English consonants: Phonemes and Allophones

Effects related to aspiration and 'devoiced' voiced sounds and a few other issues

Phonemes

- Strict, detailed definitions of the term phoneme are complex
 - Not part of this course
 - Take phonology courses to fight over the details
- Rough and ready idea is indispensable for practical phonetics
 - Must make a distinction between phonemic and allophonic differences

Rough definition of phoneme

- Phoneme (Concise Dictionary of Linguistics, Oxford U. Press 1997)
- "The smallest distinct sound unit in a given language: e.g. /'tɪp/ in English realizes the three successive phonemes, represented in spelling by the letters *t*, *i*, and *p*.

Phonemic differences vs. allophonic differences

- Differences in speech sound that can signal differences between two different words are *phonemic differences*
- Other differences in speech sound that are clearly audible are only *allophonic* differences
 - 'pronunciation variants' that cannot signal different words.

Representing allophonic differences

- 'Broad' (= coarse-grained) transcription enough for phonemic representation
 - Choose simple symbol for a 'representative' (allo)phone
- 'Narrow' (= fine-grained) transcription often requires diacritics
- Diacritics for stops ph - aspirated p

p' - 'p' with inaudible release' ('unreleased p')

b - '(partially) devoiced b'

Examples: 'pie, spy, buy'

- 'pie' ['phaj]
- spy ['spaj]
- 'buy' ['baj] or ['baj]
- Which of [b] [p] [p] are allophones of the same phoneme?

Answer: 'pie, spy, buy'

Phonemes in '/' (slash or solidus, pl solidi) marks

Phones in square brackets

Examples 'Stop.', 'Stop!', 'Stop!!', 'Stob!'

- 'Stop.' ['stap']
- 'Stop!' ['stap]
- 'Stop!!' ['staph]
- 'Stob!' ['stab] or ['stab]
- Which of [b] [p^h] [p] are allophones of the same phoneme?

Answer: 'Stop(!!!) Stob.'

Phonemes in '/' (slash or solidus, pl solidi) marks

Phones in square brackets

Rough notation

Conditioned allophone: The phoneme /X/ is realized as phone [y] in environment between A and B

$$/X/ --> [y] / [A] _ [B]$$

Allophone in **free variation** $/X/ \rightarrow [y]$ or [z] (optionally)

Example allophone rule

Translation

- The phoneme /p/ is realized as an aspirated p (the phone [ph]) at the beginning of a word or between a weak vowel and a stressed vowel.
- It is realized optionally as an unreleased (inaudibly released) p (the phone [p]] word finally
- It is realized as an ordinary voiceless (un- or weakly- aspirated) stop after /s/ and elsewhere.

Allophone rule sheet to follow

- We will examine some important allophones in English Cs and Vs
 - Then I'll handout rule summary (and post on web)
- For details see Chapter 3 of Rogers and Appendix F (p 292 298)
 - Our rules will be much shorter

Allophones of Consonants

• Many important details in English 'narrow phonetics' related to voiced/voiceless distinction in obstruents

Allophones of stops: Aspiration and release

- Consider the following words
- 'tip', 'pit', 'spit', 'plum', 'queen', 'apt'
- Broad and Narrow transcriptions
- 'Line drawings' showing relative timings of constrictions at articulators
 - (See Rogers p 25-27 for overview)

Aspiration etc. 'pit, spit'

/p, t, k/ **always** aspirated at beginnings of words in stressed syllables (always)

Never aspirated after /s/.

Variable word finally, often with inaudible release ('unreleased')

Timing of articulator movement

- Many details of English consonant allophones can be illustrated with diagrams
- Very rough sketches of
 - Relative degrees of constriction of supra laryngeal articulators
 - Characterization of lottal activity
 - Relative timing of constrictions of different articulators and of changes in glottal activity

Simple example

- Consider:
 - Voiced, voiceless and voiceless aspirated stops
 - E.g. [d] [t] and [th]
- All involve very similar activity of the supra glottal articulators
- What differs is timing relations to glottal events
- Line diagrams can make this idea clear

Timing diagram Rogers p 51

Graphic unavailable (see Figure 3.3 of Rogers 2000)

SLVT articulators in Rogers' line drawings

- Rough cut of major articulatory regions
 - Supralaryngeal articulators
 - Labial bilabial or labiodental
 - Coronal tongue tip or blade
 - Dorsal body of tongue
 - Velic velo-pharyngeal port
 - Glottal activity (e.g voicing state)

For supra glottal articulators

•	Separation of lines relates to degree of constriction at that articulatory region	
•	Closed:	stops
•	Slightly open:	fricatives
•	More open:	approximants
•	Most open:	vowels

More articulators (assignment 2) Rogers p 35 Figure 2.5

• Graphic unavailable

My timing drawings: glottal states

• Voiceless states of glottis

```
=:=:=: Slightly open (as in aspiration or [h])
===== Closed tight as in [?]
——— Unknown (either === or :=:=:)
```

• Voiced state of **glottis** (typing)

vvvvvvvv -- voicing (folds buzzing)

• Voice-ready (typing)

xxxxxx -- vocal folds about ready to voice but not buzzing

My timing drawings: articulators

• Rogers' "velic" = my "VPPort"

Typing:

 Closed articulator (as in stops)

 Opening articulator (<<<< longer opening)
 Closing articulator
 Slightly open (as in fricatives)
 Pretty open articulator (as in approximants)
 Quite open articulators (as in vowels)

Timing diagrams See Rogers p. 51 fig 3.3

Negative VOT /d Voicing starts before < Coronal — < 0000000000000 (voicing leads opening) Glottal vvvvvvvvvvvvvvvvv Near Zero VOT / t Coronal — < 0000000000000 Voicing starts at < Glottal =:=:=:vvvvvvvvvvvv (short voicing lag) /th Positive VOT Voicing starts after < Coronal ——<000000000000 (long voicing lead) Glottal :=:=:=::::vvvvvvvv

English 'partly voiced' stops (see Rogers' p 47.)

Fully voiced 'd' Voicing starts before < Coronal — < 0000000000000 (voicing leads opening) Glottal vvvvvvvvvvvvvvvvv [d Devoiced 'd' Voicing tries to start at or before < Coronal ——<00000000000000 Glottal XXXVVVVVVVVVVVVVVVVVV (voicing leads opening) Unaspirated 't' Coronal ----<000000000000 Voicing starts shortly after < Glottal :=:=:::vvvvvvvvvvvvv

Devoiced 'd' and unaspirated 't' may often be perceptually equivalent

Obstruents weakly voiced in English

- Many languages work hard to keep voicing going during obstruents
 - E.g. French, Russian
- English does not
 - Phonemically voiced stops, fricatives and affricates only likely to show true voicing during constriction when they are between voiced sonorants (approximants and vowels)

Examples

- 'ba'babsə'bab' -->
 ['ba'babsə'bab]

[d] vs. [t]? Any real difference

- 'Devoiced' obstruents can be very similar to voiceless unaspirated sounds with respect to 'actual' voicing
- Small differences may remain in 'excitation' from larynx
 - Other 'secondary features' of 'devoiced voiced' sounds resemble ordinary voiced sounds
 - so they may **sometimes** be perceptually separable

Secondary features of Voiced vs voiceless obstruents

- Voiced
 - Lower amplitude of burst or frication
 - (= 'less loud')
 - Constriction duration shorter (VCV)
 - Preceding vowels longer (VC)

- Voiceless
 - Higher amplitude of burst or frication
 - (= 'louder')
 - Constriction duration longer (VCV)
 - Preceding vowelsshorter (VC)

Side effects

- So far we've looked mainly at allophones of voiced and voiceless obstruents themselves
 - Some special things happen to things next to obstruents
 - e.g. vowels are shorter before voiceless obstruents
- Next: Effects on approximants next to aspirated obstruents

'Spill-over' effects of aspiration

Open glottis (aspiration) extends through much of /l/

Flapping (tapping)

- Flapping (tapping)
 - /t/ and /d/ often realized as $[\Gamma] / V_{\underline{v}} \check{v}$
 - Voiced alveolar flap (or tap) between stressed and 'weak' vowel
 - This is 'opposite' of one good aspiration environment \check{v} ${}^{1}V$
 - Roughly speaking
 - » aspriation makes stops 'more devoiced and less sonorant'
 - » flapping makes /t,d/ 'more voiced and more sonornant'
- Example:

'attack' [ə'thæk] vs. 'attic' ['ærɪk]

Flapping more examples

- Example from child's speech
 - Baby: 'Daddy' ['dæ,di]
 - Toddler: 'Daddy' ['dæri]
 - 5-year old (extra polite): 'Daddy' ['dæ_tthi]
- More examples

```
'buddy' /'bʌ dɨ/ --> [ 'bʌ rɨ ]
'butter' /'bʌ dəɹ/ --> [ 'bʌ ræ']
'sitter' /'sɪtəɹ/ --> [ 'sɪɾæ ]
'city' /'sɪtɨ/ --> [ 'sɪɾɨ ]
```

Place assimilation and coarticulation

- Small changes in place of articulation in some consonants
 - Alveolar consonants become dental before θ ð

```
'tenth' /'ten\theta/ --> ['ten\theta]
```

- 'width' and 'stealth' may show similar changes in /d/ and /l/
- Stops
 - Labialized before rounded vowels [w] and [J]
 - 'dwell' ['dwwɛt]; 'Gwen' ['gwwɛ̃n], 'twin'; ['twhwʃɪn] or (?) ['trʌmɪ̃n],

Complex coarticulation in /stop+r/

- /t/ and /d/ retroflexed, rounded (and possibly affricated) before /I/
 - 'train'
 ['th jējn] or ['tsw jējn] or maybe even ['tsw jējn]
 Kids sometimes spell 'train' as 'chrain'
 - 'drain'
 ['dɹējn] or ['dΩ^wɹējn]

'Spill-over' effects aspiration and rounding coarticulatic.

Broad transcription /kwik/. Open glottis (aspiration) extends through much of /w/, yielding $[w_0]$ or [m]

Clear and dark 'l' in NA Eng.

- At beginning of syllables in N.A. English, /l/ is relatively 'clear' [1]
- At end of syllables, it is relatively 'dark' [1]
 - Often described as 'velarized' but may more often be pharyngealized
 - Dark [1] often shows up as a 'syllabic' l
 - We will not systematically distinguish it from schwa+dark l
- Examples
 - 'pal' ['phæt] v. 'lap' ['læp]
 - 'little' ['lɪrət] or ['lɪrt]

AK shows mainly pharyngeal constr. in [1] Articulation of some laterals (sagittal MRI tracings)

• Graphic unavailable. See web link below

Laterals from MRI http://www.icsl.ucla.edu/~spapl/projects/mripix/figg3.html

Syllabic nasals and glottal stop

- 'Mountain', 'sutton', 'sudden'
 - $\ \, Broad\ transcription\ / \ mawntən/\ / \ b \wedge\ t \ni n/,\ / \ s \wedge\ d \ni \quad n/,$
 - Narrow transcription (casual pronunciation)
- 'Mountain' ['mawn?n] or ['mawn?tn]
- 'Button', ['bA ?n] or maybe ['bA ?tn]
 - See Rogers p 55 "RP Glottalization"
 - Something much like this may happen frequently in NA English
- 'Sudden' ['SA rn], 'redden' ['JErn]

Inaudible releases

- Unreleased (inaudible release) stops often occur in stop clusters
 - 'apt', 'act', 'abdicate'
 - ['æp'th] ['æk'th] ['æb'dı,khejt']
- Unreleased stops often occur prepausally (e.g. utterance final)
 - Even possible for word like ['æk't'] making final stop very difficult to hear.
- Many languages do not allow inaudible releases of stops
 - Require aspiration or brief vocalic release
 - Compare: ['æk'th] ['ækhth] ['ækoth]

Some additional details

- Most of the things so far might show up on a quiz for 'moderately narrow' transcription
- Some additional details will **not** show up in any live **transcription** quiz ever
 - Some facts discussed might be addressed in multiple choice or short answer questions

'Inherent' rounding in some Cs

- N.A. English /1/ is pretty strongly rounded
 - Rogers p 60.
 - Could* be transcribed most accurately [Jw]
- $/\int$, 3, $t\int$, d3/ are also somewhat rounded (compared to /s, z/)
 - These $could^*$ be transcribed / \int^w , \mathfrak{z}^w , $\mathfrak{t} \int^w$, $\mathfrak{d} \mathfrak{z}^w$ /
- *But we won't bother in 'moderately narrow transcription'
 ??? What would we do with 'Schreck', 'Schwepps' vs.
 'she'

Special releases (plosions) Nasal and lateral releases

- Stops before homorganic nasals (mainly d+n) often result in a 'nasal release' or 'nasal plosion' (Rogers p 57)
 - Can be transcribed with d + raised n
 - 'Rodney' ['Jadnni]
 - 'kindness' ['khajndnnəs]
- Similarly, 'd' before 'l' may lead to 'lateral release' or 'lateral plosion'
 - Can be transcribed as d + raised l
 - 'sadly' ['sædlli]
- What about 'butler'???

 $[Le_{\parallel}^{\dagger} \Lambda d_{\parallel}]$ emphatic $[Le_{\parallel}^{\dagger} \Lambda d_{\parallel}]$