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Introduction
Semigroups on strict projective limits

Sketch of the proof

X lcs, T : [0,∞)→ L(X) is called a semigroup iff T (0) = idX
and T (s+ r) = T (s) ◦ T (r) for all s, r ≥ 0.

Semigroup T is called

- strongly continuous (or C0-semigroup) iff

∀x ∈ X : [0,∞)→ X, s 7→ T (s)x continuous

- uniformly continuous iff

∀ r ≥ 0 : lim
s→r

T (s) = T (r) uniformly on bounded sets

C0-semigroup T is called locally equicontinuous iff for all t > 0:
{T (s); 0 ≤ s ≤ t} equicontinuous, i.e.

∀ t > 0 ∀ p ∈ cs(X)∃ q ∈ cs(X) ∀x ∈ X, s ∈ [0, t] :

p(T (s)x) ≤ q(x)

X barrelled, T C0-semigroup ⇒ T locally equicontinuous
X Montel, T C0-semigroup ⇒ T uniformly continuous
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Semigroups on strict projective limits

Sketch of the proof

T C0-semigroup on X.

A : D(A)→ X,x 7→ lim
h↓0

1

h
(T (h)x− x),

where

D(A) := {x ∈ X; ∃ lim
h↓0

1

h
(T (h)x− x)}

is called generator of T .

X sequentially complete ⇒ D(A) dense in X and (A,D(A)) has a
closed graph
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Semigroups on strict projective limits

Sketch of the proof

Example: X = C∞(R) with usual Fréchet space topology(
T (s)f

)
(x) := f(x+ s)

defines a C0-semigroup on C∞(R),

D(A) = C∞(R) and Af = f ′.

Choose f with f(s) 6= 0, s > 0, and f (j)(0) = 0 for all j ∈ N0

⇒
(
T (s)f

)
(0) = f(s) 6= 0 =

∞∑
j=0

sj

j!
(Ajf)(0) ” =

(
exp(sA)f

)
(0)”

In general T (s) 6= exp(sA) for everywhere defined, continuous
generators A.

E. Borel: C∞(R)→ KN0 , f 7→ (f (j)(0))j∈N0 surjective

⇒ ∃ f ∈ C∞(R) :

∞∑
j=0

sj

j!
(Ajf)(0) diverges for every s > 0
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Introduction
Semigroups on strict projective limits

Sketch of the proof

Conejero (2007): Is every C0-semigroup T on the Fréchet space
ω = KN of the form

T (s)x =

∞∑
j=0

sj

j!
Aj(x),

for a continuous linear operator A on ω?

Albanese, Bonet, Ricker (2010): Yes, if additionally T is
exponentially equicontinuous.
Not satisfied, e.g. by T (s)x = (ensxn)n∈N
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Semigroups on strict projective limits

Sketch of the proof

Let (Xn, π
n
m)n≤m∈N be a (countable) projective spectrum of

Banach spaces, i.e. (Xn, ‖ · ‖n) Banach spaces with unit balls Bn,

πnm : Xm → Xn, n ≤ m ∈ N

norm decreasing operators with

∀n ≤ m ≤ k : πnm ◦ πmk = πnk and πnn = idXn

,

and

X = {(xn)n∈N ∈
∏
n∈N

Xn; πnm(xm) = xn for all n ≤ m}

its projective limit,

∀m ∈ N : πm : X → Xm, (xn)n 7→ xm.

(Xn, π
n
m)n≤m∈N is called strict iff πnm is surjective - hence open -

for all n ≤ m
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Introduction
Semigroups on strict projective limits

Sketch of the proof

Let (Xn, π
n
m)n≤m∈N be a (countable) projective spectrum of

Banach spaces, i.e. (Xn, ‖ · ‖n) Banach spaces with unit balls Bn,

πnm : Xm → Xn, n ≤ m ∈ N

norm decreasing operators with

∀n ≤ m ≤ k : πnm ◦ πmk = πnk and πnn = idXn ,

and

X = {(xn)n∈N ∈
∏
n∈N

Xn; πnm(xm) = xn for all n ≤ m}

its projective limit,

∀m ∈ N : πm : X → Xm, (xn)n 7→ xm.

(Xn, π
n
m)n≤m∈N is called strict iff πnm is surjective - hence open -

for all n ≤ m

Thomas Kalmes TU Chemnitz Strongly continuous semigroups on some Fréchet spaces
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Semigroups on strict projective limits

Sketch of the proof

Fréchet space X is a quojection iff X admits representation as
projective limit of a strict (countable) projective spectrum of
Banach spaces.

Examples:

- countable products X = Π∞n=1Yn of Banach spaces Yn, with
Xm := Πm

n=1Yn π
n
m : Xm → Xn, (x1, . . . , xm) 7→ (x1, . . . , xn)

- Lp
loc(Ω) ∼= Π∞n=1L

p
loc(Kn), (Kn)n compact exhaustions of

Ω ⊆ Rd open

- Cn(Ω) for n ∈ N0
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Introduction
Semigroups on strict projective limits

Sketch of the proof
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Semigroups on strict projective limits

Sketch of the proof

Theorem

Let T be a semigroup on the quojection X.

i) If T is uniformly continuous then its generator is continuous
and everywhere defined, and for all x ∈ X and s ≥ 0

T (s)x = exp(sA)x =

∞∑
j=0

sj

j!
Ajx.

ii) A ∈ L(X) generates a C0-semigroup iff

∀n ∃m ∀ k, x ∈ X : πm(x) = 0⇒ πn(Akx) = 0.

Then the generated semigroup is even uniformly continuous.
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Theorem
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i) If T is uniformly continuous then its generator is continuous
and everywhere defined, and for all x ∈ X and s ≥ 0

T (s)x = exp(sA)x =
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j=0

sj

j!
Ajx.

ii) A ∈ L(X) generates a C0-semigroup iff

∀n ∃m ∀ k, x ∈ X : πm(x) = 0⇒ πn(Akx) = 0.

Then the generated semigroup is even uniformly continuous.

Consequence 1: ω = KN is a quojection which is Montel
⇒ C0-semigroups on ω are uniformly continuous
⇒ Conejero’s question is answered in the affirmative
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Theorem

Let T be a semigroup on the quojection X.
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and everywhere defined, and for all x ∈ X and s ≥ 0

T (s)x = exp(sA)x =
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ii) A ∈ L(X) generates a C0-semigroup iff

∀n ∃m ∀ k, x ∈ X : πm(x) = 0⇒ πn(Akx) = 0.

Then the generated semigroup is even uniformly continuous.

Consequence 2: X quojection, A ∈ L(X) generates C0-semigroup
⇒ A2 generates C0-semigroup
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Theorem

Let T be a semigroup on the quojection X.
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and everywhere defined, and for all x ∈ X and s ≥ 0
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ii) A ∈ L(X) generates a C0-semigroup iff

∀n ∃m ∀ k, x ∈ X : πm(x) = 0⇒ πn(Akx) = 0.

Then the generated semigroup is even uniformly continuous.

Consequence 2: X quojection, A ∈ L(X) generates C0-semigroup
⇒ A2 generates C0-semigroup
Not true in general: Af = f ′ generates the shift semigroup on
C∞(R) but A2f = f ′′ does not generate a C0-semigroup on C∞(R)
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Theorem
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ii) A ∈ L(X) generates a C0-semigroup iff

∀n ∃m ∀ k, x ∈ X : πm(x) = 0⇒ πn(Akx) = 0.

Then the generated semigroup is even uniformly continuous.

Remark: Countability of the strict projective spectrum is only needed
to ensure that X is barrelled and that each πm lifts bounded sets.
The theorem is thus true for arbitrary strict projective limits of Ba-
nach spaces which are barrelled and satisfy this lifting property, e.g.
KI .
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Sketch of the proof

For a quojection X we have

i) ∀m ∈ N : πm : X → Xm is surjective, hence open,

ii) (Dierolf, Zarnadze, 1984)
∀m ∈ N ∃Dm ⊆ X bounded : Bm ⊆ πm(Dm), i.e. πm lifts
bounded sets
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Introduction
Semigroups on strict projective limits

Sketch of the proof

Theorem

T semigroup on quojection X.

i) T u.c. ⇒ D(A) = X, A ∈ L(X), and T (s)x = exp(sA)x.

ii) A ∈ L(X) generates a C0-semigroup iff

∀n ∃m ∀ k, x ∈ X : πm(x) = 0⇒ πn(Akx) = 0.

Then the generated semigroup is even uniformly continuous.

Steps of the proof:
Claim 1: T C0 with generator (A,D(A)) then

∀n∃m ∀ k, x ∈ D(Ak) : πm(x) = 0⇒ πn(Akx) = 0.

Claim 2: T u.c. then D(A) = X and A ∈ L(X)
Claim 3: If A ∈ L(X) satisfies condition in ii) then

∀x ∈ X, s ≥ 0 : exp(sA)x =

∞∑
j=0

sj

j!
Ajx conv. abs.+unif. on bdd sets

and (exp(sA))s≥0 is u.c. semigroup with generator A
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Sketch of the proof

Claim 1: T C0 with generator (A,D(A)) then

∀n ∃m∀ k, x ∈ D(Ak) : πm(x) = 0⇒ πn(Akx) = 0.

T C0, X barrelled ⇒ T locally equicont., thus

∀t0 > 0, n∃m, c > 0∀x, s ∈ [0, t0] : ‖πn(T (s)x)‖n ≤ c‖πm(x)‖m

Hence,

∀t0 > 0, n∃m ∀x : (πm(x) = 0⇒ ∀ s ∈ [0, t0] : πn(T (s)x) = 0)

Since for every k ∈ N0

∀x ∈ D(Ak) : Akx =
dk

dsk
T (s)x|s=0

Claim 1 follows.
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Introduction
Semigroups on strict projective limits

Sketch of the proof

Claim 1: T C0 with generator (A,D(A)) then

∀n ∃m∀ k, x ∈ D(Ak) : πm(x) = 0⇒ πn(Akx) = 0.

T C0, X barrelled ⇒ T locally equicont., thus

∀t0 > 0, n∃m, c > 0 ∀x, s ∈ [0, t0] : ‖πn(T (s)x)‖n ≤ c‖πm(x)‖m

Hence,

∀t0 > 0, n∃m ∀x : (πm(x) = 0⇒ ∀ s ∈ [0, t0] : πn(T (s)x) = 0)

Since for every k ∈ N0

∀x ∈ D(Ak) : Akx =
dk

dsk
T (s)x|s=0

Claim 1 follows.

Thomas Kalmes TU Chemnitz Strongly continuous semigroups on some Fréchet spaces
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Sketch of the proof

Claim 2: T u.c. then D(A) = X and A ∈ L(X)

For t > 0 and x ∈ X define Ctx := 1
t

∫ t
0 T (s)xds

Ct ∈ L(X), Ct(X) ⊆ D(A), A(Ctx) = 1
t (T (t)x− x), and

Ct →t→0 idX unif. on bounded sets
Fix x0 ∈ X and n0 ∈ N. In the proof of Claim 1 we have shown

∀t0 > 0, n∃m ∀x : (πm(x) = 0⇒ ∀ s ∈ [0, t0] : πn(T (s)x) = 0)

For t0 = 1 and n = n0 choose m as above. With a little trick -
where it is needed that πm lifts bounded sets: ∃y ∈ X, t > 0 :
πm(x0) = πm(Cty)⇒ πn0(T (s)x0) = πn0(T (s)Cty), 0 ≤ s ≤ 1.
Thus

πn0(
1

s
(T (s)x0−x0)) = πn0(

1

s
(T (s)Cty−Cty))→s→0 πn0(

1

t
(T (t)y−y))

n0 arbitrary ⇒ x0 ∈ D(A), x0 arbitrary ⇒ D(A) = X, Closed
Graph Theorem ⇒ A ∈ L(X)
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Sketch of the proof

Claim 3: If A ∈ L(X) satisfies

(∗) ∀n ∃m ∀ k, x ∈ X : πm(x) = 0⇒ πn(Akx) = 0.

then

∀x ∈ X, s ≥ 0 : exp(sA)x =

∞∑
j=0

sj

j!
Ajx conv. abs.+unif. on bdd sets

and (exp(sA))s≥0 is u.c. semigroup with generator A
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Fix n and choose m according to (*) to define Ã0 := πnm and

∀ j ∈ N : Ãj : Xm → Xn, x = πm(y) 7→ πn(Ajy),

well-defined because of (*), linear
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Claim 3: If A ∈ L(X) satisfies

(∗) ∀n ∃m ∀ k, x ∈ X : πm(x) = 0⇒ πn(Akx) = 0.

then

∀x ∈ X, s ≥ 0 : exp(sA)x =

∞∑
j=0

sj

j!
Ajx conv. abs.+unif. on bdd sets

Fix n and choose m according to (*) to define Ã0 := πnm and

∀ j ∈ N : Ãj : Xm → Xn, x = πm(y) 7→ πn(Ajy),

well-defined because of (*), linear, and Ãj ◦ πm = πn ◦Aj

Using that πm lifts bounded sets one proves

∃λ ≥ 1 ∀ j ∈ N0 : ‖Ãj‖L(Xm,Xn) ≤ λ
j
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Claim 3: If A ∈ L(X) satisfies

(∗) ∀n ∃m ∀ k, x ∈ X : πm(x) = 0⇒ πn(Akx) = 0.

then

∀x ∈ X, s ≥ 0 : exp(sA)x =

∞∑
j=0

sj

j!
Ajx conv. abs.+unif. on bdd sets

Fix n and choose m according to (*) to define Ã0 := πnm and

∀ j ∈ N : Ãj : Xm → Xn, x = πm(y) 7→ πn(Ajy),

well-defined because of (*), linear, and Ãj ◦ πm = πn ◦Aj

Using that πm lifts bounded sets one proves

∃λ ≥ 1 ∀ j ∈ N0 : ‖Ãj‖L(Xm,Xn) ≤ λ
j

⇒ ‖πn(Ajx)‖n = ‖Ãj(πm(x))‖n ≤ λj‖πm(x)‖m, which implies
Claim 3.
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