

Evolution of Warning Colour and Mimicry

- Defensive coloration
 - **Camouflage** also called *crypsis*, *cryptic coloration*.
 - Flash coloration. e.g. flying grasshoppers which have blue or red underwings or "underwing" moths.
 - Aposematism, or warning colours:
 - Mimicry, etc.

- Aposematism, or warning colours:
 - Unpalatability e.g. wasp stings, distastefulness.
 - Smelliness e.g. skunk.
- *Dangerousness* e.g. coral snakes (cobra family).
 Warning colours are usually *learned*

Laboratory evidence

Jane van Zandt Brower & Lincoln Brower in the 1950s performed *laboratory experiments* with blue jays and monarch butterflies (*Danaus plexippus*):

- 1) Jays fed monarchs became sick & wiped beak - monarchs are unpalatable.
- 2) Jays learn to avoid monarchs - appropriate learning is possible
- 3) Having learnt, Jays avoid mimics of monarchs - mimicry theory correct

Evolution of aposematism

Aposematism involves evolving two characters: i) unpalatability ii) warning colours

Unpalatability and warning colours could be altruistic

In true altruism: **cost** to individual > **benefit** to individual Character should not evolve

How can unpalatability evolve?

Costs	Benefits
Making and sequestering toxic compounds	Protection from predators
Teaching predators	

Altruistic if cost to individual > benefit to individual

But open to cheating

Maybe unpalatability evolves through kin selection?

Hamilton's Rule

Unpalatability: Kin Selection?

Fisher (1930): gregarious larvae, usually laid as eggs by a single female, associated with warning colour.

THE PROBLEM:

many species of unpalatable butterflies have solitary larvae e.g. Monarch butterflies and many *Heliconius* species

How can unpalatability evolve?

Costs	Benefits
Making and sequestering toxic compounds	Protection from predators
Teaching predators	

cost to individual < benefit to individual NOT altruistic

Unpalatability can evolve through individual selection (helped by kin selection)

Why are some unpalatable caterpillars gregarious?

How can unpalatability evolve?

Costs	Benefits
Making and sequestering toxic compounds	Protection from predators
Teaching predators	

Toxins from host plants Maybe easier to sequester in cuticle than excrete

Inversely proportional to the population size Don't have to die when teaching!

Why are some unpalatable caterpillars gregarious?

Selfish reasons why unpalatable species should live in groups:

- Predator satiation by groups.
- Group defence, coordinated signalling.
- By aggregating, avoid some predators entirely.

(assuming species already unpalatable)		
	Costs	Benefits
	Making the colours - cheap	Protection from predators
	Teaching predators	
Fre	equency-dependent selection	against rare colours
i) conspicuous ii) predators have not learnt		
	SHOULD BE VERY DI	FFICULT TO EVOLVE IG COLOURS

Mimicry – a cause of speciation by pleiotropy

Pleiotropic (by-product) effects of mimicry:

Hybrids are less fit (post-mating barrier) – Due to attack on non-mimetic hybrids Assortative mating (pre-mating barrier) – Colour is used in mating

Reading

- Sternburg JG, Waldbauer GP, Jeffords MR (1977) Batesian mimicry: Selective advantage of color pattern. *Science*: 195, 681-683.
- Joron M, Mallet JLB (1998) Diversity in mimicry: paradox or paradigm. *Trends in Ecology and Evolution*: 13, 461-466.
- Futuyma (2005) Evolution. Chapter 18, p445-446.

MIMICRY AND WARNING COLOUR

Provide examples of more general evolutionary thought:

- Social evolution and kin selection (possibly)
- Linkage disequilibria and evolution at >1 gene
- Evolutionary developmental genetics ("evo-devo")
- Drift/shifting balance in evolution
- · Evolution of genetic diversity
- Race formation and speciation
- Biogeography