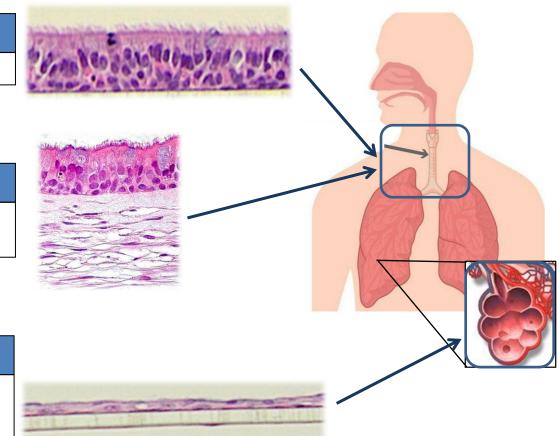
In Vitro Respiratory Model for Acute Inhalation Toxicity Testing

Dr. Anna Maione amaione@mattek.com MatTek Corporation

PISC Webinar Series September 18, 2018

3D *in vitro* respiratory models available from MatTek

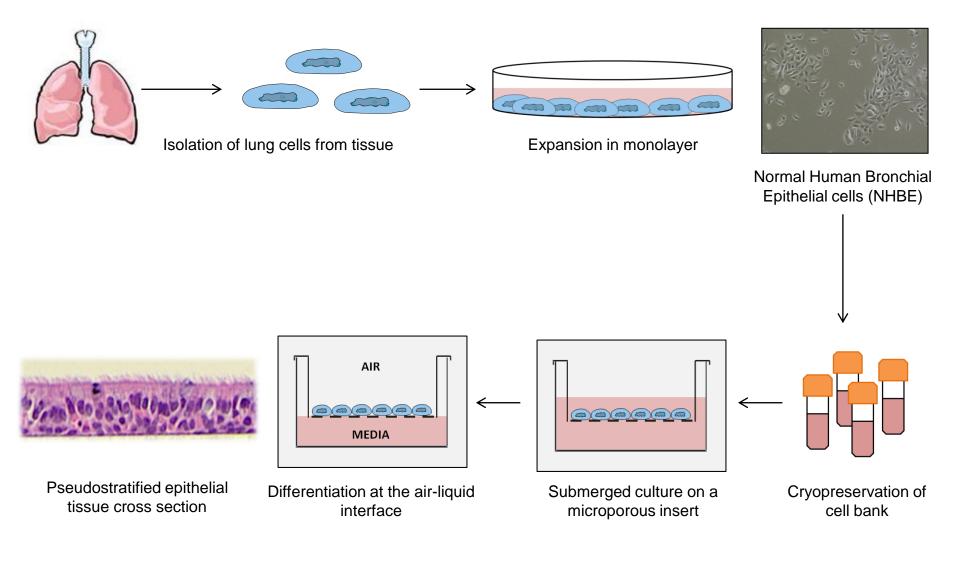
EpiAirway


-Primary tracheobronchial epithelial cells

EpiAirway Full Thickness

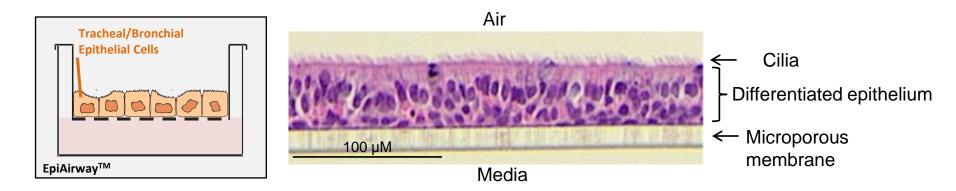
-Primary tracheobronchial epithelial cells & fibroblasts in an extracellular matrix

EpiAlveolar

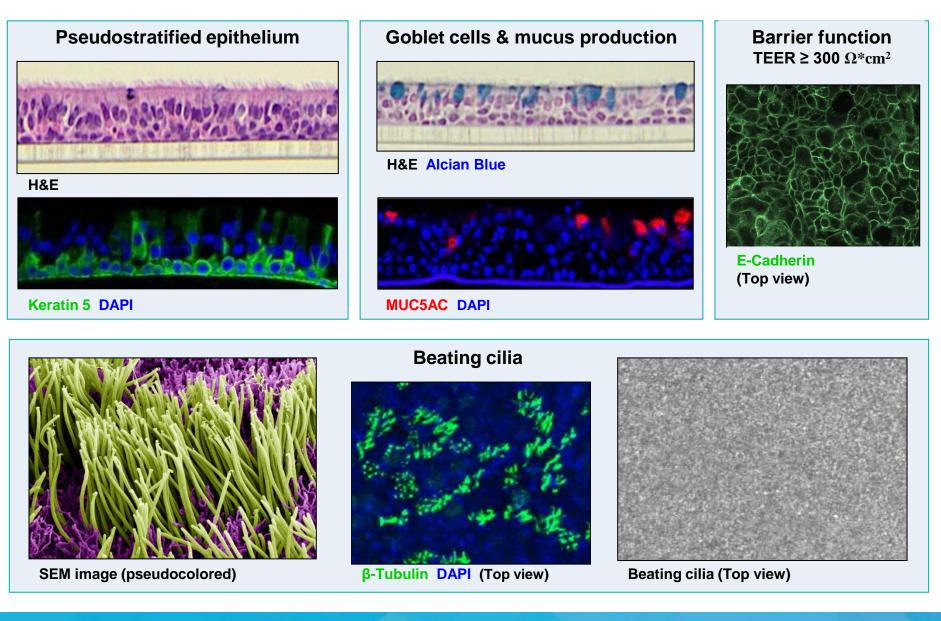

-Primary alveolar epithelial cells, fibroblasts, endothelial cells and +/-

macrophages

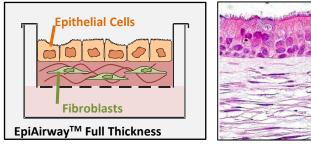
Production of human 3D in vitro respiratory tissue models

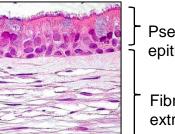


EpiAirway model


EpiAirway is an *in vitro* 3D organotypic model of human tracheal/bronchial epithelial tissue.

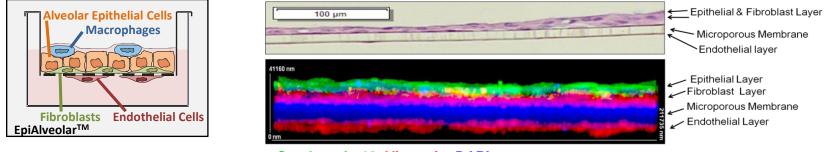
- Primary tracheobronchial <u>epithelial</u> cells grown at the air-liquid interface
- >35 donors available from various backgrounds
 - Healthy
 - COPD
 - Asthma
 - Smoker
- Variety of insert formats, including high throughput plates
- Highly reproducible, stable for long term culture, serum-free media
- Available worldwide
- >100 technical references


EpiAirway model recapitulates in vivo microenvironment



EpiAirway full thickness (EpiAirwayFT) model

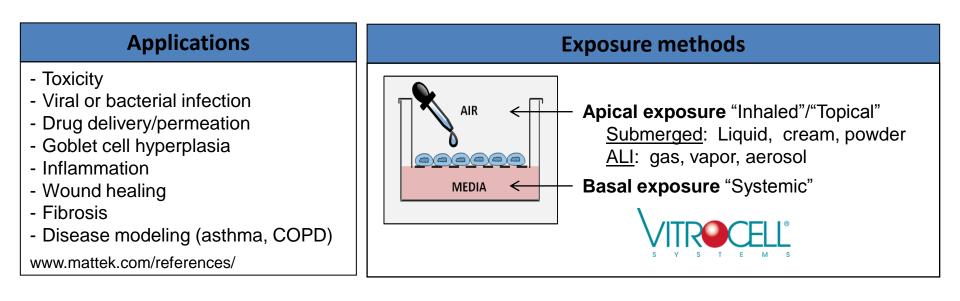
- Primary tracheobronchial <u>epithelial</u> cells and <u>fibroblasts</u> within an extracellular matrix grown at the airliquid interface
- >25 donors with matched fibroblasts available from various backgrounds



Pseudostratified epithelium

Fibroblasts in stromal extracellular matrix

EpiAlveolar model


- Primary alveolar epithelial cells, fibroblasts and endothelial cells grown at the air-liquid interface
- Able to include macrophages
- 3 donors available from various backgrounds

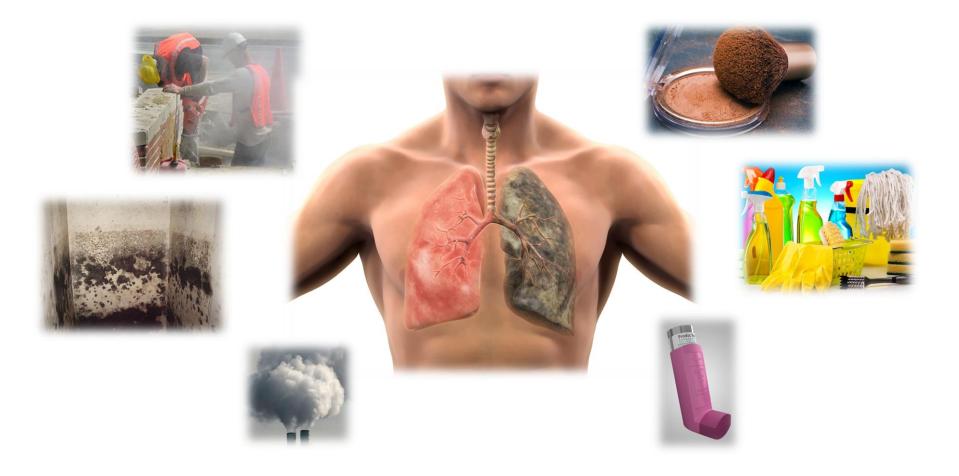
Cytokeratin 19 Vimentin DAPI

EpiAirway applications & assays

Assays				
 Barrier function (TEER, permeation) Viability (MTT, LDH) Genotoxicity (Comet, micronucleus assays) Gene expression (qRT-PCR) Protein expression (staining, Western blot) 	 Cytokine secretion (ELISA, multiplex) Cilia function (beat frequency, active area) Oxidative stress (NRF2 activity, glutathione assay) Mucus production (Alcian blue, PAS) Tissue architecture (histology) 			

Application:

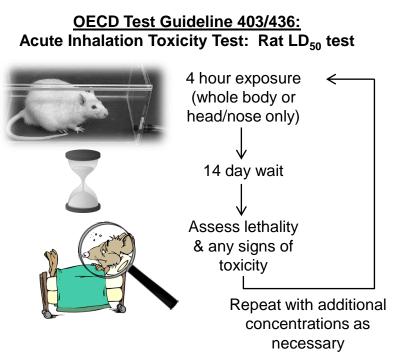
EpiAirway test for acute inhalation toxicity


APPLIED IN VITRO TOXICOLOGY Volume 4, Number 2, 2018 Mary Ann Liebert, Inc. DOI: 10.1089/aivt.2018.0004

Prevalidation of an Acute Inhalation Toxicity Test Using the EpiAirway *In Vitro* Human Airway Model

George R. Jackson, Jr., Anna G. Maione, Mitchell Klausner, and Patrick J. Hayden

Inhalation is a major route of exposure to potentially toxic chemicals

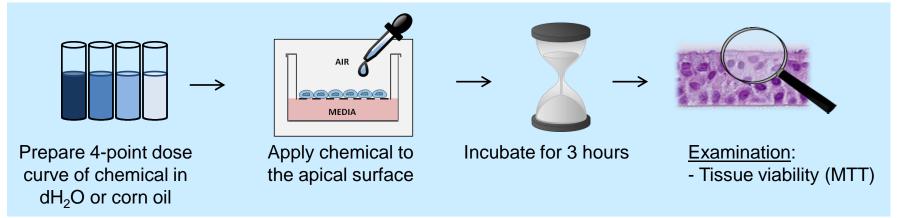


Regulatory agencies rely on animal tests to classify acute inhalation toxicity of chemicals

Figure 2. Globally Harmonized System (GHS): Specific Target Organ Toxicity - Single Exposure

Category 1	Category 2	Category 3
D anger	Warning	Warning
370 Causes damage to organs (or state all organs affected, if known)	371 May Cause damage to organs (or state all organs affected, if known)	335 May cause respiratory irritation

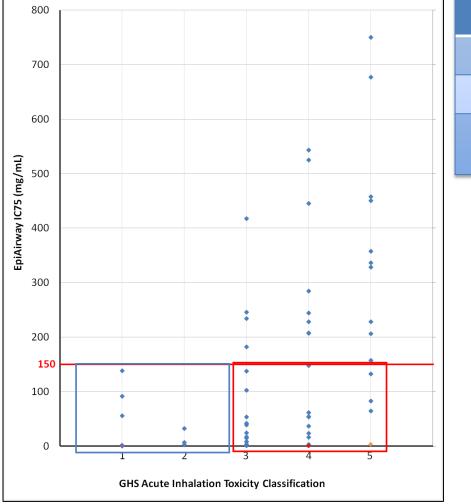
Drawbacks to current animal inhalation toxicity testing


Significant drawbacks to animal testing method:

- 1. Not always predictive of human response
 - Primarily endpoint is lethality; miss non-lethal effects not ideal for safety assessment
 - No mechanistic information
 - Species-specific differences in response, breathing, deposition
- 2. Ethical concerns
 - Increasing regulatory pressures to avoid animal use (Tox21, 3Rs, EU Cosmetics Directive)
- 3. Inefficient
 - Costly, time consuming, low throughput
 - Variability between test
 - Poor control over delivery & ability to measure effective dosing

Alternative, non-animal testing strategies are greatly needed.

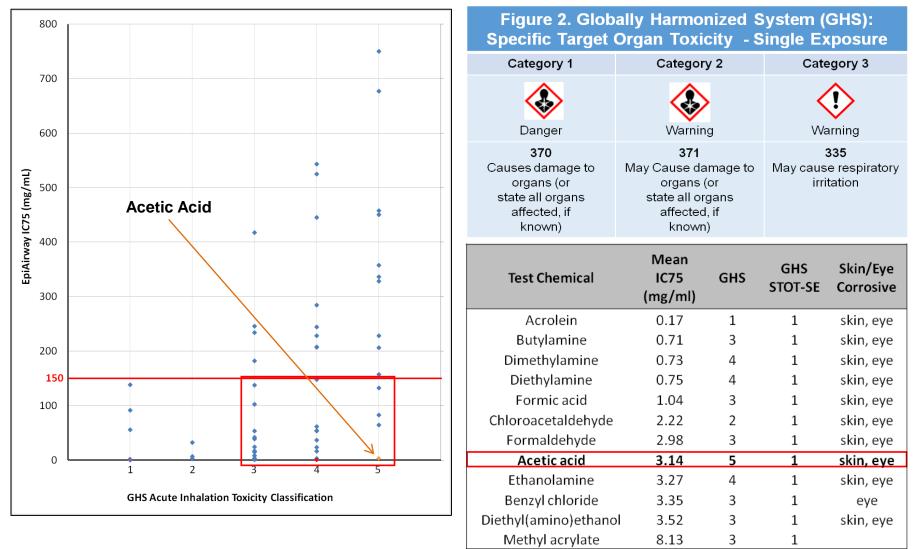
EpiAirwayTM acute inhalation toxicity test method.


-Tested 59 chemicals with a range of inhalation toxicities

-Determined IC_{75} (dose at which tissues are 75% viable)

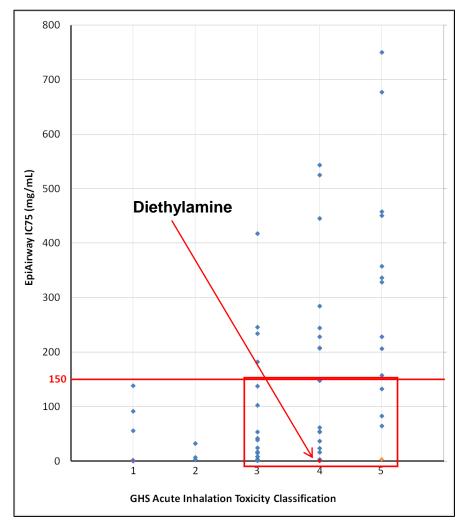
-Correlated *in vitro* data to *in vivo* rat LD₅₀ data (GHS category) to develop a prediction model (also compared against EPA category, not shown)

EpiAirway test is highly sensitive for identifying potential toxicants.

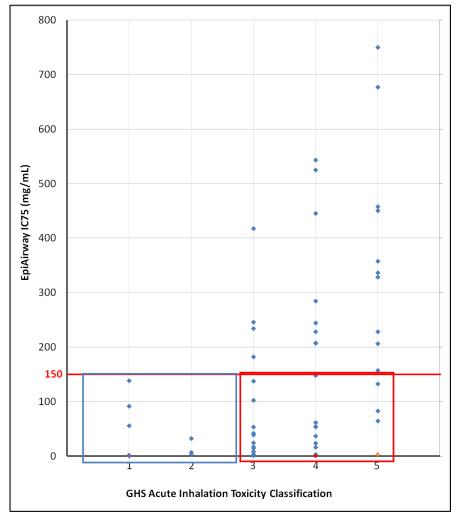


Compared to GHS Rat Data				
Sensitivity	8/8 = 100%			
Specificity	22/51 = 43%			
Overall Accuracy	30/59 = 51%			

What chemicals is the rat LD_{50} test missing?


Rat LD₅₀ test fails to identify many respiratory corrosives based on GHS STOT-SE classification.

UNDERSTANDING HUMAN BIOLOGY IN DIMENSIONS³


Rat LD₅₀ test fails to identify many respiratory irritants based on SDS data.

			sigma-aldrich.com SAFETY DATA SHEET Version 5.5 Revision Date 05/02/2016 Print Date 07/27/2016				
PR	ODUCT AND COMPAN	Y IDENTIFICATIO	N				
1	Product identifiers Product name	Diethy	lamine			Category 4	
	Product Number Brand Index-No.	: 471216 : Sigma-A : 612-003				•	
	CAS-No.	: 109-89-7	,				
11.	TOXICOLOGICAL INFO	RMATION					
11.	1 Information on toxic	ological effects:					
	Acute toxicity LD50 Oral - Rat - ma (OECD Test Guidelin					Warning	
	LC50 Inhalation - Rat (OECD Test Guidelin		7.3 mg/l			000	
	LD50 Dermal - Rabbi		ka			332	
	No data available	t - maie - 002 mg	Ng			Harmful if	
Skin corrosion/irritation Skin - Rabbit Result: Causes severe burns 1 min						inhaled	
					Ī	Category 1	
	EXPOSURE CONTRO			ters			
8. 8.	Components with	h workplace co					
			Value	Control parameters	Basis	V	
	Components with	h workplace con CAS-No. 109-89-7	Value	parameters 5.000000 ppm	USA. ACGII (TLV)	Danger	
	Components with Component	h workplace con CAS-No.	Value TWA Upper Re Eye irritat Not classi Danger of	parameters 5.000000 ppm spiratory Tract irritati on fiable as a human ca cutaneous absorptio	USA. ACGII (TLV) on prcinogen	370	
	Components with Component	h workplace con CAS-No. 109-89-7	Value TWA Upper Re Eye irritati Not classi	parameters 5.000000 ppm spiratory Tract irritati on fiable as a human ca	USA. ACGII (TLV) on ircinogen	-	

Advantages of EpiAirway test over rat LD₅₀ test

- 1. More predictive than rat LD_{50} test
 - Correctly identified 100% of the highly toxic chemicals (Categories 1 & 2)
 - Successfully identified respiratory corrosives & irritants based on GHS STOT-SE and SDS data that were missed by the rat test
 - Eliminates interspecies differences; potential for better human translation
- 2. Simple test & classification scheme
 - Fast & easy dosing strategy
 - Cost-effective
 - Higher throughput
 - No animal-associated ethical concerns

Ongoing Work

- 1. How does the EpiAirway test distinguish between systemic toxicity (Category 1/2 chemicals) and respiratory corrosives & irritants?
 - Tiered testing with skin corrosion test (OECD TG 431)
 - Read across, chemical properties
 - Additional endpoints, including mechanistic experiments
- 2. Refine and finalize prediction model with additional chemicals
 - Inter-laboratory testing of chemical subset
 - Submission to OECD
- 3. Extended to sub-chronic and chronic inhalation toxicity tests?
 - Repeat dosing strategy

Acknowledgements

Dr. Patrick Hayden

MatTek Airway Group: Rob Jackson Michelle Debatis Collette Bora Jaclyn Foisy Olivia O'Connell Zach Sellman

This work was funded by National Institute of Environmental Health Sciences grant 5R44ES014312-03. PETA International Science Consortium funded open access of the related manuscript

MatTek in vitro models:

www.mattek.com Anna Maione: amaione@mattek.com Patrick Hayden: phayden@mattek.com

Regulatory considerations:

-OECD test guidelines 403 (acute), 433 (acute, fixed concentration procedure), 436 (acute toxic class), 412 (subacute), 413 (subchronic)

-STOT-SE https://www.schc.org/assets/docs/ghs_info_sheets/specific_target_organ_toxicity-single_exposure.pdf

-Tox21 (Toxicology in the 21st Century) https://www.epa.gov/chemical-research/toxicology-testing-21st-century-tox21

-EPA strategic direction to modernize acute toxicity "6-pack" <u>https://www.regulations.gov/document?D=EPA-HQ-OPP-2016-0093-0003</u>

-Holmes, Creton and Chapman, Working in partnership to advance the 3Rs in toxicity testing. 2010 -EU/REACH directives on cosmetic products: Directive 2003/15/EC of the European Parliament and the Council Directive 76/768/EEC on the approximation of the laws of the Member States relating to cosmetic products. 2003

In vitro methods:

-Jackson et al., Prevalidation of an acute inhalation toxicity test using the EpiAirway in vitro human airway model. 2018

- Lacroix et al. , Air-liquid interface *in vitro* models for respiratory toxicology research: consensus workshop and recommendations. 2018

- Clippinger et al., Nonanimal approaches to assessing the toxicity of inhaled substances: current progress and future promise. 2018

-Gordon et al., Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology. 2015

-Sauer et al., *in vivo-in vitro* comparison of acute respiratory tract toxicity using human 3D airway epithelial models and human A549 and murine 3T3 monolayer cell systems. 2013

-BeruBe et al., *In vitro* models of inhalation toxicity and disease. 2009

References (Cont.)

Integrated alternative approaches/pre-validation work:

-Clippinger et al., Pathway-based predictive approaches for non-animal assessment of acute inhalation toxicity. 2018 -Jackson et al., Prevalidation of an acute inhalation toxicity test using the EpiAirway *in vitro* human airway model. 2018 -Rovida et al., Integrated Testing Strategies (ITS) for safety assessment. 2015.

Leist et al., Novel technologies and an overall strategy to allow hazard assessment and risk prediction of chemicals, cosmetics, and drugs with animal-free methods. 2012

-Willoughby, Predicting respiratory toxicity using a human 3D airway (EpiAirway) model combined with multiple parametric analysis. 2009

-Costa, Alternative test methods in inhalation toxicology: challenges and opportunities. 2008

Dosimetry considerations:

- Clippinger et al. Alternative approaches for acute inhalation toxicity testing to address global regulatory and non-regulatory data requirements: an international workshop report. 2018

-Sakagami, *in vivo, in vitro* and *ex vivo* models to assess pulmonary absorption and disposition of inhaled therapeutics for systemic delivery. 2006

-Heyder et al., Deposition of particles in the human respiratory tract in the size range 0.005-15 microns. 1986

-McMahon, Brain and Lemott, Species differences in aerosol deposition. 1977

