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1 Executive summary

1.1 Challenge overview

Sea pens are colonial animals closely related to the corals that live
attached to the sea floor. They generally form a feather-shaped colony
with a horny skeleton. They respond to multiple human interventions
(contamination and human waste, fishing, boats, etc.) and therefore they
are an indicator of the health of their ecosystem. Sea pen communities
are Vulnerable Marine Ecosystems (VMEs), which have been proposed
as indicators of good conservation status for mud habitats. The goal of
this challenge is to study their distribution and abundance, so their
presence can be used to evaluate whether the seabed is exposed to
good water quality and is undamaged by fishing gear.

The Centre for Environment, Fisheries and Aquaculture Science (Cefas)
studies the distribution of sea pens to obtain marine environmental
insights about the health of mud ecosystems. From previosly acquiered
video footage, they were interested in classifying two types of sea pens
which are distributed at very different densities in two different survey
locations: the slender sea pen (Virgularia mirabilis) and the
phosphorescent sea pen (Pennatula phosphorea) (Figure 1). Both sea
pens live in fine sediments ranging from sheltered inshore waters to
deeper water offshore (∼ 10-400 m depth). The slender sea pen has a
central stem only a few millimetres thick lined by small tentacled polyps
arranged in two opposing lateral rows on the central stem. The colony
varies in colour from white to creamy yellow and can grow up to 60 cm
long. Colonies of the phosphorescent sea pen on the other hand are
stout and fleshy and up to 40 cm long. The triangular leaf-like branches
formed of fused polyps range from translucent to a deep reddish-pink
colour.

Prior to this DSG, Cefas had created an analysis pipeline using
preliminary machine learning algorithms which would classify sea pens
from seafloor video footage with varying accuracy. A key challenge
identified was that of standardising all video data, which showed different
levels of brightness, contrast and other characteristics. This was rather
challenging, as different years use different lighting systems, and it can
be hard to spot sea pens under LED lighting conditions. In summary, the
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Figure 1: Pictures of the two sea pens of this challenge: Virgularia (left)
and Pennatula (right).

preliminary models did not generalise well over different years, since the
characteristics of the cameras and the lightning conditions changed over
time. The report from this preliminary analysis can be found online.[1]
The aim of this DSG project and report is to attempt to find a machine
learning pipeline based on computer vision techniques that can
accurately classify and detect these two types of seapens across footage
from several years, as well as gain some insights into which video
modification techniques can be applied to homogenise the different video
conditions over the years.

1.2 Data overview

Cefas undertakes an annual Nephrops (a genus of lobster) burrow survey
and has several decades of video data totalling terabytes, ranging from
2007 to 2022. The data was collected from a video camera mounted on a
towed camera sledge system deployed from the Research Vessel Cefas
Endeavour. These videos were used to count sea pens for this challenge,
in addition to their original purpose. Cefas had performed manual
annotations of sea pens using a third-party software by selecting
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bounding boxes in certain video frames. These annotations were made in
videos from 2014 to 2021 and were provided as ground truth labels to
train computer vision models for sea pen detection and
classification.

1.3 Main objectives

The overarching goal of this challenge is to improve the detection,
classification and tracking of two types of sea pens in seafloor videos
from different years and different recording conditions, ensuring that one
sea pen is counted only once. The detailed objectives are:

1. To homogenise the brightness and hue conditions of the videos to
generalise as much as possible the detection and classification of
sea pens in future surveys.

2. To detect two laser beams that appear in the videos to define a
region of interest so that the density of sea pens can be calculated
accurately.

3. To detect sea pens in sea-floor footage with high accuracy using
footage from different years.

4. To classify the two types of sea pens.

5. To track the sea pens, once classified, over several frames to make
sure they are counted only once.

1.4 Approach

Aside from the writing of general-use functions, the Data Study Group
decided to split the challenge into 5 work packages which could be
developed in parallel: 1) Image standardisation and pre-processing; 2)
Laser Identification; 3) Detection; 4) Classification; and 5) Tracking. In the
following subsections, we briefly summarise the tasks performed by each
of the sub-teams.
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1.4.1 Image standardisation and pre-processing

A key issue with the challenge presented was that the previous machine
learning models only worked well on the year of data that it was trained
on (2016). Since footage in other years was filmed on a different
camera-light system, the algorithm performed poorly on them. This quite
likely results from a different hue, saturation and lightness in the different
years. The team investigated several image pre-processing techniques
that could homogenise these differences and highlight sea pens in all the
videos available to us (2014-2021). Some of the techniques implemented
where time-averaged hue-saturation-lightness (HSL), the grey-world
(GW) algorithm, RGB histogram equalisation, and contrast limited
adaptive histogram equalisation (CLAHE), as well as a multi-stage
pre-processing. In particular, the CLAHE algorithm gave positive results
and highlighted the presence of sea pens in the available video footage.
We assess the quality of the pre-processing techniques qualitatively by
visual exploration and we provide an initial quantitative analysis of colour
normalisation in the appendix.

1.4.2 Laser identification

The seafloor videos have one set of parallel lasers separated a specified
width of about 70 cm. Combined with knowledge of the length of the
survey transect, this width can be used to standardise the number of sea
pens between the laser lines to a known swept area. The identification of
the lasers is, therefore, a useful outcome for Cefas, as it will allow them to
only count the sea pens that fall within the lasers and compute an
accurate density of sea pens in the area. The team used line-detection
on the footage as the most reliable method for this task. The approach
involved acquiring a grayscale image, applying Gaussian blur and Canny
edge detection, and using the Hough lines transform to convert edges to
lines. Finally, a binary mask was obtained, which would allow to filter out
detected sea pens that fell outside the central laser region. In good
visibility conditions, the algorithm performed returning an adequate mask
in approximately 95% of the cases (upon qualitative assessment of
whether two clear lasers were identified) in videos from 2014-2021
without applying standardisation techniques described in the previous
subsection. In the remaining cases, visibility conditions make the lasers
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easy to distinguish even by bare eye, but we suggest investigating the
sources of errors to optimise this algorithm.

1.4.3 Detection

Before object identification, the video must first be processed to pick out
objects, in this case sea pens, from the background. The team
investigated detection and classification algorithms based on You Only
Look Once (YOLO) v5. This model provided significantly positive results
of ∼ 90% mean average precision (mAP) at 0.5 intersection over union
(IOU) in our test dataset, which is an outstanding value for object
detection. For this, we used videos from the years 2014-2020, excluding
those from 2021 and some from 2016 due to some issues with the
alignment of bounding boxes from the annotations, described in the next
section. The videos were not pre-processed with the standardisation
techniques studied in parallel due to time constraints, and we suggest as
future work the implementation of the same detection algorithms on the
homogenised videos to assess whether these pre-processing improves
the detection of sea pens.

1.4.4 Classification

The detection algorithms based on YOLOv5 can also classify the objects
as the two types of sea pens. However, due to the aforementioned
difficult lightning conditions, the team suggested an approach in which
the detection would be over-sensitive, that is, would detect too many false
positives, and a subsequent classification algorithm would help
discriminate between sea pens and background objects. The team
proposed starting with baseline algorithms, such as a simple
custom-made convolutional neural network (CNN) model. We also tested
more complex algorithms, such as ResNet50 and VGG16. However, we
should be cautious with the more complex algorithms, as they have been
trained for object detection in completely different scenarios (e.g., cities,
houses, etc.) and not for the detection of maritime animals like sea pens
in maritime environments, with very different lightning conditions and
noise levels. In any case, both the simple and complex models provided
excellent results, with classification accuracy >94% in all cases and
sometimes very close to 100% across all years. As in the detection case,
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we did not use videos from 2021 and some from 2016 due to problems
with bounding box alignment, and none of the videos were pre-processed
beforehand. However, it needs to be noted that these results are
validation scores at the end of training, and they need to be tested more
cautiously with a test dataset, but the model loss function does not
suggest the presence of overfitting.

1.4.5 Tracking

In order to count sea pens only once, it is necessary to have a tracking
algorithm that can follow the detected sea pens as the camera moves
along the seabed. Therefore, the tracking algorithm should track their
movement, as well as their potential disappearance, as the footage was
frequently obscured by plumes of sediment. A tracking algorithm that
could detect sea pens was successfully implemented, although more
testing is necessary. This algorithm was capable of very robustly following
sea pens across the video, and even recover their positions when they
are momentarily obscured. However, in certain occasions sea pens were
occluded for a longer time and the tracker would lose them, potentially
causing counting the same sea pen twice. Due to time constraints, this
implementation could not be assessed systematically, neither qualitatively
nor quantitatively, and therefore more research is needed to investigate
the sources of errors and its generalisability. We tested this approach on
one video from 2018, but previous experience of the team with this
approach tells us that the methodology is robust to different video
conditions and should be easily generalised, and that further optimisation
of the algorithm could solve all of the issues encountered.

2 Data overview

2.1 Dataset description

The data available for this challenge was camera-sled video footage
covering 2014-21 and associated box annotations of both types of sea
pens (see Section 2.2). Each video was captured using a
sledge-mounted camera for 10 minutes at an average speed of 0.7 knots.
Two parallel lasers at a known distance are used to delimit the field of
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Figure 2: Two snapshots from seafloor footage from different years (2014
and 2017, respectively) where the different lightning conditions, aspect
ratios and image quality can be observed. The two different types of sea
pens are displayed in boxes.

view. Figure 2 shows two snapshots of videos from different years (with
bounding boxes from the original human annotations) where many of the
challenges of this project can be observed. Most notably, both videos
have different lightning and hue conditions. The two lasers used to delimit
the field of view are also visible in red and green.

2.2 Data summary

For the challenge, there were about 120 videos per year, from 2014 to
2021. Six of these videos from 2016 and 2 videos each from 2014-2021
(16 videos) are accompanied by handmade annotations using the software
VIAME [2], which allows the user to delimit bounding boxes of objects (in
this case, sea pens) and extract their coordinates. These annotations were
done by researchers trained to identify sea pens in the videos and can be
used to train computer vision models to detect these sea pens over several
years. In more detail, there were three types of manual annotations:

• Individual annotations: each sea pen, individually identified, was
delimited only once in a single frame. There is no subsequent
tracking in time.

• Track annotations: the annotations for each sea pen are tracked
in time, individually recognised, over several frames. Notice that to
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simplify this process, the original videos (generally at 25 FPS) were
downsampled to 10 FPS, so that human annotators would have to
annotate less frames while still providing a useful time series.

• Mixed annotations: in this case, some datasets have a single
annotation of identified sea pens, but others have track annotations.
All of them come with unique identifiers, so they are easy to
separate.

2.3 Data naming system and standardisation

The naming system of the videos and associated annotation files was not
consistent, due to different persons at different times not completely
following the standard advised. For instance, uppercase and lowercase
letters were used in different files; a suffix to indicate the number of the
recording station was sometimes preceded by ‘ST’ or ‘STN’, in upper- or
lowercase; three-digit codes were sometimes written as, e.g., 003 or
simply 3; and division between codes was indicated with a space or an
underscore.

The challenge owners provided us with a glossary explaining the naming
system and pointing out these discrepancies. As our goal was to obtain a
fully automated system for sea pen detection, it was necessary to
homogenise the naming system. We created a bash script that looped
through all the files and modified their names according to the following
convention: CENDXXYY STN DDD TVID N-SC, where CEND is the
survey cruise code (always CEND, meaning Cefas Endeavour); XX is two
digits identifying the number of the survey in year YY (last two digits of
the year); DDD is the sampling station (STN) number of the survey; and
finally the permanent station identifier, where TVID means TV survey, N
is the area code digit(s) and SC are 1-4 letters identifying the station
code. For instance: CEND0821 STN 002 TVID 6.

2.4 Annotations

Table 1 shows an overview of the data contained in the annotation files,
focusing on the column names, the data type and their contents.
Although these annotation files were already in a clean format, the team
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Column name Data type Description

1: Detection or Track-id INT Unique sea pen ID

2: Video or Image Identifier TIMESTAMP This data was incorrect and therefore
discarded

3: Unique Frame Identifier INT Frame number (starting at 0)

4-7: Imgbbox(TL x INT Pixel coordinate of the top-left x-axis
value of a bounding box

TL y INT Pixel coordinate of the top-left y-axis
value of a bounding box

BR x INT Pixel coordinate of the bottom-right x-
axis value of a bounding box

BR y INT Pixel coordinate of the bottom-right y-
axis value of a bounding box

8: Detection or Length
Confidence

FLOAT As annotations were manual, this
column was always 1, and therefore
discarded

9: Target Length (0 or -1 if
invalid)

INT This value was always -1 and therefore
discarded

10-11+: Repeated Species STRING Name of the species

Confidence Pairs or Attributes FLOAT This value was always 1, since they
were human annotations and was
therefore discarded

Table 1: Column names in the dataset containing manual human
annotations provided by Cefas (exported from the VIAME annotation
software).

performed some further cleaning in these files so that only the relevant
columns were kept and the column names were simplified to better reflect
their contents. Table 2 shows an example of one of the annotation files
after cleaning.

2.5 Data quality issues

The footage was collected on a towed platform (sledge) and the quality of
the footage is dependent on the sea conditions at the time. For instance,
waves in rough sea conditions will cause the horizontal vessel speed to
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detection id frame number TL x TL y BR x BR y species

0 0 1126 508 1170 540 Pennatula

0 1 1125 508 1166 543 Pennatula

0 2 1127 519 1163 552 Pennatula

0 3 1131 518 1172 558 Pennatula

0 4 1131 523 1172 563 Pennatula
...

...
...

...
...

...
...

1 0 906 328 953 381 Pennatula

1 1 899 329 952 386 Pennatula

1 2 901 335 953 385 Pennatula

1 3 906 341 946 385 Pennatula

1 4 908 347 955 393 Pennatula
...

...
...

...
...

...
...

Table 2: An example of a cleaned annotation dataset.

be less consistent, as well as lifting the vessel vertically. Typically, some
small plumes of sediment may pass in front of the camera at the
peripheries. In worse conditions, the sled accelerates and decelerates
abruptly. At times, the sled may even lift off the seafloor entirely. When
this occurs, the transect is not useful for reliable species counting and is
usually abandoned.

Before 2016, a Kongsberg/Simrad 14-408 camera system was used. The
camera used for 2014 and 2015 had a width-to-height aspect ratio of 4:3,
which enabled a close-up view of the seabed, with a small amount of
coverage outside of the fan laser lines (left of Figure 2). For the 2016 to
2019 surveys a Subsea Technology and Rentals (STR) high-definition
Internet Protocol (IP) camera was used and for the 2020 and 2021
surveys an STR SeaSpyder High Definition (HD) camera was used,
further increasing the achievable pixel resolution. The IP and HD camera
both have an aspect ratio of 14:9, extending the area captured outside of
the laser lines and bringing the sledge frame into view (right of
Figure 2).

There are also extrinsic parameters which have altered between surveys.
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There have been changes in both the camera mounting height in the frame
and the angle pointing towards the seabed. This is particularly noticeable
in the 2019 data, where the camera angle is more vertical than the other
surveys, and the sledge skids are only just visible in the frame. Due to the
increase in mounting height, there has only been a slight increase in pixel
resolution on the seabed.

2.5.1 Misalignment of frame rates and bounding boxes

A significant issue arose when matching the annotations’ frames with the
corresponding video frames, due to the software that was used to create
the human annotations. Each row of the dataset specified a frame
number (‘frame number’ column in the clean dataset from Table 2), along
with coordinates for the bounding boxes enclosing any sea pens present
within that frame. However, the frame numbers specified in the dataset
did not match those in the videos. When the bounding boxes were drawn
on the videos, these did not seem to correspond to actual sea pens. This
was a significant bottleneck for the whole challenge, as the detection,
classification and tracking subteams counted on being able to manually
extract bounding boxes with sea pens from the manual annotations.

These human annotations were done on a video that was downsampled
to 10 frames per second (FPS) within the annotation software VIAME,
from their original 25 FPS1. This was done so that human annotators did
not need to annotate 25 frames each second, which would be
significantly cumbersome. Downsampling to 10 FPS decreased the
number of annotations needed while still being able to track the sea pens
in time with reasonable FPS. However, when these downsampled videos
were exported again from the software, it appeared that the software
automatically compressed the video and converted them back to 25 FPS
through an unknown process. It was unclear to what the ‘frame number’
referred to: i) to the frames of the original video; ii) to the video
downsampled to 10 FPS; or iii) to the new 25 FPS video, resampled from
the 10 FPS video. Notice that this was not an obvious problem, as the

1Note that not all the original videos had exactly 25 FPS, as some of them had, for
instance, 24.92 FPS. Fractional FPS are not uncommon in older recording devices, as this
is done to avoid synchronisation issues between audio and video for historical reasons.
For simplicity’s sake, we will generally refer to the original videos having 25 FPS.
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ratio between FPS, namely 25/10 = 2.5, which is not an integer. This
means that when VIAME resampled the original video into 10 FPS and
then again to 25 FPS2, some non-trivial decisions were made to adjust
the frames.

We explored several approaches to try and gain an understanding about
what was going on with the frame IDs and video frame rates. Comparing
the number of frames between the original and 10 FPS videos revealed
that, contrarily to what could be expected, the videos generated by VIAME
at 25 FPS generally had more frames than the original 25 FPS videos,
despite supposedly having the same contents. The difference in frames
was generally small enough to come from rounding issues when working
with fractional FPS and converting videos from one FPS to another.

However, one striking example of this difference happened with the 2021
videos. In one of them, the original 25 FPS video had a total of 15,207
frames. The equivalent downsampled video which also had 25 FPS had,
however, 18,276 frames. The videos were of the same duration and were
supposed to have the same information, so this difference in frame
probably meant that extra frames had been added to the video generated
by VIAME. We hypothesised that VIAME first converts the videos to 30
FPS, which allows to easily dividing them over 3 to reach 10 FPS. Then, it
converts them back to 25 FPS with these extra frames, that most likely
arise from frame duplication at certain points along the video. To initially
corroborate our hypothesis, we performed the following calculation. The
duration of the original 25 FPS video needed to be 15, 207 frames/25 FPS
= 608.28 s. If it was converted to 30 FPS by duplicating certain frames,
the total number of frames would be 608.28 s × 30 FPS = 18, 248.4
frames. This number falls close to the observed total number of frames,
18,276, and the difference could be due to rounding errors.

We played the 10 FPS videos in VIAME and in Python simultaneously for
comparison, observing certain differences in the frames. This confirmed
that exporting the videos from VIAME caused the misalignment in the
annotations. An obvious linear relationship explaining the misalignment
could not be observed from simple comparisons. We read through
VIAME manuals and found out that the downsampling of videos is
conducted using the computer vision tool KWIVER (Kitware Vision and

2In this case, the FPS was always exactly 25.
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Image Reasoning) from the company Kitware.[3] A code example
showing the downsampling approach is available at their FAQ page[4]
and further information was found at a GitHub issue where they reported
the same problem as us.[5]

Based on our experiments, we concluded that the ‘frame number’ column
from the dataset related to the original videos, but with a certain multiplier
that depended on the original FPS and the downsampled FPS. We were
able to identify the multiplier that allowed matching the video frame rates
with the bounding boxes. The multiplier was calculated as follows:

New IDf = ⌊IDf · fFPS
ds

fFPS
ref

⌋ (1)

where IDf is the frame ID in the annotation file, New IDf is the new frame
ID that exactly matches the original video, fFPS

ds is the frame rate after
downsampling (in our case, always 10 FPS) in FPS, and fFPS

ref is the
original frame rate (generally around 25 FPS), in FPS. ⌊·⌋ represents the
flooring operation as a rounding method to obtain and integer frame ID.
We chose the flooring operation, as this was also used by Kitware and
shown in their FAQ.[4]

We tested using this multiplier calculation method for videos from different
years to make sure it was generalisable to all videos. The method worked
for all videos expect those from 2021, which, as commented above,
showed striking frame differences. When this multiplier approach was
tested on them, the bounding boxes did not match exactly the sea pens in
the videos. Our intuition told us that this multiplier seemed to be
non-constant, as initially the bounding boxes matched sea pens, but they
moved at different speeds. Due to time constrains, we could not fix this
issue and the videos from 2021 were not used the detection,
classification and training. We suspected the issue could stem from a
formatting issue in VIAME, as the 2021 videos were in .avi format,
whereas the rest of the videos were in .mp4. The VIAME software might
use a different downsampling method for different file formats.
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2.5.2 Excluded data

Out of the 21 videos provided, we excluded 4 of them:

• ’CEND0821 STN 008 TVID 6-AZ’ from 2021, due to the bounding
box matching issue.

• ’CEND0821 STN 093 TVID 6-B’ from 2021, due to the bounding box
matching issue.

• ’CEND1216 ST047 TVID 6-DM’ from 2016, as we believed the
detection IDs for individual sea pens were incorrect.

• ’CEND1216 STN 128 TVID 6-B’ from 2016 was annotated twice,
and only the annotation with sea pen tracking was kept.

3 Image pre-processing

The data used within this study originated from studies on Nephrops (a
genus of lobster) burrows between the years 2014 and 2021. Due to the
extended period of these surveys and changes in survey equipment,
there is significant variation in the appearance of the video footage
available for this study. Due to differences in lighting hue, for example due
to lighting type (halogen versus LED) and lighting geometry, the videos
appear significantly different from each other between years
(Figure 3).

Analysing images or video footage with such variance between years can
lead to inaccurate conclusions about the distribution of sea pens,
especially when using models trained on specific subsets of the video
dataset with variable lighting conditions. A key step to avoiding the
challenge of variable light conditions is to use colour normalisation
algorithms to try and account for the differences between years [6]. Here
we explore several image pre-processing algorithms to identify potential
approaches for the normalisation of the Cefas video dataset to facilitate
the complete analysis of the years 2014-2021. In Section A of the
Appendix, we also provide a quantitative analysis of colour
normalisation.
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Figure 3: Comparison of frames from video footage between 2014 (left)
and 2016 (right). Difference in lighting geometry, hue and bounding laser
colour.

3.1 Time-averaged Hue-Saturation-Lightness (HSL)

One approach investigated time-averaged HSL corrections. Every nth
frame, a copy of the current video frame was taken to contribute to a
weighted accumulation image of the hue, saturation and lightness. This
built an ‘average’ of the image to allow for correction of the spotlight effect
that can be seen in some years with LED lighting. Typically videos with
halogen bulb lighting were more uniform and did not exhibit this artefact,
however the time averaged normalisation helped to account for variations
in light due to suspended sediment.

An example of this approach is shown in Figure 4 where it is evident that
the spotlight effect of the lighting has been successfully removed.
Qualitatively this does not make the sea pens necessarily easier to
detect. However, this pre-processing may make images from different
years more uniform and therefore allow their use within models that have
been exclusively trained on single year datasets.

3.2 Grey-world (GW) algorithm

Another colour normalisation (or constancy) algorithm is the GW
algorithm. The GW algorithm assumes that the average pixel within an
image can be assumed to be grey. [7] This assumption holds only for
images where the majority of the RGB colour spectrum is present within
the images and thus can be mapped to a global average of grey.
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Figure 4: Original frame (left) and time-averaged HSL correction (right).
Spotlight effect evident in the original image in the upper left of the image.
Spotlight not longer evident in processed image, only the seabed remains
in focus for analysis.

Figure 5: Example of the GW algorithm performance. Original image on
the left, processed image on the right.

The video footage analysed varied significantly, as multiple years
exhibited blue tinted frames and other showed warmer hues. As an
attempt to reduce this variation we implemented the GW algorithm on
various movies, example shown in Figure 5.

The GW algorithm improved the overall variation in image colour warmth,
discussed in section A. The GW algorithm appeared to successfully
remove the warmer tones that can be present in halogen-illuminated
video footage, which should upon further testing allow for more applicable
comparisons between LED and halogen-lit video footage.
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Figure 6: Example of the equalised RGB processing. Original image on
the left, processed image on the right.

3.3 RGB histogram equaliser

In raw images or video frames, pixel values can vary between 0 and 255
(8-bit range). However, it is possible for an image to contain pixels within
a very small range of these intensities. RGB equalisation works by re-
scaling the RGB histograms such that the entire 0-255 intensity range is
occupied within the RGB histogram. [8]

Using this can, however, lead to colour artefacts within images, due to
potentially large adjustments to the RGB histograms. An example of an
RGB equalisation on a video frame is shown in Figure 6.

It is clear that, although the overall warmth of the original video is
removed, suggesting a normalisation of global warmth/colour, the central
region of the seabed appears to be over-saturated. This could hinder
both manual inspection and model performance and so we moved to
investigate a more sophisticated histogram equalisation approach in the
following subsection.

3.4 Contrast limited adaptive histogram equalisation
(CLAHE) algorithm

CLAHE is a technique used to enhance the contrast in images. It works
by dividing the image into small blocks, called tiles, and then applying
histogram equalisation to each tile individually.[9] This can help improve
the local contrast within each tile, making the image appear more vibrant.
However, because applying histogram equalisation can sometimes
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Figure 7: Contrast Limited Adaptive Histogram Equalisation (CLAHE).
Original image (left), CLAHE enhanced image (right). Note how CLAHE
reveals detail in the seafloor.

produce over-saturated colours, CLAHE includes a contrast limiting step
that ensures that the overall contrast in the image is not increased too
much. This helps prevent the over-enhancement of images, resulting in a
more visually pleasing and natural-looking image.

We converted images to Lab colour space (also sometimes referred to as
L*a*b colour space). Unlike RGB, which refer to red, green, and blue, the
Lab colour space expresses colour as L for perceptual lightness, a for the
green-red colour axis, and b for the blue-yellow colour axis. Instead of
applying the CLAHE equalisation algorithm to the three channels, we
applied it only to the brightness, or L, component in the Lab colour space,
leaving the colour channels intact. In our data, this algorithm was
successful at revealing detail in the seafloor (Figure 7).

The algorithm appeared to make manual detection of both Pennatula and
Virgularia easier due to the increase in contrast and thus the
improvement in manual identification of local features. This particular
algorithm appeared to make the most impressive improvement on
multiple data sets and is therefore a potential candidate for routine video
pre-processing.

3.5 Multi-stage image pre-processing

The aforementioned algorithms work to adjust the colour variability and
local contrast in different ways and therefore can be combined in series to
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Figure 8: Example of a multi-stage video processing output. The GW
algorithm and the CLAHE algorithm were applied in series. (a-b) Examples
of video frames displaying Pennatula and (c-d) Virgularia, with boxes
highlighting the specimens. Original images on the left and multi-stage
processed images on the right.

generate more complex pre-processing of videos. Within our preliminary
study, we decided to trial the GW algorithm with a subsequent CLAHE
processing step. We chose to trial this combination of algorithms as they
appeared to remove colour variances in overall image hue, but also aided
in manual detection of sea pens, see example in Figure 8.

Interestingly, in the GW-CLAHE processed images (Figure 8) both the
Pennatula and Virgularia are more visible for manual detection. Given
their distinct morphology, this combination of pre-processing algorithms
could prove to be an appropriate approach to ensure accurate
identification of both sea pen species, which is crucial for the assessment
of the sea pen ecosystem. These multi-step processing pipelines must be
applied carefully as to avoid complete distortion of the original video
frames and data. However, in theory any combination of these (or other
algorithms) pose as potential avenues for further research.
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Figure 9: Laser detection. Screenshot of the laser detection algorithm in
one of the frames. Long and mostly vertical edges are detected as blue
lines. The two longest lines correspond to the position of the lasers and
further extrapolation with a line fitting allows to define a polygon in the
central region. Notice that sometimes the sledge was visible at the edges
of the video, which resulted in the identification of false positives.

4 Laser detection

The Cefas team uses parallel lasers separated by 70 cm to standardise
the measurement of sea pens on the seafloor video footage. The lasers
help identify the number of sea pens within a specified area, allowing for
an accurate density calculation. The team must identify the lasers and
differentiate the region between the lasers from outside of the lasers to
omit inaccurate sea pen identifications. It was therefore an important goal
to obtain an accurate automated segmentation of the regions between
the two lasers, so that detected sea pens outside of them could be
discarded.

Attempts were made to specifically extract the laser lines by their colour
based on optical properties (e.g RBG banding or HSV ranges). A very
narrow range of parameters was required to identify these pixels, and this
was found to be very different based on the video, particularly since the
characteristic hues were changeable from year to year. For this reason,
it was decided that the most reliable method was to use automated line-
detection on the footage. The chosen approach was as follows:
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1. Acquire a grayscale representation of the image: certain
algorithms used later, such as edge detection, require images in
gray scale.

2. Apply Gaussian blur with a 5x5 pixel kernel: Gaussian blur is
used to reduce the amount of noise in the image and make the edges
in the image more defined, making it easier for the computer to detect
the lines. The kernel of 5x5 pixels means that the blur algorithm uses
a 5x5 grid of pixels to calculate the new colour value of each pixel.

3. Apply Canny edge detection to image: Canny edge detection is
used to identify and highlight the edges in the image. This helps the
computer to identify the lines more accurately and quickly.

4. Apply Hough lines transform: The Hough lines transform takes the
edges identified by the Canny edge detection and converts them into
lines, making it easier for the computer to identify the lasers. This is
the step represented in Figure 9.

5. Select lines where y1-y2 distance is over a given length
threshold in pixels: By only selecting lines that have a large
difference between y1 and y2, the team ensures that the lines being
selected are likely to be the lasers and not other horizontal lines in
the image. This filtered out lines where the orientation was
predominantly horizontal.

6. Continuously update a pixel mask based on detected lines in
each pixel for a duration of video footage: A pixel mask is a binary
image where each pixel is either white or black. By continuously
updating the pixel mask based on whether lines were detected in
each pixel, the team creates a mask that accurately reflects the lines
in the video footage.

7. Resulting mask is contoured: In this steps, a function is used to
find the contours of the pixel mask. It is assumed that after the
previous step, the largest contours would be those corresponding to
the lasers, as they are present in every frame of the video.

8. A line fit is applied to the image contours: This step fits a line to
the image contours, which allows the computer to accurately identify
the lasers in the image.
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9. Omit short lines: Finally, the team omits any lines that are too short,
as these are unlikely to be the lasers. By doing this, the team ensures
that the laser lines are accurately identified and segmented from the
rest of the image.

This approach provided binary mask files that separated three regions: a
central polygonal-shaped region with 1’s, representing the area between
lasers, and two surrounding regions at the left- and right-hand side of this
central region, filled with 0’s. After detection of sea pens, this information
can be used to filter out those sea pens falling outside the laser areas,
resulting a more accurate density calculation. The laser identification
method worked only under reasonably clear conditions. In those cases,
the algorithm provided adequate masks in approximately more than 95%
of the videos across all years under good quality footage with good
visibility. For a large amount of the footage, strong currents mean the
footage is obscured by bright backscatter from suspended sediment.
Under such conditions, the lasers are hard to see even by eye. For this
algorithm to work, a set of parameters (such as thresholds for edge
detection algorithms or to discard short lines) was established by trial and
error, and it is possible that fine tuning of these parameters would improve
the accuracy to nearly 100%. Closer investigation of the sources of error
and a systematic study of the influence of these parameters should be
the necessary next step to ensure line detection works with sufficient
accuracy and can be integrated in the pipeline to count sea pens.

5 Detection and classification of sea pens

5.1 Detection with YOLOv5 (You Only Look Once v5)

Object detection typically involves first extracting a set of strong features
from input images, and then using classifiers or localisers to identify
objects within those features. These classifiers or localisers can be
applied over the entire image or on specific regions of the image.
Traditional techniques for object detection involve adapting pre-existing
classifiers to the task of detection. For instance, R-CNN (Regions with
CNN features) is an object detection system that was proposed in 2014
[10]. It uses a two-stage approach for object detection. In the first stage, it
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Figure 10: The network architecture of YOLOv5 consists of the following
parts: i) a backbone based on CSPDarknet; ii) a neck based on PANet;
and iii) a head based on the YOLO layer. The input backbone layer is
in charge of feature extraction, which are then fed to the neck layer for
feature fusion, and finally the YOLO layer outputs the detection results,
namely class, score, location and size. Adapted from [11].

uses a technique called Selective Search to generate a set of region
proposals, which are regions in the image that are likely to contain
objects. In the second stage, it uses a convolutional neural network
(CNN) to classify and localize each region proposal.

The YOLO (You Only Look Once) architecture, however, is trained to
predict at the same time both the bounding boxes of objects in an image
and the class of each object (in our case, each type of sea pen) within
those boxes. In other words, it not only detects the presence of objects,
but also identifies what those objects are. In particular, YOLOv5 uses a
single neural network that processes the entire image at once, and this
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allows it to predict bounding boxes and class probabilities directly from
the full images in one evaluation. This is the main feature that makes
YOLOv5 different from other object detection systems that only detect the
presence of objects without classifying them, allowing for a better
optimisation of the entire detection process and a significantly faster
system. YOLO is similar to R-CNN in some ways, but it generates fewer
bounding boxes per image, only 98 compared to around 2000 from
Selective Search.[12] While Fast R-CNN[13] and Faster R-CNN[14] aim
to improve the speed of R-CNN, they still do not achieve real-time
performance.[12] YOLO, on the other hand, is a general-purpose detector
that can learn to identify multiple types of objects at once, making it
suitable for real-time detection.

The base YOLO model can process images in real-time at a rate of 45
FPS, while a faster version, Fast YOLO (which uses less convolutional
layers in its neural network), can handle 155 FPS while maintaining high
accuracy.[12] Despite its speed, YOLO is less prone to localisation errors
and less likely to identify false positives in the background compared to
other state-of-the-art detection methods. Additionally, YOLO has been
shown to excel in learning general representations of objects and
outperforming other techniques, such as DPM and R-CNN, when applied
to diverse domains like natural images and artwork. In this project, we
used YOLOv5, which is one of the latest versions of YOLO.[15] This
object detection model has shown top performance in some of the most
commonly used object detection datasets,[11] like Pascal VOC[16] and
Microsoft COCO.[17]

It is worth noting that YOLOv5 has different versions, also known as
variants, that have various numbers of parameters and different levels of
accuracy. These variants are named YOLOv5n, YOLOv5s, YOLOv5m,
YOLOv5l and YOLOv5x. Generally, the more parameters a variant has,
the more accurate it is but also the longer it takes to train. In this specific
project, the team decided to use YOLOv5n because it has the least
number of parameters (1.9M) and the shortest training time. However, its
accuracy is not as high as the other versions. The next sections will
demonstrate that the performance of YOLOv5n on the sea pen dataset is
still remarkable. A preliminary study comparing the performance of
YOLOv5n with the second smallest version, YOLOv5s (with 7.2M
parameters) was also performed and is reported in Section C of the
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Figure 11: Training results of the YOLOv5 model. The three left columns
correspond to the loss function per training epoch and the right two
columns to different performance metrics per epoch.

Appendix. In future studies, larger versions of YOLOv5, as well as newer
architecture versions, could be considered in order to increase
accuracy.

We used a pre-trained PyTorch YOLOv5n model as our baseline model,
with frames and bounding box annotations from all available years as input
for both sea pen classes. No pre-processing was applied to the videos
before training the model or during testing. The models were trained on
different machines but, as an example, it took a maximum time of 1 h and
40 min to train the YOLOv5n model on a Nvidia GeForce RTX 2060 GPU
and a maximum of 2 h and 15 min to train the YOLOv5s on the same GPU.
The models were trained for 30 epochs and batch sizes of 16 images of
640x640 pixels, and training/validation splits of 0.80/0.20.

5.1.1 Results

Figure 11 shows the results of the training of the YOLOv5 model. The left
three columns show the evolution of the box loss, object loss and class
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Figure 12: Representation of the IOU. Source: interstellarengine.com.

loss during the training and validation. The goal of the training process is
to minimise the loss function, and it can be observed how this value
continuously decreased over the 30 epochs, slightly saturating to zero
towards the end. The model did not suffer from overfitting, as the loss did
not increase its value during the training. The right two columns show the
evaluation metrics over time. Both precision and recall, as well as mean
average precision (bottom) increased with epochs, reaching values close
to 1, and therefore the model was successfully training to detect sea pen
classes.

The intersection over union (IOU) is a metric used in object detection
algorithms that compares the overlap between two bounding boxes,
namely the actual bounding box that contained an object and the model
prediction. This is also known as the Jaccard similarity coefficient or
metric. This metric is computed by dividing the overlapping area between
prediction and actual boxes over the total union area. Figure 12 shows
representation of excellent, good and poor predictions of an object.
Notice that the IOU is 1 when there is 100% overlap and 0 when the
prediction has completely missed the object and there is no overlap
between boxes. IOU defines what is considered a true positive (TP) or a
false positive (FP), which in turn are used to compute the precision and
recall of the model.

Figure 13 shows the distribution of IOU of our model for each year and
sea pen class. It can be seen how the average value of this distribution is
reasonably constant throughout the year, averaging at about 0.75. This
means that the model managed to generalise over different lightning
conditions and video qualities, one of the main goals of the challenge. It
needs to be noted that no pre-processing or standardisation (as
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Figure 13: Distribution of the IOU of the YOLOv5 model for different years
and sea pen classes. Each data point reflects a sea pen in the videos
from each year. Notice the larger number of sea pens in videos from
2016, which contain the largest sample, as described in Section 2. Despite
this reason, the model can generalise over sea pens in other videos with
different lightning conditions.

described in Section 3) was applied to the videos before training and
testing, as those were being developed in parallel. An average IOU of
about 0.75 is considered a good value, as shown in Figure 12. Not many
values fall under the IOU of 0, so in very few cases the predictions were
completely wrong at identifying sea pens. Figure 14 displays the median
values of IOU over the years, showing again how in the median case the
predictions had adequate IOU’s, and detection of Virgularia sea pens, for
many of intermediate years, showed lower values of IOU. In the year
2016, which contained a higher amount of annotations than the other
years (as there were more videos available for 2016), both Virgularia and
Pennatula peaked in performance, as the model was probably overly
relying on the conditions shown in those videos during training. This is a
common problem when dealing with unbalanced datasets, but still the
performance for the remaining years was also high.
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Figure 14: Median IOU of the YOLOv5 model for several years and sea
pen classes.

Another popular evaluation metric is the mean average precision at IOU
0.5 (mAP@0.5), which provides a comprehensive evaluation of the
model’s accuracy by averaging the precision of all objects in an image. In
this case, the IOU threshold is set to 0.5 to determine whether a predicted
bounding box is a TP or a FP. Then, the mean precision over all the object
types (in our case, the two types of sea pens) is calculated for that IOU
threshold, yielding the mAP@0.5. The mAP can be calculated for any
other IOU threshold, but 0.5 is a popular convention. Figure 15 shows the
results for our model. In line with Figure 14, the mean average precision
is high for all years and sea pen classes. Some of the years, such as
2018 and 2019 suffer a slight decrease in performance, but the average
mean precision for all years is maintained at 0.91 and 0.88 for Pennatula
and Virgularia, respectively.

5.1.2 Limitations

The YOLO model uses strict spatial limitations on its predictions of
bounding boxes, as each grid cell can only predict two boxes and be
assigned one class. This spatial constraint limits the ability of the model
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to detect a large number of nearby objects. As a result, the model may
have difficulties detecting small objects that appear in clusters, such as
groups of sea pens.[12] As in this dataset sea pens appear rather
separate from each other, we did not expect this to be an issue. The
YOLO model also struggles to generalise to objects in unseen aspect
ratios. In our case, since sea pens are generally symmetric and do not
change much in their aspect ratios, we also did not expect this to be an
issue.

This model employs relatively basic features to predict bounding boxes,
as the architecture includes several layers that reduce the size of the
input image. Additionally, when training the model, the loss function used
to approximate detection performance does not distinguish between small
and large bounding boxes when calculating errors. An error in a large
bounding box is typically not as significant as an error in a small bounding
box, which has a greater impact on the intersection over union (IOU)
metric. As a result, the primary source of error in YOLO model is poor
localisation of objects. [12]

Figure 15: mAP@0.5 of the YOLOv5 model for several years and sea pen
classes.
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5.2 Classification

As mentioned above, other approaches for object detection and
classification rely on a first step that detects any objects of potential
interest in the image or video frame, and a second classification step that
classifies that object into a specific class. However, a limitation of these
algorithms is that they are often trained and optimised for detecting
objects in human environments, such as cities or houses. This means
that they may not perform well in natural settings with different lighting
conditions, or with objects that look vastly different from the objects the
model was optimised to detect, even if fine-tuning has been done with
relevant training images.

For this reason, we suggest the following approach where detection and
classification are performed separately might benefit our case study. For
this parallel pipeline, we assume that an only-detection algorithm has
been applied to the video frames to detect objects of interest, but the
model is overfitting detections, that is, it is predicting a large number of
false positives. As mentioned in the previous subsection, if the confidence
threshold is kept low, the model will predict a larger number of objects
with a low confidence score. Likewise, a lower IOU will decrease the
overall precision of the model, but it will increase its recall and number of
FP detections. A subsequent classification algorithm would then
discriminate these potential objects between the two types of sea pens
(Pennatula and Virgularia) and the background. Therefore, we analysed
the performance of three classification models based on convolutional
neural networks (CNNs): a simple CNN model, the ResNet50 model and
the VGG16 model (reported in Section D of the Appendix).

5.2.1 Creating a training dataset

Before creating our classification models, we needed to create a dataset
containing training images of the sea pens and background. Whereas for
the dual detection and classification YOLO models we needed to provide
full frames and a list of bounding boxes with the labels of the sea pens, in
this case we were assuming that the detection had already been
performed and we already had a series of cropped images that needed to
be classified as Pennatula, Virgularia or background. For that reason, we
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created a script that, using the human annotations provided by Cefas,
cropped images of sea pens from the videos and saved them using the
following naming convention: processing status + station + year + actual
frame ID + sea pen ID + type.

1. Processing status: identifying whether the video had been
pre-processed with one of the techniques from Section 3. Since we
only tested classification on the original videos, this status was
always set to ‘orig’.

2. Station: the station were the videos came from, as per the original
naming convention by Cefas.

3. Year: the year in which the videos were recorded.

4. Actual frame ID: the frame ID in the original video (not
downsampled), as calculated in Section 2.5.1.

5. Sea pen ID: this ID identified an individual sea pen. As some of the
annotation files contained track annotations, as explained in Section
2.2, it was possible to identify the same sea pen in subsequent
frames of the same video.

6. Type: referred to the class labels: 0 for Pennatula, 1 for Virgularia,
and 2 for Other or Background.

Apart from creating cropped images of sea pens according to the human-
made annotations, this script also created a series of random images (of
approximately the same size of the typical sea pen bounding box) that
corresponded to the Background class. The script checked for duplicates
and also made sure that cropped images did not contain sea pens. The
class datasets, therefore, contained the following number of images:

• Pennatulan = 19, 166

• Virgularian = 25, 337

• Othern = 26, 447

• Totaln = 70, 950
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5.2.2 Convolutional Neural Networks (CNNs)

As the three models we considered were based on CNNs, it is useful to
define this kind of machine learning model. A CNN is a type of deep
learning neural network that is commonly used for image and video
analysis. CNNs are designed to recognise patterns in images and videos
through the use of convolutional layers, pooling layers, and fully
connected layers. The convolutional layers are used to identify patterns
within specific regions of the image by calculating the inner product
between a convolutional filter and various regions of the image to produce
a feature map. The feature map is then processed through a non-linear
function, such as tanh, logistic, softmax, or ReLU, to create activations,
which are further processed in the pooling layer. These alternating layers
of convolution and pooling are used to extract features at each step.
Finally, the last layer is a fully connected layer that outputs the class in a
recognition task.

The function of a convolutional layer is to transform the input data using a
group of connected neurons from the previous layer. It uses a
mathematical operation called convolution, which applies a convolution
kernel to the input and returns a feature map as output. Different types of
filters in a convolutional layer learn to produce the strongest activation to
spatially local input patterns and the output depth controls the number of
neurons in the layer. Convolutional layers have important
hyperparameters such as filter size, output depth, stride, and
zero-padding that affect the spatial arrangement and size of the output
volume. The filter size defines the spatial dimensions of the filter and the
output depth controls the number of neurons that are connected to the
same region of the input volume. The stride defines the pace at which the
filter is applied to the input, and zero-padding is used to maintain the
spatial dimensions of the input in the output volume.

The pooling layer is used to progressively reduce the spatial size of the
data representation and prevent overfitting. It uses the maximum
operation to resize the input data spatially and does not have any
learnable parameters. The fully connected layer acts as the output layer
for the network and has the output volume dimension as [1 x 1 x N],
where N is the number of output classes to be evaluated. It has general
neural network layer parameters and hyperparameters.

34



Figure 16: The 14 layers of the simple CNN.

5.2.3 Simple CNN

The first model was a simple CNN with 14 layers using code from a
Microsoft tutorial3. Its architecture is shown in Figure 16.

Four of the layers were convolution layers. The parametrisation of each
of the four convolution layers is shown in Table 16. ‘In channels’ specifies
the number of input channels of the layer: for example, the first layer takes
a 3-channel input (RGB). ‘Out channel’ specifies the number of feature
detectors that the layer applies: this determines the number of inputs for
the next convolution layer. The ‘kernel size’ was 5, meaning that the size
of the kernel was 5x5. The stride is the number of pixels the convolutional
filter moves in the input image in each direction (horizontally and vertically)
at each step, and it was kept to 1. Padding is the number of pixels added
to the edges of the input image before the convolutional filter is applied.
Padding is used to ensure that the output feature map has the same size
as the input image, and was set to 1.

Figure 16 also shows that the network has several Batch Normalisation
layers, ReLU activation layers and a MaxPool layer. Batch normalisation
is a technique that is used to normalise the activations of a neural

3https://learn.microsoft.com/en-us/windows/ai/windows-ml/tutorials/pytorch-train-
model
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Layers In channels Out channels Kernel size Stride Padding
conv1 3 12 5 1 1
conv2 12 12 5 1 1
conv3 12 24 5 1 1
conv4 24 24 5 1 1

Table 3: Hyperparameters of the CNNs used in the simple CNN model.

network layer. It helps to improve the stability and performance of the
network by normalising the activations so that they have a mean of 0 and
a standard deviation of 1. This can prevent the activations from becoming
too large or too small, which can cause problems during training, such as
slow convergence or overfitting. A max-pooling layer is used to reduce
the spatial dimensions of the data representation. It works by applying a
max operation over a region of the input data, in our case in a 2x2 region,
and taking the maximum value from that region as the output. This helps
to reduce the number of parameters in the network, as well as improve
the robustness of the features learned by the network, as it helps ensure
that the location of an object in a frame does not affect the capacity of the
network to detect its specific features. Finally, ReLU (Rectified Linear
Unit) is an activation function that is commonly used in neural networks. It
applies an activation function to the output of a neuron, usually
element-wise. It computes the function f(x) = max(0, x) to the input x. It
is commonly used because it helps to introduce non-linearity into the
network, which can help to improve the performance and stability of the
network. Additionally, ReLU is computationally efficient and helps to
reduce the vanishing gradient problem, where the gradient of the loss
function becomes very small during training.

The images were resized to 32x32 pixels for this model. This can be
adjusted, but too large a number of pixels will stretch the sea pen images
and will make the training slower. The image dataset (n = 70, 950) was
split into training (60%), validation (20%) and test (20%) sets. The loss
function was defined with classification cross-entropy loss and an Adam
Optimiser. The model was run for five epochs with the learning rate set at
0.001. The model was run on a CPU device, 11th Gen Intel(R) Core(TM)
i9-11950H @ 2.60GHz 2.61 GHz with 32 GB of RAM. It only took around
four minutes to run an epoch, so that running the whole model only took
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Epoch Batch number Running loss Epoch accuracy

1 1000 0.447 82%2000 0.270

2 1000 0.363 92%2000 0.263

3 1000 0.225 92%2000 0.218

4 1000 0.193 93%2000 0.195

5 1000 0.180 94%2000 0.176

Table 4: Results after training the simple CNN of Figure 16 with the
sea pen dataset for a 3-label classification task, where the classes were
Pennatula, Virguralia and Background. The running loss represents the
training loss at the end of the batch, whereas the epoch accuracy is the
accuracy at the end of the epoch in the validation dataset.

approximately 20 minutes. The exploratory model run performed
remarkably well, as can be seen in Table 4, reaching a test accuracy of
94% in the three-label classification task. Future work could explore using
different layer parameterisations and applying different numbers of layers
and epochs.

5.2.4 ResNet50

The ResNet50 model employs a residual learning approach to refine and
improve the training process for deep networks. These networks have
been shown to be easily optimised and achieve greater accuracy than
simple stacks of CNNs. For instance, application of ResNets resulted in a
3.57% error rate on the ImageNet test set, which won first place in the
ILSVRC 2015 classification task. [18] ResNets leverage a residual
mapping that can be trained on a few stacked layers, allowing for the
approximation of complex functions. This solution tackles the degradation
or vanishing gradient issue, which suggests that traditional training
methods may struggle to approximate identity mappings through multiple
nonlinear layers. With residual learning, if the identity mapping is optimal,
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the training process can simply drive the weights of the nonlinear layers
towards zero, resulting in an identity mapping.

In the ResNet network, the convolutional layers are predominantly
comprised of 3x3 filters and adhere to two basic design principles: (i) for
a consistent output feature map size, the number of filters remains
constant; (ii) if the feature map size is halved, the number of filters
doubles to maintain layer time complexity. Additionally, the network
employs direct downsampling on convolutional layers with a stride of 2
and concludes with a global average pooling layer and a 1000-way fully
connected layer with a softmax activation. The total number of weight
layers is 34. The 50-layer ResNet is achieved by replacing the 2-layer
block in the 34-layer model with a 3-layer bottleneck block.[18]

To make the training process more manageable, we used transfer
learning. Transfer learning involves taking a model that has been trained
for one specific task and modifying it for use in a different task. This
allows for knowledge learned in one scenario to be leveraged in a new
scenario, thereby improving performance and saving time. In this case,
we used a ResNet50 model pre-trained for image recognition on the
ImageNet dataset.[19]

5.2.5 ResNet50 results with 2 classes

In this section, we present the results of a ResNet50 experiment that was
conducted for the two sea pen classes, Pennatula and Virgularia. The
ResNet50 model was implemented in PyTorch as a pre-trained version
using the IMAGENET1K V2 weights. The training was carried out on a
Standard NC8as T4 v3 (8 VCPUs, 56 GiB memory) on Azure with a Tesla
GPU. The dataset was the one described in Section 5.2.1 and consisted
of 44503 training images, which were split into 40000 for training and
4503 for evaluation (note that we did not use the ”Other” class in this
experiment).

The training was completed in 85 minutes and 29 seconds, and the best
validation accuracy was obtained as 0.997113 after 10 epochs of training,
as can be observed in Table 5. This near-perfect accuracy is likely a
result of the homogeneity of the physical features of the sea pens (as
shown in Figure 1, they are rather distinct). It needs to be noted that this
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Epoch Train Validation
Loss Acc Loss Acc

0 0.0802 0.9709 0.0264 0.9913
1 0.0284 0.9907 0.0280 0.9891
2 0.0200 0.9932 0.0274 0.9951
3 0.0143 0.9957 0.0173 0.9942
4 0.0108 0.9963 0.0113 0.9960
5 0.0079 0.9974 0.0373 0.9962
6 0.0072 0.9980 0.0289 0.9924
7 0.0043 0.9988 0.0182 0.9951
8 0.0039 0.9989 0.0132 0.9962
9 0.0031 0.9993 0.0288 0.9971

Table 5: Results of the two-class ResNet50 model trained for 10 epochs

classification method assumes that a sea pen has been correctly
identified after a detection process and the input image is a cropped
bounding box with a sea pen. Therefore, the model only needs to learn to
classify between both types of sea pens. However, it should also be
noted that these results are preliminary and require further rigorous
accuracy assessment on test images. The use of ResNet50, a deep
residual network, and the pretraining on IMAGENET1K V2 allowed us to
obtain state-of-the-art results in a relatively short amount of time, making
it a promising approach for this specific task.

5.2.6 ResNet50 results with 3 classes

In our second experiment with ResNet50, we used a ResNet50 model
that was implemented in PyTorch and pre-trained with IMAGENET1K V2
weights. We trained the model in the same GPU devices on the Azure
platform. This time, we used three classes: Pennatula, Virgularia, and
”Other”. We had a total of 70950 training images (see Section 5.2.1),
which were split into 60,000 for training and 10,950 for evaluation. The
training process was completed in 65 minutes and 8 seconds, with a best
validation accuracy of 0.982100, as can be seen in Table 6. As before,
these results are still preliminary and will require further assessment to
determine their accuracy on test images.
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Epoch Train Validation
Loss Acc Loss Acc

0 0.1617 0.9442 0.1218 0.9735
1 0.0593 0.9810 0.3355 0.9559
2 0.0335 0.9891 0.6497 0.9474
3 0.0217 0.9931 0.1232 0.9821
4 0.0132 0.9961 0.6877 0.9769

Table 6: Results of the three-class ResNet50 model trained for 5 epochs.

6 Tracking

Videos can be regarded as a collection of video frames (i.e. still images)
which are then displayed in a rapid sequence. The detection algorithms
described previously take an individual video frame as input, and produce
a set of bounding boxes as an output (that correspond to the sea pens that
are present in that frame), for example, as can be seen in Table 7. These
detection labels correspond to the sea pens shown in Figure 17.

Since our objective is to count the number of sea pens that appear in
a video, each detected sea pen needs to be tracked across the frames
that it appears in, to ensure that it is only counted once. The detection
algorithms from the previous section treat each frame independently and
it is not possible to known whether a detection in one frame corresponds
to the same sea pen in a later frame. For this reason, a tracking algorithm
is necessary so that each sea pen can be assigned a unique ID so that
they can only be counted once, even if they are detected in every single
frame.

In this section, we review the work towards implementation of tracking
algorithms to detected and identified sea pens, so they could be tracked
through subsequent video frames and counted only once. We
implemented an algorithm that could successfully track sea pens
(assuming an initial bounding box with a detection) over several frames,
which could also recover the position of the sea pen when temporary
occlusion took place. Still, due to lack of time, certain limitations and
errors could not be addressed, and the algorithm could only be tested in
one video from 2018, albeit with overall positive outcomes.
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frame number TL x TL y BR x BR y
0 1126 508 1170 540
0 906 328 953 381
1 1125 508 1166 543
1 899 329 952 386
2 1127 519 1163 552
2 901 335 953 385
3 1131 518 1172 558
3 906 341 946 385
4 1131 523 1172 563
4 908 347 955 393
5 1131 532 1172 572
5 900 356 951 400
6 1133 540 1174 580
6 902 361 952 409
7 908 364 956 417
8 909 377 955 416
9 916 381 972 427
...

...
...

...
...

Table 7: A dataset of associated frame numbers (frame number) and
bounding box coordinates (TL x, TL y,BR x,BR y), see Figure 17 for a
visual example.

6.1 Tracking algorithms

There are many different types of tracking algorithms, each with its own
set of advantages and disadvantages. Correlation-based tracking
algorithms are a common technique that uses image correlation to track
the movement of an object between frames. They search the area within
which the object is expected to appear for a region which is visually
similar to the object. Similarly, distinctive features of an object, such as
edges or corners, can also be used to track its movement. Other
algorithms track objects by generating a model of their trajectory. For
example, Particle Filters use a set of randomly-generated samples
(particles) that represent the probability distribution of the object’s
location. This location is iteratively improved at each frame (making use
of measurements as soon as they become available).

In our case, we used the OpenCV library from Python to apply an off-
the-shelf CSRT (Discriminative Correlation Filter with Channel and Spatial
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Figure 17: An example of a frame and drawn bounding boxes.

Reliability) algorithm,[20] which is a widely used and easy to implement
tracker. This algorithm combines the previous two methods by using both
the objects past motion to predict its future behaviour, and by taking into
account changes in the objects appearance. CSRT adds the concepts
of channel and spatial reliability to discriminative correlation filter (DCF)
tracking, allowing for the enlargement of the search region and improving
tracking of non-rectangular objects. CSRT has achieved state-of-the-art
performance on VOT 2016, VOT 2015, and OTB100 benchmarks, and is
able to run in real-time on a CPU.[20]

Several other tracking algorithms are part of the OpenCV library4 can be
implemented as part of our tracking pipeline (alternatively to CSRT).
Some examples are KCF (Kernelized Correlation Filters) and MOSSE
(Minimum Output Sum of Squared Error), both of which use correlation
filters. CSRT was chosen due to previous positive experiences from the
group’s researchers, as it is both fast and accurate, and no other trackers
were assessed due to time constraints. Nevertheless, it is easy to
alternate between trackers in our code, as they are all available under the
same package, without needing to change any of the code.

4For instance, see https://broutonlab.com/blog/opencv-object-tracking and
https://pyimagesearch.com/2018/07/30/opencv-object-tracking/.
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Figure 18: The CSRT tracking [20] iteration: localisation step is shown on
the left and update step on the right side of the image.

6.2 Implementation

The tracking pipeline was created as a stand-alone module that, when
given a dataset containing video frame indices and corresponding
bounding boxes (e.g., Table 7), appends a column containing unique
number (detection id) for each individual sea pen. The algorithm is shown
as pseudocode in Algorithm 1 and it proceeds as follows.

The algorithm loops through each frame of the video. It starts by reading
the current frame of the video and then obtaining the current ‘tracked’
positions of sea pens that were seen in previous frames using the CSRT
algorithm (and are still present in the current frame). Next, the positions
of the sea pens that were detected in that specific frame are read from
the detection dataset. These can be divided into two distinct groups: (i)
sea pens that have been detected in the current frame for the first time;
and (ii) sea pens which had already been detected in previous frames
(and therefore should already be tracked by the CSRT algorithm).

The sea-pens in group (ii) are identified by checking whether the
bounding boxes obtained from the detection dataset overlap with any of
the bounding boxes obtained from the CSRT tracking algorithm. Any
bounding box which does not overlap with a track is considered to a be a
previously unseen sea pen from group (i), and therefore is assigned a

43



Algorithm 1 Assigning unique IDs to sea pens

1: while video not finished: do
2: read the current frame
3: obtain the current ’tracked’ positions of sea pens that were seen in

previous frames (using the CSRT algorithm)
4: obtain the positions of the sea pens that were detected in that frame

(provided by the detection algorithm)
5: for each detected sea pen do
6: if detected sea pen position overlaps with a sea-pen that is being

tracked from the previous frames then
7: assign the corresponding track id to the sea pen
8: else
9: assign the sea pen a new unique track id and add it to the sea

pens that are being tracked by the CSRT algorithm
10: end if
11: add the track ids to the detection dataset
12: end for
13: end while

unique ID and tracker.

We added a couple of fixes in Algorithm 1 that worked around certain
failures of the tracker to continue tracking a sea pen. For instance, all the
sea pens were ‘moving’ in the frame from top to bottom, as the sledge was
moving across the seafloor. When the sea pens reached the bottom of
the screen and disappeared, the tracker continued looking for them in the
region they were seen last, before completely deciding that the sea pen
was lost from the field of view. To solve this small issue, we simply added
a ‘height threshold’. When the sea pen was close to the bottom of the
screen (as specified by the height threshold), we set the tracker status to
False, completely ignoring the last unreliable tracking instances. We could
only do this due to the particularities of our videos, since sea pens would
move towards the bottom 100% of the time, and never towards the top.
In some but very few occasions, the tracker would momentarily lose the
sea pen and then wrongly find it at a different location, confusing it for a
neighbouring sea pen. This was also a particularity of our challenge, as all
the sea pens look very similar to each other. To avoid the tracker moving
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onto a different sea pen, we added a ‘jump threshold’. At each step, we
calculated the distance between the current position of the sea pen and
the position in the previous frame. If the distance was higher than the
jump threshold (in our implementation, 20 pixels, but this should be further
optimised considering more videos), the tracker was set to False and the
sea pen was not tracked anymore. This meant, however, that if the tracker
activated the jump threshold, that sea pen would be completely lost and
therefore prone to being counted twice. Nevertheless, this occurred in very
few occasions and its effect on the overall performance is expected to be
low.

6.3 Limitations

Our analysis mostly focused on the CSRT tracker and only included a
video from 2018. However, some quick tests were performed with videos
from other years and it was evident that lightning conditions do not affect
the tracking of the sea pens, as the CSRT algorithm is robust. However,
it is recommended that the pipeline is tested on a larger variety of videos,
and different trackers should be investigated so that their performance can
be compared.

It is difficult to assess the performance of the tracking algorithm against
the initial annotations provided by Cefas. As discussed in Section 2.2,
many of the annotations were single annotations without any tracking
information. Those that contained tracking annotations, however, were
only tracked in one out of three frames, as the videos were downsampled
to make them easier to work with. One potential way to assess the
performance of the tracking algorithms would be to compare the total
number of unique sea pens identified in each video with the numbers
manually obtained by Cefas. This is, however, an indirect performance
metric, as it is not assessing the performance of the tracking algorithm
itself, but a subsequent computation.

In Section 6.2, we discussed that the tracker would occasionally lose
track of a sea pen, causing them to be potentially counted more than
once. An advantage of state-of-the art tracking algorithms is that they can
predict the trajectory of objects when they are hidden from view, such that
they can continue to track them when they re-appear in future frames.
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However, in some occasions, such occlusions, for instance caused by
plumes of sand, were too long to take advantage of this capacity of the
algorithm. There is not an easy solution to this problem, as the CSRT
algorithm (or any other off-the-shelf algorithms available through
OpenCV) does not have any parameters to optimise. One potential
solution would be to not consider the whole field of view for the tracking
algorithm. As the only goal of the tracking is to avoid counting the sea
pens more than once, we could consider only a portion of the vertical
dimensions of the field of view (e.g., half of it, or two thirds of it) for the
detection and tracking of the sea pens. It is likely that, even if we consider
only half of the height, a sea pen will be detected at least once. Tracking,
then, would be perform during a shorter amount of time, decreasing the
possibilities of losing the sea pen and thus counting it more than
once.

7 Conclusions

In this DSG challenge, we aimed at implementing a pipeline that could
achieve detection and classification of two types of sea pens (Pennatula
and Virguralia) from sea floor footage over a range of years with different
lightning and recording conditions. Moreover, secondary objectives
included (i) the standardisation of video conditions, such as brightness or
hue, so that sea pens could be detected more easily; (ii) the detection of
laser lights in the videos that would allow counting sea pens in a certain
region of interest; and (iii) the implementation of a tracking algorithm that
could follow detected sea pens over several frames in a video, so that
they could be counted only once.

To achieve these objectives, the DSG team was divided into five
subteams, namely image processing, laser identification, detection,
classification and tracking. Although in an ideal scenario, all of these
streams of work should be integrated in a single pipeline (see Figure 19
in next section, tackling future work), they were performed in parallel to
ensure all subteams could achieve tangible results. Image processing
and standardisation discovered an equalisation algorithm, CLAHE, that
provided positive results by highlighting the presence of sea pens in the
available video footage. An algorithm based on edge detection and line
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fitting over several frames of the video footage was able to identify the
lasers present in the videos, and provide a series of masks that could be
used to segment the frames into two regions with high accuracy.

Detection and classification algorithms based on the model YOLOv5
provided outstanding results over all years with ∼90% mAP at 0.5 IOU. In
parallel, we tested several classification algorithms that, assuming a
positive detection, could classify between the two types of sea pens and
background, in order to eliminate false positives. We tested models like
ResNet50, VGG16 and a simple custom-made CNN, with classification
accuracy of >94% over all years. Finally, we provided a working tracking
algorith that, given an initial sea pen detection, could track such sea pen
over several frames, removing double detections and allowing the user to
count each sea pen only once. Due to time constraints, certain limitations
of the algorithm and its generalisability over several years could not be
tested. Overall, this work provided positive results for all five streams of
work that could be integrated into a single pipeline to allow for an
accurate detection and classification, as well as counting, of sea pens
over several years in videos with different lightning conditions.

8 Future work and research avenues

There were several aspects of this work that could not be implemented due
to time constraints, but which follow naturally from the results presented
here:

1. The image pre-processing results from Section 3 showed an
interesting augmentation of the original videos, correcting
differences in lightning and hue and highlighting the presence of sea
pens. This work, however, was performed on parallel to detection
and classification, and there was no time to check their combined
effect. A very immediate avenue of research would be to test the
detection and classification algorithms on pre-processed videos.
This would require creating new image datasets from these videos,
which should be immediate as we provide the codes to do that, and
retraining the models with these new datasets to test whether these
image pre-processing can improve the results of the detection and
classification models.
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2. The detection of the lasers allowed to create binary masks of the
field of view inside the lasers. In order to count the sea pens inside
this field of view as the larger project requires, these masks should
be applied to the coordinates of the bounding boxes of the sea pen
detections to remove those that fall outside this region. This is not a
difficult task, but a necessary one. However, for some of the videos,
this algorithm failed due to laser occlusion. Closer investigation of
the sources of error could improve the algorithm, for instance,
adding more strict and robust rules as to what can be considered
good segmentation of laser lines, considering that they are always
roughly at the same position. Another way could be applying further
filtering. For example, sometimes two lines were fit to one side of
the image. This could be resolved by denying two lines with very
close midpoints, as the laser track midpoints should be on different
sides of the image. Given that turbid conditions often mean the
lasers are not obscured, it may be difficult to implement a reliable
computer-vision approach. Under such conditions it may be useful
for the tool to contain a user-defined override option to define the 4
vertices of the laser line polygon by hand.

3. Throughout the challenge, we used rather light, fast and
well-established detection and classification models to reduce risks
and save time. Still, the results were unexpectedly positive with
these models. Heavier models, such as the siblings from YOLOv5
that can have up to 86.7M parameters (YOLOv5x), as well as more
recent architecture versions from YOLO like YOLOv8,[21] could also
be tested. Likewise, we recommend testing next other models like
Single Shot MultiBox Detector (SSD),[22] Localizing Objects with
Self-Supervised Transformers and no Labels (LOST),[23] or
Self-Supervised Transformers for Unsupervised Object Discovery
using Normalized Cut.[24]

4. In Section 5.2, we proposed to overdetect objects in the videos and
then use a second classification step to further discriminate over
types of sea pens or background. Initial tests showed that this
approach could be promising, with accuracies close to 100%.
However, these results should be further assessed on test datasets
over several runs to ensure that this performance is stable.
Moreover, this classification step was never implemented after a
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detection step, that is, it was never tested on real detections arising
from the object detection model. These two pipelines should be
implemented together in order to assess the overall performance of
this detection/classification two-step process.

5. The tracking algorithm worked well, but it lost sea pens in some of
the cases. Most of these errors were easily solvable, as explained
previously, but certain occasions in which the sea pens occluded
the view are difficult to solve. However, this only happened a couple
of times and we do not expect it to be an issue that decreases the
overall tracking performance. Steps to decrease its effect, like
considering a fraction of the image height, could be implemented in
the future. Most importantly, however, this tracking algorithm should
be implemented in the pipeline right after the detection and
classification steps to obtain a closed system in which the sea pens
are counted only once.

Figure 19 shows the flowchart of all the streams of work put into a single
pipeline. Solid lines roughly represent connections that already exist.
Dashed lines, on the other hand, show connections that need to be
implemented, such as image pre-processing, tracking of the detected
objects, or disregarding objects outside the lasers. Further research
should be focused on these connections to create a stand-alone
system.
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Figure 19: Flowchart of the data flow, including the use and training of the
detection and classification models. Note that the dashed arrows imply
non-implemented channels of the flow. Blue text boxes indicate a task that
is completed externally.

9 Team members

In alphabetical order:

Meghna Asthana is a PhD Student in Computer Vision and Deep
Learning. She supported the Detection and Classification sub-team. She
was one of the facilitators for the project.

Robert Blackwell is a data scientist at Cefas. His principle contributions
to the project were helping to fix git merge conflicts and making the tea.
But also data wrangling, image pre-processing and sea pen classification
models (VGG16 and ResNet50).

Sam Davis is a PhD student in Environmental Data Science at the
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University of Sydney. He supported the Detection and Classification
sub-team and was also one of the facilitators for the project.

Jessica Forsyth is a research associate working on Bayesian inference
methods in applied mathematics and health technology assessments with
a background in quantitative developmental biology. They contributed to
the image processing areas of the project.

Kasia Kedzierska is a PhD student in biomedical applications of ML at the
University of Oxford. She contributed to the data wrangling and cleaning,
laser detection and sea pen detection from videos using YOLOv5n and
YOLOv5s models.

Rafael Mestre is a New Frontiers Fellow at the University of Southampton.
He was the PI of the project and contributed during project design with the
challenge owners, project management, drinking coffee and putting out
fires.

Zarreen Reza is an early career AI Research Scientist working in multiple
industries for more than four years. She contributed to creating training
data and implementing the sea pen detection and classification model
using YOLOv5.
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Joseph Ribeiro is a fisheries scientist at Cefas. He contributed to this
project as a joint challenge owner and participant, particularly on the laser
detection and image pre-processing sub-team.

Pirta Palola is a DPhil student in the Seascape Ecology Lab, University of
Oxford. In her research, she uses machine learning and remote sensing
technologies to study marine ecosystems. She contributed to the data
preparation and the development of sea pen classification models.

Yanica Said is a PhD student in Mathematical Biology at the University of
Malta and Oxford Brookes University. Her research focuses on the
computational analysis of metabolic networks. She contributed to the
data preparation, to the construction of the tracking algorithm, and by
giving part of the final presentation.

Anna Downie was the challenge owner on behalf of Cefas.

All team members contributed to designing the project, data analysis and
interpretation, presentation preparations and report writing.
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A Quantitative analysis of colour
normalisation

By pre-processing the video footage, the accuracy of sea pen counting
could be improved at various points within the workflow: i) by improving
accuracy of manual tracking, which in turn would provide better training
data sets for the classifier models; ii) by potentially improving the accuracy
of the detection and classification models; and iii) by improving the cross-
comparison of counted sea pens and subsequent analyses.

In order to fully assess the impact of these potential pre-processing
algorithms, we would have conducted tests to assess performance at
each of these three stages. However, within the allotted time this was not
possible. Instead, we decided to describe the colour variability through
comparison of the average RGB histograms of each year’s footage with a
reference year’s average RGB histogram. We applied this analysis to two
10-FPS videos from each of the years 2014, 2015, 2017, 2018, 2019,
2020 and 2021 and compared these to the average histogram from 7
10-FPS videos from 2016. We chose the 2016 videos to be our reference
data set as this data was used as training data in the preliminary study by
Cefas. We chose to compare the RGB histograms for the following
pre-processing algorithms: GW, time-average HSL correction, CLAHE
and GW+CLAHE. Example average RGB histograms for each year, for
each processing method are shown in Appendix B.

To attempt to summarise the differences between the average RGB
histograms for each year and the 2016 data we used two metrics, the
Wasserstein distance and the Pearson correlation coefficient. The
Wasserstein distance, also know as the ‘Earth mover’s distance’
describes how much the bins of the histogram would have to be changed
to match that of the reference histogram and therefore a value of 0.0
indicates a complete match, and larger distances describe distributions
which differ more significantly. The Pearson coefficient can vary between
-1, indicating a negative correlation between the two histograms and +1
indicating a strong correlation between the two histograms. A coefficient
of 0 indicates no correlation.

Within this comparison we would therefore hope that the processed
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Figure 20: Comparison of average RGB histogram comparison metrics
between 2015-2021 to the reference year 2016.

images had smaller Wasserstein distances and Pearson coefficients
close to 1. We summarise our findings in Figure 20. We noticed that
there was variable performance for each of the algorithms across the
years and that no single algorithm improved either the Wasserstein
distance or the Pearson coefficient, suggesting a more year specific
approach based on a single reference histogram.

We did notice that in the Pearson coefficient analysis, the greatest
reductions in RGB histogram similarity, even in processed images, were
found in the years furthest from the reference year 2016. This could
potentially suggest that the difference between these years (2015 and
2021) and 2016 was too significant for these simple video processing
algorithms and that more sophisticated approaches such as
comprehensive colour normalisation should be used. [6]
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B Average RGB histograms for original and
processed videos

Figure 21: Average RGB histograms with associated error bars of
minimum and maximum for each pixel intensity for a subset of original
10fps videos across each year.

Figure 22: Average RGB histograms with associated error bars of
minimum and maximum for each pixel intensity for a subset of 10fps videos
processed using the GW algorithm across each year.
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Figure 23: Average RGB histograms with associated error bars of
minimum and maximum for each pixel intensity for a subset of 10fps videos
processed using the time averages HSL algorithm across each year.

Figure 24: Average RGB histograms with associated error bars of
minimum and maximum for each pixel intensity for a subset of 10fps videos
processed using the CLAHE algorithm across each year.
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Figure 25: Average RGB histograms with associated error bars of
minimum and maximum for each pixel intensity for a subset of 10fps
videos processed using the multi-stage GW+CLAHE processing across
each year.

C Partial results for the YOLOv5s model

As the YOLOv5n model took a short time to train, we also performed
training on the next model, YOLOv5s (for ‘small’). This model has a total
of 7.2M parameters, whereas the YOLOv5n model has 1.9M parameters.
On a NVidia GeForce RTX 2060 GPU, the YOLOv5s took only 2 h and 15
min to train, whereas the YOLOv5n model had taken 1 h and 40 min. Due
to lack of time, we could not completely compare these results, and we
present here the outputs of a training with the same images, suggesting a
more in-depth comparison.

Figure 26 shows the results of the training. We can observe how the loss
functions are saturating towards zero, without indications of overfitting to
the data. The peromance metrics are also increasing with the epoch and,
after 30 epochs, the mAP@0.5 reaches the value of 0.92408. In the
YOLOv5n model, that value was exactly 0.90065. The improvement is not
significantly higher and training took longer. This poses a trade-off
between training time and accuracy, and it remains to be seend whether
this small improvement is worth it. In any case, this comparison should be
performed more systematically, with replicates, possibly more epochs,
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Figure 26: Training results of the YOLOv5 small model. The three left
columns correspond to the loss function per training epoch and the right
two columns to different performance metrics per epoch.

and it would also be interesting to test with the remaining larger YOLOv5
models to see whether the performance can significantly increase the
reported here, albeit with longer training times.

D VGG16 for sea pen classification

The VGG16 model for sea pen classification was also investigated was
part of Section 5.2, although with partial results. VGG16 is a CNN model
that has achieved a top-5 test accuracy of 92.7% on the ImageNet
dataset, which consists of over 14 million images belonging to 1000
different classes.[19]

The network architecture of the VGG16 model processes fixed-size RGB
images of 224x224 pixels. Before training, the mean RGB value is
subtracted from each pixel. The image then passes through a series of
convolutional layers that use 3x3 filters. The stride for convolution is set at
1 pixel, with the input to the convolutional layer padded with 1 pixel to
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Epoch Train Validation
Loss Acc Loss Acc

0 0.4112 0.07965 0.1029 0.9645
1 0.1110 0.9617 0.0792 0.9725
2 0.0659 0.9779 0.1053 0.9734
3 0.0555 0.9816 0.0483 0.9822
4 0.0451 0.9842 0.0845 0.9687

Table 8: Partial results of the VGG16 two-class model after training for 5
epochs.

maintain its resolution after convolution. Five max-pooling layers follow
some of the convolutional layers to perform spatial pooling. Max-pooling
is applied over a 2 × 2 pixel window with a stride of 2. Finally, the image is
processed through three fully connected layers, with the first two having
4096 channels each and the third having as many channels as output
classes needed for classification. The final layer is the soft-max layer and
all hidden layers are equipped with the rectification non-linearity
(ReLU).[25]

In this case, we also applied the concept of transfer learning and used a
pre-trained models for image recognition on the ImageNet dataset,[19]
whose models weights are imported in PyTorch under the name
IMAGENET1K V1 (notice that for ResNet50, the model weights were
‘version 2’). Table 8 shows the results of the two-class sea pen problem
(no background images) partially trained for 5 epochs. As these are only
partial results, they should be considered with care, but this first attempt
shows results as promising as the previous ones.
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