Strongly continuous semigroups on some Fréchet spaces

Thomas Kalmes

TU Chemnitz

Joint work with L. Frerick (Universität Trier), E. Jordá (Universidad Politécnica de Valencia), and J. Wengenroth (Universität Trier)

DMV-PTM Mathematical Meeting

Poznań, 17-20. September, 2014

イロト イポト イヨト イヨト

X lcs, $T : [0, \infty) \to L(X)$ is called a semigroup iff $T(0) = id_X$ and $T(s+r) = T(s) \circ T(r)$ for all $s, r \ge 0$.

(ロ) (同) (E) (E) (E)

X lcs, $T : [0, \infty) \to L(X)$ is called a semigroup iff $T(0) = id_X$ and $T(s+r) = T(s) \circ T(r)$ for all $s, r \ge 0$.

Semigroup T is called

- strongly continuous (or C_0 -semigroup) iff

 $\forall x \in X : [0,\infty) \to X, s \mapsto T(s)x$ continuous

(ロ) (同) (E) (E) (E)

X lcs, $T : [0, \infty) \to L(X)$ is called a semigroup iff $T(0) = id_X$ and $T(s+r) = T(s) \circ T(r)$ for all $s, r \ge 0$.

Semigroup T is called

- strongly continuous (or C₀-semigroup) iff

 $\forall \, x \in X: \, [0,\infty) \to X, s \mapsto T(s)x \text{ continuous}$

- uniformly continuous iff

$$\forall\, r \geq 0: \lim_{s \to r} T(s) = T(r)$$
 uniformly on bounded sets

X lcs, $T : [0, \infty) \to L(X)$ is called a semigroup iff $T(0) = id_X$ and $T(s+r) = T(s) \circ T(r)$ for all $s, r \ge 0$.

Semigroup T is called

- strongly continuous (or C₀-semigroup) iff

 $\forall \, x \in X: \, [0,\infty) \to X, s \mapsto T(s)x \text{ continuous}$

- uniformly continuous iff

 $\forall\, r \geq 0: \lim_{s \rightarrow r} T(s) = T(r)$ uniformly on bounded sets

 C_0 -semigroup T is called locally equicontinuous iff for all t > 0: $\{T(s); 0 \le s \le t\}$ equicontinuous

X lcs, $T : [0, \infty) \to L(X)$ is called a semigroup iff $T(0) = id_X$ and $T(s+r) = T(s) \circ T(r)$ for all $s, r \ge 0$.

Semigroup T is called

- strongly continuous (or C₀-semigroup) iff

 $\forall \, x \in X: \, [0,\infty) \to X, s \mapsto T(s)x \text{ continuous}$

- uniformly continuous iff

 $\forall\, r \geq 0: \lim_{s \to r} T(s) = T(r)$ uniformly on bounded sets

 $C_{0}\text{-semigroup }T \text{ is called locally equicontinuous iff for all } t > 0:$ $\{T(s); 0 \le s \le t\} \text{ equicontinuous, i.e.}$ $\forall t > 0 \forall p \in cs(X) \exists q \in cs(X) \forall x \in X, s \in [0, t]:$ $p(T(s)x) \le q(x)$

X lcs, $T : [0, \infty) \to L(X)$ is called a semigroup iff $T(0) = id_X$ and $T(s+r) = T(s) \circ T(r)$ for all $s, r \ge 0$.

Semigroup T is called

- strongly continuous (or C_0 -semigroup) iff

 $\forall \, x \in X: \, [0,\infty) \to X, s \mapsto T(s)x \text{ continuous}$

- uniformly continuous iff

 $\forall\, r \geq 0: \lim_{s \to r} T(s) = T(r)$ uniformly on bounded sets

 $C_{0}\text{-semigroup }T \text{ is called locally equicontinuous iff for all } t > 0:$ $\{T(s); 0 \le s \le t\} \text{ equicontinuous, i.e.}$ $\forall t > 0 \forall p \in cs(X) \exists q \in cs(X) \forall x \in X, s \in [0, t]:$ $p(T(s)x) \le q(x)$

X barrelled, $T \ C_0$ -semigroup $\Rightarrow T$ locally equicontinuous

イロト イポト イヨト イヨト 二日

X lcs, $T : [0, \infty) \to L(X)$ is called a semigroup iff $T(0) = id_X$ and $T(s+r) = T(s) \circ T(r)$ for all $s, r \ge 0$.

Semigroup T is called

- strongly continuous (or C_0 -semigroup) iff

 $\forall \, x \in X: \, [0,\infty) \to X, s \mapsto T(s)x \text{ continuous}$

- uniformly continuous iff

 $\forall\, r\geq 0: \lim_{s\rightarrow r} T(s)=T(r)$ uniformly on bounded sets

$$\begin{split} C_0\text{-semigroup } T \text{ is called locally equicontinuous iff for all } t > 0\text{:} \\ \{T(s); \ 0 \leq s \leq t\} \text{ equicontinuous, i.e.} \\ \forall t > 0 \forall p \in cs(X) \ \exists q \in cs(X) \ \forall x \in X, s \in [0,t]: \end{split}$$

 $p(T(s)x) \le q(x)$

X barrelled, $T C_0$ -semigroup $\Rightarrow T$ locally equicontinuous X Montel, $T C_0$ -semigroup $\Rightarrow T$ uniformly continuous

 $T C_0$ -semigroup on X.

$$A: D(A) \to X, x \mapsto \lim_{h \downarrow 0} \frac{1}{h} (T(h)x - x),$$

where

$$D(A) := \{ x \in X; \exists \lim_{h \downarrow 0} \frac{1}{h} (T(h)x - x) \}$$

is called generator of T.

イロト イヨト イヨト イヨト

3

 $T C_0$ -semigroup on X.

$$A: D(A) \to X, x \mapsto \lim_{h \downarrow 0} \frac{1}{h} (T(h)x - x),$$

where

$$D(A) := \{ x \in X; \exists \lim_{h \downarrow 0} \frac{1}{h} (T(h)x - x) \}$$

is called generator of T.

X sequentially complete $\Rightarrow D(A)$ dense in X and (A,D(A)) has a closed graph

A (10) A (10) A (10) A

Example: $X=C^\infty(\mathbb{R})$ with usual Fréchet space topology $\Bigl(T(s)f\Bigr)(x):=f(x+s)$

defines a C_0 -semigroup on $C^{\infty}(\mathbb{R})$,

(ロ) (同) (E) (E) (E)

Example: $X=C^\infty(\mathbb{R})$ with usual Fréchet space topology $\Bigl(T(s)f\Bigr)(x):=f(x+s)$

defines a C_0 -semigroup on $C^{\infty}(\mathbb{R})$, $D(A) = C^{\infty}(\mathbb{R})$ and Af = f'.

Example: $X=C^\infty(\mathbb{R})$ with usual Fréchet space topology $\Bigl(T(s)f\Bigr)(x):=f(x+s)$

defines a C_0 -semigroup on $C^{\infty}(\mathbb{R})$, $D(A) = C^{\infty}(\mathbb{R})$ and Af = f'. Choose f with $f(s) \neq 0, s > 0$, and $f^{(j)}(0) = 0$ for all $j \in \mathbb{N}_0$

(ロ) (同) (E) (E) (E)

Example: $X=C^\infty(\mathbb{R})$ with usual Fréchet space topology $\Bigl(T(s)f\Bigr)(x):=f(x+s)$

defines a C_0 -semigroup on $C^{\infty}(\mathbb{R})$, $D(A) = C^{\infty}(\mathbb{R})$ and Af = f'. Choose f with $f(s) \neq 0, s > 0$, and $f^{(j)}(0) = 0$ for all $j \in \mathbb{N}_0$

$$\Rightarrow \left(T(s)f \right)(0) = f(s) \neq 0 = \sum_{j=0}^{\infty} \frac{s^j}{j!} (A^j f)(0) = \left(\exp(sA)f \right)(0)$$

(ロ) (同) (E) (E) (E)

Example: $X=C^\infty(\mathbb{R})$ with usual Fréchet space topology $\Bigl(T(s)f\Bigr)(x):=f(x+s)$

defines a C_0 -semigroup on $C^{\infty}(\mathbb{R})$, $D(A) = C^{\infty}(\mathbb{R})$ and Af = f'. Choose f with $f(s) \neq 0, s > 0$, and $f^{(j)}(0) = 0$ for all $j \in \mathbb{N}_0$

$$\Rightarrow \left(T(s)f \right)(0) = f(s) \neq 0 = \sum_{j=0}^{\infty} \frac{s^j}{j!} (A^j f)(0) = \left(\exp(sA)f \right)(0)$$

In general $T(s)\neq \exp(sA)$ for everywhere defined, continuous generators A.

Example: $X=C^\infty(\mathbb{R})$ with usual Fréchet space topology $\Bigl(T(s)f\Bigr)(x):=f(x+s)$

defines a C_0 -semigroup on $C^{\infty}(\mathbb{R})$, $D(A) = C^{\infty}(\mathbb{R})$ and Af = f'. Choose f with $f(s) \neq 0, s > 0$, and $f^{(j)}(0) = 0$ for all $j \in \mathbb{N}_0$

$$\Rightarrow \left(T(s)f\right)(0) = f(s) \neq 0 = \sum_{j=0}^{\infty} \frac{s^j}{j!} (A^j f)(0) = \left(\exp(sA)f\right)(0)$$

In general $T(s) \neq \exp(sA)$ for everywhere defined, continuous generators A.

E. Borel:
$$C^{\infty}(\mathbb{R}) \to \mathbb{K}^{\mathbb{N}_0}, f \mapsto (f^{(j)}(0))_{j \in \mathbb{N}_0}$$
 surjective
 $\Rightarrow \exists f \in C^{\infty}(\mathbb{R}) : \sum_{j=0}^{\infty} \frac{s^j}{j!} (A^j f)(0)$ diverges for every $s > 0$

Conejero (2007): Is every $C_0\text{-semigroup }T$ on the Fréchet space $\omega=\mathbb{K}^{\mathbb{N}}$ of the form

$$T(s)x = \sum_{j=0}^{\infty} \frac{s^j}{j!} A^j(x),$$

for a continuous linear operator A on $\omega?$

イロト イヨト イヨト イヨト

Conejero (2007): Is every $C_0\text{-semigroup }T$ on the Fréchet space $\omega=\mathbb{K}^{\mathbb{N}}$ of the form

$$T(s)x = \sum_{j=0}^{\infty} \frac{s^j}{j!} A^j(x),$$

for a continuous linear operator A on ω ?

Albanese, Bonet, Ricker (2010): Yes, if additionally T is exponentially equicontinuous.

- 4 同 6 4 日 6 4 日 6

Conejero (2007): Is every $C_0\text{-semigroup }T$ on the Fréchet space $\omega=\mathbb{K}^{\mathbb{N}}$ of the form

$$T(s)x = \sum_{j=0}^{\infty} \frac{s^j}{j!} A^j(x),$$

for a continuous linear operator A on $\omega?$

Albanese, Bonet, Ricker (2010): Yes, if additionally T is exponentially equicontinuous.

Not satisfied, e.g. by $T(s)x = (e^{ns}x_n)_{n \in \mathbb{N}}$

- 4 同 6 4 日 6 4 日 6

Let $(X_n, \pi_m^n)_{n \leq m \in \mathbb{N}}$ be a (countable) projective spectrum of Banach spaces, i.e. $(X_n, \|\cdot\|_n)$ Banach spaces with unit balls B_n ,

$$\pi_m^n: X_m \to X_n, \, n \le m \in \mathbb{N}$$

norm decreasing operators with

$$\forall n \leq m \leq k : \pi_m^n \circ \pi_k^m = \pi_k^n \text{ and } \pi_n^n = id_{X_n}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $(X_n, \pi_m^n)_{n \leq m \in \mathbb{N}}$ be a (countable) projective spectrum of Banach spaces, i.e. $(X_n, \|\cdot\|_n)$ Banach spaces with unit balls B_n ,

$$\pi_m^n: X_m \to X_n, \, n \le m \in \mathbb{N}$$

norm decreasing operators with

$$orall n \leq m \leq k: \pi_m^n \circ \pi_k^m = \pi_k^n ext{ and } \pi_n^n = id_{X_n},$$

and

$$X = \{(x_n)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} X_n; \, \pi_m^n(x_m) = x_n \text{ for all } n \le m\}$$

its projective limit,

$$\forall m \in \mathbb{N} : \pi_m : X \to X_m, (x_n)_n \mapsto x_m.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $(X_n, \pi_m^n)_{n \leq m \in \mathbb{N}}$ be a (countable) projective spectrum of Banach spaces, i.e. $(X_n, \|\cdot\|_n)$ Banach spaces with unit balls B_n ,

$$\pi_m^n: X_m \to X_n, \, n \le m \in \mathbb{N}$$

norm decreasing operators with

$$orall n \leq m \leq k: \pi_m^n \circ \pi_k^m = \pi_k^n ext{ and } \pi_n^n = id_{X_n},$$

and

$$X = \{(x_n)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} X_n; \ \pi_m^n(x_m) = x_n \text{ for all } n \le m\}$$

its projective limit,

$$\forall m \in \mathbb{N} : \pi_m : X \to X_m, (x_n)_n \mapsto x_m.$$

 $(X_n,\pi_m^n)_{n\leq m\in\mathbb{N}}$ is called strict iff π_m^n is surjective - hence open - for all $n\leq m$

・ 同 ト ・ ヨ ト ・ ヨ ト

Fréchet space X is a quojection iff X admits representation as projective limit of a strict (countable) projective spectrum of Banach spaces.

- 4 同 6 4 日 6 4 日 6

Fréchet space X is a quojection iff X admits representation as projective limit of a strict (countable) projective spectrum of Banach spaces.

Examples:

- countable products $X = \prod_{n=1}^{\infty} Y_n$ of Banach spaces Y_n , with $X_m := \prod_{n=1}^m Y_n \ \pi_m^n : X_m \to X_n, (x_1, \dots, x_m) \mapsto (x_1, \dots, x_n)$
- $L^p_{loc}(\Omega) \cong \prod_{n=1}^{\infty} L^p_{loc}(K_n)$, $(K_n)_n$ compact exhaustions of $\Omega \subseteq \mathbb{R}^d$ open
- $C^n(\Omega)$ for $n \in \mathbb{N}_0$

Theorem

Let T be a semigroup on the quojection X.

i) If T is uniformly continuous then its generator is continuous and everywhere defined, and for all $x\in X$ and $s\geq 0$

$$T(s)x = \exp(sA)x = \sum_{j=0}^{\infty} \frac{s^j}{j!} A^j x.$$

- 4 同 6 4 日 6 4 日 6

Theorem

Let T be a semigroup on the quojection X.

i) If T is uniformly continuous then its generator is continuous and everywhere defined, and for all $x\in X$ and $s\geq 0$

$$T(s)x = \exp(sA)x = \sum_{j=0}^{\infty} \frac{s^j}{j!} A^j x.$$

ii) $A \in L(X)$ generates a C_0 -semigroup iff $\forall n \exists m \forall k, x \in X : \pi_m(x) = 0 \Rightarrow \pi_n(A^k x) = 0.$ Then the generated semigroup is even uniformly continuous.

・ロン ・回と ・ヨン ・ヨン

Theorem

Let T be a semigroup on the quojection X.

i) If T is uniformly continuous then its generator is continuous and everywhere defined, and for all $x\in X$ and $s\geq 0$

$$T(s)x = \exp(sA)x = \sum_{j=0}^{\infty} \frac{s^j}{j!} A^j x.$$

ii) $A \in L(X)$ generates a C_0 -semigroup iff $\forall n \exists m \forall k, x \in X : \pi_m(x) = 0 \Rightarrow \pi_n(A^k x) = 0.$ Then the generated semigroup is even uniformly continuous.

Consequence 1: $\omega = \mathbb{K}^{\mathbb{N}}$ is a quojection which is Montel $\Rightarrow C_0$ -semigroups on ω are uniformly continuous \Rightarrow Conejero's question is answered in the affirmative

・ロン ・回と ・ヨン ・ヨン

Theorem

Let T be a semigroup on the quojection X.

i) If T is uniformly continuous then its generator is continuous and everywhere defined, and for all $x\in X$ and $s\geq 0$

$$T(s)x = \exp(sA)x = \sum_{j=0}^{\infty} \frac{s^j}{j!} A^j x.$$

ii) $A \in L(X)$ generates a C_0 -semigroup iff $\forall n \exists m \forall k, x \in X : \pi_m(x) = 0 \Rightarrow \pi_n(A^k x) = 0.$ Then the generated semigroup is even uniformly continuous.

Consequence 2: X quojection, $A \in L(X)$ generates $C_0\text{-semigroup}$ \Rightarrow A^2 generates $C_0\text{-semigroup}$

イロト イポト イヨト イヨト

Theorem

Let T be a semigroup on the quojection X.

i) If T is uniformly continuous then its generator is continuous and everywhere defined, and for all $x\in X$ and $s\geq 0$

$$T(s)x = \exp(sA)x = \sum_{j=0}^{\infty} \frac{s^j}{j!} A^j x.$$

ii) $A \in L(X)$ generates a C_0 -semigroup iff

$$\forall n \exists m \forall k, x \in X : \pi_m(x) = 0 \Rightarrow \pi_n(A^k x) = 0.$$

Then the generated semigroup is even uniformly continuous.

Consequence 2: X quojection, $A \in L(X)$ generates C_0 -semigroup $\Rightarrow A^2$ generates C_0 -semigroup Not true in general: Af = f' generates the shift semigroup on $C^{\infty}(\mathbb{R})$ but $A^2f = f''$ does not generate a C_0 -semigroup on $C^{\infty}(\mathbb{R})$

イロト イヨト イヨト イヨト

Theorem

Let T be a semigroup on the quojection X.

i) If T is uniformly continuous then its generator is continuous and everywhere defined, and for all $x\in X$ and $s\geq 0$

$$T(s)x = \exp(sA)x = \sum_{j=0}^{\infty} \frac{s^j}{j!} A^j x.$$

ii) $A \in L(X)$ generates a C_0 -semigroup iff $\forall n \exists m \forall k, x \in X : \pi_m(x) = 0 \Rightarrow \pi_n(A^k x) = 0.$ Then the generated semigroup is even uniformly continuous.

Remark: Countability of the strict projective spectrum is only needed to ensure that X is barrelled and that each π_m lifts bounded sets. The theorem is thus true for arbitrary strict projective limits of Banach spaces which are barrelled and satisfy this lifting property, e.g. \mathbb{K}^I .

For a quojection X we have

- i) $\forall m \in \mathbb{N} : \pi_m : X \to X_m$ is surjective, hence open,
- ii) (Dierolf, Zarnadze, 1984) $\forall m \in \mathbb{N} \exists D_m \subseteq X$ bounded : $B_m \subseteq \pi_m(D_m)$, i.e. π_m lifts bounded sets

イロト イポト イヨト イヨト

Theorem

T semigroup on quojection X.

i)
$$T$$
 u.c. $\Rightarrow D(A) = X$, $A \in L(X)$, and $T(s)x = \exp(sA)x$.

ii) $A \in L(X)$ generates a C_0 -semigroup iff

$$\forall n \exists m \forall k, x \in X : \pi_m(x) = 0 \Rightarrow \pi_n(A^k x) = 0.$$

Then the generated semigroup is even uniformly continuous.

イロト イポト イヨト イヨト

Theorem

T semigroup on quojection X.

i)
$$T$$
 u.c. $\Rightarrow D(A) = X$, $A \in L(X)$, and $T(s)x = \exp(sA)x$.

ii) $A \in L(X)$ generates a C_0 -semigroup iff

$$\forall n \exists m \forall k, x \in X : \pi_m(x) = 0 \Rightarrow \pi_n(A^k x) = 0.$$

Then the generated semigroup is even uniformly continuous.

Steps of the proof:

Claim 1: $T \ C_0$ with generator (A, D(A)) then $\forall n \exists m \forall k, x \in D(A^k) : \pi_m(x) = 0 \Rightarrow \pi_n(A^k x) = 0.$

・ロン ・回と ・ヨン ・ヨン

Theorem

T semigroup on quojection X.

i)
$$T$$
 u.c. $\Rightarrow D(A) = X$, $A \in L(X)$, and $T(s)x = \exp(sA)x$.

ii) $A \in L(X)$ generates a C_0 -semigroup iff

$$\forall n \exists m \forall k, x \in X : \pi_m(x) = 0 \Rightarrow \pi_n(A^k x) = 0.$$

Then the generated semigroup is even uniformly continuous.

Steps of the proof:

Claim 1: $T \ C_0$ with generator (A, D(A)) then $\forall n \exists m \forall k, x \in D(A^k) : \pi_m(x) = 0 \Rightarrow \pi_n(A^k x) = 0.$ Claim 2: T u.c. then D(A) = X and $A \in L(X)$

イロン イヨン イヨン イヨン

Theorem

T semigroup on quojection X.

i)
$$T$$
 u.c. $\Rightarrow D(A) = X$, $A \in L(X)$, and $T(s)x = \exp(sA)x$.

ii) $A \in L(X)$ generates a C_0 -semigroup iff

$$\forall n \exists m \forall k, x \in X : \pi_m(x) = 0 \Rightarrow \pi_n(A^k x) = 0.$$

Then the generated semigroup is even uniformly continuous.

Steps of the proof: Claim 1: $T \ C_0$ with generator (A, D(A)) then $\forall n \exists m \forall k, x \in D(A^k) : \pi_m(x) = 0 \Rightarrow \pi_n(A^k x) = 0.$ Claim 2: T u.c. then D(A) = X and $A \in L(X)$ Claim 3: If $A \in L(X)$ satisfies condition in ii) then $\forall x \in X, s \ge 0 : \exp(sA)x = \sum_{j=0}^{\infty} \frac{s^j}{j!} A^j x \text{ conv. abs.+unif. on bdd sets}$ and $(\exp(sA))_{s\ge 0}$ is u.c. semigroup with generator A

Claim 1: $T \ C_0$ with generator (A, D(A)) then $\forall n \exists m \forall k, x \in D(A^k) : \pi_m(x) = 0 \Rightarrow \pi_n(A^k x) = 0.$

イロト イヨト イヨト イヨト

3

Claim 1: $T C_0$ with generator (A, D(A)) then $\forall n \exists m \forall k, x \in D(A^k) : \pi_m(x) = 0 \Rightarrow \pi_n(A^k x) = 0.$

 $T C_0$, X barrelled $\Rightarrow T$ locally equicont., thus $\forall t_0 > 0, n \exists m, c > 0 \forall x, s \in [0, t_0] : ||\pi_n(T(s)x)||_n \le c ||\pi_m(x)||_m$

(1) マン・ション・

Claim 1: $T C_0$ with generator (A, D(A)) then $\forall n \exists m \forall k, x \in D(A^k) : \pi_m(x) = 0 \Rightarrow \pi_n(A^k x) = 0.$

 $T \ C_0, X$ barrelled $\Rightarrow T$ locally equicont., thus $\forall t_0 > 0, n \exists m, c > 0 \forall x, s \in [0, t_0] : ||\pi_n(T(s)x)||_n \le c ||\pi_m(x)||_m$

Hence,

 $\forall t_0 > 0, n \exists m \forall x : (\pi_m(x) = 0 \Rightarrow \forall s \in [0, t_0] : \pi_n(T(s)x) = 0)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Claim 1: $T C_0$ with generator (A, D(A)) then $\forall n \exists m \forall k, x \in D(A^k) : \pi_m(x) = 0 \Rightarrow \pi_n(A^k x) = 0.$

 $T \ C_0, X$ barrelled $\Rightarrow T$ locally equicont., thus $\forall t_0 > 0, n \exists m, c > 0 \ \forall x, s \in [0, t_0] : \|\pi_n(T(s)x)\|_n \le c \|\pi_m(x)\|_m$

Hence,

 $\forall t_0 > 0, n \exists m \forall x : (\pi_m(x) = 0 \Rightarrow \forall s \in [0, t_0] : \pi_n(T(s)x) = 0)$

Since for every $k \in \mathbb{N}_0$

$$\forall x \in D(A^k) : A^k x = \frac{d^k}{ds^k} T(s) x_{|s=0}$$

Claim 1 follows.

(4 回) (4 回) (4 回)

Claim 2: T u.c. then D(A) = X and $A \in L(X)$

イロト イヨト イヨト イヨト

æ

Claim 2: T u.c. then D(A) = X and $A \in L(X)$ For t > 0 and $x \in X$ define $C_t x := \frac{1}{t} \int_0^t T(s) x ds$

イロト イポト イヨト イヨト

Claim 2: T u.c. then D(A) = X and $A \in L(X)$

For t > 0 and $x \in X$ define $C_t x := \frac{1}{t} \int_0^t T(s) x ds$ $C_t \in L(X)$, $C_t(X) \subseteq D(A)$, $A(C_t x) = \frac{1}{t} (T(t) x - x)$

- 4 同 6 4 日 6 4 日 6

Claim 2: T u.c. then D(A) = X and $A \in L(X)$

For t > 0 and $x \in X$ define $C_t x := \frac{1}{t} \int_0^t T(s) x ds$ $C_t \in L(X), C_t(X) \subseteq D(A), A(C_t x) = \frac{1}{t} (T(t)x - x)$, and $C_t \to_{t \to 0} i dx$ unif. on bounded sets

Claim 2: T u.c. then D(A) = X and $A \in L(X)$

For t > 0 and $x \in X$ define $C_t x := \frac{1}{t} \int_0^t T(s) x ds$ $C_t \in L(X), C_t(X) \subseteq D(A), A(C_t x) = \frac{1}{t} (T(t)x - x)$, and $C_t \rightarrow_{t \to 0} i d_X$ unif. on bounded sets Fix $x_0 \in X$ and $n_0 \in \mathbb{N}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Claim 2: T u.c. then D(A) = X and $A \in L(X)$

For t > 0 and $x \in X$ define $C_t x := \frac{1}{t} \int_0^t T(s) x ds$ $C_t \in L(X), C_t(X) \subseteq D(A), A(C_t x) = \frac{1}{t} (T(t) x - x)$, and $C_t \to_{t\to 0} i d_X$ unif. on bounded sets Fix $x_0 \in X$ and $n_0 \in \mathbb{N}$. In the proof of Claim 1 we have shown

 $\forall t_0 > 0, n \exists m \forall x : (\pi_m(x) = 0 \Rightarrow \forall s \in [0, t_0] : \pi_n(T(s)x) = 0)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Claim 2: T u.c. then D(A) = X and $A \in L(X)$

For t > 0 and $x \in X$ define $C_t x := \frac{1}{t} \int_0^t T(s) x ds$ $C_t \in L(X), C_t(X) \subseteq D(A), A(C_t x) = \frac{1}{t} (T(t)x - x)$, and $C_t \to_{t\to 0} i d_X$ unif. on bounded sets Fix $x_0 \in X$ and $n_0 \in \mathbb{N}$. In the proof of Claim 1 we have shown

 $\forall t_0 > 0, n \exists m \forall x : (\pi_m(x) = 0 \Rightarrow \forall s \in [0, t_0] : \pi_n(T(s)x) = 0)$

For $t_0 = 1$ and $n = n_0$ choose m as above. With a little trick - where it is needed that π_m lifts bounded sets: $\exists y \in X, t > 0$: $\pi_m(x_0) = \pi_m(C_t y)$

Claim 2: T u.c. then D(A) = X and $A \in L(X)$

For t > 0 and $x \in X$ define $C_t x := \frac{1}{t} \int_0^t T(s) x ds$ $C_t \in L(X), C_t(X) \subseteq D(A), A(C_t x) = \frac{1}{t} (T(t)x - x)$, and $C_t \to_{t\to 0} i d_X$ unif. on bounded sets Fix $x_0 \in X$ and $n_0 \in \mathbb{N}$. In the proof of Claim 1 we have shown $\forall t_0 \geq 0, n \notin m \forall x : (\pi, (x) = 0 \Rightarrow \forall a \in [0, t_0]; \pi, (T(a)x)$

 $\forall t_0 > 0, n \exists m \forall x : (\pi_m(x) = 0 \Rightarrow \forall s \in [0, t_0] : \pi_n(T(s)x) = 0)$

For $t_0 = 1$ and $n = n_0$ choose m as above. With a little trick where it is needed that π_m lifts bounded sets: $\exists y \in X, t > 0$: $\pi_m(x_0) = \pi_m(C_t y) \Rightarrow \pi_{n_0}(T(s)x_0) = \pi_{n_0}(T(s)C_t y), 0 \le s \le 1.$

Claim 2: T u.c. then D(A) = X and $A \in L(X)$

For t > 0 and $x \in X$ define $C_t x := \frac{1}{t} \int_0^t T(s) x ds$ $C_t \in L(X), C_t(X) \subseteq D(A), A(C_t x) = \frac{1}{t} (T(t)x - x)$, and $C_t \to_{t\to 0} i d_X$ unif. on bounded sets Fix $x_0 \in X$ and $n_0 \in \mathbb{N}$. In the proof of Claim 1 we have shown

 $\forall t_0 > 0, n \exists m \forall x : (\pi_m(x) = 0 \Rightarrow \forall s \in [0, t_0] : \pi_n(T(s)x) = 0)$

For $t_0 = 1$ and $n = n_0$ choose m as above. With a little trick where it is needed that π_m lifts bounded sets: $\exists y \in X, t > 0$: $\pi_m(x_0) = \pi_m(C_t y) \Rightarrow \pi_{n_0}(T(s)x_0) = \pi_{n_0}(T(s)C_t y), 0 \le s \le 1$. Thus

$$\pi_{n_0}(\frac{1}{s}(T(s)x_0 - x_0)) = \pi_{n_0}(\frac{1}{s}(T(s)C_ty - C_ty))$$

Claim 2: T u.c. then D(A) = X and $A \in L(X)$

For t > 0 and $x \in X$ define $C_t x := \frac{1}{t} \int_0^t T(s) x ds$ $C_t \in L(X), C_t(X) \subseteq D(A), A(C_t x) = \frac{1}{t} (T(t)x - x)$, and $C_t \to_{t\to 0} i d_X$ unif. on bounded sets Fix $x_0 \in X$ and $n_0 \in \mathbb{N}$. In the proof of Claim 1 we have shown

 $\forall t_0 > 0, n \exists m \forall x : (\pi_m(x) = 0 \Rightarrow \forall s \in [0, t_0] : \pi_n(T(s)x) = 0)$

For $t_0 = 1$ and $n = n_0$ choose m as above. With a little trick where it is needed that π_m lifts bounded sets: $\exists y \in X, t > 0$: $\pi_m(x_0) = \pi_m(C_t y) \Rightarrow \pi_{n_0}(T(s)x_0) = \pi_{n_0}(T(s)C_t y), 0 \le s \le 1$. Thus

$$\pi_{n_0}(\frac{1}{s}(T(s)x_0 - x_0)) = \pi_{n_0}(\frac{1}{s}(T(s)C_ty - C_ty)) \to_{s \to 0} \pi_{n_0}(\frac{1}{t}(T(t)y - y))$$

Claim 2: T u.c. then D(A) = X and $A \in L(X)$

For t > 0 and $x \in X$ define $C_t x := \frac{1}{t} \int_0^t T(s) x ds$ $C_t \in L(X), C_t(X) \subseteq D(A), A(C_t x) = \frac{1}{t} (T(t)x - x)$, and $C_t \to_{t\to 0} i d_X$ unif. on bounded sets Fix $x_0 \in X$ and $n_0 \in \mathbb{N}$. In the proof of Claim 1 we have shown

 $\forall t_0 > 0, n \exists m \forall x : (\pi_m(x) = 0 \Rightarrow \forall s \in [0, t_0] : \pi_n(T(s)x) = 0)$

For $t_0 = 1$ and $n = n_0$ choose m as above. With a little trick where it is needed that π_m lifts bounded sets: $\exists y \in X, t > 0$: $\pi_m(x_0) = \pi_m(C_t y) \Rightarrow \pi_{n_0}(T(s)x_0) = \pi_{n_0}(T(s)C_t y), 0 \le s \le 1$. Thus

$$\begin{aligned} \pi_{n_0}(\frac{1}{s}(T(s)x_0-x_0)) &= \pi_{n_0}(\frac{1}{s}(T(s)C_ty-C_ty)) \rightarrow_{s \to 0} \pi_{n_0}(\frac{1}{t}(T(t)y-y)) \\ n_0 \text{ arbitrary} \Rightarrow x_0 \in D(A), \ x_0 \text{ arbitrary} \Rightarrow D(A) = X, \ \text{Closed} \\ \text{Graph Theorem} \Rightarrow A \in L(X) \end{aligned}$$

Claim 3: If
$$A \in L(X)$$
 satisfies
(*) $\forall n \exists m \forall k, x \in X : \pi_m(x) = 0 \Rightarrow \pi_n(A^k x) = 0.$

then

$$\forall x \in X, s \ge 0: \exp(sA)x = \sum_{j=0}^{\infty} \frac{s^j}{j!} A^j x \text{ conv. abs.+unif. on bdd sets}$$

and $(\exp(sA))_{s\geq 0}$ is u.c. semigroup with generator A

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

Claim 3: If
$$A \in L(X)$$
 satisfies
(*) $\forall n \exists m \forall k, x \in X : \pi_m(x) = 0 \Rightarrow \pi_n(A^k x) = 0.$

then

$$\forall x \in X, s \ge 0: \exp(sA)x = \sum_{j=0}^{\infty} \frac{s^j}{j!} A^j x \text{ conv. abs.+unif. on bdd sets}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Claim 3: If
$$A \in L(X)$$
 satisfies
(*) $\forall n \exists m \forall k, x \in X : \pi_m(x) = 0 \Rightarrow \pi_n(A^k x) = 0.$

$$\forall \, x \in X, s \geq 0: \, \exp(sA)x = \sum_{j=0}^\infty \frac{s^j}{j!} A^j x \, \operatorname{conv.} \, \operatorname{abs.+unif.} \, \operatorname{on} \, \operatorname{bdd} \, \operatorname{sets}$$

Fix n and choose m according to (*) to define $\tilde{A}_0 := \pi_m^n$ and $\forall j \in \mathbb{N} : \tilde{A}_j : X_m \to X_n, x = \pi_m(y) \mapsto \pi_n(A^j y),$ well-defined because of (*), linear

・ロン ・回 と ・ 回 と ・ 回 と

Claim 3: If
$$A \in L(X)$$
 satisfies
(*) $\forall n \exists m \forall k, x \in X : \pi_m(x) = 0 \Rightarrow \pi_n(A^k x) = 0.$

$$\forall \, x \in X, s \geq 0: \, \exp(sA)x = \sum_{j=0}^\infty \frac{s^j}{j!} A^j x \text{ conv. abs.+unif. on bdd sets}$$

Fix n and choose m according to (*) to define $\tilde{A}_0 := \pi_m^n$ and $\forall j \in \mathbb{N} : \tilde{A}_j : X_m \to X_n, x = \pi_m(y) \mapsto \pi_n(A^j y),$ well-defined because of (*), linear, and $\tilde{A}_j \circ \pi_m = \pi_n \circ A^j$

イロト イポト イヨト イヨト

Claim 3: If
$$A \in L(X)$$
 satisfies
(*) $\forall n \exists m \forall k, x \in X : \pi_m(x) = 0 \Rightarrow \pi_n(A^k x) = 0.$

$$\forall \, x \in X, s \geq 0: \, \exp(sA)x = \sum_{j=0}^\infty \frac{s^j}{j!} A^j x \text{ conv. abs.+unif. on bdd sets}$$

Fix n and choose m according to (*) to define $\tilde{A}_0 := \pi_m^n$ and $\forall j \in \mathbb{N} : \tilde{A}_j : X_m \to X_n, x = \pi_m(y) \mapsto \pi_n(A^j y),$ well-defined because of (*), linear, and $\tilde{A}_j \circ \pi_m = \pi_n \circ A^j$ Using that π_m lifts bounded sets one proves

$$\exists \lambda \ge 1 \,\forall j \in \mathbb{N}_0 : \, \|\tilde{A}_j\|_{L(X_m, X_n)} \le \lambda^j$$

Claim 3: If
$$A \in L(X)$$
 satisfies
(*) $\forall n \exists m \forall k, x \in X : \pi_m(x) = 0 \Rightarrow \pi_n(A^k x) = 0.$

$$\forall \, x \in X, s \geq 0: \, \exp(sA)x = \sum_{j=0}^\infty \frac{s^j}{j!} A^j x \text{ conv. abs.+unif. on bdd sets}$$

Fix n and choose m according to (*) to define $\tilde{A}_0 := \pi_m^n$ and $\forall j \in \mathbb{N} : \tilde{A}_j : X_m \to X_n, x = \pi_m(y) \mapsto \pi_n(A^j y),$ well-defined because of (*), linear, and $\tilde{A}_j \circ \pi_m = \pi_n \circ A^j$ Using that π_m lifts bounded sets one proves

 $\exists \lambda \ge 1 \forall j \in \mathbb{N}_0 : \|\tilde{A}_j\|_{L(X_m,X_n)} \le \lambda^j$ $\Rightarrow \|\pi_n(A^j x)\|_n = \|\tilde{A}_j(\pi_m(x))\|_n \le \lambda^j \|\pi_m(x)\|_m, \text{ which implies}$ Claim 3.

References

- A. Albanese, J. Bonet, and W. Ricker, C₀-semigroups and mean ergodic operators in a class of Fréchet spaces, J. Math. Anal. Appl. 365(1):142–157, 2010.
- J. Conejero, On the existence of transitive and topologically mixing semigroups, Bull. Belg. Math. Soc. Simon Stevin 14(3):463–471, 2007.
- L. Frerick, E. Jordá, T. Kalmes, and J. Wengenroth, *Strongly continuous semigroups on some Fréchet spaces*, J. Math. Anal. Appl. 412:121–124, 2014.