Who's Getting Globalized? The Size and Nature of Intranational Trade Costs

David Atkin¹ Dave Donaldson²

 1 Yale

²MIT

Who's Getting Globalized?

- Massive reductions in barriers to <u>international</u> trade (tariffs, shipping costs, logistics, etc) in past decades.
 - But if <u>intra</u>-national trade costs are large, the impact may be minimal for consumers in remote locations.
 - This may be especially true in developing countries (poor roads, barriers to entry, etc).

Who's Getting Globalized?

- Massive reductions in barriers to <u>international</u> trade (tariffs, shipping costs, logistics, etc) in past decades.
 - But if <u>intra</u>-national trade costs are large, the impact may be minimal for consumers in remote locations.
 - This may be especially true in developing countries (poor roads, barriers to entry, etc).
- Question: How large are <u>intra</u>-national trade costs in developing countries?
 - Lots of anecdotes but scarce evidence.

Who's Getting Globalized?

- Massive reductions in barriers to <u>international</u> trade (tariffs, shipping costs, logistics, etc) in past decades.
 - But if <u>intra</u>-national trade costs are large, the impact may be minimal for consumers in remote locations.
 - This may be especially true in developing countries (poor roads, barriers to entry, etc).
- Question: How large are <u>intra</u>-national trade costs in developing countries?
 - Lots of anecdotes but scarce evidence.
- Key idea here: differences in prices over space can reveal trade costs. But one has to be careful.

Estimating Trade Costs from Spatial Price Gaps: 3 Challenges

- 1. Spatial price gaps may reflect differences in product characteristics (eg quality):
 - We use newly collected CPI micro-data on extremely **narrowly defined** brand name consumer products (akin to barcodes)

Estimating Trade Costs from Spatial Price Gaps: 3 Challenges

- 1. Spatial price gaps may reflect differences in product characteristics (eg quality):
 - We use newly collected CPI micro-data on extremely **narrowly defined** brand name consumer products (akin to barcodes)
- 2. Spatial price gaps are only rarely informative about the level (rather than the range) of trade costs:
 - We obtain the source location for each product in our sample and **only use source-destination pairs**

Estimating Trade Costs from Spatial Price Gaps: 3 Challenges

- 1. Spatial price gaps may reflect differences in product characteristics (eg quality):
 - We use newly collected CPI micro-data on extremely **narrowly defined** brand name consumer products (akin to barcodes)
- 2. Spatial price gaps are only rarely informative about the level (rather than the range) of trade costs:
 - We obtain the source location for each product in our sample and **only use source-destination pairs**
- 3. Spatial price gaps may reflect both trade costs and differences in intermediaries' mark-ups across locations:
 - We use sufficient statistic (price pass-through) to uncover the true marginal costs of distance

Spatial price gaps are only rarely informative about the level (rather than range) of trade costs:

95% confidence intervals shown. Locally weighted polynomial (Epanechnikov kernel, bandwidth=0.5). All plots are semiparametric and include product-time fixed effects (Baltagi and Li, 2002). Spatial price gaps are only rarely informative about the level (rather than range) of trade costs:

95% confidence intervals shown. Locally weighted polynomial (Epanechnikov kernel, bandwidth=0.5). All plots are semiparametric and include product-time fixed effects (Baltagi and Li, 2002). Spatial price gaps reflect both trade costs and spatial differences in intermediaries' mark-ups:

95% confidence intervals shown. Locally weighted polynomial (Epanechnikov kernel, bandwidth=0.5). All plots are semiparametric and include product-time fixed effects. Adjusted gaps control for market power.

Implication: 2 Effects of Remoteness on Social Surplus

- 1. We find extremely high marginal costs of distance (7-15X larger than CAN-US trucking from Hummels 2001).
 - \implies Less social surplus from trade available to remote consumers/intermediaries

Implication: 2 Effects of Remoteness on Social Surplus

- 1. We find extremely high marginal costs of distance (**7-15X** larger than CAN-US trucking from Hummels 2001).
 - \implies Less social surplus from trade available to remote consumers/intermediaries
- 2. We also find that remote markets are less competitive.
 - Whatever social surplus from trade exists in remote locations sees smaller *shares* accruing to consumers (relative to intermediaries and deadweight loss)
 - Pass-through (again) provides a sufficient statistic for calculating these shares without need for (difficult) markup/elasticity of substitution estimation

Intermediary Profits over Consumer Surplus

95% confidence intervals shown. Locally weighted polynomial (Epanechnikov kernel, bandwidth=0.5).

Outline of Talk

Introduction

Data

How large are intranational trade costs?

Implication: Who is capturing the gains from globalization?

Concluding Remarks

Outline of Talk

Introduction

Data

How large are intranational trade costs?

Implication: Who is capturing the gains from globalization?

Concluding Remarks

New Data: 2 Requirements

- 1. Retail price of identical products at many locations in space, observed at high frequency for a long duration.
- 2. **Source location** (factory location or port of entry) of each of these goods (in each country, for each time period).

Dataset 1: CPI micro-data from set of developing countries

- Sample for today:
 - Ethiopia (2001-2010): 15 products, 103 towns
 - Nigeria (2001-2010): 17 products, 36 towns
 - Products are those for which an exact product (with brand name) is identified.
- Ongoing data collection/cleaning for:
 - Philippines (2000-2010): 89 products, 89 provinces.
 - India (1985-2010): 100 products, 650 villages.
- Additional hope for:
 - Zambia, Bangladesh, Rwanda, Senegal, Pakistan, Indonesia, Mozambique, Uganda, Ghana, Guinea-Bissau, Mexico and [Your Country Here?].

Dataset 2: Source Locations

- Conducted telephone surveys with the firms that produce (or distribute) each product.
 - e.g. Titus Sardines (125g Tin), Rothmans Cigarettes (20 Pack), Harar Beer (330cc), Zahra Detergent (50g).
- For domestically-produced goods, ask producers: where is product made each year.
- For imported goods, ask distributors and retailers: what is country of origin and port of entry.
 - Corroborate port with trade statistics.

Map of Ethiopian Sample Locations

Map of Nigerian Sample Locations

Empirical Proxy for Distance

- Distance metric x_{odt} is the log total travel time between locations calculated using Google maps.
 - Assumes that traders are taking optimal routes so as to minimize travel time.

	Minutes/Mile		
Road Quality	Ethiopia	Nigeria	
National highway	1.2	1.2	
Secondary road	1.4	1.4	
Tertiary road	1.9	2.4	

• Results robust to using road or great circle distance.

Distribution of Population by Source-Destination Distance

Outline of Talk

Introduction

Data

How large are intranational trade costs?

Implication: Who is capturing the gains from globalization?

Concluding Remarks

How large are intranational trade costs? 3 Steps

- 1. Importance of knowing the source location.
 - Without this, spatial price gaps not informative about trade costs.
- 2. Estimates of 'pass-through', denoted by $\rho,$ for each location and product:
 - Perfect competition requires $\rho = 1$. Deviations from this imply imperfect competition.
 - We find, consistently, that $\rho < 1.$ And more so in remote locations.
- 3. Use estimates of ρ to correct for varying mark-ups over space

Step 1: Importance of Knowing the Source Location

- We compare:
 - 'trading pairs': origin-destination (o, d) pairs for which goods are definitely being traded; theory: P^k_{dt} - P^k_{ot} = τ(X^k_{odt})
 - to 'all pairs': any pair of locations (i, j) which may or may not be trading; theory:
 P^k_{it} P^k_{jt} = τ(X^k_{oit}) − τ(X^k_{ojt}) ≤ τ(X^k_{ijt})

Step 1: Importance of Knowing the Source Location

95% confidence intervals shown. Locally weighted polynomial (Epanechnikov kernel, bandwidth=0.5). All plots are semiparametric and include product-time fixed effects (Baltagi and Li, 2002).

• What is 'pass-through'?

• Extent to which price charged by a producer changes when his marginal costs change.

- Why is pass-through useful here?
 - If $\rho = 1$, then prices are changing one-for-one with marginal costs.
 - This implies that mark-ups are not changing with marginal costs.
 - That is, the way price gaps vary over distance measures how marginal costs vary over distance.
 - If $\rho <$ 1, then prices are changing less than one-for-one with marginal costs.
 - This implies that mark-ups are falling as marginal costs rise.
 - That is, the way price gaps vary over distance <u>understates</u> how marginal costs vary over distance.

• How do we estimate pass-through?

- We estimate how price shocks at the source location affect (ie 'pass through into') prices at destination locations.
- We do this separately for each destination location and for each product.

- Once we know pass-through for each location and product, it is straightforward to 'correct' spatial price gaps for varying mark-ups over space.
 - NB: if $\rho = 1$ then this correction does nothing.
- We also use our demand system to control for possibility that the level of competition is lower in more remote locations
 - That is, the way price gaps vary over distance <u>overstates</u> how marginal costs vary over distance since mark-ups higher in remote locations.

95% confidence intervals shown. Locally weighted polynomial (Epanechnikov kernel, bandwidth=0.5). All plots are semiparametric and include product-time fixed effects. Adjusted gaps control for market power.

	Ethiopia (Trading Pairs)		Nigeria (Trading Pairs)	
	Price Gap	Adjusted Gap	Price Gap	Adjusted Gap
Log distance to source (minutes)	0.0289*** (0.00147)	0.0411*** (0.00246)	0.0343*** (0.00529)	0.0570*** (0.00862)
Time-Product FE	Yes	Yes	Yes	Yes
Time-Product $\times \frac{1-\hat{\rho_{od}^k}}{\hat{\rho_{od}^k}}$	No	Yes	No	Yes
$Destination \times \frac{1 - \rho_{od}^k}{\rho_{od}^k}$	No	Yes	No	Yes
Observations	100762	100762	23084	23084
R-squared	0.258	0.933	0.504	0.964

Notes: Standard errors clustered at the time-product level. * significant at 10 percent level, ** at 5 percent and *** at 1 percent.

- Additional cost to reach the most remote locations (20 hours away, 97-99th percentile) compared to the least remote locations (1 hour away, 2nd percentile):
 - 12 US cents (30% of mean P_o) in Ethiopia, 17 cents in Nigeria (14% of mean P_o).

- Rough comparison to international trade costs:
 - Hummels (2001) estimates elasticity of ad valorem freight costs with distance using customs records.
 - Use these estimates to calculate additional ad valorem cost to reach locations 3 log units further away:

Implied Δ ad-valorem transport cost for Δ Indistance of 3 units

(by mode of transport for cargo of mean kg/\$)

US Imports (Truck from CAN)	2.0 percent
US Imports (Rail from CAN)	2.7 percent
US Imports (Ocean)	4.9 percent
US Imports (Air)	14.6 percent

• Compare to: **30 percent** in Ethiopia, **14 percent** in Nigeria.

Outline of Talk

Introduction

Data

How large are intranational trade costs?

Implication: Who is capturing the gains from globalization?

Concluding Remarks

Who is capturing the gains from globalization? Shares of surplus

- Though experiment: suppose the port price of an import falls by 20% due to "globalization".
- Two effects of remoteness:
 - High marginal cost of distance => remote locations see smaller increases in the *quantity* of surplus available to consumers/intermediaries.
 - Markups vary across space ⇒ whatever surplus is generated, remote locations see different *shares* of this surplus accruing to consumers (compared to intermediaries and deadweight loss).

Who is capturing the gains from globalization? Shares of surplus

- How to measure the distribution of surplus?
- Turns out that (under conditions that we lay out in the paper) pass-through is all one needs to know.
- Pass-through can also be used to estimate measures of (relative) 'competitiveness' in each market.
 - Intuitively, all else equal, if pass-through is close to one then competitiveness must be high.

Who is capturing the gains from globalization? Competitiveness Index

95% confidence intervals shown. Locally weighted polynomial (Epanechnikov kernel, bandwidth=0.5).

Who is capturing the gains from globalization? Distribution of Surplus

95% confidence intervals shown. Locally weighted polynomial (Epanechnikov kernel, bandwidth=0.5).

Who is capturing the gains from globalization?

	Ethiopia	Nigeria	Ethiopia	Nigeria
	Relative Competitiveness		Intermedia	ry Profits/
	Index of Intermediaries		Consumer	's Surplus
	(All Locations)		(All Good-Lo	cation Pairs)
Log distance to capital (minutes)	-0.230** (0.106)	-0.707*** (0.169)		
Log distance to source (minutes)			0.284*** (0.0606)	0.336*** (0.116)
Constant	3.459***	8.004***	0.161	-0.0103
	(0.621)	(1.012)	(0.359)	(0.73)
Observations	100	36	1418	489
R-squared	0.027	0.150	0.014	0.019

Notes: Robust standard errors in parentheses. * significant at 10 percent level, ** at 5 percent and *** at 1 percent.

- Ratio of intermediary/consumer surplus in the least remote locations (1 hour away) compared to the most remote locations (20 hours away):
 - Between 40%-64% higher in Ethiopia, 40%-74% in Nigeria.

Outline of Talk

Introduction

Data

How large are intranational trade costs?

Implication: Who is capturing the gains from globalization?

Concluding Remarks

Concluding Remarks

• How large are <u>intra</u>-national trade costs in developing countries?

- The marginal costs of distance in our sample appear to be very high. (Approximately 7-15X larger than CAN-US trucking.)
- Appear to be under-estimated by standard spatial price gap methods
 - MC of distance approximately double when only use source-destination pairs
 - MC of distance approximately double again when spatial variation in mark-ups accounted for by using sufficient statistic (pass-through) approach

• 2 Implications for costs of remoteness:

- 1. Trade generates less social surplus for consumers/intermediaries in remote locations
- 2. Additionally, consumers in remote locations capture a smaller share of whatever surplus is generated