Luciana Gabriel Nogueira Barbosa

Expressão de citocinas inflamatórias e quimiocinas no tecido cardíaco de pacientes com Cardiomiopatia Chagásica Crônica

Tese apresentada à Faculdade de Medicina da Universidade de São Paulo para obtenção do título de Doutor em Ciências

Área de Concentração: Alergia e Imunopatologia

Orientador: Prof. Dr. Edecio Cunha Neto

São Paulo 2008

Dados Internacionais de Catalogação na Publicação (CIP)

Preparada pela Biblioteca da Faculdade de Medicina da Universidade de São Paulo

©reprodução autorizada pelo autor

pacier	ntes com cardiomiopatia chagásica crônica / Luciana Gabriel Nogueira
Barbo	osa São Paulo, 2008.
Te	se(doutorado)Faculdade de Medicina da Universidade de São Paulo.
Ár	ea de concentração: Alergia e Imunopatologia.
Ór	ientador: Edecio Cunha Neto.
De	escritores: 1.Doença de Chagas 2.Cardiomiopatias 3.Quimiocinas 4.Citocina
5.Mio	cárdio 6.Expressão gênica 7.Inflamação
USP/I	FM/SBD-378/08

APROVAÇÃO

A Comissão de Ética para Análise de Projetos de Pesquisa - CAPPesq da Diretoria Clínica do Hospital das Clínicas e da Faculdade de Medicina da Universidade de São Paulo, em sessão de 14.09.05, APROVOU o Protocolo de Pesquisa nº 739/05, intitulado: "Expressão de Citocinas Inflamatórias e Quimiocinas no Tecido Cardíaco de Pacientes com Cardiomiopatia Chagásica Crônica: Indução de Fenótipo Hipertrófico e de Depleção de ATP em Cardiomiócitos em Cultura" apresentado pela COMISSÃO CIENTÍFICA E DE ÉTICA DO INSTITUTO DO CORAÇÃO, inclusive o Termo de Consentimento Livre e Esclarecido.

Cabe ao pesquisador elaborar e apresentar à CAPPesq, os relatórios parciais e final sobre a pesquisa (Resolução do Conselho Nacional de Saúde nº 196, de 10.10.1996, inciso IX. 2, letra "c")

Pesquisador(a) Responsável: **Prof. Dr. Edecio Cunha Neto** Pesquisador (a) Executante: **Sra. Luciana Gabriel Nogueira Barbosa**

CAPPesq, 14 de Setembro de 2005.

PROF. DR. CLAUDIO LEONE Vice-Presidente da Comissão de Ética para Análise de Projetos de Pesquisa

Comissão de Ética para Análise de Projetos de Pesquisa do HCFMUSP e da FMUSP Diretoria Clínica do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo Rua Ovídio Pires de Campos. 225, 5º andar - CEP 05430 010 - São Paulo - SP

"É justamente a possibilidade de

realizar um sonho que torna a

vida interessante".

(autor desconhecido)

"Tudo posso naquele que me fortalece..."

Dedico este trabalho...

A **Deus** que guiou minha vinda para esta Faculdade e mostrou-me o caminho para a realização desta tese, pelo dom da vida, pela saúde, perseverança, alegrias, família, amigos...

A minha amada família:

Ao meu amado **Thiago** pelo amor, paciência, por toda doação durante esses anos e por todos os momentos da realização desta tese. Pelo companheirismo e todo o carinho nos momentos alegres e nos momentos difíceis. Pelo constante incentivo e por compreender minhas ausências. Pela alegria e riqueza de dividir a vida com você, por todo o aprendizado da nossa caminhada, por todos os sonhos já vividos e por todos aqueles que ainda lutamos por alcançar. Muito, muito obrigada. Sempre Juntos!!!

Meus pais **Orécio** e **Lúcia** pelo amor, carinho, compreensão, incentivo, por me ensinarem a viver com humildade e por abdicarem de sonhos próprios para que os meus fossem realizados. Por todas as orações e pela família linda que temos.

Aos meus irmãos **Orécio (Gu)** e Luana pelo amor, carinho e por compartilharmos sonhos, alegrias e realizações.

A minha sobrinha/afilhada **Thaís** que é a alegria de nossas vidas.

Aos meus padrinhos Antônio e Olímpia, por todo o carinho e pelas orações.

"Devo confessar que os "agradecimentos" são de alguma forma sempre cruéis, ou porque faltam palavras para expressar a gratidão que sentimos, ou faltam alguns nomes, que talvez pelo cansaço, deixamo-nos de recordar. Enfim, o espaço parece pequeno, o tempo escasso e o desejo do término da redação inevitável. Espero que em meus agradecimentos consiga representar com carinho e amizade a honra em finalizar essa etapa de longo trabalho que se segue. Peço aos meus amigos não estranharem a redação de forma sucinta, mas prefiro agradecer-lhes em gestos mais que em palavras..."

Ao meu orientador **Prof. Dr. Edecio Cunha Neto**, pela orientação sempre inteligente, por me receber em seu grupo e pela oportunidade de desenvolver este trabalho: muito obrigada.

Ao **Prof. Dr. Jorge Kalil,** por me receber em seu laboratório, pelas discussões nas reuniões de grupo, criticas e sugestões.

A Dra. Verônica Coelho e Dra. Luiza Guilherme, pelas discussões nas reuniões de grupo, criticas e sugestões.

A equipe médica da unidade de transplante cardíaco do Instituto do Coração, **Dr. Noedir Stolf, Dr. Ronaldo Honorato** e **Dr. Alfredo Fiorelli**, pelo indispensável auxilio na obtenção das amostras que muito contribuíram para a realização deste estudo.

Aos professores Dr. José Maria Mosig, Dr. Pedro Bianchi e Dra. Cristina Kokron, pela disponibilidade de participar da minha banca examinadora na qualificação engrandecendo as discussões deste trabalho.

As queridas amigas **Beatriz Stolf, Daniela Santoro, Simone Fonseca e Sandra Drigo**, pela amizade e ajuda imprescindível para o término da qualificação e desta tese e pela disponibilidade de discutir com entusiasmo e grande sabedoria todos os resultados.

As queridas amigas **Adriana Coutinho e Eliane Mairena**, pela amizade, dedicação, companheirismo e pela indispensável ajuda no decorrer e término desta tese.

A amiga **Ana Lucia Garippo**, pela indispensável ajuda nas imagens obtidas no confocal, pela nossa próspera amizade e mútuo companheirismo.

Aos ternos amigos do laboratório, Ruth, Malú, Fábio, Sandra Emiko, Adalberto, Beatriz Fortunato, Cláudio, Washington, Sandra Maria, Carlos, Santa, Marcelo, Sandra, Samar, Raquel, Natália, Sandra Moraes, Patrícia, Vitor, Suzane, Fabiana, Amanda, Elza, Pedro, Hernandez, Selma, Karla, Geórgia, Carol Luque... por todo o respeito, carinho, atenção, disponibilidade e mútuo companheirismo.

A amiga e secretária **Tânia** pela paciência, atenção, dedicação e infindáveis resoluções burocráticas.

Aos prestativos amigos, **Jair Martins**, **Sônia**, **Gisele, Silvano, Andréia** e **Fernanda** pela paciência, atenção e competência nas resoluções burocráticas. Agradeço a amizade e convívio.

As ternas amigas **Raimunda** e **Elaine**, por manterem o laboratório e o material pronto para uso, pela disponibilidade, atenção e carinho.

Ao **Dr. Luiz Benvenutti** (Serviço de Anatomia e Patologia do InCor), pela ajuda nas análises histopatológicas e pela disponibilidade em conversar sobre o trabalho.

Aos amigos **Antônio** e **Nádia** (Serviço de Anatomia e Patologia do InCor), pela ajuda na obtenção dos cortes/lâminas e nas resoluções burocráticas.

A **Prof. Dra. Walderez Dutra**, por me receber em seu laboratório para os experimentes iniciais de imunofluorescência, pela disponibilidade e atenção, e a todo o pessoal do seu laboratório, **Fernanda, Micena, Janete, Tatiana, Germano e Lis**, pela disposição em ajudar e agradável convívio. Em especial a amiga **Daniela**, que me acompanhou nos ensaios, pelas boas conversas, companheira das noites no laboratório, pelo carinho **e** pela nossa próspera amizade.

Ao **Prof. Wanderley Antônio Calório**, pela amizade e por ter "dado o empurrão" inicial, o que foi fundamental para que eu ingressasse na vida científica. Muito obrigado.

Ao **Prof. Dr. Fernando de Queiróz Cunha**, pela oportunidade de iniciar minha carreira científica em seu laboratório, pelos ensinamentos ainda tão presentes e pelo incentivo.

Aos queridos **amigos do Laboratório de Inflamação e Dor** (FMUSP – Ribeirão Preto)... não vou me arriscar a listar um a um, mas agradeço a todos pela amizade ainda tão presente, por todo respeito, carinho, atenção, pelos trabalhos em colaboração e mútuo companheirismo.

A **FAPESP** pelo indispensável auxílio financeiro para a realização deste trabalho.

Enfim, agradeço a todos que de alguma maneira contribuíram para que este trabalho fosse realizado. **Muito obrigada de coração!**

Sumário

Lista de abreviaturas, símbolos e siglas

Lista de Figuras

Lista de Tabelas

Resumo

Summary

1.	Intr	odução	٥	1
	1.1	Doei	nça de Chagas	2
	1.2	Citoc	inas Inflamatórias na Infecção pelo Trypanosoma cruzi	10
	1.3	Quin <i>cruzi</i>	niocinas e seus Receptores na Infecção pelo <i>Trypanosoma</i>	16
	1.4	Pape hipe	el dos Mediadores inflamatórios sobre os Cardiomiócitos – rtrofia	25
	1.5	Card	liomiopatias de etiologia não inflamatória	.28
2.	Obj	etivos		33
	2.1	Justi	ficativa e Objetivo Geral	34
	2.2	Obje	etivos Específicos	35
3	Mé	todos		37
0.	2 4	Cotro	atégia a Daganha Evnarimental	20
	ວ. I ຊີວ		stras do miosárdio humano	.00
	J.Z	Obto		.59
	5.5	331	Evtração de DNA	.42 12
		332	Quantificação de RNA e tratamento com DNase	.42 //3
		3.3.Z	Transcrição reversa	.45
	34	Expr	ressão Gênica - PCR quantitativo em tempo real (gRT-PCR)	46
	0.4	341	Seqüências de Primers	46
		342	Desenho e padronização dos primers	47
		3.4.3	Reação de PCR quantitativo em tempo real (gRT-PCR)	.49
		3.4.4	Concentração de uso dos primers	
		3.4.5	Especificidade e adequação dos primers	
		3.4.6	Cálculo da Eficiência	51
	3.5	Imur	nofluorescência com Microscopia Confocal	.55
		3.5.1	Preparação do material e obtenção dos cortes	55
		3.5.2	Coloração Histológica	55

		3.5.3 Reações de Imunofluorescência	56
		3.5.4 Microscopia Confocal	59
	:	3.5.5 Análise das Imagens	62
	3.6	Análise Estatística	62
4.	Res	ultados	.64
	4.1	Expressão Gênica das citocinas pró-inflamatórias <i>IL-1</i> β , <i>IL-6</i> , <i>IL-12</i> , <i>IL-18</i> e <i>IL-23</i> , das citocinas antiinflamatórias <i>IL-4</i> e <i>IL-13</i> , da citocina regulatória <i>TGF-</i> β , da Quimiocina <i>CXCL8/IL-8</i> e do fator de transcrição <i>Foxp3</i> no tecido cardíaco de pacientes com CCC e de pacientes com CNI	65
	4.2	Expressão Gênica de quimiocinas e seus receptores associados com a migração diferencial de linfócitos Th1 e Th2 no tecido cardíaco de pacientes com CCC e pacientes com CNI	70
	4.3	Expressão Gênica de <i>CCL19/ELC</i> e <i>CCL21/SLC</i> , ligantes do receptor <i>CCR7</i> no tecido cardíaco de pacientes com CCC e no tecido cardíaco de pacientes com CNI	79
	4.4	Expressão dos Genes que codificam os Peptídeos Natriuréticos: fator natriurético atrial (ANF) e peptídeo natriurético cerebral (BNP) no tecido cardíaco de pacientes com CCC e de pacientes com CNI	.83
	4.5	Correlações entre a expressão de genes que codificam proteínas associadas ao perfil Th1 e Th2 no tecido cardíaco de pacientes com CCC	.86
	4.6	Avaliação da variação de expressão gênica individual em amostras de miocárdio de diversos locais	.91
	4.7	Análise Histopatológica do Tecido Cardíaco de Pacientes com CCC e de Pacientes com CNI	.93
	4.8	Análise da presença de células CD3 ⁺ , CD4 ⁺ , CD8 ⁺ , CCR5 ⁺ , CXCR3 ⁺ , CCR4 ⁺ , CCL5/RANTES ⁺ e CXCL9/Mig ⁺ no tecido cardíaco de pacientes com CCC e no tecido cardíaco de pacientes com CNI com Imunofluorescência por Microscopia Confocal	.96
5.	Disc	ussão1	15
e	Con		11
ΰ.	Con	Ciusoes	41
7.	Ane	xos1	44
8.	Refe	erências2	206

LISTA DE ABREVIATURAS, SÍMBOLOS E SIGLAS

- ANF: Atrial natriuretic factor (fator natriurético atrial)
- ANOVA: Análise de variância
- APC: Antigen-presenting cells (Células apresentadoras de antígeno)
- BNP: Brain natriuretic peptide (peptídeo natriurético cerebral)
- BSA: Soro albumina bovina
- Ca2+: Cálcio
- CCC: Cardiomiopatia Chagásica Crônica
- CD: Cluster of differentiation (designação de grupos)
- CDI: Cardiomiopatia dilatada idiopática
- C.Isq.: Cardiomiopatia Isquêmica
- CNI: Cardiomiopatias de etiologia não inflamatória
- Ct: cycle threshold
- DNA: Ácido desoxirribonucleico
- DP: Desvio padrão
- DTH: Hipersensibilidade do tipo tardia
- ECG: Eletrocardiograma
- EDTA: Ácido etilenodiaminotetracético
- ELR: Glutamato-leucina-arginina
- et al. : e outros
- FE: Fração de ejeção
- FITC: Fluorescein IsoThioCyanate (Isotiocianato de Fluoresceína)
- GAPDH: D-gliceraldeído 3-fostato desidrogenase
- GM-CSF: Fator estimulador de colônia de granulócito e monócito
- GRO: Gene relacionado a oncogene
- h: horas
- H&E: hematoxilina e eosina
- HIV: Vírus da imunodeficiência humana
- HLA: Antígeno leucocitário humano
- ICAM-1: Molécula de adesão intracelular 1

IFN-γ: Interferon-γ

IL: Interleucina

iNOS: síntase do óxido nítrico indutível

kg: kilograma (s)

L: litro (s)

LPS: Lipopolissacarídeo

L-selectina: Selectina leucocitária

MCP: Proteína quimiotática para monócitos

MIP: Proteína inflamatória de macrófagos

MHC: Complexo de histocompatibilidade principal

mg: miligrama (s)

mL: mililitro (s)

N: grupo controle ou doadores saudáveis

ND: não determinada

ng: nanograma

nM: nanomolar

NO: Óxido nitríco

PBS: Tampão salina fosfato

PCR: Reação em cadeia da polimerase

PE: PhycoErythrin (ficoeritrina)

PECAM: Molécula de adesão celular endotelial e plaquetária

PHA: fito-hemaglutinina

PMNs: Polimorfonucleares

P-selectina: Selectina plaquetária

pg: picograma (s)

QR: quantificação relativa

qRT-PCR: Reação em cadeia da polimerase quantitativa em tempo real

RANTES: Citocina regulada sob ativação, expressa e secretada por células

T normais

RNA: Ácido ribonucleico

Tcm: células T de memória central

Tem: células T de memória efetora

Th: Linfócito T helper

TGF-β: Fator de crescimento e transformação beta

TNF- α : Fator alpha de necrose tumoral

TNFR: Receptor do fator de necrose tumoral

VCAM-1: Molécula de adesão vascular 1

VE: ventrículo esquerdo

μL: microlitro

μg: micrograma

LISTA DE FIGURAS

Figura 1. Ciclo de vida do protozoário Trypanosoma cruzi.	4
Figura 2. Expressão dos receptores de quimiocinas nos diferentes tipos celulares e seus ligantes.	18
Figura 3. Avaliação da integridade das amostras de RNA por eletroforese em gel de agarose.	44
Figura 4. Cálculo da eficiência para o gene endógeno GAPDH	54
Figura 5. Imagens representativas de análises de microscopia confocal para identificação de células CD3 ⁺ , CD4 ⁺ , CD8 ⁺ , CCR5 ⁺ ou CXCR3 ⁺ em tecido linfóide.	60
Figura 6. Imagens representativas de análises de microscopia confocal para identificação de células CCL5/RANTES ⁺ , CCR4 ⁺ e CXCL9/Mig ⁺ em tecido linfóide.	61
Figura 7. Expressão relativa de <i>IL-18, IL-6, IL-12p35, CXCL8/IL-8, IL-13</i> e <i>TGF-</i> β em amostras de miocárdio de pacientes com CCC e pacientes com CNI.	67
Figura 8. Comparação da expressão relativa dos <i>mediadores IL-18, IL-13</i> e <i>TGF-</i> β em amostras de miocárdio de pacientes com CCC. Valores de Δ Ct de <i>Foxp3</i>	68
Figura 9. Expressão relativa do receptor <i>CCR5</i> e seus ligantes <i>CCL3/MIP-1a</i> , <i>CCL4/MIP-1β</i> e <i>CCL5/RANTES</i> em amostras de miocárdio de pacientes com CCC e pacientes com CNI.	72
Figura 10. Expressão relativa do receptor <i>CXCR3</i> e seus ligantes <i>CXCL9/Mig</i> e <i>CXCL10/IP-10</i> em amostras de miocárdio de pacientes com CCC e pacientes com CNI.	74
Figura 11. Correlação entre os níveis de expressão gênica de receptores e ligantes associados ao perfil Th1 em amostras de pacientes CCC.	76
Figura 12. Expressão relativa dos receptores <i>CCR4</i> e <i>CCR8</i> e do ligante <i>CCL17/TARC</i> . Valores de Δ Ct de <i>CCL22/MDC</i>	77

Figura 13. Expressão relativa de <i>CCL19/ELC</i> e <i>CCL21/SLC</i> . Valores de ΔCt de <i>CCR7</i> .	81
Figura 14. Expressão relativa de <i>ANF</i> e <i>BNP</i> em amostras de miocárdio de pacientes com CCC e pacientes com CNI. Correlação positiva entre os níveis de expressão gênica de <i>ANF</i> e <i>BNP</i> em amostras de pacientes CCC.	84
Figura 15. Correlação entre os níveis de expressão gênica em amostras de pacientes	90
Figura 16. Análise histopatológica do tecido cardíaco de CCC, CNI e doadores saudáveis e correlações positivas entre a presença de miocardite e a expressão de genes associados ao processo inflamatório em amostras de miocárdio de pacientes com CCC	95
Figura 17. Identificação de células CD3 ⁺ em amostras de miocárdio de pacientes com CCC, amostras de pacientes com CNI e amostras de miocárdio de doadores saudáveis	00
Figura 18. Identificação de células CD4 ⁺ em amostras de miocárdio de pacientes com CCC, amostras de pacientes com CNI e amostras de miocárdio de doadores saudáveis	02
Figura 19. Identificação de células CD8 ⁺ em amostras de miocárdio de pacientes com CCC, amostras de pacientes com CNI e amostras de miocárdio de doadores saudáveis	04
Figura 20. Identificação de células CCR5 ⁺ em amostras de miocárdio de pacientes com CCC, amostras de pacientes com CNI e amostras de miocárdio de doadores saudáveis	06
Figura 21. Identificação de células CXCR3 ⁺ em amostras de miocárdio de pacientes com CCC, amostras de pacientes com CNI e amostras de miocárdio de doadores saudáveis.	08
Figura 22. Identificação de células CCL5/RANTES ⁺ em amostras de miocárdio de pacientes com CCC, amostras de pacientes com CNI e amostras de miocárdio de doadores saudáveis	10
Figura 23. Identificação de células CXCL9/Mig ⁺ em amostras de miocárdio de pacientes com CCC, amostras de pacientes com CNI e amostras de miocárdio de doadores saudáveis	12

Lista de Tabelas

Tabela 1. Descrição dos pacientes com CCC, CNI e doadores saudáveis(N), dos quais foram obtidas as amostras de miocárdio	1
Tabela 2. Descrição e identificação dos genes estudados, seqüência dosprimers utilizados e características do produto de amplificação	3
Tabela 3. Especificações dos anticorpos utilizados no ensaio deimunofluorescência com microscopia confocal.57	7
Tabela 4. Valores individuais de QR para os genes de <i>IL-1β, IL-6, IL-</i> <i>12p35, IL-12p40, IL-18, IL-23, CXCL8/IL-8, IL-4, IL-13, TGF-β</i> e <i>Foxp3</i> 69	Э
Tabela 5.Valores individuais de QR para os genes de CCR5,CCL3/MIP-1α, CCL4/MIP-1β e CCL5/RANTES.73	3
Tabela 6.Valores de QR individuais para os genes de CXCR3, CXCL9/Mig e CXCL10/IP-10.75	5
Tabela 7.Valores de QR individuais para os genes de CCR4,CCL17/TARC, CCL22/MDC, CCR8 e CCL1/I-309.78	3
Tabela 8.Valores individuais de QR para os genes CCL19/ELC eCCL21/SLC, ligantes do receptor CCR7.82	2
Tabela 9. Valores individuais de QR para os genes de ANF e BNP85	
Tabela 10. Valores individuais de QR de citocinas, quimiocinas,receptores e peptídeos natriuréticos em amostras de miocárdio depacientes com CCC.88	8
Tabela 11. Valores individuais de QR de citocinas, quimiocinas,receptores e peptídeos natriuréticos em amostras de miocárdio depacientes com CNI.85	9
Tabela 12.Valores de expressão gênica de diferentes fragmentos detrês amostras de pacientes com CCC.92	2
Tabela13.Correlaçãoentreaexpressãogênicadediferentesfragmentos de três amostras de pacientes com CCC.92	2
Tabela 14.Análise histopatológica de amostras de miocárdio de pacientes com CCC, pacientes com CNI e amostras de doadores saudáveis (N).94	4

Resumo

Nogueira LG. *Expressão de citocinas inflamatórias e quimiocinas no tecido cardíaco de pacientes com Cardiomiopatia Chagásica Crônica* [tese]. São Paulo: Faculdade de Medicina, Universidade de São Paulo; 2008. 230p

A Cardiomiopatia Chagásica Crônica (CCC) é uma cardiomiopatia de natureza inflamatória, que ocorre em cerca de 30% dos indivíduos infectados pelo protozoário Trypanosoma cruzi 5-30 anos após infecção. Na doença de Chagas crônica e na CCC, há importante produção de citocinas próinflamatórias do padrão Th1 e quimiocinas, mesmo na ausência de disfunção ventricular. Foi demonstrado que células mononucleares que infiltram o tecido cardíaco de pacientes CCC produzem algumas dessas citocinas inflamatórias. Entretanto, os fatores que determinam a composição do infiltrado inflamatório e contribuem para a migração e acúmulo das células inflamatórias dentro do tecido cardíaco na CCC são ainda desconhecidos. Sabendo-se que a CCC apresenta pior prognóstico que as cardiomiopatias dilatadas de natureza não inflamatória, é possível hipotetizar que diversos mediadores inflamatórios produzidos localmente estejam envolvidos no pior prognóstico. Dentro deste contexto, nosso objetivo no presente trabalho foi avaliar a expressão gênica de citocinas do padrão próinflamatório/Th1, quimiocinas envolvidas na migração de células T de memória e seus receptores e quimiocinas envolvidas na migração diferencial de linfócitos Th1/Th2 e seus receptores em amostras de miocárdio de pacientes com CCC e outras cardiomiopatias. Para isso, utilizamos a técnica de gRT-PCR e imunofluorescência com microscopia confocal para esses mediadores/receptores em amostras de miocárdio (ventrículo esquerdo) de pacientes CCC, portadores de cardiomiopatia não inflamatória (CNI) e doadores saudáveis, obtidos durante o procedimento de transplante. Observamos a expressão gênica aumentada da citocina pró-inflamatória IL-CCL3/MIP-1a, 18. das quimiocinas CCL4/MIP-1ß, CCL5/RANTES, CXCL9/Mig. CXCL10/IP-10. CCL17/TARC e CCL19/ELC e dos receptores CXCR3, CCR5 e CCR4 em amostras de miocárdio de pacientes com CCC quando comparadas com amostras de miocárdio de pacientes com CNI ou tecido cardíaco controle. Entretanto, observamos a expressão diminuída ou ausente de genes como TGF-B, Foxp3, IL-4 e IL-13, sugerindo a ausência de células T regulatórias ou células Th2 funcionais. Adicionalmente, a presença de células mononucleares CXCR3⁺, CCR5⁺ e CCR4⁺ foi observada em amostras de miocárdio de pacientes com CCC utilizando imunofluorescência confocal. As guimiocinas CCL5/RANTES e CXCL9/Mig foram detectadas em células mononucleares do infiltrado inflamatório de tecido cardíaco de pacientes com CCC. A expressão diferencial dos genes aqui estudados permitiu obter um quadro panorâmico dos mediadores inflamatórios produzidos no miocárdio de pacientes com CCC. A expressão gênica aumentada de IL-18 e de quimiocinas e seus receptores no miocárdio de pacientes com CCC contribuem para a migração e acúmulo de células de

CCR5+, CXCR3+ de perfil Th1 e as correlações observadas entre esses mediadores e receptores sugerem um *feedback* positivo atuando na manutenção e amplificação do processo inflamatório, possivelmente em associação com outros mediadores expressos no miocárdio. A resposta inflamatória intensa e predominantemente Th1 com a expressão aumentada de diversos mediadores inflamatórios no miocárdio de pacientes com CCC pode ocorrer pela ausência de células T regulatórias Foxp3⁺ ou TGF- β^+ , e a expressão de alguns mediadores como IL-18 e CCL21/SLC pode estar associada ao desenvolvimento de hipertrofia e fibrose, sugerindo um papel fisiopatológico adicional para a expressão desses mediadores no grupo de pacientes com CCC.

Descritores: 1.Doença de Chagas 2.Cardiomiopatia 3.Quimiocinas 4.Citocinas 5.Miocárdio 6.Expressão gênica 7.Inflamação

SUMMARY

Nogueira LG. *Expression of inflammatory cytokines and chemokines in the heart tissue of Chronic Chagas' disease Cardiomyopathy patients* [tese]. São Paulo: "Faculdade de Medicina, Universidade de São Paulo"; 2008. 230p

Chronic Chagas' disease Cardiomyopathy (CCC) is an inflammatory cardiomyopathy that affects around 30% of individuals infected by the protozoan Trypanosoma cruzi and happens 5-30 years after the infection. In Chronic Chagas' disease and CCC, there is a significant production of proinflammatory Th1 cytokines and chemokines even in the absence of ventricular dysfunction. Mononuclear cells inflitrating the heart tissue of CCC patients produce some of these inflammatory cytokines. However, the factors that determine the composition of the inflammatory infiltrate and contribute to the migration, accumulation and distribution of inflammatory cells inside heart tissue in the CCC are still unknown. Considering that CCC has worse prognosis than dilated cardiomyopathy of non-inflammatory etiology, we hypothesized that the production of several inflammatory mediators in situ could be involved in the worse prognosis of CCC. Taking this into consideration, our aim in the present study was to analyze the gene expression of pro-inflammatory/Th1 cytokines, chemokines involved in cell T memory migration and its receptors and chemokines involved in Th1/Th2 lymphocyte migration and its receptors. gRT-PCR and immunofluorescence with confocal microscopy were employed to detect the expression these mediators/receptors in left ventricular free wall samples from end-stage CCC patients, patients with non-inflammatory cardiomyopathy (NIC) and healthy donors, obtained upon transplantation. We observed a significant increase in the expression of pro-inflammatory cytokine IL-18, chemokines CCL3/MIP-CCL4/MIP-1B. CCL5/RANTES, 1α. CXCL9/Mig. CXCL10/IP-10. CCL17/TARC and CCL19/ELC and its receptors CXCR3, CCR5 and CCR4 in the samples of CCC patients compared to NIC patients and control heart samples. On the other hand, we observed absence of expression or downregulation or of TGF- β , Foxp3, IL-4 and IL-13, suggesting the absence of regulatory T cells and functional Th2 cells. In addition, the presence of mononuclear CXCR3⁺, CCR5⁺ and CCR4⁺ cells was observed in myocardium of CCC patients using immunofluorescence with confocal microscopy. The chemokines CCL5/RANTES and CXCL9/Mig were detected in mononuclear cells of inflammatory infiltrates of heart tissue CCC patientes. The differential gene expression observed in this study allowed us to elaborate a global profile of inflammatory mediator production in the myocardium CCC patients. The up-regulated gene expression of IL-18 and chemokines and its receptors in the myocardium CCC patients contribute to the migration and accumulation of CCR5⁺, CXCR3⁺ Th1 cells and the correlation observed between these mediators and their receptors suggest a positive feedback contributing to the maintenance and amplification of inflammatory process, possibly in association with another mediators

expressed in the myocardium. The intense Th1 inflammatory response with the up-regulated expression of various inflammatory mediators in the myocardium of CCC patients could be enhanced by the absence of Foxp3⁺ or TGF- β^+ , regulatory T cells and the expression of mediators as IL-18 and CCL21/SLC could play a role in the development of hypertrophy and fibrosis suggesting an additional pathophysiologic role of expression of these mediators in CCC patients.

Descriptors: 1.Chagas' disease 2.Cardiomyopathies 3.Chemokines 4.Cytokines 5.Myocardium 6.Gene expression 7.Inflammation

1. INTRODUÇÃO

1.1 DOENÇA DE CHAGAS

A doença de Chagas (Tripanosomíase Americana) é causa significante de morbidade e mortalidade em muitos países da América do Sul e Central, onde estima-se que 18 milhões de pessoas estejam infectadas (Disease Watch, 2003). Somente no Brasil, 17.000 mortes foram atribuídas à doença de Chagas em 1995 (Akhavan, 1997), e dados da Organização Mundial da Saúde (WHO, 2002) mostraram а incidência de aproximadamente 300.000 novos casos por ano. Apesar da implantação de programas de controle da transmissão vetorial e em bancos de sangue (Moncayo, 2003), responsável pela redução da morbidade e mortalidade decorrente da forma crônica, ainda existem milhões de pacientes portadores da doença de Chagas que continuam sob o risco de vida na América Latina e no Brasil, necessitando de tratamento adequado. Além disso, mesmo que se bloqueie completamente a transmissão vetorial, indivíduos já infectados continuarão sob potencial risco de desenvolver a cardiomiopatia chagásica crônica (CCC), a principal causa de morbidade e mortalidade.

A doença de Chagas, descrita por Carlos Chagas (1909), é causada pelo protozoário *Trypanosoma cruzi* e transmitida ao homem pelo inseto triatomíneo (*Triatoma infestans*).

O agente etiológico da doença de Chagas, o protozoário Trypanosoma cruzi (ordem Kinetoplastidea), pertence à família Trypanosomatidae, cuja principal característica é a presença de flagelo e de uma mitocôndria modificada denominada cinetoplasto. O ciclo de vida deste parasita é caracterizado pela presença de diferentes formas encontradas em dois hospedeiros, um invertebrado (insetos triatomíneos) e outro vertebrado (mamíferos). A forma epimastigota é encontrada no tubo digestivo do vetor triatomíneo, também conhecido por barbeiro (insetos da família Reduviidae, das espécies Triatoma infestans, Triatoma brasiliensis, Triatoma dimidiata, Rhodnius prolixus e Panstrongylus megistus; WHO, 2002). Ela multiplica-se por divisão binária e diferencia-se na forma tripomastigota metacíclica, que é a forma infectante do hospedeiro vertebrado. Esta é eliminada junto com as fezes e urina sobre a pele do hospedeiro vertebrado durante o repasto sanguíneo, podendo penetrar através do local da picada ou mucosas e invadir células nucleadas. No interior das células, os parasitas da forma tripomastigota metacíclica diferenciam-se na forma amastigota, a qual se replica por fissão binária. Após alguns ciclos de multiplicação, os amastigotas diferenciam-se em tripomastigotas sanguíneas, as células são rompidas e os parasitas são liberados para o meio extracelular ou na corrente sanguínea, podendo assim migrar e invadir novas células do hospedeiro ou serem sugados pelo inseto vetor, reiniciando o ciclo do parasita (Figura 1) (Brener, 1973).

Além do vetor, a transfusão de sangue e a transmissão congênita são outras formas de transmissão da doença (Wendel, 1998).

Figura 1: Ciclo de vida do protozoário *Trypanosoma cruzi*. (1) O inseto pica e defeca ao mesmo tempo. O tripomastigota metacíclica passa à ferida nas fezes. (2) Os tripomastigotas invadem células onde se transformam em amastigostas. (3) Os amastigotas multiplicam-se dentro das células. (4) Os amastigotas transformam-se em tripomastigotas sanguíneos, as células são rompidas e os parasitas são liberados na corrente sanguínea podendo invadir novas células onde se multiplicam em amastigostas. (5) Os tripomastigotas sanguíneos podem ser sugados por um novo inseto, reiniciando o ciclo do parasita. (6) No tubo digestivo do inseto os tripomastigotas sanguíneos transformam-se em epimastigotas, que se multiplicam (7) e diferenciam-se em tripomastigotas metacíclicos (8). Figura retirada do site http://pt.wikipedia.org/wiki/Trypanosoma cruzi

A história natural da doença é constituída por uma fase aguda e uma fase crônica. Na fase aguda, que muitas vezes é subclínica, os parasitas presentes na corrente sanguínea se espalham amplamente pelo organismo do hospedeiro através da replicação dentro de uma variedade de células nucleadas. O parasitismo intenso, característico da fase aguda, é controlado pela resposta imune contra o T. cruzi estabelecendo uma infecção crônica com baixa parasitemia. Essa resposta não atinge, porém, eliminação definitiva do parasita, o que é conhecido como "imunidade não estéril" (Martin et al., 1987). Dos indivíduos infectados cronicamente pelo T. cruzi, 70% são assintomáticos e não apresentam alteração cardíaca ou digestiva. Estes pacientes apresentam a forma indeterminada da doença de Chagas, caracterizada pela ausência de manifestações clínicas significantes. Por estes pacientes não exibirem significativas alterações eletrocardiográficas ou dilatação do coração, esôfago ou cólon observados por exame de raios-X (Primeira Reunião de Pesquisa Aplicada em doença de Chagas, 1985), em geral, são diagnosticados em banco de sangue por apresentarem testes sorológicos positivos para o Estes indivíduos infectados T. cruzi. permanecem nessa fase indefinidamente, entretanto, cerca de 30% dos indivíduos restantes apresentam alguma das formas crônicas da doença após o intervalo de 10 a 20 anos (Ribeiro e Rocha, 1998).

Os pacientes chagásicos podem desenvolver a forma cardíaca e/ou digestiva. Cerca de 8-10% dos indivíduos infectados desenvolvem a forma digestiva da doença de Chagas. A forma digestiva consiste de dilatação do esôfago e cólon e é, supostamente, o resultado da destruição neuronal do

trato gastrointestinal (Koberle *et al.*, 1983) e, na sua forma mais grave, causa desnutrição e constipação intratável (Moncayo, 1999). Os 20-30% restantes evoluem para um acometimento cardíaco de maior ou menor gravidade desenvolvendo, em graus clínicos variados, a cardiomiopatia chagásica crônica (CCC) que é a principal causa de morte em indivíduos chagásicos. Os graus clínicos de CCC variam desde discretas alterações de eletrocardiograma (ECG), mas não de exames mais sensíveis como o ecocardiograma caracterizando a CCC leve. A CCC moderada é caracterizada por significativas alterações de ECG, como distúrbios de condução e arritmia ventricular, e a CCC grave é caracterizada por alterações de ECG, raio-X e/ou de ecocardiograma, com ou sem sinais de dilatação das câmaras cardíacas (WHO, 2002; Rocha *et al.*, 2003).

A cardiomiopatia chagásica crônica é uma cardiomiopatia de natureza inflamatória caracterizada por anormalidades da condução cardíaca, arritmias e insuficiência cardíaca congestiva, que freqüentemente tem curso fatal (Macedo *et al.*, 1982; Prata, 2001), ocorrendo décadas após a infecção inicial. Um terço dos pacientes com CCC (equivalente a 1 milhão dos pacientes) freqüentemente desenvolve disfunção significativa do ventrículo esquerdo (VE), que pode ser global ou difusa, e/ou dilatação das câmaras cardíacas e insuficiência cardíaca congestiva refratária cuja a única alternativa terapêutica é o transplante cardíaco (Dias *et al.*, 1956; Macedo *et al.*, 1982; Rossi, 1991; Cunha-Neto *et al.*, 1996; Dias *et al.*, 2002).

A principal característica do tecido cardíaco na CCC é a presença de uma miocardite difusa, incluindo a destruição de fibras cardíacas e substituição

por fibrose cicatricial, com danos a cardiomiócitos (Higuchi *et al.*, 1987), associada a um considerável infiltrado inflamatório difuso, em um processo que lembra a reação de hipersensibilidade tardia. O infiltrado inflamatório na CCC é tido como o possível efetor dos danos ao tecido, sendo composto por macrófagos (50%), células B (10%), células T (40%) (Milei *et al.*, 1992), com uma predominância de 2:1 de células T CD8⁺ sobre células T CD4⁺ (Higuchi *et al.*, 1993; Reis *et al.*, 1993^a). Histiócitos e células endoteliais do tecido cardíaco de pacientes com CCC apresentam expressão aumentada de moléculas HLA de classe I e de classe II, ICAM-1 e selectina-E, enquanto os cardiomiócitos expressam níveis elevados de moléculas HLA de classe I, provavelmente em resposta à produção local de citocinas inflamatórias (Reis *et al.*, 1993^b). Além disso, é importante ressaltar a aparente ausência de parasitas nas lesões.

A escassez de parasitas nas lesões cardíacas originou a hipótese auto-imune que é postulada na patogênese da CCC como um efeito secundário à infecção pelo parasita. A existência de epítopos antigênicos que são compartilhados entre o *T. cruzi* e células mamíferas foi relatada pela primeira vez em 1970, e os dados demonstravam que a infecção crônica com *T. cruzi* induz perda da tolerância a antígenos próprios ou a formação de anticorpos anti-parasitas com reação cruzada a componentes do hospedeiro, como células endoteliais, endotélio vascular e interstício cardíaco (Cossio *et al.*, 1974; Kierszenbaum, 2003). Dados que apóiam essa hipótese mostraram que em modelos experimentais murinos, células T CD4⁺ de camundongos infectados cronicamente com *T. cruzi* transferem

miocardite a camundongos sadios (dos Santos *et al.*, 1992). Além disso, células T CD4⁺ de camundongos infectados reconhecem a miosina cardíaca (Rizzo *et al.*, 1989). Cunha-Neto *et al.* (1995) mostraram que no soro de pacientes com doença de Chagas há auto-anticorpos contra a miosina cardíaca de reação cruzada contra a proteína B13 do *T. cruzi*. Os mesmos autores também demonstraram que clones de linfócitos T CD4⁺ intralesionais de pacientes chagásicos também são capazes de reconhecer cruzadamente a miosina cardíaca e a proteína B13 do *T. cruzi* (Cunha-Neto *et al.*, 1996).

Embora as explicações para as alterações miocárdicas que ocorrem durante a fase crônica da infecção chagásica partam do pressuposto da ausência de parasitas nas lesões, técnicas mais avançadas podem detectar a persistência do *T. cruzi*, o que pode ser um fator importante para o desenvolvimento da CCC. Em humanos, Higuchi *et al.* (1993^b) observaram uma escassez de formas amastigostas do *T. cruzi* em biópsias de coração de pacientes com CCC. Contudo, técnicas de biologia molecular (PCR) são capazes de detectar DNA de *T. cruzi* no coração de pacientes com CCC (Olivares-Villagomez *et al.*, 1998; Machado *et al.*, 2005), e também no coração de portadores da forma indeterminada. Modelos murinos demonstraram que inóculos maiores de *T. cruzi* causam miocardite (Marinho *et al.*, 1999) ou miocardiopatia (Bilate *et al.*, 2003) mais graves com altos índices de mortalidade (Tarleton *et al.*, 1996; Tarleton *et al.*, 2000). Nosso grupo demonstrou a presença de linfócitos T CD8⁺ específicos contra epitopos de cruzipaína de *T. cruzi* em linhagens obtidas de biópsias

endomiocárdicas de pacientes com CCC (Fonseca *et al.,* 2005). Estes dados sugerem que antígenos do parasita no miocárdio de pacientes chagásicos também são alvos da resposta imune celular, podendo ser co-responsáveis pelo desencadeamento do infiltrado celular no tecido.

Apesar da implantação de programas de controle da transmissão vetorial, persistirá o problema dos 2-3 milhões de pacientes acometidos de CCC em nosso País, além das centenas de milhares de pessoas atualmente na forma indeterminada que podem desenvolver sintomas cardíacos. Aproximadamente 30% dos indivíduos com alterações cardíacas acabam por desenvolver cardiomiopatia dilatada grave (Macedo *et al.*, 1982), podendo manifestar insuficiência cardíaca congestiva, responsável pelo elevado número de internações e alta mortalidade (52 % em cinco anos) (Mady *et al.*, 1994). Alguns trabalhos sugerem que a insuficiência cardíaca de etiologia chagásica possa ter pior prognóstico com sobrevida após o estabelecimento dos sintomas de 2-4 vezes menor do que a de outras etiologias, como a doença isquêmica e a cardiomiopatia dilatada idiopática (CDI) (Mady *et al.*, 1994; Bestetti e Muccillo, 1997; Freitas *et al.*, 2005).

Devido à alta morbimortalidade da CCC, novas terapias se fazem necessárias, uma vez que os agentes quimioterápicos anti-*T. cruzi* disponíveis são pouco eficazes em evitar a progressão das lesões cardíacas em modelos experimentais (Teixeira *et al.*, 1990), e para pacientes com insuficiência cardíaca refratária, o único tratamento disponível é o transplante cardíaco.

O desenvolvimento de novas terapias que inibam o dano cardíaco em pacientes com CCC pode ser favorecido com a identificação de alvos específicos do dano tecidual inflamatório, sem interferir com o controle do parasitismo. Experimentos anteriores de nosso grupo indicaram que o bloqueio isolado de um mediador (TNF- α) na fase crônica de infecção em hamsters provocou aceleração da cardiomiopatia dilatada e óbito em um subgrupo de animais tratados (Bilate *et al.*, 2007). Entretanto, a intensidade da inflamação está correlacionada positivamente com a dilatação ventricular em hamsters cronicamente infectados (Bilate A., Tese de Doutorado 2006). Essas observações apontaram a necessidade de um maior conhecimento dos mediadores inflamatórios produzidos no miocárdio e seus efeitos biológicos.

1.2 CITOCINAS INFLAMATÓRIAS NA INFECÇÃO PELO *TRYPANOSOMA CRUZI*

Citocinas e quimiocinas são importantes mediadores envolvidos na manutenção do processo inflamatório, podendo estimular ou inibir a resposta imune (Sher *et al.*, 1992). Além disso, esses mediadores estão envolvidos na indução das respostas Th1 e Th2, que envolve outros fatores como fatores genéticos, sinais co-estimulatórios e a natureza do estímulo antigênico. Entretanto, o fator que mais influencia a resposta inflamatória é o tipo de mediador inflamatório, como citocinas e quimiocinas, presente no microambiente de células T durante a apresentação do antígeno e início da resposta mediada por células (D'Ambrosio e Sinigaglia, 2000).

As citocinas apresentam um importante papel na polarização da resposta imune e na manutenção e diferenciação de células. Citocinas como IFN- γ , IL-12, IL-18, IL-23, IL-27 e linfotoxina estão envolvidas na polarização de resposta Th1, promovendo a imunidade mediada por células contra patógenos intracelulares. Por outro lado, citocinas como IL-4, IL-5 e IL-13 estão envolvidas na polarização de respostas Th2, predominante em reações alérgicas e também em respostas humoral e celular contra helmintos, parasitas e patógenos extracelulares (Abbas *et al.,* 1996). Existem também citocinas que estão envolvidas na regulação da resposta imune, na qual células com perfil regulatório produzem citocinas como IL-10 e TGF- β (Roncarolo *et al.,* 2006; Li *et al.,* 2006) e citocinas como IL-2, IL-7 e IL-15, as quais são importantes no desenvolvimento e manutenção de células T de memória (Schluns e Lefrancois, 2003).

Devido ao papel das citocinas na polarização e manutenção de respostas imunes, elas estão diretamente associadas com as patologias resultantes de infecções. Na doença de Chagas, dados da literatura demonstram que citocinas inflamatórias são essenciais durante a fase aguda da infecção e são produzidas em níveis elevados na doença de Chagas crônica, possivelmente pela exposição crônica ao parasita (Ribeirao *et al.,* 2000; Abel *et al.,* 2001; Ferreira *et al.,* 2003).

A fase aguda da infecção com *T. cruzi* apresenta uma forte atividade pró-inflamatória, com a produção abundante de citocinas pró-inflamatórias

do tipo Th1, as quais apresentam papel na eliminação do parasita e sobrevivência do hospedeiro. A resposta inata, disparada pelo patógeno, envolve a produção de citocinas pró-inflamatórias do tipo Th1 (IFN- γ , TNF- α) (revisado em Cunha-Neto *et al.*, 2006) e de quimiocinas (CXCL10/IP-10, CCL5/RANTES, CCL3/MIP-1 α , CCL4/MIP-1 β e CCL2/MCP-1) (revisado em Teixeira *et al.*, 2002), e é essencial para o controle da infecção aguda.

A produção de IFN- γ tem sido associada à resistência do hospedeiro durante a fase aguda da infecção, inibindo a replicação do parasita *in vivo* e *in vitro*, através da indução da síntese de NO em macrófagos (Gazzinelli *et al.*, 1992). O TNF- α age sinergicamente com IFN- γ controlando o crescimento do parasita (Munoz-Fernandez *et al.*, 1992). Entretanto, citocinas supressoras, incluindo IL-10 e TGF- β , são associadas à suscetibilidade a infecção pelo *T. cruzi* (Silva *et al.*, 1991; dos Santos *et al.*, 1992; Holscher *et al.*, 2000) pela inibição da ativação de macrófagos mediada por IFN- γ (Tsunawaki *et al.*, 1998).

Durante a infecção experimental pelo *T. cruzi*, a produção de IFN-γ e TNF-α é induzida por IL-12, levando a uma resposta imune protetora mediada por células (Hunter *et al.*, 1996). Dados demonstraram a importância da IL-12 durante a infecção aguda experimental com *T. cruzi* (14 dias de infecção) relatando que a IL-12 é necessária na resposta imune efetiva através da produção de IFN-γ (Graefe *et al.*, 2003). Por outro lado, linfócitos T CD4⁺ específicos de animais infectados são capazes de produzir IFN-γ independentemente de IL-12 endógena, podendo ser essa produção mediada por IL-18 (Muller *et al.*, 2001). Há trabalhos relatando o sinergismo

entre IL-18 e IL-12 na produção de IFN-γ por linfócitos T (Chang *et al.,* 2000), bem como a indução da produção de IFN-γ por IL-18 independente de IL-12 (Okamura *et al.,* 1998).

O aumento da produção de TGF- β foi observado durante a fase aguda da infecção experimental pelo *T. cruzi* (Silva *et al.*, 1991). O *T. cruzi* usa os receptores I e II do TGF- β para entrar nas células, sendo que células que não possuem esses receptores são resistentes a infecção pelo *T. cruzi* (Ming *et al.*,1995). Além disso, a infecção pelo *T. cruzi* induz a expressão do gene repórter responsivo a TGF- β , sugerindo que o parasita pode diretamente ativar a via de sinalização de TGF- β facilitando sua entrada nas células (Ming *et al.*, 1995). Dados da literatura demonstram que pacientes com CCC apresentam altos níveis circulantes de TGF- β . Análises de imunohistoquímica em biópsias cardíacas desses pacientes mostraram marcação para Smad2 fosforilada, um marcador de ativação da via de sinalização de TGF- β , bem como para fibronectina, um marcador de fibrose (Araújo-Jorge *et al.*, 2002), sugerindo que TGF- β poderia ter um papel na indução de fibrose no tecido cardíaco de pacientes com CCC.

Especificamente na CCC foi observado que as células mononucleares do infiltrado inflamatório cardíaco produzem IFN-γ, TNF-α, IL-6 e IL-15; no entanto, há pouca ou nenhuma produção de IL-4 e IL-10 (Reis *et al.*, 1993; Reis *et al.*, 1997; Abel *et al.*, 2001; Fonseca *et al.*, 2007).

Resultados anteriores de nosso grupo demonstraram que a produção de IFN-γ por células mononucleares do sangue periférico, após estímulo com fito-hemaglutinina, foi significantemente maior em
pacientes com CCC que entre pacientes com a forma indeterminada (Abel *et al.*, 2001). Também foi observada uma maior freqüência de células T CD4⁺ *T. cruzi* específicas produtoras de IFN- γ em pacientes com CCC e os autores sugeriram que tais pacientes teriam uma deficiência na regulação da produção de IFN- γ por IL-10 (Gomes *et al.*, 2003). Os autores sugeriram que IL-10 apresenta um importante papel na infecção e no controle da replicação do parasita no tecido cardíaco e em outros tecidos durante a fase crônica da doença regulando a resposta inflamatória tipo Th1 (Gomes *et al.*, 2003).

A IL-10 é uma importante citocina envolvida na função supressora de células T regulatórias (Treg) (Hara *et al.*, 2001). A população de células Treg foi avaliada em pacientes com a forma cardíaca e indeterminada da doença de Chagas. Os autores observaram que pacientes com a forma indeterminada da doença apresentam freqüência aumentada de células T CD4⁺CD25⁺Foxp3⁺IL-10⁺ e pacientes com a forma cardíaca apresentam aumento da porcentagem de células T CD4⁺CD25⁺Foxp3⁺ que expressam CTLA-4. Esses dados sugerem que células Treg apresentam um importante papel na resposta imune contra a infecção com *T. cruzi*, e que a produção de IL-10 é importante no controle do desenvolvimento da doença em pacientes com a forma indeterminada (Araújo *et al.*, 2007). Na infecção experimental pelo *T. cruzi*, dados sugerem que células Treg não regulam a resposta efetora de células T CD8⁺ durante a fase aguda ou crônica da infecção (Kotner e Tarleton, 2007).

Dados da literatura demonstram que pacientes com CCC apresentam quantidades aumentadas no sangue periférico de linfócitos T CD4⁺ e T CD8⁺ co-expressando CCR5 e IFN-γ, CXCR3 e IFN-γ e CXCR3 e TNF-α em comparação com pacientes com a forma indeterminada (Gomes *et al.,* 2005). Resultados recentes de nosso grupo, utilizando *microarrays* de cDNA, indicaram que diversos genes induzíveis por IFN-γ encontravam-se com expressão aumentada no miocárdio de pacientes com CCC, mas não em pacientes com cardiomiopatia dilatada idiopática (CDI), ambos em estágio terminal, em comparação a miocárdio normal (Cunha-Neto *et al.,* 2005). No mesmo trabalho, análises utilizando a técnica de PCR quantitativo em tempo real (qRT-PCR) mostraram que quimiocinas induzidas por IFN-γ, como CCL2/MCP-1, CXCL9/Mig e CXCL10/IP-10, estão seletivamente expressas em amostras de miocárdio de pacientes com CCC, bem como o receptor CXCR3.

Ainda há divergências quanto aos mecanismos pelos quais as citocinas controlam a replicação do parasita e o desenvolvimento da miocardite em camundongos infectados por *T. cruzi*. Sabe-se que algumas citocinas modulam a expressão de quimiocinas que, por sua vez, direcionam o infiltrado inflamatório observado durante a fase aguda e crônica da infecção (Aliberti *et al.*, 2001).

1.3 QUIMIOCINAS E SEUS RECEPTORES NA INFECÇÃO PELO TRYPANOSOMA CRUZI

As quimiocinas ou citocinas quimiotáticas podem ser consideradas os principais fatores envolvidos na migração de leucócitos. As quimiocinas fazem parte de uma superfamília de pequenas moléculas de peso molecular de 8-12 kDa, com similaridades estruturais. A ação das quimiocinas sobre os mais diferentes tipos celulares se dá através dos receptores de quimiocinas, que pertencem à família de receptores com sete domínios transmembrana acoplados a proteína G, e são ligados a proteína na sua porção carboxiterminal (Rollings, 1997).

No início, as quimiocinas foram descobertas por causa de sua associação com respostas inflamatórias, entretanto, o sequenciamento genômico tem adicionado vários novos membros com funções adicionais. Existem mais de 40 quimiocinas e aproximadamente 20 receptores de quimiocinas descritos em humanos (Mackay, 2001).

A maioria das quimiocinas tem quatro cisteínas características em posições altamente conservadas e, dependendo da posição das duas primeiras cisteínas próximas ao domínio amino-terminal, elas são classificadas nas subfamílias CXC, CC, C e CX₃C quimiocina (Rossi e Zlotnik, 2000). Na Figura 2, mostramos algumas quimiocinas, seus receptores, e os tipos celulares que expressam esses receptores.

Como muitas quimiocinas se ligam a mais de um receptor e muitos receptores se ligam a mais de uma quimiocina, é difícil saber o papel individual de cada quimiocina. Entretanto, análises mais profundas das interações das quimiocinas e seus receptores mostraram que as quimiocinas podem ser classificadas em duas classes dependendo de como elas são produzidas, constitutivamente ou induzidas.

As quimiocinas constitutivas ou "homeostáticas" estão envolvidas primariamente na organização do tecido linfóide e no tráfego basal de leucócitos. Exemplos desse grupo incluem CXCL13/BCA-1, CCL21/SLC e CCL19/ELC (Sallusto *et al.,* 2000). Em contrapartida, as quimiocinas induzidas ou "inflamatórias" são tipicamente induzidas *de novo* em resposta à infecção e recrutam células efetoras, incluindo monócitos, granulócitos e células T efetoras para o local da entrada do patógeno (Moser e Loetscher, 2001). Exemplos clássicos incluem CXCL8/IL-8, CCL5/RANTES, CCL11/eotaxina, CCL4/MIP-1β, CCL2/MCP-1 e CXCL10/IP-10.

Figura 2: Expressão dos receptores de quimiocinas nos diferentes tipos celulares e seus ligantes. A figura foi modificada de Sallusto *et al.* (1998) e representa algumas quimiocinas e receptores descritos em humanos. Os quadrados em azul representam a associação entre a quimiocina e seu respectivo receptor; os quadrados em vermelho representam a expressão do receptor em determinados tipos celulares; os quadrados vermelhos parcialmente preenchidos indicam a expressão do receptor em um determinado subtipo celular. Os nomes das quimiocinas são muitas vezes baseados no modo pelo qual elas foram descobertas; MIP, proteína inflamatória de macrófagos; RANTES, regulada pela ativação de célula T normal expressa e secretada; IP-10, proteína 10 indutível pelo IFN-γ; Mig, monocina indutível por IFN-γ; I-TAC, quimioatraente de célula T α indutível por IFN;MCP, proteína quimioatraente de monócitos; LARC, quimiocina do fígado e regulada; GCP-2, proteína quimiotática de granulócitos; GRO, oncogene relacionado ao crescimento; ENA-78, atraente 78 de neutrófilo derivado de célula epitelial; NAP-2, peptídeo 2 que ativa neutrófilo; MDC, quimiocina derivada de macrófago; TARC, quimiocina regulada pelo timo e ativação; ELC, quimiocina ligadora do vírus Epstein-Barr; SLC, quimiocina linfóide secundária; SDF, fator derivado de células estromais; BCA, quimiocina atraente de célula B.

As quimiocinas têm papéis bem definidos em direcionar movimentos celulares necessários para o início das respostas imunes pelas células T. Elas são necessárias para atrair leucócitos para o local da inflamação, direcionar células apresentadoras de antígenos (APCs) maduras para vasos linfáticos, e aproximar células T e APCs dentro do órgão linfóide drenante (Cyster, 1999; Sallusto *et al.,* 2000). Além dos efeitos na locomoção dos leucócitos, as quimiocinas têm papéis na ativação de células NK, na proliferação de linfócitos T e na diferenciação dos padrões Th1 e Th2. Por exemplo, a quimiocina CCL3/MIP-1 α atua na diferenciação do padrão Th1, observação sugerida por um estudo que mostrou que a adição dessa quimiocina em células ativadas por TCR promoveu o desenvolvimento de células T produtoras de IFN- γ (Karpus *et al.,* 1997).

Durante a ativação de células T *naive*, diferenciação de células T efetoras e desenvolvimento de células T de memória ocorre a regulação da expressão de receptores de quimiocinas (Sallusto *et al.*, 2000). As células T *naive* expressam receptores como CXCR4 e CCR7, enquanto que subtipos de células T efetoras e células T memória expressam receptores que podem estar associados na diferenciação dos padrões Th1 e Th2 (Bleul *et al.*, 1997; Sallusto *et al.*, 1998; Sallusto *et al.*, 1998; Siveke e Hamann, 1998; Campbell *et al.*, 1999; Zabel *et al.*, 1999; Iellem *et al.*, 2000).

A resposta de células Th2 envolve diferentes subtipos de células efetoras que produzem citocinas como IL-4, IL-5, IL-9 e IL-13, os quais estão envolvidos com sua diferenciação (Coffman e von der Weid, 1997). As células Th2 expressam seletivamente os receptores CCR3 (Sallusto *et al.*, 1997),

CCR4 (Bonecchi *et al.,* 1998; Sallusto *et al.,* 1998) e CCR8 (Zingoni *et al.,* 1998), e esses receptores e seus ligantes estão envolvidos em resposta alérgicas e contra parasitas extracelulares (Panina-Bordignon *et al.,* 2001).

0 receptor CCR3 possui como ligantes quimiocinas as CCL11/eotaxina, eotaxina-2, MCP-2, MCP-3, MCP-4 e CCL5/RANTES (Heath et al., 1997; Uguccioni et al., 1997; Sallusto et al., 1997) sendo expresso em basófilos, eosinófilos e linfócitos Th2 (Ponath et al., 1996; Uguccioni et al., 1997; Sallusto et al., 1997) e sua expressão identifica linfócitos T que produzem IL-4 – uma caracteristica de células de perfil Th2. As quimiocinas CCL17/TARC e CCL22/MDC são ligantes do receptor CCR4 e são produzidos principalmente por eosinófilos, basófilos e linfócitos Th2 em inflamações de origem alérgica (Galli et al., 2000; Panina-Bordignon et al., 2001). A presença de células CCR4⁺ é observada no sangue periférico de pacientes com dermatite atópica e lupus eritematoso sistêmico (Wakugawa et al., 2001; Hase et al., 2001) e seus ligantes CCL17/TARC e CCL22/MDC estão envolvidos na migração de células CCR4⁺ para o epitélio pulmonar em pacientes com asma (Panina-Bordignon et al., 2001). O receptor CCR4 é expresso na maioria das células T CD4⁺ de memória circulantes, incluindo células T que migram para a pele e células T CCR7⁺ de memória central (Campbell et al., 1999; Sallusto et al., 1999; Iellem et al., 2001; Andrew et al., 2001). O receptor CCR8 apresenta como ligante a quimiocina CCL1/I-309 e esse receptor é expressso somente em células de perfil Th2 (Zingoni et al., 1998). Na asma de origem alérgica e na dermatite atópica foram observadas células efetoras de perfil Th2 CCR8⁺ que migram para o local da inflamação em resposta a CCL1/I-309 (Panina-Bordignon et al., 2001; Gombert et al., 2005).

Os receptores CCR5 e CXCR3 são expressos principalmente em células Th1 (Bonecchi et al., 1998; Loetscher et al., 1998; Sallusto et al., 1998). A expressão das guimiocinas CXCL9/Mig e CXCL10/IP-10 é regulada por IFN-y e atraem seletivamente linfócitos T CXCR3⁺ (Loetscher et al., 1996). Respostas associadas a reações de hipersensibilidade tardia (DTH, do inglês "delayed-type hypersensitivity"), tais como as respostas geradas por infecções virais, ou em doenças autoimunes como a esclerose múltipla (Balashov et al., 1999; Sauty et al., 1999), a expressão local de CXCL9/Mig e CXCL10/IP-10 é regulada positivamente por IFN-y e leva ao recrutamento de linfócitos efetores para os tecidos inflamados (revisado em Baggiolini, 1998). As células T em reações associadas à DTH também expressam grandes quantidades de CCR5 e CXCR3, como por exemplo, no tecido sinovial na artrite reumatóide (Mosmann e Sad, 1996; Qin et al., 1998) e na esclerose múltipla (Balashov et al., 1999). O receptor CCR5 apresenta como ligantes as quimiocinas CCL3/MIP-1 α , CCL4/MIP-1 β e CCL5/RANTES, que atraem células CCR5⁺ incluindo células T ativadas e de memória, monócitos e macrófagos (Baggiolini et al., 1994; Sallusto et al., 2000). A expressão de CCR5 e seus ligantes tem sido observada em doenças inflamatórias crônicas (Mosmann e Sad, 1996; Qin et al., 1998; Balashov et al., 1999), contudo a expressão de CCR5 em clones de células Th1 é perdida na ausência de IL-2, o que não é observado para o receptor CXCR3 (Sallusto et al., 1998).

A expressão do receptor CCR7 também subdivide células T efetoras e células T de memória com distintas funções efetoras e propriedades migratórias, e também é um marcador de células T *naive* (Sallusto *et al.,* 1999).

Estes autores observaram que a marcação de células T de sangue periférico com anticorpos para CD45RA e CCR7 revelou três subtipos de células T: células T *naive* CD45RA⁺CCR7⁺, e dois subtipos de células T de memória CD45RA⁻CCR7⁺ (denominadas células T de memória central - Tcm) e CD45RA⁻CCR7⁻ (células T de memória efetora -Tem) (Sallusto *et al.,* 1999).

Rivino et al. (2004) demonstraram que células Tcm CXCR3⁺ e Tcm CCR4⁺ diferenciam-se em células efetoras Th1 ou Th2 CCR7⁺ de maneira independente do antígeno. CXCR3 e CCR4 são preferencialmente induzidas em condições Th1 e Th2, respectivamente (D'Ambrosio et al., 1998; Sallusto et al., 1998), e células Tcm CXCR3⁺ e Tcm CCR4⁺ podem assim representar precursores comprometidos com as linhagens Th1 e Th2, com capacidade de gerar células efetoras por extensos períodos na ausência de antígenos. Os mesmos autores também demonstraram que estas células, Tcm CXCR3⁺ e Tcm CCR4⁺ apresentam baixa capacidade de produzir IFN-γ e IL-4 quando comparadas com células Tem CXCR3⁺ e Tem CCR4⁺. Entretanto estas células Tcm CXCR3⁺ e Tcm CCR4⁺ diferenciam-se em células efetoras Th1 e Th2 em resposta a citocinas como IL-7 e IL-15, independente do estímulo convencional indutor de células Th1 e Th2 (Rivino et al., 2004). A expressão de CCR8 em células de memória também foi relatada. Soler et al. (2006) demonstraram que células efetoras de perfil Th2 e células T CD4⁺Foxp3⁺ de memória com perfil regulador expressam CCR8, e essas células podem migrar para os sítios de inflamação onde participam da indução e regulação da resposta alérgica.

As quimiocinas, em alguns casos, estão diretamente relacionadas com as patologias resultantes de infecções. Diferentes patógenos ou tipos de estímulos são capazes de induzir diferentes quimiocinas inflamatórias, que, por sua vez, recrutam diferentes padrões de células T para o local da infecção. O recrutamento excessivo de leucócitos, devido à expressão de quimiocinas, ocorre em doenças inflamatórias agudas e crônicas, como a asma, esclerose múltipla e artrite reumatóide (Proudfoot, 2002).

Embora ainda não esteja claro como ocorre a miocardite na infecção experimental pelo *T. cruzi*, muitos trabalhos começaram a estudar o potencial papel das quimiocinas nesse processo. Em modelos animais de infecção pelo *T. cruzi*, tem sido observada a produção de quimiocinas no tecido cardíaco. Durante a fase crônica foram observadas quimiocinas indutíveis por IFN- γ como CCL2/MCP-1, CCL3/MIP-1 α , CCL5/RANTES, CXCL9/Mig e CXCL10/IP-10, em lesões cardíacas de camundongos com 120 dias de infecção (Teixeira *et al.*, 2002). Outros autores observaram que camundongos transgênicos superexpressando CCL2/MCP-1 ou TNF- α no coração desenvolvem hipertrofia e dilatação cardíaca (Kolattukudy *et al.*, 1998; Kubota *et al.*, 2000).

Dos Santos *et al.* (2001) encontraram uma alta porcentagem de linfócitos T CD8⁺ presentes no miocárdio de camundongos infectados com *T. cruzi* (120 dias de infecção), expressando um fenótipo de ativação caracterizado como CD62L^{low} LFA-1^{high} VLA-4^{high}. Os autores também encontraram vários fatores induzidos por IFN-γ como a molécula de adesão VCAM-1 e quimiocinas como CCL3/MIP-1α, CCL5/RANTES, CXCL9/Mig e

CXCL10/IP-10, que estão expressas no miocárdio de camundongos infectados e podem contribuir para o intenso recrutamento celular e, portanto, para o estabelecimento e manutenção da miocardite induzida pela infecção com *T. cruzi*.

Corroborando esses dados, outros autores também demonstram que quimiocinas como CCL3/MIP1- α , CCL4/MIP-1 β e CCL5/RANTES, ligantes do receptor CCR5, foram detectadas no coração de camundongos infectados com *T. cruzi* (17 dias de infecção) em associação com linfócitos T CD4⁺ e T CD8⁺ (Machado *et al.*, 2005). Foi observado ainda que camundongos deficientes do receptor CCR5 apresentam drástica redução do infiltrado inflamatório cardíaco, indicando a importância do receptor CCR5 na migração de linfócitos e controle da replicação local do parasita (Machado *et al.*, 2005). Aliberti *et al.* (2001) também demonstraram a presença de linfócitos T CD4⁺ e T CD8⁺ no miocárdio e a produção de quimiocinas como CXCL9/Mig e CXCL10/IP-10 neste tecido, sugerindo que estas quimiocinas podem estar envolvidas na atração de linfócitos para o coração de animais infectados com *T. cruzi* (9 dias de infecção).

Face à predominância de células T Th1 no infiltrado da CCC, é razoável esperarmos alterações na expressão de tais moléculas no sítio da lesão.

Estudos recentes indicam uma regulação positiva de quimiocinas em processos inflamatórios no miocárdio associados com infarto (Baggiolini, 2001; Frangogiannis *et al.*, 2001; Frangogiannis *et al.*, 2002^a; Frangogiannis *et al.*, 2002^b; Gerard e Rollins, 2001) e com a cardiomiopatia isquêmica (Frangogiannis *et al.*, 2002^b; Dewald *et al.*, 2003). Elevadas concentrações

plasmáticas de quimiocinas tem sido associadas com o pior prognóstico na falência cardíaca (Filippatos *et al.*, 2003) e cardiomiopatia dilatada (Aukrust *et al.*, 1998). Contudo, o exato papel da sinalização de quimiocinas na patologia do miocárdio permanece pouco compreendido.

Dados sugerem que cardiomiócitos podem ter um papel ativo na resposta inflamatória, não somente por produzir quimiocinas, mas também por expressarem vários receptores de quimiocinas dos subtipos CC e CXC (Damas *et al.*, 2000^a; Damas *et al.*, 2000^b). A descoberta de quimiocinas no tecido cardíaco em associação aos cardiomiócitos sugere que a produção local de quimiocinas pode exercer efeitos no miocárdio, possivelmente atuando através de mecanismos autócrinos e/ou parácrinos (Cunha-Neto *et al.*, 2005).

1.4 PAPEL DOS MEDIADORES INFLAMATÓRIOS SOBRE OS CARDIOMIÓCITOS – HIPERTROFIA

Análises dos aspectos celulares e moleculares da hipertrofia de cardiomiócitos em cultura mostraram que durante a hipertrofia ocorre aumento no tamanho da célula, aumento da expressão de genes embrionários, incluindo genes para peptídeos natriuréticos e acúmulo de proteínas contráteis (Chien *et al.*, 1993; Hunter e Chien, 1996).

Na hipertrofia cardíaca, observa-se um aumento no tamanho da célula na ausência de divisão celular, acompanhado por alterações qualitativas e quantitativas da expressão gênica. O aumento na expressão dos genes fetais, como por exemplo, cadeia pesada de beta-miosina, alfa-actina e fator natriurético atrial (ANF, do inglês "atrial natriuretic factor"), ocorre concomitante à diminuição de expressão da cadeia pesada de alfa-miosina e da bomba de cálcio do retículo sarcoplasmático (Schaub *et al.*, 1997).

A indução de genes para peptídeos natriuréticos é uma característica de hipertrofia e também um indicador prognóstico de gravidade clínica. Os peptídeos natriuréticos: fator natriurético atrial (ANF) e o peptídeo natriurético cerebral (BNP, do inglês "brain natriuretic peptide") são hormônios circulantes de origem cardíaca. O ANF é sintetizado no átrio e o BNP no ventrículo, e ambos apresentam importante papel na regulação do volume e pressão sanguínea (revisado em Nishikimi *et al.,* 2006).

Estudos demonstram elevadas concentrações de ANF e BNP na circulação de pacientes chagásicos crônicos com cardiomiopatia (Piazza *et al.*, 1994; Ribeiro *et al.*, 2002; Benvenuti *et al.*, 2003), contudo, o aumento na síntese desses peptídeos não foi relacionado à inflamação. Resultados recentes de nosso grupo utilizando *microarray* de cDNA mostraram indução do perfil hipertrófico/embrionário de expressão gênica com aumento de expressão de ANF, e das proteínas sarcoméricas alfa-actina de músculo cardíaco esquelético, alfa-actina de músculo liso, cadeia leve de miosina-2, cadeia pesada de miosina cardíaca, cadeia pesada de miosina de músculo liso, e teletonina em miocárdio de pacientes com CCC ou CDI em comparação a miocárdio de indivíduos saudáveis (Cunha-Neto *et al.*, 2005).

A hipertrofia do miocárdio é um dos primeiros eventos a ocorrer no desenvolvimento clínico da insuficiência cardíaca e é um importante fator de

morbidade e mortalidade. A hipertrofia do miocárdio pode ocorrer em resposta a uma variedade de estímulos mecânicos/hemodinâmicos (sobrecarga pressão/volume), hormonais (angiotensina II, endotelina 1, hormônio tireoideano), e inflamatórios (TNF- α , IL-1 β , IL-18, MCP-1) (Chandrasekar *et al.*, 2004; Cunha-Neto *et al.*, 2005).

Nosso grupo recentemente demonstrou a participação do IFN-γ na hipertrofia de cardiomiócitos por meio da técnica de qRT-PCR. Cardiomiócitos, obtidos de fetos de camundongos, quando colocados em cultura na presença de IFN-γ apenas, ou em combinação com CCL2/MCP-1, aumentaram em 15 e 400 vezes, respectivamente, a expressão de *ANF*, um dos genes fetais cuja expressão está envolvida na hipertrofia e falência cardíaca (Cunha-Neto *et al.*, 2005).

Chandrasekar *et al.* (2004) demonstraram que a IL-18 induz transcrição do gene *ANF* e hipertrofia de cardiomiócitos em cultura, sugerindo que a IL-18 poderia ter um papel no início e na progressão da falência do coração, estado caracterizado pela hipertrofia do miocárdio.

Além disso, estudos demonstraram que cardiomiócitos de rato em cultura tratados com TNF- α produzem CCL2/MCP-1, o que pode aumentar a resposta inflamatória no miocárdio por induzir a produção de IL-1 β e IL-6 em cardiomiócitos (Damas *et al.,* 2001). A IL-1 β e o TNF- α induzem diretamente resposta hipertrófica em cardiomiócitos em cultura (Schaub *et al.,* 1997; Yokoyama *et al.,* 1997; Petersen e Burleigh, 2003). Em suma, os resultados demonstram que cardiomiócitos são capazes de responder ao estímulo de diversos mediadores inflamatórios, apresentando respostas biológicas.

Dados da literatura demonstram também que cardiomiócitos infectados com *T. cruzi* expressam RNAm para mediadores como TNF-α, IL-1β e iNOS e para quimiocinas como CXCL2/MIP-2, CXCL9/Mig, CXCL10/IP-10, CCL5/RANTES e CCL2/MCP-1 (Machado *et al.,* 2000; Talvani *et al.,* 2000). Cardiomiócitos respondem a estímulos como IFN-γ, IL-1β, TNF-α ou quimiocinas, produzindo altos níveis de NO (Machado *et al.,* 2000). O NO pode regular diretamente as propriedades contráteis das células musculares (Balligand *et al.,* 1994) levando a depressão da função cardíaca (Joe *et al.,* 1998) e dano ao miocárdio (Ishiyama *et al.,* 1997).

1.5 CARDIOMIOPATIAS DE ETIOLOGIA NÃO INFLAMATÓRIA

As cardiomiopatias são definidas como doenças do miocárdio associadas com disfunção cardíaca, sendo classificadas pela patofisiologia dominante ou, se possível, pela etiologia e/ou fatores patogenéticos (WHO/ISFC Task Force, 2003). As cardiomiopatias são classificadas como: cardiomiopatia hipertrófica, cardiomiopatia restritiva, cardiomiopatia hipertensiva, cardiomiopatia isquêmica e cardiomiopatia dilatada, dentre outras. A dilatação e hipertrofia ventriculares são características comuns a todas, em seu estado terminal (WHO/ISFC Task Force, 2003).

A cardiomiopatia hipertrófica é caracterizada pela hipertrofia do ventrículo esquerdo e/ou direito, que torna-se assimétrico e envolve o septo interventricular (Wigle *et al.,* 1985).

A cardiomiopatia restritiva é caracterizada pelo reduzido volume diastólico de um ou ambos os ventrículos com função sistólica normal ou próxima do normal, e com hipertrofia leve ou ausente (revisado em Sangiorgi, 2003).

A cardiomiopatia hipertensiva é descrita como uma hipertrofia do ventrículo esquerdo em associação com características de cardiomiopatia dilatada ou restritiva com falência cardíaca (WHO/ISFC Task Force, 2003).

A cardiomiopatia isquêmica apresenta-se como uma cardiomiopatia dilatada com contractibilidade prejudicada, que é explicada pela doença da artéria coronária ou dano isquêmico (WHO/ISFC Task Force, 2003).

A cardiomiopatia dilatada é caracterizada pela presença de dilatação e contração prejudicada do ventrículo esquerdo ou ambos os ventrículos, podendo ser classificada como idiopática, genética/familiar, viral e/ou autoimune e tóxica/alcoólica (WHO/ISFC Task Force, 2003).

A Cardiomiopatia dilatada idiopática (CDI) é uma doença do músculo cardíaco caracterizada por dilatação ventricular, disfunção contráctil dos ventrículos direito e/ou esquerdo e sintomas de insuficiência cardíaca congestiva. As características histopatológicas da CDI incluem fibrose, necrose de miócitos e ausência ou leve infiltração de células mononucleares (De Maria *et al.*,1993). Estudos sugerem uma etiologia de origem viral para a CDI, possivelmente mediada por mecanismos imunológicos. Evidências indiretas indicam que o vírus Coxsakie B3 pode causar 7-30% das miocardites agudas, dos quais aproximadamente 10% podem progredir para a CDI (Helin *et al.*, 1968). Outros vírus também podem estar associados a miocardite/CDI como o adenovírus, vírus da influenza, citomegalovírus e

HIV, porém o papel desses vírus ainda não foi amplamente estudado (Woodruff, 1980; Liu *et al.*, 1996). A presença de um fator auto-imune na CDI foi relatada pela identificação de auto-anticorpos específicos, infiltrado inflamatório e citocinas pró-inflamatórias (Maisch *et al.*, 2000). Há também evidências que fatores genéticos tenham um importante papel na patogênese da CDI contribuindo para a suscetibilidade ou determinando mudanças funcionais e estruturais que caracterizam a expressão fenotípica da doença (Caforio *et al.*, 1996).

A elevada expressão de mediadores inflamatórios na circulação e no miocárdio predispõe à falência cardíaca congestiva através de vários mecanismos. A ativação de leucócitos e a migração dessas células da circulação para áreas de inflamação no miocárdio parece ser um importante fator na resposta imunológica na falência cardíaca congestiva (Devaux et al., 1997). Interações entre monócitos ativados e o miocárdio humano tem sido encontradas na falência cardíaca congestiva independente de sua causa (Devaux et al., 1997). Corroborando essas observações, estudos sugerem que citocinas pró-inflamatórias, como TNF- α e IL-1, modulam as funções cardiovasculares através de vários mecanismos (Mann e Young, 1994). Yndestad et al. (2003) demonstraram que células T provenientes do sangue periférico de pacientes com falência cardíaca crônica regulam positivamente a expressão gênica de IFN- γ , IL-18, TNF- α , FasL e CCL3/MIP-1 α , sugerindo que células T podem representar uma importante fonte celular na resposta imune na falência cardíaca, possivelmente apresentando um papel patogênico nesta doença.

Quimiocinas podem indiretamente levar ao dano e disfunção do músculo cardíaco através da ativação e produção de espécies reativas do oxigênio, metaloproteinases de matriz e citocinas inflamatórias (Rollins *et al.,* 1991; Luster, 1998; Murdoch e Finn, 2000). As quimiocinas também podem regular outros processos biológicos importantes na patogênese da falência cardíaca, por exemplo fibrose, angiogênese e apoptose (Koch *et al.,* 1992; Luster, 1998; Murdoch e Finn, 2000).

Dados da literatura demonstram que CCL2/MCP-1, CCL3/MIP-1α e CCL5/RANTES são produzidos por vários leucócitos, contudo CCL5/RANTES também é produzido por plaquetas (Baggiolini *et al.*, 1994; Holme *et al.*, 1998). Weyrich *et al.* (1996) demonstraram que plaquetas ativadas estimulam a produção de CCL2/MCP-1 em monócitos através do aumento de secreção de CCL5/RANTES, sugerindo que a interação monócito-plaqueta possa contribuir para o aumento dos níveis de quimiocinas CC na falência cardíaca congestiva.

Adicionalmente, Aukrust *et al.* (1998) demonstraram que células isoladas do sangue periférico de pacientes com falência cardíaca congestiva, incluindo cardiomiopatias isquêmica e não-isquêmica, secretam elevados níveis das quimiocinas CCL2/MCP-1, CCL3/MIP-1 α e CCL5/RANTES, e que esses níveis correlacionam-se com a gravidade dos sintomas e com o grau de disfunção do ventrículo esquerdo. Outro grupo demonstrou a presença de CCL2/MCP-1, CXCL8/IL-8 e CXCR4 em cardiomiócitos e em células vasculares do músculo liso, sugerindo que cardiomiócitos também poderiam ter um papel ativo no processo inflamatório produzindo quimiocinas e expressando seus receptores (Damas *et al.*, 2000).

O aumento da expressão de quimiocinas no miocárdio e de seus correspondentes receptores em leucócitos infiltrantes e/ou cardiomiócitos nas várias formas de falência cardíaca sugere um importante papel para as interações relacionadas a quimiocinas na patogênese das cardiomiopatias (Aukrust *et al.*, 2001).

2. OBJETIVOS

2.1 JUSTIFICATIVA E OBJETIVO GERAL

Na doença de Chagas o estabelecimento de uma resposta inflamatória é importante no controle do parasitismo intenso característico da fase aguda, entretanto, essa resposta pode acarretar o desenvolvimento de uma cardiomiopatia de natureza inflamatória na fase crônica (CCC). Curiosamente, os fatores que determinam a composição do infiltrado inflamatório e contribuem com a migração e acúmulo das células inflamatórias dentro do tecido cardíaco na CCC são ainda desconhecidos.

Visto que pacientes com CCC evoluem para um pior prognóstico em comparação a pacientes portadores de outras cardiomiopatias de natureza não inflamatória e considerando que a principal diferença entre estas patologias é a presença do infiltrado inflamatório no tecido cardíaco de chagásicos, é possível hipotetizar que diversos mediadores inflamatórios produzidos localmente estejam envolvidos nos mecanismos do pior prognóstico. Portanto, a identificação dos mediadores inflamatórios diferencialmente expressos entre esses grupos e seus efeitos biológicos se torna ferramenta no entendimento da participação desses mediadores na patologia da CCC.

Mediadores como IL-6 e a expressão de RNAm codificando as quimiocinas CXCL9/Mig e CXCL10/IP-10, bem como os receptores CCR5 e

CXCR3 já foram identificados no tecido cardíaco de pacientes com CCC, entretanto, pouco se sabe sobre a participação destes no dano cardíaco. Por outro lado, embora mediadores como IL-18, IL-12, IL-1 β , CCL3/MIP-1 α , CCL4/MIP-1 β e CCL5/RANTES tenham sido observados no tecido cardíaco de camundongos infectados pelo *T. cruzi*, não se sabe se são expressos no miocárdio de pacientes com CCC.

Dessa forma, o objetivo geral do presente trabalho é avaliar a expressão local dos mediadores citados acima, além de outras citocinas do padrão pró- e antiinflamatório, citocinas regulatórias e quimiocinas inflamatórias e seus receptores envolvidos na migração diferencial de linfócitos T de memória e do fenótipo Th1/Th2. A identificação de genes diferencialmente expressos na CCC permitirá a obtenção de um perfil da expressão destes genes no miocárdio de pacientes com CCC.

2.2 **OBJETIVOS ESPECÍFICOS**

 Investigar a expressão gênica de citocinas pró-inflamatórias/Th1 (IL-1β, IL-6, IL-12, IL-18 e IL-23), citocinas antiinflamatórias/Th2 (IL-4 e IL-13), da citocina regulatória TGF-β e do fator de transcripcional Foxp3 em amostras de miocárdio de portadores de CCC e portadores de cardiomiopatias de etiologia não inflamatória (CNI), em comparação com miocárdio de doadores saudáveis.

- Investigar a expressão gênica de quimiocinas envolvidas na migração de células inflamatórias e seus receptores (CCL3/MIP-1α, CCL4/MIP1-β, CCL5/RANTES e o receptor CCR5), na migração de células T de memória e seu receptor (CCL19/ELC, CCL21/SLC, e o receptor CCR7), e quimiocinas envolvidas na migração diferencial de linfócitos Th1/Th2 e seus receptores (CXCL9/Mig, CXCL10/IP-10 e seu receptor CXCR3 para Th1; CCL22/MDC e CCL17/TARC, CCL1/I-309 e os receptores CCR4 e CCR8 para Th2), em amostras do miocárdio de portadores de CCC e portadores de CNI, em comparação com miocárdio de doadores saudáveis.
- 3. Estudar a expressão das proteínas codificadas por transcritos diferencialmente expressos, conforme os resultados de qRT-PCR, em cortes de miocárdio com células infiltrantes CD3⁺, CD4⁺ e CD8⁺ através da técnica de imunofluorescência com microscopia confocal.

3. MÉTODOS

3.1 ESTRATÉGIA E DESENHO EXPERIMENTAL

Para identificar genes diferencialmente expressos entre os grupos estudados, extraímos o RNA de amostras de miocárdio de pacientes com CCC ou CNI e de amostras de miocárdio de indivíduos saudáveis. Através da técnica de qRT-PCR em tempo real, identificamos os genes diferencialmente expressos entre os grupos estudados, utilizando seqüências especificas para os genes de interesse, que foram previamente padronizados. Após a identificação dos genes diferencialmente expressos entre os grupos CCC e CNI, avaliamos a presença das proteínas codificadas por esses transcritos diferencialmente expressos, através da técnica de imunofluorescência com microscopia confocal. Análises histopatológicas foram realizadas com amostras de miocárdio submetidas à coloração histológica por hematoxilina e eosina (H&E). O desenho experimental pode ser observado no esquema abaixo.

3.2 AMOSTRAS DE MIOCÁRDIO HUMANO

Foram utilizadas amostras de tecido miocárdico de pacientes com Cardiomiopatia Chagásica Crônica (CCC; n= 14) e amostras de tecido miocárdico de pacientes com outras cardiomiopatias de etiologia não inflamatória (CNI; n=8), submetidos ao transplante cardíaco. O grupo de pacientes com CNI é composto de três pacientes com Cardiomiopatia Isquêmica e cinco pacientes com Cardiomiopatia Dilatada Idiopática. Amostras de tecido miocárdico de doadores saudáveis, obtidas de indivíduos em morte encefálica e cujos corações não foram utilizados para transplante cardíaco, foram utilizadas como grupo controle (N; n= 6). Os fragmentos de explante de corações de portadores de CCC ou CNI (aproximadamente 100 g da parede lateral do ventrículo esquerdo) foram obtidos no centro cirúrgico durante o transplante cardíaco. A obtenção das amostras foi possível devido a uma colaboração entre o Laboratório de Imunologia e a equipe de Transplante Cardíaco do InCor-HC/FMUSP, coordenada pelo Prof. Dr. Noedir Stolf, Dr. Ronaldo Honorato e Dr. Alfredo Fiorelli. As amostras foram conservadas em nitrogênio líquido para extração do RNA e pequenos fragmentos dessas amostras foram conservados em meio de inclusão O.C.T. (*Tissue-Tek*, Sakura, Finetechnical Co, Tokyo, Japan) para ensaios de imunofluorescência.

As características destas amostras estão descritas na Tabela 1. A média de idade (média \pm desvio padrão) dos pacientes com CCC era 47,2 \pm 14,6 (16-62), sendo cinco pacientes do sexo masculino e nove do sexo feminino, enquanto que os pacientes com CNI apresentavam média de idade (média \pm desvio padrão) de 53,3 \pm 7,5 (39-63), sendo oito pacientes do sexo masculino. A média de idade dos doadores do grupo controle (média \pm desvio padrão) é de 32,2 \pm 12,8 (20-46), sendo seis indivíduos do sexo masculino. A fração de ejeção (FE), medida durante um ecocardiograma, indica os níveis de alteração de função do músculo cardíaco (capacidade cardíaca em bombear o sangue) e de distúrbios de condução elétrica. Quanto menor a fração de ejeção, maior o comprometimento cardíaco, sendo classificada como grave uma FE \leq 0,4.

O presente trabalho foi aprovado pela Comissão de Ética para Análise de Projetos de Pesquisa - CAPPesq da Diretoria Clínica do Hospital das Clinicas e da Faculdade de Medicina da Universidade de São Paulo, protocolo de pesquisa nº 739/05.

Identificação	Etiologia	Sava	Idado	FE	
Amostra	Ellologia	Sexu	luaue		
CCC-1	CCC	М	16	ND	
CCC-2	CCC	F	44	0,21	
CCC-3	CCC	F	62	0,15	
CCC-4	CCC	F	24	0,18	
CCC-5	CCC	Μ	50	0,23	
CCC-6	CCC	F	47	ND	
CCC-7	CCC	F	49	0,15	
CCC-8	CCC	Μ	28	0,21	
CCC-9	CCC	F	55	0,36	
CCC-10	CCC	Μ	58	0,29	
CCC-11	CCC	Μ	57	ND	
CCC-12	CCC	F	60	0,2	
CCC-13	CCC	F	61	0,27	
CCC-14	CCC	F	50	0,25	
CNI-1	CDI	Μ	53	0,19	
CNI-2	CDI	Μ	39	0,16	
CNI-3	CDI	Μ	63	0,38	
CNI-4	CDI	Μ	55	0,19	
CNI-5	CDI	Μ	50	0,2	
CNI-6	C. Isq.	Μ	62	0,37	
CNI-7	C.Isq.	Μ	52	0,33	
CNI-8	C.Isq.	Μ	52	0,3	
N-1	Ν	Μ	46	ND	
N-2	Ν	Μ	40	ND	
N-3	N	Μ	22	ND	
N-4	Ν	Μ	20	ND	
N-5	Ν	Μ	45	ND	
N-6	Ν	Μ	20	ND	

Tabela 1. Descrição dos pacientes com CCC, CNI e doadores saudáveis(N), dos quais foram obtidas as amostras de miocárdio

CCC – Cardiomiopatia Chagásica Crônica; CNI – Cardiomiopatia de etiologia não inflamatória; CDI – Cardiomiopatia Dilatada Idiopática; C.Isq. – Cardiomiopatia Isquêmica; N – doadores de coração saudáveis; FE - fração de ejeção; ND – não determinada. M- masculino; F – feminino.

3.3 OBTENÇÃO DE CDNA

3.3.1 EXTRAÇÃO DE RNA

O RNA foi extraído pelo método baseado em Chomczynski e Sacchi (1987), o qual utiliza solução de Trizol (Life Technologies, Grand Island, NY, USA) para isolamento de RNA total. Trizol é uma solução monofásica de fenol e isotiocianato de guanidina que rompe a célula mantendo a integridade do RNA. A técnica consistiu inicialmente na homogeneização de amostras de tecido cardíaco (ventrículo esquerdo) de aproximadamente 20-40 mg em solução de Trizol utilizando homogeneizador de tecido (Power Gen 1000, Fisher Scientific, Atlanta, USA). Após a incubação das amostras por 5 minutos a temperatura ambiente, para permitir completa dissociação de complexos de nucleoproteínas, foram adicionados 0,2 mL de clorofórmio para cada mL de Trizol, seguido de agitação vigorosa por aproximadamente 15 segundos. O material foi posteriormente incubado por 2 a 3 minutos à temperatura ambiente e centrifugado por 15 minutos a 1120 g a 4°C. Após esta centrifugação ocorre a separação da solução em três fases (aquosa, interface e orgânica). A fase aquosa foi transferida para um novo tubo contendo 0,5 mL de álcool isopropílico para cada mL de Trizol, para a precipitação do RNA. Este tubo foi homogeneizado por inversão, e após incubação por 10 minutos a temperatura ambiente, centrifugado novamente a 1120 g por 15 minutos a 4°C. O sobrenadante foi removido e o precipitado de RNA lavado com etanol 75% diluído em água DEPC (Dietilpirocarbonato, Sigma-Aldrich, Steinhein, Alemanha), seguido de centrifugação a 640 g por 5 minutos a 4°C. O RNA assim obtido foi deixado secar por 5 minutos para evaporação do etanol e então ressuspendido em 10 μL de água DEPC. Este material foi mantido a -80°C até o momento da transcrição reversa.

3.3.2 QUANTIFICAÇÃO DE RNA E TRATAMENTO COM DNASE

Após extração, o RNA obtido foi quantificado através de leitura em espectrofotômetro (Beckman, DU530, Fullerton, CA, USA) nos comprimentos de onda (λ) de 260 e 280 nm. O grau de pureza da amostra foi verificado através da relação entre 260 e 280nm, sendo considerada uma boa extração aquela que apresentou valores de razão entre 1,6 e 1,9. Para o cálculo da concentração da amostra considerou-se que a densidade ótica (DO) igual a 1 corresponde a 40 µg de RNA / mL no comprimento de onda de 260 nm (Sambrook, 1989). Além disto, uma alíquota de RNA foi submetida a eletroforese em gel de agarose 1% para visualização da integridade das amostras, observando as duas subunidades do RNA ribossômico, 18S e 28S e também possíveis contaminações com DNA (Figura 3).

Para evitar possíveis contaminações com DNA, o RNA foi tratado com rDNase, de acordo com a recomendação do fabricante. Adicionou-se para cada 1 μ g de RNA total 1 unidade de rDNase I (DNAse recombinante bovina Usb, USA), 1 μ L de tampão 10x rDNase e água DEPC q.s.p. para 9 μ L, e a reação foi incubada a temperatura ambiente por 15 minutos. Após o tempo de incubação foi adicionado 1 μ L da solução de inativação da enzima para cada 1 μ g de RNA total, e incubou-se por 10 minutos a 65°C. Para avaliar a

qualidade do RNA após o tratamento com DNase I, 1µg de RNA tratado foi submetido a eletroforese em gel de agarose 1%. As amostras foram consideradas adequadas quando as bandas de 28S e 18S se mostraram íntegras e nenhum traço de DNA genômico foi detectado.

Figura 3. Avaliação da integridade das amostras de RNA por eletroforese em gel de agarose. 1 µg de RNA de cada amostra foi carregado em gel de agarose 1% corado com brometo de etídio (0,5µg/mL) e submetido a corrida eletroforética a 100 V durante 40 minutos. Amostras de RNA: numeração de 1 a 14 corresponde a amostras provenientes de miocárdio de pacientes com CCC; numeração de 1 a 8 corresponde a amostras provenientes de miocárdio de miocárdio de pacientes com CNI; numeração de 1 a 6 corresponde a amostras provenientes de miocárdio controle). Ao final ou início de cada figura podemos observar o marcador de peso molecular de 100pb (Ladder 100bp, Invitrogen, Carlsbad, CA, USA).

3.3.3 TRANSCRIÇÃO REVERSA

Após constatação da qualidade e pureza do RNA e do tratamento do RNA total com DNase, foi feita a transcrição reversa de 5µg de RNA total para cDNA utilizando a enzima transcriptase reversa Super-script II[™] Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA). Para este protocolo foi adicionado ao RNA 1µL de oligodT (500 µg/mL), 1µL de dNTP (10mM de dATP, dCTP, dGTP e dTTP) e água DEPC q.s.p. 20µL. Esta mistura foi aquecida a 65°C por 5 minutos em termociclador (MJ research, Inc. Watertown, MA, USA). Em seguida foram adicionados ao tubo de reação 4µL de tampão de transcrição 5x, 2µL de DTT 0,1M e 1µL de inibidor de RNase (40U/µL) (RNAse OUT[™], Invitrogen, Carlsbad, CA, USA). As amostras foram então colocadas em termociclador a 42°C por 2 minutos. Por último foi adicionado 1µL da enzima transcriptase reversa (200U/µL), e esta solução foi colocada novamente em termociclador a 42°C por 50 minutos seguidos de 70°C por 15 minutos. Ao final da transcrição o cDNA foi mantido a -20°C.

3.4 EXPRESSÃO GÊNICA - PCR QUANTITATIVO EM TEMPO REAL (QRT-PCR)

3.4.1 SEQÜÊNCIAS DE PRIMERS

Os primers utilizados nas reações de PCR quantitativo em tempo real (qRT-PCR) foram desenhados, sintetizados, padronizados quanto a sua concentração de uso e verificados quanto a sua especificidade, e eficiência, como mostrado no esquema abaixo:

Todas as etapas citadas acima, que antecedem os ensaios de qRT-PCR, são necessárias e foram cuidadosamente seguidas, garantindo a qualidade de nossos resultados.

3.4.2 DESENHO E PADRONIZAÇÃO DOS PRIMERS

Os primers utilizados nas reações de qRT-PCR foram desenhados pelo programa *Primer Express* (Applied Biosystems, Foster City, CA, USA). O tamanho dos primers variou de 18 a 25 pares de bases (pb), TM de 59-61°C (Tm, do inglês "melting point") e o conteúdo de GC de 40-60%. O tamanho dos produtos de amplificação gerados variou de 81 a 119pb e seu TM de 73-85°C. Na Tabela 2 podemos observar a seqüência e características dos primers que foram utilizados nas reações de qRT-PCR.

Gene Bank N°	Seqüências 5'- 3'	Tam	Tm	Concent. /	F
Acesso Gene Bank		Ampl	Ampl	Diluição	<u> </u>
IL-6	TCAGCCCTGAGAAAGGAGACATG			100nM /	
M14584	GCATCCATCTTTTTCAGCCATCT	111pb	77°C	1:10	2,0
IL-18	GCATCAACTTTGTGGCAATGAAA	•		200nM /	
D49950	AAGCTTGCCAAAGTAATCTGACTCC	95pb	73ºC	1:10	2.2
II -18	AGGATATGGAGCAACAAGTGGTG	0000		200nM /	_,_
M15330	ATTCTTTCCTTGAGGCCCAAG	98nh	80°C	1.5	2 0*
II -12p35	CCAAGCTTCTCATCCATCCTAAC	3000	00 0	200nM /	2,0
NM 000892		02nh	7700	20011117	o o∗
NM_000882		92pb	110	1.0	2,2
IL-12p40			0000	200111/	4.0*
NM_002187	CITGITGICCCCTCTGACTCTCTC	91pb	82°C	1:5	1,9*
IL-23	GGACAACAGTCAGTTCTGCTTGC			200nivi /	
NM_016584	AGGCTCCCCTGTGAAAATATCC	91pb	78°C	1:5	1,9*
IL-4	TCCGATTCCTGAAACGGCT			200nM /	
M13982	TCTGGTTGGCTTCCTTCACAG	81pb	83°C	1:5	2,2**
IL-13	ACCTGACAGCTGGCATGTACTG			200nM /	
X69079	AGAATCCGCTCAGCATCCTCT	99pb	82°C	1:5	2,0**
TGF-β	GGTGGAAACCCACAACGAAAT			200nM /	
M38449	TCTCGGAGCTCTGATGTGTTGA	85pb	75°C	1:10	1.9
II -8	TGCGCCAACACAGAAATTATTGTAA			100nM /	.,.
NM 000584	TCAGCCCTCTTCAAAAACTTCTCC	110nh	78°C	1.10	21
Eoxp3	GAGAAGGGCAGGGCACAAT	порь	100	200nM /	Z , 1
NMA 014000		101nh	0200	20011117	2 0***
CCL 2/MID1~		IOIPD	03.0	1.0	2,0
		440-6	0000	200111/	0.4
AF043339	GCTGCTCGTCTCAAAGTAGTCAGC	110pb	82°C	1:5	2,1
CCL4/MIP-1B	GCTTCCTCGCAACTTIGTGGT			300nM /	
J04130	CACTGGGATCAGCACAGACTTG	110pb	80°C	1:10	1,9
CCL5/RANTES	CGTGCCCACATCAAGGAGTATT			400nM /	
M21121	CACACACTTGGCGGTTCTTTC	91pb	80°C	1:10	2,0
CCR5	TCCGCTCTACTCACTGGTGTTCA			100nM /	
U57840	CATGCTCTTCAGCCTTTTGCAG	91pb	78°C	1:10	2,2
CCL17/TARC	CACATCCACGCAGCTCGA			200nM /	
D43767	TGGTACCACGTCTTCAGCTTTCTA	da8e	81°C	1:5	2.0
CCL22/MDC	CTGCGCGTGGTGAAACACTT			200nM /	,-
U83171	CACAGATCTCCTTATCCCTGAAGGT	91pb	81°C	1.10	20
CCR4	CCCTTCCTGGCTTTCTGTTCA	0100	01.0	400nM /	2,0
¥85740	TTCCACGTCGTGGAGTTGAGA	01nh	78°C	1.10	20
	COTCOTCOTOCACITOACA	3100	100	100pM /	2,0
NM 006274		06nh	0100	1.10	2.0
		oohn	01.0	1.10	2,0
		400 1	0000	30011017	
NM_002989	IGICIIGICCAIGCIGCAICA	10800	83°C	1:10	2,0
CCR7	CICICCIIGICATITICCAGGIAIG			200nM /	
L31581	TTGGAGCACAAAGACTCGAACA	109pb	79°C	1:10	2,0
CCL1/I-309	CAGCTCCATCTGCTCCAATGA			200nM /	
J04130	CCTCTGAACCCATCCAACTGTG	91pb	79°C	1:5	2,0*
CCR8	ATGCCCTAAAGGTGAGGACGAT			200nM /	
NM_005201	ACTAGCAATGGGATGGTAGCCA	91pb	80°C	1:5	2,0
CXCL9/Mig	TCTGATTGGAGTGCAAGGAACC	-		100nM /	
X72755	GGTCTTTCAAGGATTGTAGGTGGA	da8e	79°C	1:10	2,0
CXCL10/IP-10	TCCACGTGTTGAGATCATTGCTA			300nM /	,-
X02530	GCTTTCAGTAAATTCTTGATGGCC	93nh	74°C	1:10	1.9
CXCR3	GTCCTTGAGGTGAGTGACCACC	0000		200nM /	1,0
NIM 001504		106nh	80%	1.10	20
ANE		roopp	00 0	200-01/	2,0
		01	7000	200111/1 /	2.0
NW_000172		albp	18°C	1:10	∠,0
BNP		405 .	0500	200nM /	4.5
NM_002521	GGTTGCGCTGCTCCTGTAAC	105pb	85°C	1:10	1,9
GAPDH	TGGTCTCCTCTGACTTCA			200nM /	
NM 002046	AGCCAAATTCGTTGTCAT	117pb	82°C	1·5 ou 1·10	20

Tabela 2. Descrição e identificação dos genes estudados, seqüência dosprimers utilizados e características do produto de amplificação

0 número de acesso foi obtido no banco de dados (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi). Tam Ampl - tamanho do produto de amplificação; pb - pares de base; Tm Ampl - temperatura do produto amplificado; Concent. / diluição - concentração de uso do primer e diluição de uso de cDNA; E - eficiência; * eficiência calculada utilizando amostra de células mononucleares de sangue periférico estimuladas com fito-hemaglutinina (PHA); ** eficiência calculada utilizando amostra de cDNA provenientes de cornetos nasais obtidos em cirurgia de turbinectomia de pacientes portadores de rinite alérgica obstrutiva; *** eficiência calculada utilizando amostra de cDNA provenientes de linfócitos T purificados de sangue periférico .

3.4.3 REAÇÃO DE PCR QUANTITATIVO EM TEMPO REAL (QRT-PCR)

As reações de gRT-PCR foram realizadas em triplicatas em placas de 96 poços, usando o reagente "SYBR-Green PCR Master Mix" (Applied Biosystems, Foster City, CA, USA) e o equipamento "Perkin-Elmer ABI PRISM 7500 Sequence Detection System" (Applied Biosystems, Foster City, CA, USA). A reação foi realizada em 40 ciclos de 15 segundos a 94°C e 1 minuto a 60°C, de acordo com o manual de instruções do fabricante ABI PRISM 7500. A determinação da intensidade de fluorescência na reação foi feita pelo cálculo do ΔRn ($\Delta Rn = Rn + - Rn$ -), onde Rn+ = intensidade de emissão do SYBR Green / intensidade de emissão do ROX em um dado momento da reação, e Rn- = intensidade de emissão do SYBR Green / intensidade de emissão do ROX, antes da amplificação. O composto ROX é utilizado como controle interno passivo, pois a fluorescência que emite tem intensidade constante durante toda a reação. Durante os ciclos iniciais da reação não há acúmulo de produtos de amplificação e os valores de ΔRn permanecem na linha de base (fluorescência do ROX > SYBR Green). Na fase logarítmica da reação ocorre acúmulo dos produtos de amplificação e o ΔRn ultrapassa a linha de base. Para a quantificação relativa foi estabelecido um valor de ΔRn , correspondente a linha de corte (*Threshold*) para cada curva de amplificação de um dado par de primers. O número do ciclo em que a Δ Rn cruza o threshold corresponde ao Ct (Ct, do inglês "cycle threshold") da amostra. O valor de Ct é preditivo da quantidade de RNAm alvo presente na amostra e quanto menor o seu valor, maior é quantidade de
RNAm presente na amostra. O cálculo da quantificação relativa foi feito pelo método de $2^{-\Delta\Delta Ct}$ descrito por Livak e Schmittgen (2001), utilizando como gene de referência (endógeno) GAPDH (D-gliceraldeído 3-fostato desidrogenase). Amostras de miocárdio de indivíduos saudáveis (N) foram utilizadas como controle (calibrador) de nosso ensaio, ou seja, o valor de quantificação relativa (QR) de cada amostra, CCC ou CNI, foi calculado considerando o valor da média Δ Ct do grupo N. Consideramos significante todo o valor de QR ≥2 (genes regulados positivamente) ou QR ≤0,5 (genes regulados negativamente) em relação a amostras de miocárdio de doadores saudáveis (N).

Fórmula utilizada para a quantificação relativa (QR):

QR= $2^{\Delta\Delta Ct}$, onde ΔCt = Ct alvo – Ct referência, e $\Delta\Delta Ct$ = ΔCt amostra - ΔCt controle

3.4.4 CONCENTRAÇÃO DE USO DOS PRIMERS

A concentração de uso de cada par de seqüências de primers foi inicialmente padronizada. Em reações de qRT-PCR foi utilizado um *pool* de cDNA de todas as amostras de miocárdio (CCC e CNI), onde foram testadas as concentrações de 100nM, 200nM, 300nM, 400nM e 500nM para cada par de seqüência de primers. Após as reações de qRT-PCR foram comparados os valores de Ct de cada par de primers em cada concentração e foi escolhida a concentração com base no valor de Ct, de forma que a concentração de primer não fosse um fator limitante da reação. Na Tabela 3

podemos observar a seqüência e características dos primers que foram utilizados nas reações de qRT-PCR.

3.4.5 ESPECIFICIDADE E ADEQUAÇÃO DOS PRIMERS

A especificidade dos primers desenhados foi avaliada pela curva de dissociação. Para isso, após a reação, a placa foi submetida a um segundo programa: 95°C por 1 minuto, 60°C por 1 minuto e 95°C por 1 minuto. A curva de dissociação consiste na monitoração da fluorescência das amostras em relação ao aumento de temperatura. A fluorescência das amostras é proporcional à abundância de duplas fitas, nas quais se intercala o SYBR-Green e, portanto, decresce com o aumento da temperatura. Quando observamos somente um pico de fluorescência em uma dada temperatura significa que houve amplificação de um produto específico. Esta temperatura é a temperatura de anelamento do produto de amplificação (*amplicon*).

3.4.6 CÁLCULO DA EFICIÊNCIA

O cálculo da eficiência de cada par de primers foi realizado como sugerido em Pfaffl *et al.* (2002). A avaliação da eficiência indica a real cinética de amplificação da seqüência de primer testada, bem como sua reprodutibilidade e exatidão. Para calcularmos o valor da eficiência de cada par de primers ($F \in R$), utilizou-se um *pool* de todas as amostras estudadas

(*pool* cDNA). Em seguida diluímos esse pool em diluições seriadas (1:10 a 1:1250 ou 1:5 a 1:625), e realizamos ensaios de qRT-PCR, com cada primer de interesse, já padronizado quanto a sua concentração de uso. Após a reação de qRT-PCR, as médias dos valores de Ct das triplicatas de cada diluição foram utilizadas no cálculo da eficiência. Para cada seqüência de primers construímos um gráfico com base no valor logaritmo das diluições testadas (log ng RNA; eixo X), e pelos valores da média de Ct (eixo Y). O valor da inclinação da reta (slope) foi utilizado para determinar a eficiência dos primers para cada gene de interesse, com base na fórmula:

$E=(10^{-1/slope})$

Valores de eficiência entre 1,8 e 2,2 significam reprodutibilidade e exatidão na cinética de amplificação (Pfaffl, 2001^a; Pfaffl, 2001^b; Meijerink *et al.*, 2001). Através das curvas de eficiência também determinamos a diluição de cDNA das amostras que utilizamos nas reações de qRT-PCR para determinarmos a expressão de cada gene. Na Tabela 2 podemos observar o valor de eficiência de cada primer. Para algumas seqüências de primers a eficiência foi testada em amostras de cDNA proveniente de células mononucleares de sangue periférico estimuladas com fito-hemaglutinina (PHA) por 3h, amostras de cDNA provenientes linfócitos T purificados obtidos de sangue periférico ou em amostras de cDNA provenientes de cornetos nasais obtidos em cirurgia de turbinectomia de pacientes portadores de rinite alérgica obstrutiva. A eficiência destes primers não pode ser testada no *pool* de cDNA de miocárdio, pois as amostras que compõem

52

esse *pool* (amostras de cDNA de CCC e CNI) apresentam baixa ou nenhuma expressão destes genes, o que dificulta a detecção nas maiores diluições.

Para o gene endógeno GAPDH foram verificados os valores de eficiência em dois tipos de diluições seriadas: 1:5 a 1:625 e 1:10 a 1:1250 do *pool* de amostras de cDNA. Isso foi feito porque a melhor diluição de cDNA utilizada para alguns genes foi de 1:5, e a diluição de cDNA do gene de referência (endógeno) deve ser a mesma utilizada para verificar a expressão de cada gene de interesse (alvo), uma vez que o gene endógeno é utilizado como controle interno da reação de qRT-PCR.

O valor da eficiência, o gráfico da eficiência, a amplificação das amostras e a curva de dissociação são apresentados na Figura 4 para o primer de GAPDH; os valores de eficiência para os demais primers utilizados no trabalho podem ser observados no item Anexos A.

Após verificarmos que os experimentos preencheram todos os critérios de validação para qRT-PCR (eficiência e especificidade) e determinarmos a diluição cDNA a ser usada para quantificar cada gene de interesse, iniciamos nossos experimentos de quantificação da expressão gênica.

Figura 4: Cálculo da eficiência para o gene endógeno GAPDH. A. Gráfico da eficiência onde são mostrados a equação da reta e o valor do coeficiente de angulação (slope -y) utilizado para o cálculo da eficiência. B. Curva de Amplificação utilizada para verificar a eficiência de amplificação dos primers e no quadro interno a curva de dissociação mostrando a amplificação de um único fragmento para os primers testados. Quantidade de RNA presente em cada diluição: 1 cDNA diluído 1/10 (500ng RNA); 2 cDNA diluído 1/50 (100ng RNA); 3 cDNA diluído 1/250 (20ng RNA); 4 cDNA diluído 1/1250 (4ng RNA).

3.5 IMUNOFLUORESCÊNCIA COM MICROSCOPIA CONFOCAL

3.5.1 PREPARAÇÃO DO MATERIAL E OBTENÇÃO DOS CORTES

Amostras de tecido miocárdico (CCC n=14; CNI n=8 e N n=6) foram colocadas em meio de inclusão O.C.T. (*Tissue-Tek*, Sakura, Finetechnical Co, Tokyo, Japan) e imediatamente mergulhadas em isopentano -70°C e armazenadas a -80°C até o processamento. Fragmentos de 5µm de espessura de cada amostra foram obtidos no Micrótomo criostato, colocados em lâminas silanizadas (*Micro Slides, VWR Scientific,* West Chester, PA) e fixados com acetona (Merck, Darmstadt, Alemanha) a 4°C por 10 minutos. Os cortes foram armazenados a -80°C. As amostras de tecido miocárdico (CCC n=14; CNI n=8 e N n=6) também foram fixadas em formalina e inclusas em parafina pelo serviço de Anatomia e Patologia do InCor – HC/FMUSP, onde foram realizadas as análises histopatológicas pelo Dr. Luiz Benvenutti.

3.5.2 COLORAÇÃO HISTOLÓGICA

Para certificarmo-nos da qualidade e preservação do tecido, um fragmento de cada corte obtido em criostato foi submetido à coloração histológica por hematoxilina (Merck, Darmstadt, Alemanha) e eosina (Vetec Química Fina LTDA, Rio de Janeiro, BR). Os cortes foram submetidos a três banhos de água corrente por 5 minutos cada e corados com hematoxilina

durante 15 segundos. Em seguida, as lâminas foram submetidas a um banho de água corrente por 15 minutos e, então, corados com eosina durante 40 segundos. Posteriormente, foi realizada desidratação por passagens em uma seqüência de banhos em álcool (Synth, Merck, Darmstadt, Alemanha) 70%, 80%, 85% e três banhos com álcool 95%. Em seguida, foram realizados três passagens em xilol (Synth, Merck, Darmstadt, Alemanha) para diafanização, e finalmente, as lâminas foram montadas com *Entellan* (Merck, Darmstadt, Alemanha).

3.5.3 REAÇÕES DE IMUNOFLUORESCÊNCIA

As imunofluorescências diretas para os marcadores CD3, CD4, CD8, CCR5, CXCR3, CCR4, CCL5/RANTES e CXCL9/Mig foram realizadas utilizando cortes com 5µm de espessura em lâminas silanizadas (Micro Slides, VWR Scientific, West Chester, PA). Os anticorpos e suas especificações estão mostrados na Tabela 3. Todos os anticorpos foram previamente titulados.

Anticorpos	Fluorocromo	Especificações/Isotipo	Diluição
CD3	PE	camundongo anti-humano IgG1	1:40
(Caltag, Burlingame, CA)			
CD4	PE	camundongo anti-humano IgG1	1:40
(Caltag, Burlingame, CA)			
CD8	PE	camundongo anti-humano IgG1	1:40
(Caltag, Burlingame, CA)			
CCR5	PE	camundongo anti-humano IgG1	1:40
(R&D Systems, Minneapolis, MN, USA)			
CXCR3	PE	camundongo anti-humano IgG1	1:40
(R&D Systems, Minneapolis, MN, USA)			
CCR4	N/C	camundongo anti-humano IgG1	1:40
(R&D Systems, Minneapolis, MN, USA)			
CCL5/RANTES	N/C	camundongo anti-humano IgG1	1:40
(R&D Systems, Minneapolis, MN, USA)			
CXCL9/Mig	N/C	camundongo anti-humano IgG1	1:40
(R&D Systems, Minneapolis, MN, USA)			
CI	PE	camundongo anti-humano IgG1	1:40
(Pharmingen-BD, San Jose, CA)			
Alexa 488	—	cabra anti-camundongo IgG	1:200
(Molecular Probes, Eugene, OR)			
Alexa 546	—	cabra anti-camundongo IgG	1:200
(Molecular Probes, Eugene, OR)			
Alexa 633		cabra anti-camundongo IgG	1:200
(Molecular Probes, Eugene, OR)			

Tabela 3. Especificações dos anticorpos utilizados no ensaio deimunofluorescência com microscopia confocal

PE (Ficoeritrina); CI (controle de isotipo); N/C (anticorpos monoclonais não conjugados a fluorocromo); " – " (anticorpo secundário marcado com fluorocromo).

As reações de imunofluorescência foram feitas com cortes armazenados a -80°C, utilizando uma metodologia adaptada de Barbosa et al. (1999). Os cortes foram submetidos a uma següência de cinco banhos de três minutos em PBS (tampão salina fosfato). Para reduzir as marcações inespecíficas, os cortes foram incubados com PBS/BSA 2% (BSA, soro albumina bovina) durante 30 minutos. Em seguida, foram adicionados os anticorpos monoclonais diluídos em PBS/BSA 2%. Os cortes foram incubados por aproximadamente 15 horas a 4oC. Posteriormente, foram realizados cinco banhos de três minutos em PBS, e as lâminas foram secas. Foram adicionados, então, os anticorpos secundários, e nos casos em que os anticorpos primários que já apresentavam fluorocromo conjugado foram adicionados anticorpos secundários com o mesmo fluorocromo, amplificando assim a fluorescência. Após 45 minutos de incubação, foram realizados cinco banhos de três minutos, e secagem das lâminas. Posteriormente, os cortes foram incubados com DAPI (4',6-diamidino-2-phenylindole, dihydrochloride - SIGMA-Aldrich, Steinhein, Alemanha) 1:400 em PBS/BSA 2% durante 40 minutos e foi realizada uma nova etapa de cinco banhos de três minutos em PBS. As lâminas foram montadas com Hydromount (National Diagnostics, Atlanta, GA, U.S.A) e armazenadas a 4oC, protegidas da luz por, no máximo, 72 horas, até que fosse realizada a aquisição das imagens no Microscópio Confocal a laser Zeiss LSM 510 Meta/UV. Em lâminas separadas para cada paciente, foram realizados três tipos de controles negativos: a) cortes somente com DAPI, b) cortes incubados com anticorpos IgG não específicos marcados com FITC ou PE (controle de

58

isotipo - CTL) e com anticorpos secundários com o mesmo fluoróforo e c) cortes incubados somente com os anticorpos secundários, para descartar a marcação inespecífica. Fragmentos de tecido linfóide foram utilizados como controles positivos da reação, onde foram observadas células mononucleares positivas para os marcadores CD3, CD4, CD8, CCR5 e CXCR3 (Figura 5) e células positivas para CCR4, CXCL9/Mig e CXCL10/IP-10 (Figura 6).

3.5.4 MICROSCOPIA CONFOCAL

As imagens foram obtidas por microscopia confocal (Bio-Rad MRC 1024 laser scanning confocal) utilizando o programa Lasersharp 3.0 acoplado a um Microscópio Confocal Zeiss LSM 510 Meta/UV, com objetiva de imersão em óleo (63X). O laser Enterprise (351 e 364nm), e os lasers Argônio (458, 477, 488, e 514 nm), Hélio-Neônio (543 nm) e Hélio-Neônio (633 nm) foram usados para excitar as preparações através das linhas de 363nm, 488nm, 546nm ou 633nm. A luz emitida foi selecionada utilizando filtros 522/35 para FITC ou DAPI; 598/40 para PE e 633 para Alexa633). Para visualizar as imagens de campo claro utilizamos os filtros 598/40 ou 633 dependo do filtro utilizado para a visualização do fluorocromo conjugado ao anticorpo utilizado.

59

Figura 5: Imagens representativas de análises de microscopia confocal para identificação de células CD3+, CD4+, CD8+, CCR5+ ou CXCR3+ em tecido linfóide. Cortes de tecido linfóide corados com anti-CD3 (A1 e A2), anti-CD4 (B1 e B2), anti-CD8 (C1 e C2), anti-CCR5 (D1 e D2), anti-CXCR3 (E1 e E2) e anti-IgG não especifica (F1 e F2). Os fragmentos de tecido linfóide foram utilizados como controle positivo para titulação dos anticorpos. Os anticorpos monoclonais anti-CD3, anti-CD4, anti-CD8, anti-CCR5, anti-CXCR3 e anti-IgG são conjugados com PE e o sinal foi amplificado com o uso de anticorpos secundários conjugados com Alexa 546 (vermelho). Os cortes foram também corados com DAPI. Nas imagens de campo claro (A1, B1, C1, D1, E1 e F1) podemos visualizar o tecido e verificar se a marcação se encontra na célula ou no tecido adjacente; nas imagens de campo escuro (A2, B2, C2, D2, E2 e F2) são visualizadas apenas as células positivas para os marcadores (vermelho) e a coloração dos núcleos com DAPI (azul).

Figura 6: Imagens representativas de análises de microscopia confocal para identificação de células CCL5/RANTES+, CCR4+ e CXCL9/Mig+ em tecido linfóide. Cortes de tecido linfóide corados com anti-CCL5/RANTES (A1 e A2), anti-CCR4 (B1 e B2), anti-CXCL9/Mig⁺ (C1 e C2) e anti-IgG não especifica (D1 e D2). Os fragmentos de tecido linfóide foram utilizados como controle positivo para titulação dos anticorpos. Os anticorpos monoclonais anti-CD3, anti-CD4, anti-CD8, anti-CCR5, anti-CXCR3 e anti-IgG são conjugados com PE e o sinal foi amplificado com o uso de anticorpos secundários conjugados com Alexa 546 (vermelho). Os cortes foram também corados com DAPI. Nas imagens de campo claro (A1, B1, C1, D1, E1 e F1) podemos visualizar o tecido e verificar se a marcação se encontra na célula ou no tecido adjacente; nas imagens de campo escuro (A2, B2, C2, D2, E2 e F2) são visualizadas apenas as células positivas para os marcadores (vermelho) e a coloração dos núcleos com DAPI (azul).

O processamento e análise das imagens foram realizados utilizando os programas Lasersharp (Bio-Rad), Confocal Assistant e ImageTool[©] 2.03. lâmina, utilizando-se Foram capturados seis campos para cada comprimentos de onda específicos para fluorocromo e DAPI. A análise da expressão de cada marcador baseou-se na identificação de cada fluorescência FITC/Alexa488, PE/Alexa546 ou Alexa633 nas células presentes no tecido miocárdico, utilizando programa específico (ImageTool[©] 2.03). Para todas as amostras foram obtidas imagens de campo escuro e claro. Nas imagens de campo escuro são visualizadas as marcações fluorescentes, sendo a imagem utilizada na análise. As dúvidas quanto à marcação de uma determinada célula foram resolvidas com o aumento da imagem ou com a imagem de campo claro, na qual se visualiza o tecido e se pode verificar se a marcação se encontra na célula ou no tecido adjacente. A marcação com DAPI facilita a identificação das células por formar complexos fluorescentes com as fitas duplas de DNA no núcleo.

3.6 Análise Estatística

A análise estatística foi realizada pelo teste U não paramétrico de Mann-Whitney para comparação entre duas amostras independentes, amostras provenientes de pacientes com CCC e amostras provenientes de pacientes com CNI, utilizando o programa Graphpad Prism versão 4.0. Nos

experimentos de qRT-PCR consideramos todo o valor de QR ≥2 (genes regulados positivamente) ou QR ≤0,5 (genes regulados negativamente) em relação a amostras de miocárdio de doadores saudáveis. As correlações foram feitas com o teste de Spearman r, utilizando o programa SPSS. A concordância observada entre a expressão dos genes estudados e os diferentes fragmentos de amostras de miocárdio de pacietnes com CCC foi calculada pelo teste estatístico denominado índice Kappa. Valores de índice kappa entre 0,81-1,00 indicam concordância perfeita e os valores entre 0,41-0,80 concordância moderada, utilizamos site 0 http://www.dmi.columbia.edu/homepages/chuangj/kappa/ para realizar estas análises.

4. RESULTADOS

4.1 EXPRESSÃO GÊNICA DAS CITOCINAS PRÓ-INFLAMATÓRIAS IL-1B, IL-6, IL-12, IL-18 E IL-23, DAS CITOCINAS ANTIINFLAMATÓRIAS IL-4 E IL-13, DA CITOCINA REGULATÓRIA TGF-B, DA QUIMIOCINA CXCL8/IL-8 E DO FATOR DE TRANSCRIÇÃO FOXP3 NO TECIDO CARDÍACO DE PACIENTES COM CCC E DE PACIENTES COM CNI

Citocinas e quimiocinas são importantes mediadores que podem estimular ou inibir a resposta inflamatória. Por essa razão, investigamos a expressão gênica de citocinas e quimiocinas em amostras de miocárdio de pacientes com CCC ou CNI.

A Figura 7 mostra os níveis de expressão de RNAm de citocinas e quimiocinas no miocárdio de pacientes com CCC e de pacientes com CNI. Pode-se observar que a expressão de *IL-18* está significativamente aumentada em amostras de miocárdio de pacientes com CCC quando comparamos com a expressão em amostras de miocárdio de pacientes com CNI (p=0,01; Figura 7A; Tabela 4). Contudo, não observamos diferença estatisticamente significativa na expressão gênica das citocinas *IL-6, IL-12p35* e da quimiocina *CXCL8/IL-8* em amostras de miocárdio de pacientes com CCC quando comparada com amostras de miocárdio de pacientes com CNI (Figura 7 B-D). Observamos também que, em um número significativo das amostras de ambos os grupos, a expressão dos genes de *IL-6* e *CXCL8/IL-8* é regulada negativamente em relação a amostras de miocárdio de *IL-12*,

bem como a expressão de *IL-1\beta, IL-23* e *IL-4* não foi detectada em nenhuma amostra de miocárdio (CCC, CNI e doadores saudáveis; Tabela 4).

Quanto à expressão gênica da citocina antiinflamatória *IL-13* e da citocina regulatória *TGF-* β , não observamos diferença estatística quando comparamos a expressão em amostras de miocárdio de pacientes com CCC com amostras de miocárdio de pacientes com CNI, e estas não se mostraram aumentadas em relação aos controles (Figura 7 E e F, Tabela 4). Entretanto, observamos que a expressão de *IL-18* é significativamente aumentada em relação a expressão da citocina antiinflamatória *IL-13* e da citocina regulatória *TGF-* β em amostras de miocárdio de pacientes com CCC (p=0,02 e p= 0,0002, respectivamente), corroborando o predomínio de um perfil Th1 em amostras de miocárdio de pacientes com CCC (Figura 8A).

A expressão gênica do fator de transcrição *Foxp3* não foi detectada em amostras de miocárdio de doadores saudáveis, dessa forma a expressão relativa desse fator de transcrição não pôde ter seu QR calculado. Entretanto, observando os valores do Δ Ct de cada amostra, a mediana de *Foxp3* em amostras de miocárdio de pacientes com CCC foi semelhante à encontrada em amostras de miocárdio de pacientes com CNI (Figura 8B).

Em conjunto, os resultados sugerem que dentre os mediadores inflamatórios e o fator transcripcional aqui estudados, observamos expressão diferencial consistente apenas de IL-18 em amostras de miocárdio de pacientes com CCC.

Figura 7. Expressão relativa de *IL-18, IL-6, IL-12p35, CXCL8/IL-8, IL-13* e T*GF-β* em amostras de miocárdio de pacientes com CCC e pacientes com CNI. Valores de expressão relativa para o gene de *IL-18* (A), *IL-6* (B), *IL-12p35* (C), *CXCL8/IL-8* (D), *IL-13* (E) e *TGF-β* (F). Análise da quantificação relativa (QR) por qRT-PCR. Os valores de QR foram calculados pelo método $2^{-\Delta\Delta Ct}$, normalizados pelo gene de referência, *GAPDH*, e expressos em relação às amostras de miocárdio de ventrículo esquerdo de doadores saudáveis (n=6). As barras horizontais representam as medianas de cada grupo; linhas pontilhadas representam valores de QR ≥2 (regulados positivamente) e QR ≤ 0,5 (regulados negativamente) em relação a amostras de miocárdio de doadores saudáveis. Foram utilizadas amostras de miocárdio de ventrículo esquerdo de 14 pacientes com CCC (quadrados) e de 8 pacientes com CNI (triângulos). Em 9 amostras de pacientes com CCC e 4 de CNI não foi detectada a expressão de IL-13. Valor de p bicaudal obtido pelo teste não-paramétrico U de Mann-Whitney. "NS" - não significativo.

Figura 8. Comparação da expressão relativa dos mediadores IL-18, IL-13 e *TGF-* β em amostras de miocárdio de pacientes com CCC. Valores de Δ Ct de **Foxp3.** A.Valores de expressão relativa para IL-18, IL-13 e TGF- β em amostras de miocárdio de ventrículo esquerdo de pacientes com CCC (n=14; quadrados) e de pacientes com CNI (n=8; triângulos). Análise da quantificação relativa (QR) por RT-PCR. Os valores de QR foram calculados pelo método 2^{-ΔΔCt}, normalizados pelo gene de referência, GAPDH, e expressos em relação a amostras de miocárdio de ventrículo esquerdo de doadores saudáveis (controles normais; n=6). As barras horizontais representam a mediana de cada grupo; linhas pontilhadas representam valores de QR≥2 (regulados positivamente) e QR≤0,5 (regulados negativamente) em relação a amostras de miocárdio de doadores saudáveis. Em 9 amostras de pacientes com CCC não foi detectada a expressão de IL-13. Valores de p bicaudais obtidos pelo teste não-paramétrico U de Mann-Whitney. B. Valores de Δ Ct que representam a diferença dentro de cada amostra entre a média de Ct do gene Foxp3 e a média de Ct do gene GAPDH; quanto menor o valor de Δ Ct maior é a quantidade de RNAm do gene alvo presente na amostra. As barras horizontais representam as medianas de cada grupo. Nas amostras de miocárdio de ventrículo esquerdo de doadores saudáveis (N; n=6). Em três amostras de miocárdio de paciente com CCC e em dez amostras de pacientes com CNI não foi detectado Ct para Foxp3. "ND" – não detectado. "NS" – não significativo.

Amostras	IL-1β	IL-6	IL-12p35	IL-12p40	IL-18	IL-23	CXCL8/IL-8	IL-4	IL-13	TGF-β	Foxp 3
CCC-1	*	0,17	0,20	*	1,75	*	0,16	*	-	0,01	**
CCC-2	*	0,17	1,03	*	0,14	*	0,29	*	-	0,43	**
000-3	*	0,06	0,26	*	2,64	*	0,05	*	0,19	0,06	**
000-4	*	0,23	0,21	*	2,34	*	0,19	*	-	0,12	**
CCC-5	*	7,99	9,81	*	104,10	*	7,80	*	-	0,42	**
6-200	*	3,21	0,64	*	0,54	*	3,75	*	0,73	0,24	**
CCC-7	*	0,23	0,25	*	12,28	*	0,92	*	0,12	0,13	**
8-300	*	0,07	0,07	*	16,93	*	0,25	*	-	0,01	**
CCC-9	*	0,02	1,33	*	0,46	*	0,24	*	0,47	0,45	**
CCC-10	*	0,27	0,86	*	11,35	*	0,40	*	-	1,22	**
CCC-11	*	1,19	1,81	*	1,46	*	0,42	*	1,97	1,14	**
CCC-12	*	0,21	0,98	*	49,71	*	0,23	*	-	1,05	**
CCC-13	*	0,17	0,28	*	3,50	*	0,03	*	-	0,45	**
CCC-14	*	0,20	1,11	*	2,57	*	0,15	*	-	0,43	**
Mediana		0,2	0,7		2,6		0,2		0,5	0,4	
CN-1	*	0,16	0,48	*	2,07	*	0,28	*	0,23	0,11	**
CN-2	*	0,48	2,62	*	0,14	*	0,19	*	0,56	0,30	**
CN-3	*	3,59	0,92	*	0,42	*	2,38	*	-	0,07	**
CN-4	*	0,17	0,91	*	0,70	*	0,01	*	-	0,002	**
CN-5	*	0,15	1,00	*	0,98	*	0,02	*	-	0,03	**
CN-6	*	0,22	0,44	*	0,40	*	0,04	*	-	0,03	**
CN-7	*	0,21	0,10	*	0,33	*	0,03	*	0,03	0,41	**
CN-8	*	0,73	0,12	*	1,86	*	0,15	*	-	0,64	**
Mediana		0,2	0,7		0,6		0,1		0,4	0,1	

Tabela 4. Valores individuais de QR para os genes de *IL-1β, IL-6, IL-12p35, IL-12p40, IL-18, IL-23, CXCL8/IL-8, IL-4, IL-13, TGF-β* e *Foxp3*

Valores de QR referentes as Figuras 7 e 8; em destaque, os valores de QR \geq 2 vezes em relação a amostras de miocárdio de doadores saudáveis; valor da mediana de cada gene estudado nos grupos CCC e CNI; "-" indica que na amostra não foi detectada a expressão do gene de *IL-13*; "*" indica que a expressão do gene não foi detectada na amostra e também não foi detectada em amostras de doadores saudáveis; "**" indica que o QR não pode ser calculado, pois não se detectou a expressão do gene em amostras de miocárdio de doadores saudáveis. Os cálculos detalhados para a obtenção dos valores de QR são mostrados no item Anexos B.

4.2 EXPRESSÃO GÊNICA DE QUIMIOCINAS E SEUS RECEPTORES ASSOCIADOS COM A MIGRAÇÃO DIFERENCIAL DE LINFÓCITOS TH1 E TH2 NO TECIDO CARDÍACO DE PACIENTES COM CCC E PACIENTES COM CNI

Com o objetivo de identificar o perfil de mediadores inflamatórios associados com a migração diferencial de linfócitos e monócitos de padrão Th1 e Th2 em amostras de miocárdio de pacientes com CCC ou CNI, avaliamos a expressão gênica dos receptores CCR5 e CXCR3, que são expressos por células do fenótipo Th1, e dos receptores CCR4 e CCR8 que são associados a linfócitos T do tipo Th2.

Os resultados mostram que a expressão do receptor *CCR5* e seus ligantes *CCL3/MIP-1a*, *CCL4/MIP-1β* e *CCL5/RANTES* está significativamente aumentada no grupo CCC quando comparada ao grupo CNI (p=0,02, p=0,02, p=0,004 e p=0,0007, respectivamente; Figura 9; Tabela 5). Adicionalmente, a expressão do receptor *CXCR3* e dos seus ligantes *CXCL9/Mig* e *CXCL10/IP-10* está significativamente aumentada em amostras de pacientes com CCC quando comparada ao grupo CNI (p=0,01, p=0,0009 e p=0,0003, respectivamente; Figura 10; Tabela 6).

Considerando as amostras de miocárdio de pacientes com CCC, observamos correlações positivas significativas entre os receptores e seus ligantes como *CXCL9/Mig* e *CXCR3* (p=0,0001, r=0,881), *CXCL10/IP-10* e *CXCR3* (p=0,04, r=0,537) bem como correlações entre ligantes como *CXCL9/Mig* e *CXCL10/IP-10* (p=0,003, r=0,725), *CXCL9/Mig* e *CCL5/RANTES* (p=0,0001, r=0,859), *CCL4/MIP-1* β e *CXCL10/IP-10*

(p=0,003, r=0,736), entre receptores e ligantes de famílias diferentes como *CXCR3* e *CCL5/RANTES* (p=0,002, r=0,749), *CCR5* e *CXCL9/Mig* (p=0,008, r=0,679), e entre receptores *CCR5* e *CXCR3* (p=0,003, r=0,723) (Figura 11).

Investigando os níveis de RNAm dos receptores CCR4 e CCR8, e seus ligantes que são associados a linfócitos T do tipo Th2 em amostras de miocárdio de pacientes com CCC e pacientes com CNI, observamos que a expressão de *CCR4* e de seu ligante *CCL17/TARC* está significativamente aumentada em amostras de pacientes com CCC quando comparada ao grupo CNI (p=0,01 e p=0,02, respectivamente; Figura 12A, Tabela 7). Não há diferença estatisticamente significante quando comparamos os níveis de expressão de *CCR8* entre o grupo CCC e o grupo CNI (Figura 12A, Tabela 7), contudo, a mediana de expressão de CCR8 é regulada positivamente no grupo de pacientes com CCC em relação aos controles (Tabela 7).

A expressão de *CCL22/MDC*, ligante de CCR4, não foi detectada em amostras de miocárdio de doadores saudáveis, dessa forma a expressão relativa dessa quimiocina não pôde ter seu QR calculado (Figura 12B). A expressão de *CCL1/I-309*, ligante de CCR8, não foi detectada em nenhuma amostra de miocárdio dos grupos estudados (CCC, CNI e doadores saudáveis; Tabela 7). Não observamos correlações positivas entre os níveis de expressão gênica de receptores e ligantes associados ao perfil Th2 em amostras de pacientes CCC em relação a amostras de miocárdio de doadores saudáveis (dados não mostrados).

Em conjunto, os resultados sugerem o predomínio de um perfil Th1 com maior expressão de *CXCR3* e *CCR5* no grupo de pacientes com CCC em relação ao grupo de pacientes com CNI. Entretanto, observamos que há também a expressão de alguns genes que codificam proteínas associadas ao perfil Th2, como o receptor *CCR4* e seu ligante *CCL17/TARC*.

71

Figura 9. Expressão relativa do receptor *CCR5* e seus ligantes *CCL3/MIP-1a*, *CCL4/MIP-1β* e *CCL5/RANTES* em amostras de miocárdio de pacientes com *CCC* e pacientes com CNI. Valores de expressão relativa em amostras de miocárdio de ventrículo esquerdo de pacientes com CCC (n=14; quadrados) e pacientes com CNI (n=8; triângulos). Análise da quantificação relativa (QR) por qRT-PCR. Os valores de QR foram calculados pelo método $2^{-\Delta\Delta Ct}$, normalizados pelo gene de referência, *GAPDH*, e expressos em relação a amostras de miocárdio de ventrículo esquerdo de doadores saudáveis (controles normais; n=6). As barras horizontais representam as medianas de cada grupo; linhas pontilhadas representam valores de QR ≥ 2 (regulados positivamente) e QR ≤ 0,5 (regulados negativamente) em relação a amostras de miocárdio de doadores saudáveis. Valores de p bicaudais obtidos pelo teste não-paramétrico U de Mann-Whitney.

Amostras	CCR5	CCL3/MIP-1a	CCL4/MIP-1β	CCL5/RANTES
CCC-1	15,98	0,06	0,43	22,74
CCC-2	3,76	0,15	0,59	69,28
CCC-3	19,93	0,70	17,27	331,79
CCC-4	9,68	0,28	7,51	87,98
CCC-5	343,96	18,28	20,04	658,24
CCC-6	0,17	1,14	10,15	133,05
CCC-7	52,25	1,02	22,63	199,85
CCC-8	67,42	0,66	10,88	250,52
CCC-9	19,65	0,37	11,54	60,27
CCC-10	1,70	2,99	17,03	808,33
CCC-11	0,22	5,09	9,34	18,96
CCC-12	655,65	2,40	2,78	641,72
CCC-13	4,07	1,04	0,72	9,75
CCC-14	5,27	1,68	13,26	473,58
Mediana	12,8	1,0	10,5	166,5
CNI-1	16,27	0,08	0,43	8,50
CNI-2	8,13	0,17	3,13	9,38
CNI-3	0,45	0,12	1,60	5,48
CNI-4	0,03	0,47	0,58	1,18
CNI-5	0,03	3,10	0,22	1,56
CNI-6	1,00	0,15	0,48	2,42
CNI-7	2,57	0,03	0,28	1,06
CNI-8	0,32	0,05	4,26	112,94
Mediana	0,7	0,1	0,5	3,9

Tabela 5. Valores individuais de QR para os genes de *CCR5, CCL3/MIP-1* α , *CCL4/MIP-1* β e *CCL5/RANTES*

Valores de QR referentes a Figura 9; em destaque, os valores de QR \geq 2 vezes em relação a amostras de miocárdio de doadores saudáveis; valor da mediana de cada gene estudado nos grupos CCC e CNI. Os cálculos detalhados para a obtenção dos valores de QR são apresentados no item Anexos B.

Figura 10. Expressão relativa do receptor *CXCR3* e seus ligantes *CXCL9/Mig* e *CXCL10/IP-10* em amostras de miocárdio de pacientes com CCC e pacientes com CNI. A. Valores de expressão relativa em amostras de miocárdio de ventrículo esquerdo de pacientes com CCC (n=14; quadrados) e pacientes com CNI (n=8; triângulos). Análise da quantificação relativa (QR) por qRT-PCR. Os valores de QR calculados pelo método $2^{-\Delta\Delta Ct}$, normalizados pelo gene de referência, *GAPDH*, e expressos em relação às amostras de miocárdio de ventrículo esquerdo de doadores saudáveis (controles normais; n=6). As barras horizontais representam a mediana de cada grupo; linhas pontilhadas representam valores QR ≥ 2 (regulados positivamente) e QR ≤ 0,5 (regulados negativamente) em relação a amostras de miocárdio de doadores saudáveis. Em três amostras de pacientes com CNI não foi detectada a expressão de *CXCR3*. Valores de p bicaudais obtidos pelo teste não-paramétrico U de Mann-Whitney.

Amostras	CXCR3	CXCL9/Mig	CXCL10/IP-10
CCC-1	2,74	5,70	1,14
CCC-2	0,69	4,46	1,92
CCC-3	34,02	32,64	5,69
CCC-4	2,92	24,22	2,81
CCC-5	116,38	987,79	40,19
CCC-6	2,98	26,52	19,50
CCC-7	57,96	384,21	60,97
CCC-8	51,91	734,73	36,67
CCC-9	1,24	8,13	4,31
CCC-10	7,45	130,64	27,68
CCC-11	0,43	5,44	21,62
CCC-12	348,49	1190,26	12,00
CCC-13	4,47	1,30	0,61
CCC-14	8,98	155,03	8,34
Mediana	6,0	29,6	10,2
CNI-1	2,59	2,69	0,60
CNI-2	0,49	0,89	0,60
CNI-3	-	1,96	0,22
CNI-4	-	0,48	1,13
CNI-5	-	0,24	0,15
CNI-6	0,07	0,63	0,16
CNI-7	0,36	0,33	0,13
CNI-8	2,67	9,63	0,70
Mediana	0,5	0,8	0,4

 Tabela 6. Valores de QR individuais para os genes de CXCR3, CXCL9/Mig e

 CXCL10/IP-10

Valores referentes a Figura 10; em destaque, os valores de QR \geq 2 vezes em relação a amostras de miocárdio de doadores saudáveis; valor da mediana de cada gene estudado nos grupos CCC e CNI; "-" indica que na amostra não foi detectada a expressão do gene *CXCR3*. Os cálculos detalhados para a obtenção dos valores de QR são apresentados no item Anexos B.

Figura 11. Correlação entre os níveis de expressão gênica de receptores e ligantes associados ao perfil Th1 em amostras de pacientes CCC. Correlações positivas entre os níveis de expressão gênica de receptores (CCR5 e CXCR3) e ligantes (CCL3/MIP-1 α , CCL4/MIP-1 β , CCL5/RANTES, CXCL9/Mig e CXCL10/IP-10) associados ao perfil Th1 em amostras de pacientes CCC (n=14) em relação a amostras de miocárdio de doadores saudáveis. **p<0,01 e *p<0,05, valores de p bicaudais obtidos pelo teste de correlação não-paramétrico de Spearman.

Figura 12. Expressão relativa dos receptores CCR4 e CCR8 e do ligante CCL17/TARC. Valores de Δ Ct de CCL22/MDC. A. Valores de expressão relativa para os genes de CCR4, CCL17/TARC e CCR8 em amostras de miocárdio de ventrículo esquerdo de pacientes com CCC (n=14; quadrados) e pacientes com CNI (n=8; triângulos). Análise da quantificação relativa (QR) por gRT-PCR. Os valores de QR foram calculados pelo método 2-^{ΔΔCt}, normalizados pelo gene de referência, GAPDH, e expressos em relação a amostras de miocárdio de miocárdio de doadores saudáveis (controles normais; n=6). As barras horizontais representam a mediana de cada grupo; linhas pontilhadas representam valores QR ≥ 2 (regulados positivamente) e QR ≤ 0,5 (regulados negativamente) em relação a amostras de miocárdio de doadores saudáveis. Em duas amostras de miocárdio de pacientes com CNI não foi detectada a expressão de CCL17/TARC e CCR8. Valores de p bicaudais obtidos pelo teste não-paramétrico U de Mann-Whitney. B. Valores de Δ Ct que representam a diferenca dentro de cada amostra entre a média de Ct do gene CCL22/MDC e a média de Ct do gene GAPDH; quanto menor o valor de Δ Ct maior é a quantidade de RNAm do gene alvo presente na amostra. As barras horizontais representam as medianas de cada grupo. Nas amostras de miocárdio de ventrículo esquerdo de doadores saudáveis (N; n=6) e em duas amostras de miocárdio de ventrículo esquerdo de paciente com CNI não foi detectado Ct para CCL22/MDC. "ND" - não detectado. "NS" - não significativo.

Amostras	CCR4	CCL17/TARC	CCL22/MDC	CCR8	CCL1/I-309
CCC-1	3,30	25,27	**	2,38	*
CCC-2	3,85	6,84	**	3,77	*
CCC-3	4,42	11,88	**	2,05	*
CCC-4	9,37	16,66	**	2,08	*
CCC-5	46,01	476,73	**	11,78	*
CCC-6	11,03	22,26	**	5,36	*
CCC-7	3,32	171,64	**	0,50	*
CCC-8	5,30	199,89	**	0,83	*
CCC-9	17,09	12,66	**	16,33	*
CCC-10	4,54	47,42	**	0,43	*
CCC-11	0,45	41,91	**	0,57	*
CCC-12	294,30	144,53	**	272,91	*
CCC-13	3,17	2,63	**	2,45	*
CCC-14	18,15	39,45	**	0,97	*
Mediana	4,92	32,4		2,2	
CNI-1	2,63	31,95	**	0,35	*
CNI-2	11,57	12,45	**	3,83	*
CNI-3	0,27	-	**	-	*
CNI-4	0,09	-	**	-	*
CNI-5	0,10	3,88	**	0,27	*
CNI-6	0,51	3,66	**	1,86	*
CNI-7	0,70	3,01	**	1,70	*
CNI-8	4,61	4,01	**	0,02	*
Mediana	0,6	3,9		1,0	

Tabela 7. Valores de QR individuais para os genes de CCR4, CCL17/TARC,CCL22/MDC, CCR8 e CCL1/I-309

Valores de QR referentes a Figura 12; em destaque, os valores de QR \geq 2 vezes em relação a amostras de miocárdio de doadores saudáveis; valor da mediana de cada gene estudado nos grupos CCC e CNI; "-" indica que na amostra não foi detectada a expressão do gene de interesse (*CCL17/TARC* e *CCR8*); "**" indica que o QR não pode ser calculado, pois não se detectou a expressão do gene em amostras de miocárdio de doadores saudáveis; "*" indica que a expressão do gene em aão foi detectada na amostra e também não foi detectada em amostras de doadores saudáveis. Os cálculos detalhados para a obtenção dos valores de QR são apresentados no item Anexos B.

4.3 EXPRESSÃO GÊNICA DE CCL19/ELC E CCL21/SLC, LIGANTES DO RECEPTOR CCR7 NO TECIDO CARDÍACO DE PACIENTES COM CCC E NO TECIDO CARDÍACO DE PACIENTES COM CNI

O receptor CCR7 está envolvido com a migração de células T de memória e células T *naive*. Nós avaliamos a expressão deste receptor e de seus ligantes, CCL19/ELC e CCL21/SLC em amostras de miocárdio de pacientes com CCC e de pacientes com CNI. Os resultados mostram que a expressão de *CCL19/ELC* está significativamente aumentada em amostras de pacientes com CCC (p=0,01) quando comparada ao grupo CNI (Figura 13A, Tabela 8). A mediana de expressão de *CCL21/SLC* é equivalente em ambos os grupos estudados, CCC e CNI (Figura 13A, Tabela 8).

A expressão de *CCR7* não foi detectada em amostras de miocárdio de doadores saudáveis, dessa forma a expressão relativa desse receptor não pôde ter seu QR calculado. Entretanto, observando os valores do Δ Ct de cada amostra, a mediana do Δ Ct de *CCR7* em amostras de miocárdio de pacientes com CCC se apresenta menor que a encontrada em amostras de miocárdio de pacientes com CNI, e é estatisticamente diferente entre os grupos CCC e CNI (p=0,01; Figura 13B), sugerindo expressão aumentada entre as amostras de miocárdio de pacientes com CCC, consistente com o infiltrado inflamatório. Adicionalmente, observamos que entre as cinco amostras que apresentam os menores valores de Δ Ct, e portanto maior expressão, para *CCR7*, estão as amostras CCC-7 e CCC-8, que apresentam

os maiores valores de QR para *CCL19/ELC* (Tabela 8). Não observamos correlações positivas entre os níveis de expressão gênica dos ligantes CCL19/ELC e CCL21/SLC associados a migração de células de memória em amostras de pacientes CCC em relação a amostras de miocárdio de doadores saudáveis (dado não mostrado).

Figura 13. Expressão relativa de CCL19/ELC e CCL21/SLC. Valores de ΔCt de CCR7. A. Valores de expressão relativa para os genes de CCL19/ELC e CCL21/SLC em amostras de miocárdio de ventrículo esquerdo de pacientes com CCC (n=14; guadrados) e pacientes com CNI (n=8; triângulos). Análise da quantificação relativa (QR) por gRT-PCR. Os valores de QR foram calculados pelo método 2^{-AACt}, normalizados pelo gene de referência, GAPDH, e expressos em relação a amostras de miocárdio de ventrículo esquerdo de doadores saudáveis (controle normal; n=6). As barras horizontais representam a mediana de cada grupo: linhas pontilhadas representam valores de QR ≥ 2 (regulados positivamente) e Q ≤ 0,5 (regulados negativamente) em relação a amostras de miocárdio de doadores saudáveis. B. Valores de ΔCt que representa a diferença dentro de cada amostra entre a média de Ct do gene CCR7 e a média de Ct do gene GAPDH; quanto menor o valor de Δ Ct maior é a quantidade de RNAm do gene alvo presente na amostra. As barras horizontais representam a mediana de cada grupo. Nas amostras de miocárdio de ventrículo esquerdo de doadores saudáveis (n=6) não foi detectado Ct para CCR7. "ND" - não detectado. "NS" - não significativo. Valor de p bicaudal obtido pelo teste não-paramétrico U de Mann-Whitney.

Amostras	CCL19/ELC	CCL21/SLC	CCR7
CCC-1	21,23	9,50	**
CCC-2	2,27	3,89	**
CCC-3	67,46	4,97	**
CCC-4	85,75	1,40	**
CCC-5	5,90	64,76	**
CCC-6	20,09	23,92	**
CCC-7	598,41	4,35	**
CCC-8	425,50	5,07	**
CCC-9	7,68	1,39	**
CCC-10	25,08	5,29	**
CCC-11	15,39	5,88	**
CCC-12	57,51	29,15	**
CCC-13	0,34	2,08	**
CCC-14	155,67	50,03	**
Mediana	23,16	5,18	
CNI-1	26,59	9,67	**
CNI-2	2,52	0,76	**
CNI-3	1,35	10,29	**
CNI-4	0,66	4,85	**
CNI-5	4,22	1,92	**
CNI-6	1,48	6,82	**
CNI-7	0,31	6,84	**
CNI-8	17,51	48,04	**
Mediana	2,0	6,8	

Tabela 8. Valores individuais de QR para os genes CCL19/ELC eCCL21/SLC, ligantes do receptor CCR7

Valores de QR referentes a Figura 13; em destaque, os valores de QR ≥ 2 vezes em relação a amostras de miocárdio de doadores saudáveis; valor da mediana de cada gene estudado nos grupos CCC e CNI; "**" indica que o QR não pode ser calculado, pois não se detectou a expressão do gene em amostras de miocárdio de doadores saudáveis. Os cálculos detalhados para a obtenção dos valores de QR são apresentados no item Anexos B.

4.4 EXPRESSÃO DOS GENES QUE CODIFICAM OS PEPTÍDEOS NATRIURÉTICOS: FATOR NATRIURÉTICO ATRIAL (ANF) E PEPTÍDEO NATRIURÉTICO CEREBRAL (BNP) NO TECIDO CARDÍACO DE PACIENTES COM CCC E DE PACIENTES COM CNI

Para avaliar a indução de peptídeos natriuréticos, associados à hipertrofia e insuficiência cardíaca, avaliamos a expressão gênica dos peptídeos ANF e BNP.

Nossos resultados mostram que a mediana de expressão de *ANF* é oito vezes maior no grupo CCC quando comparada ao grupo CNI (Tabela 9). Contudo, a expressão de *ANF* não é estatisticamente diferente entre os grupos estudados (p=0,14; Figura 14A).

Em relação à expressão de *BNP*, observamos que sua mediana de expressão é três vezes maior no grupo de pacientes com CCC que no grupo de pacientes com CNI (Figura 14A), embora esta diferença também não seja estatisticamente significante (p=0,06).

Considerando as amostras de miocárdio de pacientes com CCC, observamos correlações positivas significativas entre a expressão gênica de *ANF* e *BNP* (p=0,0001, r=0,876; Figura 14B).

A expressão gênica aumentada de *ANF* e *BNP* é provavelmente um indicador de hipertrofia em ambos os grupos estudados.

Amostras	ANF	BNP
CCC-1	6,04	221,55
CCC-2	223,59	780,63
CCC-3	2,24	51,19
CCC-4	55,76	402,68
CCC-5	60,99	468,80
CCC-6	57,09	268,88
CCC-7	15,05	90,88
CCC-8	2,63	8,13
CCC-9	155,28	828,20
CCC-10	88,18	832,61
CCC-11	11,81	64,98
CCC-12	7,43	264,63
CCC-13	157,12	1729,13
CCC-14	198,55	1844,27
Mediana	56,4	335,8
CNI-1	53,00	160,14
CNI-2	510,01	425,25
CNI-3	1,21	13,69
CNI-4	4,44	29,85
CNI-5	38,33	179,71
CNI-6	3,93	28,13
CNI-7	0,11	0,22
CNI-8	8,89	546,28
Mediana	6,7	95,0

Tabela 9. Valores individuais de QR para os genes de ANF e BNP

Valores de QR referentes a Figura 14; em destaque, os valores de QR \geq 2 vezes em relação a amostras de miocárdio de doadores saudáveis; valor da mediana de cada gene estudado nos grupos CCC e CNI. Os cálculos detalhados para a obtenção dos valores de QR são apresentados no item Anexos B.
4.5 CORRELAÇÕES ENTRE A EXPRESSÃO DE GENES QUE CODIFICAM PROTEÍNAS ASSOCIADAS AO PERFIL TH1 E TH2 NO TECIDO CARDÍACO DE PACIENTES COM CCC

Avaliando a expressão de genes associados ao perfil Th1 e Th2 observamos a expressão dos genes codificando ambos os perfis em amostras de miocárdio de pacientes com CCC.

Na Tabela 10 compilamos os dados das Tabelas 4, 5, 6, 7, 8 e 9. Observamos que as medianas de expressão gênica de citocinas, quimiocinas e receptores que codificam proteínas associadas com o perfil Th2, em amostras de pacientes com CCC são comparativamente inferiores aos observados para as citocinas, quimiocinas e receptores envolvidos com a quimiotaxia de células com perfil Th1, com exceção de *CCL17/TARC*.

Observamos também que os genes que codificam proteínas envolvidas em processos inflamatórios no miocárdio de pacientes com CCC se classificam em ordem decrescente de valores de mediana de expressão: *CCL5/RANTES, CCL17/TARC, CXCL9/Mig, CCL19/ELC, CCR5, CCL4/MIP-1β, CXCL10/IP-10, CXCR3, CCL21/SLC, CCR4, IL-18* e *CCR8* (Tabela 10).

Adicionalmente, observamos correlações positivas significativas entre a expressão de genes que codificam proteínas associadas ao perfil Th1 e Th2 em amostras de miocárdio de pacientes com CCC. Consideramos somente a expressão de genes que apresentam valores de QR da mediana do grupo CCC ≥2x em relação a amostras de miocárdio de doadores saudáveis (Tabela 10) e valor de p significativo (p<0,01 e p<0,05) em relação ao grupo CNI (Figuras 7, 9, 10, 12 e 13).

Correlações positivas significativas em amostras de miocárdio de pacientes com CCC foram observadas entre a citocina *IL-18* e ligantes e receptores de quimiocinas de perfil Th1 como: *IL-18* e *CXCL9/Mig* (p=0,001, r=0,771), *IL-18* e *CXCL10/IP-10* (p=0,04, r=0,556), *IL-18* e *CCL5/RANTES* (p=0,01, r=0,640), *IL-18* e *CCR5* (p=0,008, r=0,675), *IL-18* e *CXCR3* (p=0,0001, r=0,908) (Figura 15). Adicionalmente encontramos correlação significativa também entre *IL-18* e *CCL17/TARC* (p=0,006, r=0,692), ligante de perfil Th2 (Figura 15). Observamos correlações positivas significativas (p<0,01) entre um ligante associado ao perfil Th2 e ligantes associados ao perfil Th1 como: *CCL17/TARC* e *CXCL9/Mig* (p=0,001, r=0,802), *CCL17/TARC* e *CXCL10/IP-10*, (p=0,0001, r=0,859), *CCL17/TARC* e *CCL5/RANTES* (p=0,02, r=0,596), *CCL17/TARC* e *CXCR3* (p=0,02, r=0,609) (Figura 15).

A Tabela 11 sintetiza a expressão dos genes estudados em amostras de miocárdio de pacientes com CNI. Comparando a expressão dos genes inflamatórios, constata-se que as medianas de expressão de todos os genes são maiores em amostras de miocárdio de pacientes com CCC (Tabela 11) que em amostras de miocárdio de pacientes com CNI (Tabela 11).

	Genes							Amostra	IS							% amostras	Mediana
		CCC-1	CCC-2	CCC-3	CCC-4	CCC-5	CCC-6	CCC-7	CCC-8	CCC-9	CCC-10	CCC-11	CCC-12	CCC-13	CCC-14	QR≥2x/gene	QR
	IL-1β	*	*	*	*	*	*	*	*	*	*	*	*	*	*		
	IL-6	0,17	0,17	0,06	0,23	7,99	3,21	0,23	0,07	0,02	0,27	1,19	0,21	0,17	0,20	14	0,2
Citocinas	IL-12p35	0,20	1,03	0,26	0,21	9,81	0,64	0,25	0,07	1,33	0,86	1,81	0,98	0,28	1,11	7	0,7
pró-Th1	IL-12p40	*	*	*	*	*	*	*	*	*	*	*	*	*	*		
	IL-18	1,75	0,14	2,64	2,34	104,10	0,54	12,28	16,93	0,46	11,35	1,46	49,71	3,50	2,57	64	2,6
	IL-23	*	*	*	*	*	*	*	*	*	*	*	*	*	*		
Citocinas	IL-4	*	*	*	*	*	*	*	*	*	*	*	*	*	*		
pró-Th2	IL-13			0,19			0,73	0,12		0,47		1,97					0,5
Citocina regulatória	<u>TGF-β</u>	0,01	0,43	0,06	0,12	0,42	0,24	0,13	0,01	0,45	1,22	1,14	1,05	0,45	0,43		0,4
Fator de transcrição	Foxp3	**	**	**	**	**	**	**	**	**	**	**	**	**	**		
	CCL3/MIP-1a	0,06	0,15	0,70	0,28	18,28	1,14	1,02	0,66	0,37	2,99	5,09	2,40	1,04	1,68	29	1,0
	CCL4/MIP-1β	0,43	0,59	17,27	7,51	20,04	10,15	22,63	10,88	11,54	17,03	9,34	2,78	0,72	13,26	79	10,5
Quimiocinas	CCL5/RANTES	22,74	69,28	331,79	87,98	658,24	133,05	199,85	250,52	60,27	808,33	18,96	641,72	9,75	473,58	100	166,5
е	CCR5	15,98	3,76	19,93	9,68	343,96	0,02	52,25	67,42	19,65	1,70	0,22	655,65	4,07	5,27	79	12,8
Receptores Th1	CXCL9/Mig	5,70	4,46	32,64	24,22	987,79	26,52	384,21	734,73	8,13	130,64	5,44	1190,26	1,30	155,03	93	29,6
	CXCL10/IP-10	1,14	1,92	5,69	2,81	40,19	19,50	60,97	36,67	4,31	27,68	21,62	12,00	0,61	8,34	79	10,2
	CXCR3	2,74	0,69	34,02	2,92	116,38	2,98	57,96	51,91	1,24	7,45	0,43	348,49	4,47	8,98	79	6,0
	CCL22/MDC	**	**	**	**	**	**	**	**	**	**	**	**	**	**		
Quimiocinas	CCL17/TARC	25,27	6,84	11,88	16,66	476,73	22,26	171,64	199,89	12,66	47,42	41,91	144,53	2,63	39,45	100	32,4
e	CCR4	3,30	3,85	4,42	9,37	46,01	11,03	3,32	5,30	17,09	4,54	0,45	294,30	3,17	18,15	93	4,9
Receptores Th2	CCL1/I-309	*	*	*	*	*	*	*	*	*	*	*	*	*	*		
	CCR8	2,38	3,77	2,05	2,08	11,78	5,36	0,50	0,83	16,33	0,43	0,57	272,91	2,45	0,97	64	2,2
Quimiocinas	CCL19/ELC	21,23	2,27	67,46	85,75	5,90	20,09	598,41	425,50	7,68	25,08	15,39	57,51	0,34	155,67	93	23,2
e Receptores	CCL21/SLC	9,50	3,89	4,97	1,40	64,76	23,92	4,35	5,07	1,39	5,29	5,88	29,15	2,08	50,03	86	5,2
Memória	CCR7	**	**	**	**	**	**	**	**	**	**	**	**	**	**		
Quimiocina	<u>IL-8</u>	0,16	0,29	0,05	0,19	7,80	3,75	0,92	0,25	0,24	0,40	0,42	0,23	0,03	0,15	14	
Peptideos Natriuréticos	ANF	6,04	223,59	2,24	55,76	60,99	57,09	15,05	2,63	155,28	88,18	11,81	7,43	157,12	198,55	100	56,4
	BNP	221,55	780,63	51,19	402,68	468,80	268,88	90,88	8,13	828,20	832,61	64,98	264,63	1729,13	1844	100	335,8

Tabela 10. Valores individuais de QR de citocinas, quimiocinas, receptores e peptídeos natriuréticos em amostras de miocárdio de pacientes com CCC

Valores de QR referentes as Figuras 4, 5, 6, 7, 8 e 9; em destaque, os valores de QR ≥ 2 vezes em relação a amostras de miocárdio de doadores saudáveis; valor da mediana de cada gene; % amostras QR ≥2 vezes em relação a amostras de miocárdio de doadores saudáveis; "-" indica que na amostra não foi detectado a expressão do gene de interesse; "*" indica que a expressão do gene não foi detectada em amostras de doadores saudáveis; "**" indica que o QR não pode ser calculado, pois não se detectou a expressão do gene em amostras de miocárdio de doadores saudáveis.

	Genes				Amo	stras				% amostras	Mediana
		CNI-1	CNI-2	CNI-3	CNI-4	CNI-5	CNI-6	CNI-7	CNI-8	QR≥2x/gene	QR
	IL-1β	*	*	*	*	*	*	*	*		
	IL-6	0,16	0,48	3,59	0,17	0,15	0,22	0,21	0,73	13	0,2
Citocinas	IL-12p35	0,48	2,62	0,92	0,91	1,00	0,44	0,10	0,12	13	0,7
pró-Th1	IL-12p40	*	*	*	*	*	*	*	*		
	IL-18	2,07	0,14	0,42	0,70	0,98	0,40	0,33	1,86	13	0,6
	IL-23	*	*	*	*	*	*	*	*		
Citocinas	IL-4	*	*	*	*	*	*	*	*		
pró-Th2	IL-13	0,23	0,56					0,03			0,2
Citocina regulatória	TGF-β	0,11	0,30	0,07	0,01	0,03	0,03	0,41	0,64		0,1
Fator de transcrição	Foxp3	**	**	**	**	**	**	**	**		
	CCL3/MIP-1α	0,08	0,17	0,12	0,47	3,10	0,15	0,03	0,05	13	0,1
	CCL4/MIP-1β	0,43	3,13	1,60	0,58	0,22	0,48	0,28	4,26	25	0,5
Quimiocinas	CCL5/RANTES	8,50	9,38	5,48	1,18	1,56	2,42	1,06	112,94	63	4,0
е	CCR5	16,27	8,13	0,45	0,03	0,03	1,00	2,57	0,32	38	0,7
Receptores Th1	CXCL9/Mig	2,69	0,89	1,96	0,48	0,24	0,63	0,33	9,63	13	0,8
	CXCL10/IP-10	0,60	0,60	0,22	1,13	0,15	0,16	0,13	0,70		0,4
	CXCR3	2,59	0,49	-	-	-	0,07	0,36	2,67	13	0,5
	CCL22/MDC	**	**	**	**	**	**	**	**		
Quimiocinas	CCL17/TARC	31,95	12,45	-	-	3,88	3,66	3,01	4,01	100	3,9
е	CCR4	2,63	11,57	0,27	0,09	0,10	0,51	0,70	4,61	38	0,6
Receptores Th2	CCL1/I-309	*	*	*	*	*	*	*	*		
	CCR8	0,35	3,83		-	0,27	1,86	1,70	0,02	13	1,0
Quimiocinas	CCL19/ELC	26,59	2,52	1,35	0,66	4,22	1,48	0,31	17,51	50	2,0
e Receptores	CCL21/SLC	9,67	0,76	10,29	4,85	1,92	6,82	6,84	48,04	38	6,8
Memória	<u>CCR7</u>	**	**	**	**	**	**	**	**		
Quimiocina	IL-8	0,28	0,19	2,38	0,01	0,02	0,04	0,03	0,15		
Peptideos	ANF	53,00	510,01	1,21	4,44	38,33	3,93	0,11	8,89	75	6,7
Natriuréticos	BNP	160,14	425,25	13,69	29,85	179,71	28,13	0,22	546,28	88	95,0

Tabela 11. Valores individuais de QR de citocinas, quimiocinas, receptores e peptídeos natriuréticos em amostras de miocárdio de pacientes com CNI

Valores de QR referentes as Figuras 4, 5, 6, 7, 8 e 9; em destaque, os valores de QR ≥ 2 vezes em relação a amostras de miocárdio de doadores saudáveis; valor da mediana de cada gene; % amostras QR ≥2 vezes em relação a amostras de miocárdio de doadores saudáveis; "-" indica que na amostra não foi detectado a expressão do gene de interesse; "*" indica que a expressão do gene não foi detectada na amostra e também não foi detectada em amostras de doadores saudáveis; "*" indica que o QR não pode ser calculado, pois não se detectou a expressão do gene em amostras de miocárdio de doadores saudáveis.

Figura 15. Correlação entre os níveis de expressão gênica em amostras de pacientes. Correlações positivas entre os níveis de expressão gênica de receptores e ligantes associados ao perfil Th1 e Th2 considerando somente a expressão de genes que apresentam valores de QR da mediana do grupo CCC $\geq 2x$ em relação a amostras de miocárdio de doadores saudáveis e valor de p de significativo (p<0,01 e p<0,05) em relação ao grupo CNI. **p<0,01 e *p<0,05, valores de p bicaudais obtidos pelo teste de correlação não-paramétrico de Spearman.

4.6 AVALIAÇÃO DA VARIAÇÃO DE EXPRESSÃO GÊNICA INDIVIDUAL EM AMOSTRAS DE MIOCÁRDIO DE DIVERSOS LOCAIS

Observando diferenças de magnitude de expressão gênica global de uma amostra para outra, questionamos se as diferenças se deviam à heterogeneidade do infiltrado, ou se representavam padrões de inflamação mantidos no indivíduo. Para tal, estudamos a expressão gênica em diferentes fragmentos de miocárdio (parede livre do ventrículo esquerdo) dos mesmos pacientes com CCC.

Na Tabela 12 estão representados vinte dos genes estudados e sete fragmentos oriundos de três amostras de miocárdio de pacientes com CCC, sendo obtidos: três fragmentos aleatórios de locais distantes da amostra identificada como CCC-7 e dois fragmentos de locais distantes das amostras CCC-9 e CCC-10. Observamos que dos 20 genes estudados (com valores de expressão) em múltiplas amostras de três pacientes, houve expressão concordante em 53 de 59 condições testadas (aumento ou redução da expressão de um dado gene em todos os fragmentos testados do mesmo indivíduo). Observamos que a expressão é consistente em cada paciente (Tabela 13), pois há concordância (medida pelo indice Kappa) e correlação positva entre a expressão dos 20 genes estudados e os diferentes fragmentos de três amostras de pacientes com CCC.

Genes				Amostras			
	CCC-7	CCC-7.1	CCC-7.2	CCC-9	CCC-9.1	CCC-10	CCC-10.1
IL-6	0,23	0,07	0,07	0,02	0,14	0,27	0,50
IL-12p35	0,25	0,25	0,08	1,33	1,16	0,86	0,90
IL-18	12,28	4,50	6,49	0,46	0,48	11,35	19,19
IL-13	0,12	0,07	0,08	0,47	0,04	-	-
TGF-β	0,13	0,14	0,10	0,45	0,06	1,22	1,81
CCL3/MIP-1a	1,02	0,67	0,39	0,37	0,18	2,99	3,08
CCL4/MIP-1ß	22,63	16,61	16,36	11,54	7,60	17,03	22,52
CCL5/RANTES	199,85	237,67	136,76	60,27	0,23	808,33	1405,27
CCR5	52,25	6,52	17,50	19,65	4,05	1,70	10,88
CXCL9/Mig	384,21	236,29	249,70	8,13	4,42	130,64	203,86
CXCL10/IP-10	60,97	35,66	23,59	4,31	1,66	27,67	24,36
CXCR3	57,96	33,54	31,58	1,24	3,22	7,45	7,53
CCL17/TARC	171,64	149,09	134,00	12,66	6,37	47,42	36,84
CCR4	3,32	4,00	4,14	17,09	2,08	4,54	10,84
CCR8	0,50	0,33	0,28	16,33	0,46	0,43	0,28
CCL19/ELC	598,41	118,96	140,07	7,68	4,17	25,08	60,09
CCL21/SLC	4,35	4,45	5,65	1,39	3,46	5,29	12,31
IL-8	0,92	0,29	0,23	0,24	0,27	0,40	0,92
ANF	15,05	43,94	27,39	155,28	8,56	88,18	153,42
BNP	90,88	235,81	121,00	828,20	78,64	832,61	756,83

Tabela 12. Valores de expressão gênica de diferentes fragmentos de três amostras de pacientes com CCC

Valores de QR de 20 genes em diferentes fragmentos de três amostras de pacientes com CCC; em destaque estão os valores de expressão gênica discrepantes entre diferentes fragmentos de miocárdio de uma amostra. "-" indica que na amostra não foi detectada a expressão do gene de *IL-13*.

Tabela 13. Correlação entre a expressão gênica de diferentes fragmentos detrês amostras de pacientes com CCC

Fr	agn	ientos	Índice Kappa	р	r	
CCC-7	VS	CCC-7.1	1,00	0,0001	0,961	
CCC-7	vs	CCC-7.2	1,00	0,0001	0,976	
CCC-7.1	vs	CCC-7.2	1,00	0,0001	0,977	
CCC-9	vs	CCC-9.1	0,50	0,001	0,674	
CCC-10	vs	CCC-10.1	0,87	0,0001	0,967	

Valores de QR dos 20 genes em diferentes fragmentos de três amostras de pacientes com CCC referentes a Tabela 12 foram correlacionados e a concordância foi calculada pelo teste estatístico índice Kappa. Valores de índice kappa entre 0,81-1,00 indicam concordância perfeita e os valores entre 0,41-0,80 concordância moderada. Valores de p bicaudais obtidos pelo teste de correlação não-paramétrico de Spearman.

4.7 ANÁLISE HISTOPATOLÓGICA DO TECIDO CARDÍACO DE PACIENTES COM CCC E DE PACIENTES COM CNI

Com o objetivo de correlacionar os dados de expressão gênica com as alterações morfológicas e inflamatórias, realizamos análises histopatológicas do tecido cardíaco de pacientes com CCC e de pacientes com CNI.

As análises histopatológicas de amostras de miocárdio corados com hematoxilina e eosina demonstraram presença de infiltrado inflamatório de grau moderado a intenso em amostras de pacientes com CCC, e ausência em amostras de miocárdio de pacientes com CNI e doadores saudáveis (Tabela 14, Figura 16A). Fibrose e hipertrofia de cardiomiócitos foi observada em ambos os grupos CCC e CNI (Tabela 14).

Considerando somente a expressão de genes que estão aumentados significativamente em amostras de miocárdio de pacientes com CCC em relação ao grupo CNI, e com valores de QR≥2x em relação a amostras de miocárdio de doadores saudáveis, realizamos correlações entre a expressão desses genes e a intensidade de miocardite em amostras de miocárdio de pacientes com CCC. Observamos que os genes que apresentam correlações positivas com a intensidade de miocardite são: CXCL9/Mig (p=0,008, r=0,678), CXCL10/IP-10 (p=0,014, r=0,640), CCR4 (p=0,049, r=0,534), CCL17/TARC (p=0,015, r=0,633) e CCL19/ELC (p=0,032, r=0,575) (Figura16B).

Em conjunto, esses dados sugerem que a freqüência aumentada de genes regulados positivamente, os quais codificam proteínas associadas ao processo inflamatório está associada à intensidade de miocardite em amostras de miocárdio de pacientes com CCC.

Identificação da	Miocardite	Fibrose	Hipertrofia de
Amostra			cardiomiócitos
CCC-1	1+	1+	S
CCC-2	0/1+	1+	S
CCC-3	1+	1+	S
CCC-4	2/3+	2+	S
CCC-5	2/3+	2+	S
CCC-6	3+	3+	S
CCC-7	3+	2+	S
CCC-8	2/3+	2+	S
CCC-9	2+	2+	S
CCC-10	2+	2+	S
CCC-11	2/3+	1+	S
CCC-12	3+	2+	S
CCC-13	0	1/2+	S
CCC-14	3+	2/3+	S
CNI-1	0	1/2+	S
CNI-2	0	0/1+	S
CNI-3	0	1+	S
CNI-4	0	3+	S
CNI-5	0	2+	S
CNI-6	0	2/3+	S
CNI-7	0	3+	S
CNI-8	0	3+	S
N-1	0	0	Ν
N-2	0	0	Ν
N-3	0	0	Ν
N-4	0	0	Ν
N-5	0	0	Ν
N-6	0	0	Ν

 Tabela 14. Análise histopatológica de amostras de miocárdio de pacientes

 com CCC, pacientes com CNI e amostras de doadores saudáveis (N)

Caracterização das amostras quanto a miocardite, fibrose e hipertrofia; valores referentes a presença de miocardite e fibrose: 0: ausente; 1+: discreto; 2+: moderado; 3+: intenso; hipertrofia: S: sim; N: não. Análise realizada pelo Dr. Luiz Benvenutti do Serviço de Anatomia e Patologia do InCor - HC/FMUSP.

Figura 16. Análise histopatológica do tecido cardíaco de CCC, CNI e doadores saudáveis e correlações positivas entre a presença de miocardie e a expressão de genes associados ao processo inflamatório em amostras de miocárdio de pacientes com CCC. A. Cortes histológicos representativos de amostras de miocárdio submetidos a coloração com H&E como descrito no Material e Métodos. Miocárdio de paciente com CCC (A; aumento de 200x e canto superior esquerdo ampliação em 400x). Miocárdio de paciente com cardiomiopatia dilatada idiopática (B; grupo CNI; aumento de 200x). Miocárdio de paciente com cardiomiopatia isquêmica (C; grupo CNI; aumento de 200x). Miocárdio de doador saudável (D; aumento de 200x). As setas indicam presença de fibrose ou hipertrofia de cardiomiócitos. B. Correlações positivas entre a presença de miocardie e a expressão gênica do receptor CCR4 e das quimiocinas CXCL9/Mig, CXCL10/IP-10, CCL17/TARC e CCL19/ELC em amostras de miocárdio de pacientes com CCC. **p<0,01 e *p<0,05, valores de p bicaudais obtidos pelo teste de correlação não-paramétrico de Spearman.

4.8 ANÁLISE DA PRESENÇA DE CÉLULAS CD3⁺, CD4⁺, CD8⁺, CCR5⁺, CXCR3⁺, CCR4⁺, CCL5/RANTES⁺ E CXCL9/MIG⁺ NO TECIDO CARDÍACO DE PACIENTES COM CCC E NO TECIDO CARDÍACO DE PACIENTES COM CNI COM IMUNOFLUORESCÊNCIA POR MICROSCOPIA CONFOCAL

Com o objetivo de estudar a expressão das proteínas codificadas por transcritos diferencialmente expressos em CCC conforme os resultados obtidos de qRT-PCR, avaliamos a expressão de superfície dos receptores de quimiocinas CCR5, CXCR3 e CCR4 por ensaios de imunofluorescência com microscopia confocal.

A identificação das células que expressam os receptores ou produzem os mediadores estudados no presente trabalho, não foi possível devido à disponibilidade apenas de anticorpos primários produzidos na mesma espécie. Entretanto, com o objetivo de identificar a presença de células mononucleares realizamos algumas marcações para CD3, CD4 e CD8 buscando identificar o perfil de linfócitos T presentes nas amostras estudadas. Observamos células CD3⁺ em todas as amostras de miocárdio de ambos os grupos CCC e CNI e também algumas células CD3⁺ em amostras de indivíduos saudáveis (Figura 17). Embora as análises tenham sido apenas qualitativas, observamos maior número de células CD3⁺ em amostras de miocárdio de pacientes com CCC, onde o infiltrado inflamatório é mais intenso, o que não foi

observado nos demais grupos estudados. Células CD4⁺ e CD8⁺ foram observadas em amostras de miocárdio de pacientes com CCC e em amostras de pacientes com CNI, contudo, observamos maior número de células positivas em amostras de pacientes com CCC que em amostras de pacientes com CNI (Figuras 18 e 19). Na maioria das amostras de doadores saudáveis, embora observássemos a presença de algumas células CD3⁺, a marcação de células CD4⁺ e CD8⁺ foi ausente ou de baixa intensidade em relação às amostras de CCC e CNI.

Observamos células positivas para os receptores CCR5 e CXCR3 em amostras de miocárdio de pacientes com CCC que pode ser observado nas Figuras 20 e 21, respectivamente. Embora as análises tenham sido apenas qualitativas, observamos que 14/14 das amostras de miocárdio de pacientes com CCC apresentam marcação para os receptores CCR5 e CXCR3. Observamos ainda que as marcações são mais intensas em amostras de miocárdio onde o infiltrado inflamatório é também mais intenso. Avaliando a marcação desses receptores em amostras de miocárdio de pacientes com CNI e em amostras de miocárdio de indivíduos saudáveis (N), não observamos a presença de células CCR5⁺ e células CXCR3⁺ (Figuras 20 e 21).

A presença de células CCR5⁺ e células CXCR3⁺ em amostras de miocárdio de pacientes com CCC demonstra a expressão em nível protéico desses receptores de superfície, corroborando a expressão gênica aumentada observada nessas amostras. Contudo, é importante ressaltar que a presença de infiltrado inflamatório em amostras de miocárdio de

pacientes com CCC de grau moderado a intenso resulta na identificação de células CCR5⁺ e células CXCR3⁺, as quais são raras em amostras de miocárdio de pacientes com CNI onde a presença de infiltrado inflamatório é ausente e poucas células inflamatórias são encontradas.

Células de perfil Th1 expressam os receptores CCR5 e CXCR3 e migram em direção a um foco inflamatório onde há a produção de seus fatores quimiotáticos. Dessa forma, avaliamos também a expressão das quimiocinas CCL5/RANTES e CXCL9/Mig, que apresentam níveis de RNAm significativamente aumentados em amostras de miocárdio de pacientes com CCC. Observamos a presença de células CCL5/RANTES⁺ e células CXCL9/Mig⁺ em 9/14 e 8/14 amostras de miocárdio de pacientes com CCC, respectivamente. Contudo, não observamos a presença dessas quimiocinas em amostras de miocárdio de pacientes com CCC, respectivamente. Contudo, não observamos a presença dessas quimiocinas em amostras de miocárdio de indivíduos saudáveis (N) (Figuras 22 e 23).

Observamos nas análises de qRT-PCR expressão significativa do receptor CCR4 em amostras de miocárdio de pacientes com CCC, e observamos em 9/14 amostras de miocárdio de pacientes com CCC a presença de células CCR4⁺ (Figura 24). Não foram observadas células CCR4⁺ em amostras de miocárdio de pacientes com CNI ou em amostras de indivíduos saudáveis (Figura 24).

Figura 17. Identificação de células CD3⁺ em amostras de miocárdio de pacientes com CCC, amostras de pacientes com CNI e amostras de miocárdio de doadores saudáveis. Imagens representativas de análises de microscopia confocal para identificação de células CD3⁺ em amostras de miocárdio de pacientes com CCC (A e B), CNI (C) e amostras de miocárdio de doadores saudáveis (D). Os fragmentos de tecido de miocárdio foram marcados com anticorpos monoclonais anti-CD3 marcado com PE e o sinal foi amplificado com anticorpo secundário Alexa 546 (vermelho); os núcleos das células são visualizados em azul (DAPI). As imagens foram obtidas em campo claro podemos visualizar o tecido e verificar se a marcação se encontra na célula ou no tecido adjacente; nas imagens de campo escuro são visualizadas apenas células positivas para CD3 (vermelho) e os núcleos das células (azul; DAPI).

Figura 18. Identificação de células CD4⁺ em amostras de miocárdio de pacientes com CCC, amostras de pacientes com CNI e amostras de miocárdio de doadores saudáveis. Imagens representativas de análises de microscopia confocal para identificação de células CD4⁺ em amostras de miocárdio de pacientes com CCC (A e B), CNI (C) e amostras de miocárdio de doadores saudáveis (D). Os fragmentos de tecido de miocárdio foram marcados com anticorpos monoclonais anti-CD4 marcado com PE e o sinal foi amplificado com anticorpo secundário Alexa 546 (vermelho); os núcleos das células são visualizados em azul (DAPI). As imagens foram obtidas em campo claro podemos visualizar o tecido e verificar se a marcação se encontra na célula ou no tecido adjacente; nas imagens de campo escuro são visualizadas apenas células positivas para CD4 (vermelho) e os núcleos das células (azul; DAPI).

Figura 19. Identificação de células CD8⁺ em amostras de miocárdio de pacientes com CCC, amostras de pacientes com CNI e amostras de miocárdio de doadores saudáveis. Imagens representativas de análises de microscopia confocal para identificação de células CD8⁺ em amostras de miocárdio de pacientes com CCC (A e B), CNI (C) e amostras de miocárdio de doadores saudáveis (D). Os fragmentos de tecido de miocárdio foram marcados com anticorpos monoclonais anti-CD8 marcado com PE e o sinal foi amplificado com anticorpo secundário Alexa 546 (vermelho); os núcleos das células são visualizados em azul (DAPI). As imagens foram obtidas em campo claro podemos visualizar o tecido e verificar se a marcação se encontra na célula ou no tecido adjacente; nas imagens de campo escuro são visualizadas apenas células positivas para CD8 (vermelho) e os núcleos das células (azul; DAPI).

Figura 20. Identificação de células CCR5⁺ em amostras de miocárdio de pacientes com CCC, amostras de pacientes com CNI e amostras de miocárdio de doadores saudáveis. Imagens representativas de análises de microscopia confocal para identificação de células CCR5⁺ em amostras de miocárdio de pacientes com CCC (A e B), CNI (C) e amostras de miocárdio de doadores saudáveis (D). Os fragmentos de tecido de miocárdio foram marcados com anticorpo secundário Alexa 546 (vermelho); os núcleos das células são visualizados em azul (DAPI). As imagens foram obtidas em campo claro (A1, B1, C1 e D1) e escuro (A2, B2, C2 e D2). Nas imagens de campo claro podemos visualizar o tecido e verificar se a marcação se encontra na célula ou no tecido adjacente; nas imagens de campo escuro são visualizadas apenas células positivas para CCR5 (vermelho) e os núcleos das células (azul; DAPI).

Figura 21. Identificação de células CXCR3⁺ em amostras de miocárdio de pacientes com CCC, amostras de pacientes com CNI e amostras de miocárdio de doadores saudáveis. Imagens representativas de análises de microscopia confocal para identificação de células CXCR3⁺ em amostras de miocárdio de pacientes com CCC (A e B), CNI (C) e amostras de miocárdio de doadores saudáveis (D). Os fragmentos de tecido de miocárdio foram marcados com anticorpos monoclonais anti-CXCR3 marcado com PE e o sinal foi amplificado com anticorpo secundário Alexa 546 (vermelho); os núcleos das células são visualizados em azul (DAPI). As imagens foram obtidas em campo claro (A1, B1, C1 e D1) e escuro (A2, B2, C2 e D2). Nas imagens de campo claro podemos visualizar o tecido e verificar se a marcação se encontra na célula ou no tecido adjacente; nas imagens de campo escuro são visualizadas apenas células positivas para CXCR3 (vermelho) e os núcleos das células (azul; DAPI).

Figura 22. Identificação de células CCL5/RANTES⁺ em amostras de miocárdio de pacientes com CCC, amostras de pacientes com CNI e amostras de miocárdio de doadores saudáveis. Imagens representativas de análises de microscopia confocal para identificação de células CCL5/RANTES⁺ em amostras de miocárdio de pacientes com CCC (A e B), CNI (C) e amostras de miocárdio de doadores saudáveis (D). Os fragmentos de tecido de miocárdio foram marcados com anticorpos monoclonais anti-CCL5/RANTES e o sinal foi amplificado com anticorpo secundário Alexa 546 (vermelho); os núcleos das células são visualizados em azul (DAPI). As imagens foram obtidas em campo claro (A1, B1, C1 e D1) e escuro (A2, B2, C2 e D2). Nas imagens de campo claro podemos visualizar o tecido e verificar se a marcação se encontra na célula ou no tecido adjacente; nas imagens de campo escuro são visualizadas apenas células positivas para CCL5/RANTES (vermelho) e os núcleos das células (azul; DAPI).

Figura 23. Identificação de células CXCL9/Mig⁺ em amostras de miocárdio de pacientes com CCC, amostras de pacientes com CNI e amostras de miocárdio de doadores saudáveis. Imagens representativas de análises de microscopia confocal para identificação de células CXCL9/Mig⁺ em amostras de miocárdio de pacientes com CCC (A e B), CNI (C) e amostras de miocárdio de doadores saudáveis (D). Os fragmentos de tecido de miocárdio foram marcados com anticorpos monoclonais anti-CXCL9/Mig e o sinal foi amplificado com anticorpo secundário Alexa 546 (vermelho); os núcleos das células são visualizados em azul (DAPI). As imagens foram obtidas em campo claro (A1, B1, C1 e D1) e escuro (A2, B2, C2 e D2). Nas imagens de campo claro podemos visualizar o tecido e verificar se a marcação se encontra na célula ou no tecido adjacente; nas imagens de campo escuro são visualizadas apenas células positivas para CXCL9/Mig (vermelho) e os núcleos das células (azul; DAPI).

Figura 24. Identificação de células CCR4⁺ em amostras de miocárdio de pacientes com CCC, amostras de pacientes com CNI e amostras de miocárdio de doadores saudáveis. Imagens representativas de análises de microscopia confocal para identificação de células CCR4⁺ em amostras de miocárdio de pacientes com CCC (A e B), CNI (C) e amostras de miocárdio de doadores saudáveis (D). Os fragmentos de tecido de miocárdio foram marcados com anticorpos monoclonais anti-CCR4 e o sinal foi amplificado com anticorpo secundário Alexa 546 (vermelho); os núcleos das células são visualizados em azul (DAPI). As imagens foram obtidas em campo claro (A1, B1, C1 e D1) e escuro (A2, B2, C2 e D2). Nas imagens de campo claro podemos visualizar o tecido e verificar se a marcação se encontra na célula ou no tecido adjacente; nas imagens de campo escuro são visualizadas apenas células positivas para CCR4 (vermelho) e os núcleos das células (azul; DAPI).

5. DISCUSSÃO

No presente trabalho foi investigada a expressão gênica no miocárdio de pacientes com CCC e CNI de citocinas do padrão pró-inflamatório, Th1, Th2 e regulatório, e de quimiocinas envolvidas com a migração diferencial de linfócitos T de memória e do fenótipo Th1/Th2, bem como dos receptores de tais quimiocinas, totalizando 28 genes. Com esta análise obtivemos um quadro panorâmico da expressão dos mediadores e receptores, citados acima, no miocárdio de pacientes com CCC e no miocárdio de pacientes com CNI. Nós observamos a expressão gênica aumentada da citocina próinflamatória IL-18. das quimiocinas CCL3/MIP-1a, $CCL4/MIP-1\beta$, CCL5/RANTES, CXCL9/Mig, CXCL10/IP-10, CCL17/TARC e CCL19/ELC e dos receptores CXCR3, CCR5 e CCR4 em amostras de miocárdio de pacientes com CCC quando comparada àquela encontrada em amostras de miocárdio de pacientes com CNI. Adicionalmente, a presença de células mononucleares infiltrantes CXCR3⁺, CCR5⁺ e CCR4⁺ foi observada em amostras de miocárdio de pacientes com CCC. Foram detectadas numerosas células mononucleares do infiltrado inflamatório de tecido cardíaco de pacientes com CCC marcadas com anticorpos monoclonais anti-CCL5/RANTES e anti-CXCL9/Mig. A expressão gênica aumentada de IL-18, quimiocinas e seus receptores e as correlações positivas observadas entre esses mediadores e receptores sugerem um *feedback* positivo atuando na manutenção e amplificação do processo inflamatório na ausência de células T regulatórias ou células Th2 funcionais, e que a expressão local de $CCL4/MIP-1\beta$, quimiocinas $CCL3/MIP-1\alpha$, CCL5/RANTES, como CXCL9/Mig, CXCL10/IP-10 e CCL19/ELC poderia atrair células CCR5⁺ e células T CXCR3⁺ para o tecido cardíaco inflamado. Isto é corroborado pela correlação positiva observada entre a expressão de CXCL9/Mig, CXCL10/IP-10, CCR4, CCL17/TARC e CCL19/ELC e a intensidade de miocardite, sugerindo que a maior expressão desses mediadores no miocárdio de pacientes com CCC está diretamente relacionada com a presença do infiltrado inflamatório. Contudo, a expressão de CCR4 sugere que células de perfil Th2 – ou células do perfil Th1 expressando CCR4 – também poderiam ser atraídas pela expressão de CCL17/TARC (ligante de CCR4) para o tecido cardíaco de pacientes com CCC.

Comparamos a expressão gênica de citocinas pró-inflamatórias/pró-Th1 como *IL-1* β , *IL-6*, *IL-12*, *IL-18* e *IL-23*, e da quimiocina *CXCL8/IL-8* entre os grupos de pacientes com CCC ou CNI e observamos expressão aumentada consistente apenas de *IL-18* (Figura 7) em amostras de miocárdio de pacientes com CCC. A mediana de expressão de *IL-6*, *IL-12p35* e *CXCL8/IL-8* em ambos os grupos CCC e CNI não se mostrou aumentada em relação a amostras de miocárdio de doadores saudáveis, e a expressão de *IL-1* β , *IL-12p40* e *IL-23* não foi detectada em nenhuma amostra de miocárdio (CCC, CNI e doadores saudáveis (Tabela 4).

A baixa expressão gênica de *IL-6* em amostras de miocárdio de pacientes com CCC (Figura 7B) contrasta com resultados de Reis *et al.*

(1997) que demonstraram por imunohistoquímica moderado número de células mononucleares IL-6⁺ no tecido cardíaco de pacientes com CCC. Entretanto, a diferença observada pode ser devida ao uso de metodologias e tipos de amostras distintos dos usados em nosso trabalho.

O achado de aumento exclusivo de *IL-18*, na ausência de outras citocinas pró-inflamatórias, é surpreendente, uma vez que os estímulos à sua produção por macrófagos são compartilhados, como por exemplo ligantes dos receptores Toll-like e IFN- γ (Verreck *et al.*, 2006). Vale ressaltar que o RNAm de muitos mediadores, incluindo IL-1 β , IL-12p35, IL-12p40 e CXCL8/IL-8, contêm um elemento desestabilizante de RNAm (sequência AUUUA) que reduz sua meia vida (Cosman, 1987; Matsushima *et al.*, 1988). O RNAm de IL-18, porém, não apresenta esse elemento, implicando em uma meia-vida mais longa (Tone *et al.*, 1997; Kim *et al.*, 1999), o que teria como conseqüência a permanência do RNAm de IL-18 em reações inflamatórias mais prolongadas e poderia explicar em parte nossos achados de aumento de expressão gênica de *IL-18* no grupo de pacientes com CCC. Alternativamente, o conjunto de estímulos presentes na lesão poderia favorecer a produção especifica de IL-18 por macrófagos, que compõem 50% do infiltrado na CCC (Milei *et al.*, 1992).

Na infecção experimental pelo *T. cruzi* foi observado que IL-18 induz a produção de IFN-γ (Muller *et al.*, 2001), e essa produção tem sido associada à resistência do hospedeiro (Gazzinelli *et al.*, 1992) e ao controle do parasitismo (Abrahamsohn, 1998). A presença de IFN-γ tem sido observada no tecido cardíaco de animais infectados com *T. cruzi* (Powell *et* al., 1998; Talvani et al., 2000), no miocárdio de pacientes chagásicos (Reis et al., 1993; Reis et al., 1997) e o IFN-y é produzido in vitro por linfócitos T infiltrantes do miocárdio (Abel et al., 2001). Células mononucleares do sangue periférico de pacientes com CCC apresentam um aumento no número de células produtoras de citocinas Th1, como IFN-y, em comparação com pacientes com a forma indeterminada da doença (Abel et al., 2001; Gomes et al., 2003). A IL-18 ativa diretamente o promotor de IFN-y através da molécula AP-1 (Barbulescu et al., 1998), sugerindo a ativação de uma via molecular adicional no desenvolvimento e diferenciação de células Th1. Contudo, a produção de IFN-y induzida por IL-18 é aumentada quando IL-18 atua em sinergismo com outras citocinas, como IL-12 e IL-15 (Micallef et al., 1996; Robinson et al., 1997; Fantuzzi et al., 1998; Gracie et al., 1999). O exemplo desse sinergismo pode ser observado em culturas de células de tecido sinovial de pacientes com artrite reumatóide, onde IL-18 induz produção de IFN-y e TNF- α em sinergismo com IL-12 e IL-15 em igual intensidade. Nessas culturas também se observou que a adição de TNF-α e IL-1β induz produção significante de IL-18 e IL-15 (Gracie et al., 1999). Nosso grupo demonstrou por ensaios de imunohistoquímica a expressão de IL-15 e expressão gênica mais elevada de IL-15Rα em amostras de miocárdio de pacientes com CCC quando comparada com amostras de miocárdio de doadores saudáveis, o que sugere a produção e ação dessa citocina in situ (Fonseca et al., 2007). Recentemente, foi demonstrado que células dendritícas provenientes de animais deficientes do IFN-yR1 produzem menor quantidade de IL-18 após estímulo com LPS que células dendritícas de animais selvagens, e os autores sugerem que a sinalização de IFN-y poderia estimular a maior produção de IL-18 por células dendritícas (Iwai et al., 2008). A IL-18 pode manter a resposta pró-inflamatória ativando diretamente o fator NF-KB (Matsumoto et al., 1997), aumentando a expressão de moléculas de adesão endoteliais (Vidal-Vanaclocha et al., 2000) ou induzindo a produção de mediadores como TNF- α e iNOS (Okamura et al., 1998; Puren et al., 1998). Nossos resultados de aumento de expressão gênica de IL-18 em amostras de miocárdio de pacientes com CCC (Figura 7A), aliados aos estudos mencionados acima, sugerem que a expressão local de IL-18 poderia ser induzida por mediadores como IFN-y e TNF- α (Gracie et al., 1999; Iwai et al., 2008), que estão presentes no tecido cardíaco de pacientes com CCC (Reis et al., 1993; Reis et al., 1997; Abel et al., 2001). IL-18 poderia também regular positivamente a produção local desses mediadores (IFN-γ e TNF-α) (Barbulescu et al., 1998; Gracie et al., 1999), por si ou em sinergismo com outros mediadores, como IL-15 (Fonseca et al., 2007) e assim em um feedback positivo manter a expressão desses mediadores no miocárdio de pacientes com CCC. É importante ressaltar que os níveis de expressão gênica de IL-15 correlacionam-se positivamente com os níveis de IL-18 em amostras de miocárdio de pacientes com CCC (dado não mostrado).

Nós observamos também que a expressão de *IL-18* correlaciona-se positivamente com a expressão gênica das quimiocinas *CCL5/RANTES*, *CXCL9/Mig*, *CXCL10/IP-10* e *CCL17/TARC*, e dos receptores *CXCR3* e *CCR5*, mas não com as quimiocinas *CCL4/MIP-1β*, *CCL19/ELC* e o receptor

CCR4 (Figura 15). Têm sido relatado que IL-18 induz a síntese de CCL3/MIP-1α (Puren et al., 1998) e foi demonstrado que as concentrações plasmáticas de IL-18 correlacionam-se positivamente com as concentrações de CXCL10/IP-10 e CXCL9/Mig em pacientes com lúpus eritematoso sistêmico (Lit et al., 2006). As correlações observadas, portanto, sugerem que a IL-18 poderia também estar envolvida com a produção dessas quimiocinas no tecido cardíaco de pacientes com CCC diretamente ou induzindo a produção de IFN-y, que regula positivamente a expressão de quimiocinas e seus receptores (Bacon et al. 1995; Rathanaswani et al., 1995; Farber, 1997; Bonecchi et al., 1998; Sallusto et al., 1998), o que direta ou indiretamente poderia estar relacionado com a migração de células T CXCR3⁺ e CCR5⁺. Alternativamente, as abundantes células Th1 poderiam produzir estímulos, como IFN- γ e TNF- α , que aumentariam a expressão de IL-18. Além de amplificar o processo inflamatório, a IL-18 produzida localmente poderia também induzir a hipertrofia de cardiomiócitos na CCC (Chandrasekar et al., 2005; Majumdar et al., 2008), atuando na disfunção cardíaca. Pacientes com falência cardíaca congestiva apresentam níveis circulantes aumentados de IL-18, e existe correlação entre os níveis de IL-18 no soro e a severidade da disfunção e dano cardíaco (Seta et al., 2000). Neste estudo também se demonstrou que IL-18 induz a expressão do gene ANF, que participa do perfil hipertrófico de expressão gênica (Seta et al., 2000).

Em nosso trabalho, observamos que a expressão gênica de *TGF-β* não se mostrou aumentada no grupo de pacientes com CCC (Figura 7F). Entretanto, dados da literatura demonstraram que pacientes com CCC
apresentam níveis circulantes elevados de TGF- β e marcação positiva para Smad2 fosforilada em biópsias cardíacas, um marcador de ativação da via de sinalização de TGF- β (Araujo-Jorge *et al.*, 2002). As metodologias utilizadas para se verificar a presença de TGF- β nesse trabalho e no nosso são diferentes, pois avaliamos a abundância do RNAm e não um marcador da via de sinalização de TGF- β . É importante ressaltar que mecanismos pós-transcripcionais e/ou pós-traducionais regulam a expressão de TGF- β (Kim *et al.*, 1992), contudo a expressão gênica diminuída de *TGF-\beta* observada exclui a participação de TGF- β em nossas amostras.

Em nosso trabalho também investigamos a expressão gênica de *Foxp3* em amostras de miocárdio de pacientes com CCC e CNI. Foxp3 é uma proteína nuclear cuja expressão caracteriza células T regulatórias (Treg) (revisado em Campbell e Ziegler, 2007). Dados da literatura sugerem que na infecção experimental pelo *T. cruzi*, células Treg não regulam a resposta efetora de células T CD8⁺ durante a fase aguda ou crônica da infecção (Kotner e Tarleton, 2007). Contudo, Mariano *et al.* (2008) demonstraram que durante a fase aguda da infecção experimental pelo *T. cruzi* (16 dias de infecção) ocorre alta expressão de Foxp3 no tecido cardíaco de camundongos infectados, e o tratamento com anticorpos anti-GITR e anti-CD25 resulta no aumento da resposta inflamatória e mortalidade desses animais, sugerindo que células Treg estão envolvidas no controle da resposta inflamatória exacerbada na fase aguda da infecção. Araújo *et al.* (2007) observaram que pacientes com a forma indeterminada da doença apresentam freqüência aumentada de células T CD4⁺CD25⁺Foxp3⁺IL-10⁺ em

relação a pacientes com a forma cardíaca e sugeriram que a produção de IL-10 é importante no controle do desenvolvimento da doença em pacientes com a forma indeterminada. Nesse estudo os autores também observaram que pacientes com a forma cardíaca apresentam aumento da porcentagem de células T CD4⁺CD25⁺Foxp3⁺ que expressam CTLA-4, e sugeriram que a elevada expressão de CTLA-4 poderia inibir a secreção IL-10 por macrófagos levando ao desenvolvimento da forma cardíaca crônica (Araújo *et al.*, 2007). A mediana dos valores de \triangle Ct de *Foxp3* observada nos grupos CCC e CNI foi equivalente (Figura 8B), e sabendo que no grupo de pacientes com CNI não há infiltrado inflamatório, podemos dizer que o infiltrado presente na CCC não expressa Foxp3. Recentemente, nós demonstramos uma menor expressão gênica de CD25 no mesmo grupo de pacientes com CCC aqui estudados em relação ao grupo de doadores saudáveis (Fonseca et al., 2007). A expressão diminuída de TGF-β e CD25 no grupo de pacientes com CCC, aliada aos valores equivalentes de Δ Ct de Foxp3 nos grupos CCC e CNI, sugere a ausência de células Treg CD4⁺CD25⁺Foxp3⁺TGF- β ⁺ no miocárdio de pacientes com CCC. Nosso grupo demonstrou que não há produção consistente de IL-10 por células mononucleares do infiltrado inflamatório cardíaco, (Abel et al., 2001), o que corrobora a ausência de células Treg e seus mecanismos supressores no miocárdio de pacientes com CCC. Embora tenha sido observado um aumento da porcentagem de células T CD4⁺CD25⁺Foxp3⁺ no sangue periférico de pacientes com a forma cardíaca da doença, nossos resultados sugerem que tais células não migram para o tecido cardíaco de pacientes

com CCC, embora os mecanismos envolvidos na migração dessas células, também dependentes de CCR4, CCR8 e CCR5 (Huehn e Hamann, 2005) estejam aumentados no miocárdio de pacientes com CCC. A despeito de encontrarmos marcadores de células Th2 como CCR4 e CCR8 (Figura 12), os níveis de RNAm de *IL-4* e *IL-13* no miocárdio de pacientes com CCC mostraram-se semelhantes aos encontrados no miocárdio de pacientes com CNI ou doadores saudáveis (Figura 7, Tabela 4), indicando a ausência de citocinas capazes de suprimir a produção de IFN-γ por células T Th1 predominantes. A ausência de células Treg e Th2 funcionais sugere que, no miocárdio de pacientes com CCC, aparentemente não há mecanismos restritivos à inflamação de tipo Th1.

Observando a expressão de quimiocinas no tecido cardíaco de pacientes com CCC, CNI e doadores saudáveis, verificamos que a expressão gênica do receptores *CCR5 e CXCR3*, e dos seus fatores quimiotáticos *CCL3/MIP-1a*, *CCL4/MIP-1β*, *CCL5/RANTES*, *CXCL9/Mig* e *CXCL10/IP-10* está significativamente aumentada no tecido cardíaco de pacientes com CCC (Figuras 9 e 10). Corroborando esses achados, nós observamos a presença de células mononucleares CXCR3⁺ e CCR5⁺ com fenótipo Th1, e detectamos também a expressão de seus ligantes CXCL9/Mig e CCL5/RANTES no tecido cardíaco de pacientes com CCC (Figuras 20, 21, 22 e 23) com a técnica de imunofluorescência. Estes dados estão de acordo com resultados anteriores de nosso grupo que demonstraram expressão gênica aumentada dessas quimiocinas e do receptor *CXCR3* em amostras de miocárdio de outro grupo de pacientes

com CCC utilizando a técnica de gRT-PCR (Cunha-Neto et al., 2005). Gomes et al. (2005) demonstraram que pacientes com CCC apresentam quantidades aumentadas de linfócitos T CD4⁺ e T CD8⁺ expressando os receptores CXCR3 ou CCR5 e co-expressando IFN- γ ou TNF- α no sangue periférico guando comparado a indivíduos com a forma indeterminada. É possível especular que tais células sejam precursoras das encontradas no infiltrado inflamatório da CCC. Quimiocinas como CCL3/MIP-1a, CCL4/MIP-1β e CCL5/RANTES foram detectadas no coração de animais infectados com T. cruzi (dos Santos et al., 1992; Teixeira et al., 2002) em associação com linfócitos T CD4+ e T CD8+ (Machado et al., 2005), e vale ressaltar que CCL3/MIP-1a e CCL4/MIP-1ß são importantes fatores quimiotáticos no recrutamento de células T CD4⁺ e T CD8⁺ (Taub et al., 1993; Cook et al., 1999). Camundongos deficientes do receptor CCR5 e camundongos tratados com Met-Rantes, antagonista de CCR5, infectados com T.cruzi apresentam redução do infiltrado inflamatório cardíaco (Marino et al., 2004; Machado et al., 2005), e o tratamento com Met-Rantes não interfere na parasitemia, mas aumenta a sobrevivência e diminui a deposição de fibronectina (Marino et al., 2004), sugerindo que a migração de células CCR5⁺ tem um importante papel na patogênese da miocardite. Na infecção experimental pelo T. cruzi também foi observada a produção das quimiocinas CXCL9/Mig e CXCL10/IP-10 no tecido cardíaco (Aliberti et al., 2001; Dos Santos et al., 2001; Teixeira et al., 2002), e os autores sugerem que a expressão dessas quimiocinas pode contribuir para o intenso recrutamento celular e, portanto, para o estabelecimento e manutenção da

miocardite induzida pela infecção pelo T. cruzi. Hardison et al. (2006) observaram que a expressão de CCL5/RANTES, CXCL9/Mig ou CXCL10/IP-10 permanece elevada até 120 dias após a infecção experimental pelo T. cruzi, esses dados sugerem que essas quimiocinas tenham um papel mantendo a crônica miocárdio. inflamação no Contudo. а neutralização de CCL5/RANTES, CXCL9/Mig ou CXCL10/IP-10 com o uso de anticorpos não diminui a inflamação cardíaca, sugerindo a participação de outros fatores no controle da inflamação em camundongos. A expressão gênica aumentada das quimiocinas CCL3/MIP-1α, CCL4/MIP-1β, CCL5/RANTES, CXCL9/Mig e CXCL10/IP-10 no grupo de pacientes com CCC (Figuras 9 e10) e as correlações positivas observadas entre expressão gênica de CCL4/MIP-1ß, CCL5/RANTES, CXCL9/Mig e CXCL10/IP-10 (Figura 15) poderiam refletir a produção dessas quimiocinas por macrófagos ou células T ativadas (Cook et al., 1999) presentes no miocárdio, o que torna o ambiente favorável para a migração de mais macrófagos, células T CD4⁺ e células T CD8⁺. Assim, a produção in situ e as interações dessas quimiocinas com os seus respectivos receptores, poderia manter a miocardite em pacientes com CCC atraindo células CCR5⁺ ou CXCR3⁺ produtores de IFN-y presentes na periferia (Ribeirão et al., 2000; Abel et al., 2001; Gomes et al., 2005). Uma vez no miocárdio, essas células poderiam produzir IFN-y que ativaria ainda mais a produção de CCL5/RANTES, CXCL9/Mig e CXCL10/IP-10 (Bacon et al. 1995; Rathanaswani et al., 1995; Farber, 1997), mantendo o recrutamento celular e amplificando o processo inflamatório. A correlação positiva observada entre a expressão gênica de CXCL9/Mig, CXCL10/IP-10

e a intensidade de miocardite (Figura 16B) no grupo de pacientes com CCC reforça a importância da expressão local dessa quimiocina em atrair células T de fenótipo Th1 ativadas (Loetscher et al., 1996). Adicionalmente, a correlação positiva observada entre a expressão gênica de CXCL9/Mig e CCL19/ELC sugere não somente a quimiotaxia de células T ativadas, mas a migração de células de memória CCR7⁺ que infiltrariam o miocárdio pela expressão local de CCL19/ELC (Figura 15). Vale ressaltar que CCL5/RANTES é a quimiocina com maior expressão no miocárdio de pacientes com CCC (Tabela 10), e sua expressão correlaciona-se positivamente com a expressão de CXCR3 (Figura 15). Foi descrito que CCL5/RANTES e CXCR3 estão envolvidos com a quimiotaxia de células T ativadas e células T de memória (Schall et al., 1990; Loetscher et al., 1996), o que reforça nossa hipótese.

Chamou-nos a atenção a expressão gênica aumentada do receptor *CCR4* e de seu ligante *CCL17/TARC* e a presença de células CCR4⁺ em amostras de miocárdio de pacientes com CCC (Figuras 12A e 24), que apresentam um perfil nitidamente Th1, na ausência de expressão detectável de IL-4 e IL-13 (Figura 7, Tabela 4). Células de fenótipo Th2 expressam o receptor CCR4 (Bonecchi *et al.*, 1998; Sallusto *et al.*, 1998) e produzem mediadores como IL-4 e IL-13, que estão envolvidos em sua diferenciação (Coffman e von der Weid, 1997). D'Ambrosio *et al.* (1998) mostraram em ensaios *in vitro* que a expressão de CCR4 em células Th2 é regulada positivamente mesmo na ausência de IL-4, por outro lado a expressão do RNAm de CCR4 e a resposta ao estímulo com CCL17/TARC tornam-se

detectáveis em linhagens de células Th1 após estimulação do TCR e CD28. A expressão aumentada de CCR4 e CCL17/TARC, aliada aos dados da literatura citados acima, permite especular a presença de células Th2 no miocárdio de pacientes com CCC, contudo a ausência de detecção de IL-4 e IL-13 indica que essas células, se presentes, não são funcionais (Figura 7, Tabela 4). Isto poderia ser explicado pela presença de IFN-γ produzido por células Th1, que inibiria a produção de citocinas Th2 (Teixeira et al., 2005). Não podemos excluir que células de perfil Th1 presentes no miocárdio de pacientes com CCC co-expressem o receptor CCR4 com descrito (D'Ambrosio et al., 1998), e as correlações positivas observadas entre os níveis de expressão do CCL17/TARC e os níveis de expressão de CCL5/RANTES, CXCL9/Mig, CXCL10/IP-10 e CXCR3 (Figura 15), os quais estão associados ao perfil Th1, reforçam esta hipótese. Vale ressaltar que não há relatos na literatura sobre essa associação de CCL17/TARC e quimiocinas e receptores Th1 em doenças de perfil predominantemente Th1. A correlação positiva observada entre a expressão gênica de CCR4 e CCL17/TARC e a intensidade de miocardite no grupo e pacientes com CCC (Figura 16B), permite especular que células CCR4⁺ poderiam ser atraídas para o tecido cardíaco de pacientes com CCC pela expressão local de CCL17/TARC. A produção deste mediador poderia ser induzida por algum componente tecidual no miocárdio inflamado, como descrito para linhagens de queratinócitos humanos que produzem CCL17/TARC após estímulo com IFN- γ e TNF- α (Vestergaard *et al.*, 2000; Saeki and Tamaki 2006). Alternativamente, a expressão gênica aumentada de CCR4 no grupo de pacientes com CCC poderia estar associada a presença de células T CCR7⁺ de memória central atraídas pela expressão aumentada de *CCL19/ELC* observada no grupo de pacientes com CCC (Figura 13A), como descrito anteriormente (Campbell *et al.*, 1999; Sallusto *et al.*, 1999). Experimentos de imunofluorescência dupla para os receptores CCR4 e CXCR3 permitirão identificar a existência de duas populações com fenótipos distintos (Th1 e Th2) ou uma população predominantemente Th1 co-expressando marcadores Th2 em amostras de miocárdio de pacientes com CCC.

Observamos que a expressão de CCL19/ELC, ligante de CCR7, está aumentada em amostras de miocárdio de pacientes com CCC (Figura 13A), e apresenta correlação positiva com a intensidade de miocardite (Figura 16B). Além disso, os valores de Δ Ct de *CCR7* de cada amostra (Figura 13B), sugerem que a expressão de CCR7 estaria regulada positivamente em amostras de miocárdio de pacientes com CCC, o que é consistente com um infiltrado de células T CCR7⁺. Assim, a alta expressão de CCL19/ELC e a mediana significativamente diferente dos valores de Δ Ct de CCR7 no grupo de pacientes com CCC (Figura 13A e B) sugerem que a produção in situ dessa guimiocina em vênulas do endotélio alto pós-capilares poderia atrair células CCR7⁺ de memória central provenientes da periferia, que poderiam co-expressar receptores como CXCR3, CCR5 e/ou CCR4 (Campbell et al., 1999; Sallusto et al., 1999; Andrew et al., 2001). Essas células, uma vez no miocárdio, poderiam diferenciar-se em células efetoras contribuindo para a amplificação da resposta inflamatória na CCC. Além disso, a expressão de CCL19/ELC no miocárdio de pacientes com CCC poderia diminuir a

habilidade de células CCR7⁺ responderem a um segundo estímulo com CCL19/ELC por induzir a internalização do receptor CCR7 (Bardi *et al.,* 2001), mantendo as células T no local e amplificando o processo inflamatório.

A expressão de CCL21/SLC é equivalente nos grupos de pacientes com CCC e CNI (Figura 13A), o que sugere que a expressão de CCL21/SLC pode não estar associada à presença do infiltrado inflamatório na CCC, e sim a alguma alteração cardíaca compartilhada entre as cardiomiopatias aqui estudadas. Dados da literatura sugerem que o receptor CCR7 apresenta importante papel na fibrose pulmonar (Pierce et al., 2007), renal (Banas et al., 2002; Sakai et al., 2006) e no fígado (Bonacchi et al., 2003) regulando o recrutamento de fibrócitos em humanos e camundongos. CCL21/SLC atua como um estímulo quimiotático para fibrócitos expressando CCR7 (Abe et al., 2001; Sakai et al., 2006) e a sinalização da interação CCL21/CCR7 ativa membros da família MAPK (Riol-Blanco et al., 2005), os quais regulam a expressão de colágeno tipo I in vitro (Sato et al., 2002). Em conjunto, os dados sugerem que CCL21/SLC poderia induzir quimiotaxia de fibrócitos e a ativação de vias de sinalização que resultam na produção de colágeno, fibronectina e desenvolvimento de fibrose. Experimentos in vitro também mostraram que fibroblastos cardíacos humanos estimulados com IL-18 ativam vias de sinalização que estão envolvidas com a transcrição e a expressão do RNAm de fibronectina, sugerindo que IL-18 e fibronectina podem estar relacionadas ao processo de fibrose (Reddy et al., 2008). Vale ressaltar que tanto na CCC como na CNI, observamos a presença de fibrose de grau moderado a intenso (Tabela 14) na ausência de TGF- β , portanto, permanece a questão de quais são os mediadores que contribuem para a processo de fibrose na ausência de TGF- β . A expressão gênica aumentada de *CCL21/SLC* no grupo de pacientes com CNI e CCC (Figura 13A), a mediana significativamente diferente dos valores de Δ Ct de *CCR7* e a expressão aumentada de *IL-18* no grupo CCC (Figura 7A), aliados aos estudos mencionados sugere um papel adicional para esses mediadores atuando no processo de fibrose. A expressão aumentada de *IL-18, CCL21/SLC* e dos valores de Δ Ct de *CCR7* especificamente na CCC pode estar envolvida na fibrose particularmente intensa da CCC (Mady et al., 1999).

Chamou-nos a atenção o fato de quimiocinas como *CCL5/RANTES*, *CCL17/TARC*, *CCL19/ELC* e *CCL21/SLC* apresentarem regulação positiva em amostras de miocárdio de pacientes com CNI, ainda que, com exceção de *CCL21/SLC*, a expressão das demais quimiocinas seja significativamente menor que no grupo de pacientes com CCC (Figuras 9, 12 e 13). Corroborando estas observações, alguns estudos observaram a regulação positiva de quimiocinas na cardiomiopatia isquêmica (Dewald et al., 2003; Frangogiannis *et al.,* 2002^b) e na cardiomiopatia dilatada (Aukrust *et al.,* 1998). A indução de quimiocinas pode ocorrer em resposta a injúria do miocárdio em várias situações. No infarto do miocárdio, a necrose celular pode desencadear vias que induzem a síntese de quimiocinas e que são reguladas através da geração de radicais livres, ativação de NF-κB, liberação de TNF- α e ativação de complemento (revisado em Frangogiannis e Entman, 2004). Altas concentrações plasmáticas das quimiocinas CCL2/MCP-1, CCL3/MIP-1 α e CCL5/RANTES foram observadas em

pacientes com falência cardíaca congestiva, incluindo pacientes com cardiomiopatia dilatada idiopática (CDI) (Aukrust et al., 1998; Damas et al., 2000). Nesse trabalho os níveis destas guimiocinas correlacionam com a severidade dos sintomas e com o grau de disfunção do ventrículo esquerdo (Aukrust et al., 1998). Outro grupo monstrou a imuno-localização de CXCL8/IL-8 e CXCR4 em cardiomiócitos e em células vasculares do músculo liso, e a expressão gênica de mediadores como CCL5/RANTES, CCL3/MIP-1a e receptores com CCR5 no miocárdio de pacientes com falência cardíaca (Damas et al., 2000). Esses dados sugerem que a expressão local de quimiocinas produzidas pelo infiltrado inflamatório (CCC) ou tecido miocárdico (CNI) poderiam ter efeitos sobre os cardiomiócitos. Foi demonstrado que a angiotensina-II pode aumentar diretamente a expressão de citocinas inflamatórias, quimiocinas e seus receptores (Tham et al., 2002), o que poderia explicar a presença de quimiocinas em doenças sem substrato inflamatório primário. Foi observado que a angiotensina-II, produzida durante a insuficiência cardíaca, induz diretamente a expressão de CCL2/MCP-1 (Chen et al., 1998). Dados da literatura demonstram em ensaios in vitro que o pré-tratamento com angiotensina-II pode aumentar os efeitos de IL-18 sobre células vasculares do músculo liso, induzindo a ativação dos fatores de transcrição NF-kB e AP-1 e a expressão gênica de IL-6, CXCL8/IL-8 e CCL2/MCP-1 (Sahar et al., 2005). Outro grupo demonstrou em modelo experimental que a administração intraperitoneal de angiotensina-II em ratos induz a produção de CCL2/MCP-1, CCL3/MIP-1α e CCL5/RANTES, o que também acontece quando células endoteliais

humanas são estimuladas com angiotensina-II (Mateo *et al.*, 2006). O sistema renina-angiotensina está presente em cardiomiócitos (Malhotra *et al.*, 1999) e foi demonstrado que CXCL10/IP-10 regula positivamente a expressão de componentes desse sistema e aumenta a liberação de angiotensina-II por células endoteliais *in vitro* (Ide *et al.*, 2008).

No miocárdio de pacientes com falência cardíaca, incluindo pacientes com CDI e cardiomiopatia isquêmica, observou-se uma inflamação crônica de baixo grau que foi confirmada pela presença abundante de macrófagos e menor número de linfócitos T CD3⁺ (Devaux et al., 1997). Os autores também observaram a presença de ICAM-1 e PECAM-1 no miocárdio desses pacientes, e sugerem que independente da causa da falência cardíaca uma inflamação crônica de baixo grau está presente no miocárdio e pode contribuir para a deterioração funcional. Em conjunto, os dados acima sugerem que as quimiocinas podem contribuir para a patogênese da ICC, possivelmente atuando na inflamação crônica de baixo grau observada no miocárdio com ICC. A expressão de quimiocinas em pacientes com CNI em nosso estudo poderia refletir a secreção de mediadores inflamatórios pelas escassas células inflamatórias presentes no miocárdio ou mesmo por cardiomiócitos, angiotensina-II. A presença de algumas células CD3⁺ não descarta a possibilidade da presença de infiltrado inflamatório de baixo grau nestes pacientes (Figura 17), contudo não observamos marcação positiva para CCR5, CXCR3, CCL5/RANTES e CXCL9/Mig nestes pacientes por imunofluorescência, sugerindo que estas células podem não estar ativadas (Figuras 20, 21, 22 e 23). A análise quantitativa de células $CD3^+$ e a

identificação de células CD68⁺ fornecerão a intensidade do infiltrado no miocárdio do grupo de pacientes com CNI.

também avaliamos Nós a expressão gênica de peptídeos natriuréticos, que são marcadores associados ao perfil de expressão gênica de hipertrofia de cardiomiócitos. Embora ambos estejam muito elevados no grupo de pacientes com CCC e CNI em relação ao grupo de doadores saudáveis, nossos resultados mostram que a expressão de BNP está aumentada significativamente em amostras de miocárdio de pacientes com CNI, enquanto a expressão de ANF é maior no grupo CCC (Figura 14). A hipertrofia cardíaca que acompanha a falência do miocárdio leva ao aumento da produção de ANF e BNP pelos ventrículos (Davidson et al., 1996; Omland et al., 1996). Pacientes com falência cardíaca crônica apresentam altas concentrações plasmáticas de ANF e BNP que correlacionam com a intensa disfunção do ventrículo (revisado em Puyó et al., 2005). A expressão de ANF foi detectada por imunohistoquímica em ambos os ventrículos direito e esquerdo de pacientes com CCC (Benvenutti et al., 2003), e elevadas concentrações de ANF e BNP foram encontradas na circulação de pacientes chagásicos crônicos com cardiomiopatia (Piazza et al., 1994; Reis et al., 1997; Ribeiro e Rocha 1998). Neste sentido, a expressão gênica aumentada de ANF e BNP corrobora a significativa hipertrofia de cardiomiócitos em ambos os grupos estudados (CCC e CNI).

Observamos grandes diferenças de magnitude de expressão gênica global entre amostras de diferentes pacientes (Tabela 10), e nos questionamos se as diferenças se deviam à heterogeneidade do infiltrado

em cada região do tecido ou se representavam padrões de inflamação diferenciais, mantidos no indivíduo. A concordância e correlação positiva entre a expressão gênica medida em diferentes fragmentos de miocárdio de cada paciente com CCC mostrou que as diferenças quantitativas observadas entre amostras de diferentes pacientes representa padrões de inflamação mantidos no indivíduo (Tabelas 12 e 13). Vale ressaltar que a principal característica do tecido cardíaco na CCC é a presença de uma miocardite difusa com aspectos focais, com blocos de fibrose cicatricial, conferindo heterogeneidade significativa à lesão cardíaca, até mesmo em exame macroscópico. Portanto, as pequenas diferenças de valores de expressão gênica encontradas em amostras obtidas de sítios diferentes de cada coração são consistentes com esse infiltrado inflamatório que é heterogêneo.

Nossos resultados, aliados aos dados da literatura, permitem a elaboração da seguinte hipótese: Durante a fase aguda da infecção pelo T. *cruzi*, células T CD4⁺ e T CD8⁺ são ativadas, diferenciadas em linfócitos de fenótipo Th1 e expandidas na periferia (Sun e Tarleton, 1993) por macrófagos e/ou células dendríticas apresentando antígenos de T. cruzi, o que induz a produção de citocinas e a expressão de moléculas coestimulatórias. Essas células T CD8⁺ e T CD4⁺ de fenótipo Th1 coexpressam receptores como CCR7, CCR5 e CXCR3 (Gomes et al., 2005) e migram para o tecido cardíaco atraídas pela expressão de CCL19/ELC (ligante de CCR7) nas vênulas pós-capilares do tecido cardíaco inflamado e quimiocinas CCL3/MIP-1 α , também por como CCL4/MIP-1β е CCL5/RANTES (ligantes de CCR5), que são produzidas por cardiomiócitos infectados pelo T. cruzi e macrófagos (Aliberti et al., 1999; Machado et al., 2000). Adicionalmente, a expressão in situ de CXCL9/Mig e CXCL10/IP-10, ligantes de CXCR3 e produzidos sob o efeito de IFN-y produzido pelos primeiros linfócitos T infiltrantes, também estaria envolvida na migração e acumulação de mais células T CXCR3⁺ CCR5⁺ infiltrantes, que podem participar da resposta imune contra o T. cruzi. Conforme o parasitismo diminui no tecido cardíaco, a inflamação persistente da fase crônica da doença de Chagas pode ser mantida por citocinas inflamatórias com IFN-y (Reis et al., 1997; Abel et al., 2001) produzido por células T CD4⁺ e T CD8⁺ intralesionais, que reconhecem antígenos do parasita ou epitopos de reação cruzada com proteínas cardíacas constitutivamente apresentadas por células dendríticas intersticiais (Cunha-Neto et al., 1996; Fonseca et al., 2005). Em paralelo, a expressão de IFN-y poderia induzir a produção de outras citocinas, como IL-18 (Iwai et al., 2008) e IL-15, que poderiam amplificar o processo induzindo a expressão de IFN-y e mantendo a sobrevivência de células T CD8⁺ (Fonseca et al., 2007). IL-18 e IFN-y, isoladamente ou em sinergismo com outros mediadores, poderiam potencializar a expressão de quimiocinas como CCL5/RANTES, CXCL9/Mig e CXCL10/IP-10 (Bacon et al. 1995; Rathanaswani et al., 1995; Farber, 1997) que atuariam mantendo o recrutamento de células T para o miocárdio. Este mecanismo poderia levar a manutenção do influxo de células inflamatórias de perfil Th1 para o tecido cardíaco de pacientes com CCC. Não podemos excluir que células de perfil Th2 CCR4⁺, geradas durante o parasitismo intenso, possam ser atraídas para o miocárdio pela expressão

de CCL17/TARC, contudo a ausência de detecção de IL-4 e IL-13 sugere que essas células não são funcionais. Alternativamente, células de perfil Th1 poderiam co-expressar o receptor CCR4 (Figura 25).

A expressão gênica aumentada de IL-18 e de quimiocinas e seus receptores no miocárdio de pacientes com CCC contribuem para a migração e acúmulo de células de perfil nitidamente Th1 e as correlações positivas observadas entre esses mediadores e receptores sugerem um feedback positivo atuando na manutenção e amplificação do processo inflamatório, possivelmente em associação com outros mediadores expressos no miocárdio, na ausência de um controle na forma de células Treg ou células Th2 funcionais, gerando uma resposta inflamatória Th1 galopante. A CCL21/SLC poderia expressão de IL-18 e estar associada ao desenvolvimento de hipertrofia e fibrose sugerindo um papel adicional para a expressão desses mediadores no grupo de pacientes com CCC (Figura 26).

Embora a resposta inflamatória seja mais intensa no grupo de pacientes com CCC em relação ao grupo de pacientes com CNI, as amostras de miocárdio de pacientes com CCC aqui estudadas apresentam diferenças na intensidade da miocardite e também diferenças na magnitude de expressão dos genes associados ao processo inflamatório. Essas diferenças sugerem que uma menor resposta inflamatória não é suficiente para impedir que esses pacientes evoluam para a forma grave, cuja única alternativa é o transplante cardíaco. Entretanto, alguns mecanismos poderiam explicar esta observação: a) esses pacientes sejam menos dependentes de mecanismos inflamatórios; b) esses pacientes apresentaram uma resposta inflamatória

exacerbada no momento anterior a nossa coleta; ou c) esses pacientes sejam mais sensíveis, onde mesmo com a menor produção de mediadores inflamatórios eles apresentem uma resposta intensa que poderia ser justificada por algum polimorfismo. A resposta inflamatória intensa, secundária à produção de diversos mediadores inflamatórios no tecido cardíaco de pacientes com CCC na ausência de regulação, pode fornecer uma possível explicação para o pior prognóstico observado nestes pacientes quando comparados aos pacientes com CNI.

Os resultados obtidos durante esta tese, do estudo do perfil de expressão de mediadores inflamatórios e seus receptores, permitem identificar os fatores que contribuem para a composição do infiltrado inflamatório, migração e acúmulo das células inflamatórias dentro do tecido cardíaco na CCC. A identificação de alguns mediadores inflamatórios diferencialmente expressos entre os grupos estudados abre novas questões sobre os efeitos biológicos desses mediadores na patologia da CCC e também em cardiomiopatias de etiologia não inflamatória. Diferenças genéticas combinadas com fatores ambientais e fatores relacionados ao parasita podem ser a razão para as diferenças encontradas nestes pacientes com CCC, e uma possível explicação para os mecanismos envolvidos na evolução da doença. O desenvolvimento de novas terapias que inibam o dano cardíaco em pacientes com CCC ou CNI, em especial mecanismos dependentes de migração de células inflamatórias, pode ser favorecido com a identificação desses alvos específicos e o estudo dos seus efeitos biológicos.

Figura 25. Processo inflamatório no tecido cardíaco de pacientes com CCC. (1) O estabelecimento de uma resposta inflamatória é importante para o controle do parasitismo intenso característico da fase aguda. (2) Células efetoras da imunidade celular são ativadas e expandidas na periferia durante a fase aguda. (3) A resposta inflamatória pode acarretar o desenvolvimento de uma cardiomiopatia de natureza inflamatória na fase crônica (CCC) com baixo parasitismo. A persistência da inflamação pode ser mantida por mediadores inflamatórios, tais como, citocinas e quimiocinas que atraem células efetoras e de memória para o tecido cardíaco. A presença de um infiltrado inflamatório poderia ser desencadeada pelos 'raros' Setas reaparecimentos do Τ. cruzi. vermelhas indicam aumento da expressão/produção de mediadores inflamatórios e moléculas de adesão.

Figura 26. Processos envolvidos na migração células e manutenção do processo inflamatório no tecido cardíaco de pacientes com CCC, que ocorrem na ausência de regulação e os mediadores expressos *in situ* poderiam estar envolvidos no desenvolvimento de fibrose e hipertrofia.

6. CONCLUSÕES

1. Neste trabalho, a investigação da expressão gênica local de 28 genes permitiu identificar a expressão diferencial de citocinas do padrão próinflamatório, Th1, Th2 e regulatório, e de quimiocinas envolvidas com a migração diferencial de linfócitos T de memória e do fenótipo Th1/Th2, bem como dos receptores de tais quimiocinas em amostras de miocárdio de pacientes com CCC em relação a amostras de pacientes com CNI.

2. A expressão diferencial dos genes aqui estudados sugere que o processo inflamatório no tecido cardíaco de pacientes com CCC poderia ser amplificado pela expressão de mediadores como IL-18, que poderia apresentar um papel adicional na indução de hipertrofia de cardiomiócitos e processo de fibrose.

3. A expressão gênica aumentada das quimiocinas $CCL3/MIP-1\alpha$, $CCL4/MIP-1\beta$, CCL5/RANTES, CXCL9/Mig e CXCL10/IP-10 sugere que essas quimiocinas poderiam atrair células $CCR5^+$ e células T CXCR3⁺ para o tecido cardíaco inflamado, onde observamos a presença de células mononucleares $CCR5^+$ e $CXCR3^+$.

4. O perfil Th1 é predominante no grupo de pacientes com CCC, contudo, a expressão aumentada de *CCR4* sugere que células de perfil Th2 – ou células do perfil Th1 expressando CCR4 – também poderiam ser atraídas pela expressão de *CCL17/TARC* (ligante de CCR4) para o tecido cardíaco de pacientes com CCC.

5. A expressão aumentada de CCL19/ELC e sua correlação positiva com a intensidade de miocardite no grupo de pacientes com CCC sugerem que a presença de CCL19/ELC é importante para a migração de células CCR7⁺, possivelmente de fenótipo de memória, para o tecido cardíaco de pacientes com CCC.

6. A expressão diminuída de TGF-β no grupo de pacientes com CCC e a expressão equivalente dos valores de ΔCt de Foxp3 nos grupos CCC e CNI, sugerem a ausência de regulação por células T regulatórias no miocárdio de pacientes com CCC.

7. A expressão aumentada de CCL21/SLC e a mediana significativamente diferente dos valores de ∆Ct de CCR7 em amostras de miocárdio de pacientes com CCC, sugere um papel adicional para esses mediadores atuando no processo de fibrose.

8. A regulação positiva de *IL-18* e *CCL21/SLC* em amostras de miocárdio de pacientes com CCC sugere um papel adicional para a expressão desses mediadores, possivelmente associado aos processos de hipertrofia e fibrose.

7. ANEXOS

Cálculo da eficiência para os genes de IL-6 e IL-18. A. Gráfico da eficiência onde são mostrados a equação da reta e o valor do coeficiente de angulação (slope -y) utilizado para o cálculo da eficiência. B. Curva de Amplificação utilizada para verificar a eficiência de amplificação dos primers e no quadro interno a curva de dissociação mostrando a amplificação de um único fragmento para os primers testados. Quantidade de RNA presente em cada diluição: 1 cDNA diluído 1/10 (500ng RNA); 2 cDNA diluído 1/50 (100ng RNA); 3 cDNA diluído 1/250 (20ng RNA); 4 cDNA diluído 1/1250 (4ng RNA), como descrito no Material e Métodos.

Cálculo da eficiência para os genes de IL-12p35 e IL-12p40. A. Gráfico da eficiência onde são mostrados a equação da reta e o valor do coeficiente de angulação (slope -y) utilizado para o cálculo da eficiência. B. Curva de Amplificação utilizada para verificar a eficiência de amplificação dos primers e no quadro interno a curva de dissociação mostrando a amplificação de um único fragmento para os primers testados. Quantidade de RNA presente em cada diluição: 1 cDNA diluído 1/5 (1000ng RNA); 2 cDNA diluído 1/25 (200ng RNA); 3 cDNA diluído 1/125 (40ng RNA), como descrito no Material e Métodos.

Cálculo da eficiência para os genes de *IL-1* β **e***IL-23.* A. Gráfico da eficiência onde são mostrados a equação da reta e o valor do coeficiente de angulação (slope -y) utilizado para o cálculo da eficiência. B. Curva de Amplificação utilizada para verificar a eficiência de amplificação dos primers e no quadro interno a curva de dissociação mostrando a amplificação de um único fragmento para os primers testados. Quantidade de RNA presente em cada diluição: 1 cDNA diluído 1/5 (1000ng RNA); 2 cDNA diluído 1/25 (200ng RNA); 3 cDNA diluído 1/125 (40ng RNA), como descrito no Material e Métodos.

Cálculo da eficiência para os genes de IL-4 e IL-13. A. Gráfico da eficiência onde são mostrados a equação da reta e o valor do coeficiente de angulação (slope -y) utilizado para o cálculo da eficiência. B. Curva de Amplificação utilizada para verificar a eficiência de amplificação dos primers e no quadro interno a curva de dissociação mostrando a amplificação de um único fragmento para os primers testados. Quantidade de RNA presente em cada diluição: 1 cDNA diluído 1/5 (1000ng RNA); 2 cDNA diluído 1/25 (200ng RNA); 3 cDNA diluído 1/125 (40ng RNA), como descrito no Material e Métodos.

Cálculo da eficiência para os genes de TGF-β e IL-8. A. Gráfico da eficiência onde são mostrados a equação da reta e o valor do coeficiente de angulação (slope -y) utilizado para o cálculo da eficiência. B. Curva de Amplificação utilizada para verificar a eficiência de amplificação dos primers e no quadro interno a curva de dissociação mostrando a amplificação de um único fragmento para os primers testados. Quantidade de RNA presente em cada diluição: 1 cDNA diluído 1/10 (500ng RNA); 2 cDNA diluído 1/50 (100ng RNA); 3 cDNA diluído 1/250 (20ng RNA); 4 cDNA diluído 1/1250 (4ng RNA), como descrito no Material e Métodos.

Cálculo da eficiência para os genes de CCL3/MIP-1α e CCL4/MIP-1β. A. Gráfico da eficiência onde são mostrados a equação da reta e o valor do coeficiente de angulação (slope -y) utilizado para o cálculo da eficiência. B. Curva de Amplificação utilizada para verificar a eficiência de amplificação dos primers e no quadro interno a curva de dissociação mostrando a amplificação de um único fragmento para os primers testados. Quantidade de RNA presente em cada diluição para CCL3/MIP-1α: 1 cDNA diluído 1/5 (1000ng RNA); 2 cDNA diluído 1/25 (200ng RNA); 3 cDNA diluído 1/125. Quantidade de RNA presente em cada diluição para CCL4/MIP-1β: 1 cDNA diluído 1/10 (500ng RNA); 2 cDNA diluído 1/50 (100ng RNA); 3 cDNA diluído 1/250 (20ng RNA); 4 cDNA diluído 1/1250 (4ng RNA), como descrito no Material e Métodos.

Cálculo da eficiência para os genes de CCL5/RANTES e CCR5. A. Gráfico da eficiência onde são mostrados a equação da reta e o valor do coeficiente de angulação (slope -y) utilizado para o cálculo da eficiência. B. Curva de Amplificação utilizada para verificar a eficiência de amplificação dos primers e no quadro interno a curva de dissociação mostrando a amplificação de um único fragmento para os primers testados. Quantidade de RNA presente em cada diluição: 1 cDNA diluído 1/10 (500ng RNA); 2 cDNA diluído 1/50 (100ng RNA); 3 cDNA diluído 1/250 (20ng RNA); 4 cDNA diluído 1/1250 (4ng RNA), como descrito no Material e Métodos.

Cálculo da eficiência para os genes de *CXCL9/Mig* e *CXCLC10/IP-10.* A. Gráfico da eficiência onde são mostrados a equação da reta e o valor do coeficiente de angulação (slope -y) utilizado para o cálculo da eficiência. B. Curva de Amplificação utilizada para verificar a eficiência de amplificação dos primers e no quadro interno a curva de dissociação mostrando a amplificação de um único fragmento para os primers testados. Quantidade de RNA presente em cada diluição: 1 cDNA diluído 1/10 (500ng RNA); 2 cDNA diluído 1/50 (100ng RNA); 3 cDNA diluído 1/250 (20ng RNA); 4 cDNA diluído 1/1250 (4ng RNA), como descrito no Material e Métodos.

Cálculo da eficiência para os genes de CXCR3 e CCL17/TARC. A. Gráfico da eficiência onde são mostrados a equação da reta e o valor do coeficiente de angulação (slope -y) utilizado para o cálculo da eficiência. B. Curva de Amplificação utilizada para verificar a eficiência de amplificação dos primers e no quadro interno a curva de dissociação mostrando a amplificação de um único fragmento para os primers testados. Quantidade de RNA presente em cada diluição para CXCR3: 1 cDNA diluído 1/10 (500ng RNA); 2 cDNA diluído 1/50 (100ng RNA); 3 cDNA diluído 1/250 (20ng RNA). Quantidade de RNA presente em cada diluição para CCL17/TARC: 1 cDNA diluído 1/5 (1000ng RNA); 2 cDNA diluído 1/25 (200ng RNA); 3 cDNA diluído 1/5 (1000ng RNA); 3 cDNA diluído 1/25 (200ng RNA); 3 cDNA diluído 1/125, como descrito no Material e Métodos.

Cálculo da eficiência para os genes de CCL22/MDC e CCR4. A. Gráfico da eficiência onde são mostrados a equação da reta e o valor do coeficiente de angulação (slope -y) utilizado para o cálculo da eficiência. B. Curva de Amplificação utilizada para verificar a eficiência de amplificação dos primers e no quadro interno a curva de dissociação mostrando a amplificação de um único fragmento para os primers testados. Quantidade de RNA presente em cada diluição: 1 cDNA diluído 1/10 (500ng RNA); 2 cDNA diluído 1/50 (100ng RNA); 3 cDNA diluído 1/250 (20ng RNA), como descrito no Material e Métodos.

Cálculo da eficiência para os genes de CCL1/I-309 e CCR8. A. Gráfico da eficiência onde são mostrados a equação da reta e o valor do coeficiente de angulação (slope -y) utilizado para o cálculo da eficiência. B. Curva de Amplificação utilizada para verificar a eficiência de amplificação dos primers e no quadro interno a curva de dissociação mostrando a amplificação de um único fragmento para os primers testados. Quantidade de RNA presente em cada diluição: 1 cDNA diluído 1/5 (1000ng RNA); 2 cDNA diluído 1/25 (200ng RNA); 3 cDNA diluído 1/125; 4 cDNA diluído 1/625 (8ng RNA), como descrito no Material e Métodos.

Cálculo da eficiência para os genes de CCL19/ELC e CCL21/SLC. A. Gráfico da eficiência onde são mostrados a equação da reta e o valor do coeficiente de angulação (slope -y) utilizado para o cálculo da eficiência. B. Curva de Amplificação utilizada para verificar a eficiência de amplificação dos primers e no quadro interno a curva de dissociação mostrando a amplificação de um único fragmento para os primers testados. Quantidade de RNA presente em cada diluição: 1 cDNA diluído 1/10 (500ng RNA); 2 cDNA diluído 1/50 (100ng RNA); 3 cDNA diluído 1/250 (20ng RNA); 4 cDNA diluído 1/1250 (4ng RNA), como descrito no Material e Métodos

Cálculo da eficiência para os genes de *CCR7* e *Foxp3*. A. Gráfico da eficiência onde são mostrados a equação da reta e o valor do coeficiente de angulação (slope -y) utilizado para o cálculo da eficiência. B. Curva de Amplificação utilizada para verificar a eficiência de amplificação dos primers e no quadro interno a curva de dissociação mostrando a amplificação de um único fragmento para os primers testados. Quantidade de RNA presente em cada diluição para CCR7: 1 cDNA diluído 1/10 (500ng RNA); 2 cDNA diluído 1/50 (100ng RNA); 3 cDNA diluído 1/250 (20ng RNA). Quantidade de RNA presente em cada diluição para Foxp3: 1 cDNA diluído 1/5 (1000ng RNA); 2 cDNA diluído 1/25 (200ng RNA); 3 cDNA diluído 1/125, como descrito no Material e Métodos.

Cálculo da eficiência para os genes de ANF e BNP. A. Gráfico da eficiência onde são mostrados a equação da reta e o valor do coeficiente de angulação (slope -y) utilizado para o cálculo da eficiência. B. Curva de Amplificação utilizada para verificar a eficiência de amplificação dos primers e no quadro interno a curva de dissociação mostrando a amplificação de um único fragmento para os primers testados. Quantidade de RNA presente em cada diluição: 1 cDNA diluído 1/10 (500ng RNA); 2 cDNA diluído 1/50 (100ng RNA); 3 cDNA diluído 1/250 (20ng RNA); 4 cDNA diluído 1/1250 (4ng RNA), como descrito no Material e Métodos.

Cálculo da eficiência para o gene de GAPDH. A. Gráfico da eficiência onde são mostrados a equação da reta e o valor do coeficiente de angulação (slope -y) utilizado para o cálculo da eficiência. B. Curva de Amplificação utilizada para verificar a eficiência de amplificação dos primers e no quadro interno a curva de dissociação mostrando a amplificação de um único fragmento para os primers testados. Quantidade de RNA presente em cada diluição para GAPDH(1:10): 1 cDNA diluído 1/10 (500ng RNA); 2 cDNA diluído 1/50 (100ng RNA); 3 cDNA diluído 1/250 (20ng RNA); 4 cDNA diluído 1/1250 (4ng RNA). Quantidade de RNA presente em cada diluição para GAPDH(1:5): 1 cDNA diluído 1/5 (1000ng RNA); 2 cDNA diluído 1/25 (200ng RNA); 3 cDNA diluído 1/125; 4 cDNA diluído 1/625 (8ng RNA), como descrito no Material e Métodos.

ANEXO B

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CCC-1	GAPDH	15,155	15,093	IL-6	29,042	28,902	13,809	2,526	0,17
		15,072			29,054				
		15,053			28,611				
CCC-2	GAPDH	16,818	17,150	IL-6	31	30,963	13,813	2,530	0,17
		17,151			30,952				
CCC	CADDI	17,481	14.454	н	30,938	20 772	15 210	4.025	0.07
CCC-S	GAPDH	14,384	14,454	1L-0	29,501	29,772	15,318	4,035	0,06
		14,408			29,009				
CCC-4	GAPDH	15 387	15.451	II -6	28.24	28.866	13.415	2.132	0.23
	0.11.011	15,542	10,101	12.0	29	20,000	10,110	-,	0,20
		15,423			29,357				
CCC-5	GAPDH	18,141	18,430	IL-6	27,115	26,715	8,285	-2,998	7,99
		18,803			26,776				
		18,347			26,255				
CCC-6	GAPDH	16,28	16,546	IL-6	25,785	26,147	9,601	-1,682	3,21
					26,728				
	CADDI	16,812	12.050	TH (25,929	26.461	12.402	2.12	0.00
CCC-7	GAPDH	13,034	13,058	IL-6	26,341	26,461	13,403	2,12	0,23
		12,024			26,712				
CCC 8	САРОН	13,080	13 570	Пб	20,551	28 757	15 197	3 00	0.07
	GAIDI	13 584	15,570	11-0	28,090	20,131	13,107	5,20	0,07
		13,504			28,54				
CCC-9	GAPDH	16,141	15,988	IL-6	32,518	32.623	16,635	5.35	0.02
		16,069	- ,		33,039	- ,	- ,	- ,	- / -
		15,753			32,311				
CCC-10	GAPDH	16,551	16,593	IL-6	29,617	29,777	13,184	1,90	0,27
		16,539			29,449				
000.11	C + PP V	16,69			30,266		11.000		1.10
CCC-11	GAPDH	15,493	15,551	IL-6	27	26,579	11,028	-0,25	1,19
		15,466			26,313				
CCC-12	CAPDH	21.067	20.916	П-6	20,423	34 436	13 519	2.24	0.21
CCC-12	GAIDI	21,007	20,710	112-0	34 871	54,450	15,517	2,24	0,21
		20.682			34				
CCC-13	GAPDH	15,541	15,517	IL-6	29,512	29,382	13,866	2,58	0,17
		15,527			29,521				-
		15,482			29,114				
CCC-14	GAPDH	16,593	16,474	IL-6	29,736	30,068	13,594	2,31	0,20
		16,533			30,05				
	E L	16,295	()*		30,418	() •	DC(
Amostra N 1	CAPDH	15.962	15 016	Alvo II 6	20,500	media 20.404	DCI 13.577	11 292	
11-1	GALDH	15,805	15,910	11-0	29,509	27,474	13,377	11,205	
		15,000			29,526			1	
N-2	GAPDH	15,569	15,660	IL-6	23,724	23,622	7,962		
	-	15,814	-,		23,606	- / -	,		
		15,598			23,537				
N-3	GAPDH	15,261	15,236	IL-6	23,997	24,022	8,786		
		15,237			24				
	G + PP 45	15,21	1		24,069				
N-4	GAPDH	17,797	17,895	IL-6	35	34,636	16,741	1	
		17,888			34,193				
N-5	GAPDH	21 773	21 694	II -6	54,715	33 857	12 163	<u> </u>	
11-5	GAIDI	21,775	21,074	11-0	33,792	55,057	12,105		
		21,654			33,922				
N-6	GAPDH	15,932	16,100	IL-6	24,278	24,569	8,469	1	1
		16			24,47			1	
		16,368			24,96				

Análise da quantificação relativa (QR) por qRT-PCR para o gene *IL-6* em amostras de miocárdio de pacientes com CCC. O valor de QR para cada amostra (QR individual) foi calculado pelo método $2^{-\Delta\Delta Ct}$, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=6).

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CNI-1	GAPDH	13,778	14,476	IL-6	29,569	28,433	13,957	2,673	0,16
		14,007			28,812				
		14,945			28,053				
CNI-2	GAPDH	17	16,961	IL-6	28,843	29,307	12,346	1,063	0,48
		17,065			29,051				
		16,857			30,027				
CNI-3	GAPDH	17,222	17,49	IL-6	27	26,931	9,440	-1,843	3,59
		17,641			26,951				
		17,612			26,843				
CNI-4	GAPDH	14,37	14,483	IL-6	28,221	28,297	13,814	2,531	0,17
		14,424			28,271				
		14,542			28,4				
CNI-5	GAPDH	14,634	14,71	IL-6	28,906	28,697	13,984	2,701	0,15
		14,722			28,866				
		14,782			28,318				
CNI-6	GAPDH	14,03	14,198	IL-6	27,652	27,698	13,500	2,217	0,22
		14,36			27,892				
		14,204			27,55				
CNI-7	GAPDH	13,073	13,17	IL-6	26,675	26,723	13,556	2,273	0,21
		13,253			27,003				
		13,177			26,492				
CNI-8	GAPDH	15,191	15,30	IL-6	26,99	27,028	11,729	0,446	0,73
		15,319			27,161				
		15,388			26,933				
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	média DCt grupo	
N-1	GAPDH	15,863	15,916	IL-6	29,509	29,494	13,577	11,283	
		15,886			29,446				
		16			29,526				ļ
N-2	GAPDH	15,569	15,660	IL-6	23,724	23,622	7,962		
		15,814			23,606				
	C I DD H	15,598			23,537		0.507		•
N-3	GAPDH	15,261	15,236	IL-6	23,997	24,022	8,786		
		15,237			24				
	C I DD U	15,21	1		24,069				•
N-4	GAPDH	17,797	17,895	IL-6	35	34,636	16,741		
		17,888			34,193				
N	CARDI	18	21 (04	н	34,/15	22.057	12.1/2		ł
N-5	GAPDH	21,773	21,694	1L-6	22 702	33,857	12,163		
		21,050			33,192				
NG	CADDI	21,654	16 100	Ц	33,922	24.5(0	8 460		ł
IN-0	GAPDH	15,952	16,100	1L-0	24,278	24,569	8,409		
		10			24,47				
		16,368			24,96			1	1

Análise da quantificação relativa (QR) por qRT-PCR para o gene *IL-6* em amostras de miocárdio de pacientes com CNI. O valor de QR para cada amostra (QR individual) foi calculado pelo método $2^{-\Delta\Delta Ct}$, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=6).

Amostra	Endogeno	Ct	media	Alvo	Ct Ct	media	DCt	DDCt individual	QR individual
CCC-1	GAPDH	14,033	14,516	IL-12p35	28,266	28,404	13,888	2,346	0,20
		14,519			28,449				
		14,999			28,497				
CCC-2	GAPDH	17.241	17.204	IL-12n35	28.645	28,701	11.497	-0.045	1.03
		18.016			28,756		,	.,	-,
		17 166							
CCC-3	GAPDH	14.152	13 662	II_12n35	27.111	27 170	13 508	1 966	0.26
0005	Grindin	12 266	10,002	11-12000	27,111	27,170	10,000	1,500	0,20
		13,300			27,222				
CCC A	CADDI	12,005	14.004	II 12n25	27,178	27.950	12 764	2 2 2 2	0.21
UUU-4	GAFDH	13,993	14,094	1112p35	27,627	27,039	15,704	2,222	0,21
		14,076			27,651				
	CARDA	14,212	21 100	YY 40.05	28,098	2 0 < 10	0.040	2.201	0.01
<u> </u>	GAPDH	20,404	21,400	IL-12p35	29,565	29,648	8,249	-3,294	9,81
		21,335			29,731				
		21,464							
CCC-6	GAPDH	16,285	16,573	IL-12p35	28,761	28,769	12,196	0,654	0,64
		16,359			28,772				
		16,861			28,774				
CCC-7	GAPDH	13,427	12,270	IL-12p35	25,672	25,816	13,546	2,004	0,25
		12,277			25,827				
		12,262			25,948				
CCC-8	GAPDH	12,269	12,327	IL-12p35	28,031	27,776	15,450	3,907	0,07
		12,313			27,624				
		12,398			27,674				
CCC-9	GAPDH	15,047	15,085	IL-12p35	26,265	26,218	11,133	-0,409	1,33
		15.093	· · · · ·		26,138		Í Í	· · · · · · · · · · · · · · · · · · ·	, í
		15,115			26.252				
CCC-10	GAPDH	15.827	15,795	IL-12p35	27,531	27,563	11,768	0.226	0.86
		15,791	- ,		27.581	,	,	-, -	- ,
		15.768			27.578				
CCC-11	GAPDH	15 295	15.335	IL-12n35	26 205	26.023	10.689	-0.854	1.81
00011	0.11.011	15,273	10,000	12 12000	25,837	20,020	10,005	0,001	1,01
		15,236			26.028				
CCC-12	GAPDH	21.036	20.983	II_12n35	32 534	32 561	11 578	0.04	0.98
0001-	0.11.011	21,095	20,500	12 12000	32,001	02,001	11,070	0,01	0,00
		20,817			33				
CCC-13	GAPDH	15	14 844	II_12n35	28 134	28 215	13 371	1.83	0.28
000-15	Grindin	14.84	14,044	11-12000	28,134	20,215	10,071	1,00	0,20
		14,602			28,077				
CCC-14	CAPDH	15 275	15 534	II_12n35	26,433	26 923	11 380	-0.15	1 11
CCC-14	GAIDI	15,275	15,554	11-12000	20,707	20,725	11,507	-0,15	1,11
		15,527			27,087				
Amostro	Endógono	15,8 Ct	mádia	Alvo	20,895	mádia	DC+	módia DCt aruno	
Amostra	CADDI	15.5(2	15 405	H 12-25	28	27.722	12 229	11 542	-
N-1	GAPDH	15,505	15,495	IL-12p35	28	21,123	12,228	11,542	1
		15,51			27,443		1	1	1
NO	CARDII	15,411	15 41(II 12-25	27,725	26 1 42	10.727		4
N-2	GAPDH	15,627	15,410	IL-12p35	20,180	20,143	10,727	1	1
		15,362			26,092				
	CARDA	15,259	44045	XX 40.05	26,152	A	10.02/		4
N-3	GAPDH	15	14,845	IL-12p35	25,616	25,681	10,836		
		14,861			25,427				
		14,675			26				
N-4	GAPDH	19,816	19,148	IL-12p35	30,766	31,099	11,951	1	1
		18,628			31,432		1	1	1
		19							1
N-5	GAPDH	19,617	19,659	IL-12p35	31,13	31,070	11,410		
		19,608			31,009			1	
		19,753							
N-6	GAPDH	14,112	14,036	IL-12p35	26,043	26,137	12,101		1
		14,141			26,13				
		13,855			26,238				
									-

Análise da quantificação relativa (QR) por qRT-PCR para o gene *IL-12p35* em amostras de miocárdio de pacientes com CCC. O valor de QR para cada amostra (QR individual) foi calculado pelo método $2^{-\Delta\Delta Ct}$, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=6).

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CNI-1	GAPDH	13,778	14,476	IL-12p35	27,202	27,090	12,614	1,072	0,48
		14,007			26,989				
		14,945			27,079				
CNI-2	GAPDH	17	16,961	IL-12p35	27,093	27,112	10,151	-1,392	2,62
		17,065			26,851				
		16,857			27,391				
CNI-3	GAPDH	17	17,04	IL-12p35	28,645	28,701	11,662	0,120	0,92
		16,992			28,756		-		-
		17,124							
CNI-4	GAPDH	15,725	16,025	IL-12p35	27,294	27,698	11,673	0,131	0,91
		15,956			27,604		-		-
		16,094			28,197				
CNI-5	GAPDH	13,692	13,47	IL-12p35	25,1	25,019	11,548	0,005	1,00
		13,399	í.		25,055	í.	· ·	· · · · · · · · · · · · · · · · · · ·	, i
		13,322			24,901				
CNI-6	GAPDH	14.03	14,198	IL-12p35	26.624	26,912	12,714	1,171	0.44
		14.36	,		26,961	-).	,	,	.,
		14.204			27.15				
CNI-7	GAPDH	13.073	13,17	IL-12p35	27,994	28,061	14,893	3,351	0,10
	-	13.253	- /	L	28.188	- ,	,	- /	., .
		13,177			28				
CNI-8	GAPDH	13.573	13,50	IL-12p35	27.886	28,084	14.579	3.037	0.12
	-	13 502	-)	1	28 366	- ,	,	- ,	.,
		13,439			28				
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	média DCt gruno	
N-1	GAPDH	15 563	15.495	IL-12n35	28	27.723	12.228	11.542	
	0.11.011	15 51	10,000	12 12 poo	27 443	21,120	12,220	11,012	
		15 411			27,725				
N-2	GAPDH	15 627	15.416	IL-12n35	26 186	26.143	10.727		
	0.11.011	15,362	10,110	12 12 poo	26,092	20,110	10,727		
		15,362			26,052				
N-3	GAPDH	15,257	14 845	II_12n35	25,616	25 681	10.836		
11-0	Garbi	14 861	14,045	11-12p00	25,010	23,001	10,050		
		14,601			25,427				
N-4	GAPDH	19,816	19 148	IL_12n35	30.766	31.099	11 951		
	Garbi	18,628	15,140	11-12p00	31,432	51,055	11,001		
		10,020			51,452				
N-5	CAPDH	19 617	19 659	II_12n35	31.13	31.070	11.410	+	
11-5	GAIDI	10,609	17,037	11-12055	31,000	51,070	11,410		
		19,008			51,009				
NG	САРОН	17,735	14.036	II 12n35	26.042	26 137	12 101		
11-0	GATDH	14,112	14,030	1L-12p55	26,045	20,137	12,101		
		14,141			20,13			1	
1		13,833	1	1	20,238		I	1	1

Análise da quantificação relativa (QR) por qRT-PCR para o gene *IL-12p35* em amostras de miocárdio de pacientes com CNI. O valor de QR para cada amostra (QR individual) foi calculado pelo método $2^{-\Delta\Delta Ct}$, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=6).

Amostra	Endogeno	G	media	AIVO	G	media	DCt	DDCt individual	QR individual
CCC-1	GAPDH	15,155	15,093	IL-18	29,451	29,397	14,303	-0,805	1,75
		15,072			29,283		1		
		15,053			29,456		1		
CCC-2	CAPDH	16.818	17 150	II -18	34.76	35 136	17.986	2 878	0.14
CCC-2	GAIDII	17 151	17,150	11-10	25.028	55,150	17,500	2,070	0,14
		17,131			35,028				
		17,481			35,619				
CCC-3	GAPDH	14,384	14,454	IL-18	27,938	28,163	13,709	-1,399	2,64
		14,408			28,066				
		14,569			28,484				
CCC-4	GAPDH	15,387	15,451	IL-18	29,075	29,330	13,879	-1,229	2,34
		15,542			29,585				
		15,423			· ·				
CCC-5	GAPDH	18,141	18,430	IL-18	27.163	26.837	8,406	-6.702	104.10
		18 803			26 787		0,100	•,• •=	
		18 347			26.56				
CCC 6	CAPDH	16.28	16 546	II 19	20,50	32 537	15 001	0.993	0.54
CCC-0	GAIDI	10,28	10,540	11-10	22,396	52,557	13,331	0,005	0,54
		16.010			52,470				
CCC 7	CADDI	16,812	12.050	II 10	24.541	24 5 49	11.400	2.0	12.20
<u> </u>	GAPDH	13,034	13,058	IL-18	24,541	24,548	11,490	-3,62	12,28
		13,054			24,5				
		13,086			24,604				
CCC-8	GAPDH	13,424	13,570	IL-18	24,625	24,596	11,026	-4,08	16,93
		13,584			24,511				
		13,701			24,652				
CCC-9	GAPDH	16,141	15,988	IL-18	32,078	32,206	16,219	1,11	0,46
		16,069			32,308				
		15,753			32.233				
CCC-10	GAPDH	16.551	16,593	IL-18	28,246	28,197	11.604	-3.50	11.35
		16 539			28 144		,	-,	,
		16 69			28 202				
CCC 11	CAPDH	15 402	15 551	II 19	20,202	30.114	14 563	0.55	1.46
CCC-II	GAIDI	15,495	15,551	11-10	30,094	30,114	14,505	-0,55	1,40
		15,400			20,141				
CCC 12	CARDII	13,094	20.01/	II 10	20.21	20.200	0.472	5 ()	40.71
<u> </u>	GAPDH	21,067	20,916	IL-18	30,31	30,389	9,475	-5,04	49,71
		21			30,308				
000.44	CARDA	20,682		Y 40	30,549	20.010	12 202	1.01	2.50
CCC-13	GAPDH	15,541	15,517	IL-18	28,9	28,819	13,303	-1,81	3,50
		15,527			29				
		15,482			28,558				
CCC-14	GAPDH	16,593	16,474	IL-18	30,069	30,220	13,746	-1,36	2,57
		16,533			30,439				
		16,295			30,151				
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	média DCt grupo	
N-1	GAPDH	15,863	15,916	IL-18	33	33,170	17,253	15,108	
		15,886			33,285				
		16			33,224				
N-2	GAPDH	15,569	15,660	IL-18	30.374	30,334	14.673		1
		15,814	- ,		29,857	,	,,		
		15 598			30.77				
N_3	CAPDH	15,250	15 236	II -18	30,857	30 423	15 187		
11-0	GHIDH	15,201	13,200	11-10	30,411	00,420	10,107		
		15,237			20				
N.4	CAPDI	17,21	17 905	II 19					1
IN-4	GAPDH	17,797	17,895	IL-18					
		17,888							
	~	18							
N-5	GAPDH	21,773	21,694	IL-18					
		21,656							
		21,654				1			
N-6	GAPDH	15,932	16,100	IL-18	29,511	29,419	13,319		
		16			29,355				
		16,368			29,392		1		
			-	-				-	•

Análise da quantificação relativa (QR) por qRT-PCR para o gene *IL-18* em amostras de miocárdio de pacientes com CCC. O valor de QR para cada amostra (QR individual) foi calculado pelo método 2^{-ΔΔCt}, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=4).

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CNI-1	GAPDH	13,778	14,476	IL-18	28,661	28,536	14,060	-1,049	2,07
		14,007			28,326				
		14,945			28,62				
CNI-2	GAPDH	17	16,961	IL-18	34,788	34,894	17,933	2,825	0,14
		17,065			35				
		16,857							
CNI-3	GAPDH	17,222	17,49	IL-18	33,677	33,839	16,347	1,239	0,42
		17,641			34				
		17,612							
CNI-4	GAPDH	14,37	14,483	IL-18	30,128	30,103	15,620	0,512	0,70
		14,424			29,938				
		14,542			30,242				
CNI-5	GAPDH	14,634	14,71	IL-18	29,526	29,852	15,140	0,031	0,98
		14,722			29,903				
		14,782			30,128				
CNI-6	GAPDH	14,03	14,198	IL-18		30,617	16,419	1,311	0,40
		14,36			30,571				
		14,204			30,663				
CNI-7	GAPDH	13,073	13,17	IL-18	30,265	29,857	16,690	1,582	0,33
		13,253			29,908				
		13,177			29,399				
CNI-8	GAPDH	15,191	15,30	IL-18	29,709	29,509	14,210	-0,898	1,86
		15,319			29,247				
		15,388			29,572				
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	média DCt grupo	
N-1	GAPDH	15,863	15,916	IL-18	33	33,170	17,253	15,108	
		15,886			33,285				
		16			33,224				
N-2	GAPDH	15,569	15,660	IL-18	30,374	30,334	14,673		
		15,814			29,857				
		15,598			30,77				
N-3	GAPDH	15,261	15,236	IL-18	30,857	30,423	15,187		
		15,237			30,411				
		15,21			30				
N-4	GAPDH	17,797	17,895	IL-18					
		17,888							
		18							
N-5	GAPDH	21,773	21,694	IL-18					
		21,656							
		21,654							
N-6	GAPDH	15,932	16,100	IL-18	29,511	29,419	13,319		
		16			29,355				
		16,368			29,392				

Análise da quantificação relativa (QR) por qRT-PCR para o gene *IL-18* em amostras de miocárdio de pacientes com CNI. O valor de QR para cada amostra (QR individual) foi calculado pelo método $2^{-\Delta\Delta Ct}$, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=4).

Amostra	Endogeno	u	media	AIVO	u	media	DCt	DDCt individual	QK individual
CCC-1	GAPDH	15,155	15,093	CXCL8/IL-8	29,581	29,728	14,635	2,683	0,16
		15 072	-		30		-	-	
		15.052			20,604				
		13,033			29,004				
CCC-2	GAPDH	16,818	17,150	CXCL8/IL-8	31	30,883	13,733	1,781	0,29
		17,151			30,816				
		17,481			30.832				
CCC-3	CAPDH	14.384	14 454	CYCL8/IL-8	30.456	30.619	16 165	4 213	0.05
<u> </u>	GAIDII	14,364	14,434	CACLO/IL-0	30,430	50,019	10,105	4,215	0,05
		14,408			30,744				
		14,569			30,656				
CCC-4	GAPDH	15,387	15,451	CXCL8/IL-8	29,74	29,831	14,380	2,428	0,19
		15 542	,		29 922	,	,	,	· · ·
		15,422			20,201				
	CIDDY	13,423	10.120	CTUCK OF A	30,291	25.440	0.000	0.072	= 00
CCC-5	GAPDH	18,141	18,430	CXCL8/IL-8	27,66	27,419	8,989	-2,963	7,80
		18,803			27,178				
		18,347							
CCC-6	GAPDH	16.28	16,546	CXCL8/IL-8	26.349	26,591	10.045	-1.907	3.75
		- 0,-0	;		26,832			-,	-,
		16.912			20,832				
		10,812			20,890				
CCC-7	GAPDH	13,034	13,058	CXCL8/IL-8	25,213	25,129	12,071	0,12	0,92
		13,054			25,115				
		13.086			25.06				
CCC-8	GAPDH	13 424	13 570	CXCL8/IL-8	27 444	27 504	13 935	1 98	0.25
000-0	0.11 DI	12 594	10,070	CACLO/IL-0	27,501	27,504	10,700	1,70	0,20
		15,584			27,591				
		13,701			27,478				
CCC-9	GAPDH	16,141	15,988	CXCL8/IL-8	29,663	30,000	14,013	2,06	0,24
		16.069			29.87				
		15 753			30.468				
CCC 10	CADDI	16,755	1(502	CVCL0/IL0	20,292	20.971	12 279	1.22	0.40
CCC-10	GALDU	16,531	10,595	CACL0/IL-0	29,382	29,071	13,278	1,55	0,40
		16,539			30,175				
		16,69			30,056				
CCC-11	GAPDH	15,493	15,551	CXCL8/IL-8	28,511	28,769	13,218	1,27	0,42
		15.466	-		28,944		-	-	
		15 694			28 852				
CCC 12	CADDI	15,07	20.01/	CVCL 0/IL 0	24,052	24.0(2	14.046	2.00	0.22
CCC-12	GAPDH	21,067	20,916	CACL8/IL-8	54,955	34,962	14,040	2,09	0,25
		21			34,933				
		20,682			35				
CCC-13	GAPDH	15,541	15,517	CXCL8/IL-8	32,377	32,454	16,937	4,99	0,03
		15 527	,		32.28	,	,	,	· · ·
		15 482			32 705				
00014	CADDI	15,462	16 454	CVCL0/IL0	32,703	21.151	14 (07	2.54	0.15
CCC-14	GAPDH	10,593	10,474	CACL8/IL-8	51,172	31,171	14,09/	2,74	0,15
		16,533			31,169				
		16,295							
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	média DCt grupo	
N-1	GAPDH	15,863	15,916	CXCL8/IL-8	29,817	30,221	14.304	11.952	1
		15 886			30,624	,	,		
		15,000			50,024				
		16							1
N-2	GAPDH	15,569	15,660	CXCL8/IL-8	27,43	27,493	11,832		
		15,814			27,396				
		15.598			27.652				
N-3	GAPDH	15 261	15 236	CXCL8/II -8	24	23 915	8 679	1	1
11-5	UAIDI	15,201	13,230	CACLO/IL-0	22,901	25,715	0,077		
		15,257			23,091				
		15,21			23,855				
N-4	GAPDH	17,797	17,895	CXCL8/IL-8		35,102	17,207		
		17,888			35,203				
		18			35				
N-5	GAPDH	21 773	21 604	CXCL 8/IL -8					1
11-5	GAIDI	21,775	21,074	CACLO/IL-0					
		21,656							
		21,654							
N-6	GAPDH	15,932	16,100	CXCL8/IL-8	23,851	23,837	7,737		
		16			23,958				
		16.368			23,702				
L		10,000			20,102			•	1

Análise da quantificação relativa (QR) por qRT-PCR para o gene *CXCL8/IL-8* **em amostras de miocárdio de pacientes com CCC.** O valor de QR para cada amostra (QR individual) foi calculado pelo método 2^{-ΔΔCt}, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=5).

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CNI-1	GAPDH	13,778	14,476	CXCL8/IL-8	28,133	28,261	13,785	1,833	0,28
		14,007			28,263				
		14,945			28,387				
CNI-2	GAPDH	17	16,961	CXCL8/IL-8	31,801	31,325	14,364	2,412	0,19
		17,065			30,848				
		16,857							
CNI-3	GAPDH	17,222	17,49	CXCL8/IL-8	28,277	28,190	10,698	-1,254	2,38
		17,641			28,292				
		17,612			28				
CNI-4	GAPDH	14,37	14,483	CXCL8/IL-8	33,101	33,068	18,585	6,633	0,01
		14,424			33,034				
		14,542							
CNI-5	GAPDH	14,634	14,71	CXCL8/IL-8		32,605	17,892	5,940	0,02
		14,722			32,315				
		14,782			32,894				
CNI-6	GAPDH	14,03	14,198	CXCL8/IL-8	30,448	30,692	16,494	4,542	0,04
		14,36			30,723				
		14,204			30,906				
CNI-7	GAPDH	13,073	13,17	CXCL8/IL-8	30,356	30,190	17,022	5,070	0,03
		13,253			30,277				
		13,177			29,937				
CNI-8	GAPDH	15,191	15,30	CXCL8/IL-8	30,206	29,953	14,654	2,702	0,15
		15,319			29,593				
		15,388			30,06				
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	média DCt grupo	
N-1	GAPDH	15,863	15,916	CXCL8/IL-8	29,817	30,221	14,304	11,952	
		15,886			30,624				
		16							
N-2	GAPDH	15,569	15,660	CXCL8/IL-8	27,43	27,493	11,832		
		15,814			27,396				
	0 - P.P.V	15,598		071 07 0 FT 0	27,652		0.670		
N-3	GAPDH	15,261	15,236	CXCL8/IL-8	24	23,915	8,679		
		15,237			23,891				
	CARDY	15,21	15.005	CNCLOUR O	23,855	25.102	15 205		
N-4	GAPDH	17,797	17,895	CXCL8/IL-8	25 202	35,102	17,207		
		17,888			35,203				
NC	CARDIN	18	21 (04	CVCI 0/II - 0	35				
N-5	GAPDH	21,773	21,694	CXCL8/IL-8					
		21,656							
NG	CARDIN	21,654	16 100	CVCLOUL	22.051	22.025	7 727		
N-6	GAPDH	15,932	16,100	CXCL8/IL-8	23,851	23,837	1,131		
		16			23,958				
1		16,368			23,702		1	1	1

Análise da quantificação relativa (QR) por qRT-PCR para o gene *CXCL8/IL-8* em amostras de miocárdio de pacientes com CNI. O valor de QR para cada amostra (QR individual) foi calculado pelo método $2^{-\Delta\Delta Ct}$, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=5).

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CCC-1	GAPDH	14,033	14,516	IL-13					
		14,519							
000.0	CARDIN	14,999	15 20 4	H 12					
<u>CCC-2</u>	GAPDH	17,241	17,204	1113					
		17,166							
CCC-3	GAPDH	14,152	13,662	IL-13	32,26	32,654	18,992	2,364	0,19
		13,366	, i i i i i i i i i i i i i i i i i i i		33,048	· ·	Í		,
		13,469							
CCC-4	GAPDH	13,995	14,094	IL-13					
		14,076							
CCCF	CAPDH	14,212	21.400	II 12					
- CCC-5	GATDI	20,404	21,400	1113					
		21,355							
CCC-6	GAPDH	16,285	16,573	IL-13	33,333	33,650	17,077	0,449	0,73
		16,359			33,966				
		16,861							
CCC-7	GAPDH	13,427	12,270	IL-13	31,907	31,994	19,724	3,10	0,12
		12,277			32,08				
CCC-8	GAPDH	12,202	12.327	II13	52,045				
0000	0.11.011	12,209	12,027	12.10					
		12,398							
CCC-9	GAPDH	15,047	15,085	IL-13	32,671	32,807	17,722	1,09	0,47
		15,093			32,943				
000 10	CADDII	15,115	15 705	II 12					
CCC-10	GAPDH	15,827	15,795	112-13					
		15,751							
CCC-11	GAPDH	15,295	15,335	IL-13	31,093	30,982	15,647	-0,98	1,97
		15,473			30,96				
		15,236			30,892				
CCC-12	GAPDH	21,036	20,983	IL-13					
		21,095							
CCC-13	GAPDH	15	14.844	II13					
000 10	0.11.211	14,84	1.,011	12.10					
		14,693							
CCC-14	GAPDH	15,275	15,534	IL-13					
		15,527							
Amostra	Endógono	15,8 Ct	mádia	Alvo	Ct	mádia	DCt	módia DCt grupo	
Alliosti a	GAPDH	15 563	15 495	IL-13	32.047	31.819	16 325	16 628	
		15,51			32,175	,			
		15,411			31,236				
N-2	GAPDH	15,627	15,416	IL-13		32,000	16,584		
		15,362			31,961				
N 3	CAPDH	15,259	14 845	II 13	32,038	31 921	16.976		
11-5	UAI DI	14 861	14,045	1115	31,007	51,021	10,970		
		14,675			32,373				
N-4	GAPDH	19,816	19,148	IL-13					
		18,628						1	
NC	CADDI	19	10 (50	н 12					
N-5	GAPDH	19,617	19,659	11-13				1	
		19,008							
N-6	GAPDH	14,112	14,036	IL-13				1	1
		14,141						1	
		13,855	[ļ	l	1	

Análise da quantificação relativa (QR) por qRT-PCR para o gene *IL-13* em amostras de miocárdio de pacientes com CCC. O valor de QR para cada amostra (QR individual) foi calculado pelo método 2^{-ΔΔCt}, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=3). A expressão de IL-13 não foi detectada em algumas amostras de miocárdio de pacientes com CCC, dessa forma não foi possível calcular a quantificação relativa.

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CNI-1	GAPDH	13,778	14,476	IL-13	33,215	33,249	18,773	2,145	0,23
		14,007			33,283				
		14,945							
CNI-2	GAPDH	17	16,961	IL-13		34,421	17,460	0,832	0,56
		17,065			34,062				
		16,857			34,78				
CNI-3	GAPDH	17,222	17,49	IL-13					
		17,641							
		17,612							
CNI-4	GAPDH	15,725	16,025	IL-13					
		15,956							
	CADDI	16,094	12.45	II 12	l				
CNI-5	GAPDH	13,692	13,47	IL-13					
		13,399							
CNLC	CADDII	13,322	14 109	П 12					
CINI-0	GAPDH	14,05	14,198	1115					
		14,50							
CNI 7	CADDH	14,204	12.17	II 12	24.005	24 709	21.620	5.002	0.02
CINI-7	GAIDH	13,073	13,17	11-15	34,993	54,790	21,030	5,002	0,03
		13,255			54,001				
CNL8	GAPDH	13,177	13 50	II_13					
0.120	0.11.011	13,502	10,00	12.10					
		13,439							
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	média DCt grupo	
N-1	GAPDH	15,563	15,495	IL-13	32,047	31,819	16,325	16,628	
		15,51			32,175				
		15,411			31,236				
N-2	GAPDH	15,627	15,416	IL-13		32,000	16,584		
		15,362			31,961				
		15,259			32,038				
N-3	GAPDH	15	14,845	IL-13	31,689	31,821	16,976		
		14,861			31,401				
		14,675			32,373				
N-4	GAPDH	19,816	19,148	IL-13					
		18,628							
	G + PP 4-	19	10 (4
N-5	GAPDH	19,617	19,659	IL-13					
		19,608							
N	CARDI	19,753	14.026	H 12					4
N-6	GAPDH	14,112	14,036	IL-13					
		14,141							
1	1	13,855	1	1	1	1		1	I

Análise da quantificação relativa (QR) por qRT-PCR para o gene *IL-13* em amostras de miocárdio de pacientes com CNI. O valor de QR para cada amostra (QR individual) foi calculado pelo método 2^{-ΔΔCt}, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=3). A expressão de IL-13 não foi detectada em algumas amostras de miocárdio de pacientes com CNI, dessa forma não foi possível calcular a quantificação relativa.

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CCC-1	GAPDH	15,155	15,093	TGF-β	30,242	30,095	15,002	7,242	0,01
		15,072			29,948				
CCC 2	САРДИ	15,053	17 150	TCF 8	26 250	26 137	8 0 8 7	1 227	0.43
CCC-2	GAIDI	17,151	17,150	10r-p	26,106	20,137	6,907	1,227	0,45
		17,481			26,045				
CCC-3	GAPDH	14,384	14,454	TGF-β	26,145	26,191	11,738	3,978	0,06
		14,408			26,373				
CCCA	CAPDII	14,569	15 451	TCE 0	26,056	26.240	10.790	2.020	0.12
CCC-4	GAFDH	15,587	15,451	төг-р	26,209	20,240	10,789	3,029	0,12
		15,423			26,198				
CCC-5	GAPDH	18,141	18,430	TGF-β	27,406	27,453	9,023	1,263	0,42
		18,803			27,506				
CCC 6	САРДИ	18,347	16 546	TCF 8	27,448	26 345	9 799	2 030	0.24
	GAFDH	10,28	10,540	IGr-p	26,429	20,345	9,799	2,039	0,24
		16,812			26,303				
CCC-7	GAPDH	13,034	13,058	TGF-β	23,808	23,718	10,660	2,90	0,13
		13,054			23,627				
CCC 9	CADDH	13,086	13 570	TCE 8	20	27.093	14 412	6.65	0.01
<u> </u>	GAFDH	13,424	13,370	IGr-p	27.971	27,985	14,415	0,05	0,01
		13,701			27,977				
CCC-9	GAPDH	16,141	15,988	TGF-β	24,871	24,914	8,927	1,17	0,45
		16,069			24,864				
CCC 10	CADDH	15,753	16 503	TCE 8	25,008	24.061	7 467	0.20	1.22
CCC-10	GAPDH	16,531	10,595	IGr-p	24,105	24,001	/,40/	-0,29	1,22
		16,69			23,851				
CCC-11	GAPDH	15,493	15,551	TGF-β	23,383	23,118	7,567	-0,19	1,14
		15,466			23,159				
CCC 12	САРДИ	15,694	20.016	TCF 8	22,813	28.611	7 694	0.07	1.05
	UAI DII	21,007	20,710	101-p	28,721	20,011	7,074	-0,07	1,05
		20,682			29,166				
CCC-13	GAPDH	15,541	15,517	TGF-β	24,635	24,435	8,918	1,16	0,45
		15,527			24,249				
CCC-14	CAPDH	15,482	16 474	TCF-8	24,421	25 453	8 980	1 22	0.43
CCC-14	GAIDI	16,533	10,474	101-p	25,578	23,435	0,700	1,22	0,45
		16,295			25,738				
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	média DCt grupo	
N-1	GAPDH	15,863	15,916	TGF-β	24,235	24,210	8,294	7,760	
		15,880			24,218				
N-2	GAPDH	15,569	15,660	TGF-β	23,465	23,417	7,757		
		15,814			23,426				
N 2	CADDU	15,598	15.026	TOP 0	23,36	22.0.40	5.012		
N-3	GAPDH	15,261	15,236	төғ-р	23,025	23,049	7,813		
		15,237			23,043				
N-4	GAPDH	17,797	17,895	TGF-β	34,426				1
		17,888			36				
N 7	CARDI	18	31.654	TOPA	32,623				4
N-5	GAPDH	21,773	21,694	TGF-B					
		21,654							
N-6	GAPDH	15,932	16,100	TGF-β	23,31	23,276	7,176		1
		16			23,2				
		16,368			23,317				J

Análise da quantificação relativa (QR) por qRT-PCR para o gene *TGF-* β em amostras de miocárdio de pacientes com CCC. O valor de QR para cada amostra (QR individual) foi calculado pelo método 2^{- $\Delta\Delta$ Ct}, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=4).

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CNI-1	GAPDH	13,778	14,476	TGF-β	25,526	25,555	11,079	3,319	0,11
		14,007			25,589				
		14,945			25,55				
CNI-2	GAPDH	18	16,961	TGF-β	26,485	26,637	9,676	1,916	0,30
		17,065			26,686				
		16,857			26,739				
CNI-3	GAPDH	14,03	14,20	TGF-β	26,073	26,084	11,886	4,126	0,07
		14,36			26,106				
		14,204			26,074				
CNI-4	GAPDH	14,37	14,483	TGF-β	30,732	30,944	16,461	8,701	0,00
		14,424			30,99				
		14,542			31,109				
CNI-5	GAPDH	14,634	14,71	TGF-β	27,508	27,689	12,976	5,216	0,03
		14,722			27,718				
		14,782			27,841				
CNI-6	GAPDH	13,073	13,170	TGF-β	26,098	26,146	12,979	5,219	0,03
		13,253		_	26,173				
		13,177			26,168				
CNI-7	GAPDH	17,222	17,49	TGF-β	26,532	26,750	9,258	1,498	0,41
		17,641			26,649	-			
		17,612			27,069				
CNI-8	GAPDH	15,191	15,30	TGF-β	,	23,714	8,414	0,654	0,64
		15,319			23,832				
		15,388			23,595				
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	média DCt grupo	
N-1	GAPDH	15,863	15,916	TGF-β	24,235	24,210	8,294	7,760	
		15,886			24,218				
		16			24,178				
N-2	GAPDH	15,569	15,660	TGF-β	23,465	23,417	7,757		Ī
		15,814			23,426				
		15,598			23,36				
N-3	GAPDH	15,261	15,236	TGF-β	23,025	23,049	7,813		Ī
		15,237			23,043				
		15,21			23,08				
N-4	GAPDH	17,797	17,895	TGF-β	34,426				Ī
		17,888			36				
		18			32,623				
N-5	GAPDH	21,773	21,694	TGF-β					Ī
		21,656							
		21,654							
N-6	GAPDH	15,932	16,100	TGF-β	23,31	23,276	7,176		İ
		16			23,2				
		16,368			23,317				

Análise da quantificação relativa (QR) por qRT-PCR para o gene *TGF-* β em amostras de miocárdio de pacientes com CNI. O valor de QR para cada amostra (QR individual) foi calculado pelo método 2^{- $\Delta\Delta$ Ct}, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=4).

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt
CCC-1	GAPDH	14,033	14,516	Foxp3			
		14,519					
		14,999					
CCC-2	GAPDH	17,241	17,204	Foxp3	35,183	34,585	17,381
		18,016			35,126		
	CARDU	17,166	12.00		33,445	21.005	10.224
CCC-3	GAPDH	14,152	13,662	Foxp3	32,762	31,987	18,324
		13,366			31,868		
	CADDII	13,469	14.004	E	31,33	22 594	10.400
	GAPDH	13,995	14,094	гохрэ	32,135	32,584	18,490
		14,070			32,303		
CCC-5	GAPDH	20.404	21.400	Foyn3	33,313	33 115	11 716
	GAIDI	21,335	21,400	гохрэ	33,002	55,115	11,710
		21,355			55,002		
CCC-6	GAPDH	16.285	16,573	Foxp3	32.667	32.823	16,250
	-	16,359	- ,		32,334	-)	-,
		16,861			33,467		
CCC-7	GAPDH	13,427	12,270	Foxp3	29,155	29,052	16,782
		12,277			28,948		
		12,262			29,568		
CCC-8	GAPDH	12,269	12,327	Foxp3	25,641	25,294	12,967
		12,313			25,048		
		12,398			25,193		
CCC-9	GAPDH	15,047	15,085	Foxp3	33,362	33,607	18,522
		15,093			33,484		
CCC 10	CARDU	15,115	1	F A	33,974	20.174	11260
CCC-10	GAPDH	15,827	15,795	Foxp3	30,087	30,164	14,369
		15,791			30,409		
CCC 11	CADDH	15,708	15 225	Form2	29,997	20 212	12.070
	GALDU	15,295	15,555	гохрэ	29,234	29,515	13,979
		15,475			29,322		
CCC-12	GAPDH	21.036	20.983	Foxn3	27,501	34.641	13.658
		21,095	,,		34,289	,	,
		20,817			34,992		
CCC-13	GAPDH	15	14,844	Foxp3			
		14,84					
		14,693					
CCC-14	GAPDH	15,275	15,534	Foxp3			
		15,527					
		15,8			C .		2.01
Amostra	Endogeno	Ct	media	Alvo	Ct	média	DCt
N-1	GAPDH	15,563	15,495	Foxp3			
		15,51					
N 2	САРДИ	15,411	15 416	Forn3	32 850	32 830	17.414
11-2	GAIDII	15,362	13,410	гохро	32,057	52,050	17,414
		15,362			52,0		
N-3	GAPDH	15	14.845	Foxp3			
		14,861	,				
		14,675					
N-4	GAPDH	19,816	19,148	Foxp3			
		18,628			T I		
		19					
N-5	GAPDH	19,617	19,659	Foxp3			
		19,608					
		19,753					
N-6	GAPDH	14,112	14,036	Foxp3			
		14,141					
		13,855					

Valores de DCt para o gene *Foxp3* em amostras de miocárdio de pacientes com CCC. A expressão de Foxp3 não foi detectada em amostras de miocárdio de doadores saudáveis (controles normais; n=6), dessa forma a expressão relativa dessa quimiocina não pôde ter seu QR calculado. O valor de DCt para cada amostra foi normalizado pelo gene de referência, GAPDH. A expressão de Foxp3 não foi detectada em três amostras de miocárdio de pacientes com CCC.

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt
CNI-1	GAPDH	13,778	14,476	Foxp3	31,201	31,156	16,680
		14,007			31,037		
		14,945			31,229		
CNI-2	GAPDH	18	16,961	Foxp3	32,423	32,641	15,680
		17,065			32,918		
		16,857			32,859		
CNI-3	GAPDH	14,03	14,198	Foxp3	35,869	35,435	21,237
		14,36		-	35		-
		14,204			35,612		
CNI-4	GAPDH	15,725	16,025	Foxp3			
		15,956	,	•			
		16,094					
CNI-5	GAPDH	13,692	13,47	Foxp3			
		13,399	,				
		13,322					
CNI-6	GAPDH	14,03	14,198	Foxp3			
		14,36	,	•			
		14,204					
CNI-7	GAPDH	13,073	13,17	Foxp3			
		13.253	,	•			
		13,177					
CNI-8	GAPDH	13,573	13,50	Foxp3			
		13.502	,	•			
		13,439					
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt
N-1	GAPDH	15,863	15,916	Foxp3			
		15.886	-)				
		16					
N-2	GAPDH	15,569	15,660	Foxp3			
		15.814	-)				
		15.598					
N-3	GAPDH	15.261	15.236	Foxp3			
	-	15,237	-,				
		15.21					
N-4	GAPDH	19.816	19,148	Foxp3			
		18,628	,	•			
		19					
N-5	GAPDH	19,617	19,659	Foxp3			
		19,608	,				
		19,753					
N-6	GAPDH	14,112	14,036	Foxp3			
		14,141					
		13,855					

Valores de DCt para o gene *Foxp3* em amostras de miocárdio de pacientes com CNI. A expressão de Foxp3 não foi detectada em amostras de miocárdio de doadores saudáveis (controles normais; n=6), dessa forma a expressão relativa dessa quimiocina não pôde ter seu QR calculado. O valor de DCt para cada amostra foi normalizado pelo gene de referência, GAPDH. A expressão de Foxp3 não foi detectada em cinco amostras de miocárdio de pacientes com CNI.

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CCC-1	GAPDH	14,033	14,516	CCL3/MIP-1a		33,049	18,533	4,099	0,06
		14,519			32,967				
		14,999			33,131				
CCC-2	GAPDH	17.241	17.204	CCL3/MIP-1a		34.357	17,154	2,720	0.15
		18.016	, -		34.616	- ,	, -	, -	- , -
		17.166			34.098				
CCC-3	GAPDH	14 152	13 662	CCL3/MIP-1a	28 274	28 602	14 940	0 506	0.70
	0/11 DH	13 366	10,002	CCLD/MII IV.	28,274	20,002	14,240	0,000	0,70
		13,500			28,795				
CCC 4	САРДИ	13,405	14 004	CCI 3/MIP 1a	30,110	30 353	16 250	1 825	0.28
CCC-4	GAIDI	14.076	14,024	CCL5/MII-IQ	30,255	50,555	10,237	1,025	0,20
		14,070			30,233				
CCCF	CADDH	14,212	19.041	CCL2/MID 1a	27.740	10 103	10.242	4 102	19.29
CCC-5	GAFDH	17,911	10,041	CCL5/MIF-10	21,149	20,203	10,242	-4,192	10,20
		10 10 212			20,243				
CCC	CADDII	16,215	1(572	CCL2/MID 1.	20,033	20.920	14.247	0 197	1.14
	GAPDH	16,285	10,575	CCL3/MIP-10	20,812	30,820	14,247	-0,187	1,14
		16,339			30,828				
000 7	CADDI	10,801	12.270	CCL 204ID 1	26.520	2((7)	14 401	0.02	1.02
<u> </u>	GAPDH	13,427	12,270	CCL3/MIP-10	20,339	20,0/1	14,401	-0,03	1,02
		12,277			20,730				
CCC 0	CADDII	12,262	12 227	CCI 2/MID 1	20,/3/	27.267	15.040	0.71	0.00
-CCC-8	GAPDH	12,269	12,327	CCL5/MIP-Ia	27,23	2/,30/	15,040	0,61	0,00
		12,313			27,201				
CCC 0	CADDI	12,398	15.005	CCL 204ID 1	27,67	20.05/	15.071	1.44	0.27
<u> </u>	GAPDH	15,047	15,085	CCL3/MIP-1a	20.040	30,956	15,8/1	1,44	0,37
		15,093			30,849				
000.10	CARDI	15,115	15 505	COLADUD 1	31,062	20 (20	10.055	1.50	2.00
CCC-10	GAPDH	15,827	15,795	CCL3/MIP-1a	28,589	28,650	12,855	-1,58	2,99
		15,791			28,754				
000.11	CARDI	15,768	15.225	COLADUD 1	28,607	25.420	10.007		7 00
<u> </u>	GAPDH	15,295	15,335	CCL3/MIP-1a	27,376	27,420	12,086	-2,35	5,09
		15,473			27,238				
000.12	CADDI	15,236	20.002	CCL 204ID 1	27,647	24.151	12.1(0	1.05	2.40
<u> </u>	GAPDH	21,036	20,983	CCL3/MIP-1a	34,322	34,151	13,168	-1,2/	2,40
		21,095			33,98				
CCC 12	CADDII	20,817	14.944	CCL 2/MID 1	28.005	20.227	14 202	0.05	1.04
	GAPDH	15	14,844	CCL5/MIP-10	28,995	29,227	14,383	-0,05	1,04
		14,84			29,054				
CCC 14	CADDII	14,093	15 524	CCL2/MID 1.	29,052	20.210	12 (04	0.75	1.69
UCC-14	GALDU	15,275	15,554	CCL5/MIF-10	29,972	29,210	13,004	-0,75	1,00
		15,527			28,303				
A	Endérana	15,8		A 1	29,118		DC4	midia DCt more a	
Amosu'a	CADDI	15.562	15 405	CCI 2/MID 1	Cl	21 907	16 402	14 424	ł
N-1	GAPDH	15,505	15,495	CCL5/MIP-10	31 700	51,897	10,402	14,434	
		15,51			31,709				
N 2	CADDE	15,411	15 416	CCL2/MID 1	28.004	20.172	12 756	ł	
IN-2	GAPDH	15,027	15,410	CCL5/MIP-10	20,99	29,1/2	15,/50		
		15,302			29,028				
N 2	CADDII	15,239	14.945	CCL2/MID 1.	29,499	29.027	14.002		
IN-3	GAPDH	11 961	14,845	CCL5/MIP-10	29	28,937	14,092		
		14,801			28,803				
NA	CADDII	14,0/3	10 1 49	CCI 2/MID 1	20,947	22.020	12 790		ł
IN-4	GAPDH	19,810	19,148	CCL5/MIP-10	22 824	32,928	15,/80		
		10,028			32,834				
N.5	CADDE	19	10.650	CCL2/MID 1	32,931			<u> </u>	
N-5	GAPDH	19,01/	19,059	CCL5/MIP-10					
		19,608							
N	CADDI	19,753	14.036	CCI 2/MID 4	20.04	20.175	14 120		1
N-0	GAPDH	14,112	14,036	CCL5/MIP-Ia	28,06	28,175	14,139		
		14,141			28,273				
		13,855			28,193				1

Análise da quantificação relativa (QR) por qRT-PCR para o gene *CCL3/MIP-1* α em amostras de miocárdio de pacientes com CCC. O valor de QR para cada amostra (QR individual) foi calculado pelo método 2^{-ΔΔCt}, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=5).

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CNI-1	GAPDH	12,718	12,746	CCL3/MIP-1alpha	31,003	30,833	18,087	3,653	0,08
		12,773			30,796				
		15			30,699				
CNI-2	GAPDH	17,958	16,707	CCL3/MIP-1alpha		33,704	16,997	2,563	0,17
		16,896			33,894				
		16,517			33,513				
CNI-3	GAPDH	17	17,04	CCL3/MIP-1alpha	35	34,571	17,533	3,099	0,12
		16,992			34,616				
		17,124			34,098				
CNI-4	GAPDH	15,725	16,025	CCL3/MIP-1alpha	31,739	31,545	15,520	1,086	0,47
		15,956			31,351				
		16,094							
CNI-5	GAPDH	13,692	13,47	CCL3/MIP-1alpha	26,495	26,274	12,803	-1,631	3,10
		13,399			26,21				
		13,322			26,118				
CNI-6	GAPDH	14,195	14,414	CCL3/MIP-1alpha	31,108	31,629	17,215	2,781	0,15
		14,633			31,824				
		13,636			31,954				
CNI-7	GAPDH	13,111	13,17	CCL3/MIP-1alpha		32,698	19,526	5,092	0,03
		13,206			32,577				
		13,198			32,819				
CNI-8	GAPDH	13,573	13,50	CCL3/MIP-1alpha		32,159	18,654	4,220	0,05
		13,502			31,763				
		13,439			32,555				
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	média DCt grupo	
N-1	GAPDH	15,563	15,495	CCL3/MIP-1a		31,897	16,402	14,434	
		15,51			31,709				
		15,411			32,084				
N-2	GAPDH	15,627	15,416	CCL3/MIP-1a	28,99	29,172	13,756		
		15,362			29,028				
		15,259			29,499				
N-3	GAPDH	15	14,845	CCL3/MIP-1a	29	28,937	14,092		
		14,861			28,865				
		14,675			28,947				
N-4	GAPDH	19,816	19,148	CCL3/MIP-1a	33	32,928	13,780		
		18,628			32,834				
		19			32,951				
N-5	GAPDH	19,617	19,659	CCL3/MIP-1a				1	
		19,608						1	
		19,753							
N-6	GAPDH	14,112	14,036	CCL3/MIP-1a	28,06	28,175	14,139		
		14,141			28,273			1	
		13,855			28,193				

Análise da quantificação relativa (QR) por qRT-PCR para o gene *CCL3/MIP-1* α em amostras de miocárdio de pacientes com CNI. O valor de QR para cada amostra (QR individual) foi calculado pelo método 2^{- $\Delta\Delta$ Ct}, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=5).

Amostra	Endogeno	u u	media	AIVO	Ct	media	DCt	DDCt individual	QR individual
CCC-1	GAPDH	17,087	17,259	CCL4/MIP-1β	31,21	31,426	14,167	1,214	0,43
		17,062							
		17,628			31,641				
CCC-2	GAPDH	16.818	17.150	CCL4/MIP-18	30,838	30.871	13.721	0.769	0.59
		17 151			31	,	,	.,	-,
		17 481			30 775				
CCC-3	CAPDH	17,401	17 144	CCL4/MIP-18	26.055	25.986	8 842	-4 110	17.27
	GAIDI	17,215	17,144	CCL4/MII-Ip	25,072	25,700	0,042	-4,110	17,27
		17,135			25,972				
CCC A	CADDI	17,085	17 493	CCL 4/MID 18	23,93	27 527	10.044	2 000	7.51
CCC-4	GALDU	17,305	17,405	CCL4/MIF-Ip	27,572	27,527	10,044	-2,909	7,51
		17,496			27,567				
000.5	CADDII	17,39	10.502	CCL ADAID 10	27,441	20.210	0 (30	4 225	20.04
<u> </u>	GAPDH	19,604	19,582	CCL4/MIP-Ip	28,193	28,210	8,628	-4,325	20,04
		19,642			28,229				
		19,5	10.000	0.0X 10 XXD 10	28,207		0.400		10.15
CCC-6	GAPDH	18,342	18,302	CCL4/MIP-1B	28,07	27,910	9,608	-3,344	10,15
		18,317			27,737				
		18,261			27,922				
CCC-7	GAPDH	16,661	16,661	CCL4/MIP-1β	25,06	25,113	8,452	-4,50	22,63
		16,655			25,108				
		16,666			25,17				
CCC-8	GAPDH	18,205	18,296	CCL4/MIP-1β	28,041	27,805	9,508	-3,44	10,88
		18,553			27,722				
		18,131			27,651				
CCC-9	GAPDH	16,896	16,799	CCL4/MIP-1β	26,321	26,223	9,424	-3,53	11,54
		16,767	-	-	26,166	-	-		-
		16,733			26,181				
CCC-10	GAPDH	16,551	16,593	CCL4/MIP-1ß	25,613	25,455	8,862	-4,09	17,03
		16,539	· ·		25,521		· ·	· · · · · · · · · · · · · · · · · · ·	· ·
		16.69			25,232				
CCC-11	GAPDH	15,493	15.551	CCL4/MIP-18	25.36	25,279	9,728	-3.22	9.34
		15,466	- ,		25,332	- , -	.,	- /	-)-
		15.694			25,145				
CCC-12	GAPDH	21.067	20.916	CCL4/MIP-18	32,315	32,393	11.476	-1.48	2.78
		21			32.36	,-,-	,	-,	_,
		20.682			32.503				
CCC-13	GAPDH	15.541	15.517	CCL4/MIP-18	29	28,952	13.435	0.48	0.72
		15 527			28 978			.,	•,• =
		15 482			28,878				
CCC-14	GAPDH	16 593	16.474	CCL4/MIP-18	26,075	25.697	9.224	-3.73	13.26
	0.11.211	16 533	10,171	collimit ip	25 753		>,	0,70	10,20
		16,295			25,765				
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	média DCt gruno	
N-1	GAPDH	15.863	15 916	CCL4/MIP-18	0.	30 310	14 394	12 952	
	0.11 DH	15,886	13,710	CCL4/MII - Ip	30 362	00,010	14,004	12,752	
		15,000			30,258				
N_2	CAPDH	15 560	15 660	CCL4/MIP-18	20.168	29.014	13 354		
11-2	GAIDI	15,509	13,000	CCL4/MII-Ip	29,108	29,014	15,554		
		15,614			29,043				
N 2	CADDI	15,398	15 226	CCL 4/MID 18	20,031	27.940	12 604		
14-5	GAIDI	15,201	13,230	CCL4/MII-IP	20	27,040	12,004		
		15,237			27,965				
NA	CADDI	15,21	17.005	CCL 404D 10	27,554	20.525	11 (20		
IN-4	GAPDH	17,000	17,895	CCL4/MIP-IB	29,508	29,525	11,630		
		17,888			29,421				
N T	0 I P P P	18	A1 (0)	COL US STA	29,646		44.500		
N-5	GAPDH	21,773	21,694	CCL4/MIP-1β	35,899	35,854	14,159		
		21,656							
		21,654			35,808				
N-6	GAPDH	15,932	16,100	CCL4/MIP-1β	27,38	27,673	11,573		
		16			28				
		16,368			27,639				

Análise da quantificação relativa (QR) por qRT-PCR para o gene *CCL4/MIP-1* β em amostras de miocárdio de pacientes com CCC. O valor de QR para cada amostra (QR individual) foi calculado pelo método 2^{-ΔΔCt}, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=6).

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CNI-1	GAPDH	16,672	16,617	CCL4/MIP-1beta	31	30,792	14,175	1,222	0,43
		16,684			30,495				
		16,496			30,881				
CNI-2	GAPDH	18,345	18,244	CCL4/MIP-1beta	29,644	29,550	11,306	-1,646	3,13
		18,267			29,338				
		18,119			29,668				
CNI-3	GAPDH	17,222	17,49	CCL4/MIP-1beta	30	29,766	12,274	-0,678	1,60
		17,641			29,696				
		17,612			29,602				
CNI-4	GAPDH	14,37	14,483	CCL4/MIP-1beta	28,359	28,229	13,746	0,793	0,58
		14,424			28,146				
		14,542			28,181				
CNI-5	GAPDH	14,634	14,71	CCL4/MIP-1beta	29,778	29,843	15,130	2,178	0,22
		14,722			29,63				
		14,782			30,121				
CNI-6	GAPDH	16,35	16,369	CCL4/MIP-1beta	30,401	30,373	14,004	1,051	0,48
		16,409			30,39				
		16,349			30,328				
CNI-7	GAPDH	17	16,88	CCL4/MIP-1beta	31,495	31,691	14,806	1,854	0,28
		16,96			31,697				
		16,694			31,88				
CNI-8	GAPDH	15,191	15,30	CCL4/MIP-1beta	26,303	26,161	10,862	-2,090	4,26
		15,319			26,13				
		15,388			26,051				
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	média DCt grupo	
N-1	GAPDH	15,863	15,916	CCL4/MIP-1beta		30,310	14,394	12,952	
		15,886			30,362				
	GARRY	16	1		30,258		10.051		
N-2	GAPDH	15,569	15,660	CCL4/MIP-Ibeta	29,168	29,014	13,354		
		15,814			29,043				
N 2	CARDII	15,598	15.22(CCL 4/MID 1b .t.	28,831	27.940	12 (04		
IN-3	GAPDH	15,261	15,230	CCL4/MIP-Ibeta	28	27,840	12,004		
		15,237			27,965				
N. 4	CARDII	15,21	17 905	CCL 4/MID 1b .t.	27,554	20 525	11 (20		
IN-4	GAPDH	17,797	17,895	CCL4/MIP-Ibeta	29,508	29,525	11,030		
		17,888			29,421				
N 5	CAPDU	21.772	21 694	CCL //MID 1hoto	25,040	35 854	14 150		4
11-5	GATDI	21,775	21,094	CCL4/MIF-IDeta	55,699	55,054	14,159		
		21,030			25 808			1	
N 6	CAPDU	15 022	16 100	CCL 4/MID 1hoto	27.28	27 673	11 572		1
14-0	GAFDH	15,952	10,100	CCL4/MIF-IDeta	21,30	27,075	11,575	1	
		16 269			20 27.620				
		10,308			21,039			1	1

Análise da quantificação relativa (QR) por qRT-PCR para o gene *CCL4/MIP-1* β em amostras de miocárdio de pacientes com CNI. O valor de QR para cada amostra (QR individual) foi calculado pelo método 2^{-ΔΔCt}, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=6).

Amostra	Endogeno	Ct	media	Alvo	Ct	media	DCt	DDCt individual	QR individual
CCC-1	GAPDH	15,155	15,093	CCL5/RANTES	24,274	24,213	9,120	-4,507	22,74
		15.072			24.276				
		15.053			24.09				
CCC 2	CADDII	16,000	17 150	CCL5/DANTES	24.806	24 662	7 512	6 114	60.29
CCC-2	GAIDI	10,818	17,150	CCL5/RANTES	24,800	24,003	7,515	-0,114	09,20
		17,131			24,421				
		17,481			24,761				
CCC-3	GAPDH	14,384	14,454	CCL5/RANTES	19,736	19,707	5,253	-8,374	331,79
		14,408			19,673				
		14.569			19,711				
CCC-4	GAPDH	15,387	15.451	CCL5/RANTES	22.649	22,619	7,168	-6.459	87.98
		15 542	- / -		22 719	,	,	-,	- ,
		15,012			22,119				
CCCF	CADDII	19,423	19 430	CCL5/DANTES	22,400	22 605	1 265	0.262	659 74
	GAFDH	10,141	10,430	CCL5/KANTES	23,040	22,095	4,205	-9,302	050,24
		18,803			22,911				
		18,347			22,128				
CCC-6	GAPDH	16,28	16,546	CCL5/RANTES	23,098	23,117	6,571	-7,056	133,05
					23,158				
		16,812			23,096				
CCC-7	GAPDH	13,034	13,058	CCL5/RANTES	19,07	19,042	5,984	-7,64	199,85
		13.054	-		19.069		-		
		13.086			18 988				
CCC-8	CAPDH	13,000	13 570	CCL5/RANTES	10,300	19 228	5 658	-7.97	250.52
CCC-0	GAIDI	12 594	15,570	CCL5/RAITES	10,282	17,220	3,030	-1,51	250,52
		13,364			19,285				
0000	CARDAN	13,701	15.000	COLUMN AND A	19,216	22 501		- 01	<0.2 5
CCC-9	GAPDH	16,141	15,988	CCL5/RANTES	24	23,701	7,714	-5,91	60,27
		16,069			23,621				
		15,753			23,483				
CCC-10	GAPDH	16,551	16,593	CCL5/RANTES	20,659	20,562	3,968	-9,66	808,33
		16,539			20,61				
		16,69			20,416				
CCC-11	GAPDH	15,493	15,551	CCL5/RANTES	25	24,933	9.382	-4.25	18,96
		15 466			24 935	,	- ,	.,=+	
		15,100			24,955				
CCC 12	CADDII	21.067	20.016	CCL 5/DANTES	25,004	25 219	4 201	0.22	641 72
CCC-12	GAIDI	21,007	20,910	CCL5/RANTES	25,250	23,210	4,301	-9,55	041,72
		21			25,261				
000.12	CADDI	20,082	15 515	COL 5/DANTES	23,150	25.050	10.242	2.20	0.55
	GAPDH	15,541	15,517	CCL5/RANTES	20	25,859	10,542	-3,29	9,75
		15,527			25,839				
		15,482			25,737				
CCC-14	GAPDH	16,593	16,474	CCL5/RANTES	21,095	21,213	4,740	-8,89	473,58
		16,533			21,13				
		16,295			21,415				
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	média DCt grupo	
N-1	GAPDH	15,863	15.916	CCL5/RANTES	33.231	32,672	16,756	13.627	
		15,886			32,314		,	· · ·	
		16			32 472				
N 2	CADDII	15 560	15 660	CCL 5/DANTES	20,502	30.420	14 760		
11-2	GAIDI	15,509	13,000	CCL5/RANTES	50,502	30,420	14,700		
		15,614			20.220				
	~	15,598		0.07 - 07 - 1 1000 0	30,338				
N-3	GAPDH	15,261	15,236	CCL5/RANTES	30	29,900	14,664		
		15,237			29,96				
		15,21			29,74				
N-4	GAPDH	17,797	17,895	CCL5/RANTES	30,846	30,775	12,880		
		17,888			31,06				
		18			30,419				
N-5	GAPDH	21,773	21.694	CCL5/RANTES	,			i i	1
		21.656	,0,, .						
		21,050							
NG	CAPDII	21,034	16 100	CCL 5/DANTES	25.054	25.176	0.076		
11-0	GAPDH	15,952	10,100	CCL5/RANTES	25,054	23,170	9,070		
		16			25,11				
		16,368			25,364				l

Análise da quantificação relativa (QR) por qRT-PCR para o gene *CCL5/RANTES* em amostras de miocárdio de pacientes com CCC. O valor de QR para cada amostra (QR individual) foi calculado pelo método 2^{-ΔΔCt}, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=5).

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CNI-1	GAPDH	13,778	14,476	CCL5/RANTES	25,366	25,015	10,539	-3,088	8,50
		14,007			25				
		14,945			24,679				
CNI-2	GAPDH	17	16,961	CCL5/RANTES	27,557	27,359	10,398	-3,229	9,38
		17,065			27,091				
		16,857			27,429				
CNI-3	GAPDH	17,222	17,49	CCL5/RANTES	29	28,664	11,173	-2,454	5,48
		17,641			28,633				
		17,612			28,36				
CNI-4	GAPDH	14,37	14,483	CCL5/RANTES	28,118	27,874	13,391	-0,236	1,18
		14,424			27,831				
		14,542			27,674				
CNI-5	GAPDH	14,634	14,71	CCL5/RANTES	27,677	27,698	12,985	-0,642	1,56
		14,722			27,623				
		14,782			27,794				
CNI-6	GAPDH	14,03	14,198	CCL5/RANTES	26,625	26,552	12,354	-1,273	2,42
		14,36			26,576				
		14,204			26,456				
CNI-7	GAPDH	13,073	13,17	CCL5/RANTES	26,712	26,704	13,536	-0,091	1,06
		13,253			26,678				
		13,177			26,722				
CNI-8	GAPDH	15,191	15,30	CCL5/RANTES	22,213	22,107	6,808	-6,819	112,94
		15,319			22,093				
		15,388			22,015				
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	média DCt grupo	
N-1	GAPDH	15,863	15,916	CCL5/RANTES	33,231	32,672	16,756	13,627	
		15,886			32,314				
		16			32,472				
N-2	GAPDH	15,569	15,660	CCL5/RANTES	30,502	30,420	14,760		
		15,814			29,689				
		15,598			30,338				
N-3	GAPDH	15,261	15,236	CCL5/RANTES	30	29,900	14,664		
		15,237			29,96				
		15,21			29,74				
N-4	GAPDH	17,797	17,895	CCL5/RANTES	30,846	30,775	12,880		
		17,888			31,06				
		18			30,419				
N-5	GAPDH	21,773	21,694	CCL5/RANTES					
		21,656							
		21,654							
N-6	GAPDH	15,932	16,100	CCL5/RANTES	25,054	25,176	9,076		
		16			25,11				
1		16,368			25,364				

Análise da quantificação relativa (QR) por qRT-PCR para o gene *CCL5/RANTES* em amostras de miocárdio de pacientes com CNI. O valor de QR para cada amostra (QR individual) foi calculado pelo método 2^{-ΔΔCt}, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=5).

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CCC-1	GAPDH	15,155	15,093	CCR5	26,634	26,326	11,232	-3,998	15,98
		15,072			26,228				
	~ · ***	15,053		0.000 5	26,115				
CCC-2	GAPDH	16,818	17,150	CCR5	30,697	30,469	13,319	-1,911	3,76
		17,151			30,410				
CCC-3	GAPDH	14 384	14.454	CCR5	25 385	25,367	10.914	-4.317	19.93
0000	0.11.211	14,408	11,101	con	25,403	20,007	10,911		1,,,,,
		14,569			25,314				
CCC-4	GAPDH	15,387	15,451	CCR5	27,304	27,407	11,956	-3,274	9,68
		15,542			27,51				
000 4	CLEDI	15,423	10,120	CODE	27,201		6.005	0.404	242.04
<u> </u>	GAPDH	18,141	18,430	CCR5	25,22	25,235	6,805	-8,426	343,96
		18 347			25,234				
CCC-6	GAPDH	16,28	16,546	CCR5	34.3	34,297	17,751	2,520	0.17
		-, -	- ,		34,293	- , -	, -	,	.,
		16,812			34,942				
CCC-7	GAPDH	13,034	13,058	CCR5	22,504	22,581	9,523	-5,71	52,25
		13,054			22,611				
000.0	CADDI	13,086	12 550	CCDE	22,629	22.525	0.156	(00	(7.42
000-8	GAPDH	13,424	13,570	ССК5	22,951	22,725	9,156	-0,08	67,42
		13,384			22,039				
CCC-9	GAPDH	16,141	15,988	CCR5	26,661	26,922	10.934	-4.30	19.65
		16,069			26,922	_ • ;,		-,	
		15,753			27,183				
CCC-10	GAPDH	16,551	16,593	CCR5	30,971	31,060	14,467	-0,76	1,70
		16,539			31,29				
CCC 11	CADDI	16,69	15 551	CCD5	30,919	32.044	17 202	2.16	0.22
CCC-II	GATDH	15,495	15,551	ULK5	32,028	32,944	17,393	2,10	0,22
		15,400			33,195				
CCC-12	GAPDH	21,067	20,916	CCR5	26,773	26,790	5,874	-9,36	655,65
		21	-		26,846	-	-		
		20,682			26,752				
CCC-13	GAPDH	15,541	15,517	CCR5	28,683	28,722	13,206	-2,03	4,07
		15,527			29				
CCC-14	GAPDH	16 593	16 474	CCR5	20,404	29 306	12 832	-2 40	5.27
000-14	GHDH	16,533	10,474	cens	29,522	29,000	12,002	-2,40	5,27
		16,295			29,286				
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	média DCt grupo	
N-1	GAPDH	15,863	15,916	CCR5	34,095	34,474	18,558	15,231	
		15,886			35				
N_2	CAPDH	15 569	15 660	CCR5	34,327	31 789	16 129	ł	
11-2	GAIDI	15,307	13,000	CCRS	31,709	51,705	10,127		
		15,598			31,86				
N-3	GAPDH	15,261	15,236	CCR5	30,887	30,922	15,686		
		15,237			30,795				
		15,21			31,085				
N-4	GAPDH	17,797	17,895	CCR5	31,742	32,156	14,261		
		17,888			32,121				
N-5	GAPDH	21,773	21,694	CCR5	33,292	32,883	11.189		1
	0.11.2.1	21,656	-1,021	00.0	32,564	,000	11,102		
		21,654			32,474				
N-6	GAPDH	15,932	16,100	CCR5	31,813	31,662	15,562		
		16			31,511				
		16,368]

Análise da quantificação relativa (QR) por qRT-PCR para o gene CCR5 em amostras de miocárdio de pacientes com CCC. O valor de QR para cada amostra (QR individual) foi calculado pelo método 2^{-ΔΔCt}, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=6).

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CNI-1	GAPDH	13,778	14,476	CCR5	26,115	25,682	11,206	-4,024	16,27
		14,007			25,794				
		14,945			25,138				
CNI-2	GAPDH	18	16,961	CCR5	29	29,169	12,208	-3,023	8,13
		17,065			29,407				
		16,857			29,099				
CNI-3	GAPDH	17,222	17,49	CCR5	34	33,881	16,389	1,159	0,45
		17,641			33,671				
		17,612			33,972				
CNI-4	GAPDH	14,37	14,483	CCR5	35,165	34,839	20,356	5,125	0,03
		14,424			34,512				
		14,542							
CNI-5	GAPDH	14,634	14,71	CCR5	34,661	34,831	20,118	4,887	0,03
		14,722							
		14,782			35				
CNI-6	GAPDH	14,03	14,198	CCR5	29,331	29,422	15,224	-0,007	1,00
		14,36			29,523				
		14,204			29,412				
CNI-7	GAPDH	13,073	13,17	CCR5	26,831	27,039	13,871	-1,360	2,57
		13,253			27,115				
		13,177			27,17				
CNI-8	GAPDH	15,191	15,30	CCR5	31,742	32,156	16,857	1,626	0,32
		15,319			32,727				
		15,388			32				
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	média DCt grupo	
N-1	GAPDH	15,863	15,916	CCR5	34,095	34,474	18,558	15,231	
		15,886			35				
		16			34,327				ļ
N-2	GAPDH	15,569	15,660	CCR5	31,789	31,789	16,129		
		15,814			31,718				
		15,598			31,86				ļ
N-3	GAPDH	15,261	15,236	CCR5	30,887	30,922	15,686		
		15,237			30,795				
		15,21			31,085				
N-4	GAPDH	17,797	17,895	CCR5	31,742	32,156	14,261		
		17,888			32,727				
N	CARDI	18	21 (04	CODE	32	22.002	11.100		ł
N-5	GAPDH	21,773	21,694	CCR5	33,292	32,883	11,189		
		21,656			32,564				
	GARDAN	21,654	16.400	CODE	32,474		1		ł
N-6	GAPDH	15,932	16,100	CCR5	31,813	31,662	15,562		
		16			31,511				
1		16,368		1				1	

Análise da quantificação relativa (QR) por qRT-PCR para o gene *CCR5* em amostras de miocárdio de pacientes com CNI. O valor de QR para cada amostra (QR individual) foi calculado pelo método $2^{-\Delta\Delta Ct}$, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=6).

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CCC-1	GAPDH	15,155	15,093	CXCL9/Mig	26,779	26,932	11,839	-2,512	5,70
		15,072			27,093				
		15,053			26,924				
CCC-2	GAPDH	16,818	17,150	CXCL9/Mig	29,251	29,344	12,194	-2,157	4,46
		17,151		_	29,274				
		17,481			29,506				
CCC-3	GAPDH	14,384	14,454	CXCL9/Mig	23,814	23,776	9,322	-5,028	32,64
		14,408	<i>,</i>	8	23,77	<i>,</i>		·	, i
		14,569			23,744				
CCC-4	GAPDH	15,387	15,451	CXCL9/Mig	24,998	25.203	9,753	-4.598	24.22
		15,542	- , -		25,192	-,	.,	,	,
		15,423			25.42				
CCC-5	GAPDH	18,141	18,430	CXCL9/Mig	22.818	22,833	4,403	-9,948	987.79
		18,803	-,		23.084	,	,	- /	,.
		18,347			22,597				
CCC-6	GAPDH	16.28	16,546	CXCL9/Mig	25,785	26,168	9,622	-4.729	26.52
		, i	<i>,</i>		26.718	,		·	, i
		16.812			26				
CCC-7	GAPDH	13.034	13.058	CXCL9/Mig	18,798	18.823	5,765	-8,59	384.21
	-	13.054	- ,		18,756	- /	-,	- ,	,
		13.086			18.915				
CCC-8	GAPDH	13.424	13,570	CXCL9/Mig	18,601	18,399	4,830	-9.52	734,73
		13.584			18.249		-,	- ,	,
		13,701			18.348				
CCC-9	GAPDH	16,141	15,988	CXCL9/Mig	27.742	27.316	11.328	-3.022	8.13
		16.069			27.13	,	,	-,	-,
		15,753			27.076				
CCC-10	GAPDH	16.551	16,593	CXCL9/Mig	24	23,915	7.321	-7.029	130.64
		16.539			23.89	,	.,	.,	
		16.69			23.854				
CCC-11	GAPDH	15,493	15,551	CXCL9/Mig	27,656	27,458	11,907	-2,444	5,44
		15,466	· ·	8	27,385	<i>,</i>	· ·	·	, í
		15,694			27,332				
CCC-12	GAPDH	21,067	20,916	CXCL9/Mig	25,194	25,050	4,134	-10,22	1190,26
		21	-	Ŭ	25	-			-
		20,682			24,956				
CCC-13	GAPDH	15,541	15,517	CXCL9/Mig	29,558	29,487	13,971	-0,38	1,30
		15,527	-	, , , , , , , , , , , , , , , , , , ,	29,558	-			
		15,482			29,346				
CCC-14	GAPDH	16,593	16,474	CXCL9/Mig	23,457	23,548	7,074	-7,28	155,03
		16,533		_	23,618				
		16,295			23,569				
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	média DCt grupo	
N-1	GAPDH	15,863	15,916	CXCL9/Mig	34,479	34,066	18,150	14,351	
		15,886			33,514			1	
		16			34,206				
N-2	GAPDH	15,569	15,660	CXCL9/Mig	30	29,854	14,194		
		15,814		_	29,763				
		15,598			29,799				
N-3	GAPDH	15,261	15,236	CXCL9/Mig	31	30,902	15,666		
		15,237			30,743				
		15,21			30,962				
N-4	GAPDH	17,797	17,895	CXCL9/Mig					
		17,888						1	
		18							
N-5	GAPDH	21,773	21,694	CXCL9/Mig	35	35,390	13,696		
		21,656						1	
		21,654			35,78				
N-6	GAPDH	15,932	16,100	CXCL9/Mig	26,2	26,149	10,049		
		16			26,074			1	
		16,368			26,172				

Análise da quantificação relativa (QR) por qRT-PCR para o gene CXCL9/Mig em amostras de miocárdio de pacientes com CCC. O valor de QR para cada amostra (QR individual) foi calculado pelo método 2^{-ΔΔCt}, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=5).

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CNI-1	GAPDH	13,778	14,476	CXCL9/Mig	27,27	27,401	12,925	-1,426	2,69
		14,007			27,502				
		14,945			27,431				
CNI-2	GAPDH	17	16,961	CXCL9/Mig	31,64	31,482	14,521	0,171	0,89
		17,065			31,614				
		16,857			31,193				
CNI-3	GAPDH	17,222	17,49	CXCL9/Mig	31	30,873	13,381	-0,969	1,96
		17,641			30,88				
		17,612			30,739				
CNI-4	GAPDH	14,37	14,483	CXCL9/Mig	30,243	29,906	15,423	1,072	0,48
		14,424			29,294				
		14,542			30,18				
CNI-5	GAPDH	14,634	14,71	CXCL9/Mig	31,547	31,101	16,388	2,037	0,24
		14,722			30,758				
		14,782			30,997				
CNI-6	GAPDH	14,03	14,198	CXCL9/Mig	29,277	29,223	15,025	0,675	0,63
		14,36			29,216				
		14,204			29,177				
CNI-7	GAPDH	13,073	13,17	CXCL9/Mig	29,192	29,100	15,932	1,581	0,33
		13,253			29,107				
		13,177			29				
CNI-8	GAPDH	15,191	15,30	CXCL9/Mig	26,542	26,382	11,083	-3,268	9,63
		15,319			26,318				
		15,388			26,286				
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	média DCt grupo	
N-1	GAPDH	15,863	15,916	CXCL9/Mig	34,479	34,066	18,150	14,351	
		15,886			33,514				
		16			34,206				
N-2	GAPDH	15,569	15,660	CXCL9/Mig	30	29,854	14,194		
		15,814			29,763				
		15,598			29,799				
N-3	GAPDH	15,261	15,236	CXCL9/Mig	31	30,902	15,666		
		15,237			30,743				
		15,21			30,962				
N-4	GAPDH	17,797	17,895	CXCL9/Mig					
		17,888							
		18							
N-5	GAPDH	21,773	21,694	CXCL9/Mig	35	35,390	13,696		
		21,656							
		21,654			35,78				
N-6	GAPDH	15,932	16,100	CXCL9/Mig	26,2	26,149	10,049		
		16			26,074				
1		16,368			26,172			1	

Análise da quantificação relativa (QR) por qRT-PCR para o gene CXCL9/Mig em amostras de miocárdio de pacientes com CNI. O valor de QR para cada amostra (QR individual) foi calculado pelo método 2^{-ΔΔCt}, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=5).

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CCC-1	GAPDH	15,155	15,093	CXCL10/IP-10	27,693	27,310	12,217	-0,190	1,14
		15,072			27,062				
		15,053			27,175				
CCC-2	GAPDH	16,818	17,150	CXCL10/IP-10	28,809	28,618	11,468	-0,938	1,92
		17,151			28,535				
		17,481			28,511				
CCC-3	GAPDH	14,384	14,454	CXCL10/IP-10	24,451	24,351	9,897	-2,509	5,69
		14,408			24,326				
		14,569			24,275				
CCC-4	GAPDH	15,387	15,451	CXCL10/IP-10	26,234	26,368	10,917	-1,489	2,81
		15,542			26,39				
		15,423			26,479				
CCC-5	GAPDH	18,141	18,430	CXCL10/IP-10	25,499	25,508	7,078	-5,329	40,19
		18,803			25,626				
		18,347			25,399				
CCC-6	GAPDH	16,28	16,546	CXCL10/IP-10	24,62	24,667	8,121	-4,285	19,50
					24,686				
		16,812			24,695				
CCC-7	GAPDH	13,034	13,058	CXCL10/IP-10	19,88	19,534	6,476	-5,93	60,97
		13,054			19,515				
		13,086			19,208				
CCC-8	GAPDH	13,424	13,570	CXCL10/IP-10	20,81	20,779	7,210	-5,20	36,67
		13,584			20,792				
		13,701			20,736				
CCC-9	GAPDH	16,141	15,988	CXCL10/IP-10	26,227	26,287	10,299	-2,11	4,31
		16,069			26,401				
		15,753			26,232				
CCC-10	GAPDH	16,551	16,593	CXCL10/IP-10	24,129	24,209	7,616	-4,79	27,68
		16,539			24,218				
		16,69			24,28				
CCC-11	GAPDH	15,493	15,551	CXCL10/IP-10	23,391	23,523	7,972	-4,43	21,62
		15,466			23,526				
		15,694			23,651				
CCC-12	GAPDH	21,067	20,916	CXCL10/IP-10	29,491	29,737	8,821	-3,59	12,00
		21			29,541				
		20,682			30,18				
CCC-13	GAPDH	15,541	15,517	CXCL10/IP-10	29	28,646	13,129	0,72	0,61
		15,527			28,79				
000.11	CARDIN	15,482	46.484	OVCI 40/0D 40	28,147		0.046	2.07	0.24
CCC-14	GAPDH	16,593	16,474	CXCL10/IP-10	26	25,820	9,346	-3,00	8,34
		16,533			25,764				
Amostro	Endégana	10,295	média	Alvo	25,090	módia	DC+	mádia DCt anur a	
Amostra N 1	CAPDU	15.962	15 01 <i>6</i>	CVCL 10/ID 10	- Ci	20 592	14 (((12 404	
IN-1	GAPDH	15,805	15,910	CACL10/IP-10	21	30,382	14,000	12,400	
		15,880			20 592				
N 2	CAPDH	15 560	15 660	CYCL 10/ID 10	27 284	27.470	11 910		
11-2	GAIDI	15,814	15,000	CACLIO/II-IU	27,364	27,470	11,010		
		15,508			27,407				
N 3	CAPDH	15,398	15 236	CYCL 10/IP 10	27,50	2/ 838	9.602		
11-5	GAIDI	15,201	15,250	CACLIO/II-IU	23	24,030	9,002		
		15,237			24,828				
N-4	GAPDH	17 797	17,895	CXCL10/IP-10	35.075	34,779	16.884		
	O/H DH	17 888	1,000	0/10/11-10	34 483		10,004		
		18			5-1,-105				
N-5	GAPDH	21 773	21,694	CXCL10/IP-10					1
110	Shibh	21,656	21,074	CHCEIO/H-10					
		21,654							
N-6	GAPDH	15 932	16,100	CXCL10/IP-10	25 129	25,170	9,070		1
110	Shibh	16	10,100	CHCEIO/H-10	25 129	20,170	2,070		
		16 368			25,129				
L		10,000		1				1	1

Análise da quantificação relativa (QR) por qRT-PCR para o gene *CXCL10/IP-10* em amostras de miocárdio de pacientes com CCC. O valor de QR para cada amostra (QR individual) foi calculado pelo método $2^{-\Delta\Delta Ct}$, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=5).

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CNI-1	GAPDH	13,778	14,476	CXCL10/IP-10	27,657	27,629	13,153	0,747	0,60
		14,007			27,578				
		14,945			27,652				
CNI-2	GAPDH	17	16,961	CXCL10/IP-10	30,124	30,111	13,150	0,744	0,60
		17,065			30				
		16,857			30,21				
CNI-3	GAPDH	17,222	17,49	CXCL10/IP-10	32	32,102	14,611	2,204	0,22
		17,641			32,211				
		17,612			32,096				
CNI-4	GAPDH	14,37	14,483	CXCL10/IP-10	26,844	26,718	12,235	-0,171	1,13
		14,424			26,789				
		14,542			26,521				
CNI-5	GAPDH	14,634	14,71	CXCL10/IP-10	29,975	29,830	15,117	2,711	0,15
		14,722			29,772				
		14,782			29,743				
CNI-6	GAPDH	14,03	14,198	CXCL10/IP-10	29,496	29,238	15,040	2,633	0,16
		14,36			29,078				
		14,204			29,139				
CNI-7	GAPDH	13,073	13,17	CXCL10/IP-10	28,414	28,488	15,320	2,914	0,13
		13,253			28,325				
		13,177			28,725				
CNI-8	GAPDH	15,191	15,30	CXCL10/IP-10	28,457	28,230	12,931	0,524	0,70
		15,319			28,105				
		15,388			28,128				
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	média DCt grupo	
N-1	GAPDH	15,863	15,916	CXCL10/IP-10		30,582	14,666	12,406	
		15,886			31				
		16			30,582				
N-2	GAPDH	15,569	15,660	CXCL10/IP-10	27,384	27,470	11,810		
		15,814			27,467				
		15,598			27,56				
N-3	GAPDH	15,261	15,236	CXCL10/IP-10	25	24,838	9,602		
		15,237			24,828				
		15,21			24,685				
N-4	GAPDH	17,797	17,895	CXCL10/IP-10	35,075	34,779	16,884		
		17,888			34,483				
	~	18		ON 10 10 10					
N-5	GAPDH	21,773	21,694	CXCL10/IP-10					
		21,656							
		21,654							
N-6	GAPDH	15,932	16,100	CXCL10/IP-10	25,129	25,170	9,070		
		16			25,129				
1		16,368			25,252			1	

Análise da quantificação relativa (QR) por qRT-PCR para o gene *CXCL10/IP-10* em amostras de miocárdio de pacientes com CNI. O valor de QR para cada amostra (QR individual) foi calculado pelo método 2^{-ΔΔCt}, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=5).

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CCC-1	GAPDH	15,155	15,093	CXCR3	30,395	30,351	15,258	-1,455	2,74
		15,072			30,609				
		15,053			30,05				
CCC-2	GAPDH	16,818	17,150	CXCR3	34,286	34,409	17,259	0,545	0,69
		17,151			34,531				
		17,481							
CCC-3	GAPDH	14,384	14,454	CXCR3	26,006	26,079	11,625	-5,088	34,02
		14,408			26,095				
	CARDIN	14,569		OVODA	26,135	20 (1)		1	
CCC-4	GAPDH	15,387	15,451	CXCR3	30,2	30,616	15,165	-1,548	2,92
		15,542			30,604				
CCC 5	CADDI	15,425	19 /20	CVCD2	31,044	20 201	0.951	6 963	116.39
<u> </u>	GAFDH	10,141	10,430	CACKS	20,45	20,201	9,031	-0,805	110,50
		18 347			28,511				
CCC-6	GAPDH	16.28	16 546	CXCR3	31 327	31.683	15 137	-1 577	2.98
	O'II DI	10,20	10,540	CACIO	32 162	51,005	13,137	-1,577	2,90
		16 812			31,559				
CCC-7	GAPDH	13.034	13.058	CXCR3	23,891	23,914	10,856	-5.86	57.96
		13,054	- ,		23,972	.,	.,	_ ,	
		13,086			23,88				
CCC-8	GAPDH	13,424	13,570	CXCR3	24,708	24,585	11,015	-5,70	51,91
		13,584	,		24,464				, í
		13,701			24,583				
CCC-9	GAPDH	16,141	15,988	CXCR3	32,388	32,392	16,405	-0,31	1,24
		16,069			32,45				
		15,753			32,339				
CCC-10	GAPDH	16,551	16,593	CXCR3	30,474	30,410	13,817	-2,90	7,45
		16,539			30,116				
		16,69			30,64				
CCC-11	GAPDH	15,493	15,551	CXCR3	33,183	33,497	17,946	1,23	0,43
		15,466			33,64				
CCC 12	CADDI	15,694	20.016	CVCD2	33,009	20 195	0 760	9 44	249.40
	GAIDII	21,007	20,910	CACIN	29,095	23,105	0,200	-0,44	540,49
		20 682			29.34				
CCC-13	GAPDH	15.541	15,517	CXCR3	30	30,070	14,553	-2.16	4,47
	_	15,527	-)-		30,125		,	, -	,
		15,482			30,085				
CCC-14	GAPDH	16,593	16,474	CXCR3	30,276	30,021	13,547	-3,17	8,98
		16,533			29,786				
		16,295			30				
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	média DCt grupo	
N-1	GAPDH	15,863	15,916	CXCR3	35	35,434	19,517	16,713	
		15,886			05.075				
N 2	CADDII	15 560	15 ((0	CVCD2	35,867	24.200	19 (20		
11-2	GAFDH	15,509	15,000	CACKS	54,204 24 265	34,289	18,029		
		15,514			34,303				
N-3	GAPDH	15,370	15,236	CXCR3	33 138	33,157	17.921		
	O'H DH	15,237	10,200	chere	33.33	00,107	17,921		
		15,21			33,004				
N-4	GAPDH	17,797	17,895	CXCR3	,	33,470	15,575		
		17,888			33,389				
		18			33,551				
N-5	GAPDH	21,773	21,694	CXCR3	32,816	33,106	11,412		
		21,656			33,324				
		21,654			33,178		L		
N-6	GAPDH	15,932	16,100	CXCR3	33,034	33,326	17,226		
		16			33,238				
		16,368			33,706				

Análise da quantificação relativa (QR) por qRT-PCR para o gene *CXCR3* em amostras de miocárdio de pacientes com CCC. O valor de QR para cada amostra (QR individual) foi calculado pelo método 2^{-ΔΔCt}, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=6).

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CNI-1	GAPDH	13,778	14,476	CXCR3	29,882	29,817	15,341	-1,372	2,59
		14,007			29,847				
		14,945			29,722				
CNI-2	GAPDH	17	16,961	CXCR3	34,527	34,704	17,743	1,029	0,49
		17,065			34,88				
		16,857							
CNI-3	GAPDH	17,222	17,49	CXCR3					
		17,641							
	0 - PP -	17,612	11.100	OV OD A					
CNI-4	GAPDH	14,37	14,483	CXCR3					
		14,424							
CNLE	CADDII	14,542	14.71	CVCD2					
CNI-5	GAPDH	14,034	14,/1	CACKS					
		14,722							
CNL6	CAPDH	14,762	14 198	CYCP3	25 125	34 778	20.580	3 866	0.07
CITI-0	GAIDI	14,05	14,190	CACIO	34 42	54,770	20,300	5,000	0,07
		14 204			54,42				
CNI-7	GAPDH	13.073	13.17	CXCR3	31,272	31.342	18,174	1,461	0.36
		13.253	,		31,706	,		-,	-,
		13,177			31.047				
CNI-8	GAPDH	15,191	15,30	CXCR3	30,819	30,594	15,295	-1,419	2,67
		15,319			30,425				
		15,388			30,538				
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	média DCt grupo	
N-1	GAPDH	15,863	15,916	CXCR3	35	35,434	19,517	16,713	
		15,886							
		16			35,867				
N-2	GAPDH	15,569	15,660	CXCR3	34,204	34,289	18,629		
		15,814			34,365				
NO	CARDI	15,598	15.000	OVCDA	34,298		15.001		
N-3	GAPDH	15,261	15,236	CXCR3	33,138	33,157	17,921		
		15,237			33,33				
N. 4	CADDI	15,21	17.005	CVCD2	33,004	22.450	15 555		
IN-4	GAPDH	17,000	17,895	CACRS	22.200	33,470	15,575		
		17,888			22 551				
N-5	САРДИ	21 772	21 694	CYCR3	32,816	33 106	11 412		
11-5	GAIDI	21,775	21,074	CACINS	32,010	35,100	11,412		
		21,050			33 178				
N-6	GAPDH	15 932	16 100	CXCR3	33,034	33 326	17 226		
11-0	OAI DI	16	10,100	CACIO	33 238	55,520	17,220		
		16,368			33,706				

Análise da quantificação relativa (QR) por qRT-PCR para o gene *CXCR3* em amostras de miocárdio de pacientes com CNI. O valor de QR para cada amostra (QR individual) foi calculado pelo método 2^{-ΔΔCt}, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=6). A expressão de CXCR3 não foi detectada em uma amostra de miocárdio de pacientes com CNI, dessa forma não foi possível calcular a quantificação relativa.

						1			
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CCC-1	GAPDH	14,033	14,516	CCL17/TARC	29,212	29,657	15,141	-4,659	25,27
		14,519			29,649				
		14,999			30,109				
CCC-2	GAPDH	17,241	17,204	CCL17/TARC	34,077	34,229	17,025	-2,775	6,84
		18,016			34,003				
000.1	CARDI	17,166	12 ((2	CCL 17/TADC	34,606	20,002	1(220	2.551	11.00
CCC-S	GAPDH	14,152	13,662	CCL1//TARC	29,567	29,892	16,229	-3,5/1	11,88
		13,300			29,885				
CCC-4	CAPDH	13,409	14 094	CCL 17/TARC	29.861	20.836	15 742	-4.058	16.66
CCC-4	GAIDI	13,995	14,034	CCLITTIARC	29,801	29,850	13,742	-4,050	10,00
		14,070			29,732				
CCC-5	GAPDH	17,911	18,041	CCL17/TARC	29.03	28.944	10,903	-8,897	476.73
		18			28,986	,		.,	,
		18.213			28.817				
CCC-6	GAPDH	16,285	16,573	CCL17/TARC	32,019	31,897	15,324	-4,476	22,26
		16,359	-		31,733		-	-	
		16,861			31,938				
CCC-7	GAPDH	13,427	12,270	CCL17/TARC	24,45	24,646	12,377	-7,42	171,64
		12,277			24,523				
		12,262			24,966				
CCC-8	GAPDH	12,269	12,327	CCL17/TARC	24,363	24,484	12,157	-7,64	199,89
		12,313			24,499				
	C + DD VI	12,398	1		24,589		16.100		10.55
<u> </u>	GAPDH	15,047	15,085	CCLI7/TARC	21.069	31,223	16,138	-3,66	12,66
		15,095			21,008				
CCC-10	CAPDH	15,115	15 795	CCL 17/TARC	20.0	30.028	14 233	-5.57	47.42
	Ghibh	15,027	10,770	cellininke	30	50,020	14,200	-5,57	47,42
		15,768			30,184				
CCC-11	GAPDH	15,295	15,335	CCL17/TARC	29,614	29,745	14,411	-5,39	41,91
		15,473	, í		29,603	,	,	·	í.
		15,236			30,019				
CCC-12	GAPDH	21,036	20,983	CCL17/TARC	33,841	33,608	12,625	-7,18	144,53
		21,095			33,374				
		20,817							
CCC-13	GAPDH	15	14,844	CCL17/TARC	33	33,248	18,403	-1,40	2,63
		14,84			32,799				
CCC 14	CADDI	14,693	15 524	CCL 17/TADC	33,944	30.022	14 409	5 30	20.45
CCC-14	GAIDH	15,275	15,554	CCL1//TAKC	20,435	30,032	14,490	-5,50	39,43
		15,527			29,304				
Amostra	Endózeno	Ct	média	Alvo	Ct	média	DCt	média DCt gruno	
N-1	GAPDH	15.563	15,495	CCL17/TARC		35,660	20,165	19,800	
		15,51	, i i i i i i i i i i i i i i i i i i i		35,855		,	, ,	
		15,411			35,464				
N-2	GAPDH	15,627	15,416	CCL17/TARC	35,466	35,509	20,093		
		15,362			35,552				
		15,259							
N-3	GAPDH	15	14,845	CCL17/TARC	34,953	35,251	20,406		
		14,861			35				
	CARDI	14,675	10.1.40	COL 15/TADO	35,801				
N-4	GAPDH	19,816	19,148	CCL17/TARC					
		18,628							
N 5	CAPDH	19 10 617	10.650	CCI 17/TAPC					
14-3	GAIDI	19,017	19,039	CCL1//TARC					
		19 753							
N-6	GAPDH	14,112	14.036	CCL17/TARC	32,343	32,572	18.536		
		14,141	,	, contraction of the second	32,545	,	,000		
		13,855			32,829				

Análise da quantificação relativa (QR) por qRT-PCR para o gene *CCL17/TARC* em amostras de miocárdio de pacientes com CCC. O valor de QR para cada amostra (QR individual) foi calculado pelo método 2^{-ΔΔCt}, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=4).

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CNI-1	GAPDH	12,718	12,746	CCL17/TARC	27,543	27,548	14,803	-4,998	31,95
		12,773			27,612				
		15			27,489				
CNI-2	GAPDH	17,958	16,707	CCL17/TARC		32,869	16,162	-3,638	12,45
		16,896			32,661				
		16,517			33,076				
CNI-3	GAPDH	17	17,04	CCL17/TARC					
		16,992							
		17,124							
CNI-4	GAPDH	15,725	16,025	CCL17/TARC					
		15,956							
		16,094							
CNI-5	GAPDH	13,692	13,47	CCL17/TARC	31,279	31,316	17,845	-1,955	3,88
		13,399			31,457				
		13,322			31,211				
CNI-6	GAPDH	14,195	14,414	CCL17/TARC	32,298	32,342	17,928	-1,872	3,66
		14,633			32,17				
		13,636			32,558				
CNI-7	GAPDH	13,111	13,17	CCL17/TARC	31,377	31,384	18,212	-1,588	3,01
		13,206			31,39				
		13,198							
CNI-8	GAPDH	13,573	13,50	CCL17/TARC	31,718	31,300	17,795	-2,005	4,01
		13,502			31,086				
		13,439			31,095				
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	média DCt grupo	
N-1	GAPDH	15,563	15,495	CCL17/TARC		35,660	20,165	19,800	
		15,51			35,855				
		15,411			35,464				
N-2	GAPDH	15,627	15,416	CCL17/TARC	35,466	35,509	20,093		
		15,362			35,552				
		15,259							
N-3	GAPDH	15	14,845	CCL17/TARC	34,953	35,251	20,406		
		14,861			35				
		14,675			35,801				ļ
N-4	GAPDH	19,816	19,148	CCL17/TARC					
		18,628							
		19							ļ
N-5	GAPDH	19,617	19,659	CCL17/TARC					
		19,608						1	
		19,753							ļ
N-6	GAPDH	14,112	14,036	CCL17/TARC	32,343	32,572	18,536		
		14,141			32,545			1	
1		13,855			32,829				

Análise da quantificação relativa (QR) por qRT-PCR para o gene CCL17/TARC em amostras de miocárdio de pacientes com CNI. O valor de QR para cada amostra (QR individual) foi calculado pelo método 2^{-ΔΔCt}, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=4). A expressão de CCL17/TARC não foi detectada em uma amostra de miocárdio de paciente com CNI, dessa forma não foi possível calcular a quantificação relativa.

Amostra	Endógeno	Ct	média	Alvo	Ct	média Ct	DCt
CCC-1	GAPDH	15,155	15,093	CCL22/MDC	29,925	29,858	14,764
		15,072			30,302		
		15,053			29,346		
CCC-2	GAPDH	16,818	17,150	CCL22/MDC	33,035	33,221	16,071
		17,151			33,452		
666.1	CADDI	17,481	14 454	CCLAMADO	33,177	20.002	14 (40
<u> </u>	GAPDH	14,384	14,454	CCL22/MDC	28,954	29,093	14,640
		14,408			29,20		
CCC 4	САРДИ	14,309	15 451	CCL22/MDC	29,000	31 179	15 727
	GAIDI	15,567	15,451	CCL22/MDC	30.024	51,176	15,727
		15,342			31 431		
CCC-5	GAPDH	18,141	18,430	CCL22/MDC	30,436	30.438	12,007
		18,803	-,				,
		18,347			30,439		
CCC-6	GAPDH	16,28	16,546	CCL22/MDC		32,721	16,175
					32,889		
		16,812			32,552		
CCC-7	GAPDH	13,034	13,058	CCL22/MDC	25,647	25,497	12,439
		13,054			25,594		
CCC A	CADDI	13,086	12 550	CCLAMADO	25,25	25 105	11.520
<u> </u>	GAPDH	13,424	13,570	CCL22/MDC	25,161	25,107	11,538
		13,584			25,117		
CCC-9	CAPDH	15,701	15 088	CCL22/MDC	23,044	32 472	16 484
	GAIDI	16,060	13,700	CCL22/MDC	52,555	52,472	10,404
		15,753			32 388		
CCC-10	GAPDH	16,551	16,593	CCL22/MDC	31.31	31,304	14,711
		16,539	-)		31,218	-)	,
		16,69			31,384		
CCC-11	GAPDH	15,493	15,551	CCL22/MDC	33,3	33,776	18,225
		15,466			34,251		
		15,694					
CCC-12	GAPDH	21,067	20,916	CCL22/MDC	31,377	31,431	10,515
		21			31,208		
CCC 12	CADDII	20,682	15 517	CCLAMADC	31,708	22.090	17.5(2
	GAPDH	15,541	15,517	CCL22/MDC	33.16	33,080	17,505
		15,327			33,10		
CCC-14	GAPDH	16 593	16.474	CCL22/MDC	32,849	32.884	16.411
		16,533			32,804	,	
		16,295			33		
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt
N-1	GAPDH	15,863	15,916	CCL22/MDC			
		15,886					
	0 + 88 X	16	1.5.6.0				
N-2	GAPDH	15,569	15,660	CCL22/MDC			
		15,814					
N 3	САРДИ	15,398	15 236				
11-5	GAIDI	15,201	13,230	CCL22/MDC			
		15.21					
N-4	GAPDH	17,797	17,895	CCL22/MDC			
		17,888	,				
		18					
N-5	GAPDH	21,773	21,694	CCL22/MDC			
		21,656					
		21,654					
N-6	GAPDH	15,932	16,100	CCL22/MDC			
		16					
		16,368					

Valores de DCt para o gene CCL22/MDC em amostras de miocárdio de pacientes com CCC. A expressão de CCL22/MDC não foi detectada em amostras de miocárdio de doadores saudáveis (controles normais; n=6), dessa forma a expressão relativa dessa quimiocina não pôde ter seu QR calculado. O valor de DCt para cada amostra foi normalizado pelo gene de referência, GAPDH.

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt
CNI-1	GAPDH	13,778	14,476	CCL22/MDC	28,095	28,402	13,926
		14,007			28,304		
		14,945			28,806		
CNI-2	GAPDH	18	16,961	CCL22/MDC		27,727	10,766
		17,065			27,76		
		16,857			27,694		
CNI-3	GAPDH	17,222	17,49	CCL22/MDC			
		17,641					
		17,612					
CNI-4	GAPDH	14,37	14,483	CCL22/MDC		35,100	20,617
		14,424			34,242		
		14,542			35,957		
CNI-5	GAPDH	14,634	14,71	CCL22/MDC	34,853	34,668	19,955
		14,722			34,483		
		14,782					
CNI-6	GAPDH	14,03	14,198	CCL22/MDC	32,039	31,775	17,577
		14,36			31,931		
		14,204			31,355		
CNI-7	GAPDH	13,073	13,17	CCL22/MDC		32,529	19,361
		13,253			32,727		
		13,177			32,331		
CNI-8	GAPDH	15,191	15,30	CCL22/MDC	32,294	31,949	16,650
		15,319			31,962		
		15,388			31,591		
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt
N-1	GAPDH	15,863	15,916	CCL22/MDC			
		15,886					
		16					
N-2	GAPDH	15,569	15,660	CCL22/MDC			
		15,814					
		15,598					
N-3	GAPDH	15,261	15,236	CCL22/MDC			
		15,237					
		15,21					
N-4	GAPDH	17,797	17,895	CCL22/MDC			
		17,888					
	G	18					
N-5	GAPDH	21,773	21,694	CCL22/MDC			
		21,656					
N	CAPPU	21,654	16.400	COLARIDO			
N-6	GAPDH	15,932	16,100	CCL22/MDC			
		16					
		16,368		1			

Valores de DCt para o gene CCL22/MDC em amostras de miocárdio de pacientes com CNI. A expressão de CCL22/MDC não foi detectada em amostras de miocárdio de doadores saudáveis (controles normais; n=6), dessa forma a expressão relativa dessa quimiocina não pôde ter seu QR calculado. O valor de DCt para cada amostra foi normalizado pelo gene de referência, GAPDH. A expressão de CCL22/MDC não foi detectada em uma amostra de miocárdio de paciente com CNI.

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CCC-1	GAPDH	15,155	15,093	CCR4	27,921	27,775	12,682	-1,721	3,30
		15,072			27,918				
000.0	CARDI	15,053	15 150	CCD4	27,487	20 (07	10.455	1.046	2.05
	GAPDH	10,818	17,150	CCR4	30 20.277	29,607	12,457	-1,946	3,85
		17,151			29,277				
CCC-3	GAPDH	14,384	14,454	CCR4	26,744	26.713	12.259	-2.144	4.42
		14,408	- 1, 12 1		26,918		,	_,	-,
		14,569			26,476				
CCC-4	GAPDH	15,387	15,451	CCR4	26,7	26,626	11,175	-3,227	9,37
		15,542			26,552				
CCC 5	CADDU	15,423	19 430	CCD4	26,919	27 200	9 970	5 524	46.01
	GAIDH	18,141	16,450	CCR4	27,386	27,309	0,079	-5,524	40,01
		18,347			27,054				
CCC-6	GAPDH	16,28	16,546	CCR4	27,06	27,486	10,940	-3,463	11,03
					27,912				
		16,812			27,359				
CCC-7	GAPDH	13,034	13,058	CCR4	26	25,728	12,670	-1,73	3,32
		13,054			25,649				
CCC-8	GAPDH	13,080	13 570	CCR4	25,554	25 567	11 997	-2 41	5 30
	0.1 Di	13,584		CONT	20,002	-0,007	,	_,	0,00
		13,701			25,472				
CCC-9	GAPDH	16,141	15,988	CCR4	26,214	26,295	10,308	-4,10	17,09
		16,069			26,299				
000.10	CARDI	15,753	16 502	CCD4	26,373	20.012	12 210	2.19	1.51
CCC-10	GAPDH	16,551	16,593	CCR4	29,007	28,813	12,219	-2,18	4,54
		16 69			29,002				
CCC-11	GAPDH	15,493	15,551	CCR4	,	31,101	15,550	1,15	0,45
		15,466			31,925				
		15,694			30,276				
CCC-12	GAPDH	21,067	20,916	CCR4	27,206	27,118	6,202	-8,20	294,30
		20 682			27,349				
CCC-13	GAPDH	15.541	15.517	CCR4	28,192	28.256	12,739	-1.66	3.17
	-	15,527	-)-		28,575	-,	,	,	- ,
		15,482			28				
CCC-14	GAPDH	16,593	16,474	CCR4	26,327	26,695	10,221	-4,18	18,15
		16,533			26,459				
Amostra	Endógeno	16,295 Ct	média	Alvo	27,298	mádia	DCt	média DCt grupo	
N-1	GAPDH	15.863	15.916	CCR4	33	33.197	17.281	14.403	
		15,886			33,394	,		,	
		16			· ·				
N-2	GAPDH	15,569	15,660	CCR4	30,502	30,420	14,760		
		15,814			20.220				
N 3	САРДИ	15,598	15 236	CCP4	30,338	20 805	14 560		
11-5	GAIDI	15,237	13,230	CCR4	29.799	27,003	17,507		
		15,21			29,616				
N-4	GAPDH	17,797	17,895	CCR4	31	30,618	12,723		1
		17,888			30,438				
	CLERK	18	A1 (A)	CCD	30,416				ł
N-5	GAPDH	21,773	21,694	CCR4					
		21,050							
N-6	GAPDH	15,932	16,100	CCR4	29,103	28,782	12,682	1	1
		16	,		28,175	, -	,		
		16,368			29,067]

Análise da quantificação relativa (QR) por qRT-PCR para o gene *CCR4* em amostras de miocárdio de pacientes com CCC. O valor de QR para cada amostra (QR individual) foi calculado pelo método $2^{-\Delta\Delta Ct}$, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=5).

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CNI-1	GAPDH	13,778	14,476	CCR4	27,707	27,484	13,008	-1,394	2,63
		14,007			27,689				
		14,945			27,057				
CNI-2	GAPDH	18	16,961	CCR4	28,155	27,832	10,871	-3,532	11,57
		17,065			27,797				
		16,857			27,544				
CNI-3	GAPDH	17,222	17,49	CCR4	34	33,798	16,306	1,904	0,27
		17,641			33,839				
		17,612			33,555				
CNI-4	GAPDH	14,37	14,483	CCR4	31,921	32,415	17,932	3,529	0,09
		14,424							
		14,542			32,908				
CNI-5	GAPDH	14,634	14,71	CCR4	32,489	32,444	17,731	3,328	0,10
		14,722			32,669				
		14,782			32,173				
CNI-6	GAPDH	14,03	14,198	CCR4	29,799	29,578	15,380	0,977	0,51
		14,36			29,784				
		14,204			29,15				
CNI-7	GAPDH	13,073	13,17	CCR4	27,796	28,076	14,909	0,506	0,70
		13,253			28,331				
		13,177			28,102				
CNI-8	GAPDH	15,191	15,30	CCR4	27,312	27,498	12,199	-2,204	4,61
		15,319			27,696				
		15,388			27,486				
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	média DCt grupo	
N-1	GAPDH	15,863	15,916	CCR4	33	33,197	17,281	14,403	
		15,886			33,394				
		16							
N-2	GAPDH	15,569	15,660	CCR4	30,502	30,420	14,760		
		15,814							
		15,598			30,338				
N-3	GAPDH	15,261	15,236	CCR4	30	29,805	14,569		
		15,237			29,799				
		15,21			29,616				
N-4	GAPDH	17,797	17,895	CCR4	31	30,618	12,723		
		17,888			30,438				
		18			30,416				
N-5	GAPDH	21,773	21,694	CCR4					
		21,656							
		21,654							
N-6	GAPDH	15,932	16,100	CCR4	29,103	28,782	12,682		
		16			28,175				
1		16,368			29,067				

Análise da quantificação relativa (QR) por qRT-PCR para o gene *CCR4* em amostras de miocárdio de pacientes com CNI. O valor de QR para cada amostra (QR individual) foi calculado pelo método $2^{-\Delta\Delta Ct}$, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=5).
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CCC-1	GAPDH	14,033	14,516	CCR8	27,358	27,444	12,928	-1,251	2,38
		14,519			27,529				
CCC 1	CADDU	14,999	17 204	CCD9	20.459	20.467	12.264	1.014	2 77
<u> </u>	GAFDH	17,241	17,204	CCRO	29,438	29,407	12,204	-1,914	3,77
		17,166			29,665				
CCC-3	GAPDH	14,152	13,662	CCR8	26,582	26,803	13,141	-1,037	2,05
		13,366			26,74				
		13,469			27,088				
CCC-4	GAPDH	13,995	14,094	CCR8	26,965	27,213	13,118	-1,060	2,08
		14,076			27,106				
CCC-5	CAPDH	14,212	18 041	CCB8	27,507	28 662	10.620	-3 558	11 78
CCC-5	GAIDI	18	10,041	CCRO	28,808	20,002	10,020	-5,550	11,70
		18,213			28,904				
CCC-6	GAPDH	16,285	16,573	CCR8	28,176	28,328	11,755	-2,423	5,36
		16,359			28,452				
		16,861			28,356				
CCC-7	GAPDH	13,427	12,270	CCR8	27,393	27,451	15,181	1,00	0,50
		12,277			27,364				
CCC-8	GAPDH	12,202	12 327	CCR8	26.87	26 781	14 454	0.28	0.83
	0.11 DH	12,313	12,027	cento	26,883	20,701	14,454	0,20	0,00
		12,398			26,59				
CCC-9	GAPDH	15,047	15,085	CCR8	25,13	25,234	10,149	-4,03	16,33
		15,093			25,216				
000.10	0 + PP 44	15,115			25,355		15.000		0.40
CCC-10	GAPDH	15,827	15,795	CCR8	31,11	31,194	15,399	1,22	0,43
		15,791			31,29				
CCC-11	GAPDH	15,700	15.335	CCR8	30.387	30.333	14,998	0.82	0.57
		15,473					,	•,•=	-,
		15,236			30,278				
CCC-12	GAPDH	21,036	20,983	CCR8	27,113	27,069	6,086	-8,09	272,91
		21,095			26,992				
CCC 12	CADDU	20,817	14 944	CCD9	27,101	27 722	12 997	1 20	2.45
CCC-15	GAIDI	14 84	14,044	CCRO	27,018	21,132	12,007	-1,29	2,43
		14,693			28				
CCC-14	GAPDH	15,275	15,534	CCR8	29,477	29,753	14,219	0,04	0,97
		15,527			29,782				
		15,8			30	<i>.</i>	2.0	(
Amostra	Endógeno	Ct	média	Alvo	Ct 21.475	média	DCt	média DCt grupo	
N-I	GAPDH	15,503	15,495	ССК8	31,475	31,532	16,037	14,178	
		15 411			31,294				
N-2	GAPDH	15,627	15,416	CCR8	29,159	29,169	13,753		
		15,362			29,107				
		15,259			29,241				
N-3	GAPDH	15	14,845	CCR8	30	29,882	15,037		
		14,861			29,668			1	
N-4	CAPDH	14,675	19 148	CCR8	29,978	31 275	12 127		
14-4	GATDI	18,628	17,140	CCRO	31,576	51,275	12,127	1	
		19			51,575				
N-5	GAPDH	19,617	19,659	CCR8	30,928	30,693	11,033		
		19,608			30,34			1	
		19,753			30,81				
N-6	GAPDH	14,112	14,036	CCR8	31,309	31,119	17,083	1	
		14,141			30,939			1	
1		15,855			51,11	1		1	

Análise da quantificação relativa (QR) por qRT-PCR para o gene *CCR8* em amostras de miocárdio de pacientes com CCC. O valor de QR para cada amostra (QR individual) foi calculado pelo método 2^{-ΔΔCt}, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=6).

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CNI-1	GAPDH	12,718	12,746	CCR8		28,433	15,687	1,509	0,35
		12,773			28,812				
		15			28,053				
CNI-2	GAPDH	17,958	16,707	CCR8	28,843	28,947	12,241	-1,938	3,83
		16,896			29,051				
		16,517							
CNI-3	GAPDH	17	17,04	CCR8					
		16,992							
		17,124							
CNI-4	GAPDH	15,725	16,025	CCR8	32,404				
		15,956			32,191				
		16,094			33,102				
CNI-5	GAPDH	13,692	13,47	CCR8	29,562	29,540	16,069	1,891	0,27
		13,399			29,36				
		13,322			29,699				
CNI-6	GAPDH	14,195	14,414	CCR8	27,652	27,698	13,284	-0,894	1,86
		14,633			27,892				
		13,636			27,55				
CNI-7	GAPDH	13,111	13,17	CCR8	26,675	26,584	13,412	-0,766	1,70
		13,206							
		13,198			26,492				
CNI-8	GAPDH	13,573	13,50	CCR8	33,71	33,614	20,110	5,931	0,02
		13,502			33,119				
		13,439			34,014				
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	média DCt grupo	
N-1	GAPDH	15,563	15,495	CCR8	31,475	31,532	16,037	14,178	
		15,51			31,294				
		15,411			31,826				ļ
N-2	GAPDH	15,627	15,416	CCR8	29,159	29,169	13,753		
		15,362			29,107				
		15,259			29,241				ļ
N-3	GAPDH	15	14,845	CCR8	30	29,882	15,037		
		14,861			29,668				
		14,675			29,978				ļ
N-4	GAPDH	19,816	19,148	CCR8	30,973	31,275	12,127		
		18,628			31,576				
		19							ļ
N-5	GAPDH	19,617	19,659	CCR8	30,928	30,693	11,033	1	
		19,608			30,34			1	
		19,753			30,81				ļ
N-6	GAPDH	14,112	14,036	CCR8	31,309	31,119	17,083		
		14,141			30,939			1	
		13,855			31,11				1

Análise da quantificação relativa (QR) por qRT-PCR para o gene CCR8 em amostras de miocárdio de pacientes com CNI. O valor de QR para cada amostra (QR individual) foi calculado pelo método 2^{-ΔΔCt}, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=6). A expressão de CCR4 não foi detectada em uma amostra de miocárdio de paciente com CNI, dessa forma não foi possível calcular a quantificação relativa.

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CCC-1	GAPDH	15,155	15,093	CCL19/ELC	24,564	24,583	9,489	-4,408	21,23
		15,072			24,608				
		15,053			24,576				
CCC-2	GAPDH	16,818	17,150	CCL19/ELC	30	29,867	12,717	-1,181	2,27
		17,151			29,799				
		17,481			29,802				
CCC-3	GAPDH	14,384	14,454	CCL19/ELC	22,16	22,275	7,822	-6,076	67,46
		14,408			22,272				
		14,569			22,394				
CCC-4	GAPDH	15,387	15,451	CCL19/ELC	23,005	22,926	7,476	-6,422	85,75
		15,542	· · · · ·		22,711	·	·	·	
		15,423			23,063				
CCC-5	GAPDH	18,141	18.430	CCL19/ELC	29.918	29,767	11.336	-2.561	5,90
		18,803	- /		30	.,	,	,	- ,
		18,347			29.382				
CCC-6	GAPDH	16.28	16.546	CCL19/ELC	26 201	26.116	9.570	-4.328	20.09
					26.03		,,	-,	
		16.812			20,00				
CCC-7	GAPDH	13 034	13.058	CCL19/ELC	17 565	17.731	4.673	-9.23	598.41
000.	0.11.211	13,054	10,000	COLIMILLO	17,202	1,,,01	1,070	,,	0,0,11
		13,086			17 906				
CCC-8	CAPDH	13,000	13 570	CCL 19/FL C	18,500	18 734	5 165	-8 73	425 50
CCC-0	GAIDI	12 584	15,570	CCLI)/ELC	18,015	10,754	5,105	-0,75	425,50
		12,504			18,740				
CCCO	CADDI	16,701	15 000	CCI 10/FLC	16,642	26.042	10.056	2.04	7 69
<u> </u>	GALDU	16,141	15,900	ULI9/ELU	27,218	20,945	10,950	-2,94	7,00
		15,009			27,149				
CCC 10	CADDI	15,755	1(502	CCI 10/EL C	20,405	25.942	0.240	4.65	25.00
CCC-10	GAPDH	16,551	10,595	ULI9/ELU	25,807	25,842	9,249	-4,05	25,08
		10,539			25,782				
CCC 11	CADDI	16,69	15 551	CCI 10/EL C	25,938	25 504	0.052	2.04	15 20
	GAPDH	15,495	15,551	ULI9/ELU	25,578	25,504	9,955	-3,94	15,39
		15,466			25,461				
CCC 12	CADDI	15,694	20.01/	CCL 10/EL C	25,474	20.070	9.052	E 95	57 51
CCC-12	GAPDH	21,067	20,916	ULI9/ELU	28,895	28,908	8,052	-5,85	57,51
		21			28,991				
CCC 12	CADDI	20,082	15 517	CCI 10/EL C	29,021	20.072	15 45(15(0.24
CCC-15	GALDU	15,541	15,517	ULI9/ELU	30,904	30,973	15,450	1,50	0,34
		15,527			31,015				
CCC 14	CADDI	15,482	16 474	CCI 10/EL C	31	22.000	((15	7.29	155 (7
UUU-14	GALDH	10,595	10,474	ULI9/ELU	22,980	23,089	0,015	-7,20	155,07
		10,555			23,091				
Amostus	Endágono	16,295	média	Alvo	23,19	mádia	DCt.	módia DCt grupa	
Alliostra	Enuogeno	15.062		AIV0		111eula 21.(72	15.75(12 000	
N-1	GAPDH	15,863	15,916	CCL19/ELC	31,669	31,6/3	15,750	13,898	
		15,880			31,550				
NO	CADDI	10	15 ((0	COL 10/FL C	31,793	2(012	11.252		
N-Z	GAPDH	15,569	15,000	CCL19/ELC	26,9	26,913	11,252		
		15,814			26,838				
NO	CLERK	15,598	15.00/	COL 10/EL C	27		10 504		
N-3	GAPDH	15,261	15,236	CCL19/ELC	27,616	27,822	12,586		
		15,237			27,851				
- N. 4	CLEDRY	15,21	15.005	CICK 40/DX C	28	22.001	12.004		
N-4	GAPDH	17,797	17,895	CCL19/ELC	33,814	33,891	15,996		
		17,888			34				
		18			33,858				
N-5	GAPDH	21,773	21,694	CCL19/ELC					
		21,656							
		21,654							
N-6	GAPDH	15,932	16,100	CCL19/ELC					
		16							
		16,368							

Análise da quantificação relativa (QR) por qRT-PCR para o gene *CCL19/ELC* **em amostras de miocárdio de pacientes com CCC.** O valor de QR para cada amostra (QR individual) foi calculado pelo método 2^{-ΔΔCt}, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=4).

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CNI-1	GAPDH	13,778	14,476	CCL19/ELC	23,608	23,641	9,165	-4,733	26,59
		14,007			23,704				
		14,945			23,611				
CNI-2	GAPDH	17	16,961	CCL19/ELC		29,525	12,564	-1,334	2,52
		17,065			29,869				
		16,857			29,18				
CNI-3	GAPDH	17,222	17,49	CCL19/ELC		30,954	13,462	-0,436	1,35
		17,641			31,197				
		17,612			30,71				
CNI-4	GAPDH	14,37	14,483	CCL19/ELC	29,033	28,990	14,507	0,610	0,66
		14,424			28,817				
		14,542			29,121				
CNI-5	GAPDH	14,634	14,71	CCL19/ELC	26,437	26,532	11,820	-2,078	4,22
		14,722			26,41				
		14,782			26,75				
CNI-6	GAPDH	14,03	14,198	CCL19/ELC	27,478	27,528	13,330	-0,568	1,48
		14,36			27,594				
		14,204			27,512				
CNI-7	GAPDH	13,073	13,17	CCL19/ELC	28,953	28,766	15,599	1,701	0,31
		13,253			28,441				
		13,177			28,905				
CNI-8	GAPDH	15,191	15,30	CCL19/ELC	25,21	25,067	9,767	-4,130	17,51
		15,319			25,075				
		15,388			24,915				
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	média DCt grupo	
N-1	GAPDH	15,863	15,916	CCL19/ELC	31,669	31,673	15,756	13,898	
		15,886			31,556				
		16			31,793				
N-2	GAPDH	15,569	15,660	CCL19/ELC	26,9	26,913	11,252		
		15,814			26,838				
		15,598			27				
N-3	GAPDH	15,261	15,236	CCL19/ELC	27,616	27,822	12,586		
		15,237			27,851				
	CARDI	15,21	15.005	COL 10/EL C	28	22.001	15.00/		
N-4	GAPDH	17,797	17,895	CCL19/ELC	33,814	33,891	15,996		
		17,888			34				
NC	CAPPH	18	21 (04	CCL 10/EL C	33,858			+	
IN-5	GAPDH	21,773	21,694	CCL19/ELC					
		21,656							
NG	CARDI	21,654	16 100	CCL 10/EL C					
IN-0	GAPDH	15,952	16,100	CCL19/ELC					
		16							
1		10,308	1	1	1	I		1	1

Análise da quantificação relativa (QR) por qRT-PCR para o gene CCL19/ELC em amostras de miocárdio de pacientes com CNI. O valor de QR para cada amostra (QR individual) foi calculado pelo método 2^{-ΔΔCt}, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=4).

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CCC-1	GAPDH	15,155	15,093	CCL21/SLC	24,437	24,282	9,189	-3,248	9,50
		15,072			24,238				
		15.053			24.171				
CCC-2	GAPDH	16.818	17.150	CCL21/SLC	27 484	27.628	10.478	-1.958	3.89
0002	0.11.011	17 151	1,,100	COLLIGIO	27.49	21,020	10,170	1,000	0,05
		17,151			27,49				
CCC 2	CADDI	14 284	14 454	CCL 21/SLC	24,512	24 576	10 122	2 314	4.07
<u> </u>	GALDU	14,364	14,454	CCL21/SLC	24,512	24,570	10,125	-2,314	4,97
		14,408			24,628				
		14,569			24,589				1.10
CCC-4	GAPDH	15,387	15,451	CCL21/SLC	27,013	27,405	11,954	-0,482	1,40
		15,542			27,202				
		15,423			28				
CCC-5	GAPDH	18,141	18,430	CCL21/SLC	25,345	24,850	6,419	-6,017	64,76
		18,803			24,681				
		18,347			24,523				
CCC-6	GAPDH	16,28	16,546	CCL21/SLC	24,133	24,402	7,856	-4,580	23,92
					24,58				
		16,812			24,494				
CCC-7	GAPDH	13,034	13,058	CCL21/SLC	23,3	23,375	10,317	-2,12	4,35
		13,054			23,363		-		
		13.086			23,461				
CCC-8	GAPDH	13.424	13,570	CCL21/SLC	23.642	23.663	10.093	-2.34	5.07
		13.584			23,515			_,	-,
		13,701			23,815				
CCC-9	GAPDH	16 141	15 988	CCL21/SLC	27,92	27 949	11.962	-0.47	1 39
0000	0.11 DH	16,069	13,700	CCHINGEC	27,92	21,949	11,502	-0,47	1,09
		15,753			27,520				
CCC 10	САРОН	16 551	16 503	CCL21/SLC	26	26 627	10.034	2.40	5 20
CCC-10	GAIDI	16,531	10,395	CCL21/SLC	20,030	20,027	10,034	-2,40	3,29
		10,339			20,042				
000.11	CADDI	16,69	15 551	COLATIST C	20,003	25 421	0.000	2.54	7.00
<u> </u>	GAPDH	15,493	15,551	CCL21/SLC	25,4	25,431	9,880	-2,56	5,88
		15,400			25,547				
000.44	CLEDN	15,694	00.01/	COLATION C	25,546	20.405		4.05	20.15
CCC-12	GAPDH	21,067	20,916	CCL21/SLC	28,559	28,487	7,571	-4,87	29,15
		21			28,147				
	~	20,682			28,756				
CCC-13	GAPDH	15,541	15,517	CCL21/SLC	26,837	26,895	11,378	-1,06	2,08
		15,527			26,848				
		15,482			27				
CCC-14	GAPDH	16,593	16,474	CCL21/SLC	22,988	23,265	6,792	-5,64	50,03
		16,533			23,112				
		16,295			23,696				
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	média DCt grupo	
N-1	GAPDH	15,863	15,916	CCL21/SLC	29,495	29,500	13,584	12,436	
		15,886			29,367				
		16			29,638				
N-2	GAPDH	15,569	15,660	CCL21/SLC	27	26,948	11,288		
		15,814			26,967				
		15,598			26,877				
N-3	GAPDH	15,261	15,236	CCL21/SLC	24,793	24,863	9,627		
		15,237			24,796		-		
		15,21			25				
N-4	GAPDH	17,797	17.895	CCL21/SLC	33.36	33,142	15.247		1
		17,888	,		33		- /		
		18			33.066				
N-5	GAPDH	21 773	21,694	CCL21/SLC	55,000				1
1.0	0	21,656		Sollanoide					
		21,000							
NG	CAPDU	15 022	16 100	CCL21/SLC					4
11-0	GAIDH	15,952	10,100	CCL21/SLC					
		10							
		16,368]

Análise da quantificação relativa (QR) por qRT-PCR para o gene *CCL21/SLC* **em amostras de miocárdio de pacientes com CCC.** O valor de QR para cada amostra (QR individual) foi calculado pelo método 2^{-ΔΔCt}, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=4).

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CNI-1	GAPDH	13,778	14,476	CCL21/SLC	23,941	23,639	9,163	-3,274	9,67
		14,007			23,592				
		14,945			23,383				
CNI-2	GAPDH	17	16,961	CCL21/SLC	29,722	29,785	12,824	0,388	0,76
		17,065			30,108				
		16,857			29,525				
CNI-3	GAPDH	17,222	17,49	CCL21/SLC	26,168	26,565	9,074	-3,363	10,29
		17,641			26,528				
		17,612			27				
CNI-4	GAPDH	14,37	14,483	CCL21/SLC	24,563	24,642	10,159	-2,277	4,85
		14,424			24,321				
		14,542			25,042				
CNI-5	GAPDH	14,634	14,71	CCL21/SLC	26,128	26,210	11,497	-0,939	1,92
		14,722			26,273				
		14,782			26,229				
CNI-6	GAPDH	14,03	14,198	CCL21/SLC	23,86	23,866	9,668	-2,769	6,82
		14,36							
		14,204			23,871				
CNI-7	GAPDH	13,073	13,17	CCL21/SLC	22,537	22,830	9,662	-2,774	6,84
		13,253			22,948				
		13,177			23,005				
CNI-8	GAPDH	15,191	15,30	CCL21/SLC	20,822	20,653	5,354	-7,083	135,55
		15,319			20,548				
		15,388			20,589				
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	média DCt grupo	
N-1	GAPDH	15,863	15,916	CCL21/SLC	29,495	29,500	13,584	12,436	
		15,886			29,367				
		16			29,638				
N-2	GAPDH	15,569	15,660	CCL21/SLC	27	26,948	11,288		
		15,814			26,967				
		15,598			26,877				
N-3	GAPDH	15,261	15,236	CCL21/SLC	24,793	24,863	9,627		
		15,237			24,796				
		15,21			25				
N-4	GAPDH	17,797	17,895	CCL21/SLC	33,36	33,142	15,247		
		17,888			33				
		18			33,066				
N-5	GAPDH	21,773	21,694	CCL21/SLC					
		21,656							
		21,654							
N-6	GAPDH	15,932	16,100	CCL21/SLC					
		16							
		16,368						1	

Análise da quantificação relativa (QR) por qRT-PCR para o gene CCL21/SLC em amostras de miocárdio de pacientes com CNI. O valor de QR para cada amostra (QR individual) foi calculado pelo método $2^{-\Delta\Delta Ct}$, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=4).

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt
CCC-1	GAPDH	15,155	15,093	CCR7	29,223	29,539	14,446
		15,072			29,7		
		15,053			29,695		
CCC-2	GAPDH	16,818	17,150	CCR7	33,792	34,734	17,584
		17,151			34,614		
		17,481			34,853		
CCC-3	GAPDH	14,384	14,454	CCR7	29,114	29,101	14,648
		14,408			29,076		
		14,569			29,114		
CCC-4	GAPDH	15,387	15,451	CCR7	31,66	31,283	15,832
		15,542			30,906		
	CADDI	15,423	10.420	CCDE	31,836	20.240	0.010
<u> </u>	GAPDH	18,141	18,430	CCR/	28,56	28,349	9,919
		18,803			28,38		
CCC 6	САРДИ	16.28	16 546	CCP7	28,108	34 115	17 560
	GAIDI	10,20	10,540	CCK/	34 502	54,115	17,509
		16 812			34 426		
CCC-7	GAPDH	13 034	13.058	CCR7	24 058	24,057	10,999
	O'H DH	13,054	10,000	Celti	24,082	- 1,007	10,777
		13,086			24,031		
CCC-8	GAPDH	13,424	13,570	CCR7	24,396	24,327	10,757
		13,584	- ,		24,272	,	
		13,701			24,313		
CCC-9	GAPDH	16,141	15,988	CCR7	33,573	33,404	17,416
		16,069			33,784		
		15,753			32,854		
CCC-10	GAPDH	16,551	16,593	CCR7	28,089	28,350	11,756
		16,539			28,582		
		16,69			28,378		
CCC-11	GAPDH	15,493	15,551	CCR7	34,24	34,329	18,778
		15,466			34,417		
	C + 88 11	15,694		0.00			
CCC-12	GAPDH	21,067	20,916	CCR/	33,284	32,855	11,939
		21			32,778		
CCC-13	GAPDH	15 541	15 517	CCR7	32,303	31 979	16 463
	GAIDI	15,541	13,517	CCR/	31 909	51,575	10,405
		15,482			32,029		
CCC-14	GAPDH	16,593	16,474	CCR7	32	31,641	15,167
		16,533	ŕ		31,203	ŕ	
		16,295			31,719		
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt
N-1	GAPDH	15,863	15,916	CCR7			
		15,886					
	CAPPU	16	18 440	007			
N-2	GAPDH	15,569	15,660	CCR/			
		15,814					
N 2	САРОН	15,396	15 236	CCP7			
11-5	GAIDII	15,201	13,230	CCR/			
		15,237					
N-4	GAPDH	17,797	17,895	CCR7			
		17,888	,				
		18					
N-5	GAPDH	21,773	21,694	CCR7			
		21,656					
		21,654					
N-6	GAPDH	15,932	16,100	CCR7			
		16					
		16,368					

Valores de DCt para o gene CCR7 em amostras de miocárdio de pacientes com CCC. A expressão de CCR7 não foi detectada em amostras de miocárdio de doadores saudáveis (controles normais; n=6), dessa forma a expressão relativa desse receptor não pôde ter seu QR calculado. O valor de DCt para cada amostra foi normalizado pelo gene de referência, GAPDH.

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt
CNI-1	GAPDH	13,778	14,476	CCR7	29,065	28,878	14,402
		14,007			28,923		
		14,945			28,645		
CNI-2	GAPDH	18	16,961	CCR7	35,261	35,241	18,280
		17,065			35,221		
		16,857					
CNI-3	GAPDH	17,222	17,49	CCR7	34,24	34,329	16,837
		17,641			34,417		
		17,612					
CNI-4	GAPDH	14,37	14,483	CCR7		35,637	21,154
		14,424			35,808		
		14,542			35,466		
CNI-5	GAPDH	14,634	14,71	CCR7		35,654	20,941
		14,722			35,307		
		14,782			36		
CNI-6	GAPDH	14,03	14,198	CCR7			
		14,36					
		14,204					
CNI-7	GAPDH	13,073	13,17	CCR7	32,755	32,400	19,233
		13,253	,		32,114	·	·
		13,177			32,332		
CNI-8	GAPDH	15,191	15,30	CCR7	30,753	30,910	15,610
		15,319	,		31,31	·	·
		15,388			30,666		
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt
N-1	GAPDH	15,863	15,916	CCR7			
		15,886					
		16					
N-2	GAPDH	15,569	15,660	CCR7			
		15,814					
		15,598					
N-3	GAPDH	15,261	15,236	CCR7			
		15,237					
		15,21					
N-4	GAPDH	17,797	17,895	CCR7			
		17,888					
		18					
N-5	GAPDH	21,773	21,694	CCR7			
		21,656					
		21,654					
N-6	GAPDH	15,932	16,100	CCR7			
		16					
		16,368					

Valores de DCt para o gene CCR7 em amostras de miocárdio de pacientes com CNI. A expressão de CCR7 não foi detectada em amostras de miocárdio de doadores saudáveis (controles normais; n=6), dessa forma a expressão relativa dessa quimiocina não pôde ter seu QR calculado. O valor de DCt para cada amostra foi normalizado pelo gene de referência, GAPDH.

Alve

mádia

Amostra Endógeno

0001	G L DD II		1.000	1.3.15		10 100	4.40.5		
CCC-1	GAPDH	15,155	15,093	ANF	19,22	19,198	4,105	-2,595	6,04
		15,072			19,069				
		15 053			19 305				
		15,055			17,505				
CCC-2	GAPDH	16,818	17,150	ANF	16,077	16,045	-1,105	-7,805	223,59
		17,151			16,038				
		17 481			16.021				
000.1	CADDI	14,204	14 454	ANE	10,021	10.001	5 525	1.1/2	2.24
CCC-S	GAPDH	14,384	14,454	ANF	18,45	19,991	5,537	-1,163	2,24
		14,408			18,653				
		14.569			22.869				
CCC 4	CADDH	15 207	15 451	ANE	16 297	16 350	0.800	5 901	55 76
CCC-4	GAFDH	15,587	15,451	AIVE	10,587	10,330	0,099	-5,001	55,70
		15,542			16,39				
		15,423			16,272				
CCC-5	GAPDH	18 141	18 430	ANE	19 111	19 200	0 770	-5 930	60 99
	0/II DI	10,141	10,400	11111	10.17	17,200	0,770	-5,550	00,77
		18,805			19,17				
		18,347			19,319				
CCC-6	GAPDH	16,28	16,546	ANF	17,608	17,411	0,865	-5,835	57,09
		ŕ	·		17 376	<i>,</i>	· ·	· · · ·	,
		16.010			17,570				
		16,812			17,249				
CCC-7	GAPDH	13,034	13,058	ANF	15,756	15,847	2,789	-3,91	15,05
		13,054			16				
		13.086		1	15 78/				
CCCA	CADDI	12 404	12 550	ANT	10,704	10.072	E 202	1 40	1.0
CCC-8	GAPDH	13,424	13,570	ANF	18,841	18,8/3	5,303	-1,40	2,63
		13,584			18,858				
		13,701			18.92				
CCC 0	САРОН	16 141	15 088	ANE	15 508	15 400	0.570	7 28	155.28
	GAIDII	10,141	15,900	PAINT	15,508	15,409	-0,379	-7,20	155,20
		16,069			15,338				
		15,753			15,381				
CCC-10	GAPDH	16.551	16.593	ANF	16.882	16.831	0.238	-6.46	88,18
	-	16 530	- ,		16.811	- /	.,	- , -	, -
		10,559			10,011				
		16,69			16,8			l – – – – – – – – – – – – – – – – – – –	
CCC-11	GAPDH	15,493	15,551	ANF	18,804	18,689	3,138	-3,56	11,81
		15,466			18,673				
		15 694			18 589				
CCC 12	САРОН	21.067	20.016	ANE	24,649	24 724	3 807	2.80	7.43
CCC-12	GAIDII	21,007	20,910	PAINT	24,049	24,724	5,007	-2,09	7,45
		21			24,693				
		20,682			24,829				
CCC-13	GAPDH	15,541	15,517	ANF	15	14,921	-0,596	-7,30	157,12
		15 527	· ·		14 917	<i>,</i>	· ·	· · · ·	
		15,527			14,017				
		15,482			14,840				
CCC-14	GAPDH	16,593	16,474	ANF	15,582	15,540	-0,933	-7,63	198,55
		16,533			15,524				
		16.295			15,515				
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	média DCt grupo	
Amostia	CAPPE	15.055		AIVO		incuta		incuta DCt grup0	
N-1	GAPDH	15,863	15,916	ANF	24,118	24,070	8,153	6,700	
		15,886			24,038				
		16			24.053				
N-2	GAPDH	15 560	15 660	ANE	21 221	21.096	5 436	1	
11-2	UAI DI	15,000	15,000	71111	21,221	21,000	5,750		
		15,814		1	21,05				
	l	15,598		I	21,017		l		
N-3	GAPDH	15,261	15,236	ANF	23,079	23,076	7,840		
		15,237			23.07				
		15 21		1	23.078				
NIA	CADDI	13,21	17.005	ANIE	25,078	20.415	10.520	+	
IN-4	GAPDH	17,797	17,895	ANF	28,358	28,415	10,520		
		17,888			28,546				
		18		1	28,34				
N-5	GAPDH	21 773	21 694	ANE	25.922	25 848	4 153	1 1	
1,-5	GIIDI	21,775	21,074	1111	25,722	20,040	-,155		
		21,656			26				
		21,654		L	25,621				
N-6	GAPDH	15,932	16,100	ANF	20,227	20,199	4,099		
		16			20.159				
		16 369		1	20.21				
	I	10,308		1	20,21		1	1	

Análise da quantificação relativa (QR) por qRT-PCR para o gene ANF em amostras de miocárdio de pacientes com CCC. O valor de QR para cada amostra (QR individual) foi calculado pelo método 2^{-ΔΔCt}, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=6).

DDCt individual OR individual

DCt

mádia

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CNI-1	GAPDH	13,778	14,476	ANF	15,526	15,448	0,972	-5,728	53,00
		14,007			15,45				
		14,945			15,368				
CNI-2	GAPDH	17	16,961	ANF	14,74	14,667	-2,294	-8,994	510,01
		17,065			14,672				
		16,857			14,588				
CNI-3	GAPDH	17,222	17,49	ANF	23,979	23,915	6,424	-0,276	1,21
		17,641			24,025				
		17,612			23,742				
CNI-4	GAPDH	14,37	14,483	ANF	19,078	19,034	4,551	-2,149	4,44
		14,424			18,952				
		14,542			19,071				
CNI-5	GAPDH	14,634	14,71	ANF	16,17	16,152	1,440	-5,260	38,33
		14,722			16,123				
		14,782			16,164				
CNI-6	GAPDH	14,03	14,198	ANF	18,957	18,924	4,726	-1,974	3,93
		14,36			18,89				
		14,204			18,926				
CNI-7	GAPDH	13,073	13,17	ANF	22,969	23,015	9,847	3,147	0,11
		13,253			23,036				
		13,177			23,039				
CNI-8	GAPDH	15,191	15,30	ANF	18,881	18,847	3,547	-3,153	8,89
		15,319			18,836				
		15,388			18,823				
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	média DCt grupo	
N-1	GAPDH	15,863	15,916	ANF	24,118	24,070	8,153	6,700	
		15,886			24,038				
		16			24,053				
N-2	GAPDH	15,569	15,660	ANF	21,221	21,096	5,436		I
		15,814			21,05				
		15,598			21,017				
N-3	GAPDH	15,261	15,236	ANF	23,079	23,076	7,840		I
		15,237			23,07				
		15,21			23,078				
N-4	GAPDH	17,797	17,895	ANF	28,358	28,415	10,520		Ť
		17,888			28,546				
		18			28,34				
N-5	GAPDH	21,773	21,694	ANF	25,922	25,848	4,153		Î
		21,656			26				
		21,654			25,621				
N-6	GAPDH	15,932	16,100	ANF	20,227	20,199	4,099		t
		16			20,159				
		16,368			20,21				

Análise da quantificação relativa (QR) por qRT-PCR para o gene ANF em amostras de miocárdio de pacientes com CNI. O valor de QR para cada amostra (QR individual) foi calculado pelo método $2^{-\Delta\Delta Ct}$, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=6).

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CCC-1	GAPDH	15,155	15,093	BNP	19,589	19,503	4,410	-7,792	221,55
		15,072			19,297				
		15,053			19,623				
CCC-2	GAPDH	16.818	17,150	BNP	19,707	19,743	2,593	-9,609	780,63
	_	17.151	,		19,779	.,	,	. ,	
		17.481			19.742				
CCC-3	CAPDH	14 384	14 454	RNP	20.986	20.977	6 523	-5 678	51 19
	GAIDI	14,304	14,454	Divi	20,980	20,977	0,525	-3,070	51,17
		14,408			20.045				
CCCA	CADDII	14,309	15 451	DND	20,943	10 000	2 5 4 9	9 (54	402 (9
<u> </u>	GAPDH	15,387	15,451	BINP	19,025	18,998	3,548	-8,054	402,08
		15,542			19,036				
		15,423			18,934				
CCC-5	GAPDH	18,141	18,430	BNP	21,707	21,759	3,328	-8,873	468,80
		18,803			21,727				
		18,347			21,842				
CCC-6	GAPDH	16,28	16,546	BNP	20,696	20,676	4,130	-8,071	268,88
					20,624				
		16,812			20,709				
CCC-7	GAPDH	13,034	13,058	BNP	18,74	18,753	5,695	-6,51	90,88
		13,054			18,835				
		13,086			18,685				
CCC-8	GAPDH	13,424	13,570	BNP	22,579	22,748	9,178	-3,02	8,13
		13,584	, ,		22,763	,	, i i i i i i i i i i i i i i i i i i i	·	
		13,701			22,901				
CCC-9	GAPDH	16,141	15,988	BNP	18,538	18,495	2,507	-9,69	828.20
	_	16 069	-)		18 555	-,	,		, -
		15 753			18 392				
CCC-10	CAPDH	16 551	16 593	RNP	19 203	19.093	2 500	-9 70	832.61
	GAIDI	16,539	10,575	DIVI	19,203	17,075	2,500	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	052,01
		16,557			18 080				
CCC 11	CAPDH	15 402	15 551	DND	21,600	21 730	6 170	6.02	64.08
CCC-II	GAIDI	15,495	15,551	DINI	21,099	21,750	0,179	-0,02	04,50
		15,400			21,603				
CCC 12	CADDII	13,094	20.016	DND	21,087	25.070	4 152	9.05	2(4.(2
CCC-12	GAFDH	21,007	20,910	DINF	25,094	25,070	4,155	-0,05	204,03
		21			25,062				
CCC 12	CADDII	20,682	15 517	DND	25,053	16.062	1 4 4 5	10.70	1720 12
CCC-13	GAPDH	15,541	15,517	BNP	16,887	16,962	1,445	-10,76	1/29,13
		15,527			17				
		15,482			16,999				
CCC-14	GAPDH	16,593	16,474	BNP	17,579	17,826	1,352	-10,85	1844,27
		16,533			17,899				
		16,295			18				
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	média DCt grupo	
N-1	GAPDH	15,863	15,916	BNP	33	33,170	17,253	12,201	
		15,886			33,285				
		16			33,224				
N-2	GAPDH	15,569	15,660	BNP	30,374	30,334	14,673		
		15,814			29,857				
		15,598			30,77				
N-3	GAPDH	15,261	15,236	BNP	30,857	28,474	13,238		
		15,237			30,411				
		15,21			24,153				
N-4	GAPDH	17,797	17,895	BNP	25,712	25,841	7,946		
		17,888			25,941				
		18			25,869				
N-5	GAPDH	21,773	21,694	BNP	27,82	27,576	5,882		1
		21,656	,		27,373	,	,		
		21,654			27,536				
N-6	GAPDH	15 932	16,100	BNP	30.09	30,315	14,215		1
		16	, • • •		30 104	,	,		
		16 368			30 751				
L		10,300			50,751	I	I	1	1

Análise da quantificação relativa (QR) por qRT-PCR para o gene *BNP* em amostras de miocárdio de pacientes com CCC. O valor de QR para cada amostra (QR individual) foi calculado pelo método $2^{-\Delta\Delta Ct}$, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=6).

Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	DDCt individual	QR individual
CNI-1	GAPDH	13,778	14,476	BNP	19,499	19,354	4,878	-7,323	160,14
		14,007			19,309				
		14,945			19,254				
CNI-2	GAPDH	17	16,961	BNP	20,631	20,430	3,469	-8,732	425,25
		17,065			20,248				
		16,857			20,411				
CNI-3	GAPDH	17,222	17,49	BNP	25,925	25,918	8,426	-3,775	13,69
		17,641			25,928				
		17,612			25,9				
CNI-4	GAPDH	14,37	14,483	BNP	21,826	21,785	7,302	-4,900	29,85
		14,424	-		21,924	, , , , , , , , , , , , , , , , , , ,	- -		
		14,542			21,604				
CNI-5	GAPDH	14,634	14,71	BNP	19,465	19,424	4,712	-7,490	179,71
		14,722			19,524				
		14,782			19,284				
CNI-6	GAPDH	14,03	14,198	BNP	21,545	21,585	7,387	-4,814	28,13
		14,36			21,532				
		14,204			21,678				
CNI-7	GAPDH	13,073	13,17	BNP	27,634	27,564	14,396	2,195	0,22
		13,253	, in the second s		27,758	·	í.	, í	,
		13,177			27,3				
CNI-8	GAPDH	15,191	15,30	BNP	18,465	18,407	3,108	-9,094	546,28
		15,319	, in the second s		18,327	·	,	,	,
		15,388			18,429				
Amostra	Endógeno	Ct	média	Alvo	Ct	média	DCt	média DCt grupo	
N-1	GAPDH	15,863	15,916	BNP	33	33,170	17,253	12,201	
		15,886			33,285	,	-	ŕ	
		16			33,224				
N-2	GAPDH	15,569	15,660	BNP	30,374	30,334	14,673		
		15,814			29,857				
		15,598			30,77				
N-3	GAPDH	15,261	15,236	BNP	30,857	28,474	13,238		
		15,237			30,411				
		15,21			24,153				
N-4	GAPDH	17,797	17,895	BNP	25,712	25,841	7,946		
		17,888			25,941				
		18			25,869				
N-5	GAPDH	21,773	21,694	BNP	27,82	27,576	5,882		
		21,656			27,373				
		21,654			27,536				
N-6	GAPDH	15,932	16,100	BNP	30,09	30,315	14,215		
		16	-		30,104	-			
		16,368			30,751				

Análise da quantificação relativa (QR) por qRT-PCR para o gene *BNP* em amostras de miocárdio de pacientes com CNI. O valor de QR para cada amostra (QR individual) foi calculado pelo método $2^{-\Delta\Delta Ct}$, normalizado pelo gene de referência, GAPDH, e expresso em relação à média das amostras de miocárdio de doadores saudáveis (média DCt grupo) (controles normais; n=6).

8. REFERÊNCIAS

Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. *Nature*. 1996;383(6603):787-93.

Abe R, Donnelly SC, Peng T, Bucala R, Metz CN. Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. *J Immunol*. 2001;166(12):7556-62.

Abel LC, Rizzo LV, Ianni B, Albuquerque F, Bacal F, Carrara D, et al. Chronic Chagas' disease cardiomyopathy patients display an increased IFN-gamma response to Trypanosoma cruzi infection. *J Autoimmun*. 2001;17(1):99-107.

Abrahamsohn IA. Cytokines in innate and acquired immunity to Trypanosoma cruzi infection. *Braz J Med Biol Res*. 1998;31(1):117-21.

Aliberti JC, Souto JT, Marino AP, Lannes-Vieira J, Teixeira MM, Farber J, et al. Modulation of chemokine production and inflammatory responses in interferon-gamma- and tumor necrosis factor-R1-deficient mice during Trypanosoma cruzi infection. *Am J Pathol.* 2001;158(4):1433-40.

Allison RS, Mumy ML, Wakefield LM. Translational control elements in the major human transforming growth factor-beta 1 mRNA. *Growth Factors*. 1998;16(2):89-100.

Andrew DP, Ruffing N, Kim CH, Miao W, Heath H, Li Y, Murphy K, Campbell JJ, Butcher EC, Wu L. C-C chemokine receptor 4 expression defines a major subset of circulating nonintestinal memory T cells of both Th1 and Th2 potential. *J Immunol.* 2001;166(1):103-11.

Antunez MI, Cardoni RL. Early IFN-gamma production is related to the presence of interleukin (IL)-18 and the absence of IL-13 in experimental Trypanosoma cruzi infections. *Immunol Lett.* 2001;79(3):189-96.

Araujo FF, Gomes JA, Rocha MO, Williams-Blangero S, Pinheiro VM, Morato MJ, Correa-Oliveira R. Potential role of CD4+CD25HIGH regulatory T cells in morbidity in Chagas disease. *Front Biosci.* 2007;1(12):2797-806.

Araujo-Jorge TC, Waghabi MC, Hasslocher-Moreno AM, Xavier SS, Higuchi Mde L, Keramidas M, et al. Implication of transforming growth factor-beta1 in Chagas disease myocardiopathy. J Infect Dis. 2002;186(12):1823-8.

Aukrust P, Ueland T, Muller F, Andreassen AK, Nordoy I, Aas H, et al. Elevated circulating levels of C-C chemokines in patients with congestive heart failure. *Circulation.* 1998;97(12):1136-43.

Aukrust P, Damas JK, Gullestad L, Froland SS. Chemokines in myocardial failure -- pathogenic importance and potential therapeutic targets. *Clin Exp Immunol.* 2001;124(3):343-5.

Bacon KB, Premack BA, Gardner P, Schall TJ. Activation of dual T cell signaling pathways by the chemokine RANTES. *Science*. 1995;269(5231):1727-30.

Baggiolini M, Dewald B, Moser B. Interleukin-8 and related chemotactic cytokines--CXC and CC chemokines. *Adv Immunol.* 1994;55:97-179. Review.

Baggiolini M. Chemokines and leukocyte traffic. Nature. 1998;392(6676):565-8. Review.

Baggiolini M. Chemokines in pathology and medicine. *J Intern Med.* 2001;250(2):91-104. Review.

Balashov KE, Rottman JB, Weiner HL, Hancock WW. CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1alpha and IP-10 are expressed in demyelinating brain lesions. *Proc Natl Acad Sci U S A*; 1999;96(12):6873-8.

Balligand JL, Ungureanu-Longrois D, Simmons WW, Pimental D, Malinski TA, Kapturczak M, et al. Cytokine-inducible nitric oxide synthase (iNOS) expression in cardiac myocytes. Characterization and regulation of iNOS expression and detection of iNOS activity in single cardiac myocytes in vitro. *J Biol Chem.* 1994;269(44):27580-8.

Banas B, Wörnle M, Berger T, Nelson PJ, Cohen CD, Kretzler M, Pfirstinger J, Mack M, Lipp M, Gröne HJ, Schlöndorff D. Roles of SLC/CCL21 and CCR7 in human kidney for mesangial proliferation, migration, apoptosis, and tissue homeostasis. *J Immunol.* 2002;168(9):4301-7.

Barbosa J, Massensini AR, Santos MS, Meireles SI, Gomez RS, Gomez MV, Romano-Silva MA, Prado VF, Prado MA. Expression of the vesicular acetylcholine transporter, proteins involved in exocytosis, and functional calcium signaling in varicosities and soma of a murine septal cell line. *J Neurochem*. 1999;73(5):1881-93 Barbulescu K, Becker C, Schlaak JF, Schmitt E, Meyer zum Buschenfelde KH, Neurath MF. IL-12 and IL-18 differentially regulate the transcriptional activity of the human IFN-gamma promoter in primary CD4+ T lymphocytes. *J Immunol*. 1998;160(8):3642-7.

Bardi G, Lipp M, Baggiolini M, Loetscher P. The T cell chemokine receptor CCR7 is internalized on stimulation with ELC, but not with SLC. *Eur J Immunol*. 2001;31(11):3291-7.

Benvenuti LA, Aiello VD, Palomino SA, Higuchi Mde L. Ventricular expression of atrial natriuretic peptide in chronic chagasic cardiomyopathy is not induced by myocarditis. *Int J Cardiol.* 2003;88(1):57-61.

Bestetti RB, Muccillo G. Clinical course of Chagas' heart disease: a comparison with dilated cardiomyopathy. *Int J Cardiol.* 1997;60(2):187-93.

Bilate AM, Salemi VM, Ramires FJ, de Brito T, Silva AM, Umezawa ES, et al. The Syrian hamster as a model for the dilated cardiomyopathy of Chagas' disease: a quantitative echocardiographical and histopathological analysis. *Microbes and infection / Institut Pasteur*. 2003;5(12):1116-24.

Bilate AM, Salemi VM, Ramires FJ, de Brito T, Russo M, Fonseca SG, Fae KC, Martins DG, Silva AM, Mady C, Kalil J, Cunha-Neto E. TNF blockade aggravates experimental chronic Chagas disease cardiomyopathy. *Microbes Infect.* 2007;9(9):1104-13.

Bleul CC, Wu L, Hoxie JA, Springer TA, Mackay CR. The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. *Proceedings of the National Academy of Sciences of the United States of America.* 1997;94(5):1925-30.

Bonacchi A, Petrai I, Defranco RM, Lazzeri E, Annunziato F, Efsen E, et al. The chemokine CCL21 modulates lymphocyte recruitment and fibrosis in chronic hepatitis C. *Gastroenterology*. 2003;125(4):1060-76.

Bonecchi R, Bianchi G, Bordignon PP, D'Ambrosio D, Lang R, Borsatti A, et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. *The Journal of experimental medicine*. 1998;187(1):129-34.

Brener Z. Biology of Trypanosoma cruzi. *Annual review of microbiology.* 1973;27:347-82.

Caforio AL, Goldman JH, Haven AJ, et al. Evidence for autoimmunity to myosin and other heart-specifc autoantigens in patients with dilated cardiomyopathy and their relatives. *Int. J. Cardiol.* 1996;54:157-63.

Campbell JJ, Haraldsen G, Pan J, Rottman J, Qin S, Ponath P, et al. The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells. *Nature*. 1999;400(6746):776-80.

Campbell JJ, Butcher EC. Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. *Curr Opin Immunol.* 2000;12(3):336-41.

Campbell DJ, Ziegler SF. FOXP3 modifies the phenotypic and functional properties of regulatory T cells. *Nat Rev Immunol.* 2007;7(4):305-10. Review.

Carvajal, K. E Moreno-Sanchez, R. Heart Metabolic disturbances in cardiovascular diseases. *Arch. Med. Res.* 2003; 34: 89-99.

Chagas C. Nova tripanosomíase humana. *Mem. Inst. Oswald Cruz.* 1909;1:159-218.

Chandrasekar B, Mummidi S, Claycomb WC, Mestril R, Nemer M. a pro-hypertrophic cytokine that acts Interleukin-18 is through a 3-kinase-phosphoinositide-dependent phosphatidylinositol kinase-1-Aktpathway cardiomyocytes. GATA4 signaling in Biol Chem. J 2005;280(6):4553-67.

Chandrasekar B, Vemula K, Surabhi RM, Li-Weber M, Owen-Schaub LB, Jensen LE, et al. Activation of intrinsic and extrinsic proapoptotic signaling pathways in interleukin-18-mediated human cardiac endothelial cell death. *J Biol Chem.* 2004;279(19):20221-33.

Chang JT, Segal BM, Nakanishi K, Okamura H, Shevach EM. The costimulatory effect of IL-18 on the induction of antigen-specific IFN-gamma production by resting T cells is IL-12 dependent and is mediated by up-regulation of the IL-12 receptor beta2 subunit. *Eur J Immunol.* 2000;30(4):1113-9.

Chen XL, Tummala PE, Olbrych MT, Alexander RW, Medford RM. Angiotensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular smooth muscle cells. *Circ Res.* 1998;83(9):952-9.

Chien KR, Zhu H, Knowlton KU, Miller-Hance W, van-Bilsen M, O'Brien TX, et al. Transcriptional regulation during cardiac growth and development. *Annu Rev Physiol.* 1993;55:77-95.

Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. *Anal Biochem.* 1987 Apr;162(1):156-9.

Coffman RL, von der Weid T. Multiple pathways for the initiation of T helper 2 (Th2) responses. *The Journal of experimental medicine*. 1997;185(3):373-5.

Cook DN, Smithies O, Strieter RM, Frelinger JA, Serody JS. CD8+ T cells are a biologically relevant source of macrophage inflammatory protein-1 alpha in vivo. *J Immunol*. 1999;162(9):5423-8.

Cosman D. Control of messenger RNA stability. *Immunol. Today.* 1987;8:16.

Cossio PM, Laguens RP, Diez C, Szarfman A, Segal A, Arana RM. Chagasic cardiopathy. Antibodies reacting with plasma membrane of striated muscle and endothelial cells. *Circulation.* 1974;50(6):1252-9.

Cossio PM, Diez C, Szarfman A, Kreutzer E, Candiolo B, Arana RM. Chagasic cardiopathy. Demonstration of a serum gamma globulin factor which reacts with endocardium and vascular structures. *Circulation*. 197449(1):13-21.

Cunha-Neto E, Duranti M, Gruber A, Zingales B, De Messias I, Stolf N, et al. Autoimmunity in Chagas disease cardiopathy: biological relevance of a cardiac myosin-specific epitope crossreactive to an immunodominant Trypanosoma cruzi antigen. *Proceedings of the National Academy of Sciences of the United States of America.* 1995;92(8):3541-5.

Cunha-Neto E, Coelho V, Guilherme L, Fiorelli A, Stolf N, Kalil J. Autoimmunity in Chagas' disease. Identification of cardiac myosin-B13 Trypanosoma cruzi protein crossreactive T cell clones in heart lesions of a chronic Chagas' cardiomyopathy patient. *The Journal of clinical investigation*. 1996;98(8):1709-12.

Cunha-Neto E, Rizzo LV, Albuquerque F, Abel L, Guilherme L, Bocchi E, et al. Cytokine production profile of heart-infiltrating T cells in Chagas' disease cardiomyopathy. *Braz J Med Biol Res.* 1998;31(1):133-7.

Cunha-Neto E, Dzau VJ, Allen PD, Stamatiou D, Benvenutti L, Higuchi ML, et al. Cardiac gene expression profiling provides evidence for cytokinopathy as a molecular mechanism in Chagas' disease cardiomyopathy. *Am J Pathol.* 2005;167(2):305-13.

Cunha-Neto E, Teixeira PC, Nogueira LG, Mady C, Lanni B, Stolf N, Fiorelli A, Honorato R, Kalil J. New concepts on the pathogenesis of chronic Chagas cardiomyopathy: myocardial gene and protein expression profiles. *Rev Soc Bras Med Trop.* 2006;39(3):59-62. Review. Portuguese.

Cyster JG. Chemokines and cell migration in secondary lymphoid organs. *Science*. 1999;286(5447):2098-102.

D'Ambrosio D, Iellem A, Bonecchi R, Mazzeo D, Sozzani S, Mantovani A, et al. Selective up-regulation of chemokine receptors CCR4 and CCR8 upon activation of polarized human type 2 Th cells. *J Immunol.* 1998;161(10):5111-5.

D'Ambrosio D, Sinigaglia F. Chemokines and their receptors: trafficking cues for Th1 and Th2 cells. *Eur Cytokine Netw.* 2000;11(3):495-6.

Damas JK, Gullestad L, Ueland T, Solum NO, Simonsen S, Froland SS, et al. CXC-chemokines, a new group of cytokines in congestive heart failure-possible role of platelets and monocytes. *Cardiovasc Res.* 2000^a;45(2):428-36.

Damas JK, Eiken HG, Oie E, Bjerkeli V, Yndestad A, Ueland T, et al. Myocardial expression of CC- and CXC-chemokines and their receptors in human end-stage heart failure. *Cardiovasc Res.* 2000^b;47(4):778-87.

Damas JK, Aukrust P, Ueland T, Odegaard A, Eiken HG, Gullestad L, et al. Monocyte chemoattractant protein-1 enhances and interleukin-10 suppresses the production of inflammatory cytokines in adult rat cardiomyocytes. *Basic Res Cardiol.* 2001;96(4):345-52.

Damas JK, Waehre T, Yndestad A, Otterdal K, Hognestad A, Solum NO, et al. Interleukin-7-mediated inflammation in unstable angina: possible role of chemokines and platelets. *Circulation*. 2003;107(21):2670-6.

Davidson N, Naab A, Hanson J, Kennedy N, Coutie W. Struthers A. Comparison of atrial natriuretic peptide, B-type natriuretic peptide, and N-terminal proatrial natriuretic peptide as indicators of left ventricular systolic dysfunction. Am J Cardiol. 1996;77:828-831.

De Maria R, Gavazzi A, Recalcati F, Baroldi G, De Vita C, Camerini F.Comparison of clinical findings in idiopathic dilated cardiomyopathy in women versus men. The Italian Multicenter Cardiomyopathy Study Group (SPIC) *Am J Cardiol.* 1993;72(7):580-5.

Devaux B, Scholz D, Hirche A, Klovekorn WP, Schaper J. Upregulation of cell adhesion molecules and the presence of low grade inflammation in human chronic heart failure. *Eur Heart J.* 1997;18(3):470-9.

Dewald O, Frangogiannis NG, Zoerlein M, Duerr GD, Klemm C, Knuefermann P, et al. Development of murine ischemic cardiomyopathy is associated with a transient inflammatory reaction and depends on reactive oxygen species. *Proceedings of the National Academy of Sciences of the United States of America*. 2003;100(5):2700-5.

Dias E, Laranja FS, Miranda A, Nobrega G. Chagas' disease; a clinical, epidemiologic, and pathologic study. *Circulation*. 1956;14(6):1035-60.

Dias JC, SILVEIRA AC, SCHOFIELD CJ. The impact of Chagas disease control in Latin America: a review. *Mem Inst Oswaldo Cruz*. 2002;97(5):603-12. Review.

Dinarello CA, Novick D, Puren AJ, Fantuzzi G, Shapiro L, Muhl H, et al. Overview of interleukin-18: more than an interferon-gamma inducing factor. *J Leukoc Biol*. 1998;63(6):658-64.

Dos Santos RR, Rossi MA, Laus JL, Silva JS, Savino W, Mengel J. Anti-CD4 abrogates rejection and reestablishes long-term tolerance to syngeneic newborn hearts grafted in mice chronically infected with Trypanosoma cruzi. *The Journal of experimental medicine*. 1992;175(1):29-39.

Dos Santos PV, Roffê E, Santiago HC, Torres RA, Marino AP, Paiva CN, Silva AA, Gazzinelli RT, Lannes-Vieira J. Prevalence of CD8(+)alpha beta T cells in Trypanosoma cruzi-elicited myocarditis is associated with acquisition of CD62L(Low)LFA-1(High)VLA-4(High) activation phenotype and expression of IFN-gamma-inducible adhesion and chemoattractant molecules. *Microbes Infect.* 2001;3(12):971-84.

Fantuzzi G, Puren AJ, Harding MW, Livingston DJ, Dinarello CA. Interleukin-18 regulation of interferon gamma production and cell proliferation as shown in interleukin-1beta-converting enzyme (caspase-1)-deficient mice. *Blood*. 1998;91(6):2118-25.

Farber JM. Mig and IP-10: CXC chemokines that target lymphocytes. *J Leukoc Biol*. 1997;61(3):246-57. Review.

Ferreira RC, Ianni BM, Abel LC, Buck P, Mady C, Kalil J, et al. Increased plasma levels of tumor necrosis factor-alpha in asymptomatic/"indeterminate" and Chagas disease cardiomyopathy patients. *Memorias do Instituto Oswaldo Cruz.* 2003;98(3):407-11.

Filippatos G, Parissis JT, Adamopoulos S, Kardaras F. Chemokines in cardiovascular remodeling: clinical and therapeutic implications. *Curr Mol Med.* 2003;3(2):139-47.

Fonseca SG, Moins-Teisserenc H, Clave E, Ianni B, Nunes VL, Mady C, et al. Identification of multiple HLA-A*0201-restricted cruzipain and FL-160 CD8+ epitopes recognized by T cells from chronically Trypanosoma cruzi-infected patients. *Microbes and infection / Institut Pasteur.* 2005;7(4):688-97.

Fonseca SG, Reis MM, Coelho V, Nogueira LG, Monteiro SM, Mairena EC, Bacal F, Bocchi E, Guilherme L, Zheng XX, Liew FY, Higuchi ML, Kalil J, Cunha-Neto E Locally Produced Survival Cytokines IL-15 and IL-7 may be Associated to the Predominance of CD8(+) T cells at Heart Lesions of Human Chronic Chagas Disease Cardiomyopathy. *Scand J Immunol.* 2007;66(2-3):362-71.

Frangogiannis NG, Mendoza LH, Lewallen M, Michael LH, Smith CW, Entman ML. Induction and suppression of interferon-inducible protein 10 in reperfused myocardial infarcts may regulate angiogenesis. *Faseb J.* 2001;15(8):1428-30.

Frangogiannis NG, Shimoni S, Chang SM, Ren G, Dewald O, Gersch C, et al. Active interstitial remodeling: an important process in the hibernating human myocardium. *J Am Coll Cardiol.* 2002^a;39(9):1468-74.

Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction. *Cardiovasc Res.* 2002^b;53(1):31-47.

Frangogiannis NG, Entman ML. Targeting the chemokines in myocardial inflammation. *Circulation.* 2004;110(11):1341-2.

Freitas HF, Chizzola PR, Paes AT, Lima AC, Mansur AJ. Risk stratification in a Brazilian hospital-based cohort of 1220 outpatients with heart failure: role of Chagas' heart disease. *Int J Cardiol.* 2005;102(2):239-47.

Galli G, Chantry D, Annunziato F, Romagnani P, Cosmi L, Lazzeri E, Manetti R, Maggi E, Gray PW, Romagnani S. Macrophage-derived chemokine production by activated human T cells in vitro and in vivo: preferential association with the production of type 2 cytokines. *Eur J Immunol.* 2000;30(1):204-10.

Gattorno M, Prigione I, Morandi F, Gregorio A, Chiesa S, Ferlito F, et al. Phenotypic and functional characterisation of CCR7+ and CCR7- CD4+ memory T cells homing to the joints in juvenile idiopathic arthritis. *Arthritis Res Ther.* 2005;7(2):R256-67.

Gazzinelli RT, Oswald IP, Hieny S, James SL, Sher A. The microbicidal activity of interferon-gamma-treated macrophages against Trypanosoma cruzi involves an L-arginine-dependent, nitrogen oxide-mediated mechanism inhibitable by interleukin-10 and transforming growth factor-beta. *Eur J Immunol.* 1992;22(10):2501-6.

Gerard C, Rollins BJ. Chemokines and disease. *Nat Immunol.* 2001;2(2):108-15.

Girones N, Fresno M. Etiology of Chagas disease myocarditis: autoimmunity, parasite persistence, or both? *Trends in parasitology*. 2003;19(1):19-22.

Gomes JA, Bahia-Oliveira LM, Rocha MO, Martins-Filho OA, Gazzinelli G, Correa-Oliveira R. Evidence that development of severe cardiomyopathy in human Chagas' disease is due to a Th1-specific immune response. *Infection and immunity.* 2003;71(3):1185-93.

Gomes JA, Bahia-Oliveira LM, Rocha MO, Busek SC, Teixeira MM, Silva JS, Correa-Oliveira R. Type 1 chemokine receptor expression in Chagas' disease correlates with morbidity in cardiac patients. *Infect Immun.* 2005;73(12):7960-6.

Gombert M, Dieu-Nosjean MC, Winterberg F, Bünemann E, Kubitza RC, Da Cunha L, Haahtela A, Lehtimäki S, Müller A, Rieker J, Meller S, Pivarcsi A, Koreck A, Fridman WH, Zentgraf HW, Pavenstädt H, Amara A, Caux C, Kemeny L, Alenius H, Lauerma A, Ruzicka T, Zlotnik A, Homey B. CCL1-CCR8 interactions: an axis mediating the recruitment of T cells and Langerhans-type dendritic cells to sites of atopic skin inflammation. *J Immunol.* 2005;174(8):5082-91.

Gracie JA, Forsey RJ, Chan WL, Gilmour A, Leung BP, Greer MR, et al. A proinflammatory role for IL-18 in rheumatoid arthritis. *The Journal of clinical investigation*. 1999;104(10):1393-401.

Graefe SE, Jacobs T, Gaworski I, Klauenberg U, Steeg C, Fleischer B. Interleukin-12 but not interleukin-18 is required for immunity to Trypanosoma cruzi in mice. *Microbes Infect*. 2003;5(10):833-9.

Grewe M, Gyufko K, Schopf E, Krutmann J. Lesional expression of interferon-gamma in atopic eczema. *Lancet.* 1994;343:25-6.

Hamid Q, Naseer T, Minshall EM, Song YL, Bonguniewicz M, Leung DY. In vivo expression of IL-12 and IL-13 in atopic dermatitis. *J Allergy Clin Immunology*. 1996;98:225-31.

Hara M, Kingsley CI, Niimi M, Read S, Turvey SE, Bushell AR, Morris PJ, Powrie F, Wood KJ. IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. *J Immunol.* 2001;166(6):3789-96.

Hardison JL, Wrightsman RA, Carpenter PM, Lane TE, Manning JE. The chemokines CXCL9 and CXCL10 promote a protective immune response but

do not contribute to cardiac inflammation following infection with Trypanosoma cruzi. *Infect Immun*. 2006;74(1):125-34.

Hase K, Tani K, Shimizu T, Ohmoto Y, Matsushima K, Sone S. Increased CCR4 expression in active systemic lupus erythematosus. *J Leukoc Biol.* 2001;70(5):749-55.

Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW, et al. The MADrelated protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. *Cell*. 1997;89(7):1165-73.

Heath H, Qin S, Rao P, Wu L, LaRosa G, Kassam N, Ponath PD, Mackay CR. Chemokine receptor usage by human eosinophils. The importance of CCR3 demonstrated using an antagonistic monoclonal antibody. *J Clin Invest.* 1997;99(2):178-84.

Helin M, Savola J, Lapinleimu K. Cardiac manifestations during a Coxsackie B5 epidemic. *Br Med J.* 1968;3(5610):97-9.

Higuchi ML, De Morais CF, Pereira Barreto AC, Lopes EA, Stolf N, Bellotti G, et al. The role of active myocarditis in the development of heart failure in chronic Chagas' disease: a study based on endomyocardial biopsies. *Clinical cardiology*. 1987;10(11):665-70.

Higuchi Mde L, Gutierrez PS, Aiello VD, Palomino S, Bocchi E, Kalil J, et al. Immunohistochemical characterization of infiltrating cells in human chronic chagasic myocarditis: comparison with myocardial rejection process. *Virchows Archiv.* 1993^a;423(3):157-60.

Higuchi, M.D.; De Brito, T.; Reis, M.M.; Belotti, G.; Pereira-Barretto A.C.; Pileggi, F. Correlation between T. cruzi parasitism and myocardial inflammatory infiltrate in human chronic chagasic myocarditis: light microscopy and immunohistochemical findings. *Cardiovascular Pathology*. 1993^b; 2:101-105.

Holme PA, Muller F, Solum NO, Brosstad F, Froland SS, Aukrust P. Enhanced activation of platelets with abnormal release of RANTES in human immunodeficiency virus type 1 infection. *Faseb J.* 1998;12(1):79-89.

Holscher C, Mohrs M, Dai WJ, Kohler G, Ryffel B, Schaub GA, et al. Tumor necrosis factor alpha-mediated toxic shock in Trypanosoma cruzi-infected interleukin 10-deficient mice. *Infection and immunity.* 2000;68(7):4075-83.

Huehn J, Hamann A. Homing to suppress: address codes for Treg migration. *Trends Immunol.* 2005;26(12):632-6.

Hunter CA, Slifer T, Araujo F. Interleukin-12-mediated resistance to Trypanosoma cruzi is dependent on tumor necrosis factor alpha and gamma interferon. *Infection and immunity.* 1996;64(7):2381-6.

Hunter, J.J.; CHIEN, K.R. Signaling pathways for cardiac hypertrophy and failure. *The New England Journal of Medicine*. 1999;341(17):1276-1283.

Ide N, Hirase T, Nishimoto-Hazuku A, Ikeda Y, Node K. Angiotensin II increases expression of IP-10 and the renin-angiotensin system in endothelial cells. *Hypertens Res.* 2008;31(6):1257-67.

Iellem A, Colantonio L, Bhakta S, Sozzani S, Mantovani A, Sinigaglia F, et al. Inhibition by IL-12 and IFN-alpha of I-309 and macrophage-derived chemokine production upon TCR triggering of human Th1 cells. *Eur J Immunol.* 2000;30(4):1030-9.

Ishiyama S, Hiroe M, Nishikawa T, Abe S, Shimojo T, Ito H, Ozasa S, Yamakawa K, Matsuzaki M, Mohammed MU, Nakazawa H, Kasajima T, Marumo F Nitric oxide contributes to the progression of myocardial damage in experimental autoimmune myocarditis in rats. *Circulation.* 1997;95(2):489-96.

Iwai Y, Hemmi H, Mizenina O, Kuroda S, Suda K, Steinman RM. An IFNgamma-IL-18 signaling loop accelerates memory CD8+ T cell proliferation. *PLoS ONE*. 2008;3(6):e2404.

Joe EK, Schussheim AE, Longrois D, Mäki T, Kelly RA, Smith TW, Balligand JL Regulation of cardiac myocyte contractile function by inducible nitric oxide synthase (iNOS): mechanisms of contractile depression by nitric oxide. *J Mol Cell Cardiol.* 1998;30(2):303-15.

Johnston, D.; LewandoviskI, D.E. Fatty acid metabolism and contractile function in the reperfused myocardioum. *Circ. Res.* 1991; 68:714-725.

Kalovidouris, A.E.; Plotkin, Z.; Graesser, D. Interferon-gamma inhibitis proliferation, differentiation, and creatine kinase activity of cultured human muscle cells. II. A possible role in myosits. *J. Rheumatl.* 1993; 20:1718-1723.

Karpus WJ, Lukacs NW, Kennedy KJ, Smith WS, Hurst SD, Barrett TA. Differential CC chemokine-induced enhancement of T helper cell cytokine production. *J Immunol.* 1997;158(9):4129-36.

Kierszenbaum F. Views on the autoimmunity hypothesis for Chagas disease pathogenesis. *FEMS immunology and medical microbiology*. 2003;37(1):1-11.

Kim SJ, Park K, Koeller D, Kim KY, Wakefield LM, Sporn MB, Roberts AB. Post-transcriptional regulation of the human transforming growth factor-beta 1 gene. *J Biol Chem.* 1992;267(19):13702-7.

Kim YM, Kang HS, Paik SG, Pyun KH, Anderson KL, Torbett BE, Choi I. Roles of IFN consensus sequence binding protein and PU.1 in regulating IL-18 gene expression. *J Immunol.* 1999;163(4):2000-7.

Koch AE, Polverini PJ, Kunkel SL, Harlow LA, DiPietro LA, Elner VM, Elner SG, Strieter RM. Interleukin-8 as a macrophage-derived mediator of angiogenesis. *Science.* 1992;258(5089):1798-801.

Kolattukudy PE, Quach T, Bergese S, Breckenridge S, Hensley J, Altschuld R, et al. Myocarditis induced by targeted expression of the MCP-1 gene in murine cardiac muscle. *Am J Pathol.* 1998;152(1):101-11.

Korbele F, Alcântara FG, Rebeiro-dos-Santos R. Patogenia da forma digestiva. Manifestações digestivas da moléstia de Chagas. *Sarvier.* 1983: 25-34.

Kotner J, Tarleton R. Endogenous CD4(+) CD25(+) regulatory T cells have a limited role in the control of Trypanosoma cruzi infection in mice. *Infect Immun.* 2007;75(2):861-9.

Kubota T, Bounoutas GS, Miyagishima M, Kadokami T, Sanders VJ, Bruton C, et al. Soluble tumor necrosis factor receptor abrogates myocardial inflammation but not hypertrophy in cytokine-induced cardiomyopathy. *Circulation.* 2000;101(21):2518-25.

Kühl U, Noutsias M, Schultheiss HPImmunohistochemistry in dilated cardiomyopathy. *Eur Heart J.* 1995;16 Suppl O:100-6.

Leung DY. Pathogenesis of atopic dermatitis. *J Allergy Clin Immunology*. 1999;104:S99-108.

Li Mo, Wan YY, Sanjabi S, Robertson AK, Flavell RATransforming growth factor-beta regulation of immune responses. *Annu Rev Immunol.* 2006;24:99-146.

Liao F, Rabin RL, Yannelli JR, Koniaris LG, Vanguri P, Farber JM. Human Mig chemokine: biochemical and functional characterization. *The Journal of experimental medicine*. 1995;182(5):1301-14.

Lit LC, Wong CK, Tam LS, Li EK, Lam CW. Raised plasma concentration and ex vivo production of inflammatory chemokines in patients with systemic lupus erythematosus. *Ann Rheum Dis.* 2006;65(2):209-15.

Liu P, Martino T, Opavsky MA, Penninger J. Viral myocarditis: balance between viral infection and immune response. *Can J Cardiol.* 1996;12(10):935-43.

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T) *Methods.* 2001;25(4):402-8.

Loetscher M, Gerber B, Loetscher P, Jones SA, Piali L, Clark-Lewis I, et al. Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes. *The Journal of experimental medicine*. 1996;184(3):963-9.

Loetscher P, Uguccioni M, Bordoli L, Baggiolini M, Moser B, Chizzolini C, et al. CCR5 is characteristic of Th1 lymphocytes. *Nature*. 1998;391(6665):344-5.

Luster AD. Chemokines--chemotactic cytokines that mediate inflammation. *N Engl J Med.* 1998;338(7):436-45.

Macedo V, Prata A, da Silva GR, Castilho E. [Prevalence of electrocardiographic changes in Chagas' disease patients (preliminary information about the National Electrocardiographic survey]. *Arquivos brasileiros de cardiologia.* 1982;38(4):261-4.

Machado FS, Martins GA, Aliberti JC, Mestriner FL, Cunha FQ, Silva JS. Trypanosoma cruzi-infected cardiomyocytes produce chemokines and cytokines that trigger potent nitric oxide-dependent trypanocidal activity. *Circulation.* 2000;102(24):3003-8.

Machado FS, Koyama NS, Carregaro V, Ferreira BR, Milanezi CM, Teixeira MM, et al. CCR5 plays a critical role in the development of myocarditis and host protection in mice infected with Trypanosoma cruzi. *J Infect Dis.* 2005;191(4):627-36.

Mackay CR. Chemokines: immunology's high impact factors. *Nat Immunol*. 2001;2(2):95-101.

Mady C, Cardoso RH, Barretto AC, da Luz PL, Bellotti G, Pileggi F. Survival and predictors of survival in patients with congestive heart failure due to Chagas' cardiomyopathy. *Circulation*. 1994;90(6):3098-102.

Mady C, Ianni BM, Arteaga E, Montes GS, Caldini EG, Andrade G, Giorgi MC, Saldiva PH. Relation between interstitial myocardial collagen and the degree of clinical impairment in Chagas' disease. *Am J Cardiol.* 1999;84(3):354-6, A9.

Maisch B, Portig I, Ristic AD, et al. Definition of inflammatory cardiomyopathy (myocarditis): on the way to consensus - a status report. *Herz.* 2000;25:200-9.

Majumdar G, Johnson IM, Kale S, Raghow R. Epigenetic regulation of cardiac muscle-specific genes in H9c2 cells by Interleukin-18 and histone deacetylase inhibitor m-carboxycinnamic acid bis-hydroxamide. *Mol Cell Biochem*. 2008;312(1-2):47-60.

Malhotra R, Sadoshima J, Brosius FC 3rd, Izumo S. Mechanical stretch and angiotensin II differentially upregulate the renin-angiotensin system in cardiac myocytes In vitro. *Circ Res.* 1999;85(2):137-46.

Mann DL, Young JB. Basic mechanisms in congestive heart failure. Recognizing the role of proinflammatory cytokines. *Chest.* 1994;105(3):897-904.

Mariano FS, Gutierrez FR, Pavanelli WR, Milanezi CM, Cavassani KA, Moreira AP, Ferreira BR, Cunha FQ, Cardoso CR, Silva JS. The involvement of CD4+CD25+ T cells in the acute phase of Trypanosoma cruzi infection. *Microbes Infect.* 2008;10(7):825-33.

Marinho CR, D'Imperio Lima MR, Grisotto MG, Alvarez JM. Influence of acute-phase parasite load on pathology, parasitism, and activation of the immune system at the late chronic phase of Chagas' disease. *Infection and immunity.* 1999;67(1):308-18.

Marino AP, da Silva A, dos Santos P, Pinto LM, Gazzinelli RT, Teixeira MM, Lannes-Vieira J. Regulated on activation, normal T cell expressed and secreted (RANTES) antagonist (Met-RANTES) controls the early phase of Trypanosoma cruzi-elicited myocarditis. *Circulation.* 2004;110(11):1443-9.

Martin UO, Afcham M, Ledesma O, Capron A. Circulating immune complexes in differen developmental stages of Chagas' disease. *Medicina*. 1987;47:159-162.

Mateo T, Abu Nabah YN, Abu Taha M, Mata M, Cerdá-Nicolás M, Proudfoot AE, Stahl RA, Issekutz AC, Cortijo J, Morcillo EJ, Jose PJ, Sanz MJ.Angiotensin II-induced mononuclear leukocyte interactions with arteriolar and venular endothelium are mediated by the release of different CC chemokines. *J Immunol.* 2006;176(9):5577-86.

Matsumoto S, Tsuji-Takayama K, Aizawa Y, Koide K, Takeuchi M, Ohta T, et al. Interleukin-18 activates NF-kappaB in murine T helper type 1 cells. *Biochem Biophys Res Commun*. 1997;234(2):454-7.

Mckenna WJ, Thiene G, Nava A, Fontaliran F, Blomstrom-Lundqvist C, Fontaine G, et al. Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Task Force of the Working Group Myocardial and Pericardial Disease of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the International Society and Federation of Cardiology. *Br Heart J.* 1994;71(3):215-8.

Meijerink J, Mandigers C, van de Locht L, Tonnissen E, Goodsaid F, Raemaekers J. A novel method to compensate for different amplification efficiencies between patient DNA samples in quantitative real-time PCR. J. Molecular Diagnostic. 2001; 3(2):55-61.

Micallef MJ, Ohtsuki T, Kohno K, Tanabe F, Ushio S, Namba M, et al. Interferon-gamma-inducing factor enhances T helper 1 cytokine production by stimulated human T cells: synergism with interleukin-12 for interferongamma production. *Eur J Immunol*. 1996;26(7):1647-51.

Milei J, Storino R, Fernandez Alonso G, Beigelman R, Vanzulli S, Ferrans VJ. Endomyocardial biopsies in chronic chagasic cardiomyopathy. Immunohistochemical and ultrastructural findings. *Cardiology.* 1992;80(5-6):424-37.

Ming M, Ewen ME, Pereira ME. Trypanosome invasion of mammalian cells requires activation of the TGF β signaling pathway. *Cell.* 1995;82:287-96.

Moncayo A. Progress towards interruption of transmission of Chagas disease. *Memorias do Instituto Oswaldo Cruz.* 1999;94 Suppl 1:401-4.

Moncayo A. Chagas disease: current epidemiological trends after the interruption of vectorial and transfusional transmission in the Southern Cone countries. *Mem Inst Oswaldo Cruz.* 2003;98(5):577-91.

Morel JC, Park CC, Kumar P, Koch AE. Interleukin-18 induces rheumatoid arthritis synovial fibroblast CXC chemokine production through NFkappaB activation. *Lab Invest*. 2001;81(10):1371-83.

Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. *Immunol Today.* 1996;17(3):138-46. Review.

Moser B, Loetscher P. Lymphocyte traffic control by chemokines. *Nat Immunol*. 2001;2(2):123-8.

Moser B, Wolf M, Walz A, Loetscher P. Chemokines: multiple levels of leukocyte migration control. *Trends Immunol*. 2004;25(2):75-84.

Muller U, Kohler G, Mossmann H, Schaub GA, Alber G, Di Santo JP, et al. IL-12-independent IFN-gamma production by T cells in experimental Chagas' disease is mediated by IL-18. *J Immunol.* 2001;167(6):3346-53.

Munoz-Fernandez MA, Fernandez MA, Fresno M. Activation of human macrophages for the killing of intracellular Trypanosoma cruzi by TNF-alpha and IFN-gamma through a nitric oxide-dependent mechanism. *Immunol Lett.* 1992;33(1):35-40.

Murdoch C, Finn A. Chemokine receptors and their role in vascular biology. *J Vasc Res.* 2000;37(1):1-7.

Nakao A, Afrakhte M, Moren A, Nakayama T, Christian JL, Heuchel R, et al. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. *Nature*. 1997;389(6651):631-5.

Nishikimi, T, Maeda N, Matsuoka H. The role of natriuretic peptides in cardioprotection. *Cardiovascular Research*. 2006;69:318-28.

Norii M, Yamamura M, Iwahashi M, Ueno A, Yamana J, Makino H. Selective recruitment of CXCR3+ and CCR5+ CCR4+ T cells into synovial tissue in patients with rheumatoid arthritis. *Acta Med Okayama*. 2006;60(3):149-57.

Okamura H, Kashiwamura S, Tsutsui H, Yoshimoto T, Nakanishi K. Regulation of interferon-gamma production by IL-12 and IL-18. *Curr Opin Immunol.* 1998;10(3):259-64.

Olivares-Villagomez D, McCurley TL, Vnencak-Jones CL, Correa-Oliveira R, Colley DG, Carter CE. Polymerase chain reaction amplification of three different Trypanosoma cruzi DNA sequences from human chagasic cardiac tissue. *The American journal of tropical medicine and hygiene*. 1998;59(4):563-70.

Omland T Akakbaag A, Bonarjee V, Caidahl K, Lie RT et al. Plasma brain natriuretic peptide as an indicator of left ventriculas systolic function and long-term survival after acute myocardial infarction. Comparison with plasma atrial natriuretic peptide and N-terminal proatrial natriuretic peptide. Circulation. 1996;93:1963-1969.

Panina-Bordignon P, Papi A, Mariani M, Di Lucia P, Casoni G, Bellettato C, et al. The C-C chemokine receptors CCR4 and CCR8 identify airway T cells of allergen-challenged atopic asthmatics. The *Journal of clinical investigation*. 2001;107(11):1357-64.

Perera LP, Goldman CK, Waldmann TA. IL-15 induces the expression of chemokines and their receptors in T lymphocytes. *J Immunol*. 1999;162(5):2606-12.

Petersen CA, Burleigh BA. Role for interleukin-1 beta in Trypanosoma cruziinduced cardiomyocyte hypertrophy. Infection and immunity. 2003;71(8):4441-7.

Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. *Nucleic Acids Res.* 2001^a;29(9):2002-7.

Pfaffl MW. Quantification strategies in real-time PCR. *A-Z of quantitative PCR. Ed. SA Bustin.* 2001^b;3:123.

Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. *Nucleic Acids Research.* 2002; 30(9):1-10.

Piazza LA, de Bold AJ, Santamarina N, Hliba E, Rubiolo ER. Atrial natriuretic factor in experimental acute Chagas' disease. *Parasitol Research*. 1994;80(1):78-80.

Pierce EM, Carpenter K, Jakubzick C, Kunkel SL, Flaherty KR, Martinez FJ, Hogaboam CM. Therapeutic targeting of CC ligand 21 or CC chemokine receptor 7 abrogates pulmonary fibrosis induced by the adoptive transfer of human pulmonary fibroblasts to immunodeficient mice. *Am J Pathol.* 2007;170(4):1152-64.

Ponath PD, Qin S, Post TW, Wang J, Wu L, Gerard NP, Newman W, Gerard C, Mackay CR. Molecular cloning and characterization of a human eotaxin receptor expressed selectively on eosinophils. *J Exp Med.* 1996;183(6):2437-48.

Powell MR, Morgan J, Guarner J, Colley DG. Cytokine mRNA levels in the hearts of inbred mice that develop different degrees of cardiomyopathy during infection with Trypanosoma cruzi. *Parasite Immunol*. 1998;20(10):463-71.

Prata A. Clinical and epidemiological aspects of Chagas disease. The *Lancet infectious diseases*. 2001;1(2):92-100.

Proudfoot AE. Chemokine receptors: multifaceted therapeutic targets. *Nat Rev Immunol.* 2002;2(2):106-15.

Puren AJ, Fantuzzi G, Gu Y, Su MS, Dinarello CA. Interleukin-18 (IFNgamma-inducing factor) induces IL-8 and IL-1beta via TNFalpha production from non-CD14+ human blood mononuclear cells. *The Journal of clinical investigation*. 1998;101(3):711-21.

Puyó AM, Scaglione J, Auger S, Cavallero S, Postan M, Fernández BE. Natriuretic peptides as prognostic and diagnostic markers in Chagas' disease. *Regul Pept.* 2005 Jun;128(3):203-10. Review.

Qin S, Rottman JB, Myers P, Kassam N, Weinblatt M, Loetscher M, et al. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. *The Journal of clinical investigation*. 1998;101(4):746-54.

Rathanaswami P, Hachicha M, Sadick M, Schall TJ, McColl SR. Expression of the cytokine RANTES in human rheumatoid synovial fibroblasts. Differential regulation of RANTES and interleukin-8 genes by inflammatory cytokines. *J Biol Chem.* 1993;268(8):5834-9.

Reddy VS, Harskamp RE, van Ginkel MW, Calhoon J, Baisden CE, Kim IS, Valente AJ, Chandrasekar B. Interleukin-18 stimulates fibronectin expression in primary human cardiac fibroblasts via PI3K-Akt-dependent NF-kappaB activation. *J Cell Physiol.* 2008;215(3):697-707.

Reis DD, Jones EM, Tostes S, Jr., Lopes ER, Gazzinelli G, Colley DG, et al. Characterization of inflammatory infiltrates in chronic chagasic myocardial lesions: presence of tumor necrosis factor-alpha+ cells and dominance of granzyme A+, CD8+ lymphocytes. *The American journal of tropical medicine and hygiene*. 1993^a;48(5):637-44.

Reis DD, Jones EM, Tostes S, Lopes ER, Chapadeiro E, Gazzinelli G, et al. Expression of major histocompatibility complex antigens and adhesion molecules in hearts of patients with chronic Chagas' disease. *The American journal of tropical medicine and hygiene*. 1993^b;49(2):192-200.

Reis MM, Higuchi Mde L, Benvenuti LA, Aiello VD, Gutierrez PS, Bellotti G, et al. An in situ quantitative immunohistochemical study of cytokines and IL-2R+ in chronic human chagasic myocarditis: correlation with the presence of myocardial Trypanosoma cruzi antigens. *Clin Immunol Immunopathol.* 1997;83(2):165-72.

Ribeirao M, Pereira-Chioccola VL, Renia L, Augusto Fragata Filho A, Schenkman S, Rodrigues MM. Chagasic patients develop a type 1 immune response to Trypanosoma cruzi trans-sialidase. *Parasite Immunol.* 2000;22(1):49-53.

Ribeiro AL, Rocha MO. [Indeterminate form of Chagas disease: considerations about diagnosis and prognosis]. *Revista da Sociedade Brasileira de Medicina Tropical.* 1998;31(3):301-14.

Ribeiro ALP, Reis AM, Barros MVL et al. Brain natriuretic peptide and left ventricular dysfunction in Chagas' disease. *Lancet*. 2002;360:461-462.

Riol-Blanco L, Sánchez-Sánchez N, Torres A, Tejedor A, Narumiya S, Corbí AL, Sánchez-Mateos P, Rodríguez-Fernández JL. The chemokine receptor CCR7 activates in dendritic cells two signaling modules that independently regulate chemotaxis and migratory speed. *J Immunol.* 2005;174(7):4070-80.

Rivino L, Messi M, Jarrossay D, Lanzavecchia A, Sallusto F, Geginat J. Chemokine receptor expression identifies Pre-T helper (Th)1, Pre-Th2, and nonpolarized cells among human CD4+ central memory T cells. *The Journal of experimental medicine*. 2004;200(6):725-35.

Rizzo LV, Cunha-Neto E, Teixeira AR. Autoimmunity in Chagas' disease: specific inhibition of reactivity of CD4+ T cells against myosin in mice chronically infected with Trypanosoma cruzi. *Infection and immunity.* 1989;57(9):2640-4.

Robinson D, Shibuya K, Mui A, Zonin F, Murphy E, Sana T, et al. IGIF does not drive Th1 development but synergizes with IL-12 for interferon-gamma production and activates IRAK and NFkappaB. *Immunity*. 1997;7(4):571-81.

Rocha MO, Ribeiro AL, Teixeira MM. Clinical management of chronic Chagas cardiomyopathy. *Front Biosci.* 2003;1(8):e44-54.

Rollins BJ, Walz A, Baggiolini M. Recombinant human MCP-1/JE induces chemotaxis, calcium flux, and the respiratory burst in human monocytes. *Blood*. 1991;78(4):1112-6.

Rollins BJ. Chemokines. *Blood.* 1997;90(3):909-28.

Romagnani P, LAzzeri E, Lasagni L, Mavilia C, Beltrame C, Francalanci M, et al. IP-10 and Mig production by glomerular cells in human proliferative glomerulonephritis and regulation by nitric oxide. *J Am Soc Nephrol.* 2002;13(1):53-64.

Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings MK. Interleukin-10-secreting type I regulatory T cells in rodents and humans. *Immunological Reviews*. 2006;212:28-50.

Rossi MA. Patterns of myocardial fibrosis in idiopathic cardiomyopathies and chronic Chagasic cardiopathy. *Can J Cardiol.* 1991;7(7):287-94.

Rossi D, Zlotnik A. The biology of chemokines and their receptors. *Annu Rev Immunol.* 2000;18:217-42.

Sad S, Mosmann TR. Single IL-2-secreting precursor CD4 T cell can develop into either Th1 or Th2 cytokine secretion phenotype. *J Immunol*. 1994;153(8):3514-22.

Saeki H, Tamaki K. Thymus and activation regulated chemokine (TARC)/CCL17 and skin diseases. *J Dermatol Sci*. 2006;43(2):75-84.

Sahar S, Dwarakanath RS, Reddy MA, Lanting L, Todorov I, Natarajan R. Angiotensin II enhances interleukin-18 mediated inflammatory gene expression in vascular smooth muscle cells: a novel cross-talk in the pathogenesis of atherosclerosis. *Circ Res.* 2005;96(10):1064-71.

Sakai Sakai N, Wada T, Yokoyama H, Lipp M, Ueha S, Matsushima K, Kaneko S. Secondary lymphoid tissue chemokine (SLC/CCL21)/CCR7 signaling regulates fibrocytes in renal fibrosis. *Proc Natl Acad Sci U S A*. 2006;103(38):14098-103.

Sallusto F, Mackay CR, Lanzavecchia A. Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. *Science*. 1997;277(5334):2005-7.

Sallusto F, Lanzavecchia A, Mackay CR. Chemokines and chemokine receptors in T-cell priming and Th1/Th2-mediated responses. *Immunol Today.* 1998;19(12):568-74.

Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. *Nature*. 1999;401(6754):708-12.

Sallusto F, Langenkamp A, Geginat J, Lanzavecchia A. Functional subsets of memory T cells identified by CCR7 expression. *Curr Top Microbiol Immunol.* 2000;251:167-71.

Sambrook J, Gething M. Protein structure. Chaperones, paperones. *Nature.* 1989 Nov 16;342(6247):224-5.

Sangiorgi M. Clinical and epidemiological aspects of cardiomyopathies: a critical review of current knowledge. *European Journal of Internal Medicine*. 2003;14:5-17.

Sato M, Shegogue D, Gore EA, Smith EA, McDermott PJ, Trojanowska M. Role of p38 MAPK in transforming growth factor beta stimulation of collagen production by scleroderma and healthy dermal fibroblasts. <u>J</u> Invest Dermatol. 2002;118(4):704-11.

Sauty A, Dziejman M, Taha RA, Iarossi AS, Neote K, Garcia-Zepeda EA, Hamid Q, Luster AD The T cell-specific CXC chemokines IP-10, Mig, and I-TAC are expressed by activated human bronchial epithelial cells. *J Immunol.* 1999;162(6):3549-58.

Schall TJ, Bacon K, Toy KJ, Goeddel DV. Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. *Nature*. 1990;347(6294):669-71.

Schaper J, Froede R, Hein S, Buck A, Hashizume H, Speiser B, et al. Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. *Circulation*. 1991;83(2):504-14.

Schaub MC, Hefti MA, Harder BA, Eppenberger HM. Various hypertrophic stimuli induce distinct phenotypes in cardiomyocytes. *J Mol Med*. 1997;75(11-12):901-20.

Schluns KS, Lefrancois L. Cytokine control of memory T-cell development and survival. *Nat Rev Immunol.* 2003;3(4):269-79.

Seta Y, Kanda T, Tanaka T, Arai M, Sekiguchi K, Yokoyama T, et al. Interleukin-18 in patients with congestive heart failure: induction of atrial natriuretic peptide gene expression. *Res Commun Mol Pathol Pharmacol*. 2000;108(1-2):87-9**5**.

Sher A, Gazzinelli RT, Oswald IP, Clerici M, Kullberg M, Pearce EJ, et al. Role of T-cell derived cytokines in the downregulation of immune responses in parasitic and retroviral infection. *Immunol Rev.* 1992;127:183-204.

Shimada Y, Takehara K, Sato S. Both Th2 and Th1 chemokines (TARC/CCL17, MDC/CCL22, and Mig/CXCL9) are elevated in sera from patients with atopic dermatitis. *J Dermatol Sci*. 2004;34(3):201-8.

Silva JS, Twardzik DR, Reed SG. Regulation of Trypanosoma cruzi infections in vitro and in vivo by transforming growth factor beta (TGF-beta). *The Journal of experimental medicine*. 1991;174(3):539-45.

Siveke JT, Hamann A. T helper 1 and T helper 2 cells respond differentially to chemokines. *J Immunol*. 1998;160(2):550-4.

Soler D, Chapman TR, Poisson LR, Wang L, Cote-Sierra J, Ryan M, McDonald A, Badola S, Fedyk E, Coyle AJ, Hodge MR, Kolbeck R. CCR8 expression identifies CD4 memory T cells enriched for FOXP3+ regulatory and Th2 effector lymphocytes. *J Immunol.* 2006;177(10):6940-51.

Sun J, Tarleton RL. Predominance of CD8+ T lymphocytes in the inflammatory lesions of mice with acute Trypanosoma cruzi infection. *Am J Trop Med Hyg*. 1993;48(2):161-9.

Talvani A, Ribeiro CS, Aliberti JC, Michailowsky V, Santos PV, Murta SM, et al. Kinetics of cytokine gene expression in experimental chagasic cardiomyopathy: tissue parasitism and endogenous IFN-gamma as important determinants of chemokine mRNA expression during infection with Trypanosoma cruzi. *Microbes Infect*. 2000;2(8):851-66.

Tarleton RL, Grusby MJ, Postan M, Glimcher LH. Trypanosoma cruzi infection in MHC-deficient mice: further evidence for the role of both class I-and class II-restricted T cells in immune resistance and disease. *International immunology*. 1996;8(1):13-22.

Tarleton RL, Grusby MJ, Zhang L. Increased susceptibility of Stat4-deficient and enhanced resistance in Stat6-deficient mice to infection with Trypanosoma cruzi. *J Immunol*. 2000;165(3):1520-5.

Taub DD, Conlon K, Lloyd AR, Oppenheim JJ, Kelvin DJ. Preferential migration of activated CD4+ and CD8+ T cells in response to MIP-1 alpha and MIP-1 beta. *SCIENCE.* 1993;260(5106):355-8.

Teixeira AR, Cunha Neto E, Rizzo LV, Silva R. Trypanocidal nitroarene treatment of experimental Trypanosoma cruzi infection does not prevent progression of chronic-phase heart lesions in rabbits. *J Infect Dis.* 1990;162(6):1420.

Teixeira MM, Gazzinelli RT, Silva JS. Chemokines, inflammation and Trypanosoma cruzi infection. *Trends in parasitology*. 2002;18(6):262-5.

Teixeira PC, Iwai LK, Kalil J, Cunha-Neto E. Differential protein expression profiles in hearts of chronic Chagas' disease cardiomyopathy or idiopathic dilated cardiomyopathy. *Rev Inst Med Trop São Paulo.* 2003;45(Suppl 13):84-85.

Teixeira LK, Fonseca, BPF, Barboza BA, Viola JPB. The role of interferongamma on immune and allergic responses. *Mem. Inst. Oswaldo Cruz.* 2005;100:137-144.

Tham DM, Martin-McNulty B, Wang YX, Wilson DW, Vergona R, Sullivan ME, Dole W, Rutledge JC. Angiotensin II is associated with activation of NF-kappaB-mediated genes and downregulation of PPARs. *Physiol Genomics*. 2002;11(1):21-30.

Tone M, Thompson SA, Tone Y, Fairchild PJ, Waldmann H. Regulation of IL-18 (IFN-gamma-inducing factor) gene expression. *J Immunol.* 1997;159(12):6156-63.

Tsunawaki, S.; Sporn, M.; Ding, A.; Nathan, C. Deactivation of macrophages by transforming growt factor-beta. *Nature*. 1998; 334:260-263.

Uguccioni M, Mackay CR, Ochensberger B, Loetscher P, Rhis S, LaRosa GJ, Rao P, Ponath PD, Baggiolini M, Dahinden CA. High expression of the chemokine receptor CCR3 in human blood basophils. Role in activation by eotaxin, MCP-4, and other chemokines. *J Clin Invest.* 1997;100(5):1137-43.

Ulloa L, Doody J, Massague J. Inhibition of transforming growth factorbeta/SMAD signalling by the interferon-gamma/STAT pathway. *Nature*. 1999;397(6721):710-3.

Verreck FA, de Boer T, Langenberg DM, van der Zanden L, Ottenhoff TH. Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. *J Leukoc Biol.* 2006;79(2):285-93.

Vestergaard C, Bang K, Gesser B, Yoneyama H, Matsushima K, Larsen CG. A Th2 chemokine, TARC, produced by keratinocytes may recruit CLA+CCR4+ lymphocytes into lesional atopic dermatitis skin. *J Invest Dermatol.* 2000;115(4):640-6.

Vidal-Vanaclocha F, Fantuzzi G, Mendoza L, Fuentes AM, Anasagasti MJ, Martin J, et al. IL-18 regulates IL-1beta-dependent hepatic melanoma metastasis via vascular cell adhesion molecule-1. *Proceedings of the National Academy of Sciences of the United States of America*. 2000;97(2):734-9.

Wakugawa M, Nakamura K, Kakinuma T, Onai N, Matsushima K, Tamaki K. CC chemokine receptor 4 expression on peripheral blood CD4+ T cells reflects disease activity of atopic dermatitis. *J Invest Dermatol.* 2001;117(2):188-96.
Wang, D.; MCMillin, J.B.; Bick, R. Response of the neonatal rat cardiomyocyte in culture to energy depletion: Effects of cytokines, nitric oxide, and heat shock proteins. Lab Invest. 1996; 75:809-818.

Wendel S. Transfusion-transmitted Chagas' disease. *Current opinion in hematology*. 1998;5(6):406-11.

Weyrich AS, Elstad MR, McEver RP, McIntyre TM, Moore KL, Morrissey JH, et al. Activated platelets signal chemokine synthesis by human monocytes. *The Journal of clinical investigation*. 1996;97(6):1525-34.

WHO/ISFC Task Force. Clinical and epidemiological aspects of cardiomyopathies: a critical review of current knomledge. European *Journal of Internal Medicine*. 2003; 14:5-17.

Wigle ED, Sasson Z, Henderson MA, Ruddy TD, Fulop J, Rakowski H, Williams WG. Hypertrophic cardiomyopathy. The importance of the site and the extent of hypertrophy. A review. *Prog Cardiovasc Dis.* 1985;28(1):1-83.

Woodruff JF. Viral myocarditis. A review. Am J Pathol. 1980;101(2):425-84.

Yndestad A, Holm AM, Muller F, Simonsen S, Froland SS, Gullestad L, et al. Enhanced expression of inflammatory cytokines and activation markers in Tcells from patients with chronic heart failure. *Cardiovasc Res.* 2003;60(1):141-6.

Yokoyama T, Nakano M, Bednarczyk JL, McIntyre BW, Entman M, Mann DL. Tumor necrosis factor-alpha provokes a hypertrophic growth response in adult cardiac myocytes. *Circulation*. 1997;95(5):1247-52.

Zabel BA, Agace WW, Campbell JJ, Heath HM, Parent D, Roberts AI, et al. Human G protein-coupled receptor GPR-9-6/CC chemokine receptor 9 is selectively expressed on intestinal homing T lymphocytes, mucosal lymphocytes, and thymocytes and is required for thymus-expressed chemokine-mediated chemotaxis. *The Journal of experimental medicine*. 1999;190(9):1241-56.

Zingoni A, Soto H, Hedrick JA, Stoppacciaro A, Storlazzi CT, Sinigaglia F, et al. The chemokine receptor CCR8 is preferentially expressed in Th2 but not Th1 cells. *J Immunol*. 1998;161(2):547-51.