

Aleksandr Miroliubov

Visual Programming – An Alternative Way Of
Developing Software

Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communications Technology

Thesis

27 March 2018

 Abstract

Author
Title

Number of Pages
Date

Aleksandr Miroliubov
Visual Programming – An Alternative Way Of Developing Soft-
ware
31 pages + 1 appendix
27 March 2018

Degree Bachelor of Engineering

Degree Programme Information and Communications Technology

Professional Major Software Engineering

Instructors

Principal lecturer Erja Nikunen
Senior Lecturer Jonita Martelius

As the society moves deeper into the Digital Age, the software requirements and the inter-
action between the client and the developer changes, affecting how to need to develop
software and what the end result should be.

Visual programming is a tool well suited for smaller developer teams and in some cases
even end users. The objective of this thesis was to familiarize myself with various visual
programming languages, find out for what kind of software development they are suitable
for and what their limits are.

In the thesis, I explain what visual programming is and how it works on a general level, as
well as go through a few of the commonly used visual programming languages and in what
kind of environments they are used in. Additionally, I explore the strengths and weakness-
es of visual programming languages, in the hope of shining a light on some misconcep-
tions people have about them.

In addition to my own work experience, I provide multiple studies in favor of visual pro-
gramming, but also outline a few fundamental flaws that need to be addressed before vis-
ual programming can become truly mainstream.

Keywords Visual programming, scripting, dataflow, software develop-
ment

Contents

List of Abbreviations

1 Introduction 1

1.1 What is visual programming 1

1.2 Data flow programming 2

1.3 Finite-state machines 6

1.4 The roots of visual programming 7

2 Visual programming basics 8

2.1 Variables and functions 9

2.2 Shortcuts in programming workflow 11

3 Visual programming; a natural environment 11

4 Who is VPL meant for 16

4.1 VPL in game development 16

4.2 VPL in education 18

4.3 VS in media creation 20

4.4 VPL in data acquisition and robotics 23

5 Limitations 24

6 Public perception 27

7 Future of visual programming 28

8 Summary 29

References 30

List of Abbreviations

VPL Visual programming language. A programming language where the pro-

grammer manipulates graphical elements instead of text.

VS Visual Scripting. The act of programming with visual expressions. It can

be based on a text-based language with a visual representation of the

program elements.

UE Unreal Engine. Game development engine and environment.

FSM Finite-state machine. A mathematical model of computation which is de-

fined by a list of states and transition conditions.

API Application Programming Interface. A set of subroutine definitions, proto-

cols and tools for building application software.

AI Artificial Intelligence. The capability of a machine to imitate intelligent be-

havior, typically in the form of problem solving.

LabVIEW Laboratory Virtual Instrumentation Engineering Workbench. It is one of

the most widely used visual data flow programming languages.

1

1 Introduction

Computers and the software they run are a big part of the modern society and they

continue becoming an even bigger part of our lives. It's important to keep up with the

way of thinking it requires to not only create them, but to interact with them as well. A

lot of the time, communicating a complex thought or an idea is easiest in the form of

various diagrams. Visual programming takes advantage of this to create shortcuts in

design time, programming complexity and maintenance.

For example, if you want to set up a company in the modern society, in addition to the

service or product the company sells, it requires an infrastructure; payment or online

store systems, social networking for brand awareness and advertisement, website cre-

ation and other base structures. However, a small startup company can't necessarily

afford to hire experts to create those things for them. This is one of the areas where

visual programming simplifies the process. There are dozens of tools available to the

user, ranging from website and media creation, to software creation and database sys-

tems. Visual programming provides a fairly simple solution to an otherwise complex

problem and even a small investment goes a long way, as it requires considerably few-

er programming concepts and less abstract thinking.

In the thesis I’ll go through what visual programming is, what advantage it has com-

pared to text-based programming languages and explain some of the reasons why it’s

not always used instead of text-based programming languages. In addition, I explore in

what fields it's commonly used in, as well as make a simple program with a VPL, which

I haven't used before.

1.1 What is visual programming

Visual programming is a style of programming where the user utilizes graphical ele-

ments, which represent functions, operators or variables, and connects them typically

via lines or arrows, forming relations. VPL’s can be classified into icon based, diagram

based and form based languages. Icon and form based VPL’s aren’t very common in

the present day due to the syntax restrictions of the languages, many of which were

2

developed in the late 70s or 80s during the time when programmers were experiment-

ing with visual programming.

Out of the three types, the diagram based languages are the most commonly used,

especially those based on dataflow and state machines. They can be flexible and are

relatively easy to read and understand, even by the end users. Examples of these are

VPL’s such as Drakon, Simulink and Bubble.

Visual programming can also be done on a more traditional programming language

with a graphical representation of the elements. This includes some languages of Mi-

crosoft Visual Studio and game development environments such as UE and Unity. In

these cases a compiler converts the visual representation of the program into code.

Appendix 1 shows a movement template graph from UE and what the same code looks

like when it’s nativized to C++.

1.2 Data flow programming

As the name suggests, in data flow programming the execute order follows the flow of

data along the input and output of the nodes, which are connected to each other via

lines. The nodes themselves are functions or sometimes variables. By changing the

order of the nodes or how they are connected, the user can change the flow of data.

Example of a data flow based VPL is seen in figure 1.

Data flow programming is used due its fairly simplistic style, while maintaining the func-

tionality. The less experienced user can manipulate the elements with the black box

model in mind, where he doesn’t need to know the inner workings of the function. It is

enough to know what kind of variable goes into input and what comes from the output.

In most data flow based VPL’s you can’t connect an incompatible variable into the in-

put, which decreases user error. Most visual data flow programming environments pro-

vide instant visual feedback in case of incorrectly connected nodes or mismatch in in-

put data type.

Data flow model has two approaches for executing the program. First one is the data

driven approach, in which the execution order is dependent on the availability of the

data, illustrated in figure 2. Second one is the demand driven approach. It executes

3

instructions only as needed and starts from the final outputs of the program, requesting

data from only the nodes it’s attached to. This weaves a network of only necessary

instructions.

Another major feature is task parallelism, which requires separate libraries or API’s in

imperative programming languages such as C++, where the user would need to use a

library such as TBB or PASL. Programming languages where the programmer controls

the flow of data are called imperative or control-flow languages and are based on the

von Neumann model. In data flow programming the operation can be executed as soon

as the required input nodes are known, this means that many operations can be run in

parallel as long as they are not dependent on each other. For example the popular

LabVIEW VPL has inherent parallelism system, which allows the execution of the pro-

gram in multiple threads. In most imperative programming languages the programmer

would need to explicitly create and handle threads. Parallel computing has become

increasingly important in the last 10 years, since the multicore processors have be-

come the norm [1].Task parallelism in data driven approach of the data flow model in-

troduces a problem in unnecessary task execution, as it executes available instructions

as soon as the data is available, even though the data might not be needed anywhere

in the present scenario. This problem is corrected by the previously mentioned demand

driven approach, which maps out a web starting from the end point and traversing to-

wards the outer nodes only via the operations it requires. In figure 1, the start point of

demand driven approach would be the LED and the end points would be the min and

max values outside the for-loop.

4

Figure 1. Data flow programming paradigm based VPL called LabVIEW, developed by Na-
tional Instruments

Figure 1 is a fairly simple temperature control system made in LABView. It starts out

from the left by assigning the maximum and minimum allowed temperatures which en-

ter a for-loop, indicated by the gray box. The red icon at the bottom right is the loop

end-condition, which is connected to a button, controlled by the user. The minimum

and maximum numeric values, which are indicated by the orange wires, pass through

comparison operators where the other input is the temperature value gathered from an

electrical temperature sensor. The LED is activated if the signal reaches the node,

which in this case will indicate temperatures over or under the assigned limits. Addi-

tionally, the select operators are used guide the string output, which by default is indi-

cated by the pink line. This prints out a simple danger indication text. Right clicking the

nodes will reveal additional options, which in the case of the LED node allows the user

to change the on and off colors in addition to multiple other settings.

5

Figure 2. Von Neumann sequential computation model opposed to the data flow execution
model.

Figure 2 examines how both von Neumann and the data flow execution models handle

a simple computation task. One of the weaknesses of the von Neumann architecture,

which most traditional programming languages are based on, is the sequential

computation model, where a single instruction counter dictates which instruction is

going to be executed next. Because of the single instruction counter, computing always

proceeds sequentially and in a predefined order. This kind of computation model isn’t

taking advantage modern multi-core processors and the problem is commonly referred

as the von Neumann bottleneck [12].In figure 2, the numbers on the side indicate the

amount of steps taken towards completing the calculation. Data flow model allows

multiple simultaneous calculations as long as all of the required variables are known.

As seen in the figure, the first cycle computes three calculations because the variables

required for the calculation are known, resulting tokens a, b and c. The same

calculations would require 3 cycles using the von Neumann model. This bottleneck has

6

become more problematic because increasing portion of the traffic consists of where to

find the data, instead of the data itself.

1.3 Finite-state machines

While data flow based VPL’s are overwhelmingly more popular than FSM based, there

are certain areas in which state machines are better, namely in reactive and event-

driven systems. Many of the visual programming tools available in the statechart cate-

gory are actually visual scripting languages as they convert the statecharts into classic

programming languages. This is also the case with Yakindu, a state chart tool which

features source code generators for Java, C and C++. Majority of these, feature the

familiar drag and drop system with node connection and their conditions for transition,

the same things you would see in basic UML state diagrams.

FSM’s are defined by its states and the conditions for the transition, which is the act of

switching from one state to another. FSM offers many advantages such as simplicity,

derivation and easy testing. Simplicity comes in the form of clear and easy to read

charts with precise specifications, divided into states. However, manipulation of state

change conditions still requires some basic programming knowledge. Derivation in this

case is the easy transition from the clients’ requirements to the design and implementa-

tion phases. Testing an FSM is simple as test case scenarios can be generated from

the FSM model directly [2].

7

Figure 3. Dog monsters State Machine from Quake videogame.

While FSM can only be in one state at a time it usually loops back to the same state

multiple times as FSM’s are usually designed to be closed loops unlike in data flow

programming. This makes state machines very well suited for various mechanisms,

such as heaters, elevators and assembly line machinery. Finite state machines are

commonly used in programming to outline how the completed program should work,

however some visual scripting tools such as NodeCanvas and xaitControl can convert

your state machine directly into source code. VPL’s based on FSM are also commonly

used in AI behavior programming [3]. Example of an AI State Machine can be seen in

figure 3.

1.4 The roots of visual programming

While visual programming is not newly invented, it has had an increase of popularity

since it has been introduced in education programs and game development engines

such as Unreal Engine and Unity. In the past it’s been used and experimented with as

an education tool to teach kids logical thinking, but due to its many restrictions, it was

deemed as too limited to be used instead of traditional text-based programming.

8

VPL’s had a rocky start in the 1970’s as the computer hardware couldn’t take the add-

ed strain of rendering images, boxes and arrows. Another problem was that panning

and zooming was not yet common place and because the early OS were text based, so

there was little use for a computer mouse. This made the early visual programming

languages a tangled mess, which was hard to read and navigate, therefore making

them inconvenient.

Figure 4. Basic operators and a program made by calling up replicas of the master symbols
and then connecting the terminals with lines.

Arguably the first VPL was developed by William Sutherland in 1966 thesis for MIT

department of Electrical Engineering, for which the author created a graphical pro-

gramming system for the TX-2 computer, see figure 4. In this Visual programming sys-

tem, the user could call arbitrary symbols and give them input values, after which the

program could be executed. It also had the capability of combining operators into com-

pletely new symbols. The visual style of Sutherlands programming language resembled

a logic diagram, where logic gates were swapped for graphical representation of opera-

tions [4].

2 Visual programming basics

While it’s much easier to understand how visual programming works compared to text-

based, it still requires basic programming skills and knowledge how different elements

interact with each other. A person with no prior programming skills would most likely

not be able to perform any significant task, however while looking at the graphical ele-

ments, he would understand the general idea of what is happening, which is useful in

9

larger teams consisting of members with varying expertise. In addition, the learning

curve for visual programming languages is only a fraction compared to the text-based

counterpart.

2.1 Variables and functions

Most of the variable type’s used in traditional programming can be defined in visual

programming languages, as illustrated in figure 5. This includes data types such as

integer, float, Boolean and even arrays. Many modern VPL’s allow the use of object

variables, similarly used as in object-oriented programming languages such as Java,

C++ and Python. Custom data types and similar data abstractions are a key in making

a cleaner interface and for easier debugging and better scalability.

As mentioned before, most VPL’s are based on the data flow model and in pure data

flow languages, the variables can only be assigned a single time, so once the variable

is created, it can’t be modified. This means that pure data flow model isn’t practical due

to lack of control structures, such as iteration and condition. The upside of this is that

with each output a new variable is created that is not dependent on any function, which

is a key enabler for parallel computing. Visual data flow languages usually borrow ele-

ments from control-flow based languages, especially when it comes to global and local

variables, even though it is not supported in pure data flow model. This ensures a cer-

tain level of flexibility in the code.

10

Figure 5. Basic variables used in UE blueprint visual scripting system.

Unlike in conventional imperative programming languages, the sequence where a vari-

able is introduced is taken care of by the compiler. In general VPL’s are fairly type safe,

as the function input generally only accepts specific type of variable. Some visual pro-

gramming environments allow for both static and dynamic type systems, example of

this is Visual Basic.

As in text-oriented programming languages, many VPL’s allow users to make their own

functions, which speeds up workflow and often results in cleaner block diagrams. The

system then makes a custom graphical element for the function, which displays the

input and output nodes and the name of the custom function.

11

2.2 Shortcuts in programming workflow

When programmers set out to make a program, they usually start with a graphical rep-

resentation of what the program should be able to accomplish and what the features

are, using previously mentioned methods such as dataflow diagrams, state machines

or other various visual representation methods. This is usually the most convenient

way to keep track of what the end result should be. VPL’s blur the line between design-

ing and actually programming the software, which saves a lot of time in many cases.

In many VPL’s testing is much simpler than it is in text-oriented programming lan-

guages, where you would need to come up with extensive set of test cases for maxi-

mum coverage. In VPL’s many of the user errors are parsed out due to restrictions in

how the relations are formed. This means that in many cases the dependencies be-

tween instructions are short term. If a variable is used in multiple places, it’s simply

branched to the function calls so it’s easy to keep track of it and limit from unwanted

side effects anywhere else in the program. All these factors make unit testing simpler

and the basic structure of form-based VPL’s are well suited for control flow analysis [5].

3 Visual programming; a natural environment

The human visual system is perfectly adapted to interpret images. Most things you do

on a daily basis are guided by visual input; whether it is watching television, going to

work or reading a book. Over the course of human history the brain has evolved into an

excellent tool of extracting conceptual information from images in just milliseconds.

According to a study conducted by Mary C. Potter and her team at MIT Brain and Cog-

nitive Sciences department, it only takes under 100ms for the brain to identify the im-

age, in some cases as little as 13 milliseconds [6]. VPL’s take advantage of this

strength and use variety of colors, cluster grouping and other techniques to increase

developer’s productivity by making it easier to navigate and read the source code. Re-

fer to figure 8, where multiple methods are used to make the code easier to interpret.

There have been numerous studies examining the effectiveness of VPL’s, one of which

was an empirical study conducted by Rajeev K. Pandey and Margaret M. Burnett for

the Oregon State University. In the study a group of 60 student programmers solve a

vector and matrix manipulation tasks using Forms/3 VPL, Pascal and APL, which is a

12

textual matrix manipulation language, it uses a variety of graphic symbols to represent

functions and operators. Study results show that problem 1, in which student program-

mers wrote a program which appends 2 matrices, had by far better success rate with a

VPL than with a more traditional programming language, Pascal. It even outperformed

APL which has a multidimensional array as its main data type. In problem 2, the results

between the programming languages are more in line with each other. This result was

expected by the makers of the study, as the goal of the second problem was to com-

pute Fibonacci sequence numbers, which doesn’t benefit from the visual style of a

VPL, however it didn’t seem make a negative impact on it either [7].

Table 1. Results for problem 1, where student programmers wrote a program which appends
2 matrices.

Table 2. Results for problem 2, where student programmers wrote a program which com-
putes the first N elements of the Fibonacci sequence.

completely

correct

nearly

correct

conceptually

but not logi-

cally correct

incorrect

Pascal 38 5 4 13

Forms/3 35 9 7 9

OSU-APL 15 3 6 36

completely

correct

nearly

correct

conceptually

but not logi-

cally correct

incorrect

Pascal 7 1 21 31

Forms/3 53 0 2 5

OSU-APL 49 3 2 6

13

In addition to the previously mentioned reasons VPL’s are perfectly suited for small

development groups where the expertise of different members of the team varies. Also

the end users can take advantage of the relatively simple approach which some VPL’s

offer, making the communication between the client and developer more fluent.

Another study, which was conducted by Felipe Anfurritia, Ainhoa Álvarez ,Mikel Larra-

ñaga, examines how learning conceptual skills and understanding of programming

through a visual programming environment affects the student motivation. The drive

behind the study was high failure and dropout rates of the modular and object oriented

programming courses of the University of The Basque Country. Since many of the pro-

gramming languages require learning various programming concepts before writing a

single line of code, it can be taxing on the student. The makers of the study wanted to

propose the use of visual programming environment, where the students could practice

designing the program and understanding how it work, before focusing on the code

syntax. The results of the study showed that 51% of the students found visual pro-

gramming environment to positively affect their motivation and understanding of pro-

gramming concepts. This percentage was even higher among the retakers of the

course, where the percentage among male retakers was 75%. Surprisingly, female

attendees of the course had significantly lower percentages, hovering around 40%.

In the same study, the students were asked if they would have liked to exclusively work

with Eclipse instead of visual environment and the percentage was surprisingly high, 53

percent, even though most of the students found visual environment helpful to their

learning and motivation. The writers of the study suspect that this is because the stu-

dents perceived that text based environment to be more useful for their professional

future. This shows how undervalued visual programming is in the programmer commu-

nity, which I will talk about later in this thesis. However the students may feel though,

the number of students who passed the exam was much higher with the new method-

ology, compared to the old one[8]. See figure 6 for results.

14

Figure 6. Percentage of students who passed the course, according to the study.

For the thesis I decided to try to make my first program in the LabVIEW VPL. Prior to

this, I've only heard about it, but this is my first time actually using it. For the project, I

used the evaluation version of the LabVIEW 2017. Since I didn’t have an electronic

device which would collect data, I made a simple test data spreadsheet, where on row

one were measuring points and on the second row was the collected data.

I started out by dragging a Read Delimited Spreadsheet-function into the block dia-

gram. After this, I checked what kind of input it accepts and saved my spreadsheet

accordingly, which was .csv in this case. There was also multiple functions in the excel

tab of LabVIEW, which allow reading from xml-files directly, however I went for the

more generally used Read Delimited Spreadsheet-function. Following this, I dragged a

file location and string variable, which was then used for the delimiter. Read Delimited

Spreadsheet-functions output was an array, which I split into two one dimensional ar-

rays and used the cluster function which was accepted by the XY Graph-function.

The end result was a program which asks user the csv-file location for the collected

data and what delimiter was used in the file. After this, it prints an xy-graph from the

15

collected data spreadsheet. The block diagram and front panels can be seen in figure

7.

Figure 7. LabVIEW block diagram(top) and front panel(bottom).

At the top of the figure 7, you can see the node graph which defines this program. It

starts from the left and moves towards the right, as do most VPLs which use the node

graph system. The first two nodes are the user input, which ask what the file location is

and what delimiter is used in the csv-file, which contains the measurements. After this,

the function reads double-type values from the file and outputs a two-dimensional array

where the first row consists of values and the second row are measuring points. Meas-

uring points in this case could be time and values could be the electric current, temper-

ature, humidity or other easily measurable data. After the program splits the two-

dimensional array into two standard arrays and converts them from double to integer

type, which is in this case the type of values that the graph drawing-function accepts.

There are other various graph functions, but this is the first one which caught my eye.

Double clicking on the nodes, reveal extra options. In the case of the graph node, I

could have changed the range of the graph and other settings.

16

The use of this VPL is quite simple, with little info and experience in the VPL, I was

able to make a functional program, which draws a graph from the collected data. There

were a lot of functions and operations which seemed confusing at first, but each one

has separate easy-to-reach documentation, which can be inspected by right clicking on

the element and selecting "help". Also, I didn't use many of the programming concepts

as the blocks were self-descriptive, with the exception of the two dimensional array,

which was produced by the read spreadsheet function. By using it, you would need to

know how the array stores the information and how the indexes work. If I were to write

a similar program in say C++, it would require the knowledge of how to manipulate

strings, read data from a file, usage of for or while-loops, as well as the previously men-

tioned array information. In addition it would require a fairly detailed knowledge of how

to use an additional interface, such as graphics.h, if I wanted to draw the graph.

4 Who is VPL meant for

Throughout the years VPL’s have been maintaining their modest popularity in some

specific fields, as visual programming languages tend to specialize in certain tasks,

unlike traditional all-rounder languages such as C++. Especially in data analytics and

robotics, VPL’s have been used for many years and still continue getting regular up-

dates, even though initial release was over 30 years ago. This is the case with a VPL

called LabVIEW, which was released back in 1986 and recently got a major update in

May 2017.

4.1 VPL in game development

Unity is a cross platform game engine released in 2005. While by default programming

in Unity is done in C#, it has plugins in the asset store which bring new visual scripting

features, such as state machine styled animation creation, dataflow diagram program-

ming and dozens others. Examples of this are Playmaker, Shader Forge and Terrain

Composer.

Game Maker: Studio has a drag and drop system. In this system, the icons represent

actions that would occur in a game, such as movement, basic image rendering and

simple control structures. It’s also possible to create custom "action libraries" using the

17

Library Maker. Game Maker Language is the primary interpreted scripting language

used in Game Maker, which is usually significantly slower than compiled languages

such as C++ or Delphi.

Unreal engine has a versatile visual programming system called Blueprint. At first

glance it looks like a VPL, but it is actually a visual scripting system, which can convert

the graphical representation into C++ code when compiled. It is a system which takes

advantage of visual programming up sides, while maintaining the complexity available

in C++. If the user chooses, he may write the code directly in C++ instead of using the

graphical representation. As in some other game development programming environ-

ments, UE uses data flow based graphs, with the ability to program some features such

as animation transitions and AI in state machine environment [9].

Figure 8. Bullet ricochet code made in UE blueprint system.

In figure 8, you can see the various methods of keeping the graph clean. Node group-

ing, commenting and variable coloring are all used to make the end result cleaner. The

used may also branch and reroute the reference wires. This hasn’t been used in the

graph because of the simplicity of the code, but example of branching and rerouting

can be seen in the right upper corner of the image.

18

I have nearly two years of experience in developing with Unreal Engine and after re-

searching many other VPL’s and visual scripting languages, I’m glad to see that I made

a good decision in choosing it. Many of the flaws, which I go through later in this thesis,

are not present in UE Blueprint. I work in a small developer team and the simple layout

of the Blueprint system allows the artists and designers to be more in sync with the

programmers, which makes the team synergy and efficiency much better.

Before I started with UE, I had little previous experience with a VPL. I dabbled in the

previously mentioned Game Maker: Studio, which was mainly suitable for 2D game

development. When I entered UE blueprint environment, it felt familiar. It was easy to

navigate, use functions and it was based on the dataflow diagram model, which I’ve

used in the past. It took advantage of coloring, grouping and commenting features,

which made the reading of the code simpler. Example of grouped and commented

code can be seen in figure 8.

4.2 VPL in education

According to code.org inquiry in the U.S., around 90 percent of parents want their chil-

dren to learn computer science. Visual programming in the form of educational games

and quizzes is the perfect way for them to get started. Certain apps, such as Kodable,

are suited for kids as young as five years old. Teaching the kids how to code can be

very beneficial for them in the future, not because they might become a software de-

veloper when they grow up, but because it provides a better understanding of how pro-

grams work and how to work with computers in general.

Due to the low learning curve, various VPL’s have been used for educational purposes.

After-school programs and IT-classes have been using VPL’s to develop technological

fluency, logical and creative thinking. It is a useful tool for both teachers and students.

Teachers can create quizzes, puzzles and games, while students can create programs

which are helpful for them, such as automating some repetitive tasks.

Scratch is one of the more popular VPL’s for education purposes. It was developed by

Massachusetts Institute of Technology research laboratory in 2002 and it is still used to

this day. It has even made its way into Harvard University introductory IT-course sylla-

19

bus, with the goal of teaching the basics about statements, Boolean expressions, con-

ditions, etc.

Scratch is an event driven VPL, it’s mostly used to program interactive stories, games

and animations. Its simplistic interface, which is translated to over 40 languages, is

easy to understand, thus making it fitting for elementary level programming. It also fea-

tures a large online community, where people share their programs and the source

code. This kind of environment encourages trying different things and learning from the

more advanced users of the programming language [10].

Figure 9. Pac-Man game replicated in Scratch by the community user GlitchUare.

In figure 9, you can see a simple Pac-Man game replicated in Scratch. When the user

clicks on the screen the, game sets up Pac-man’s position and direction. After this, it

enters a loop which checks if the red dot is overlapping with the black color, which is

the ground. The loop also checks for user arrow inputs and if the player is at either side

of the edges of the map, in this case it will move the Pac-Man to the other side. The

icon seen in the upper right corner is the player character and the small red dot next to

it is the collision check color. If the red dot is not overlapping with the black color, Pac-

Man has run into a wall and he will no longer be able to move in that direction. The loop

20

also checks for user key inputs and turns the character according to the key pressed.

The only two ways of getting out of the otherwise infinite loop are getting score of 32,

which means you’ve collected all Pac-Dots. Another is if the player character collision

is overlapping with the ghosts’ collision boxes, in which case the game is over. The

position of the functions doesn’t matter as the system checks for user input separately

each tick.

Scratch received 2.0 update in 2013, making the interface feel less dated and allowing

users to directly edit and remix projects posted on the scratch community site, for this

to work Scratch was rewritten in Adobe Flash. Another, 3.0 update is set to be released

sometime in 2018. According to the Scratch website, it will feature a complete redesign

and reimplementation of Scratch, as well as rewrite in HTML5.

Due to the success of the Scratch programming environment, google has decided to

collaborate with the Scratch team to bring the next generation of programming blocks

for kids, called Scratch Blocks. The new Scratch Blocks UI resembles the one seen in

Scratch, but it is based on Googles Blockly visual code editor and they decided to add

horizontal orientation, in addition to the vertical which was used in Scratch. The goal is

to modernize the environment to be more suited mobile devices and make it open

source, so the blocks could be easily integrated in various apps, games and other

products outside the Scratch Blocks environment. The collaboration was announced on

May 17th 2016, but the final release date has not been set yet. It is also uncertain if the

Scratch Blocks and Scratch 3.0 projects will merge at some point in their development.

4.3 VS in media creation

When people think about any kind of programming, media creation isn’t the first thing

that comes to mind. The influence of VPL’s has spread over the years and many mul-

timedia creation and design software’s take advantage of the concepts we are used

seeing in visual programming. Most used is the node graph architecture where modular

nodes can be connected to each other forming a graph, these kind of graphs resemble

ones seen in dataflow programming languages.

In multimedia, influence of VPL’s can be found in 3D modeling, website design, animat-

ing, 2D texture generation and even music creation. In some cases the node graph

21

system doesn’t bring anything new to the table, it’s just an alternative way of doing the

same task. However in 3D modeling and 2D texture generation the node graph archi-

tecture can offer significant advantages compared to traditional methods. For example,

standard raster graphics editors use stack based method of storing actions, which

means that if you want to undo a change, you have to discard the top of the stack to

get to the desired step. In the graph method however, you can simply remove the un-

desired node from the middle and connect it back to the rest of the nodes. The user

can also add whole node clusters and edit them in any order he chooses. Refer to fig-

ure 10 for visualization.

Figure 10. Node graph system used in Substance Designer.

In figure 10 you can see the node system used by the Substance designer, a texture

and material authoring tool. Each node changes the end result in various ways such as

blur, distort, hue shift and other ways. After each step you can see how the image

changes and on the far right side you can see the output which is exported from the

program. The program exports diffuse, normal, metallic, roughness and other textures

which the used can define manually. These textures are then interpreted by various

game engines to get the environments and items look the certain way. Alternatively,

this program could be used to just export the base color and could work as a raster

graphics editor program such as Photoshop.

22

Web page design and programming has also taken advantage of the visual program-

ming style. Many companies offer drag and drop interfaces to clients with no or little

programming knowledge. This allows users to construct professional looking web pag-

es, without having to hire a professional to do the work. Traditionally you would need to

know HTML, CSS or JavaScript to make professional looking web pages. The cost of

this is flexibility and uniqueness, however that is constantly being updated, giving the

users increasing amount of options and styles to choose from. Companies such as

Wix, Weebly, Duda and Squarespace offer this kind of service. At the moment of writ-

ing this thesis, one of the most popular web development platforms is Wix. It uses

HTML5 markup language to create the web sites, but users won’t need to see a single

line of HTML due to how the webpage tool is designed. Example of a Wix web page

builder can be seen below, in figure 11.

Figure 11. Wix browser web page editor

In figure 11, you can see the functioning example page made in Wix browser editor in

less than five minutes, without touching a single line of HTML. It was made completely

from drag-and-droppable elements available on the site, excluding the background

image.

23

4.4 VPL in data acquisition and robotics

Previously mentioned LabVIEW visual programming language is the most popular one

in this category because it supports laboratory environments well, as the name might

suggest. The user can control and monitor electronic equipment via it, which can also

be read directly by the program. It's also started to see more use in robotics, repre-

sented by the multiple drone and robot kit projects available for it, some of which can

be found on their community site labviewmakerhub.com, where you can download the

projects and use them with your own or robotics kit. Another sample of LabVIEW’s flex-

ibility is the chess game made by the user Ouadji, seen in figure 12. It was made fully

in the block editor, excluding some the graphics he used. It is a fully functional chess

game including an AI with two difficulty settings, which I tried playing against and ad-

mittedly lost to.

What makes LabVIEW special is that even though it’s based on the data flow para-

digm, it still allows the use of global and local variables. It also has a node called for-

mula node, which enables part of the code to be written in a diagram using the C++

syntax structure. This can compensate for the lack of a certain function or just make a

complicated mathematical operation cleaner. However, it’s worth noting that usage

execution a formula node is much slower compared to the standard code. Another ex-

cellent feature is the easily available graphical representation of the program on the

front panel, which can display various data easily without extensive programming.

Things like graphs, indication lights, gauges and buttons can be added with a few

clicks, instead of the debug style print outs frequently used in textual programming lan-

guages. All of these features mask the flaws of this data flow based language and

make it a flexible and easy-to-use tool.

24

Figure 12. Fully functional chess game made in LabVIEW by the user Ouadji.

Other various VPL’s have taken advantage of the increasingly popular robotics hobby

kits and projects. Hobby projects using Arduino, Raspberry Pi and Lego NXT have var-

ious levels of difficulty and have many VPLs that cater to the projects. Examples of

these VPLs are MindRover and NXT-G. Since the difficulty of the project and the pro-

gramming capabilities of the user vary, it’s important to have visual programming envi-

ronments to encourage and assist people with no programming background.

5 Limitations

There are still some fundamental limitations with visual programming languages, which

seemingly have no fixes. The decision on which VPL to use seems to be always linked

to what kind of software you’re developing and which of the limitations are acceptable

for the task at hand. This is one of the biggest reasons why there is really no widely

used VPL which doesn’t have most of the problems described below.

25

The limitations can be split into 5 problem groups:

 Visual clutter and screen space

 Processing speed

 Transferability

 Conservative semantics

 Scalability

Screen space used to be a bigger problem in the past than it is now. Modern VPL’s

have acknowledged this issue and taken steps in the right direction to fix the issues by

allowing the programmer to create group functions and reroute the nodes, making the

overall result cleaner, even when the code is otherwise complex. Example of this can

be seen in figure 8. Though this can be a time consuming process as VPL’s generally

don’t have automatic refactoring feature, but the same can be said about text based

programming languages, where a programmer could want to make the code more

readable for the manager or a colleague. Panning and zooming are also available to

the user, unlike in some of the older VPL’s where navigating the grid was done with

arrow keys or by dragging the scroll bar. This made some VPL’s feel unnecessarily

sloppy and slow. Many VPL’s also allow the combining operator clusters into functions,

which reduces the screen space problem. Also color coding the nodes has been helpful

to improve the visibility. Even with the methods mentioned above, poorly managed

node graphs are daunting to look at. Example of this can be seen below in figure 13.

Currently manual work is required to make them easily readable, as there is no auto-

matic way of cleaning up the code. However, some VPL’s allow the programmer to

collapse the grouped nodes, which makes even more complex systems look a bit more

manageable.

26

Figure 13. Poorly managed and confusing blueprint in Unreal Engine.

The rendering of images and other graphical elements will always be more taxing on

the hardware than plain text. However, processing and compiling speeds have im-

proved greatly over the years, while the VPL requirements remaining close to what

they were years ago. This is still a small concern that should addressed by the pro-

grammer in some visual programming environments, where a large part of the calcula-

tions are done in real-time, such as in game development and robotics. In most present

day cases though, the strain even on the most basic hardware is negligible. On the

other hand, data flow based visual programming languages allow for parallel compu-

ting, which takes better advantage of the multi-core processors, as explained at the

beginning of the thesis.

Conservative semantics of VPL’s is at the root of many of the problems. VPL’s are

bound tightly to their program structure, which affects the flexibility in areas such as

switch and loop structures and run-time variability. Due to the way operators and varia-

bles are expressed, sometimes it’s overly complicated to complete certain tasks. Ex-

ample of this is a simple for or while loop, which can be hard to achieve in some VPL’s

especially ones based on the data flow paradigm. This is why many visual data flow

languages usually borrow elements from control-flow based languages, such is the

case with LabVIEW, where it’s possible to assign global and local variables, though it’s

considered a bad practice. Again, it’s a matter of selecting the correct tool for the job

27

and it is unlikely that there will be one silver bullet, which will fix the core of the prob-

lem.

Transferability is one of the major problems, which stands in the way of VPL’s becom-

ing popular for software development. Because of the large variety of styles in visual

programming, it’s nearly impossible to transfer the source code from one VPL to an-

other. In text based languages if the programmer chooses, for whatever reason, to

switch the programming language mid development. He has many tools at his disposal,

which make the process manageable. Some VPL’s however lack these basic features,

such as search function, copying and pasting, bulk selection and replacing and many

others. This makes transferring or even editing the source code problematic in many of

the VPL’s, slowing down workflow. One other flaw, which ties in to transferability, is the

lack of version control in some visual programming language environments. Many do

have in built version control, but some do not. This makes software development in

lager groups very problematic, especially when combined with the previously men-

tioned problems. Trying to incorporate a widely used version control system such as

Git, Helix VCS or Subversion, would in some cases be possible. Though this would

require a lot of scripting and repackaging, which would make the process as painful as

storing the saved versions manually [11].

Scalability is negatively impacted by most of the previously mentioned problems. Inside

the development environment, the problem is the cluttering of the nodes and their

management, as well as the execution of all available operations regardless if they are

needed anywhere else, which is typical for data flow programming languages. Outside

the development environment problems, such as sloppy version control, arise. Be-

cause of the visual nature of VPL’s extra effort is required to make version control func-

tional and from author’s experience branch merging can be problematic and buggy. As

the program grows in size, the limitations of visual programming languages become

more apparent.

6 Public perception

Many programmers have strong feelings about which programming language is “the

best”, others have similar thoughts about VPL’s. Some say it’s a waste of time learning

28

or using them, while others say they save a lot of time and couldn’t do their job properly

without them.

It’s still a bit of a stigma in the programming community, where if you’re a using a VPL

you’re not a proper programmer and you are not an efficient worker. I think this thinking

is very outdated and people still refer to the old articles from decades ago, which stated

some fundamental flaws in the VPL’s of that time. However many of the problems they

point out have been fixed or greatly improved in the more modern VPL’s and now have

many features that imperative programming languages don’t have or are hard to take

advantage of, such as task parallelism. VPL’s biggest problem is still adapting to large-

scale applications, where all the smaller problems they have are exaggerated. Howev-

er, for smaller scale applications they are suited extremely well.

One of the first communities that embraced the VPL’s was the scientific community.

Some VPL’s which were developed for data acquisition and instrument control in the

80’s are still in use. Another, more recent, community has been the game developer

community, where various artists and designers can be more closely in contact with the

source code. This closer interaction between designers and programmers often leads

to a more efficient workflow and a result that’s more in line with the original vision of the

designers.

7 Future of visual programming

The society is constantly moving deeper into the Information Age and I predict that in a

few years, visual programming will be on par with text-oriented programming in popu-

larity. In five to ten years, I expect most people who work with computers, will have

worked with some sort of visual programming environment, be it programming, multi-

media creation or education. Already it’s spreading in game developer communities, it’s

being taught in IT-classes from a young age, it’s been used by scientists and data ana-

lysts for decades and it’s commonly used in robotics, which is a rapidly growing field.

There are still problems in visual programming, but it has come a long way since the

70’s. Currently there are no all-rounder VPL’s and the user needs to do research on

which one to use. Hopefully new and improved VPL’s continue to be developed, be-

cause there is more potential that can be tapped into.

29

8 Summary

I have been working with visual programming for nearly two years and I’ve come to

appreciate the simplicity and effectiveness it brings to the table. However, before I

started, I heard a lot of negatives about visual programming, many of which I’ve not

encountered in my work so far. Thus, the goal of the thesis became making myself

more familiar with various other VPL’s and trying to figure out if the negative aspects, I

read about before I started using the visual programming environment, were true and if

the arguments against them were up to date.

During the research for the thesis, I found out that many of the problems, which people

reference a lot, were only seen in the early stages of VPL development. Since then,

many of the design flaws and inconveniences have been patched up. There are still

some issues with VPL’s, which can be deal breakers for users, such as the lack or poor

implementation of version control in some visual programming environments. Before

the research, I didn’t think it was even a possibility not to have any applicable version

control system, nor did I encounter any problems during my work, since the visual

scripting environment I use in UE, supports SVN and Perforce-version control systems

without any complicated procedures. It can also be modified to work with Git, which is

one of the most popular version control systems at the moment.

Hopefully this thesis has debunked some of the commonly referenced problems and

spread some awareness, which could lead to even a few more people using visual

programming to develop their software. Visual programming is a powerful tool, but no

single tool can complete every task, so one must weigh the pros and cons for the task

at hand.

30

References

1 Umut A. Acar; Arthur Chargueraud & Mike Rainey. An Introduction to Parallel
Computing in C++. Released on 01.03.2016, web article. Article read 14.10.2017.
<https://www.cs.cmu.edu/~15210/pasl.html>

2 Arie Avnur. Finite State Machines for Real-Time Software Engineering. Released
on 01.12.1990, in Computing and Control Engineering journal. Article read
18.10.2017.
<https://www.researchgate.net/publication/3363248_Finite_State_Machines_for_
Real-Time_Software_Engineering/>

3 Rémi Dehouck. The maturity of visual programming. Released on 29.09.2015,
web article. Article read 5.10.2017.
<http://www.craft.ai/blog/the-maturity-of-visual-programming/>

4 William Robert Sutherland . The On-line Graphical Specification Of Computer
Procedures. Released in 1966, for Massachusetts Institute of Technology. Dept.
of Electrical Engineering. Article read 02.11.2017.
<https://dspace.mit.edu/handle/1721.1/13474>

5 By Gregg Rothermel; Lixin Li & Margaret Burnett. Testing Strategies for Form-
Based Visual Programs. Released on 01.11.1997, for International Symposium
on Software Reliability Engineering . Article read 5.11.2017.
<http://cse.unl.edu/~grother/papers/issre97.pdf>

6 Mary C. Potter. Target detection at 50 or 33 ms/picture in RSVP. Released on
01.09.2011, in Journal of Vision. Article read on 30.10.2017.
<https://www.researchgate.net/publication/275436083_Target_detection_at_50_
or_33_mspicture_in_RSVP>

7 Rajeev K. Pandey & Margaret M. Burnett. Is It Easier to Write Matrix Manipulation
Programs Visually or Textually? An Empirical Study. Released on 27.08.1993, for
Department of Computer Science, Oregon State University. Article read on
30.10.2017.
<ftp://ftp.cs.orst.edu/pub/burnett/vl93.empirical.study.ps>

8 Felipe I. Anfurrutia; Ainhoa Álvarez; Mikel Larrañaga & Juan-Miguel López-Gil.
Visual Programming Environments for Object-Oriented Programming: Ac-
ceptance and Effects on Student Motivation. Released on 07.08.2017, in Ibero-
American Journal of Learning Technologies. Read on 04.12.2017.
<http://ieeexplore.ieee.org/document/8003326/>

9 Epic Games, Inc, Unreal Engine 4 Documentation. Web article. Article read on
2.10.2017.
<https://docs.unrealengine.com/latest/INT/>

https://www.cs.cmu.edu/~15210/pasl.html
https://www.researchgate.net/publication/3363248_Finite_State_Machines_for_Real-Time_Software_Engineering/
https://www.researchgate.net/publication/3363248_Finite_State_Machines_for_Real-Time_Software_Engineering/
http://www.craft.ai/blog/the-maturity-of-visual-programming/

31

10 Mitchel Resnick; John Maloney & Andrés Monroy-Hernandez. Scratch: Pro-
gramming for All. Released on 01.11.2009, in Communications of the ACM jour-
nal. Article read on 5.11.2017.
<https://web.media.mit.edu/~mres/papers/Scratch-CACM-final.pdf>

11 Tiago Simõnes. Visual Programming Is Unbelievable… Here’s Why We Don’t
Believe In It. Released on 25.03.2015, web article. Article read 5.10.2017.
<https://www.outsystems.com/blog/visual-programming-is-unbelievable.html>

12 Maija Marttila-Kontio. Visual data flow programming languages: challenges and
opportunities. Released on 5.5.2011, Dissertation for University of Eastern Fin-
land Dept. of Computer Science. Read on 25.03.2018
<http://epublications.uef.fi/pub/urn_isbn_978-952-61-0418-8/urn_isbn_978-952-
61-0418-8.pdf>

Appendix 1

 1 (7)

#include "GeneratedCppIncludes.h"

#include "Private/NativizedAssets.h"

#include "Public/FirstPersonCharacter__pf205484891.h"

PRAGMA_DISABLE_OPTIMIZATION

#ifdef _MSC_VER

#pragma warning (push)

#pragma warning (disable : 4883)

#endif

PRAGMA_DISABLE_DEPRECATION_WARNINGS

void EmptyLinkFunctionForGeneratedCodeFirstPersonCharacter__pf205484891() {}

// Cross Module References

 NATIVIZEDASSETS_API UFunction*

Z_Construct_UFunction_AFirstPersonCharacter_C__pf205484891_bpf__InpAxisEvt_Mov

eForward_K2Node_InputAxisEvent_181__pf();

 NATIVIZEDASSETS_API UClass*

Z_Construct_UClass_AFirstPersonCharacter_C__pf205484891();

 NATIVIZEDASSETS_API UFunction*

Z_Construct_UFunction_AFirstPersonCharacter_C__pf205484891_bpf__InpAxisEvt_Mov

eRight_K2Node_InputAxisEvent_192__pf();

 NATIVIZEDASSETS_API UFunction*

Z_Construct_UFunction_AFirstPersonCharacter_C__pf205484891_bpf__UserConstructi

onScript__pf();

 NATIVIZEDASSETS_API UClass*

Z_Construct_UClass_AFirstPersonCharacter_C__pf205484891_NoRegister();

 ENGINE_API UClass* Z_Construct_UClass_ACharacter();

 COREUOBJECT_API UScriptStruct* Z_Construct_UScriptStruct_FVector();

 ENGINE_API UClass* Z_Construct_UClass_UCameraComponent_NoRegister();

 ENGINE_API UClass* Z_Construct_UClass_USkeletalMeshComponent_NoRegister();

 ENGINE_API UClass* Z_Construct_UClass_USphereComponent_NoRegister();

 HEADMOUNTEDDISPLAY_API UClass*

Appendix 1

 2 (7)

Z_Construct_UClass_UMotionControllerComponent_NoRegister();

// End Cross Module References

 static FName

NAME_AFirstPersonCharacter_C__pf205484891_bpf__UserConstructionScript__pf =

FName(TEXT("UserConstructionScript"));

 void AFirstPersonCharac-

ter_C__pf205484891::eventbpf__UserConstructionScript__pf()

 {

 ProcessEv-

ent(FindFunctionChecked(NAME_AFirstPersonCharacter_C__pf205484891_bpf__UserCon

structionScript__pf),NULL);

 }

 void AFirstPersonCharac-

ter_C__pf205484891::StaticRegisterNativesAFirstPersonCharacter_C__pf205484891(

)

 {

 UClass* Class = AFirstPersonCharacter_C__pf205484891::StaticClass();

 static const TNameNativePtrPair<TCHAR> TCharFuncs[] = {

 { TEXT("InpAxisEvt_MoveForward_K2Node_InputAxisEvent_181"), (Na-

tive)&AFirstPersonCharacter_C__pf205484891::execbpf__InpAxisEvt_MoveForward_K2

Node_InputAxisEvent_181__pf },

 { TEXT("InpAxisEvt_MoveRight_K2Node_InputAxisEvent_192"), (Na-

tive)&AFirstPersonCharacter_C__pf205484891::execbpf__InpAxisEvt_MoveRight_K2No

de_InputAxisEvent_192__pf },

 { TEXT("UserConstructionScript"), (Na-

tive)&AFirstPersonCharacter_C__pf205484891::execbpf__UserConstructionScript__p

f },

 };

 FNativeFunctionRegistrar::RegisterFunctions(Class, TCharFuncs, AR-

RAY_COUNT(TCharFuncs));

 }

 UFunction*

Z_Construct_UFunction_AFirstPersonCharacter_C__pf205484891_bpf__InpAxisEvt_Mov

eForward_K2Node_InputAxisEvent_181__pf()

 {

 struct FirstPersonCharac-

ter_C__pf205484891_eventbpf__InpAxisEvt_MoveForward_K2Node_InputAxisEvent_181_

_pf_Parms

 {

 float bpp__AxisValue__pf;

 };

 UObject* Outer =

Z_Construct_UClass_AFirstPersonCharacter_C__pf205484891();

 UFunction* ReturnFunction = stat-

ic_cast<UFunction*>(StaticFindObjectFast(UFunction::StaticClass(), Outer,

TEXT("InpAxisEvt_MoveForward_K2Node_InputAxisEvent_181")));

 if (!ReturnFunction)

 {

 ReturnFunction = new(EC_InternalUseOnlyConstructor, Outer,

TEXT("InpAxisEvt_MoveForward_K2Node_InputAxisEvent_181"),

RF_Public|RF_Transient) UFunction(FObjectInitializer(), nullptr, (EFunction-

Flags)0x00020400, 65535,

sizeof(FirstPersonCharacter_C__pf205484891_eventbpf__InpAxisEvt_MoveForward_K2

Node_InputAxisEvent_181__pf_Parms));

 UProperty* NewProp_bpp__AxisValue__pf =

new(EC_InternalUseOnlyConstructor, ReturnFunction, TEXT("bpp__AxisValue__pf"),

RF_Public|RF_Transient) UFloatProperty(CPP_PROPERTY_BASE(bpp__AxisValue__pf,

FirstPersonCharac-

ter_C__pf205484891_eventbpf__InpAxisEvt_MoveForward_K2Node_InputAxisEvent_181_

_pf_Parms), 0x0010000000000080);

 ReturnFunction->Bind();

 ReturnFunction->StaticLink();

#if WITH_METADATA

 UMetaData* MetaData = ReturnFunction->GetOutermost()-

>GetMetaData();

Appendix 1

 3 (7)

 MetaData->SetValue(ReturnFunction, TEXT("ModuleRelativePath"),

TEXT("Public/FirstPersonCharacter__pf205484891.h"));

 MetaData->SetValue(ReturnFunction, TEXT("OverrideNativeName"),

TEXT("InpAxisEvt_MoveForward_K2Node_InputAxisEvent_181"));

#endif

 }

 return ReturnFunction;

 }

 UFunction*

Z_Construct_UFunction_AFirstPersonCharacter_C__pf205484891_bpf__InpAxisEvt_Mov

eRight_K2Node_InputAxisEvent_192__pf()

 {

 struct FirstPersonCharac-

ter_C__pf205484891_eventbpf__InpAxisEvt_MoveRight_K2Node_InputAxisEvent_192__p

f_Parms

 {

 float bpp__AxisValue__pf;

 };

 UObject* Outer =

Z_Construct_UClass_AFirstPersonCharacter_C__pf205484891();

 UFunction* ReturnFunction = stat-

ic_cast<UFunction*>(StaticFindObjectFast(UFunction::StaticClass(), Outer,

TEXT("InpAxisEvt_MoveRight_K2Node_InputAxisEvent_192")));

 if (!ReturnFunction)

 {

 ReturnFunction = new(EC_InternalUseOnlyConstructor, Outer,

TEXT("InpAxisEvt_MoveRight_K2Node_InputAxisEvent_192"),

RF_Public|RF_Transient) UFunction(FObjectInitializer(), nullptr, (EFunction-

Flags)0x00020400, 65535,

sizeof(FirstPersonCharacter_C__pf205484891_eventbpf__InpAxisEvt_MoveRight_K2No

de_InputAxisEvent_192__pf_Parms));

 UProperty* NewProp_bpp__AxisValue__pf =

new(EC_InternalUseOnlyConstructor, ReturnFunction, TEXT("bpp__AxisValue__pf"),

RF_Public|RF_Transient) UFloatProperty(CPP_PROPERTY_BASE(bpp__AxisValue__pf,

FirstPersonCharac-

ter_C__pf205484891_eventbpf__InpAxisEvt_MoveRight_K2Node_InputAxisEvent_192__p

f_Parms), 0x0010000000000080);

 ReturnFunction->Bind();

 ReturnFunction->StaticLink();

#if WITH_METADATA

 UMetaData* MetaData = ReturnFunction->GetOutermost()-

>GetMetaData();

 MetaData->SetValue(ReturnFunction, TEXT("ModuleRelativePath"),

TEXT("Public/FirstPersonCharacter__pf205484891.h"));

 MetaData->SetValue(ReturnFunction, TEXT("OverrideNativeName"),

TEXT("InpAxisEvt_MoveRight_K2Node_InputAxisEvent_192"));

#endif

 }

 return ReturnFunction;

 }

 UFunction*

Z_Construct_UFunction_AFirstPersonCharacter_C__pf205484891_bpf__UserConstructi

onScript__pf()

 {

 UObject* Outer =

Z_Construct_UClass_AFirstPersonCharacter_C__pf205484891();

 UFunction* ReturnFunction = stat-

ic_cast<UFunction*>(StaticFindObjectFast(UFunction::StaticClass(), Outer,

TEXT("UserConstructionScript")));

 if (!ReturnFunction)

 {

 ReturnFunction = new(EC_InternalUseOnlyConstructor, Outer,

TEXT("UserConstructionScript"), RF_Public|RF_Transient) UFunc-

tion(FObjectInitializer(), nullptr, (EFunctionFlags)0x04020C01, 65535);

 ReturnFunction->Bind();

Appendix 1

 4 (7)

 ReturnFunction->StaticLink();

#if WITH_METADATA

 UMetaData* MetaData = ReturnFunction->GetOutermost()-

>GetMetaData();

 MetaData->SetValue(ReturnFunction,

TEXT("BlueprintInternalUseOnly"), TEXT("true"));

 MetaData->SetValue(ReturnFunction, TEXT("Category"), TEXT(""));

 MetaData->SetValue(ReturnFunction, TEXT("CppFromBpEvent"),

TEXT(""));

 MetaData->SetValue(ReturnFunction, TEXT("DisplayName"),

TEXT("Construction Script"));

 MetaData->SetValue(ReturnFunction, TEXT("ModuleRelativePath"),

TEXT("Public/FirstPersonCharacter__pf205484891.h"));

 MetaData->SetValue(ReturnFunction, TEXT("OverrideNativeName"),

TEXT("UserConstructionScript"));

 MetaData->SetValue(ReturnFunction, TEXT("ToolTip"),

TEXT("Construction script, the place to spawn components and do other set-

up.@note Name used in CreateBlueprint function@param Location The

location.@param Rotation The rotation."));

#endif

 }

 return ReturnFunction;

 }

 UClass*

Z_Construct_UClass_AFirstPersonCharacter_C__pf205484891_NoRegister()

 {

 return AFirstPersonCharacter_C__pf205484891::StaticClass();

 }

 UClass* Z_Construct_UClass_AFirstPersonCharacter_C__pf205484891()

 {

 UPackage* OuterPackage = FindOrConstructDynamicTypePack-

age(TEXT("/Game/FirstPersonBP/Blueprints/FirstPersonCharacter"));

 UClass* OuterClass =

Cast<UClass>(StaticFindObjectFast(UClass::StaticClass(), OuterPackage,

TEXT("FirstPersonCharacter_C")));

 if (!OuterClass || !(OuterClass->ClassFlags & CLASS_Constructed))

 {

 Z_Construct_UClass_ACharacter();

 OuterClass = AFirstPersonCharacter_C__pf205484891::StaticClass();

 if (!(OuterClass->ClassFlags & CLASS_Constructed))

 {

 UObjectForceRegistration(OuterClass);

 OuterClass->ClassFlags |= (EClassFlags)0x20800080u;

 OuterClass-

>Link-

Child(Z_Construct_UFunction_AFirstPersonCharacter_C__pf205484891_bpf__InpAxisE

vt_MoveForward_K2Node_InputAxisEvent_181__pf());

 OuterClass-

>Link-

Child(Z_Construct_UFunction_AFirstPersonCharacter_C__pf205484891_bpf__InpAxisE

vt_MoveRight_K2Node_InputAxisEvent_192__pf());

 OuterClass-

>Link-

Child(Z_Construct_UFunction_AFirstPersonCharacter_C__pf205484891_bpf__UserCons

tructionScript__pf());

 UProperty* NewProp_b0l__K2Node_Select2_Default__pf =

new(EC_InternalUseOnlyConstructor, OuterClass, TEXT("K2Node_Select2_Default"),

RF_Public|RF_Transient) UStructProper-

ty(CPP_PROPERTY_BASE(b0l__K2Node_Select2_Default__pf, AFirstPersonCharac-

ter_C__pf205484891), 0x0010000000202000, Z_Construct_UScriptStruct_FVector());

 UProperty* NewProp_b0l__K2Node_Select_Default__pf =

new(EC_InternalUseOnlyConstructor, OuterClass, TEXT("K2Node_Select_Default"),

RF_Public|RF_Transient) UStructProper-

Appendix 1

 5 (7)

ty(CPP_PROPERTY_BASE(b0l__K2Node_Select_Default__pf, AFirstPersonCharac-

ter_C__pf205484891), 0x0010000000202000, Z_Construct_UScriptStruct_FVector());

 UProperty* NewProp_b0l__K2Node_InputAxisEvent_AxisValue__pf =

new(EC_InternalUseOnlyConstructor, OuterClass,

TEXT("K2Node_InputAxisEvent_AxisValue"), RF_Public|RF_Transient) UFloatProper-

ty(CPP_PROPERTY_BASE(b0l__K2Node_InputAxisEvent_AxisValue__pf, AFirstPer-

sonCharacter_C__pf205484891), 0x0010000000202000);

 UProperty* NewProp_b0l__K2Node_InputAxisEvent_AxisValue2__pf =

new(EC_InternalUseOnlyConstructor, OuterClass,

TEXT("K2Node_InputAxisEvent_AxisValue2"), RF_Public|RF_Transient) UFloatProp-

erty(CPP_PROPERTY_BASE(b0l__K2Node_InputAxisEvent_AxisValue2__pf, AFirstPer-

sonCharacter_C__pf205484891), 0x0010000000202000);

 CPP_BOOL_PROPERTY_BITMASK_STRUCT(b0l__Temp_bool_Variable2__pf,

AFirstPersonCharacter_C__pf205484891);

 UProperty* NewProp_b0l__Temp_bool_Variable2__pf =

new(EC_InternalUseOnlyConstructor, OuterClass, TEXT("Temp_bool_Variable2"),

RF_Public|RF_Transient) UBoolProperty(FObjectInitializer(), EC_CppProperty,

CPP_BOOL_PROPERTY_OFFSET(b0l__Temp_bool_Variable2__pf, AFirstPersonCharac-

ter_C__pf205484891), 0x0010000000202000,

CPP_BOOL_PROPERTY_BITMASK(b0l__Temp_bool_Variable2__pf, AFirstPersonCharac-

ter_C__pf205484891), sizeof(bool), true);

 CPP_BOOL_PROPERTY_BITMASK_STRUCT(b0l__Temp_bool_Variable__pf,

AFirstPersonCharacter_C__pf205484891);

 UProperty* NewProp_b0l__Temp_bool_Variable__pf =

new(EC_InternalUseOnlyConstructor, OuterClass, TEXT("Temp_bool_Variable"),

RF_Public|RF_Transient) UBoolProperty(FObjectInitializer(), EC_CppProperty,

CPP_BOOL_PROPERTY_OFFSET(b0l__Temp_bool_Variable__pf, AFirstPersonCharac-

ter_C__pf205484891), 0x0010000000202000,

CPP_BOOL_PROPERTY_BITMASK(b0l__Temp_bool_Variable__pf, AFirstPersonCharac-

ter_C__pf205484891), sizeof(bool), true);

CPP_BOOL_PROPERTY_BITMASK_STRUCT(bpv__UsingMotionControllersx__pfzy, AF-

irstPersonCharacter_C__pf205484891);

 UProperty* NewProp_bpv__UsingMotionControllersx__pfzy =

new(EC_InternalUseOnlyConstructor, OuterClass,

TEXT("UsingMotionControllers?"), RF_Public|RF_Transient) UBoolProper-

ty(FObjectInitializer(), EC_CppProperty,

CPP_BOOL_PROPERTY_OFFSET(bpv__UsingMotionControllersx__pfzy, AFirstPersonChar-

acter_C__pf205484891), 0x0010000000010005,

CPP_BOOL_PROPERTY_BITMASK(bpv__UsingMotionControllersx__pfzy, AFirstPer-

sonCharacter_C__pf205484891), sizeof(bool), true);

 UProperty* NewProp_bpv__BaseLookUpRate__pf =

new(EC_InternalUseOnlyConstructor, OuterClass, TEXT("BaseLookUpRate"),

RF_Public|RF_Transient) UFloatProper-

ty(CPP_PROPERTY_BASE(bpv__BaseLookUpRate__pf, AFirstPersonCharac-

ter_C__pf205484891), 0x0010000000010005);

 UProperty* NewProp_bpv__BaseTurnRate__pf =

new(EC_InternalUseOnlyConstructor, OuterClass, TEXT("BaseTurnRate"),

RF_Public|RF_Transient) UFloatProper-

ty(CPP_PROPERTY_BASE(bpv__BaseTurnRate__pf, AFirstPersonCharac-

ter_C__pf205484891), 0x0010000000010005);

 UProperty* NewProp_bpv__GunOffset__pf =

new(EC_InternalUseOnlyConstructor, OuterClass, TEXT("GunOffset"),

RF_Public|RF_Transient) UStructProperty(CPP_PROPERTY_BASE(bpv__GunOffset__pf,

AFirstPersonCharacter_C__pf205484891), 0x0010000000010005,

Z_Construct_UScriptStruct_FVector());

 UProperty* NewProp_bpv__FirstPersonCamera__pf =

new(EC_InternalUseOnlyConstructor, OuterClass, TEXT("FirstPersonCamera"),

RF_Public|RF_Transient) UObjectProper-

ty(CPP_PROPERTY_BASE(bpv__FirstPersonCamera__pf, AFirstPersonCharac-

ter_C__pf205484891), 0x001000040008000c,

Z_Construct_UClass_UCameraComponent_NoRegister());

 UProperty* NewProp_bpv__Mesh2P__pf =

new(EC_InternalUseOnlyConstructor, OuterClass, TEXT("Mesh2P"),

RF_Public|RF_Transient) UObjectProperty(CPP_PROPERTY_BASE(bpv__Mesh2P__pf,

Appendix 1

 6 (7)

AFirstPersonCharacter_C__pf205484891), 0x001000040008000c,

Z_Construct_UClass_USkeletalMeshComponent_NoRegister());

 UProperty* NewProp_bpv__FP_Gun__pf =

new(EC_InternalUseOnlyConstructor, OuterClass, TEXT("FP_Gun"),

RF_Public|RF_Transient) UObjectProperty(CPP_PROPERTY_BASE(bpv__FP_Gun__pf,

AFirstPersonCharacter_C__pf205484891), 0x001000040008000c,

Z_Construct_UClass_USkeletalMeshComponent_NoRegister());

 UProperty* NewProp_bpv__Sphere__pf =

new(EC_InternalUseOnlyConstructor, OuterClass, TEXT("Sphere"),

RF_Public|RF_Transient) UObjectProperty(CPP_PROPERTY_BASE(bpv__Sphere__pf,

AFirstPersonCharacter_C__pf205484891), 0x001000040008000c,

Z_Construct_UClass_USphereComponent_NoRegister());

 UProperty* NewProp_bpv__L_MotionController__pf =

new(EC_InternalUseOnlyConstructor, OuterClass, TEXT("L_MotionController"),

RF_Public|RF_Transient) UObjectProper-

ty(CPP_PROPERTY_BASE(bpv__L_MotionController__pf, AFirstPersonCharac-

ter_C__pf205484891), 0x001000040008000c,

Z_Construct_UClass_UMotionControllerComponent_NoRegister());

 UProperty* NewProp_bpv__R_MotionController__pf =

new(EC_InternalUseOnlyConstructor, OuterClass, TEXT("R_MotionController"),

RF_Public|RF_Transient) UObjectProper-

ty(CPP_PROPERTY_BASE(bpv__R_MotionController__pf, AFirstPersonCharac-

ter_C__pf205484891), 0x001000040008000c,

Z_Construct_UClass_UMotionControllerComponent_NoRegister());

 UProperty* NewProp_bpv__VR_Marker__pf =

new(EC_InternalUseOnlyConstructor, OuterClass, TEXT("VR_Marker"),

RF_Public|RF_Transient) UObjectProperty(CPP_PROPERTY_BASE(bpv__VR_Marker__pf,

AFirstPersonCharacter_C__pf205484891), 0x001000040008000c,

Z_Construct_UClass_USphereComponent_NoRegister());

 UProperty* NewProp_bpv__VR_Gun__pf =

new(EC_InternalUseOnlyConstructor, OuterClass, TEXT("VR_Gun"),

RF_Public|RF_Transient) UObjectProperty(CPP_PROPERTY_BASE(bpv__VR_Gun__pf,

AFirstPersonCharacter_C__pf205484891), 0x001000040008000c,

Z_Construct_UClass_USkeletalMeshComponent_NoRegister());

 OuterClass-

>AddFunctionToFunctionMapWithOverridden-

Name(Z_Construct_UFunction_AFirstPersonCharacter_C__pf205484891_bpf__InpAxisEv

t_MoveForward_K2Node_InputAxisEvent_181__pf(),

TEXT("InpAxisEvt_MoveForward_K2Node_InputAxisEvent_181")); // 3342259331

 OuterClass-

>AddFunctionToFunctionMapWithOverridden-

Name(Z_Construct_UFunction_AFirstPersonCharacter_C__pf205484891_bpf__InpAxisEv

t_MoveRight_K2Node_InputAxisEvent_192__pf(),

TEXT("InpAxisEvt_MoveRight_K2Node_InputAxisEvent_192")); // 3811268844

 OuterClass-

>AddFunctionToFunctionMapWithOverridden-

Name(Z_Construct_UFunction_AFirstPersonCharacter_C__pf205484891_bpf__UserConst

ructionScript__pf(), TEXT("UserConstructionScript")); // 2692304607

 OuterClass->ClassConfigName = FName(TEXT("Game"));

 static TCppClassTypeIn-

fo<TCppClassTypeTraits<AFirstPersonCharacter_C__pf205484891> > Stat-

icCppClassTypeInfo;

 OuterClass->SetCppTypeInfo(&StaticCppClassTypeInfo);

 OuterClass->StaticLink();

#if WITH_METADATA {...}

#endif

 }

 }

 check(OuterClass->GetClass());

 return OuterClass;

 }

 IMPLEMENT_DYNAMIC_CLASS(AFirstPersonCharacter_C__pf205484891,

TEXT("FirstPersonCharacter_C"), 1314386128);

 static FCompiledInDefer

Appendix 1

 7 (7)

Z_CompiledInDefer_UClass_AFirstPersonCharacter_C__pf205484891(Z_Construct_UCla

ss_AFirstPersonCharacter_C__pf205484891,

&AFirstPersonCharacter_C__pf205484891::StaticClass,

TEXT("/Game/FirstPersonBP/Blueprints/FirstPersonCharacter"),

TEXT("FirstPersonCharacter_C"), true,

TEXT("/Game/FirstPersonBP/Blueprints/FirstPersonCharacter"),

TEXT("/Game/FirstPersonBP/Blueprints/FirstPersonCharacter.FirstPersonCharacter

_C"), nullptr);

 DEFINE_VTABLE_PTR_HELPER_CTOR(AFirstPersonCharacter_C__pf205484891);

PRAGMA_ENABLE_DEPRECATION_WARNINGS

#ifdef _MSC_VER

#pragma warning (pop)

#endif

PRAGMA_ENABLE_OPTIMIZATION

