings and rocky ver-
tical walls are the dominant substrates. 

The northern shelf edge and continental slope
of the study area is mainly influenced by the
Balearic Current (Balbín et al., 2012) and its as-
sociated front (Ruiz et al., 2009), which origi-
nates from a branch of the
Liguro-Provençal-Catalan current flowing north-
ward over the continental slope of the Balearic
archipelago at ~200 m depth (Ruiz et al., 2009).
Secondary currents flow northward from the
Algerian sub-basin entering the Balearic sub-
basin and feed the Balearic current (Pinot et al.,
2002; Amores et al., 2013). Conversely, the
southern shelf edge and upper slope are not
influenced by a steady current (Amores and
Montserrat, 2014), but by the sporadic arrival
of mesoscale structures detached from the Al-
gerian Current and the Almería-Oran front (Mil-
lot, 1987; García et al., 2005).

2.2 Sampling procedure

A total of 45 video transects (Fig. 1) were
recorded during four surveys conducted on
board of the R/V “García del Cid” (September
2010, April 2011, October 2011, June 2012).
During the first two surveys, 17 video transects
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were recorded with the manned submersible
JAGO (IFM–GEOMAR), whereas 28 video tran-
sects were recorded with the ROV NEMO
(Gavin Newman) during the last two surveys.
Both instruments were equipped with a 1080
horizontal line resolution camera, a grabber
and two parallel laser beams which provided a
scale to define a fixed width within the tran-
sects (0.5 m) during the subsequent video
analysis. Transects were recorded in a close-

zoom (~0.5–1.5 m width) and in a digital format.
Positioning of JAGO and NEMO was achieved
with underwater acoustic positioning system
(LinkQuest TrackLink 1500 HA). Both JAGO and
NEMO moved at a constant speed of ~0.3
knots, and transect lengths ranged between
309 and 2375 m, over depths ranging from 90
to 347 m. Transects were haphazardly located
in order to cover the entire study area, but ar-
eas showing morphological features possibly
related to the presence of rocky bottoms were
explored more intensively (Fig. 1). Overall, a
total of 37.7 km were video recorded along the
seabed.

In order to confirm the taxonomic identification
of the macrobenthic organisms observed in
the video transects, voucher organisms were
collected by means of the JAGO and NEMO
grabbers. Sampled organisms were fixed and
preserved in 10% formalin as well as in ab-
solute ethanol for posterior taxonomical and
genetic analyses. Organisms were identified
to the lowest possible taxon, which corre-
sponded to species or genus.

2.3 Video analysis

Quantitative video analysis was performed ac-
cording to the methodology described in Gori
et al. (2011) using Apple’s Final Cut Pro soft-
ware. In order to correctly estimate the length
of each transect, all the pauses in the move-
ment of the JAGO or NEMO were removed
from the footage. Sequences with poor image
quality or too far away from the seafloor were
considered unsuitable for analysis. The remain-
ing useful sequences comprised 93.3% of the
total recorded material and corresponded to a
total distance of 35 km. All macrobenthic or-
ganisms observed within a width of 0.5 m
(based on the laser beams) along each video
transect were identified and assigned a time
reference derived from the time elapsed since
the beginning of the video transect to the cross-
ing of the laser beams with the organism (Gori
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Fig. 1. The study area. (a) Three-dimensional bathym-
etry of the Menorca Channel: the map shows the lo-
cation of the video transects (1 to 45) and the location
of the study area in the western Mediterranean. De-
tail of the (b) northern and (c) southern subareas.
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et al., 2011). This time reference was posteriorly
converted into position along the transect ac-
cording to the known velocity from the posi-
tioning system P = t · v, where t is the time
reference expressed in seconds, and v is the
velocity expressed in meters per second). A
similar procedure was used to characterize
seabed substrate types and slope along every
transect, within the same width of 0.5 m.
Seabed substrate type was classified (based
on the Wentworth scale) into five categories:
fine sands, medium sands to gravels, cobbles
and pebbles, maërl, and rock. Seabed slope
was classified into three categories: horizontal
(0º–30º), sloping (30º–80º) and vertical (80º–90º);
slope was estimated from the video by looking
at the two parallel laser beams and the depth
sensor (Gori et al., 2011; Ambroso et al., 2013).

2.4 Data treatment

2.4.1 Sampling unit characterization

Each transect was divided into a string of sam-
pling units. Different size of sampling units (2,
5, 10, 15, 20, 30, 40 and 50 m2) were used in
the canonical correspondence analysis (see be-
low) in order to explore how the size of the
sampling units may affect the identification of
the benthic assemblages, and their associated
main environmental features. Each sampling
unit was characterized by the number of mac-
robenthic organisms of each identified species,
as well as by the average depth and coverage
percentage for each substrate and slope cate-
gory.

2.4.2 Canonical correspondence analysis (CCA)

Relationship between benthic macrofauna
abundance and depth, substrate type and slope
were explored by means of canonical corre-
spondence analysis (CCA). CCA is a multivari-
ate constrained ordination technique used to
elucidate the relationships between species
abundances (response variables) and environ-

mental variables (explanatory variables)
(Greenacre and Primiceiro, 2013). Taxa that ap-
peared with less than three individuals were
discarded from the analysis in order to avoid
distortions. Depth of sampling units was coded
into three fuzzy categories that conserve all
the information in the variables while reducing
it to a categorical scale (Aschan et al., 2013).
This fuzzy-coding allows taking into account
possible nonlinear relationships between fauna
abundance and depth (Greenacre and Primi-
ceiro, 2013). Environmental variables were
standardized by standard deviation, and CCA
were performed with the R-language function
cca in the ca library (Nenadic and Greenacre,
2007) of the R software platform (R Core Team
2014). Additionally, environmental factors were
tested to determine which was the best pre-
dictor by means of the R-language function
anova (Chambers and Hastie, 1992). CCA was
performed with several sampling unit sizes (2,
5, 10, 15, 20, 30, 40 and 50 m2) in order to ex-
plore how the identification of the benthic as-
semblages, and their associated main environ-
mental features, change with the size of the
sampling units.

2.4.3 Geographic distribution of
macrobenthic assemblages

Geographical distribution of each identified
macrobenthic assemblage in the study area
was reported by mapping its occurrence in the
video transects on a geographically referenced
map using GIS (ESRI ArcGIS ArcInfo v10).

2.4.4 Variation of macrobenthic diversity with
depth

Sampling units were grouped in 5 m depth in-
tervals, and the exponential of Shannon’s di-
versity index was calculated based on the ob-
served macrobenthic abundance. This diversity
index was chosen as it weights all species by
their frequency without favoring rare or most
common ones (Jost, 2006). Analysis was per-
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formed with the diversity function of the vegan
library (Oksanen et al., 2015) of the R software
platform.

2.4.5 Fishing activity in the study area

Fishing activity and location of fishing grounds
(i.e. areas consistently fished through time) in
the study area were assessed by means of
the Vessel Monitoring System (VMS) through
the analysis of the number of fishing events
per surface units. VMS data were obtained in
the framework of the LIFE+ INDEMARES proj-
ect from the General Directorate of Fisheries
Management of the Spanish Ministry of Agri-
culture, Food and Environment (MAGRAMA).
Available VMS records for the period January
2007 to July 2012 were included after exami-
nation to exclude erroneous vessel identity,
position or speed. To select the records refer-
ring to fishing activity, a set of common criteria
(Lee et al., 2010) was followed: duplicated
records and records close to ports were re-
moved, and the interval between records was
calculated in order to only retain vessels mov-
ing at 2–5 knots. Distribution of fishing activity
in the study area was assessed based on

counts of fishing events per cell unit based on
a point summation method (Hintzen et al.,
2010). A 250 m2 cell size was selected as the
most suitable considering geographical factors
and dataset (for further details, see Piet and
Quirijns, 2009). Only one record per vessel,
day and cell was retained to avoid overestima-
tion of fishing activity (Hintzen et al., 2010).
The centroids of each cell were extracted and
weighted by the sum of fishing events for this
cell. These weighted centroids were used to
identify statistically significant hotspots of fish-
ing activity in the study area using the Gi* sta-
tistic (Getis and Ord, 1996).

3. RESULTS

3.1 Canonical Correspondence Analysis (CCA)

CCA analysis performed with different sam-
pling unit sizes revealed a general increase of
the amount of inertia explained by environmen-
tal factors as sampling unit size increased
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Sampling
Unit Size Species Nº Sampling

Units Nº Total Inertia Restricted 
Inertia

Unrestricted
Inertia

% of Inertia
explained by

env. fact.

Macrobenthic
assemblage

Nº

2 69 8639 28.36 3.03 25.32 10.69 6

5 69 3372 20.96 3.28 17.68 15.6 6

10 69 1537 18.5 3.39 15.11 18.3 5

15 69 985 16.15 2.46 13.69 15.2 5

20 69 713 15.17 3.44 11.73 22.6 5

30 69 443 13.8 3.45 10.37 24.97 5

40 67 316 13.25 3.57 9.67 13.25 5

50 67 248 12.59 3.61 8.98 28.71 4

Table 1. Results of the CCA analysis performed at different sampling unit size. env. fact. = environmental factors.



(Table 1). However, as sampling unit size in-
creased, the resolution of the CCA output de-
creased (Table 1). This was due to (1) a reduc-
tion in the total number of sampling units, (2)
an increase in the number of sampling units
discarded from the analysis affected by unsuit-
able sequences, and (3) an increase in the vari-
ability of each sampling unit composition (due
to the presence of several bottom types in
large sampling units) (Table 1). A 5 m2 sampling
unit size was chosen as the best balance be-
tween the inertia explained by environmental
factors, and the number of macrobenthic
species assemblages identified (Table 1). 

Using 5 m2 sampling units, a total of 38,136 or-
ganisms belonging to 69 macrobenthic species
were considered in the analysis. Crinoidea, only

represented by Leptometra phalangium, was
the most abundant and the third most frequent
taxon accounting for 31.8% of all observed or-
ganisms, occurring in 16.3% of all sampling
units (Table 2). Desmospongia, represented by
21 species, was the second most abundant
and the first most frequent taxon, accounting
for 30.9% of all observed organisms, in 27.7%
of all sampling units (Table 2). The subclass oc-
tocorallia, represented by 19 species, was the
third most abundant and the second most fre-
quent taxon, accounting for 17.9% of observed
organisms, in 25.4% of all sampling units (Table
2). The remaining taxa were represented by 1–
4 species, accounting for 0.02–8.2% of ob-
served organisms, in 0.2–14.5% of all sampling
units (Table 2). 
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Table 2. Macrobenthic taxa occupancy and abundance in the study area. Occupancy (frequency of occurrence in
the set of sampling units); abundance (number of organisms). (subc. = subclass).

Phylum Class Nº Species

Occupancy Abundance 

Number (%) Number (%)

Porifera Desmospongia 21 936 27.76 11805 30.96

Cnidaria Octocorallia (subc.) 19 858 25.44 6861 17.99

Hexacorallia (subc.) 8 248 7.35 1170 3.07

Hydrozoa 3 14 0.42 16 0.04

Briozoa Gymnolaemata 1 31 0.92 47 0.12

Brachiopoda Rhynchonellata 1 467 13.85 3219 8.20

Annellida Polychaeta 4 491 14.56 2334 6.12

Echiura 1 49 1.45 55 0.14

Echinodermata Crinoidea 1 549 16.28 12126 31.8

Ophiuroidea 1 64 1.90 416 1.09

Echinoidea 4 127 3.77 144 0.38

Holothuridae 2 15 0.44 15 0.04

Astroidea 1 11 0.33 12 0.03

Chordata Ascidiacea 2 6 0.18 6 0.02



In the CCA, sampling units and species were
displayed constrained according to environ-
mental factors. Environmental factors ex-
plained 15.6% of the variation in species abun-
dance. The first axis (CCA1) explained 26.8%
of the variance, and the second axis (CCA2)
explained 22.7% of the variance. Substrate
was the best predictor (inertia = 2.1935) fol-
lowed by depth (inertia = 1.3017), and slope
(inertia = 0.6974). Six different macrobenthic
assemblages (Fig. 2a), characterized by envi-
ronmental factors (Fig. 2b) and most contribut-
ing species (Fig. 2c) were identified in the CCA
analysis:  

Assemblage A: occurring on shallow maërl
beds (Fig. 2b), is mostly characterized by the
sponges Haliclona cf. elegans and Aplysina
cavernicola (Figs. 2c, 3a and 3b   ). 
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Fig. 2. Canonical correspondence analysis (CCA) ordi-
nation biplots of macrobenthic species. In figure 2a
the biplot shows the distribution of the sampling
units (n = 3372), sampling units are colored according
to the dominant substrate: fine sands (yellow),
medium sands to gravels (green), cobbles and peb-
bles (orange), maërl (blue), outcropping rock (red). In
figure 2b the biplot shows the substrate type (FS =
fine sands, MG = medium sands to gravels, PC= cob-
bles and pebbles, M = maërl, OR = outcropping rock),
seabed slope (Hor = horizontal, Slo = slopping, Ver =
vertical) and depth, being dep1 the shallowest and
dep4 the deepest. In figure 2c the biplot shows the
contribution of the different species to the macroben-
thic assemblages, the scale of grays in the vectors in-
dicate the degree of correlation, being in black the
highest correlation degree. Hal_eleg = Haliclona cf. el-
egans, Ap_cav = Aplysina cavernicola, Ham_sp2 =
Hamacantha sp., Hal_sp20 = Haliclona sp., Sal_dys =
Salmacina dysteri, Lep_pha = Leptometra pha-
langium, Gry_vit = Gryphus vitreus, Tha_gas = Thala-
mophyllia gasti, Ham_fal = Hamacantha falcula,
Vim_fla = Viminella flagellum, Eun_cav = Eunicella
cavolinii, Nid_stud = Nidalia studeri, Rhab_sp2 =
Rhabderemia sp.



Assemblage B: occurring on horizontal grounds
covered by fine and coarse sands throughout
most of the explored depth range (Fig. 2b), is
mostly characterized by the presence of the
crinoid Leptometra phalangium (Figs. 2c and
3c).

Assemblage C: occurring on horizontal grounds
covered by medium sands to gravels in deep
environments (Fig. 2b), is characterized by the
presence of the brachiopod Gryphus vitreus
(Figs. 2c and 3d). 

Assemblage D: mostly found at intermediate
depth on mixed cobbles and pebbles bottoms
(Fig. 2b), is characterized by the polychaete
Salmacina dysteri and two unidentified sponge
species belonging to the genus Hamacantha
and Haliclona (Figs. 2c, 3e and 3f).

Assemblage E: occurring in slopping rocky out-
crops at shallow and intermediate depths (Fig.
2b), is characterized by the presence of the gor-
gonians Eunicella cavolinii, Viminella flagellum,
the soft coral Nidalia studeri, the solitary coral
Thalamophyllia gasti and the incrusting sponge
Hamacantha falcula (Figs. 2c, 3g, 3h, 3i, 3j and
3k).

Assemblage F: occurring on vertical rock out-
cropping mostly at intermediate and deep en-
vironments (Fig. 2c), is characterized by an in-
crusting sponge of the genus Rhabderemia
(Figs. 2c and 3l). 

3.2 Geographic distribution of macrobenthic
assemblages

Assemblage A was only observed in one single
transect in the northeastern side of the Menorca
Channel (Fig. 4). Assemblages B and C were
widely distributed in both the northern and
southern areas of the channel (Fig. 4). Both as-
semblages presented a certain degree of over-
lapping, but assemblage C was restricted to
deeper environments. Assemblage D was ob-

served in only four locations in the channel,
three in the northern slope and one in the head
of the Menorca Canyon (Fig. 4), and partially
coincided with assemblages A, E and F. Finally,
assemblages E and F mostly co-occurred in the
transects located in the proximity of Cap For-
mentor and the Menorca Canyon’s head (Fig.
4).

3.3 Variation of macrobenthic diversity with
depth

Highest sampling effort was conducted at 90–
240 m depth, with sampling effort progres-
sively decreasing below this depth. The expo-
nential of Shannon’s index presented the
highest values (3.5–4.0) in the shelf edge depth
range (110–160 m depth) (Fig. 5). Intermediate
values of the Shannon’s index (2.2–3.0) oc-
curred at 160–250 m depth, whereas values
decreased (<2.5) below 250 m depth, reaching
minimum values at 330–350 m depth (Fig. 5). 

3.4 Fishing activity in the study area 

A total of 34 fishing vessels, from eleven ports
were observed to regularly trawl in the
Menorca Channel. The vessels from the ports
of Cala Ratjada, Alcúdia and Ciutadella (Fig. 6)
accounted for 77.5% of the localizations. One
large (E) and two small (D and C) hot spot
areas of bottom trawling were identified on
the continental shelf of the channel at 50–75
m depth (Fig. 6). Four additional large hotspots
were identified deeper on the continental slope
in the north (A) and south area (F, G and H) of
the channel at 500–600 m depth (Fig. 6). Fi-
nally, a small hot spot area was also observed
near Cap Formentor (B) at ~50 m depth (Fig.
6). Three hotspots (A, E and G) concentrated
78.8% of the total bottom trawling fishing ef-
fort in the area.
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4. DISCUSSION

Six different macrobenthic assemblages dis-
tributed throughout the continental shelf and
upper slope were identified in the Menorca
Channel. These assemblages were mainly seg-
regated by the substrate type and depth range.

Sponge grounds composed by large desmo-
sponge species (>15 cm in height), mostly
characterized by the branched Haliclona cf. el-
egans and the tubular sponge Aplysina caver-
nicola (Assemblage A), occurred on a shoal lo-
cated near the shelf edge at 95–110 m depth
(Fig. 4). This shoal presented a highly irregular
topography that alternated vertical walls with
flat areas covered by maërl and flat corallige-
nous outcrops. The close proximity of the shoal
to the shelf edge (Fig. 4) and its highly irregular
topography, agrees with sponge ground distri-
bution in other areas of the world (e.g. Klitgaard
and Tendal, 2004). It has been suggested that
the irregular topography of these environments
may cause the acceleration of local currents
(Rice et al., 1990) potentially favoring the pres-
ence of sponges (Beazley et al., 2015). A. cav-
ernicola and H. cf. elegans accounted for 73%
of all observed organisms, followed by other
desmosponge species such us Poecillastra
compressa, Aaptos aaptos, Haliclona poecil-
lastroides and Syphoncahlina sp., representing
21% of the observed sponges. Species com-
position resembled that of other sponge
grounds from rocky outcrops of the Tyrrhenian
Sea continental shelf (Bertolino et al., 2013).
Overall, sponge densities (9.2 ± 8.4 individuals

m-2, (mean ± SD), max = 43 individuals m-2)
were similar to those registered in other other
Mediterranean sponge grounds (Bo et al.,
2011a), and exceeded those observed in deep
multispecific sponge grounds in the North At-
lantic (Kutti et al., 2013; Howell et al., 2016).
The lack of gorgonians (only represented by a
few colonies of Paramuricea macrospina) and
antipatharians basically distinguished this as-
semblage from Assemblage E, in which almost
all the same sponge species (except A. caver-
nicola) co-occurred together with large gor-
gonians and antipatharians (see below). It has
been suggested that under high oligotrophic
conditions, such as those observed in the
Balearic Archipelago, sponge and other active
suspension feeders may become the dominant
group in coralligenous community replacing
gorgonians (Ballesteros, 2006). However, since
gorgonians dominate vast areas of the conti-
nental shelf and upper slope of the Menorca
Channel (Grinyó et al., 2016), the existence of
the observed sponge ground might have been
driven by other environmental or historical set-
tings. Sponge grounds increase the structural
complexity of habitats and the biodiversity of
the associated macrofaunal community (Klit-
gaard, 1995; Beazley et al., 2013). Moreover,
the high water processing capacity of sponges
(Morganti, 2016) indicates that sponge grounds
play a major role in the benthic-pelagic coupling
(Ribes et al., 2005) through their influence on
the microbial loop (Yahel et al., 2007) and the
cycling of carbon and other elements (Kutti et
al., 2013; Cathalot et al., 2015; Maldonado et
al., 2015).

Leptometra phalangium (Fig. 3c) was widely
distributed in both coarse and fine sands (As-
semblage B), reaching high densities of more
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Fig. 3. Most contributing species a) Haliclona cf. elegans, b) Aplysina cavernicola, c) Leptometra phalangium, d)
Gryphus vitreus, e) Salmacina dysteri, f) Hamacantha sp. 2 (white circle) and Haliclona sp. 1 (black circle), g) Euni-
cella cavolinii, h) Viminella flagellum i) Nidalia studeri, j) Thalamophyllia gasti, k) Hamacantha falcula, l) Rhab-
deremia sp. Scale Bar: 10 cm.
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than 30 individuals m-2 (5.3 ± 3.2 individuals
m-2 (mean ± SD)), as previously observed on
the base of seamounts in the Tyrrhenian Sea
(Bo et al., 2010). In the Menorca Channel, this
almost monospecific assemblage (L. pha-
langium represented 95% of all observed or-
ganisms) mostly occurred on the shelf edge
(96% of occupied sampling units) (Fig. 4),
agreeing with studies that characterized it as a
typical shelf edge assemblage (e.g. Fredj, 1964;
Kallianiotis et al., 2000; Mangano et al., 2010).
It has been suggested that Leptometra beds
are mainly constrained to shelf edge environ-
ments as they depend upon the exposition to
bottom currents that regularly carry high con-
centrations of suspended organic particles
(Lavaleye et al., 2002; Colloca et al., 2003). Ab-
sence of trawling activity is fundamental for
the persistence of high-density L. phalangium
populations, since the fragility of this organism
makes it extremely vulnerable to mechanical
damage (Smith et al., 2000). L. phalangium
beds have been associated with elevated den-
sities of benthopelagic fish, with high juvenile

abundances, suggesting that this assemblage
may play a crucial role in the life cycle of nu-
merous fish species, some of which are of high
commercial interest (e.g., Merlucius merlucius
and Mullus barbatus) (Colloca et al., 2004). The
sea pen Funiculina quadrangularis, the poly-
chaete Lanice conchilega and the anemones
Cerianthus membranaceus and Arachnanthus
oligopodus accompanied L. phalangium on
coarse sands, together with the sea pen Virgu-
laria mirabilis, the soft coral Alcyonium palma-
tum, and the sponge Thenea muricata on fine
sands. The presence of T. muricata on the shelf
edge (~130 m depth) was rather surprising, as
it has mostly been reported in deeper areas of
the continental slope (e.g. Pérès, 1967; Michez
et al., 2014).

The brachiopod Gryphus vitreus (Fig. 3d) con-
stituted 81% of all observed organisms in the
Assemblage C. As previously described in
other areas of the Mediterranean, this species
sparsely covered (2 ± 3 individuals m-2 (mean
± SD)) sandy grounds on and beyond the shelf
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edge, at 110–330 m depth (e.g. Emig, 1987;
1989). Assemblage C presented similar distri-
bution of Assemblage B, occasionally co-oc-
curring for tens of meters. However, while as-
semblage B was observed on both fine and
coarse sands, Assemblage C was basically re-
stricted to coarse sands (Figs. 2 and 4). This
substrate segregation responds to the neces-
sity of G. vitreus to fix to small pebbles or
shells on the surface of the sediment (Emig,
1987). In the upper slope, at 180–200 m depth,
G. vitreus formed dens aggregations with more
than 25 individuals m-2. However, these densi-
ties observed in the study area are rather low

if compared to those reported from continental
slopes exposed to intense bottom currents
(600 individuals m-2) (Emig, 1987). In this re-
gard, G. vitreus and other brachiopod occur-
rence and abundance appear to be directly re-
lated to hydrodynamic conditions (Eshleman
and Wilkens, 1979; Emig, 1987). The composi-
tion of accompanying species in coarse sands
of assemblage B and C was very similar, with
the sea pen F. quadrangularis, the polychaete
L. conchilega and the anemones C. mem-
branaceus and A. oligopodus amongst the
most abundant. A. oligopodus and L. conchi-
lega, have commonly been reported in soft
sediments of the shelf edge and continental
slope of the Mediterranean Sea (e.g. Pérès
and Picard, 1964; Emig, 1997; Michez et al.,
2014), occasionally formed high density (9 in-
dividuals m-2) aggregation in the Menorca
Channel.

The polychaete Salmacina distery (Fig. 3e) and
two unidentified sponges belonging to the
genus Hamacantha and Haliclona (Fig. 3f) char-
acterized the Assemblage D, occurring on
coarse sand scattered with cobbles and peb-
bles, at 95–140 m depth. These three species
represented 63% of all observed organisms,
and rarely exceeded densities of 1.5 individuals
m2. Despite the mixed substrate where this
assemblage was observed, the vast majority
of the organisms were associated to hard sub-
strates (e.g. the sponges P. compressa, A. aap-
tos and Pachastrella monilifera (26% of ob-
served organisms), and the gorgonians E.
cavolinii and Swiftia pallida (10% of observed
organisms). Conversely, coarse sand patches
were mainly occupied by echinoids, holothuri-
ans and polychaetes (1% of observed organ-
isms). Isolated L. phalangium were also occa-
sionally observed. The occurrence of
Assemblage D in the same transects than As-
semblages A and E (Fig. 4) (mainly in the im-
mediate proximities of outcropping rocks and
vertical walls on the shelf edge, and in areas
of dead maërl rodolyths in the proximities of
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shelf shoals) suggests that Assemblage D is a
transition between assemblages occurring on
hard substrates and those located in coarse
sand ones.

The gorgonians Eunicella cavolinii and Viminella
flagellum, the soft coral Nidalia studeri, the
small solitary coral Thalamophyllia gasti and
the incrusting sponge Hamacantha falcula
(Figs. 3g, 3h, 3i, 3j and 3k) characterized (43%
of all observed organisms) the sloping rocky
substrates (Assemblage E) from the continen-
tal shelf to the upper slope (95–340 m depth).
Despite this wide bathymetric distribution, this
coral garden assemblage (sensu Stone, 2006;
Buhl-Mortensen and Buhl-Mortensen, 2013)
mostly occurred on the shelf edge at 110–190
m depth (72% of observed sampling units),
on rocky outcrops and vertical walls near Cap

Formentor and the Menorca canyon head (Fig.
4). These environments are most likely exposed
to regular currents that may enhance food avail-
ability for the large sized passive suspension
feeders that characterize this assemblage
(Shepard et al., 1974; Balbín et al., 2012). Both
the gorgonians E. cavolinii and V. flagellum had
previously been reported as dominant species
of rocky assemblages on the Mediterranean
shelf edge (Bo et al., 2011b; Angiolillo et al.,
2014). In the Menorca Channel, both species
mostly formed mixed assemblages along with
other species (Grinyó et al., 2016), but they
can punctually form dense monospecific
patches of up to 15 colonies m-2, as also ob-
served in other areas of the Mediterranean
(Pedel and Fabri, 2011; Angiolillo et al., 2014).
N. studeri and T. gasti formed dense mono-
specific assemblages (30 colonies m-2). N. stud-
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Fig. 6. Bottom trawling fishing effort in the Menorca Channel.



eri mostly occurred on gently sloping rocky
outcrops, whereas T. gasti on steeply sloping
rocky outcrops. The incrusting sponge H. falcula
showed low maximum densities of 5 individu-
als m-2, but large dimensions (>20 cm diame-
ter), covering large areas of the rocky bottom,
and perhaps excluding other species (Fig. 3k).
Assemblage E was the most diverse of the
six macrobenthic assemblages identified in the
study area. Eighteen desmosponges were ob-
served as accompanying species (25% of all
observed organisms) mostly as scattered indi-
viduals spread throughout the transects (2.4 ±
4 individuals m2 (mean ± SD)), and only punc-
tually reaching high densities (15 individuals m-

2). Some of these sponges reached large di-
mensions (>20 cm height and width) such as
the massive Haliclona magna or the fan shaped
Phakellia robusta, P. monilifera and P. com-
pressa. Anthozoans accounted for 57% of all
observed organisms, with 22 different species.
Besides E. singularis and V. flagellum, eight
gorgonian species were also observed in this
assemblage: Acanthogorgia hirsuta, Bebryce
mollis, Callogorgia verticillata, Corallium
rubrum, Muriceides lepida, Paramuricea
clavata, P. macrospina and S. pallida. Gorgoni-
ans formed multispecific high-density patches
(~20 colonies m-2) (Grinyó et al., 2016), which
contrast with the lower gorgonian diversity in
coastal and bathyal Mediterranean zones (e.g.
Gori et al., 2011; Cartes et al., 2013). The an-
tipatharians Antipathella subpinnata, An-
tipathes dichotoma, and Leiopathes glaberrima
occurred at low densities (1–4 colonies m-2) in
mixed assemblages with gorgonians, as also
observed at similar depth in other areas of the
Mediterranean Sea (e.g. Bo et al., 2009, 2012;
Deidun et al., 2014). Finally, the recently de-
scribed soft coral Chironephthya mediterranea
(López-González et al., 2015), and Paralcyonium
spinulosum were also largely represented in
these rocky bottoms. Coral gardens are known
to provide habitat to numerous organisms
(Auster et al., 2013; De Clippele et al., 2015)
and act as nursery grounds for several fish

species (Bo et al., 2015; Etnoyer and War-
renchuk, 2007). Due to the complex three-di-
mensional structure they form, and the slow
growth of gorgonian and antipatharian species
(Sherwood and Edinger, 2009), coral gardens
are extremely vulnerable to fishing damages
(Angiolillo et al., 2015) and pollution (Silva et
al., 2015), showing extremely slow recovery
from anthropogenic impacts (Althaus et al.,
2009).

Finally, vertical rocky substrates at 95–210 m
depth were dominated by incrusting sponges
(Assemblage F), with an unidentified incrusting
sponge of the genus Rhabderemia (Fig. 3l) ac-
counting for 64% of all observed organisms
(max = 23 individuals m-2), and other incrusting
sponges representing 10% of all observed or-
ganisms. Incrusting sponges seem to be the
only organisms adapted to colonize this envi-
ronment, alternating with the conversely highly
diverse coral gardens (Assemblage E), depend-
ing on the substrate inclination.

Unlike areas of the Gulf of Lions (Pérès and
Picard, 1964; Orejas et al., 2009; Gori et al.,
2013; Fabri et al., 2014) and the Catalan margin
(Lastras et al., 2016), only a few colonies of
the cold-water coral Madrepora oculata were
observed on vertical rocky walls at 320 m
depth in the Menorca Channel. This could sug-
gest that this species might be restricted to
deeper environments in the study area (> 350
m depth), as observed in other areas of the
Mediterranean (e.g. Etiope et al., 2010; Taviani
et al., 2015).

Macrofauna biodiversity was higher on the
shelf edge, and progressively decline with
depth (Fig. 5). This diversity pattern probably
results from the synergy caused by habitat
heterogeneity and hydrodynamic conditions in
the shelf edge. Indeed, rocky outcrops and
vertical walls alternate with different grain sized
soft sediments grounds in the shelf edge.
Moreover, both passive and active suspension
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feeders may benefit from the stable environ-
mental conditions and hydrodynamic
processes that enhance particle suspension in
the near-bottom water layers on the shelf edge
(Thiem et al., 2006). It has also been suggested
that the observed increment in macrofauna di-
versity at intermediate depth may result from
the merging of species with shallower and
deeper distributions, causing a mid domain ef-
fect (Colwell and Less, 2000) as previously ob-
served for deep coral communities in the north
Pacific (Stone, 2006; Matsumoto et al., 2007).
Benthic macrofauna in general, erected and
massive sponges (Klitgaard and Tendal, 2004),
gorgonians (Maynou and Cartes, 2012), an-
tipatharians (Koslow et al., 2001) and crinoids
(Smith et al., 2000) in particular, are extremely
sensitive to bottom trawling fishing. Conse-
quently, the low trawling pressure occurring
at 100–500 m depth in the study area (Fig. 6)
may be one of the main reasons for the preser-
vation of the observed high-density and high-
diverse macrofauna assemblages on the con-
tinental shelf edge. Decades of chronic bottom
trawling on the continental shelf and edge
(Watling and Norse, 1998) have probably heav-
ily impacted and fragmented macrobenthic as-
semblages (Hall-Spencer et al., 2002), confin-
ing them to remote an inaccessible
environments (Díaz et al., 2015; Bo et al., 2015).
In this sense, the observed complexity and
high-diversity of benthic macrofauna, could
suggest how benthic community had been in
several areas of the Mediterranean continental
shelf and shelf edge, before the cumulative
impact of decades of bottom trawling fishing.
Management and conservation measures
based on the knowledge of deep benthic com-
munities composition and distribution should
aim at limiting towed bottom fishing gears over
the most sensitive areas, and establish large
protection zones to protect and ensure con-
servation of these increasingly rare macroben-
thic assemblages. Although the establishment
of these large protection zones may pose po-
tentially challenging situations amongst stake-

holders, large protection zones may have eco-
nomic benefits including the recovery of de-
graded fisheries (Pipitone et al., 2000) and the
maintenance of ecosystem services (Balmford
et al., 2002).
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ABSTRACT

Gorgonians are a key group of organisms in benthic marine communities with a wide bathymetric and
geographical distribution. Although their presence on continental shelves and slopes has been known for more
than 100 years, knowledge concerning the ecology of deep gorgonian species is still in a very preliminary stage.
To overcome this situation, gorgonian assemblages located at 40–360 m depth were studied over a large
geographical area on the continental shelf and upper slope of the Menorca Channel (Western Mediterranean
Sea). A quantitative analysis of video transects recorded by a manned submersible and a remotely operated
vehicle, were used to examine the diversity, distribution and demography of gorgonian species. Results
showed high gorgonian diversity within this depth range (a total of nine species were observed) compared to
Mediterranean coastal areas. Gorgonian assemblages on the continental shelf and upper slope were mostly
monospecific (respectively 73% and 76% of occupied sampling units contained one single species), whereas
shelf edge assemblages were highly multispecific (92% of occupied sampling units contained several species).
This contrasts with the monospecificity of Mediterranean coastal gorgonian assemblages. Gorgonian
populations on the continental shelf were mostly dominated by small colonies (88% of measured colonies)
with few intermediate and large colonies (12% of measured colonies). In deeper areas small colonies were still
dominant (60% of measured colonies), but intermediate and large colonies were much more abundant (40%
of measured colonies). This suggests high recruitment rates on the continental shelf, but perturbations
(trammel nets, long lines and strong storms) may limit the presence of intermediate and large colonies.
Conversely, on the shelf edge and upper slope a more stable environment may allow colonies to reach larger
dimensions. The identification and ecological characterization of these deep assemblages further extends the
current knowledge about Mediterranean gorgonians, and is fundamental in improving the management and
conservation of deep benthic ecosystems.
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1. INTRODUCTION

Gorgonian assemblages play an important
structural and functional role in several marine
benthic ecosystems all over the world, promot-
ing a high diversity and biomass of associated
fauna (Gili and Coma, 1998). From a structural
point of view, gorgonians act as ecosystem en-
gineers (sensu Jones et al., 1994) and founda-
tion species (sensu Dayton, 1972) forming
complex three-dimensional structures that pro-
vide a suitable habitat and refuge for numer-
ous species (Buhl-Mortensen and Mortensen,
2005; Roberts et al., 2009; De Clippele et al.,
2015). Current flow, food availability, and sedi-
ment re-suspension, vary widely within the
complex structures formed by the gorgonian
colonies, and this heterogeneity increases the
abundance and functional diversity of the as-
sociated fauna (Witherell and Coon, 2001;
Stone, 2006; Cerrano et al., 2010). From a func-
tional point of view, gorgonians promote a sig-
nificant flow of matter and energy from the
pelagic to the benthic system by capturing
plankton and suspended particulate organic
matter (Lewis, 1982; Ribes et al., 1999; Sher-
wood et al., 2008), playing a paramount role in
benthic-pelagic coupling processes and bio-
geochemical cycles (Gili and Coma, 1998;
Coma et al., 2001; Hill et al., 2014).

Knowledge about diversity, distribution, ecol-
ogy and state of conservation of gorgonian as-
semblages in coastal areas has significantly
increased in recent decades based on the re-
search carried out within the depth range of
traditional SCUBA diving (~40 m depth) (e.g.
Grigg, 1977; Yoshioka and Yoshioka, 1989;
Linares et al., 2008). Far less is known about
deep gorgonian assemblages located on the
continental shelf and slope (e.g. Mortensen

and Buhl-Mortensen, 2004; Matsumoto et al.,
2007; Salomidi et al., 2009; Stone et al., 2014),
where gorgonian presence was mostly known
due to specimens by-cached by fishermen or
withdrawn by blind destructive techniques (Re-
lini et al., 1986) for taxonomical studies
(Carpine and Grasshoff, 1975; Grasshoff, 1992).
The most recent technological development
and increased availability of remotely operated
vehicles (ROVs), manned submersibles, and
video-equipped towed gears have significantly
increased accessibility to deeper areas, allow-
ing for controlled sampling and quantitative
study of deep rocky bottoms communities
(e.g. Reed et al., 2006; Mortensen et al., 2008;
Orejas et al., 2009). Abiotic features change
considerably with depth (Bell and Barnes,
2000; Garrabou et al., 2002; Bak et al., 2005),
and the overall variability in environmental con-
ditions is dampened at greater depths (below
~100 m depth) because temperature, currents,
and other water column features are more con-
stant than in shallower areas (e.g. Puig et al.,
2000; De Mole et al., 2002; Fernández de
Puelles et al., 2007). Such stability in the main
environmental conditions could allow deep
gorgonians to grow larger and develop popula-
tions dominated by medium and large-sized
colonies (Grigg, 1975; Watanabe et al., 2009;
Gori et al., 2011b). Toppling and detachment by
strong currents or wave action is considered
one of the main causes of mortality of large
gorgonian colonies (Grigg, 1977; Weinbauer
and Velimirov, 1996; Weinberg and Weinberg,
1979). Indeed, both the environmental suitabil-
ity and stability of a habitat may be reflected
in the size structure of gorgonian and coral
populations, because the size structure re-
flects the factors affecting recruitment,
growth, and mortality rates in a particular habi-
tat for a period of time matching the longevity
of the population (Grigg, 1975; Gilmour, 2004;
Alvarado-Chacón and Acosta, 2009).

Earlier ecological studies on deep gorgonian
assemblages in the Mediterranean Sea re-
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vealed that they can reach density values as
high as those observed in littoral environments
(e.g. Bo et al., 2009; Angiolillo et al., 2014).
However, both the continental shelf and upper
slope are areas where fishing is more intense
(Watling and Norse, 1998; Hall-Spencer, 2002).
Gorgonians are among the most common
species of the by-catch of bottom trawling,
trammel nets, and long line fishing (Van Dolah
et al., 1987; Krieger, 2001; Mytilineou et al.,
2014). Since gorgonians are usually long-lived
and slow growing (Linares et al., 2007; Risk et
al., 2002; Sherwood and Edinger, 2009), fish-
ing impacts can have far-reaching and long-last-
ing effects (Althaus et al., 2009). Consequently,
deep gorgonian assemblages located on the
continental shelf and upper slope are nowa-
days highly threatened by fishing activity (Hall-
Spencer et al., 2002), and knowledge about
their diversity, distribution and state of conser-
vation is urgently needed to implement effec-
tive management and conservation measures
of deep benthic ecosystems. 

To this purpose, the aims of this study were:
(1) to characterize the diversity and quantify
the abundance of gorgonians forming Mediter-
ranean gorgonian assemblages on a large area
of the continental shelf and upper slope at 40–
360 m depth (2) to assess the geographical
and vertical distribution patterns of the ob-
served species; (3) to appraise their population
size structure, and (4) to gain insight into the
possible factors affecting their abundance and
distribution.

2. MATERIAL AND METHODS

2.1 Study area

The Menorca Channel is located in the West-
ern Mediterranean Sea between Mallorca and

Menorca Islands (39° 53’ 0.73” N, 3° 29’
51.16” E) (Fig. 1a), as part of the Balearic
Promontory (Acosta et al., 2002). The continen-
tal shelf in this area extends between 40 and
~110 m depth, and is largely covered by maërl
alternating with patches of coastal detritic sed-
iments and coralligenous outcrops (Barberá et
al., 2012). Conversely, smooth reliefs and large
extensions of detritic sediments with few iso-
lated patches of outcropping rocks characterize
most of the shelf edge and continental slope.
Only near Cap Formentor (Fig. 1b) and in the
Menorca Canyon (Fig. 1c) sharply edged rock
outcroppings and rocky vertical walls are the
dominant substrates.

The northern shelf edge and continental slope
of the study area is mainly influenced by the
Balearic Current (Balbín et al., 2012) and its as-
sociated front (Ruiz et al., 2009), which originates
from a branch of the Liguro-Provençal-Catalan
current, flowing northward over the continental
slope of the Balearic archipelago at ~200 m
depth (López García et al., 1994; Ruiz et al.,
2009). Secondary currents flow northward
from the Algerian subbasin entering the Balearic
subbasin and feed the Balearic current (Alemany
et al., 2006; Amores et al., 2013). Conversely,
the southern shelf edge and upper slope is
not influenced by a steady current (Amores
and Montserrat, 2014), but by the sporadic
arrival of mesoscale structures detached from
the Algerian Current and the Almería-Oran
front (Millot, 1987; García et al., 2005). 

2.2 Sampling procedure

A total of 73 video transects (Fig. 1a) were
recorded during five surveys conducted on
board of the R/V “García del Cid” (September
2010, April 2011, October 2011, June 2012) and
the R/V “Miguel Oliver” (August 2011). During
the first two surveys, 20 video transects were
recorded with the manned submersible JAGO
(IFM-GEOMAR), whereas 53 video transects
were recorded with the ROV NEMO (Gavin
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Newman) during the last three campaigns.
Both instruments were equipped with a 1080
horizontal line resolution camera, a grabber
and two parallel laser beams which provided a
scale to define a fixed width of the transects
(0.3 m) during the subsequent video analysis.
Transects were recorded in a close-zoom
(~0.5-1.5 m width of view) and in a digital for-
mat. Positioning of JAGO and NEMO was
achieved with underwater acoustic positioning

system (LinkQuest TrackLink 1500 HA). Both
JAGO and NEMO moved at a constant speed
of ~0.3 knots, and transect lengths ranged be-
tween 309 and 2375 m, over depths ranging
from 52 to 347 m. Transects were haphazardly
located in order to cover the whole study area,
but areas showing morphological features pos-
sibly related to the presence of rocky bottoms
were explored more intensively (Fig. 1). Over-
all, a total of 57.8 km was video recorded along
the seabed.

In order to confirm the taxonomic identification
of the species observed in the video-transects,
voucher colonies of gorgonian species ob-
served along the transects were also col-
lected. Colonies were fixed and preserved in
10% formalin until analyzed in the laboratory.

2.3 Video analysis

Quantitative video analysis was performed ac-
cording to the methodology described in Gori
et al. (2011a) using Apple’s Final Cut Pro soft-
ware. All the pauses in the movement of the
JAGO or NEMO were removed from the
footage, in order to correctly estimate the
length in each transect, and those sequences
with poor image quality or too far away from
the seafloor were considered unsuitable for
analysis. The remaining useful sequences com-
prised 94.6% of the total recorded material
and corresponded to a total distance of 54.7
km. Every gorgonian observed within a width
of 0.3 m (based on the laser beams) along
each video transect was identified with a time
reference derived from the time elapsed since
the beginning of the video transect to the
crossing of the laser beams with the base of
the colony (Gori et al., 2011a). This time refer-
ence was posteriorly converted into position
along the transect according to known velocity
P = t · v , where t is the time reference ex-
pressed in seconds, and v is the velocity ex-
pressed in meters per second). A similar
procedure was used to characterize seabed
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Fig. 1. The study area. (a) Three-dimensional bathym-
etry of the Menorca Channel: the map shows the lo-
cation of the video transects (1 to 73) and the location
of the study area in the western Mediterranean. De-
tail of the (b) northern and (c) southern subareas.
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Forementor



substrate types and slope along every tran-
sect, within the same width of 0.3 m. Seabed
substrate type was classified (based on the
Wentworth scale) into four categories: sand to
gravel, cobbles and pebbles, maërl, and rock.
Seabed slope was classified into three cate-
gories: horizontal (0º–30º), sloping (30º–80º)
and vertical (80º–90º); slope was estimated
from the video by looking at the two parallel
laser beams and the depth sensor (Gori et al.,
2011a; Ambroso et al., 2013).

To study population size structure, the maxi-
mum height of each observed gorgonian
colony was measured using the Macnification
2.0.1 software (Schols and Lorson, 2008) on
still images extracted from recorded footage.
The distance from the two lasers beams was
used to calibrate the images. Measurements
were done on still images in which the colony
base was in the same plane as the laser
beams, while the colony lied perpendicular to
the video (Gori et al., 2011b). This methodolog-
ical constraint entails that only a subsample of
observed gorgonians could be measured for
the study of population size structure (81% of
the total observed colonies, 63%–100% of the
colonies in each transect).

2.4 Species identification

Identification of the observed species was
based on the existing taxonomic works on At-
lanto-Mediterranean gorgonians (Carpine and
Grasshoff, 1975; Grasshoff, 1992), and con-
firmed by the examination of the voucher spec-
imen collected (see section 2.2), looking at the
colonial branching pattern, the distribution and
shape of calyces and polyps along branches,
as well as the shape and size of sclerites. For
this purpose, small fractions of the sampled
colonies were placed in a sodium hypochlorite
solution until organic matter was dissolved and
sclerites disaggregated. Sclerites were rinsed
with distilled water, and observed under a
stereoscope (Olympus SZ-60). Three Para-

muricea macropsina (Koch, 1882) chromatic
morphotypes were differentiated in the video,
two chromatic morphotypes on the continental
shelf (M1, M2) and a third one on the shelf
edge (M3) (more details in Grinyó et al. (sub-
mitted) (Figs. 2c, d and e).

2.5 Data treatment

2.5.1 Gorgonian occupancy and abundance

To quantify gorgonian occupancy (frequency of
occurrence in the set of sampling units) and
abundance (number of colonies per sampling
unit), and examine the species composition of
gorgonian assemblages within the study area,
each transect track was divided into a string of
2 m2 (0.3 m width and 6.66 m long) sampling
units, using ArcMap 10.1 software (ESRI Ar-
cGIS ArcInfo v10). Such sampling unit size was
chosen as representative of Mediterranean oc-
tocorals on rocky substrate (based on Wein-
berg, 1978), as well as to allow a comparison
with previous studies on shallow gorgonian
and coral species (Gori et al., 2011a; Ambroso
et al., 2013). A total of 8221 sampling units
were obtained from the 73 transects, corre-
sponding to a total area of 0.016 km2. Each
sampling unit was characterized by the number
of colonies of each gorgonian species, as well
as by its depth and coverage percentage for
each substrate and slope type. For each gor-
gonian species, occupancy and abundance
were quantified. Gorgonian assemblages were
assessed based on species composition using
a non-metric multidimensional scaling ordina-
tion (nMDS) of the sampling units, with gor-
gonian abundances square root transformed,
and ordination by a Bray-Curtis similarity ma-
trix. Adonis permutation multivariate analysis
of variance and subsequent pairwise tests
were used to test for significance of differ-
ences in gorgonian assemblages based on
depth: continental shelf (40–100 m depth),
shelf edge (100–180 m depth), upper slope
(180–360 m depth), as well as substrate type
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(sand to gravel, cobbles and pebbles, maërl
and rock), and slope (horizontal, sloping and
vertical). Dominant substrate and slope type
was assigned to each sampling unit for this
analysis. Ordination and permutation multivari-
ate analysis of variance and subsequent pair-
wise tests were performed using the
r-language functions metaMDS and adonis, re-
spectively, which are available in the vegan li-
brary (Oksanen et al., 2015) of the R software
platform (R Core Team 2014). The adonis test
was performed considering depth, substrate
and slope simultaneously. Additionally, a simi-
larity percentage procedure analysis (SIMPER,
Clarke and Warwick, 1994) was performed to
identify which gorgonian species contributed
the most to the different assemblages consid-
ering the previously mentioned environmental
features using the software PRIMER v6 (Clarke
and Warwick, 2001).

2.5.2 Geographical and vertical distribution

Geographical distribution of each species in
the study area was studied by mapping the ob-
served density on a geographically referenced
map using GIS (ESRI ArcGIS ArcInfo v10). Ver-
tical distribution of each species was studied
grouping sampling units in 20 m depth inter-
vals (based on their depth), and estimating the
median (first and third quartile, and the range
between minimum and maximum values) of
gorgonian density in each depth interval.

2.5.3 Population size structure

Size structure of gorgonian populations was
analyzed in terms of descriptive statistics using
distribution parameters such as skewness and
kurtosis. Skewness is a measure of the sym-
metry of a distribution using its mean, reflect-
ing the proportion of small versus large
colonies in a gorgonian population. If skew-
ness is significant (p<0.05) population size
structure is asymmetrical. Positive skewness
denotes the prevalence of small size colonies,

while negative skewness denotes the domi-
nance of large size colonies in the population.
Kurtosis is a measure of the peakedness of a
distribution near its central mode. A significant
kurtosis value (p<0.05) indicates longer tails
than would be expected for a normal distribu-
tion, and therefore a particular colony size pre-
vails in the population. Skewness and kurtosis
were calculated by means of the r-language
functions agostino.test (Komsta and
Novomestky, 2012) and anscombe.test
(Anscombe and Glynn, 1983), which are avail-
able in the moments library of the R software
platform. Only populations with more than 40
colonies were studied for their population size
structure in order to perform meaningful skew-
ness and kurtosis estimates.

2.5.4 Relationship with environmental
features

Relationships between gorgonian abundances
and depth, substrate type and slope were ex-
plored by means of canonical correspondence
analysis (CCA), using the ordination software
Canoco 4.5 (ter Braak and Smilauer, 2002). For
this analysis, each sampling unit was charac-
terized by its depth and the percentage cover-
age of each substrate and slope type.
Gorgonian’s abundance was log transformed,
and the statistical significance of the species-
environment relationship was evaluated using
Monte Carlo permutation test using 999 unre-
stricted permutations.

2.5.5 Spatial structure

Finally, spatial structure in the distribution of
one gorgonian species respect to the others
was analyzed along 3 of the video transects,
chosen in order to be representative of the as-
semblages identified in the study area. Abun-
dance of each gorgonian species along the
transects was displayed in density plots, ob-
tained by transforming each transect into a
string of contiguous quadrats (0.2 x 0.3 m) and
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counting the number of colonies of each
species inside each quadrat. Spatial covariance
between pairs of species was analyzed with
the Three-Term Local Quadrat Covariance
(3TLQC) function, using the Passage 2.0 soft-
ware (Rosenberg, 2008). In the 3TLQC, the
variance as a function of block size for species
A (Var A), specie B (Var B), and the combined
number (Var A+B) (Cov=Var A+B-Var A-Var B)

is examined (Dale, 1999). To test the null hy-
pothesis of an independent distribution of one
species with respect to the other along each
transect, randomized transects were generated
for comparison by randomly permuting the “la-
bels” (species A or B) of all the observed
colonies along each transect. For statistical sig-
nificance (95% confidence interval) the values
at the limit of 2.5% tails of 999 of these ran-

Fig. 2. Studied species images. (a) Eunicella singularis, (b) Paramuricea clavata, (c) Paramuricea macrospina mor-
photypes (M1), (d) M2, (e) M3, (f) Eunicella cavolinii, (g) Viminella flagellum, (h) Acanthogorgia hirsuta, (i) Callo-
gorgia verticillata, (j) Swiftia pallida, (k) Bebryce mollis. Scale Bar: 10 cm.



domizations was used. In the produced plots
of covariance as a function of block size, posi-
tion of a significantly positive deviated sample
statistic from the bounds of the confidence in-
terval (peaks) indicates the scale of any positive
association (attraction) between species,
whereas significant negative deviations (val-
leys) indicate the scale of any negative associ-
ation (repulsion) (Dale, 1999).

3. RESULTS

3.1 Gorgonian occupancy and abundance

A total of 7802 colonies of nine gorgonian
species (Fig. 2) were observed along all tran-
sects (Table 1), occurring in 18.9% of the 8220
sampling units. Overall, P. macrospina was the
most abundant and frequent species, with its
three morphotypes representing 44% of ob-
served colonies present in 6.8% of the sam-
pling units. Eunicella cavolinii (Koch, 1887) was
the second most abundant and the third most
frequent species, whereas Eunicella singularis
(Esper, 1791) was the third most abundant and
the second most frequent species. Swiftia pal-
lida Madsen, 1970 and Viminella flagellum
(Johnson, 1863) were the fourth and fifth most
abundant and frequent species. The other
species accounted for less than 2% of the ob-
served colonies, occurring in less than 1% of
the sampling units.
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Two major groups could be identified in the
nMDS, one represented by sampling units
from the continental shelf covered by rock and
maërl and presenting an horizontal inclination,
and a second one formed by sampling units on
the shelf edge and upper slope mostly covered
by rock and presenting a flat or sloping inclina-
tion (Fig. 3). 

Permutation multivariate analysis of variance
and subsequent pairwise test revealed that for

all environmental categorizations gorgonian as-
semblages were significantly different
(p<0.001) from one another. The SIMPER
analysis showed an average similarity in
species composition that ranged from 17.89%
to 31.68% (Table 2). The number of species
contributing up to 90% of the similarity varied
between two to four (Table 2). E. singularis
dominated assemblages located on the conti-
nental shelf as well as those located on rocky
and horizontal sampling units (Table 2). E.
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Depth-range
Sampling Units

Species 
Occupancy Abundance

Mean
density

± SD
Max

density

Nº with
gorgonians (%) Nº (%) Nº (%) (colonies ·

m-2)
(colonies ·

m-2)

Continental
shelf

(40 - 100 m)

2723 735 (27) E. singularis 357 (48.5) 966 (23.0) 1.2 ± 1 7.5

P. clavata 22 (3.1) 48 (1.1) 1.1 ± 0.8 3

P. macrospina M1 292 (39.7) 1899 (44.0) 3.2 ± 5 33

P. macrospina M2 208 (29.0) 1370 (32.0) 3.6 ± 3.9 18.5

Shelf edge
(100 - 180 m)  

3338 751 (22.5) P. clavata 10 (1.3) 16 (0.5) 1.2 ± 1 3.0

P. macrospina M1 3 (0.4) 4 (0.1) 0.7 ± 0.3 1.0

P. macrospina M2 7 (0.9) 11 (0.3) 0.8 ± 0.7 2.5

P. macrospina M3 51 (6.8) 149 (4.6) 1.5 ± 1.7 9.0

E. cavolinii 308 (41.0) 1768 (55.1) 2.9 ± 2.7 24

V. flagellum 65 (8.7) 425 (13.2) 3.2 ± 5.4 27.5

A. hirsuta 17 (2.3) 34 (1.1) 1.0 ± 1.0 4.5

C. verticillata 102 (13.6) 102 (3.2) 1.0 ± 0.9 5

S. pallida 141 (18.8) 606 (18.9) 2.1 ± 2.6 13

B. mollis 47 (6.3) 93 (2.9) 1.0 ± 1.0 5.5

Upper slope
(180 - 360 m)

2159 75 (3.5) E. cavolinii 8 (10.6) 16 (5.1) 1.0 ± 0.9 3

V. flagellum 19 (25.3) 118 (37.9) 3.1 ± 4.5 17

C. verticillata 23 (30.7) 32 (10.3) 0.7 ± 0.3 1.5

S. pallida 23 (30.7) 79 (25.4) 1.6 ± 2.8 14

B. mollis 26 (34.2) 66 (21.2) 1.2 ± 0.8 3

Table 1. Gorgonian occupancy and abundance in the study area. Occupancy (frequency of occurrence in the set of
sampling units) is given for each bathymetric range and species; abundance (number of colonies); mean and
maximum density of each species is given per each bathymetric range.



cavolinii was especially relevant on assem-
blages located on the shelf edge as well as on
sloping and vertical rocky outcrops (Table 2).
Bebryce mollis Phillipi, 1842 dominated as-
semblages located in the upper slope,
whereas P. macrospina M1 on those located
on maërl beds, and V. flagellum dominate in
vertical rocky bottoms (Table 2).

3.2 Geographic and vertical distribution

Only three species were observed on the con-
tinental shelf of the study area, P. macrospina
(M1, M2), E. singularis and Paramuricea
clavata (Risso, 1826) (Fig. 4, Table 1). P.
macrospina (M1, M2) and E. singulairs were
the most frequent species scattered over the
continental shelf (Fig. 4) at 65–100 m and 52–
88 m depth, respectively (Fig. 5). Both morpho-
types of P. macrospina were much more
abundant in terms of colony number than E.
singularis (Table 1). Conversely, P. clavata was
only found on the continental shelf in two low-
density patches on coralligenous banks at 67–
92 m depth, and few colonies on the shelf
edge at 109–120 m depth (Figs. 4 and 5). The
shelf edge and upper slope were much more
diverse than the continental shelf in terms of
species richness. In this depth range, gorgon-
ian assemblages were highly localized in the
areas dominated by rocky outcrops and vertical
walls near Cap Formentor and in the Menorca
Canyon (Fig. 4). E. cavolinii was the most fre-
quent and abundant species of the shelf edge,
with the highest abundances concentrated at
100–160 m depth, together with P. macrospina
M3 (Figs. 4 and 5). V. flagellum, S. pallida, C.
verticillata were also abundant on the shelf
edge, but extended their distribution beyond
240 m depth, with one colony of S. pallida ob-
served at 324 m (Figs. 4 and 5). Acanthogorgia
hirsuta Gray, 1857 was the species showing
the most restricted distribution, occurring in
few locations of the shelf edge at 149–176 m
depth (Fig. 5). B. mollis extended its distribu-
tion from the shelf edge to the upper slope,

where it was the most frequent species, fol-
lowed by C. verticillata and V. flagellum (Table
1). V. flagellum was the most abundant species
in the upper slope, followed by S. pallida, B.
mollis and C. verticillata (Table 1). Finally, some
colonies (~20) of the precious coral, Corallium
ruburm, were observed at 80–120 m depth,
whereas only few isolated colonies were seen
below 150 m depth. 

3.3 Population size structure

Overall, the maximum height of 81% of all the
observed colonies was measured  (63–100%
of the colonies in each transect).  All the ana-
lyzed populations, indistinctively of the
species, were unimodal (Figs. 6a and b). Most
populations of P. macrospina M1, V. flagellum
and the only analyzed population of C. verticil-
lata were positively skewed, indicating the
dominance of small colonies (Figs. 6a, b and
Table 3). Conversely, most population of P.
macrospina M2, E. cavolinii, S. pallida and all
the E. singularis populations were not skewed,
being dominated by medium sized colonies
(Figs. 6a, b and Table 3). One of the two-stud-
ied populations of P. macrospina M3 was pos-
itively skewed (Fig. 6b, Table 3). All the P.
macrospina M1 populations showed signifi-
cant kurtosis (Table 3), indicating that they
were slightly more peaked or over-centralized
than normal distributions. Conversely, only a
few populations showed significant kurtosis in
the other species (Table 3). The shrub-like mor-
phology, and the densely intertwined branches
of B. mollis did not allow the study of popula-
tion size structure in this species.

3.4 Relationship with environmental features

Depth, substrate and slope explained ~20.8%
of the total inertia (i.e. explained variation of
the data) in the CCA, with the first two axis ac-
cumulating 17.1% of the species variances,
and 82.3% of the species-environment relation
variance (Fig. 7). According to the Monte Carlo
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Depth range Species Sim/SD Contribution% Cum. Contribution% 

Continental shelf: 22.43% E. singularis 0.48 60.33 60.33

P. macrospina M1 0.34 24.59 84.92

P. macrospina M2 0.25 14.86 99.79

Shelf edge: 21.45% E. cavolinii 0.65 78.43 78.43

S. pallida 0.25 14.70 93.14

Upper slope: 17.89% B. mollis 0.33 38.55 38.55

C. verticillata 0.26 24.83 63.38

S. pallida 0.27 23.30 86.68

V. flagellum 0.21 12.13 98.81

Bottom type Species Sim/SD Contribution% Cum. Contribution% 

Rock: 18.63% E. singularis 0.37 54.89 54.89

E. cavolinii 0.33 32.61 87.50

S. pallida 0.12 3.68 91.19

Cobbles and pebbles: 17.67% S. pallida 0.42 60.77 60.77

E. cavolinii 0.21 14.08 74.85

P. macrospina M1 0.16 10.86 85.70

B. mollis 0.15 9.93 95.64

Maërl: 28.68% P. macrospina M1 0.62 60.20 60.20

P. macrospina M2 0.42 33.55 93.75

Seabed Slope Species Sim/SD Contribution% Cum. Contribution% 

Horizontal: 18.11% E. singularis 0.35 49.09 49.09

P. macrospina M1 0.28 25.11 74.19

P. macrospina M2 0.29 14.93 89.13

E. cavolinii 0.15 7.12 96.25

Slopping: 19.66% E. cavolinii 0.50 66.28 66.28

B. mollis 0.17 9.94 76.22

S. pallida 0.17 9.26 85.48

V. flagellum 0.17 7.03 92.51

Vertical: 31.68% E. cavolinii 0.56 53.09 53.09

V. flagellum 0.51 44.75 97.84

Table 2. SIMPER analysis. Species that belong to the similarity group of 90% of cumulative contribution are present.
Percentages in bold letters are the average similarity values for each category.
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Fig. 5. Vertical distribution. E. singu-
laris, P. clavata, P. macrospina (M1,
M2, M3), E. cavolinii, V. flagellum, A.
hirsuta, C. verticillata, S. pallida, and B.
mollis distribution is represented along
the studied bathymetric range based
on sampling unit density. Black square
indicates the median value; the box in-
dicates the first and third quartiles; and
the line indicates the range between
minimum and maximum values. Gray-
scale histograms represent the total
number of sampling units for each sub-
strate type (see legend) over the stud-
ied bathymetric range. The numbers
on the right indicate the percentage of
sampling units with a certain species
presence (n = number of colonies).
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permutation test, the three factors contributed
significantly (p<0.001) to the ordination. Depth
clearly segregates gorgonians found on the
continental shelf (P. macrospina M1 and M2,
E. singularis, P. clavata) from those from the
shelf edge and continental slope (P.
macrospina M3, V. flagellum, E. cavolinii, S. pal-
lida, B. mollis, C. verticillata, and A. hirsuta). On
the continental shelf, P. macrospina M1 and
M2 were mainly associated with horizontal
maërl beds, whereas E. singularis and P.
clavata with rocky bottoms (Fig. 7). On the
shelf edge and continental slope, E. cavolinii
and P. macrospina M3 were mainly associated
with sloping rocky bottoms. At increasing
depth V. flagellum, S. pallida, C. verticillata, and
A. hirsuta were also mainly associated with
sloping bottoms (Fig. 7). Finally, B. mollis was
the species most strongly associated with
highest depths (Fig. 7).

3.5 Spatial structure

Spatial structure of gorgonian distribution was
analyzed along three of the video transects
(Fig. 8), representative of the continental shelf
(transect 30) and slope (transects 4 and 6). On
the continental shelf, E. singularis was posi-
tively associated with P. macrospina M1 at
large spatial scales (more than 30 m), whereas
they were independently distributed at smaller
scales (Fig. 8, Table 4). E. singularis was nega-
tively associated to P. clavata at small scales
(less than 5 m) and tended to be independently
distributed at large and intermediate scale. P.
clavata was independently distributed with re-
spect to P. macrospina at all scales (Fig. 8 and
Table 4). On the continental slope, in transect
4, all species were independently distributed
at small and medium scales (few to tens of
meters) (Fig. 8 and Table 4). At larger spatial
scales (more than 30 m), C. verticillata, S. pal-
lida and E. cavolinii were positively associated,
whereas V. flagellum occurred in exclusion to
the other species (Fig. 8, Table 4). In transect
6, E. cavolinii, P. macrospina M3, V. flagellum

and B. mollis were positively associated at
large spatial scales (more than 30 m) (Fig. 8
and Table 4). A. hirsuta tended to be independ-
ently distributed at small (less than 30 m) and
large spatial scale (more than 30 m) (Fig. 8 and
Table 4). E. cavolinii presented no association
with B. mollis and V. flagellum, and the same
situation was found for P. macrospina M3
when compared to A. hirsuta. 

4. DISCUSSION

The diversity of the studied deep gorgonian as-
semblages was much higher than in shallow
Mediterranean coastal areas (Weinberg, 1978;
Linares et al., 2008; Gori et al., 2011a). Nine
species were observed to dwell between 40
and 360 m depth within the study area, while
only 4–5 species are commonly present in lit-
toral areas (Velimirov, 1973; Gori et al., 2011a;
Garrabou et al., 2001). Gorgonian diversity re-
sembled that reported of Atlantic coastal areas
(Cúrdia et al., 2013), subtropical areas
(Opresko, 1973) and similar depth ranges in
the Aleutian Islands (Stone, 2006). Conversely,
gorgonian density observed in these deep mul-
tispecific assemblages reached high values
(~20 colonies m-2) comparable to those re-
ported for Mediterranean coastal species
(Weinbauer and Velimirov, 1996; Linares et al.,
2008; Gori et al., 2011a). These high density
values are similar to those found in temperate
(Grigg, 1975; 1977; Cúrdia et al., 2013) and
tropical (Lasker and Coffroth, 1983; Yoshioka
and Yoshioka, 1989) coastal gorgonian assem-
blages, and clearly exceed those found at sim-
ilar depths (180–500 m) in the North Atlantic
(Mortensen and Buhl-Mortensen, 2004; Buhl-
Mortensen et al., 2014), and polar continental
shelves and slopes (Orejas et al., 2002; Miller
et al., 2012).
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frequency distribution (tran-
sect number as in Fig. 1 and
Table 3, depth range, n =
number of colonies).



However, the observed high gorgonian diver-
sity was mainly concentrated on the shelf
edge (100–180 m depth). A clear vertical zona-
tion can be established regarding species dis-
tribution: (1) coastal species extending their
distribution to deep coralligenous banks (E. sin-

gularis and P. clavata); (2) dominance of one
single species on the continental shelf (P.
macrospina); (3) concentration of several gor-
gonian species on the shelf edge (E. cavolinii,
P. macrospina, S. pallida, A. hirsuta, V. flagel-
lum, B. mollis and C. verticillata); and (4)
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quency distribution (transect number as in Fig. 1 and Table 3, depth
range, n = number of colonies).



species extending their distribution deeper into
the upper slope (B. mollis, C. verticillata, V. fla-
gellum and S. pallida). 

The common Mediterranean coastal species E.
singularis and P. clavata were found on deep
coralligenous banks on the continental shelf of
the studied area (45–100 m depth). The high
water transparency allows a very deep distribu-
tion of coralligenous banks (Ballesteros and Za-
bala, 1993), which in turns could explain the
deep distribution of E. singularis within the
study area (down to 100 m depth). In coastal
environments characterized by high water tur-
bidity, this species is limited to 70 m depth
(Gori et al., 2011a). In the study area continental
shelf both species’ density was much lower

than that reported in shallow coastal environ-
ments (Linares et al., 2008; Gori et al., 2011a).
This could indicate that these species’ deep ba-
thymetric limit lies around this depth, according
to our data. Interestingly, the observed colonies
of E. singularis presented the same morphol-
ogy as the deep asymbiotic morphotype re-
ported in coastal environments below 40 m
depth (Théodor, 1969; Gori et al., 2012). These
populations were dominated by medium sized
colonies, corresponding to what has been ob-
served in deep coastal environments (60 m
depth) (Gori et al., 2011b). Conversely, in shal-
low coastal environments (20 m depth) these
species populations are mainly composed of
small colonies (Linares et al., 2008). Popula-
tions of P. clavata extending beyond 40 m have
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Transect Number Compaired species Negative Random Positive

30 P. macrospina M1 vs. E. singularis 0-30 // 55-75 30-55 // >75
P. macrospina M1 vs. P. clavata All transect

P. clavata vs. E. singularis 2-5 >5
4 C. verticillata vs. E. cavolinii 0-50 >50

C. verticillata vs. S. pallida 0-5 >5
C. verticillata vs. V. flagellum >55 0-55

E. cavolinii vs. S. pallida 0-50 >50
E. cavolinii vs. V. flagellum >34 0-34
S. pallida vs. V. flagellum >48 0-48

6 A. hirsuta vs. B. mollis 30-60 0-30 // >60
A. hirsuta vs. E. cavolinii 11-20 0-11 // 20-40 >40

A. hirsuta vs. P. macrospina M3 All transect
A. hirsuta vs. V. flagellum 30-65 0-30 // >65
B. mollis vs. E. cavolinii All transect

B. mollis vs. P. macrospina M3 20-30 0-20 // >30  
B. mollis vs. V. flagellum 11-20 0-11 // 20-32 >32

E. cavolinii . P. macrospina M3 0-35 >35
E. cavolinii vs. V. flagellum All transect

P. macrospina M3 vs. V. flagellum 12-22 0-12 //  22-60 > 60

Table 4. Summary of the three-term local quadrat covariance (3TLQC). Significant spatial covariance between pairs
of species along the three analyzed transects.



also been reported in several coastal areas
(Gori et al., 2011a; Angiolillo et al., 2015), as well
as on top of seamounts (Bo et al., 2011) and on
rocky bottoms of the continental shelf and
slope (Bo et al., 2012, 2014). In these deep en-
vironments, P. clavata colonies generally
achieve larger sizes (50 ± 15 cm (mean ± SD),
min = 25 cm, max = 90 cm) than in shallower
environments (Linares et al., 2008), as a possi-
ble consequence of the higher environmental
stability of deeper areas (Grigg, 1975). Deep
populations of E. singularis and P. clavata are
probably protected from high hydrodynamic
processes (Teixidó et al., 2013) as well as from
unusually high-temperature conditions associ-
ated to mass mortality events in shallow ben-
thic communities (Garrabou et al., 2009).

Maërl beds on the continental shelf of the
studied area are covered by very high abun-
dances of P. macrospina (M1 and M2). In this
environment this species presents high fre-
quency of occurrence over large areas (Figs. 4
and 8) and can reach densities of up to 33
colonies m-2, which is at odds with previous
data on this species, having been only re-
ported on rocky substrates and never as a
dominant species (Bo et al., 2011; Topçu and
Öztürk, 2015). Preservation of these P.
macrospina populations may be a conse-
quence of low trawling pressure over large
areas of the continental shelf (Moranta et al.,
2014), as well as the habit of local artisanal fish-
ermen to clean their nets in situ (Díaz et al.,
2015). This habit consists of releasing by-catch
over the same fishing grounds. This practice
might result in partial damage of entangled
colonies of P. macrospina, but as long as their
holdfast remains attached to the maërl rodho-
lite, their survival might be favored (Díaz et al.,
2015). Population size structures of P.
macrospina were mostly asymmetrical and
positively skewed (Table 4), suggesting high re-
cruitment rates (Linares et al., 2008) and im-
plying that maërl beds are particularly suitable
habitats for this species. However, unlike E.

singularis and P. clavata that occur on corallige-
nous banks, the structural instability of maërl
may limit the presence of large colonies of P.
macrospina in the continental shelf (Tunnicliffe
and James, 1983). Furthermore, fishing activi-
ties might be particularly detrimental to large
colonies, which are probably more susceptible
than smaller colonies to get entangled and bro-
ken by nets used by artisanal fishermen in the
area. Indeed, populations dominated by small
colonies have been reported in intensely fished
areas (Althaus et al., 2009).

Highest gorgonian diversity was concentrated
on the rocky bottoms of the shelf edge (at
100–180 m depth). In this environment, gor-
gonian assemblages were mostly multispecific
(92% of occupied sampling units contained
several species) and included seven of the nine
observed species (Figs. 4 and 5). This diversity
is probably influenced by the joint effect of
habitat heterogeneity and hydrodynamic sta-
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Fig. 7. Canonical correspondence analysis (CCA):
biplot showing the ordination of gorgonian species
and the roles of the significant environmental
variables. M: maërl, CSP: cobbles and pebbles and R:
rocky substrates.
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bility. In the study area’s shelf edge, boulders,
slaps and vertical walls alternate over short dis-
tances. Shelf edge environmentsare mainly in-
fluenced by steady flow currents and stable
hydrodynamic conditions (e.g. Puig et al.,
2000), such as the Balearic current associated
with the Balearic front, which flows from south
to north along the western shelf edge of the
Balearic Promontory (Ruiz et al., 2009). Stable
hydrodynamic conditions, together with the
hydrodynamic processes that increase particle
suspension in the near-bottom water layers,
may also suppose enhanced food availability
for gorgonians on the shelf edge (Thiem et al.,
2006). Finally, the observed increase in gorgon-
ian diversity on the shelf edge could also result
from the merging of species with shallower
and deeper distributions, causing a mid-do-
main effect (Colwell and Lees, 2000), as previ-
ously suggested for deep coral diversity in
other locations (Stone, 2006; Matsumoto et
al., 2007). Most gorgonian populations located
on the shelf edge had a bell-shaped, unimodal
size structure dominated by medium sized
colonies (Figs. 6a and b). P. macrospina (M3)
populations on the shelf edge were bell-
shaped, in contrast to its populations on the
continental shelf (M1 and M2) that were
mostly dominated by small size colonies.
When compared to maërl, rocky substrates
provide higher structural stability allowing
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colonies to achieve larger sizes. In these mul-
tispecific gorgonian assemblages of the shelf
edge, the fine scale spatial covariance of
species appears to be related to the combined
effect of density, occupancy, and colony size.
When a large species such as V. flagellum
achieves high-densities over extended areas, it
tends to exclude any other species (Fig. 8).
Conversely, coexistence is observed at low
and intermediate densities among large (C.
verticillata), medium (E. cavolinii) and small
sized species (S. pallida). This could indicate
that differences in size may reduce interspe-
cific competition for space and food (Schoener,
1974). Species with similar size probably feed
on the food particles that are transported by
the same water layer, with a potential compe-
tition for food (Kim and Lasker, 1997). Con-
versely, species with different size are probably
feeding on different water layer, thus avoiding
potential shading processes. Coexistence at
medium spatial scales (~30 m) may also occur
at low and intermediate densities among
species of similar size and morphology (E.
cavolinii and A. hirsuta). In this case, however,
spatial exclusion occurred at smaller scales
(~10 m), suggesting that these species share
the same habitat but partially compete for
space.

Overall, the species dwelling on the shelf edge
within the study area, have been recently
found with increasing frequency on rocky sub-
strates at similar depths in other areas of the
Mediterranean Sea (Bo et al., 2009; 2011;
2012; 2014), suggesting the general validity of
the observed pattern of high gorgonian diver-
sity.

Below the shelf edge, gorgonian abundance
strongly decreases, and only B. mollis, S. pall-
ida, V. flagellum and C. verticillata were ob-
served to extend their distribution under 200
m depth (Fig. 4). Gorgonian assemblages are
here mainly monospecific, (76% of occupied
sampling units contained one single species)

and with low densities (~0.75 ± 0.3 colonies
m2 (mean ± SD)). These species are typically
found along the continental slope in other
Mediterranean locations (Mytilineou et al.,
2014; Deidun et al., 2014; Bo et al., 2015)
where they mostly concentrate along the
edges, maximizing their exposure to currents
(Genin et al., 1986). On the scarce rocky sub-
strates occurring in these deeper environ-
ments, gorgonian abundance tends to
decrease with increasing depth, and an-
tipatharians become the dominant arborescent
species (Deidun et al., 2014; Bo et al., 2015).
Finally, the soft sediments of these deeper en-
vironments can be colonized by the bamboo
coral Isidella elongata (Maynou and Cartes,
2012; Bo et al., 2015), which can form ex-
tended assemblages in bathyal muds (Pérès,
1967).

Due to their arborescent morphology, gorgoni-
ans are especially vulnerable to fishing activi-
ties (Mytilineou et al., 2014; Bo et al., 2014),
and their slow growth rate (Coma et al., 1998;
Sherwood and Edinger, 2009) makes their re-
covery from related fishing damages very slow
(Althaus et al., 2009). The high diversity and
abundance of deep gorgonian assemblages in
the rocky areas of the shelf edge, and the vast
area covered by high densities of P. macrospina
on the continental shelf are probably related to
the low trawling pressure and the exceptional
fishing practices exerted by local artisanal fish-
ermen. This represents an example of the pos-
sibility of conserving deep gorgonian
assemblages and their associated high-diverse
fauna (e.g. Buhl-Mortensen and Mortensen,
2005) through better management of fishing
activities. These high-density deep gorgonian
assemblages may provide an approximate idea
of how Mediterranean continental shelves and
upper slopes stood before decades of bottom
trawling.
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ABSTRACT

Morphological variability in gorgonians is frequent and commonly associated to habitat variability, often
resulting in segregated morphotypes. Paramuricea macrospina is an endemic Mediterranean gorgonian
species found on rocky bottoms between 40–100 m depth. It has recently been reported as one of the most
abundant species in continental shelves and shelf edges. Three different chromatic forms of P. macrospina
were observed in the Menorca Channel: a yellow and a light purple forms occurring on maërl beds of the
continental shelf, and a dark purple form occurring on rocky substrates of the shelf edge. The objective of the
present work is to verify if these P. macrospina forms may represent distinct taxonomic units by analyzing
colony shape, sclerite size and shape, and mitochondrial markers of the three chromatic forms of P.
macrospina. No significant differences were found in colony shape, suggesting that environmental variability
between the continental shelf and the shelf edge is not influential enough to significantly alter colony
morphology. Significant differences in sclerite size and shape were found amongst all forms, suggesting that
sclerites may be more likely influenced by environmental conditions. However, the coexistence of yellow and
light purple forms on the continental shelf suggests that both environmental factors and genetic
differentiation are conditioning sclerite size and shape. Molecular analysis revealed no differences amongst
the three forms but proportioned new insight on the phylogenetic relationship of this gorgonian genus.
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1. INTRODUCTION

Modularity is a successful strategy widely spread
amongst sessile organisms as it facilitates adap-
tation to different environmental conditions
(Huges, 1989). In marine environments, mor-
phological variability of sessile modular organisms
is very common, especially among coral and
gorgonian species (Bruno and Edmunds, 1997;
Sánchez et al., 2007; Vermeij et al., 2007). Indeed,
these organisms can present a wide plasticity in
their growth under different environmental con-
ditions (Todd, 2008). Variability can affect colony
color and morphology (Sánchez et al., 2007;
Prada et al., 2008), as well as sclerite size and
shape (Gutiérrez-Rodríguez et al., 2009) and the

presence of specific secondary compounds
(Puyana et al., 2004). This can suppose an
additional challenge for taxonomical, evolutionary
and ecological studies (Vermeij et al., 2007).

Coral and gorgonian morphological variability
has commonly been related to habitat differ-
ences (Bruno and Edmunds, 1997; Helmuth
et al., 1997), often resulting in segregated
morphotypes adapted to different hydrodynamic
or light conditions (Sebens, 1987; Sánchez et
al., 2007; Gori et al., 2012). Colony transplant
experiments have shown that the same geno-
type can generate different morphological phe-
notypes confirming the importance of pheno-
typic plasticity amongst gorgonians (West et
al., 1993; Joseph et al., 2015). 

In the last 20 years, several studies have addressed
morphological variability in shallow gorgonian
species (<40 m depth) mainly in relation with the
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Fig. 1. Map of the Menorca Channel. Black dots indicate the sampling locations of each chromatic form.



dominant hydrodynamic conditions (e.g. Weinbauer
and Velimirov, 1995; Skoufas, 2006; Sánchez et
al., 2007). On the contrary, studies concerning
deep gorgoninan morphological variability are still
very scarce (e.g. Mortensen and Buhl-Mortensen,
2005; Quattrini et al., 2013; Doughty et al., 2013).
However the increased accessibility to deep envi-
ronments proportioned by remotely operated ve-
hicles (ROVs) and manned submersibles has re-
vealed that deep gorgonians species may occur
over a wide bathymetric range and through
different environmental settings (Stone, 2006;
Buhl-Mortensen et al., 2014). The increasing ob-
servation of deep gorgonian assemblages is show-
ing that, as their shallow counterpart, deep gor-
gonian species may also present a certain degree
of morphological variability (Mortensen and Buhl-
Mortensen, 2005). Paramuricea macrospina (Koch,
1882) is an endemic Mediterranean gorgonian
mostly found on rocky bottoms at 40–100 m
depth (Carpine and Grasshoff, 1975; Bo et al.,
2012). This species has been recently found to be
amongst the most abundant gorgonian on the
Mediterranean continental shelf (Bo et al., 2012;
Grinyó et al., 2016). In the Menorca Channel
(Western Mediterranean Sea) (Fig. 1), P. macrospina
is the dominant gorgonian species at 65–90 m
depth on the continental shelf, but is also commonly
found on the shelf-edge associated to other gor-
gonians at 110–160 m depth (Grinyó et al., 2016).

Two different chromatic forms of P. macrospina
were observed on the continental shelf, a yellow
one (M1) and a light purple one (M2) (Figs. 2a and
2b, respectively). Both forms occur on maërl
beds, covering vast areas and punctually reaching
very high densities (Grinyó et al., 2016). On the
shelf edge, a third dark purple form (M3) was ob-
served on rocky substrates (Fig. 2c).

In the last few years several studies started to
explore the biology and ecology of deep Mediter-
ranean gorgonian species (e.g. Bo et al., 2012;
Topçu and Öztürk, 2016). In this context, this
study aims to elucidate if the different P. macrospina
forms observed in the Menorca Channel represent
distinct taxonomic units, by exploring differences
in their (1) colony shape, (2) sclerite size and
shape, and (3) genetic variability in mitochondrial
markers (msh1, Igr1 and COI).

MATERIAL AND METHODS

Colony shape

P. macrospina’s colony shape was analyzed on
pictures obtained from videos recorded on the
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Bar: 10 cm.



continental shelf (60–80 m depth) and the
shelf-edge (110–160 m depth) of the Menorca
Channel (39° 53’ 0.73” N, 3° 29’ 51.16” E) in
September 2010 and April 2011. Videos were
recorded with the manned submersible JAGO
(IFM-GEOMAR) equipped with a 1080 horizontal
line color video camera, and two parallel laser
beams that provide a scale for the images (50
cm). In each picture, colonies were perpendicular
to the camera, and lasers were in the same
plane as the colony. Twenty pictures of colonies
of each form (M1 and M2 from the continental
shelf, and M3 from the shelf-edge) were se-
lected for the subsequent analysis. Analyses
were performed with the Macnification 2.0.1
(Orbicule Enhanced Labs) software and laser
beams were used as reference to calibrate
each picture.

From each picture, the maximum height and
width of the gorgonian colony was measured;
mean width was calculated as the mean of
three measurements taken at equidistant po-
sitions and perpendicular to the height (Gori
et al., 2012). Fan surface area was estimated
by measuring the area defined by a continuous
line that linked the tips of all the branches lo-
cated on the external perimeter of the colony
(Weinbauer and Velimorov, 1995). The ramifi-
cation pattern was determined by establishing
a branch ordination pattern following Brazeau
and Lasker (1988). Most distal branches were
defined as first order branches, second order
branches occurred when two first order branch-
es joined. Higher order branches only appear
when two branches of equal lower order join.
Branches were also classified as “tributary”
or “source”, where source branches are those
that join same order branches whereas tributary
branches are those that join a higher order
branch (Brazeau and Lasker, 1988; Gori et al.,
2012). Finally, the length of all primary branches
was measured.

For each colony, the following shape features
were calculated: height to width ratio, height to

mean width ratio, ramification density (number
of ramifications/fan surface area), primary branch-
es density (number of primary branches/fan
surface area), order of the colony’s base, the
primary branches maximum and mean length,
the bifurcation ratio ( Rb = 1—m ∑m

i=1
ni——1 + ni

where
n is the number of branches of order i, and m
is the total number of orders) and the tributary
to source ratio of primary and secondary order
branches. 

Sclerite size and shape

Colonies of P. macrospina were collected from
the continental shelf (~75 m depth) and shelf-
edge (~130 m depth) of the Menorca Channel
in April 2011 and July 2012 (Fig. 1). Sampling
was performed by means of the manned sub-
mersible JAGO (IFM-GEOMAR) and the ROV
NEMO (Gavin Newman), both equipped with
a grabber. Fifteen colonies of each of the two
continental-shelf forms (M1 and M2) were
sampled, whereas six colonies were sampled
for the shelf-edge form (M3). A fragment of
each colony was immediately preserved in ab-
solute ethanol for genetic analyses, whereas
the rest of the colonies were fixed in 4% buf-
fered formalin in seawater, and finally preserved
in 70% ethanol.

In order to compare sclerites from polyps
with a similar size, several primary branches
were placed under a binocular stereomicros-
cope (Olympus SZ-60) and photographed in
different angles with a Moticam 2300 camera.
Polyp length was measured with the software
Macnification 2.0.1 (Orbicule Enhanced Labs)
as the distance from the base of the calix to
the tips of the most distal calix sclerites. Me-
asurements were done on fully contracted
polyps placed perpendicular to the camera. A
total of 200 polyps were measured for the
M1 and M2 forms, and 55 polyps could be
measured for the M3 form. Polyps length ran-
ged from 0.3 mm to 1.8 mm. Polyps of 1–1.5
mm were the most abundant, accounting for
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62%, 55% and 60% of polyps in M1, M2 and
M3 forms, respectively. Consequently, for
each sampled colony, a total of 10 polyps 1–
1.5 mm in size from the middle section (2 cm
below the tip) of primary branches were dis-
sected under a binocular stereomicroscope
(Olympus SZ-60). Collected polyps were im-
mersed in a sodium hypochlorite solution until
all organic matter was dissolved and sclerites
were disaggregated. Sclerites were rinsed
several times with distilled water. A minimum
of 20 sclerites were haphazardly selected
from each colony, placed on a double stick-
tape and posteriorly sputter-coated with Au-
Pd. Sclerite observations and images were
obtained with a Scanning Electron Microscope
(SEM) HITACHI S-3500 N at 5.0 KV, images
were obtained at X110. Images were pre-pro-
cessed with Photoshop C5 (Adobe System)
creating a black background, while sclerites
were kept grey shaded alongside the scale
caption. This procedure facilitated the subse-
quent measurement by means of the software
Macnification 2.0.1 (Orbicule Enhanced Labs).
The following measures were taken for each
sclerite: total length, perimeter length, area,
maximum width, and bottom, middle and top
widths (Kim et al., 2004; Prada et al., 2008;
Gutiérrez-Rodríguez et al., 2009; Gori et al.,
2012). The number of ramifications at the
base of large sclerites were counted and re-
ferred to as root number. Mean width was
calculated as the mean among bottom, middle
and top width. Sclerite shape was also eva-
luated by the following ratios: length/maximum
width and area/perimeter (Bramanti et al.,
2013).

Genetic markers

Total genomic DNA was extracted from etha-
nol-preserved samples of the three forms
using the E.Z.N.A. DNA kit (OmegaBiotech)
following the manufacturer’s instructions. The
mtMutS (msh1), and Igr1+COI mitochondrial
regions were sequenced as an octocoral bar-

code proposed by McFadden et al. (2011) for
comparative purposes. The start of the mtMutS
(msh1) region was amplified using the primers
ND42599F and MUT3458R (France and Hoover,
2002; Sánchez et al., 2003). Igr1+COI region
was amplified using the primers COII8068F
and COIOCTR (McFadden et al., 2004; France
and Hoover, 2002). Each PCR used 1 U of
DNA Stream Polymerase (BIORON), 0.2 mM
of dNTPs, 0.3 μM of each primer, approximately
25 ng of genomic DNA, and was brought to a
final volume of 25 μL with H2O. MtMutS PCR
was carried out using the following cycle
profile: initial denaturation at 94°C for 2 min,
35 cycles of denaturation at 94°C for 30 s, an-
nealing at 55–58°C for 30 s, extension at
72°C for 30 s, and a final extension at 72°C
for 5 min. The Igr1+COI PCR used the same
cycle profile, but 58ºC as annealing temperature
and 40 s for extension duration on each of
the 35 cycles. PCR products were purified
using the NucleoSpin® Extract II DNA Purifi-
cation Kit following the manufacturer’s ins-
tructions. Purified products were electropho-
resed on an ABI PRISM® 3730xl Genetic
Analyzer and sequence traces were edited
using Sequencher™ 4.0. The obtained se-
quences were compared with homologous
sequences from the EMBL-Bank of Plexauridae
species. 

The alignments of the sequences were carried
out using MUSCLE, implemented in MEGA5
(Tamura et al., 2011). After alignment, the best
nucleotide substitution model was selected
using Modeltest implemented in MEGA 5, ac-
cording to Akaike Information Criterion (AIC)
and hierarchical likelihood ratio test (hLRT) va-
lues.

The mtMutS comparison involved 41 nucleotide
sequences, while the COI, mtMutS+COI and
mtMutS+Igr+COI comparisons only involved
11, 11 and 10 nucleotide sequences, respec-
tively. All positions containing missing data
were eliminated. Positions containing internal
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gaps were maintained but not considered by
the analysis. The aligned mtMutS sequences
had 660 positions, with a total of 121 variable
and 69 parsimony-informative sites. The aligned
COI sequences had 752 positions, with a total
of 63 variable and 32 parsimony-informative
sites. The aligned mtMutS+COI concatenated
sequences had 1412 positions, with a total of
145 variable and 65 parsimony-informative
sites. The aligned mtMutS+Igr1+COI concate-
nated sequences had 1524 positions, with a
total of 139 variable and 69 parsimony-infor-
mative sites. The genus Swiftia (Swiftia pallida,
HM106337 and FJ264905) was selected as
outgroup, this genus is currently included in

Plexauridae, but molecular analyses often
aligned it close to the Gorgoniidae genera (see
Wirshing and Baker, 2015; Vargas et al., 2014).
The phylogenetic reconstruction was obtained
applying Maximum Likelihood (ML) and
Bayesian inference methods. Maximum likeli-
hood method (ML) was developed in MEGA5,
and based on the T92+G (Tamura, 1992) model
for all set of sequences, using the NNI heuristic
method (Nearest Neighbor Interchange) and
1000 bootstraps replications (Felsenstein, 1985).
The Bayesian Inference was carried out on-
line in Bioportal (Kumar et al., 2009) in MrBayes
3.1.2 program (Huelsenbeck and Ronquist,
2001; Ronquist and Huelsenbeck, 2003), using
the model GTR+G (lset nst=6 rates=gamma),
107 generations and discarding 25% initial
trees.

Statistical analyses 

Distance-based permutational multivariate analy-
sis of variance (PERMANOVA) (Anderson, 2001)
was employed to test the null hypothesis of
no significant differences among forms in
colony shape, and sclerite size and shape.
Each term of the analysis was tested using
9,999 permutations. Data were standardized
respect to their mean absolute deviation
( MAD =  1—n ∑n

j=1 [ xij - xi
– ], where xi is the value

of the i variable observed in the n colonies)
(García Pérez, 2005). Significant relations rele-
vant to the hypothesis were investigated using
a posterior pair-wise post-hoc test. Finally, an
ordination of the analyzed colony shape and
sclerite size and shape was obtained with a
principal component analysis (PCA). PERMA-
NOVA and pair-wise post-hoc tests were per-
formed with the PaST software (Hammer et
al., 2001). PCA was performed with the R-lan-
guage function princomp, which is available in
the Vegan library (Oksanen et al., 2005) of the
R software platform (R Core Team, 2014).
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Fig. 3. Principal component analysis (PCA) biplot
showing the ordination of the studied colonies (n =
60) regarding their colony shape, and the role of the
analyzed features; H/W = height to width ratio; H/Wm
= height to mean width ratio; Rd = ramification den-
sity; 1ºd = primary branch density, base = order of the
colony base; 1ºmax = maximum length of primary
branches; 1ºmean = mean length of primary
branches; Rb = bifurcation ratio; T/S1º = tributary to
source ratio of primary branches; T/S2º = tributary to
source ratio of secondary branches.



RESULTS

Colony shape

No significant differences in colony shape
(PERMANOVA, Pseudo-F=0.983, p=0.517) were
found amongst the three forms. The first two
principal components of the PCA explained
55.4% of the data variance, the first component
accounted for 21.2% of the variance. A strong
correlation occurred between primary branch

density and ramification density, as well as
between height to maximum width and mean
width ratios (Fig. 3). M1 was characterized by
high primary branch and ramification densities
(Figs. 3 and 4), whereas M2 by high values of
height to maximum width ratio and height to
mean width ratio (Figs. 3 and 4). M3 colonies
were characterized by long primary branches,
high base orders and tributary to source ratio
of secondary branches (Figs. 3 and 4).

Sclerite size and shape

Two different types of sclerites were observed
to form the P. macrospina polyp calyxes: thorns
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Fig. 4. Colony shape features; box indicates first and third quartiles, line
within the box indicates the mean value, and upper and lower lines indi-
cate the range between minimum and maximum values.
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Fig. 5. Thorns (a–h) and spindles (i–n) from the calyx of Paramuricea macrospina M1.
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Fig. 6. Thorns (a–j) and spindles (k–q) from the calyx of Paramuricea macrospina M2.
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Fig. 7. Thorns (a–i) and spindles (j–q) from the calyx of Paramuricea macrospina M3.



and spindles (Figs. 5, 6, and 7). Significant dif-
ferences amongst the three forms were ob-
served in the thorns (PERMANOVA, Pseudo-F
= 6.812, p<0.001) as well as in the spindles
(PERMANOVA, Pseudo-F = 6.586, p<0.001)
(Table 1). The first two principal components of
the PCA explained 84% of the data variance for
thorns, and 88% for spindles; first components
accounted for 65% and 64% of the variance,
respectively. Thorn size and shape changed
gradually, being larger in M1, intermediate in
M2, and smaller in M3 (Fig. 8). Spindle size and
shape presented less variability amongst forms
(Fig. 9). M1 colonies were characterized by
thorn and spindle with high mean and maximum
width, as well as by high number of thorn roots
(Figs. 8, 9, 10 and 11). M2 colonies presented
intermediate values (Figs. 8, 9, 10 and 11),
whereas M3 colonies were mainly characterized
by thorn and spindle with high length and high
length to width ratios (Figs. 8, 9, 10 and 11).

Phylogenetic analyses

Uncorrected p-distances based on mtMutS
pointed out that all Paramuricea macrospina
genotyped specimens shared the same se-
quence. The set of sequences obtained in
GenBank for P. biscaya, P. multispina and P.

CHAPTER 3 | Morphological and genetic features of the gorgonian Paramuricea macrospina ...    | 77-98 87

Fig. 8. Thorn features; box indi-
cates the first and third quartile,
line within the box indicates the
mean value, and upper and
lower lines indicate the range
between minimum and maxi-
mum values.

Morfotypes
Thorns Spindles

p-value Significance p-value Significance

M1 vs. M2 0.0158 * 0.0237 *

M1 vs. M3 0.0002 *** 0.0009 ***

M2 vs. M3 0.0423 * 0.0366 *

Table 1. Pairwise test for thorns and spindles forms.
Significance is indicated with one (p-value <0.05), two
(p-value <0.01), or three asterisks (p-value <0.001).



placomus show these species to be polyphyletic
(Fig. 12). The species used in this comparison
of the genera Paramuricea and Placogorgia
are reunited in a well-supported clade, but
they are nested in the analysis, showing a
possible future generic synonymy when a
higher number of species and better diagnostic
specific characters will be defined. Internal re-
lationships within the Paramuricea-Placogorgia
clade are poorly supported, just a set of P. bis-
caya (I, J, and K), the different Paramuricea
macrospina forms here considered, a group of
P. placomus, Placogorgia spp., and two additional
sets of sequences [P. biscaya (L)-Placogorgia
sp. (A), and P. multispina (B) - P. placomus (A)]
are highly supported (see Fig. 12). The two
Mediterranean Paramuricea species, P. clavata
and P. macrospina are distinctly divergent (p-
distance 2.1%). Paramuricea macrospina is
closely related (p-distance 0.2%) to the set of
sequences of P. biscaya A to H, P. multispina,
P. tenuis, and P. terceira. The “intra-generic” p-

distances considering all species in the Para-
muricea-Placogorgia clade ranged from 0 to
3.9%, being 0–2.3% when excluding Placo-
gorgia sp. (C), which is separated from the
rest of Paramuricea-Placogorgia species by
2.3–3.9% in p-distance. The analysed species
here included in the Paramuricea-Placogorgia
clade are widely separated from other Plexau-
ridae genera such as Villogorgia, Bebryce,
Alaskagorgia and Swiftia by distances between
5.6% and 7.30%. 

Analyses based on COI, and concatenated mt-
MutS+COI and mtMutS+Igr1+COI sets of se-
quences (Fig. 13), with a reduced number of
species represented by the poor knowledge
of COI sequences in Paramuricea-Placogorgia,
have similar results as for mtMutS. Paramuricea
biscaya is also showed as a polyphyletic taxon,
the two Mediterranean Paramuricea species
are also clearly differentiate by COI, and the
Paramuricea-Placogorgia clade is well supported,
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Fig. 9. Spindle features; box in-
dicates the first and third quar-
tile, line within the box indicates
the mean value, and upper and
lower lines indicate the range
between minimum and maxi-
mum values.



although internal relationships remain in general
poorly resolved. Comparing between the two
Mediterranean Paramuricea species, and despite
the reduced number of bases in the available
sequence mtMutS of Paramuricea clavata, this
species retains 11 mutations respect to its ho-
mologue sequence in P. macrospina, expressed
in 7 amino acid differences. The available COI
sequence of P. clavata is 205 bases shorter
than the homologous in P. macrospina (M3),
differing in 13 silent mutations that do not pro-
duce any amino acid difference. 

DISCUSSION

The results of this study show that the three
chromatic forms of the gorgonian Paramuricea
macrospina observed on the continental shelf
and slope of the Menorca Channel, significantly
differs in terms of sclerite size and shape, but
not in terms of molecular markers and colony
shape.

Most colonial morphological features barely
changed among the three forms (Fig. 4). There-
fore, P. macrospina’s colonial morphology is a
conservative character that experiences little
variation across different environments, as
similarly observed in other gorgonian species
(Mitchell et al., 1993). This invariability contrasts
with other studies, where depth-related changes
in environmental conditions result in significant
morphological variation in coral species (e.g.
Helmuth and Sebens, 1993; Prada et al., 2008;
Nir et al., 2011; Gori et al., 2012). However,
most research has been conducted in shallow
littoral environments, where environmental
conditions considerably change over a narrow
depth range (Garrabou et al., 2002). Conversely,
the increased stability of environmental condi-
tions at greater depth (>50 m) (e.g. Puig et al.,
2000; Fernández de Puelles et al., 2007), may

explain the lack of variability in the colonial
morphology of the three chromatic forms of P.
macrospina. The shallow forms (M1 and M2)
occurring on maërl beds on the continental
shelf may only suffer the effects of sporadic
intense hydrodynamic events (Puig et al., 2001;
Teixidó et al., 2013) that have been shown to
cause damage to sessile organism at similar
depths (Woodley et al., 1981; Bongaerts et al.,
2013). Conversely, the structural stability of
shelf-break rocky bottoms sheltered from strong
hydrodynamic events may allow deep M3
colonies to grow larger, as previously observed
in other gorgonian species (West et al., 1993;
Gori et al., 2012). This may explain why M1
and M2 colonies are significantly (PERMANOVA
p<0.05) smaller (23 ± 8.7 SD and 22 ± 9.1 S
cm, respectively) than deeper M3 ones (34 ±
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Fig. 10. Principal component analysis (PCA) biplot
showing the ordination of the studied colonies (n= 36)
regarding their thorn size and shape, and the role of
the analyzed features; L = thorn length; P = thorn
perimeter; A = thorn area; Wmax = thorn maximum
width; Wmean = thorn mean width; Rn = number of
thorn roots; L/Wmean = thorn length to mean width
ratio; A/P thorn area to perimeter ratio.



15 SD cm). Moreover, it has been proposed
that in deep environments exposed to unidi-
rectional currents, gorgonians may benefit
from developing larger colonies as they maxi-
mize surface exposed to perpendicular flow
and increase prey capture efficiency (Sebens
and Johnson, 1991). However, these differences
in the stability of the substrate and possible
exposure to intense hydrodynamic events of
P. macrospina on the continental shelf are evi-
dently not influential enough to cause any sig-
nificant changes in its colonial morphology.

Unlike colony shape, thorn and spindle size
and shape significantly differed among the
three forms. Differences in P. macrospina
sclerite shape mostly derived from width rather
than length, differently from what has been

more frequently observed in other gorgonian
species (e.g. West, 1997; Gori et al., 2012).
Both thorns and spindles had the same length
but were much wider and heavily rooted in
M1 and M2 than in M3 colonies. Other Mediter-
ranean coastal gorgonian species had also
larger sclerites in shallow environments than
in deeper ones (Velimirov, 1976; Skoufas, 2006;
Gori et al., 2012). It has been suggested that
larger sclerites would proportion higher flexion
capacity to gorgonian colonies in shallow or
exposed habitats (Skoufas, 2006). However,
deep colonies of Caribbean gorgonians had
longer sclerites than shallow ones (West, 1993;
Kim et al., 2004; Prada et al., 2008) as a
possible adaptation to reduced water motion,
since large sclerites are more susceptible to
breakage than smaller ones (West, 1998). This
would agree with studies reporting a negative
correlation between sclerite size and water
motion (West et al., 1993; Kim et al., 2004). In
this regard, the less robust morphology of M3
sclerites could be an adaptation to less intense
hydrodynamic conditions. In addition to their
structural role, sclerites can also act as defense
against predators (Van Alstyne et al., 1992;
Puglisi et al., 2002), with larger sclerites being
more effective than smaller ones in deterring
predators (West, 1998). Therefore larger sclerites
in M1 and M2 could also be an adaptation to
higher predation pressure. This would agree
with previous studies that generally reported
higher predation pressure in shallow than in
deeper areas (West et al., 1993). However
predation processes on deep-water gorgonians
are still highly unknown.

Overall, it could be supposed that differences
in environmental conditions on the continental
shelf and shelf-edge are not enough to induce
any change in the P. macrospina colony shape,
but may be influential enough to affect sclerite
size and shape. However, this is not supported
by the significant differences observed among
the two continental shelf forms (M1 and M2),
which occurs side by side on the same mäerl
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Fig. 11. Principal component analysis (PCA) biplot
showing the ordination of the studied colonies (n=36)
regarding their spindle size and shape, and the role
of the analyzed features; L = spindle length; P = spin-
dle perimeter; A = spindle area; Wmax = spindle maxi-
mum width; Wmean = spindle mean width; L/Wmean =
spindle length to mean width ratio; A/P spindle area
to perimeter ratio.



beds (Grinyó et al., 2016). In this sense, differ-
ences between M1 and M2 sclerite could in-
deed suggest a genetically controlled processes
rather than an environmental driven one. M2
sclerites present intermediate values between
M1 and M3 forms (Figs. 8 and 9). However,
differences between M2 and M3 sclerites
were less pronounced than between M2 and
M1 (Table. 1). Considering the similar coloration

in M2 and M3 colonies and the less marked
differences in sclerite size and shape, it could
alternatively be suggested that M2 and M3
are a shallow and a deep forms of a single
morphotype occurring over a wide depth range
comprising both the continental shelf and
slope, whereas M1 is a different morphotype
only occurring on the continental shelf.
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Fig. 12. Molecular analysis by ML method. Relationship of Paramuricea-Placogorgia species and related plexauriid
genera using Swiftia pallida (HM106337) as outgroup; the analysis is based in mtMutS. The tree is drawn to scale,
with branch lengths measured in the number of substitutions per site.
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Fig. 13. Additional molecular analysis. Relationship of Paramuricea-Placogorgia species and related plexauriid gen-
era using Swiftia pallida (HM106337 for mtMutS and FJ264905 for Igr1+COI) as outgroup. The trees are drawn to
scale, with branch lengths measured in the number of substitutions per site. Abbreviations: ML, maximum likeli-
hood; BI, Bayesian inference.



However, mtMutS sequences obtained in this
study for the three forms of Paramuricea
macrospina (M1, M2, and M3) were identical.
Among the mitochondrial genes, the mtMutS
(msh1) is the most rapidly evolving protein-
coding region, being genetic distances (uncor-
rected p-distances) usually 2–3 times those
for other segments as COI (McFadden et al.,
2011). Unfortunately, only a single COI sequence
of P. macrospina (form M3) could be successfully
obtained in this study, being sequences of
this marker poorly available in the Paramuricea-
Placogorgia clade in general. Both mtMutS
and COI have proven to be good discriminators
sequences among octocoral species (e.g. Quat-
trini et al., 2013; 2014). However, different oc-
tocoral species may also share identical COI
or mtMutS sequence (e.g. McFadden et al.,
2011; Gori et al., 2012; Doughty et al., 2013).
The lack of resolution in mtMutS is not neces-
sary indicative of species identity (see also
Moore et al., 2016 for Primnoisis species). In
this sense, a recent speciation process that
separated M1 versus M2+M3 forms of P.
macrospina cannot be discarded. Indeed, the
molecular information currently available neither
resolves the relationships between the two
Mediterranean endemic P. macrospina and P.
clavata, since basal nodes of the clades including
these species are not well supported in the
mtMutS nor in the mtMutS+COI analyses
(Figs. 12 and 13). The nested structure of the
Paramuricea-Placogorgia clade is similar to that
observed for other pairs of octocoral genera,
such Siphonogrogia-Chironephthya (see López-
González et al., 2015) or Lepidisis-Keratoisis
(see Dueñas et al., 2014), where apparently
clear morphological features distinguishing
genera do not found molecular support. The
polyphyletic appearance of P. biscaya, P. multi-
spina and P. placomus observed in the mtMutS
phylogenetic hypothesis in this study (and at
least P. biscaya when including COI and
Igr1+COI) could be explained as the result of:
1) cryptic speciation, or 2) current instability
(or understood variability) of the morphological

diagnostic characters that should be used in
the identification of these species. In the first
case, cryptic species (morphologically identical
or extremely similar, but genetically distinct)
have already been detected in octocoral genera
such Cornularia (McFadden and van Ofwegen,
2012), Incrustatus (McFadden and van Ofwegen,
2013), and the soft-coral genera Sarcophyton-
Lobophytum (McFadden et al., 2006). In the
second case, supposed well-understood mor-
phology is diluted when a large sampling effort
intra- and interspecies is carried out (e.g. Gori
et al., 2012 for Mediterranean Eunicella spp.).
Additional mistakes in the assignation of species
names could also be the result of the identifi-
cation by direct comparison to sequences in
accessible public databases whose reliable
identifications had not been fully assessed, or
simply by errors in the interpretation of the di-
agnostic characters proposed. In this sense,
the deposit of voucher specimens of the pub-
lished sequences will surely facilitate further
consults, reinterpretation of morphological fea-
tures, and corrections of the identifications
initially proposed, when necessary.

Overall, colonial morphology of the three forms
of P. macrospina observed in the Menorca
Channel did not show any clear relation with
possible changes in environmental conditions
with depth in the continental shelf versus
shelf-edge. However, it would be interesting
to extend the morphological comparisons to
also include shallow coastal areas, where the
species has been recently reported (20–40 m
depth, Topçu and Östürk, 2015), and where hy-
drodynamic conditions are probably much more
contrasted. Conversely, the observed differences
in sclerite size and shape probably suggest
that both environmental and genetic factors
are conditioning sclerite size and shape. Trans-
plant experiments between depths would be
desirable to further explore the possible role
of phenotypic plasticity and genetic divergence
on the morphological variability of this very
abundant Mediterranean deep gorgonian
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species (Grinyó et al., 2016). Gorgonians are
capable to adapt to different environmental
settings that can derive in morphological vari-
ability (Weinbauer and Velimirov, 1995; Gori et
al., 2012). In this regard, P. macrospina’s broad
bathymetric distribution and occurrence in very
different environments reflects its wide adapt-
ability (Bo et al., 2012; Topçu and Öztürk, 2015;
Grinyó et al., 2016). While it is clear that mor-
phological variability can be driven by environ-
mental features, we hypothesis that morpho-
logical variability could also be reflecting a
more complex speciation process occurring in
the studied species. In this regard, new genetic
markers are needed to elucidate the fine line
between species and morphological variation
among Mediterranean gorgonians.
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ABSTRACT

Paramuricea macrospina is an endemic Mediterranean gorgonian species found on hard substrates at 40–160
m depth. This study examined the sexual reproductive cycle, energy storage, and metabolic requirements of
P. macrospina in a continental shelf environment (~75 m depth). P. macrsopina resulted to be a gonochoric,
internal brooding species with a 1:1 population sex ratio. Oogenesis lasted ~12–14 months, whereas
spermatogenesis was significantly shorter only lasting 6 months. Fertilization occurred during late summer
(August) and larval release occurred during early autumn (September - October). The organic matter, total lipid
content and stable isotopic composition showed very little seasonal variability, reflecting a general stability in
gorgonian food sources on the continental shelf. Conversely, the free fatty acid composition varied seasonally
reflecting changes in P. macrospina energetic demands probably related to the gametogenesis and the larval
brooding. P. macrospina reproductive ecology and biochemical composition differed from most shallow
Mediterranean gorgonian species, most likely reflecting the higher environmental stability of deeper
environments.
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1. INTRODUCTION

In the past few decades there has been a sub-
stantial increase in the ecological characterization
of coral-dominated communities located at 40–
150 m depth. In tropical areas, mesophotic coral
reefs represent a direct extension of shallow-
water reef ecosystems reaching depths of over
150 m (Hinderstein et al., 2010; Kahng et al.,
2010). Mesophotic coral ecosystems have revealed
extensive, productive and rich communities,
which differ significantly from their shallow-water
counterparts (Bongaerts et al., 2010; Kahng et
al., 2010; 2014; Loya et al., 2016). High-density
gorgonian and black coral assemblages have
been also recently reported on rocky bottoms in
deep coastal areas, continental shelf and upper
slope at 40–200 m depth in the Mediterranean
Sea (Bo et al., 2011, Gori et al., 2011; Grinyó et
al., 2016). These assemblages are composed of
shallow species that extend their distribution to
deeper environments (Bo et al., 2011; Gori et al.,
2011), as well as by depth specialist species
with distribution restricted to the continental
shelf and upper slope (Bo et al., 2012; Grinyó et
al., 2016). Despite the recent increase in knowl-
edge about species composition and abundance
of Mediterranean coral and gorgonian assem-
blages at intermediate depths (40–200 m depth)
(e.g. Cau et al., 2015; Grinyó et al., 2016), very
few studies have addressed basic aspects of
their biology, such as the reproductive ecology
and the dynamic of energy storage and metabolic
demands (Gori et al., 2012).

Reproductive success and posterior larval set-
tlement are crucial processes in the maintenance
of Mediterranean shallow gorgonian populations
(Coma et al., 1995; Ribes et al., 2007) as well
as for their recovery after perturbations (Cerrano
et al., 2005). In general, oogenesis has a longer

duration than spermatogenesis (e.g. Coelho
and Lasker, 2014). In broadcast spawning species,
sperms and oocytes are released and fertilized
in the water column; whereas in surface brooder
species oocytes are retained by mucous material
and fertilized on the surface of female colonies,
and in internal brooder species oocytes are fer-
tilized inside female polyps, where larvae develop
(Kahng et al., 2011). Gorgonian larvae are
lecithotrophic, and thus their survival success
solely depends on the energetic reserves trans-
ferred from the maternal colony during the oo-
genesis (Thorson, 1950; Pechenik, 1990). How-
ever, the quantity of energy transferred by ma-
ternal colonies is limited since the energetic re-
serves are finite and need to be partitioned into
respiration, growth, defense, and reproduction
(Stearns, 1992). These energetic requirements
are primarily supported by lipids (Oku et al.,
2002; Grottoli et al., 2004; Brodte et al., 2008),
which are also the main structural constituents
of cellular membranes (Tchernov et al., 2004;
Dalsgaard et al., 2003). Thus, lipid content
reflects the nutritional condition of corals and
gorgonians, which results from the balance be-
tween food inputs and respiration output, tissue
replenishment and reproductive investment
(Arai et al., 1993; Ward, 1995). When used as
energetic source, lipid reserves are oxidized to
provide energy in form of free fatty acids (FFA)
that produce high ATP per molecule (Gurr et al.,
2002). The FFA content can increase under
stress situations, such as starvation and thermal
anomalies, and thus their content can be used
as a measure of metabolic demands (Sargent
et al., 1999). On the other hand, FFA composition
may reflect the nature of these metabolic de-
mands (i.e., energetic requirements) (Imbs,
2013; Viladrich et al., 2016). For example, Poly
Unsaturated Fatty Acids (PUFA) are highly ener-
getic fatty acids (FA), essential for overcoming
stress conditions, since they can be converted
into many other FA (Müller–Navarra et al., 2000;
Wacker and Von Elert, 2001), whereas Mono
Unsaturated Fatty Acids (MUFA) and Saturated
Fatty Acids (SFA) are mainly used to cover basic
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metabolic energy consumption (Sargent et al.,
1999; Dalsgaard et al., 2003).

Environmental conditions affecting food avail-
ability, gorgonian metabolism, and the quantity
and quality of the ingested food will determine
lipid storage, as well as their consumption (FFA
content), and thus the nutritional condition of
gorgonian colonies (Ward and Harrison, 2000).
In a temperate sea such as the Mediterranean,
shallow gorgonians exhibit a marked seasonality
of activity and secondary production, as a con-
sequence of the strong seasonal environmental
variability (Coma et al., 2000). Food capture,
growth, and lipid storage are enhanced during
winter-spring, in correspondence with phyto-
and zooplankton blooms (Ribes et al., 1999;
Rossi et al., 2006; Coma and Ribes, 2003).
Conversely, gorgonian activity is significantly
reduced during summer in shallow waters,

when the stratification of the water column re-
sults in severe depletion of food sources (Coma
et al., 2000; Coma and Ribes, 2003), and gor-
gonian mainly rely on their lipid reserves (Rossi
et al., 2006). Environmental variability is damp-
ened with depth in Mediterranean coastal bot-
toms (Garrabou et al., 2002), because temper-
ature and currents are more constant below
the summer thermocline (Riedl, 1971; Balles-
teros, 2006). This major environmental stability
is reflected in the lower but constant lipid
content in gorgonian tissue at 60 m depth, as
well as in their lower reproductive output com-
pared to shallow gorgonians at 20 m depth
(Gori et al., 2012). Continental shelf environments
are more stable than littoral ones, showing
very little variation in seawater temperature
and being sheltered from strong hydrodynamic
forces (Puig et al., 2001; Fernández de Puelles
et al., 2007). Food availability on Mediterranean
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Fig. 1. Map of the study area, black dots indicate the location of the sampling stations.
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continental shelves also follows a seasonal
trend with highest inputs during winter and
spring although, it is generally more constant
during the year than in shallower environments
(Danovaro et al., 2000; Rossi et al., 2003). Con-
sequently, gorgonians are exposed to overall
more stable environmental conditions on the
continental shelf than in coastal areas, which
can directly affect their annual reproductive
cycle, energetic storage dynamic and metabolic
requirements. Recently, Paramuricea macrospina
has been reported as one of the most frequent
and abundant species in Mediterranean gor-
gonian assemblages at intermediate depths.
This species is the dominant gorgonian in maërl

beds on the continental shelf at 65–100 m
depth, and can also occur in dense multispecific
assemblages on rocky shoals on the continental
shelf and shelf edge at 90–160 m depth (Bo et
al., 2012; Grinyó et al., 2016).

The aim of this study was to explore, for the
first time, the reproductive ecology and the dy-
namic of energy storage and metabolic demands
of a Mediterranean gorgonian on the continental
shelf. For this purpose, the annual development
of sexual products, lipid content, FFA content
and composition, and stable isotopes (δ13C and
δ15N) composition were assessed over an annual
cycle in the gorgonian P. macrospina from 70
m depth, to address the following questions:
(1) Are there differences in the reproductive
timing and gonadal output compared to shallow
species? (2) Are there differences in the annual
dynamic of energy storage and metabolic re-
quirements compared to shallow species? (3)
How are the gorgonian reproductive cycle, en-
ergy storage and metabolic demands related
in the Mediterranean continental shelf envi-
ronment?

2 MATERIALS AND METHODS 

2.1 Sampling procedure

P. macrospina colonies were monthly sampled
on the continental shelf of the Menorca Channel
at 60–75 m depth (Fig. 1), from September
2011 to May 2012 as bycatch from trammel
net experimental fisheries (project LANBAL).
Since no colonies were caught in the experi-
mental fisheries during the summer 2012, ad-
ditional colonies were subsequently monthly
sampled by SCUBA diving from June 2013 to
October 2013. In November 2011, February
and April 2012, and September 2013 no sample
could be collected due to bad weather condi-
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Fig. 2. Reproductive state of Paramuricea macrospina
colonies (a) (black = female colonies, gray = male
colonies, white = indeterminate colonies), and per-
centage of female (b) and male (c) fertile polyps
(black = fertile polyps, white = empty polyps) (N
polyps  = 453; N examined colonies = 115).
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tions. All sampled colonies were higher than
10 ± 0.5 cm (height distance from the base to
the farthest point). Two primary branch frag-
ments (~2 cm) were collected from each
colony: one branch was fixed in 10% formalin
in order to study the reproduction and population
sex ratio; the other one was frozen at -20ºC
and freeze-dried during 12 h at -110ºC and at
100 mbar pressure (Telstar Lyo Alfa 6 lyophilizer)
for biochemical analyses. 

2.2 Gametogenesis

Sex identification was performed under optical
microscope and according to the color and ap-
pearance of sexual products (Coma et al.,
1995; Ribes et al., 2007; Gori et al., 2007).

Spermaries are pale, while oocytes present
darker tonalities, harder consistency and are
covered by a spotted membrane. Five female
and five male colonies were examined for
each sampling event, except for September
2011 when only nine colonies were sampled.
For each colony, six polyps on the central
portion of the branch were haphazardly selected
and dissected under a binocular stereomicro-
scope (Olympus SZ-60). All sexual products
were photographed with a Moticam 2300
photo camera, and pictures were analyzed
with the image-processing software Macnifi-
cation (Version 2.0.1 Orbicule Enhanced Labs).
This software automatically counts the number
of sexual products, and measures area and
circularity (the proximity of the shape of an
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Fig. 3. Frequency of oocyte diameter (μm) in Paramuricea
macrospina colonies.



object to that of a circle) of each one. Since
circularity was always higher than 0.8, all sexual
products were considered as spherical, and
their measured areas (a) were converted to di-
ameters (d = 2 ( √

—
a/π)). Diameters (d ) were

then transformed to volume (v =   4—3 π ( d—2 )3)
in order to quantify the produced volume of
sexual products per polyp. When observed in-
side female polyps, larvae were also quantified.
A total of 594 polyps were dissected, and
3631 sexual products measured.

2.3 Population sex ratio

Colonies collected in June, July and August
(when polyps are full of sexual products, see
later) were used to quantify the population

sex ratio. Based on Gori et al. (2007) branches
in which no sexual products were found inside
10 polyps were not considered. A total of 90
colonies were examined.

2.4 Biochemical analyses 

2.4.1 Organic matter

Organic matter (OM) in the coenenchyme was
monthly quantified in four colonies. Approxi-
mately 10 mg (± 0.1 mg) of coenenchyme dry
weight from each sample was reduced to ash
during 4 h at 500 °C in a muffle (Relp 2H-M9),
and the OM was calculated as the difference
between the coenenchyme dry weight and
ash weight (Slattery and McClintock, 1995;

Ecological study of benthic communities in the continental shelf and upper slope in the Menorca Channel                              104

MALE COLONIES

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

diameter (μm)

Se
xu

al
 p

ro
du

ct
 fr

eq
ue

nc
y

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0 0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

diameter (μm) diameter (μm)

Oct - 2011 
n = 0

Dec - 2011 
n = 0

Jan - 2012 
n = 0

Jun - 2013 
n = 524

Jul - 2013 
n = 301

Sep - 2011 
n = 0

0

20

40

60

75.6 Mar - 2012 
n = 217

72.5
May - 2012 
n = 443

0

20

40

60

Aug - 2013 
n = 180

Oct - 2013 
n = 0

0

20

40

60

0

20

40

60

Fig. 4. Frequency of spermaries diameter (μm) in Paramuricea
macrospina colonies.



Rossi et al., 2006). Results are expressed in
percentage.

2.4.2 Lipid content

Total lipid content in the tissue was quantified
in five colonies per sampling event. Approxi-
mately 10 mg (± 0.1 mg) of coenenchyme dry
weight from each sample were homogenized
in 3 ml of chloroform:methanol (2:1), and total
lipids were quantified colorimetrically (Barnes
and Blackstock, 1973) with cholesterol as a
standard. Results are expressed in μg of lipid
mg-1 of OM.

2.4.3 Free Fatty acids and stable isotope
composition

Five colonies for each sampling event were
used to determine the FFA content and com-
position, following the methodology previously
used by Viladrich et al. (2016). Approximately
11 mg (± 0.1 mg) of coenenchyme dry weight
from each sample were dissolved in 3:1
DCM:MeOH (dichloromethane-methanol), and
fatty acids were quantified with gas chromato-

graphy technique (Viladrich et al., 2016). Results
are expressed in μg FA mg-1 of OM, and in
percentage of SFA, MUFA and PUFA mg-1 of
OM. The stable isotopes (SI) (δ13C and δ15N)
composition of the gorgonian tissue was as-
sessed from monthly samples of three colonies.
Approximately 2 mg (± 0.001 mg) of coe-
nenchyme dry weight from each sample was
acidified with HCl 1 M during 48 h to eliminate
carbonates, and the δ13C composition was de-
termined with Thermo Finnigan EA1108 analyzer
and a Thermo Finnigan MAT253 spectrometer.
Finally, approximately 2 mg (± 0.001 mg) of
coenenchyme dry weight from each sample
was directly analyzed with the Thermo Flash
EA112 analyzer and the Thermo Delta V advan-
tage spectrometer to determine the δ15N com-
position.

2.5 Statistical analyses

The population sex ratio was tested by means
of a chi-square test using the R-language func-
tion chisq.test (Patefield, 1981) of the R software
platform (R Core Team, 2014).
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Fig. 5. Mean gonadal volume per polyp (mean ± SE) of female (black circles) and male (white circles) Paramuricea
macrospina colonies (μm3 polyp-1) (N female polyps = 312, N male polyps = 132).
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Significant differences amongst seasons in
OM, lipid content and SI composition were
tested by means of a repeated measure ANOVA
with the R-language function aov (Chambers
et al., 1992) of the R software platform (R Core
Team, 2014). Seasons were defined as follow:
Autumn (September 2011, October 2012 and
2013), winter (December 2011 and January
2012), spring (March 2012, May 2012 and June
2013), summer (July and August 2013). 

Colonies analyzed for FFA composition (n=50)
were ordinated by means of a principal com-
ponent analysis (PCA) performed on transformed
data (p’ = arcsin(√

_
p )) with the R-language func-

tion princomp, which is available in the Vegan
library (Oksanen et al., 2005) of the R software
platform (R Core Team, 2014).

3. RESULTS

3.1 Population sex ratio

The recorded ratio of male to female colonies
was 1.41 (36/51) and did not significantly
deviate from 1:1 (X2 = 2.586, df = 1, p-value =
0.108).

3.2 Gametogenesis

Colonies with female sexual products were
observed during all sampling events (Fig. 2a).
During late summer and autumn (August, Sep-
tember and October) fertile polyps were 45–
66% of all the dissected polyps, whereas
during the rest of the year almost all polyps
(>80%) were fertile (Fig. 2b). Colonies with
male sexual products were found from early
spring to late summer (March to August) (Fig.
2a), with almost 100% of fertile polyps (Fig.
2c). Oocyte development took ~12–14 months
to complete, beginning in early summer and

ending in the next late summer (Fig. 3). Oocyte
mean diameter progressively increased from
early autumn to late summer (Table 1; Fig. 3)
and oocyte number increased from early autumn
to early summer (Table 1; Fig. 3). Smallest
oocytes (<300 mm) were present in all sampling
events, reaching its highest abundance during
early autumn and winter (~98% and 100% ob-
served oocytes, respectively) (Fig. 3). Large
oocytes (>300 mm) were most abundant during
late summer (80% of observed oocytes in Au-
gust), whereas in early autumn their presence
was residual (1–2% of observed oocytes in
October) and they were completely absent in
winter (Fig. 3). Spermaries development was
considerably shorter, beginning in early spring
(March) and ending in late summer (August)
(Fig. 4). Spermaries mean diameter progres-
sively increased from early spring to late sum-
mer (Table 1; Fig. 4). Mean number of sper-
maries per polyp increased from early spring
(May) to early summer (June), and decreased
during summer (Table 1).

Female gonadal volume per polyp progressively
increased from early winter (October) to mid
summer (July) when it reached its maximum
volume (Fig. 5). From this point onward female
gonadal volume decreased reaching its lowest
values in mid autumn (October) (Fig. 5). Male
gonadal volume per polyp increased from early
spring to late summer when it reached its
maximum (Fig. 5). A slight decrease in male
volume was observed between early and mid
summer (July) (Fig. 5). 

One to five planulae larvae (1.3 ± 0.13 (mean
± SE)) were found inside 15.5% of female
polyps in September and October.

3.4 Biochemical analyses

OM represented 27.2 ± 7.1% (mean ± SD) of
the coenenchyma dry weight, with seasonal
fluctuation ranging from 20.7 ± 2.5% in autumn
to 34.1 ± 3.4% in summer (Fig. 6a). Summer
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Fig. 6. Organic matter (a) in the coenenchyme of Paramuricea macrospina colonies (N= 35), and lipid content (b)
(μm mg-1 OM) in the organic matter of Paramuricea macrospina colonies (N= 49).
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Fig. 7. Total free fatty acid (FFA) content (μm mg-1 OM) in the organic matter of Paramuricea macrospina colonies
(N=46).
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OM content was significantly higher than in
autumn and winter (ANOVA, F = 11, p<0.001),
and spring OM content was significantly higher
than in autumn (ANOVA, F = 11.01, p<0.001).

Average total lipid content was 137 ± 53.5 μg
lipid mg-1 OM (mean ± SD), with significantly
higher values (ANOVA, F = 5.8, p = 0.002) in
summer (1778 ± 504 μg lipid mg-1 OM) (Fig.
6b).

The overall FFA concentration progressively
increased from early autumn (October) to mid
summer (August) (Fig. 7). PUFFAs and SFFAs
were the most abundant fractions of the total
FFA content, whereas MUFFAs only repre-
sented <15% of total FA (Fig. 8). A total of 36
fatty acids were identified (Table 2), with FFA
composition showing seasonal changes char-
acterized by SFFA markers during winter, and
by PUFFA markers during spring and summer.
The first component of the PCA accounted for
57.4%, and the second component accounted
for 14.6% of the data variance, for a total 72%
of explained variance. The PCA biplot revealed

a seasonal gradient along the first component
(Fig. 9), with autumn samples (orange squares)
mainly characterized by 18:3 and 24:0, most
winter samples (blue squares) characterized
by 13:0, 14:0, 15:0 and 17:0 (all SFFA), spring
samples (green squares) and most summer
samples (red squares) characterized by 22:6,
20:4(n-3) and 18:4(n-3). SI composition pre-
sented very little seasonal variation (Fig. 10).
The δ13C ranged between -21.6 ± 0.3% (mean
± SD) in winter to -21.9 ± 0.1% in summer.
The δ15N ranged between 5.2 ± 0.5% (mean
± SD) in winter to 4.7 ± 0.4% (mean ± SD) in
summer. No significant differences amongst
seasons were found in the δ13C and δ15N.

4 DISCUSSION

The results of this study showed the gorgonian
P. macrospina from the Mediterranean conti-
nental shelf to sexually reproduce annually,
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Fig. 8. Percentage of saturated (SFAs), monounsaturated (MUFAs) and poly- unsaturated (PUFAs) fatty acids in total
FFA of Paramuricea macrospina colonies (N=46) (SFAs= circles, MUFAs= diamonds, PUFAs = squares).

O
ct

-1
3

Au
g-

13

Ju
l-1

3

Ju
n-

13

M
ay

-1
2

M
ar

-1
2

Se
p 

-1
1

O
ct

-1
1

Ja
n 

-1
2

0

20

40

60

80

De
c -

11

%
 P

U
FA

 / 
SF

A
 / 

M
U

FA

80

60

A
A

 / 
M

U
F

40

20

A
 / 

M
U

F
A

 / 
SF

%
 P

U
F

Se
p 

-1
1

0

O
ct

-1
1

De
c -

11

M
ar

-1
2

Ja
n 

-1
2

M
ay

-1
2

M
ar

-1
2

Ju
n-

13

Ju
l-1

3

Au
g-

13
Au

g-
13

O
ct

-1
3

O
ct

-1
3



with larval development taking place inside
the female polyps, and larval release occurring
in late summer-early fall. Gonochorism of P.
macrospina colonies, and 1:1 population sex
ratio, match the general pattern previously ob-
served in shallow Mediterranean gorgonian
species (Coma et al., 1995; Rossi et al., 2003;
Ribes et al., 2007), and in the majority of octo-
corals in general (Kahng et al., 2011). In the
same way, oogenesis (12–14 months) (Fig. 3)
and spermatogenesis (~6 months) (Fig. 4) du-
ration in P. macrospina was within the range
observed in other shallow Mediterranean (Coma
et al., 1995; Ribes et al., 2007) and temperate
gorgonian species (e.g. Excoffon et al., 2004;
Seo et al., 2008) with annual sexual reproduction
(Kahng et al., 2011; Table 3). This long oogenesis
duration results in the presence of a cohort of
mature large oocytes during summer, together
with a second cohort of immature small oocytes
(<200 mm) that will slowly increase in size
and number to mature during the following
summer (Fig. 3). Conversely, spermaries mat-
uration is much faster, starting in early spring

(March) and ending with its release during late
summer (August). 

Spawning of male gametes and larval fertilization
in P. macrospina is delayed 2–3 months respect
to shallow Mediterranean gorgonian species,
which generally spawn during late spring -
early summer coinciding with the spring in-
crease in shallow seawater temperature (Coma
et al., 1995; Tsounis et al., 2006; Ribes et al.,
2007). Gonadal development has been sug-
gested to be conditioned by seawater temper-
ature (Grigg, 1977; de Putron and Ryland,
2009), since gorgonian colonies occurring or
maintained in colder environments showed a
delay in gonadal development (Gori et al.,
2013) and spawning respect to populations lo-
cated in warmer environments (Gori et al.,
2007; Pakes and Woollacott, 2008). Seawater
temperature in the Balearic continental shelf
(75 m) slightly increases a few degrees during
late summer and early autumn (Fernández de
Puelles et al., 2007) coinciding with the P.
macrospina spawning. This might support that
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Table 1. Changes in the diameter and number of Paramuricea macrospina sexual products (mean ± SE) (N=3631).

Sampling Event
Diameter (µm) Number

Female Male Female Male
Mean ± SD Max. Mean ± SD Max. Mean ± SD Max. Mean ± SD Max.

September 2011 248 ± 149 607 0.7 ± 1.1 4

October 2011 88 ± 57 510 2.6 ± 3.4 11

December 2011 94 ± 35 216 9.6 ± 6.2 21

January 2012 128 ± 32 227 7.6 ± 5.9 28

March 2012 158 ± 66 330 85.8 ± 21 150 13.0 ± 5.1 20 6.0 ± 6.4 24

May 2012 214 ± 91 403 153 ± 45 291 6.2 ± 4.7 15 14.8 ± 9.6 35

June 2013 236 ± 82 494 195 ± 56 335 10.5 ± 5.9 23 29.1 ± 11.8 56

July 2013 259 ± 99 509 195 ± 50 347 6,5 ± 3.1 14 13.9 ± 8.1 38

August 2013 373 ± 91 562 276 ± 81 491 1.7 ± 1.8 6 7.5 ± 8.2 30

October 2013 168 ± 101 502 1.1 ± 1.7 6



timing in P. macrosina reproductive cycle is
conditioned by the late increase in seawater
temperature occurring on the Mediterranean
continental shelf. It is also interesting that
larval release in September and October also
coincides with the beginning of the fall phyto-
plankton bloom in the study area (Grinyó et
al., submitted), which could suppose fruitful
food availability for the primary polyps resulting
from the larvae metamorphosis.

When compared to other internal brooding
species, P. macrospina showed much smaller
oocytes (Table 3), only exceeding those ob-
served in species of the genus Acabaria (Ben-
Yosef and Benayahu, 1999; Fine et al., 2005).
The small size of P. macrospina oocytes is
however compensated by high fertility compared
to other internal brooding species (Table 3),
which generally tend to develop few but large

oocytes (e.g. Tsounis et al., 2006; Ribes et al.,
2007; Orejas et al., 2007). In this sense, both
oocyte size and fertility of P. macrospina are
within the range observed in the congeneric
Mediterranean Paramuricea clavata (Table 3;
Coma et al., 1995; Gori et al., 2007), which
mainly inhabit vertical rocky walls in coastal
areas (Linares et al., 2008; Gori et al., 2011;
Kipson et al., 2014). However, the two species
clearly differ in their reproductive strategy,
being P. macrospina an internal brooder, and P.
clavata a surface brooder (Coma et al., 1995).
Differences among congeneric species in the
reproductive strategy have previously been re-
ported in allopatric species of the genus Coral-
lium (Waller and Baco, 2007; Nonaka et al.,
2015; Priori et al., 2013) as well as in sympatric
species of the genus Anthillogorgia (Coelho
and Lasker, 2014), although the causes of this
variability remain unknown. A possible hypoth-

esis could be that fertilization in
surface brooding species is mainly
restricted to the few days when
oocytes remain attach to the sur-
face of the mother colony (Coma
et al., 1995; Fiorillo et al., 2013).
Thus, fertilization success is highly
conditioned by the currents and
proximity of male and female
colonies. Conversely, in internal
brooding species fertilization may
probably occurs over a longer pe-
riod, and thus colony proximity
would possibly be less important
for fertilization success. In this
sense, surface brooding could be
highly effective in a large-sized
species with high population den-
sity (33 ± 14 colonies m-2) such as
P. clavata (Linares et al., 2008;
Kipson et al., 2014). Conversely,
internal brooding could be more
effective for P. macrospina, which
has smaller colonies mainly dis-
tributed in low to medium densities
(3.2 ± 5 colonies m-2) over vast ar-
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Fig. 9. Principal component analysis (PCA) biplot showing the
ordination of studied colonies of Paramuricea macrospina regarding
their composition in fatty acids
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eas of the continental shelf (Grinyó et al.,
2016). Moreover, from an energetic point of
view, surface brooding probably requires a
higher energetic investment than internal brood-
ing, due to the production and secretion of
large quantities of mucus (Viladrich et al.,
2016). In this regard, P. clavata can probably
rely upon high spring food availability in littoral
environments (Rossi et al., 2003, 2006; Viladrich
et al., 2016) exposed to intense turbulent flows
(Riedl, 1971), whereas, food availability might
be lower in continental shelf environments,
where P. macrospina is exposed to mild unidi-
rectional currents (Palanques et al., 2002). 

Organic matter and total lipid content in P.
macrospina showed little seasonal variation,
with higher values during summer coinciding
with the progressive augment of gonadal vol-
ume (Figs. 5 and 7). This fact, together with
their lower content after larval release, can
suggest a direct transfer of lipid from the
parental colonies to the sexual products (Arai
et al., 1993; Richmond, 1987). Remarkably,
total lipid content was much lower and more
constant in P. macrospina all year round than
previously observed in shallow (25–30 m depth)
colonies of P. clavata (Rossi et al., 2006; Viladrich
et al., 2016). This lower and more constant
lipid content in deep than shallow colonies
has previously been observed in the Mediter-
ranean gorgonian Eunicella singularis (Gori et
al., 2012). Thus, these differences between
depths may be due to lower but more constant
food availability on the Mediterranean conti-
nental shelf than in littoral environments (Gori
et al., 2012). A general stability in food availability
for gorgonians on the Mediterranean conti-
nental shelf is also supported by the lack of
seasonality in the ∂13C and ∂15N composition
of P. macrospina tissue (Fig. 10). Both observed
∂13C and ∂15N values are in the range of those
from heterotrophic Mediterranean coastal gor-
gonians (Fig. 11) (Gori et al., 2012; Cocito et
al., 2013), and suspension feeders feeding on
microzooplankton and particulate organic matter

in general (Carlier et al., 2007). The ∂13C
signature of P. macrospina also resembled that
observed in other gorgonian species on the
Pacific continental shelf (Sherwood et al.,
2005). 
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Fig. 10. Stable isotope (δ13C and δ15N) composition
of Paramuricea macrospina colonies (N=12).
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Seasonality in the energetic requirements of
P. macrospina is highlighted by the seasonal
changes observed in the FFA content and
composition. Indeed, the slight increase of
FFA content from early autumn to mid summer
(Figs. 7 and 8), in coincidence with progressive
augment of gonadal volume (Fig. 5), suggests
that gonadal development supposes a high
energetic demand that P. macrospina meets
by mobilizing FFA as a source of immediate
energy (Sargent et al., 1988; Viladrich et al.,
2016). On the contrary, larval development
inside the maternal polyp does not seem to
require any high metabolic investment, as FFA
content was minimum in September and Oc-
tober when larvae were found inside the
polyps. This seasonality was also reflected in
the FFA composition of P. macrospina tissue,
which is mainly characterized by SFFA markers
during winter, and by PUFFA markers during
spring and summer (i.e., when gonadal volume
progressively increases) (Fig. 9). Besides, the
predominance of 18:4(n-3), 20:4(n-3) and 22:6(n-
3) during gonadal development might have
been directly related to increased fecundity,
fertility and egg quality (Pernet et al., 2002; Vi-
ladrich et al., 2016). On the other hand, 18:3(n-
3) and 24:0 predominate during late summer
and early fall, when larvae are present inside
the female polyps. The 18:3(n-3) is an essential
FA that can be converted into the high energy
and biologically active FFA 20:5(n-3) and 22:6(n-
3) (Kelly and Scheibling, 2012). In this sense,
larvae could be directly using 18:3(n-3) to fulfil
their metabolic demands (Sargent et al., 1999).

Overall, dampening of environmental variability
with depth (Puig et al., 2001; Garrabou et al.,
2002; Fernández-Puelles et al., 2007) is reflected
in the constant lipid content and SI composition
of P. macrospina from the Mediterranean con-
tinental shelf, contrasting with the strong sea-
sonality observed in shallow species (Coma
et al., 2000; Rossi et al. 2006; Gori et al.,
2012). The slight temperature increase occurring
on the continental shelf in late summer (Fer-

nández de Puelles et al., 2007) is probably
driving the reproductive cycle of P. macrospina,
with gametogenesis likely affecting its metabolic
requirements (with a mobilization of high-
energy PUFFA in spring and early summer).
Internal brooding in P. macrospina contrasts
with surface brooding of the congeneric P.
clavata. The differences in the habitats where
the two species occur, arises the question
about the possible adaptive advantage of their
reproductive strategies. Nevertheless, the ob-
served differences in the reproductive features
of P. macrospina compared to the shallower
Mediterranean species, contributes to highlight
the ecological diversity of gorgonians as a
possible explanation of their wide spatial and
bathymetric distribution in the Mediterranean
Sea (Carpine and Grasshoff, 1975; Bo et al.,
2012; Grinyó et al., 2016).
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ABSTRACT

Particle fluxes have widely been studied in canyons located in continental margins conversely particle fluxes in
canyons incising small island margins have received very little attention and remain poorly understood. The
Menorca Canyon is the only canyons system in the Balearic Archipelago. Moreover, the Menorca Canyon and
surrounding areas host highly diverse communities dominated by benthic suspension feeders. Understanding
the magnitude and variability of environmental factors influencing these communities thus remains crucial. In
order to characterize the temporal variability of particle fluxes, analyze its geochemical and macroscopic
composition and identify the main processes that modulate particle fluxes in the Menorca Canyon one
instrumented line was deployed at 430 m from September 2010 to October 2012. Particle fluxes ranged
between 0.2 – 2.3 g m2 d-1 being one of the lowest ever registered in a Mediterranean submarine canyon’s
head. Asides opal, geochemical constituents were temporally highly correlated with particle fluxes. CaCO3
fraction was the major constituent contrasting with the general trend observed in other Mediterranean
canyons. Macroscopic constituents (fecal pellets, Posidonia oceanica detritus and pelagic and benthic
foraminifera) constituents presented a wide variability throughout the sampling period and were poorly
correlated with the total mass flux. The low magnitude of the registered fluxes and the lack of correlation with
the observed environmental variables (e.g., currents, winds, wave height, chlorophyll-a biomass) suggest that
there is no evident controlling mechanism. However, we could infer that resuspension processes and the
presence of different hydrodynamic features (e.g. water masses) condition the magnitude and composition of
particle fluxes.

CO-AUTHORS
E Isla, L Peral, JM Gili

Composition and temporal variability of 
particle fluxes in an insular canyon 

of the northwestern Mediterranean Sea

ADDITIONAL RESOURCES
Submited in Progress in Oceanography

GRINYÓ J (2016) PhD Thesis pp 123-156

Chapter5



1. INTRODUCTION

Continental and island margins receive partic-
ulate matter derived from fluvial discharges
(Syvitski and Morehead, 1999; Kineke et al.,
2000), which stimulate primary production
(González et al., 2010) that can result in higher
sediment accumulation (Sanchez-Cabeza et
al., 1999). Continental and insular margins are
irrupted by submarine canyons (Harris and
Whiteway, 2011) that act as conduits of sedi-
ments and organic matter from the continental
shelf to deeper environments (Mullenbach et
al., 2004; Lopez-Fernandez et al., 2013a). Particle
fluxes within submarine canyons are charac-
terized by strong seasonal fluctuations (e.g.
Fabres et al., 2008) and can be orders of mag-
nitude larger than those over the adjacent
slopes (Martín et al., 2006; Zúñiga et al., 2009;
Pasqual et al., 2013). The interaction of along
slope currents and canyon topography may re-
sult in alterations of local currents that can
promote cross shelf edge water exchange
(Ahumada-Sempoal et al., 2015) leading to
downwelling (Jordi et al., 2005) and upwelling
processes within the canyon (Sobarzo and
Djurfledt, 2004). Moreover, several hydrody-
namic and atmospheric driven mechanisms
can punctually increase particle fluxes in sub-
marine canyons through resuspension and
gravity-driven processes over short periods of
time (Puig et al., 2014). Storms can cause sed-
iment resuspension and gravity flows enhancing
particle fluxes (Puig et al., 2004; Ross et al.,
2009). Dense shelf water cascading can also
cause dramatic increases in downward particle
fluxes over few days span (Heussner et al.,
2006) and can represent a major source of or-
ganic matter for deep environments (Tesi et
al., 2010). 

Downward particle fluxes and the main mech-
anisms controlling them have been widely
studied in submarine canyons associated to
continental landmasses (e.g. Shepard et al.,
1974; Xu et al., 2002; Khripounoff et al., 2003)
and large islands with high mountain ranges
(≥ 2000 m) and permanent rivers systems
(e.g. Kineke et al., 2000; Liu et al., 2002).
However, downward particle fluxes in canyons
incising small island margins remain widely
unknown. 

In the Mediterranean, this situation is rather
surprising due to the elevated number of
islands found in this basin (~200), where many
of them are incised by submarine canyons
(e.g. Lo Iacono et al., 2011). Despite the relative
abundance of Mediterranean insular canyons
(Harris and Whiteway, 2011), most studies con-
cerning particles have been conducted in less
than 25 canyons located in the European
margin. Moreover, many of them are located
in river-dominated shelves (e.g. Bonnin et al.,
2008) with high productivity relative to the
Mediterranean average (Bosc et al., 2004). The
Baleric Archipelago is one of the most olig-
otrophic environments in the Western Mediter-
ranean Sea (Bosc et al., 2004). In this archipelago
there is only one large canyon system, the
Menorca Canyon, located in the southern slope
of Menorca Island (Fig. 1). Benthic communities
associated with the head of the submarine
canyons and surrounding shelves are charac-
terized by high biodiversity and biomass (De
Leo et al., 2010; Fabri et al., 2014). Despite the
high oligotrophy of the Balearic Sea, benthic
communities in the proximities of the Menorca
Canyon are highly diverse (Barberá et al., 2012),
giving an interesting opportunity to assess the
environmental characteristics, including the
flux of organic matter, where these communities
thrive.

In this sense the aims of this study are to
characterize (1) the temporal variability of down-
ward particle fluxes analysing its geochemical
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and (2) macroscopic composition and (3) identify
the main processes that modulate particle
fluxes in the Menorca Canyon, and (4) set the
present results within previous research mainly
developed in the Mediterranean. 

1.2. Regional setting

The Menorca Canyon is located in the south-
western slope of Menorca Island (Fig. 1) and
is the largest submarine canyon system in the
Balearic Archipelago (Acosta et al., 2002). The
canyon’s head is at approximately 80 m water
depth and is less than 5 km off Menorca’s
coastline (Acosta et al., 2002). The axis of the
canyon has a NNE-SSW orientation and reaches
approximately 1000 m water depth (Acosta et
al., 2002). The flanks are steep and characterized
by vertical walls and escarpments up to 20 m
height (Lo Iacono et al., 2014). The continental
shelf surrounding the canyon is relatively narrow
and it only extends few kilometres (3 to 6 km)
(Alonso et al., 1988). Biogenic sands with >
65% of carbonate content constitute the sed-
iments in the canyon and surrounding shelves
(Alonso et al., 1988). 

The Balearic archipelago separates the Balearic-
subbasin in the north from the Algerian-sub-
basin in the south (Amores and Monserrat,
2014) in such a way that different hydrodynamic
processes and water masses influence the
northern and southern slopes of the archipelago
(Balbín et al., 2014). The northern slope is in-
fluenced by the Balearic current (Balbín et al.,
2012; Amores et al., 2014) and is mostly char-
acterized by the presence of resident Atlantic
water (AW) (Salinity >37.5 psu) (Balbín et al.,
2014). Conversely, the southern slope is influ-
enced by the sporadic arrivals of mesoscale
structures detaching from the Algerian current
and from the instability of the Almería-Oran
front (Millot, 1987), which is characterized by
the presence of recent AW (Salinity <37.5
psu) (Balbín et al., 2014). During spring and
summer a density front that separates the

resident AW from the recent AW develops
south of the archipelago when western inter-
mediate water (WIW) is present in the Ibiza
and Mallorca channels (Balbín et al., 2014).
Under these conditions anticyclonic gyres
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Fig. 1. (a) Three-dimensional bathymetry of the
northern Balearic Archipelago and its position in the
western Mediterranean Sea. (b) Detail of the
Menorca canyon. The white dot indicates the position
of the sediment trap. 
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have been detected in the southern slope of
the Menorca Island (García et al., 2005; Balbín
et al., 2014). Waters surrounding the archipelago
are considered oligotrophic (Fernández de
Puelles et al., 2007) as they receive little quan-
tities of nutrients from land runoff due to low
precipitation and the absence of rivers (Estrada
et al., 1996). In some areas of the archipelago
these conditions are enhanced by the intrusion
of nutrient-poor recent AW including the south-
ern slope of Menorca Island (García et al.,
2005). 

2. MATERIAL AND METHODS

2.1 Field work and instrumentation

One mooring array was maintained for two
consecutive years in the Menorca Canyon
(39º50.6601’N, 004º01.2600’E) on a site with
approximately 430 m water depth. The mooring
array was equipped with one cylindrical-sedi-
ment trap Technicap PPS3 and a Aanderaa
current meter RCM9, tethered 30 m above
the seabed and 25 m above the seabed, re-
spectively. The sediment trap was set with
24 sequential collecting cups filled with a
buffered 5% formaldehyde solution. The first
study period (T1) continuously operated for
412 days (09/15/2010 – 10/11/2011). Sediment
trap cups sampled during sequential intervals
of 17-day except the last cup that sampled for
21 days. The second study period (T2) contin-
uously operated for 365 days (11/03/2011 –
11/02/2012) and the sediment trap cups sam-
pled for 15-day intervals except for the last
five cups that sampled for 16-days intervals.
The current meter was equipped with oxygen,
turbidity, temperature and conductivity (salinity)
sensors and it acquired measurements every
10 min. 

2.2. Processing of sediment trap samples 

Refrigerated (4 °C) sediment trap samples
were processed in the laboratory according to
the methodology described in Heussner et al.
(1990) to produce aliquot sub-samples to carry
out different analyses. Sub-samples were
sieved with 0.4 μm-filtered seawater through
a 1 mm nylon mesh. All “swimmers” (organ-
isms that swam actively into the trap and died)
were removed with forceps from the mesh.
Sieved material was poured into a 2000-ml
flask and filled up with 0.4 μm-filtered seawater.
The flask was placed in a shaking table to gen-
erate homogenized aliquots separated with a
robotized peristaltic pump. Aliquots were filtered
onto pre-weighted 0.45 μm mesh nitro-cellulose
white HAWP Millipore filters and onto pre-
weighted Whatman GF/F filters both kinds, 47
mm diameter. Total mass was calculated as
the dry mass weight of the filtered subsamples
multiplied by the fraction of the aliquot. The
total mass flux (TMF) expressed as, mg m−2

d−1, was calculated from the total mass weight
divided by the trap collecting area (0.5 m2) and
the sampling period in days. 

2.3. Geochemical analyses 

Total and organic carbon and total nitrogen
were measured with a True Spec Carbon Ni-
trogen analyser LECO. Organic carbon (OC)
was measured in samples pre-treated in a 1
M HCl vapour-bath for 24 h. Inorganic carbon
was calculated as the difference between total
and organic carbon. The inorganic carbon value
was multiplied by 8.3331 to determine the
calcium carbonate (CaCO3) concentration. Car-
bon related analyses were performed with
samples filtered onto Whatman GF/F filters.
Biogenic opal content was obtained by alkaline
extraction following the Mortlock and Froelich
(1989) method modified by DeMaster (1981).
Biogenic opal analyses were performed on
samples filtered onto nitro-cellulose white

Ecological study of benthic communities in the continental shelf and upper slope in the Menorca Channel                              126



HAWP Millipore filters. Lithogenic content
equals the difference between the total mass
and the sum of the main biogenic components:
biogenic opal, CaCO3 and OM content (2x the
OC content). Total concentrations of each geo-
chemical component was calculated as the
concentration of each subsamples multiplied
by the fraction of the aliquot.

2.4. Macroscopic components 

Fecal pellet, Posidonia oceanica detritus and
foraminifera abundance were counted in aliquots
using a Wild, Heerbrugg, (Switzerland) stere-
omicroscope (10x). Fecal pellets and P. oceanica
detritus were measured with an eyepiece mi-
crometer (± 10 μm). Fecal pellet volume was
calculated with the formulas for cylindrical,
ellipsoidal and spherical bodies, V =   4—3 πr 3,
V = πr 2h and V =  4—3 π ra rb rc (where V is
volume, r is radius and h is height, assuming
that ra and rb had the same length in the case
of ellipsoidal shapes), respectively. The volume
of P. oceanica detritus was calculated with the
formula of cylindrical bodies. Foraminifera tests
were counted as single units regardless of
their individual size. Pelagic and benthic species
were differentiated based on the existing tax-
onomic works on Mediterranean foraminifera
(Colom, 1974). 

Additionally, images of selected samples were
obtained with a Scanning Electron Microscope
(SEM) HITACHI S-3500 N at 5.0 KV.

2.5 Wind and precipitation

The Spanish Meteorological Agency (AEMET)
provided hourly data on precipitation, wind ve-
locity and heading, obtained from the Maó
Airport meteorological station (39°51’50.04”
N, 004°13’26.04 E, 91 m above the sea level)
located ~17 km from the Menorca canyon’s
head. For each sampling cup interval we cal-
culated: total precipitation, heading percentages
(based on individual observations over the

total) and maximum wind velocity values. Ad-
ditionally, for each sampling interval, hourly
wind velocity percentages were grouped from
0 to 60 km h-1 into 10 km h-1 intervals.

2.5 Wave height

Large wave height events (Hs) were obtained
from an oceanographic buoy of the “Puertos
del Estado” (Spanish Ports Authority) located
at 50 km from the canyons head (39º39’00’ N,
003°29’2’’ E). Although there is another buoy
closer to the canyon’s head (Maó), it was dis-
carded due to multiple absences of registers
during the winter and spring months.

2.7 Chlorophyll-a concentration and sea
surface salinity:

Daily superficial chlorophyll a (Chl-a) concen-
tration of waters surrounding Menorca Island
and monthly average Chl-a concentration maps
of the southern part of the Balearic subbasin
and most of the Algerian subbasin were ob-
tained from the satellite database of the Ocean
Color Climate Change Initiative project (ocean-
color.gsfc.nasa.gov/cms/). Daily satellite-derived
Sea Surface Salinity (SSS) maps from the Ma-
rine Copernicus Environmental Monitoring
Services (http://marine.copernicus.eu/web/69-
interactive-catalogue.php) were revised in
order to identify fronts or eddies in the study
area. 

2.8 Statistical analyses

For statistical comparisons two sampling in-
tervals that lasted one-year approximately, and
covered the same seasonal range were defined.
The first interval, from hereby referred as 2011,
ranged from 9/15/10 – 9/23/11. The second in-
terval, from hereby referred as 2012, ranged
from 9/24/11 – 9/12/12. Due to the mismatch
between sampling cup intervals in T1 and T2
both sampling intervals do not comprise the
same duration, being 2012 18 days shorter
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than 2011. Distance-based permutational mul-
tivariate analysis of variance (PERMANOVA)
(Anderson, 2001) was used to test the null hy-
pothesis of no significant differences between
2011 and 2012 fluxes. 

Each term of the analysis was tested using
9.999 permutations. Previous to the analysis
data were standardized respect to their mean
absolute deviation (MAD =  1—n ∑n

j=1 [ xij - xi
– ],

where xi is the value of the i variable observed
in the n colonies) (García Pérez, 2005). The
PERMANOVA was performed with the PaST
software (Hammer et al., 2001). In order to ex-
plore the relationship among the TMF magnitude
and the fluxes of its geochemical (CaCO3, the
lithogenic fraction, OC and biogenic opal) and
macroscopic components (fecal pellet, P. ocean-
ica detritus and foraminifera) simple linear re-
gression analyses were performed using the
lm function (Chambers, 1992) of the R software
platform (R Development CoreTeam, 2011) for
both 2011 and 2012 intervals separately. 

3. RESULTS

3.1 Total mass flux and geochemical
components

Forty-seven samples were obtained from mid-
September 2010 (9/15/2010) to mid October
2012 (10/17/12). The 24th sampling cup of T1
(October 2011) was lost during the recovery
process. During T1 three peaks in TMF were
observed, a first one during mid autumn 2010,
a second one during late spring and early sum-
mer 2011 and the third one during late summer
2011 (Fig. 2). The largest peak was the one
registered during late spring and early summer
2011 (Fig. 2). During T2 four peaks in TMF
were observed (Fig. 2). The first two peaks oc-
curred during spring 2012, the third one during

late summer 2012 and the fourth and largest
during mid autumn 2012 (Fig. 2). 

During both T1 and T2 CaCO3 fluxes were the
largest fraction contributing 44% to 70% of
the TMF, and the lithogenic fraction was the
second most abundant component of the TMF
ranging between 22% to 45%. OC contributed
between 2% and 3% of the TMF. Biogenic
opal fluxes contributed between 0.7% and
4% to the TMF.

Fluxes of CaCO3 and the lithogenic fraction
were were significantly correlated with TMF
(p<0.01) in both T1 and T2 (Fig. 3). OC fluxes
were also significantly correlated with TMF.
However, correlations were weaker during T1
(R2 = 0.678) than during T2 (R2 = 0.922) (Fig.
3). 

During T1 biogenic opal fluxes presented two
peaks, one in autumn and a second one in late
spring that coincided with TMF peaks. During
T2, this coincidence did not occur and biogenic
opal fluxes progressively increased from early
spring to early summer (Fig. 2). Biogenic opal
fluxes were significantly correlated with TMF
in both T1 and T2 (p<0.01 and p<0.05, respec-
tively) but correlations were weaker than other
geochemical components (Fig.3). However,
during T1 and T2, the highest proportions of
biogenic opal took place during the transition
between autumn and winter (Fig. 2). 

No significant differences were found, between
the two annually defined periods of 2011 and
2012, when comparing the magnitude of the
TMF and the fluxes of the geochemical com-
ponents (Table 1). 

3.2 Macroscopic characterization

During the T1 fecal pellets volumes (Fig. 4g)
presented four peaks (Fig. 5). The first and
second peaks occurred during mid autumn 2010
and late winter 2011, respectively (Fig. 5). The
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third and fourth peak occurred during late spring
2011 and mid summer 2011 and presented
higher magnitudes than the earlier two (Fig. 5). 

During T2 fecal pellet volumes were one order
of magnitude larger than in T1. The highest
fecal pellet volumes during T2 were registered
during the autumn 2012 (Fig. 5). 
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Fig. 2. Time series of surface Chl-a concentration, total mass, and the major constituent fluxes. Gray bands indicate
the period with highest surface Chl-a concentration. Connected crosses represent each constituent percentage
and the black crosses represent the OC/N (mol) values. The different bar colours indicate the sampling season (fall
= orange, blue = winter, green = spring, summer = red).



Ecological study of benthic communities in the continental shelf and upper slope in the Menorca Channel                              130

500 1000 1500 2000

20
0

40
0

60
0

80
0

10
00

500 1000 1500 2000

20
0

40
0

60
0

80
0

10
00

500 1000 1500 2000

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

500 1000 1500 2000

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

500 1000 1500 2000

10
20

30
40

50
60

500 1000 1500 2000

10
20

30
40

50
60

500 1000 1500 2000

10
15

20
25

30
35

40

500 1000 1500 2000

10
20

30
40

Ca
CO

  (
m

g 
m

   
d 

  )
3

-2
-1

Ca
CO

  (
m

g 
m

  d
   

)
3

-2
-1

Li
th

og
en

ic
s 

(m
g 

m
   

d 
  )

-2
-1

Li
th

og
en

ic
s 

(m
g 

m
   

d 
  )

-2
-1

or
ga

ni
c 

C 
(m

g 
m

   
d 

  )
-2

-1

or
ga

ni
c 

C 
(m

g 
m

   
d 

  )
-2

-1

bi
og

en
ic

 o
pa

l (
m

g 
m

   
d 

  )
-2

-1

bi
og

en
ic

 o
pa

l (
m

g 
m

   
d 

  )
-2

-1

Total mass (mg m   d   )-2 -1 Total mass (mg m   d   )-2 -1

Total mass (mg m   d   )-2 -1Total mass (mg m   d   )-2 -1

Total mass (mg m   d   )-2 -1
Total mass (mg m   d   )-2 -1

Total mass (mg m   d   )-2 -1Total mass (mg m   d   )-2 -1

Y = 1.342 + 1.745x
R = 0.929
p = <0.01

2
Y = -47.45 + 1.787x
R = 0.985
p = <0.01

2

Y = 185 + 2.3x
R = 0.948
p = <0.01

2
Y = 121.5 + 2.5x
R = 0.985
p = <0.01

2

Y = 160.4 + 31.2x
R = 0.678
p = <0.01

2
Y = 174.5 + 32x
R = 0.922
p = <0.01

2

Y = 341.6 + 35.4x
R = 0.353
p = <0.01

2
Y =  608.5 + 20.8x
R = 0.273
p = <0.05

2

Autumn Winter Spring 

T1 T2

Summer Fig. 3. Linear correlations between fluxes of CaCO3, the lithogenic fraction (Litho), OC, biogenic opal and total mass flux.



During T1 P. oceanica detritus (Figs. 4e and f)
volumes were comparatively low with no re-
markable peak. During T2 several peaks were
observed during winter, one occurring in De-
cember 2011 and two occurring in February
2012 (Fig. 5). 

During the T1 both pelagic (Figs. 4a and 4b)
and benthic foraminifera (Figs. 4c and 4d)
fluxes were low from early autumn until late
winter (Fig. 5). In early spring their values in-
creased and remained more or less stable
until early autumn (Fig. 5). During T2 both
pelagic and benthic foraminifera fluxes remained
low except for two isolated peaks during winter
(Fig. 5). 

Fecal pellets and P. oceanica detritus volumes
were significantly larger during the annual
period of 2012 (Table 2). Conversely, the fluxes
of pelagic foraminifera were significantly larger
during the annual period of 2011 (Table 2). No
significant differences were found among ben-
thic foraminifera fluxes. 

None of the macroscopic components fluxes
were significantly correlated withTMF (Fig. 6).
Microplastic fibres were found in all sampling

cups for both T1 and T2 (Fig. 4h); however,
due to their irregular shape and small dimen-
sions they were not quantified.

3.3 Environmental factors

3.3.1 Water currents

During both sampling periods current mainly
followed a north–south direction (Fig. 7). Average
current velocity during T1 was 3.5 cm s-1 and
4.4 cm s-1 during T2, and current velocity rarely
exceeded 20 cm s-1. During T1, turbidity values
were very low (<0.27 NTU); however, after mid
spring the values substantially increased and
remained above 0.28 NTU for most of the re-
maining sampling period. Simultaneously to
this turbidity increment a substantial reduction
in dissolved oxygen was observed. In T2 turbidity
was comparatively very low for the whole sam-
pling period with two peaks, one in mid–summer
and a second one in early winter (Fig. 7).

3.3.2 Wind and precipitation 

During T1 the highest precipitation rates were
registered during mid-September 2010 to mid-
November 2010 ranging from 818 ml/m3 to
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Table 1. Total mass and geochemical component mean fluxes for the annually defined periods of 2011 and 2012
and PERMANOVA analysis. SD = Standard deviation, Litho. = lithogenic.

Fluxes
2011 2012 PERMANOVA

Mean SD Mean SD Pseudo-F p value

Total Mass (mg m-2 d-1) 1023.3 388 1018.4 453 0.001 0.971

CaCO3 (mg m-2 d-1) 585.6 216.6 596.2 251.6 0.022 0.833

Litho. (mg m-2 d-1) 362 166 349.8 174 0.069 0.792

OC (mg m-2 d-1) 579 225 665 316 0.17 0.687

Biogenic opal (mg m-2 d-1) 404 144 513 270 0.022 0.883
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a b

c d

e f

g h

a

Fig. 4. Scanning electron microscope images of pelagic foraminifera of the genus a), b) Globigerina; benthic foraminifera
of the genus c) Cibicides, and d) Bulimina, e), f) P. oceanica detritus, g) fecal pellet and h) microplastic fiber.



2430 ml/m3. During T2 the highest precipitation
rates were registered during November 2011
and 2012 ranging between 912 ml/m3 to 3112
ml/m3 and in February 2012 reaching precipita-
tion values of 1090 ml/m3. Northerly winds
were dominant during both sampling periods
representing 47.9% and 45.9% of total hourly
wind registers for T1 and T2, respectively.
Windiest episodes were registered during Jan-
uary and February for both T1 and T2. During
this period the percentage of the hourly winds
exceeding 30 km/h ranged between 10% and
14% in T1 and between 7% and 46% in T2
and presented a northerly component.  

3.3.3 Wave height

Wave measuring between 1.0 – 1.5 m were
the most abundant size class and represented
36% of total wave registers for T1 and T2.
Several wave height events ranging between
3.5 – 5 m were registered. Most events oc-
curred during winter months and were associ-
ated to high wind speeds (> 40 km h-1) (Table
3), few coincided with heavy precipitation
(Table 3). Most registered waves presented a
NNE orientation. 

3.3.4 Chlorophyll-a concentration and sea
surface salinity

Chl-a superficial concentration progressively
increased from mid-October to early February
when it reached its maximum values of ~0.7
mg m-3 and ~0.4 mg m-3 for T1 and T2, respec-
tively (Figs. 2 and 4). For both T1 and T2, the
lowest Chl-a concentrations ranging between
~0.2 mg m-3 to  ~0.1 mg m-3, were registered
from early April to early October  (Figs. 2, 5, 8
and 9). 

Sea surface salinity maps revealed that from
September 2010 until February 2011 resident
AW occupied the southern slope of Balearic
archipelago (Fig. 10). However, from March
2011 until August 2011 fresher recent AW
progressively moved northward from the Al-
gerian sub-basin and reached the southern
slope of the archipelago (Fig. 10). Moreover,
an eddy was present in the southern slope of
Menorca from June to August 2011 remaining
in this area for approximately 75 days (Fig.
10). 

During the T2, sea surface salinity was com-
paratively stable and no major intrusions of
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Table 2. Mean fluxes of the macroscopic components for the annually defined periods of 2011 and 2012 and
PERMANOVA analysis. SD = Standard deviation, detr. = detritus.

Fluxes
2011 2012 PERMANOVA

Mean SD Mean SD Pseudo-F p value

Fecal Pellets (μm3 m-2 d-1) 10.1 105 486 106 57.4 106 8.4 106 6.85 0.002

P. oceanica detr. (μm3 m-2 d-1) 10.7 105 6.5 105 27.4 105 27.7 105 7.54 0.002

Pel. Foram. (ind. m-2 d-1) 1615 1620 697.7 148.3 5.95 0.016

Bent Foram. (ind. m-2 d-1) 729 634 938 1169 0.543 0.524



fresher recent AW were observed in the south -
ern slope of the archipelago (Fig. 11). 

4. DISCUSSION

4.1 Particle flux into the Mediterranean
context 

TMF in the Menorca canyon were smaller than
those registered elsewhere in western Mediter-
ranean submarine canyons (Table 4). The ex-

ceptions were the TMF registered in canyons
and slopes in the Cretan margin (Table 4) and
some open sea environments (Zúñiga et al.,
2007; Khripounoff et al., 2012). The TMF range
in the Menorca Canyon was comparable to
those observed in the deep continental margin
of the Alboran Sea (Sanchez-Vidal et al., 2005)
and the open slope of the southern Adriatic
Sea (Miserocchi et al., 1999). However, TMF in
the Menorca canyon exceeded those collected
in the southern and northern Balearic slope
(Danovaro et al., 1999; Pasqual et al., 2015),
which suggest that the canyon acts as a conduit
of sediment from the continental shelf to
deeper environments agreeing with the general
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Fig. 5. Time series of fecal pellet, P. oceanica detritus and pelagic and benthic foraminifera fluxes. Gray bands indi-
cate the period with highest surface Chl-a concentration. detr = detritus,  Pel. Foram. = pelagic foraminifera, Ben.
Foram. = benthic foraminifera. The different bar colours indicate the sampling season (fall = orange, blue = winter,
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pattern observed in Mediterranean canyons
(e.g. Monaco et al., 1990; Martín et al., 2006).  

The temporal evolution of the TMF within the
Menorca Canyon showed a marked seasonal
variability. During both sampling periods there
were particle flux peaks during spring, summer
and fall (Fig. 2) and their individual contribution
to the TMF in T1 and T2 ranged between 4%
and 6%. Winter fluxes were comparatively
low (Fig. 2). The seasonal pattern and low con-
tributions of the winter peaks contrast with
the seasonal trends reported in submarine
canyons related to fluvial systems and affected
by intense across slope current events (Table
4). In these kind of canyons, enhanced particle

fluxes mostly occur during fall and winter (e.g.
Martín et al., 2006; Lopez-Fernandez et al.,
2013b), can account for very large proportions
(40% – 60%) of the TMF input (Durrieu de
Madron et al., 1999; Turchetto et al., 2007) and
mainly derive from brief and intense forcing
mechanisms (e.g., river floods, cascading,
storms) that trigger sediment resuspension
and down canyon particle mobilization (Pasqual
et al., 2010; Khripounoff et al., 2012). Overall,
these differences suggest that the seasonal
meteorological attributes of the Mediterranean
basin (e.g., winter precipitation and storms)
have little effect in the TMF collected at the
southern slope of Menorca Island, accentuated
by the absence of large fluvial systems. 
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Table 3. Large wave height events during both sampling intervals. Max WH = maximum wave height. Gray rows
indicate those events that coincided with particle flux peaks. Max WS = maximum wind speed.

Date Max WH (m) Max WS (km/h) Precipitation (ml/m3)

10/18/10 4.07 44 0
10/25/10 4.25 50 41
11/02/10 4.08 46 46
12/15/10 5 53 0
12/26/10 3.8 53 18
01/21/11 3.48 36 0
02/02/11 3.78 51 0
03/01/11 4.02 47 194
08/03/11 3.98 36 0
08/10/11 4.57 57 0
12/19/11 4.13 28 0
12/24/11 4.17 51 0
12/30/11 4.23 41 0
01/06/12 4.69 60 0
02/03/12 4.88 58 62
02/07/12 4.86 49 0
03/05/12 3.57 61 2
04/16/12 4.31 40 314
09/14/12 3.74 55 0
10/27/10 4.70 59 611



4.2 Particle flux triggering factors

In the Menorca Canyon only few particle flux
peaks coincided with atmospheric or hydrody-
namic events that could act as forcing mecha-
nisms to resuspend and trigger the transport

particulate material. The peaks reported during
mid autumn 2010 (October 2010) and mid
spring 2012 (April 2012) (Fig. 2) coincided with
large wave high events (Hs = > 4 m) (Table 3)
that could potentially cause inner shelf bottom
sediment resuspension (Guillén et al., 2006;
Ulses et al., 2008). These peaks were charac-
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Fig. 7. Times series plots of turbidity, dissolved oxygen and current direction and velocity during T1 and T2 sampling
intervals.



terized by a decrease in the CaCO3 fraction
and a slight increment in turbidity, in OC/N
ratio (6.5 – 8) and the lithogenic fraction (Figs.
2 and 7), which provides further support to
this hypothesis (Martín et al., 2006; Zúñiga et
al., 2009). 

From mid June to mid August 2011 an anticy-
clonic eddy was detected over the southern
slope of Menorca (Fig. 9). Although it is unclear

whether the effect of the eddy reached the
mooring site (it was not clearly detected in the
currentmeter), and during this period a peak in
TMF was collected (Fig. 2). This peak coincided
with a slight increment in turbidity (Fig. 7), the
lithogenic fraction and a punctual decrease in
the CaCO3 (Fig. 2). During this peak OC/N ratio
presented intermediate values (7.5). This asso-
ciation would agree with previous observations
in the Balearic Archipelago, that reported similar
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TMF patterns in relation to anticyclonic eddies
(Amores et al., 2013; Pasqual et al., 2014). 

TMF peaks occurring during late summer 2011
(September 2011), and late summer and mid
autumn 2012 (Fig. 2, August and October 2012)
were associated with slight increments in the
lithogenic fraction and turbidity, indicating a
possible association with resuspension process-
es (Martín et al., 2006). However, the forcing
mechanism that triggered these processes re-
mains unclear given that no strong meteoro-
logical or hydrodynamic event was observed
(Figs. 7, 10, 11 and Table 3). 

In other areas of the Mediterranean, TMF
peaks that did not present any evident rela-
tionship with natural forcing mechanisms were
found to derive from trawling activities (Martín
et al., 2006; Palanques et al., 2006). Indeed,
trawling has been identified as a forcing mech-
anism that can cause abrupt increments in
turbidity and particle fluxes (Martín et al., 2006;
Palanques et al., 2006). However, it is unlikely
that the observed particle flux peaks derive
from this fishing activity given that in the study
area, trawling is mostly conducted below 500
m (Moranta et al., 2014).
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during T1. Salinity values were
extracted at 1.47 m depth.



Spring and summer TMF peaks have been as-
sociated to primary production blooms (Sanchez-
Vidal et al., 2005; Stavrakakis et al., 2013).
These TMF peaks are characterized by material
with relative high organic carbon and opal con-
centrations (Sanchez-Vidal et al., 2005) derived

from exports from the euphotic zone (Rigual-
Hernandez et al., 2013). In our study only the
peak in March 2012 coincided with the winter-
spring bloom and presented high organic carbon
but low opal percentages (Fig. 2), suggesting
that non-siliceous phytoplankton dominated
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the bloom. The high OC/N ratio (9.5 molar
OC/N) registered during this peak (Fig. 2) sug-
gests that the presence of resuspended sedi-
ments, with remineralized organic matter diluted
the bloom signal (Martín et al., 2011). This
peak appears to be related to both, resuspension
processes and primary production and suggests
that the fraction of resuspended material in
the TMF is larger than the input of fresh organic
matter from the euphotic zone as probably
happened in the earlier spring and summer
(2011) samples.  

4.3 Geochemical components

The high CaCO3 fraction (58±4% and 59±2%
for T1 and T2, respectively) observed in the
Menorca canyon’s TMF (Fig. 2) contrasts with
most studies performed in Mediterranean
canyons, slopes and open sea environments,
where the lithogenic material was the highest
fraction comprising more than 50% of the
total (Table 4, Stavrakakis et al., 2013; Fabrés
et al., 2002). Conversely, in the Menorca canyon
the lithogenic material barely represents 35%
of all collected material. These unusual patterns
in the CaCO3 and lithogenic fractions may
derive from the synergy of low continental in-
puts (Estrada et al., 1996) and the high benthic
carbonate productivity occurring in the adjacent
continental shelf, derived from thriving com-
munities of calcareous algae (Canals and Balles-
teros, 1997). The relatively high CaCO3 fraction
values resembled the surface sediment com-
position of the adjacent slope (Alonso et al.,
1988) suggesting that most of the CaCO3 was
resuspended and transported along the canyon,
supporting previous hypothesis on particle
transport in the area (Canals and Ballesteros,
1997). This observation implies that resupended
material might be the most important source
of lithogenic matter in this area, as expected
for a setting without substantial river inputs.

Moreover, during mid January 2011 there was
a sharp increment in the CaCO3 concentration

(70%) coinciding with the Chl-a concentration
maximum (Fig. 2). It has been observed that
coccolithophore blooms may trigger rapid in-
crements in CaCO3 and OC (Malinverno et al.,
2009). Although coccolithophores have been
identified as one of the most representative
groups during early stages of the phytoplankton
bloom in the Balearic Sea (Valencia-Vila et al.,
2015), the observed CaCO3 peak was not asso-
ciated with an increment in the OC fraction and
the OC/N ratio (8) (Fig. 2), and was rather high
to be associated with a phytoplankton bloom
(Middelburg and Nieuwenhuize, 1998). Thus,
with the present information it cannot be dis-
tinguished the potential contribution of lithogenic
CaCO3 from that of phytoplanktonic origin.

The OC and opal were the two constituents
with the highest seasonal fluctuation (Fig. 2).
Both components presented similar percent-
ages to those observed in other Mediterranean
submarine canyons (Table 4; Bonnin et al.,
2008; Pasqual et al., 2013) but were lower
than values from oligotrophic continental slope
environments where pelagic inputs are the
main source of particulate matter (Pasqual et
al., 2014). The Menorca canyon is also located
in an oligotrophic environment. However, the
pelagic inputs are probably diluted by continental
shelf and slope inputs with lower OC and opal
contents due to the funnel effect of the canyon’s
shape in concert with the general trend in
Mediterranean canyons (Table 4). 

Highest organic carbon percentages were reg-
istered from early autumn to early winter during
T1 and from early autumn to early spring during
T2. During these periods the CaCO3 and litho-
genic fractions remained constant except for
an abrupt increment in the CaCO3 fraction and
a simultaneous decrease in the lithogenic
fraction during January 2011 (Fig. 2). The OC/N
ratio widely fluctuated, ranging from 5 to 9.5
(Fig. 2). The highest OC/N ratios (8 – 9.5) were
registered in periods were large wave height
(Hs = > 4 m) events associated to strong
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winds (> 40 km h-1) occurred, suggesting a re-
suspended (remineralized) origin of the collected
OC (Fabres et al., 2008) (Fig. 2 and Table 3).
Conversely low OC/N ratios (5 – 7) may have
resulted from biogenic exports from the photic
zone (Middelburg and Nieuwenhuize, 1998). In
this regard, strong winds and large wave, reg-
istered during these periods, can induce turbulent
mixing, increasing nutrient supply in shallow
environments that can result in a posterior in-
crement of phytoplankton production and bio-
genic exports (Marty et al., 2008; Isla et al.,
2009). Thus we suggest that the wide fluctuation
of the OC/N ratio, registered during these peri-
ods, may have resulted from the alternated
supply of resuspended and pelagic OC.

During spring and summer of 2011 and 2012,
we observed a decline in OC fraction (Fig. 2)
that could be related to water stratification.
Under these conditions nutrients undergo a
rapid depletion in superficial layers limiting pri-
mary production (Marty et al., 2002) and re-
ducing the pelagic particulate matter supply
(Coma et al., 2000). 

However, most spring and summer samples
presented low OC/N ratios (5 – 6.5) (Fig. 2) in-
dicating pelagic origin of OC and a low contri-
bution of resuspended matter. This would agree
with wind (14.6 ± 9.2 SD km h-1 and 14.5 ±
9.2 SD km h-1 T1 and T2 respectively) and
wave height (Table 3) that were relatively low
during these periods. 

Highest opal percentages did not coincide
with surface Chl-a maximum and were detected
during spring and early summer (Fig. 2). This
temporal pattern contrasts with previous studies
in Mediterranean submarine canyons (Martín
et al., 2006; Pasqual et al., 2010) and slopes
(Sanchez-Vidal et al., 2005; Stavrakakais et al.,
2013) that detected a simultaneous increment
in OC and opal associated with the winter–
spring phytoplankton bloom. In this sense, the
low opal concentrations registered in the

present study during the winter surface Chl-a
maximum (Fig. 2) may imply that siliceous
phytoplankton was overshadowed by other
groups. This would agree with Estrada et al.
(1999) who observed that during the winter
spring bloom phytoplankton biomass was not
associated with diatom dominance in the
Balearic Sea. The weak relationship between
surface Chl-a concentrations and spring and
early summer opal maximums may be explained
by the development of a deep chlorophyll max-
imum (~60 m) closely related with the nutricline
(Crombet et al., 2011). In other oligotrophic
areas of the Mediterranean Sea it has been
reported that under high stratified conditions,
diatoms can dominate the deep chlorophyll
maximum (Crombet et al., 2011). Nonetheless,
the low values of OC during opal maximums
(Fig. 2) could indicate that opal came from re-
suspended biological remains as it has been
suggested in other areas of the Mediterranean
(Lopez-Fernandez et al., 2013b). However, the
low OC/N ratio (5 – 6.5), the absence of other
sediment resuspension indicators (enhanced
current velocity, enhanced turbidity, and incre-
ments in the lithogenic fraction), (Figs. 2 and
7) and the poor correlation of opal with TMF
(Fig. 3) do not support this environmental ap-
proach. Consequently, the mechanisms involved
in both opal maximums remain unclear. 

Moreover, T1 maximum opal percentages, reg-
istered during early May to late June 2011,
were 47% lower than T2 maximum opal per-
centages, registered during early May to late
June 2012 (Fig. 2). This could be related with
the characteristics of the water masses influ-
encing the study area during both sampling
periods. During spring and early summer 2011
the study area was influenced by recent AW
(Fig. 10) considered highly oligotrophic (García
et al., 2005). Conversely during 2012 spring
and summer the study area was influenced by
resident AW (Fig. 11). Resident AW has higher
H4SiO than recent AW (Crombet et al., 2011).
In this regard, we hypothesized that higher
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opal fluxes observed during T2 could result
from higher H4SiO4 availability, which could
trigger the deep Chl-a peaks and sustain larger
siliceous phytoplankton populations. 

4.4 Macroscopic components

Throughout both sampling intervals fecal pellet
fluxes (Fig. 4g) presented several peaks with
only one peak coinciding with the 2011 winter
spring bloom (Fig. 5). This temporal pattern
contrasts with zooplankton dynamics in the
Balearic archipelago (Cartes et al., 2008) and
long–term fecal pellet monitoring in other areas
of the western Mediterranean that showed a
clear relationship between the winter–spring
phytoplankton bloom and the fecal pellet max-
imums (Fowler et al., 1991). During T2, fecal
pellet fluxes were one order of magnitude
larger than during T1. This is surprising as
surface chlorophyll satellite observations re-
vealed that during T2 winter-spring bloom was
less intense and shorter than the one observed
during T1 (Figs. 8 and 9). However, it has been
observed that zooplankton abundances may
experience a wide variability under different
hydrographic settings (Guerrero et al., 2016).
In the Balearic Archipelago higher zooplankton
abundances have been observed under the
prevalence of resident AW (Fernández de
Puelles et al., 2007). This would agree with
our results as during 2012 resident AW strongly
influenced the southern slope of the archipelago
(Fig. 11). Moreover, fecal pellets may induce
rapid vertical transports enhancing biogenic
components fluxes (Monaco et al., 1990; Stone
and Steinberg, 2016). In the Menorca canyon
fecal pellet fluxes were not significantly corre-
lated with CaCO3 (p=0.51, p=0.34 during 2011
and 2012 respectively), OC (p = 0.32, p = 0.34
during 2011 and 2012 respectively) and opal
fluxes (p = 0.06, p = 0.07 during 2011 and
2012, respectively) suggesting a low contribution
to biogenic fluxes. This could also reflect the
strong diluting influence of resuspended material
into the sediment trap. 

The fluxes of P. oceanica fragments (Figs. 4e
and 4f) presented high variability throughout
both sampling periods and were poorly corre-
lated with TMF (Figs. 5 and 6). During the T1
fluxes of P. oceanica detritus remained quite
stable and could not be related to any envi-
ronmental pattern. Conversely, during the T2,
fluxes were more variable and there seemed
to be a relationship between relatively high P.
oceanica detritus fluxes and large wave high
events (Fig. 5 and Table 3). Indeed, shelf re-
suspension processes have been identified,
as a major source of macrophyt and sea grass
detritus to deeper environments (Britton-Sim-
mons et al., 2012). In North Pacific canyons
macrophyt and seagrass detritus have shown
to be a major carbon source, accounting for
20–83% of the particulate organic carbon
(Harrold et al., 1998). P. oceanica detritus
does not seem to widely contribute to the
bulk OC flux as both variables were not sig-
nificantly correlated (p = 0.33 and p = 0.35
during 2011 and 2012 respectively). Despite
this lack of correlation, P. oceanica detritus
cannot be ruled out as major carbon sink in
deep Mediterranean environments due to its
refractory nature (Danovaro et al., 1994) and
high carbon contents (Romero et al., 1992).
In this regard, peaks in P. oceanica detritus
registered during mid December 2011 and
early February 2012 coincided with high OC/N
ratio (9 – 9.5) (Figs 5 and 2). However, it
should be mentioned that very small, reworked
fragments represented the P. oceanica detritus
fraction and this material should behave as a
particle lighter than CaCO3 or lithogenic sedi-
ment of the same size. That implies a more
complicated transport mechanisms related to
the coincidence of P. oceanica fragments
availability at the beach and shallow coastal
areas and resuspension and downslope trans-
port mechanisms. With the available informa-
tion, explaining the presence of this fraction
represents the strongest challenge in this
study and it cannot be clarified. 
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Benthic and pelagic foraminifera presented
similar trends during both sampling periods,
with poor correlation with the TMF pattern
(Figs. 5 and 6). From early spring to late sum-
mer 2011 there was a substantial increment
in the fluxes of both foraminifera groups (in-
cluding resuspended dead pelagic foraminifera).
Coinciding with this increment, we observed
a turbidity enhancement, suggesting that
these peaks in foraminifera fluxes derive from
resuspension processes (Figs. 5 and 7). More-
over, in the water column pelagic foraminifera
reached its maximum concentrations during
winter months (Pujol and Grazzini, 1995),
which points to resuspension as the main re-
sponsible process to explain the spring and
summer 2011 pelagic foraminifera peaks (Fig.
5). During the T2 foraminifera fluxes presented
two peaks during mid December 2011 and
early February 2012 coinciding with P. oceanica
detritus fluxes. Pelagic foraminifera may pro-
duce high densities during winter months
(Pujol and Grazzini, 1995) and probably the
signal of these developments was recorded
in the trap collection. Coinciding with both
peaks several large wave height events (Table
3) were registered, which may indicate that
the observed peaks during the second sampling
periods could also derive from resuspension
events, especially that of benthic foraminifera.
Nonetheless these peaks were not associated
with increments in turbidity nor in the lithogenic
fraction (Figs. 2 and 7).  Moreover, benthic (p
= 0.11 and p = 0.17 during 2011 and 2012, re-
spectively) and pelagic (p = 0.17 and p = 0.07
during 2011 and 2012, respectively) foraminifera
fluxes were poorly correlated with CaCO3

suggesting that the contribution of foraminifera
to the CaCO3 is diluted by other CaCO3

sources. During both sampling periods mi-
croplastic fibres (Fig. 4h) were found in all
samples. Future research should quantify the
amount of carbon that these artificial polymers
introduce into the carbon flux and the possible
bias to the budget of naturally produced OC
carbon.  

4.5 TMF: general approach 

The southern area of the Balearic archipelago
has been described as a sediment-starved mar-
gin where no major sources of continental
sediments are present (Lo Iacono et al., 2014).
Consequently, lithogenic fluxes within the insular
system of the Menorca canyon were rather
poor within the Mediterranean context and
were far exceeded by fluxes registered in
canyons and slopes that receive sediment
inputs from fluvial systems and where intense
across slope current occur (Table 4). To our
knowledge, the registered fluxes were the low-
est ever registered in a western Mediterranean
canyon head. These observations suggest that
Mediterranean submarine canyons related to
insular environments, without important fluvial
networks, receive particle fluxes similar to
those collected in deep-sea environments
(Sanchez-Vidal et al., 2005). No clear relationship
was found between environmental parameters
and TMF temporal variation. Unlike other studies
in the Mediterranean, where the relation be-
tween hydrodynamic, meteorological and bio-
logical processes and TMF peaks was more
evident, we advocate that in the present study,
the low magnitude of the TMF difficults the
identification of a main mechanism that explained
its magnitude and temporal variation (Table 4).
The fraction represented by biogenic material
was smaller than the resuspended, degraded
material. Nonetheless, our results suggest that
physical mechanisms, (e.g., resuspension) were
more important than biological processes in
the control of the temporal variation and chemical
composition of the TMF. TMF were poorly
related with phytoplankton blooms in contrast
to the patterns observed in other Mediterranean
oligotrophic environments with similar surface
Chl-a concentrations (Malinverno et al., 2009).
Although TMF and geochemical components
varied between both sampling periods (Fig. 2),
the absence of significant differences between
both periods (Table 1) indicates that overall,
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the magnitude and composition of the TMF
showed little interannual variation between
2011 and 2012 indicating that overall sediment
sources remain constant throughout the year.
Except for benthic foraminifera, macroscopic
components significantly differed between 2011
and 2012 (Table 2) suggesting that the fluxes
of the macroscopic particles may develop ac-
cording to a different combination of sources
and physical-biological mechanisms than the
TMF and its main components. 

The amount of OC collected in the Menorca
Canyon (~3%) is similar to that of areas with
higher TMF that receive continental inputs
such us the Gulf of Lyons or the Catalan
Margin (Table 4). This suggests that the dilution
effect of the lithogenic fraction, in the Menorca
Canyon, is less intense than in areas adjacent
to continental landmasses. Submarine canyons
have been identified as macrobenthic com-
munity hotspots of diversity and biomass (e.g.
Fabri et al., 2014; De Leo et al., 2010). However,
high sedimentation rates may generate insta-
bility (erosion, smothering) restricting the de-
velopment of macrobenthic communities to
areas with low sedimentation rates (Sousa,
2001). Thus, the synergy of the magnitude of
the OC fluxes and low TMF measured in the
Menorca Canyon presumably are sufficient to
maintain the high biodiversity of the benthic
communities in the Menorca Canyon and sur-
rounding areas (Barberá et al., 2012, Grinyó et
al., 2016). The results of the present work
stimulate further research on the interesting
relationship between benthos and particle
fluxes in oligotrophic environments.
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Conclusions

l Chapter 1 

Six different assemblages of macrobenthic
species were identified in the Menorca Channel,
mainly segregated by substrate and depth.
Hard substrates hosted coral gardens and
sponge grounds. Both assemblages presented
a very similar sponge species composition,
being basically differentiated by the absence
of gorgonians and antipatharians in sponge
grounds. Soft sediments were characterized
by vast extensions of the crinoid Leptometra
phalangium and the brachiopod Gryphus vitreus.
L. phalangium mostly occurred on the shelf
edge, whereas G. vitreus was mostly found in
deeper areas. The highest diversity of benthic
macrofauna was concentrated in the shelf
edge. This high diversity most likely results
from the synergy of habitat heterogeneity and
hydrodynamic conditions in the shelf edge.
The good preservation of most of the observed
assemblages is probably related to the low
pressure of bottom trawling fishing, which is
mainly concentrated above 100 m on the con-
tinental shelf, and below 500 on the continental
slope.

l Chapter 2

Gorgonian diversity at 40–360 m depth in the
Menorca Channel was comparatively higher
than observed in Mediterranean coastal areas.
Gorgonian assemblages on the continental
shelf and upper slope were mostly monospe-
cific, whereas shelf edge assemblages were
highly multispecific. Gorgonian populations
were dominated by small size colonies through-
out the studied bathymetric range. However,
in deeper environments intermediate and large
colonies were more abundant. More stable
environmental conditions and food availability
in the shelf edge may allow gorgonians to
reach larger dimensions. The high diversity
and abundance of deep gorgonian assemblages
in the rocky areas of the shelf edge, and the
vast area covered by high densities of Para-
muricea macrospina on the continental shelf
most likely result from low trawling pressure
and the exceptional fishing practices exerted
by local artisanal fishermen. These high-density
deep gorgonian assemblages may provide an
approximate idea of how Mediterranean conti-
nental shelves and upper slopes stood before
decades of bottom trawling.
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l Chapter 3

The three chromatic forms of the gorgonian
Paramuricea macrospina observed on the con-
tinental shelf and upper slope of the Menorca
Channel, significantly differs in terms of sclerite
size and shape, but not in terms of molecular
markers and colony shape. Indeed, most of
the analyzed colonial morphological features
barely changed among the three forms indicating
that colonial morphology is a conservative
character that experiences little variation across
the different environments. Both environmental
factors and genetic differentiation may be con-
ditioning differences in sclerite size and shape
among the three different forms. Considering
the similar coloration in M2 and M3 colonies
and the less marked differences in sclerite
size and shape, it could be suggested that M2
and M3 are a shallow and a deep forms of a
single morphotype occurring over a wide depth
range (continental shelf and shelf edge), where-
as M1 is a morphotype restricted to the conti-
nental shelf. The lack of resolution in mtMutS
is not necessary indicative of species identity,
and thus recent speciation process that sepa-
rated M1 versus M2+M3 forms of P. macrospina
cannot be discarded. In this regard, new genetic
markers are needed to clarify the fine line be-
tween species and morphological variation
among Mediterranean gorgonians.

l Chapter 4

Paramuricea macrospina reproductive cycle is
delayed 2–3 months respect to the shallow
Mediterranean gorgonian species. Late increase
in seawater temperature occurring on the
Mediterranean continental shelf could be the
main driver of this delay. Internal brooding in P.
macrospina contrasts with surface brooding
of the congeneric P. clavata. The differences in
the habitats where the two species occur,
arises the question about the possible adaptive
advantage of their reproductive strategies. P.

macrospina lipid content was much lower and
more constant than observed in shallow
Mediterranean gorgonian species. These dif-
ferences between depths may reflect a lower
but more constant food availability on the
Mediterranean continental shelf than in littoral
environments. A general stability in food avail-
ability for gorgonians on the Mediterranean
continental shelf is also supported by the lack
of seasonality in the ∂13C and ∂15N composition
of P. macrospina tissue. Seasonality in the en-
ergetic requirements of P. macrospina is high-
lighted by the seasonal changes observed in
the FFA content and composition

l Chapter 5

Particle fluxes collected in the Menorca canyon
head were comparatively low in the Mediter-
ranean context, reflecting the lack of intense
continental and fluvial supply to this insular
and oligotrophic study area. There was not a
clear parameter, which controlled the temporal
variation of the TMF. However, resuspension
and biochemical characteristics associated to
alternating water masses (resident and recent
AW) seemed to be the main drivers controlling
the magnitude and composition of the TMF.
The findings of the current study also suggest
that that Mediterranean submarine canyons
related to insular environments, without im-
portant fluvial networks, receive as small fluxes
as in some deep-sea environments.

Future perspectives

Results presented in this thesis derive from
the study of Mediterranean macrobenthic as-
semblages of the continental shelf and upper
slope by means of non-destructive techniques.
Quantitative information about species abun-
dance and distribution over large extents were
obtained applying quantitative video analyses,
complemented with the sampling of a limited
number of organisms to confirm species iden-
tification. Non-destructive, video-based sam-
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plings are currently considered a valid alternative
to traditional sampling methods to study deep
benthic environments. When larger number of
samples was needed to address the charac-
terization of specific aspects of the species
taxonomy or biology, they were carefully and
selectively collected by means of the arm of
the manned submarine, or as by-catch of tra-
ditional fishery. This approach is especially
preferable for the study of vulnerable species
with slow growth and high longevity, such as
most of those investigated in this thesis.

Many of the results obtained within this thesis
have also represented the scientific base for
the ecological characterization of the Menorca
Channel for its inclusion in the Natura 2000
Network from the European Union
(LIFE07/NAT/E/000732). More in detail, results
about species abundance and distribution (chap-
ters 1 and 2) represent the ground zero for the
future monitoring of the effectiveness of the
management and conservation measures that
will be undertaken in the frame of the new es-
tablished special area of conservation
(http://www.magrama.gob.es/es/costas/temas/p
roteccion-costa/actuaciones-proteccion-
costa/illes-balears/LIC-ESZZ16002-Canal-de-
Menorca.aspx). Moreover, future exploration
of areas adjacent to the Menorca Channel,
such as Serra de Tramuntana (Northern Mallorca)
or the rocky gullies on the northern slope of
Menorca Island, could unveil similarly reach
and well preserved macrobenthic assemblages.
These areas are currently under low trawling
pressure, and artisanal and recreational fishing
by-catch observations suggest the presence
of rich and diverse benthic communities.

In situ growth experiments of the main bio-
engineering species (e.g. gorgonians, large
massive sponges, antipatharians) would be
beneficial to understand the recovery capacity
of the observed benthic communities, and set
the base for the restoration potential of impacted
areas. In order to elucidate the phylogenetic

relationship of the three forms of Paramuricea
macrospina observed (chapter 3), future studies
should address this question by means of high
through put DNA sequencing (e.g. RAD se-
quencing, restriction-site associated DNA). In-
deed, these techniques have shown to be
useful in delimiting deep gorgonian species.
Furthermore, the possible role that asexual re-
production could play to complement sexual
reproduction (chapter 4) in the population dy-
namic of P. macrospina could be addressed by
sampling colonies at different spatial scales
and perform microsatellite genotyping analy-
sis.

Finally, the high oligotrophy of the Balearic
Sea apparently contrasts with the observed
presence of high-density aggregations of
passive and active suspension feeders. Future
studies should consider monitoring particle
fluxes and seasonal pattern of the main envi-
ronmental conditions in the continental shelf
and upper slope, to understand the main
drivers of species distribution.

CONCLUSIONS | 157-160 159



Ecological study of benthic communities in the continental shelf and upper slope in the Menorca Channel                              160



Annex I

GRINYÓ J (2016) PhD Thesis pp 161-173



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Ecological study of benthic communities in the continental shelf and upper slope in the Menorca Channel 162 

 LÓPEZ-GONZÁLEZ, P.J., GRINYÓ, J. AND GILI, J.M. 2012 
Rediscovery of Cereopsis studeri Koch, 1891, a forgotten 

Mediterranean soft coral species, and its inclusion in the genus Nidalia 
Gray, 1835 (Octocorallia, Alcyonacea, Nidaliidae). 

Marine Biology Research, 8: 594–604 
 
 
 

ATENTTION¡¡ 
Pages 163 to 174 of the thesis are available at the editor web: 
http://www.tandfonline.com/doi/abs/10.1080/17451000.2011.650178 
 

 



Annex II

GRINYÓ J (2016) PhD Thesis pp 175-198



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Ecological study of benthic communities in the continental shelf and upper slope in the Menorca Channel 176 

 LÓPEZ-GONZÁLEZ, P.J., GRINYÓ, J. AND 
GILI, J.M. 2012 

Chironephthya mediterranea n. sp. 
(Octocorallia, Alcyonacea, Nidaliidae), the 

first species of the genus discovered 
in the Mediterranean Sea. 

Marine Biodiversity, 45: 667–688 
 
 
 

ATENTTION¡¡ 
Pages 177 to 198 of the thesis are available at the editor web: 
https://link.springer.com/article/10.1007/s12526-014-0269-5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Acknowledgements

GRINYÓ J (2016) PhD Thesis pp 199-201

Aquesta tesis doctoral és el fruit de les idees,
consells i l’esforç conjunt de molta gent, però
en especial dels meus mentors i amics en Jo-
sep-Maria Gili, l’Andrea Gori i l’Enrique Isla. Els
voldria agrair la disponibilitat que sempre han
tingut per escoltar i debatre qualsevol idea o
dubte; així com la dedicació continua que sem-
pre m’han demostrat, finsi i tot des de la dis-
tància. Però, sobre tot, els vull agrair l’amistat
que hem establert durant aquests anys. L’opti-
misme i la positivitat que m’han transmès
inclús davant les situacions més adverses i
han fet que aquesta tesi doctoral hagi resultat
una experiència molt agradable i enriquidora.  

Tambien  querría agradecer a Pablo López-
González, de la Universidad de Sevilla su parti-
cipación en esta tesis. Gracias Pablo, por haber
sacado tiempo de tus noches y fines de semana
para completar los trabajos. También agradecerte
que me  acogieras en Sevilla durante aquella
semana de Agosto de 2012 (42ºC a la sombra).
Fue una experiencia fantástica poder aprender
de tí y que me hicieras de anfitrion en tu
bonita ciudad. 

A en Michael Greenacre, de la Universitat
Pompeu Fabra, també li voldria agrair la seva

implicació en aquesta tesis. Ha estat un veritable
plaer poder treballar amb una persona tant
vital com tu. Tant de bo els nostres camins es
tornin a creuar.

També voldria agrair a en David Díaz, l’Annabel
Muñoz, la Sandra Mallol i els pescadors de la
barca artesanal GOGA, de Cala Ratjada, per
tota la feina feta durant els mostrejos pel cicle
reproductiu de Paramuricea macrospina. A en
David i l’Anabel els estic especialment agraït.
Sense les immersions que van realitzar a més
de 70 metres, tot i els riscos que comportava,
mai s’hauria pogut completar aquesta tesi. Tre-
ballar amb vosaltres dins del marc del projecte
ECOSAFIMED ha estat una experiència molt
divertida i agradable. Espero que en un futur
no molt llunyà puguem tornar a treballar junts. 

A voria ringraziare Stefano Ambroso, un amico
da fogo, parchè anca quando l’è tardi assè o
quando ghe dalle difficoltà, l’è sempre gentile
e pronto a aiutare un butel. Me ricordarò par
sempre delle tradizioni de Verona che te m’è
insegnà, dei caffè de matina, dei discorsi sul
Mar de Tethys, dele bire che ghemo beù nell’u-
ficcio del capo in orari assurdi. Spero davvero
che la nostra amicizia duri per sempre!



Ecological study of benthic communities in the continental shelf and upper slope in the Menorca Channel                              200

A l’Ariadna Purroy que malgrat la distància,
com sol passar amb els bons amics, cada cop
que ens retrobem tinc la sensació que només
han passat un parell de dies.  A la Núria
Viladrich, gràcies per ensenyar-me a veure la
bellesa que s’amaga en la senzillesa i l’increïble
enginyositat dels anàlisis bioquímics. Has estat
una gran mestra i una molt bona amiga, sempre
amb un somriure. A la Martina Coppari, he
gaudit moltíssim de totes les hores passades
dins del laboratori de vídeo, i sempre recordaré
el munt d’atacs de riure que hem viscut junts.
Presidenta Coppari l’esperem!!!! A la Rebeca
Zapata, gràcies per els teus consells i el teu
pragmatisme. A en Claudio Lo Iacono, gracias
por tu amistad y por llevarme a lugares que no
creia que pudieran existir en el Mediterráneo.
A la Martina Pierdomenico, siempre recordaré
el viaje trepidante Malaga – Barcelona que hi-
cimos para assegurar que los corales de la
campaña SHAKE llegasen vivos. A l’Antonio
Canepa i a en Guillem Salazar que m’heu
ajudat en infinitat d’ocasions a resoldre dubtes
d’R. A l’Alejandro Olariaga, gracias por los
buenos momentos tomando mate en el taller
y las campañas. A en Juancho Mobilla, gracias
por tu amistad, consejos y por tu ayuda en la
ZAE. A la nova fornada de becaris bentònics
del Suspension Feeders Team: a l’Andreu, a la
Maria, a la Patricia, a la Janire, en Guillem, la
Núria i l’Ariadna, gràcies per estar disposats a
donar un cop de mà sempre que se us ha ne-
cessitat amb la millor de les actituds. Al com-
pany que va començar la tesis amb mi, gràcies
Carlos pels moments a Cadaqués i el desen-
volupament de la macro ha fet que la nostra
feina resulti molt més senzilla. A la María Pas-
cual, la Míriam Gentile, la Melissa Acevedo,
l’Agnés Escurriola, en Raül González, a la Laura
López, a en Gastón Iriarte, Macarena Marambio,
Verónica Fuentes i l’Elena Guerrero gràcies
per la vostra amistat i el bon rotllo i positivisme
que transmeteu.

A en Xavi Leal, en Miquel Dalmau, en Lluís
Pedret, moltes gràcies per ajudar-nos a vigilar

els experiments dels aquaris de la ZAE tot i
que no fos la vostra feina.

Voldria agrair a la Susana Requena i la Covadonga
Orejas tota la feina feta, sense elles el projecte
LIFE+ INDEMARES - CANAL DE MENORCA
no hauria estat possible. També voldria agrair a
la tripulació del buc oceanogràfic Garcia del
Cid tota l’ajuda i suport que ens van donar
durant les campanyes LIFE+ INDEMARES. Bei
Karen Hissman und Juergen Schauer möchte
ich mich herzlichst bedanken, dass Sie mir die
Möglichkeit gegeben haben bei den Tauchgängen
mit dem JAGO in Cap de Creus und im Canal
de Menorca dabei sein zu dürfen. Ich fühle
mich als absoluter Glückspilz, dass ich diese
Möglichkeit hatte mit dem JAGO diese beson-
deren Orte besuchen zu dürfen, die niemand
vorher so gesehen hat. I would like to thank
Gavin Newman for working long hours during
the LIFE+ INDEMARES cruises and the incre-
dible footage that he has proportioned. 

Als doctors Sergi Rossi i Lorenzo Bramanti els
voldria agrair la seva tasca com a correctors
externs d’aquesta tesi. També voldria agrair a
la secretaria del programa de doctorat de Cièn-
cies del Mar de la Universitat Politècnica de
Catalunya, la Genoveva Comas, tota l’ajuda
que m’ha donat i la paciència que ha tingut
amb mi i els meus companys del doctorat. 

Voldria fer una mencio especial del professor
Josep Marlés que em va desvetllar la passió
per la biologia marina durant la meva adoles-
cència.

Voldria agrair especialment als meus pares,
germans i la Mireia el suport constant i l’opti-
misme que m’han transmès al llarg de tota la
meva vida. Gràcies per recolzar la meva passió
per la biologia des de la meva infantesa i po-
tenciar la meva curiositat i inquietuds. 

També voldria agrair a la Lídia i en Jesus
l’acollida que sempre m’han donat a casa seva,



ACKNOWLEDGEMENTS | 199-201 201

en especial durant aquests dos últims mesos,
on he pogut acabar la tesi. 

Voldria agrair especialment a l’Elena Crespo
que m’hagi acompanyat durant el transcurs
d’aquest viatge. Gràcies per transmetre’m pau
i serenor i ajudar-me a apaivagar les meves
angoixes en els moments més difícils. Gràcies
per ensenyar-me a mirar més enllà de la feina.
Sens dubte m’has ensenyat a gaudir més de
la vida. Gràcies Elena per la teva presència de
cada dia i el teu recolzament incondicional.



������	�
���	����	�����������������������	���	�������������	���������������	����������������������������	����������
��������	�
������������������	�����������������������������	��
���������������������������������������������������	�
������������������������
��������������������	�
�������������	��
�	���������������������������������
��������������������		�������������	��
��������� �����������
!����"����#����	�$��������������	����
����������������%���	�
����������������������$������		��������������	�
��������	�
�������������
�������������������������������������������������	�
�����������������	��������������������
������������������������������������
����������������������������&����������������������������	�
��������������������	����	������������	�����'()*+(���������������
 �������"�����	������
������	�������	������������������������������	�
���	�	���	��
!����������������������	�
�������	����
��
��������������������������,������������������������
��
�������������	�
�����$
����������������������������������������������������������,�
����������������	������������������������	���
�$�������	������
�����#��������������������������
���������������������������������������������-��
����������������������������������������
������������
�������
���
�������������� �������"�����	$�������
������������	�
��������������������������������-��
������������	�
��
�����������������	����	������������	�������������	��������������$������������	���
��������	�
����������
�	����	������������!��		
��	������������������������
������������������������������
�$������������������������������������������	��
����	����������
������������������
�����������������������������������������������������������	�
������
��
����������	����������������	����	���
�������	��������������������������	��
$��������������	����������������������������������������������	������������������	�������
����������
��������������	���	���������	���������������������	�
������������������������������
��
��������������������� �������"�����	�
�����
��������������������$���������������������������������������������������������������������������������	����	�$����������
������������������	���
���"�	���������$���	��������&����������$��������
��������������	������������������	����%�������������������
�	���������������������������������������������������������������������"�	����������	�
������	������
������
����������������
����	���
��������
��������������������������"�������	�$���	��������&�������������
��������	�������������
������������������$�������	�
�������������
����������������������	����������,������$������
���������������������������������������������������������	����%����
�������������������	�$�����
�������
�����������	�����#���������������
������������������
������������������������������
 ������������������	�
��
��������.������������������	�������	����/)*����������������������		����������$�������	����		����
�����	���
������������������������������������������������
�������� ����������������������	����	��� �������$��������	�������
������
���������
�����������������������������
�����������
����������������	�
���������0����������������	���������������������������
��������������
������		����������$����12*"����1234��������������������	���������������	����������$���

�����
��������������	���	���������������������	
���	�����	����������������������������������		�������������������������
���	�
��������������������������5�	������!�����������	�����������
�����������
����������������������������������������������������������������������������� �������"�����	��.���$�����������
������	���	�����#�������������
������������������������������ �������"����������������������	��	�������������� �������������������$
���	�����
������	�
����������������������������������������	��%��������������	������������������	������������,����������������
����
�������	��������������������������������������������������������������������������������������������������������������������	���
������
��������������������������������	�������	�������������������$�	�%�	���	����
�����6�����	��������������
�����������������������
�������������������	�
���!

7
 

 
8

�
9


	Portada_Jordi_web
	Blanco
	Chapter_0_v2_Jordi
	Introduction_v4_Jordi
	Chapter_1_v4_Jordi
	Chapter_2_v3_Jordi
	Chapter_3_v4_Jordi
	Chapter_4_v4_Jordi
	Chapter_5_v3_Jordi
	Conclusions_Jordi
	Anex_Jordi
	Contrportada_Jordi_web



