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We	
  have	
  reached	
  a	
  point	
  where	
  we	
  have	
  most	
  of	
  the	
  	
  
informa3on	
  required	
  to	
  solve	
  realis3c	
  stellar	
  models.	
  
A	
  cri3cal	
  piece	
  s3ll	
  mixing	
  is	
  the	
  nuclear	
  physics,	
  but	
  it	
  
turns	
  out	
  that	
  many	
  of	
  the	
  observed	
  proper3es	
  of	
  stars,	
  
except	
  their	
  life3mes	
  and	
  radii,	
  reflect	
  chiefly	
  the	
  need	
  to	
  	
  
be	
  in	
  hydrosta3c	
  and	
  thermal	
  equilibrium,	
  and	
  not	
  the	
  energy	
  	
  
source.	
  	
  
	
  
Historically,	
  prior	
  to	
  computers,	
  stellar	
  structure	
  was	
  o@en	
  
calculated	
  using	
  polytropes.	
  Even	
  today.	
  they	
  provide	
  a	
  	
  
valuable	
  tool	
  for	
  understanding	
  many	
  stellar	
  proper3es.	
  	
  



  

The  Stellar Structure Equations
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In addition we have or will have the physics equations

         P = P(T, ρ, Yi{ }) = ρ
µ

NAkT
⎞
⎠⎟ ions

+Pe + 1
3

aT 4

κ = κ (T, ρ, Yi{ })≈ κ 0 ρ
aT b

ε = ε(T, ρ, Yi{ })≈ ε0 ρ
mT n (TBD)

and the boundary conditions
    at r = 0        L(r)=0, m = 0

    at r = R         P(R) ≈ 0, m= M, T=
L(R)

4πR2σ
⎛
⎝⎜

⎞
⎠⎟

1/4

≈0

These are 7 equations in 7 unknowns: ρ, T, P, L, ε, κ , and r
which, in principle, given M and initial composition, can
be solved as a function of time for the boundary conditions.
Most of our theoretical knowledge of stellar evolution comes 
from doing just that.



Aside: Boundary Conditions 

l  Radiative Zero BC: 
Ideally we would use some atmospheric model to tell us 
what the temperature BC is at the surface 
The T change over the whole star is so large that the 
difference between 0 and the real Teff at surface is small – 
except when computing a luminosity. 
 
To get effective T at the end, use: 



Polytropes	
  

We	
  assume	
  a	
  global	
  rela3on	
  between	
  pressure	
  and	
  
density:	
  
	
  

 
n is called the polytropic index. Don’t confuse this 
with the adiabatic index which is local. 
 
Some examples: 

l  Fully convective (adiabatic): 
l  White dwarfs (completely degenerate):  
l  Pressure is a mix of gas + radiation, but the ratio is 

constant throughout 

  P∝ ργ γ = (n +1) / n

  P ∝ ρ5/3  or ρ4/3 n =constant



Polytropes 
l  Consider HSE  

	
  
	
  
	
  
l  Differentiating again and dividing by r2: 
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Polytropes	
  

l  Now	
  make	
  this	
  dimensionless	
  
Central	
  density:	
  
Define:	
  	
  
Then:	
  
	
  

  

P(r )=Kργ (r )
= K ρc

γ θ nγ (r )

= K ρc
1+1/nθ n+1(r )

  
γ = n +1

n
= 1+ 1

n

Given n, K, and c these two equations define the  
distribution of pressure and density in the star 
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Use these assumptions in the equation for 
hydrostatic equilibrium 
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Note that the quantity in brackets has units length2

Define it to be α 2  then 
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dynegm2 cm6

cm2 dynecm2gm2 = cm2 for the dimension of α 2



  

Now define r =αξ  with ξ  a dimensionless radius-
like variable. Then 

        
1
ξ 2

d
dξ

ξ 2 dθ
dξ

⎛
⎝⎜

⎞
⎠⎟
=−θ n

This is the Lane Emden equation. It involves only 
dimensionless quantities and can be solved for a given
n to give θ(ξ).  n does not have to be an integer.

Basically all that went into it was 
hydrostatic equilibrium, mass conservation,
and a power law equation of state



Polytrope	
  boundary	
  condi2ons	
  

  

1) θ n = ρ
ρc

So at 
r
α

= ξ =0 θ =1

2) ξ ≡ r
α

 so dξ= 
1
α

dr ⇒ dθ
dξ

= α dθ
dr

but  ρ ≡ ρcθ
n   so  
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= 1
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dr

 and 
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= α
nρcθ

n−1  
dρ
dr

but in spherical symmetry for hydrostatic equilibrium

ρ  is a local maximum at r = 0,   so 
dρ
dr

= 0

So at at ξ =0
dθ
dξ

= 0



  

That is
dP
dr

=− Gm(r )ρ
r 2 → 0 as r → 0

 because m(r) ∝ r3 approaches 0 faster than r2

 And since P=K ργ dP
dr

= γKργ −1 dρ
dr

 so 
dρ
dr

 also →0. The density and pressure have local 

maxima at the center of the star - no "cusps"

P or "

r 



Polytrope	
  boundary	
  condi2ons	
  

  R* =αξ1 where ξ1  is where θ(ξ) first reaches 0

3) At the surface  r = R the density (first) goes to zero so  



  

M = 4πr 2ρdr = 4πα 3

0

R

∫ ρc ξ 2θ n dξ
0

ξ1

∫
But the Lane Emden equation says
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 is uniquely determined by n and 

is given in tables. So we have an equation connecting 
M, α. and ρc  for a given polytropic index, n. 

For any value of n, the mass 

  

r = αξ R = αξ1

ρ= ρcθ
n

  

dθ
dξ

=0  at ξ=0



Cox and Guilli (1965) 

Dn 
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ρ ξ1



  

Further α  can be expressed in terms of ρc  and K
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G

⎛
⎝⎜

⎞
⎠⎟
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which is another useful form which gives M in terms of ρc

(or vice versa) for a given K and n. Note that M is 
independent of ρc  if n = 3.



 

Another interesting quantity that can be obtained
from the tables  is the ratio of central density to average 
density - how compact the core of the star is.

See the previous table. The case n = 0, Dn = 1 is the  
sphere of constant density case 



Analytic solutions 

For n = 0, 1, 5, and only for these values, there 
exist analytic solutions to the Lane Emden 
equation.  
 
Unfortunately none of them correspond to 
common stars, but the solutions help to 
demonstrate how polytropes can be solved  
and they can used for interesting approximate 
cases. 



n = 0 

  

Technically the case n = 0 is a singularity
 

             P = Kρ1+1/n  diverges as n → 0

This reflects the fact that constant density can only
be maintailed in the face of gravity if the fluid is
incompressible (like the ocean; P can vary but not ρ).

Nevertheless, some interesting properties of polytropes
can be illustarted with n = 0 so long as we don't use the 
pressure-density relation explicitly



   

n = 0  - the constant density case 

        
1
ξ 2

d
dξ

ξ 2 dθ
dξ

⎛
⎝⎜

⎞
⎠⎟
=−θ n =−1

ξ 2 dθ
dξ

= − ξ 2∫ = − ξ
3

3
+C

dθ
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= − ξ
3
+ C
ξ 2 ⇒ dθ∫ =− 1

3
ξ dξ∫ + Cdξ

ξ 2∫

θ =− ξ 2

6
−C
ξ

+D  but θ=1  at ξ=0

So C = 0 and  D =1 and 

θ = 1− ξ 2

6

hKp://www.vistrails.org/index.php/User:Tohline/SSC/Structure/Polytropes	
  



 

The first zero of θ   = 1-
6
ξ 2 is at ξ1= 6

     so    R = 6 α

  

P(r ) = Pcθ
n+1(r )=Pcθ(r )   for n = 0

P(r ) = Pc 1− ξ 2

6
⎛
⎝⎜

⎞
⎠⎟
=Pc 1− r 2

α 26

⎛
⎝⎜

⎞
⎠⎟

but α =
R
ξ1

= R
6

so P(r ) = Pc 1− r 2

R2

⎛
⎝⎜

⎞
⎠⎟

For ideal gas pressure and constant composition
T would have the same dependence (ρ=constant)

         P =
ρNAkT

µ
⇒ T(r ) = Tc 1− r 2

R2

⎛
⎝⎜

⎞
⎠⎟

 
ξ = r

α



  

but also  α =
Pc (n +1)
4πGρc

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

=
Pc

4πGρc
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

= R
6

 so

Pc =
2πR2Gρc

2

3
=

G 4
3
πR3ρc

⎛
⎝⎜

⎞
⎠⎟
ρc

2R
= GMρ

2R

  

This agrees with what can be obtained by 
integration of the equation of hydrostatic equilibrium.

dP
dr

= − GM
r 2 ρ

dP = Pc = − GMρ dr
r 2

0

R

∫
c

surf

∫ =GMρ
2R

but from the polytropic equation we learn how 
P varies with r



  

Recall M=−4πα 3ρc ξ1
2 dθ

dξ
⎞
⎠⎟ ξ1

This last quantity, ξ1
2 dθ

dξ
⎞
⎠⎟ ξ1

, is a number that 

depends on the poytropic index n. For n = 0 it is just -2 6   
(see table) and so 

               M = 4π R3

6 6
2 6 ρc = 4π

3
R3ρ

as one would expect for constant density.  So we understand 
sars of constant density quite well. 



   

Other analytic solutions exist for n = 1 and 5

n = 1

1
ξ 2

d
dξ

ξ 2 dθ
dξ

⎛
⎝⎜

⎞
⎠⎟
=−θ

The solution is order zero Spherical Bessel function

θ ξ( ) =Sinξ
ξ

⇒ ξ1 = π  at θ=0 α = R
π

nb. lim
ξ→0

Sinξ
ξ

=1 (l'Hopital's rule)



  

α =
Pc (n +1)
4πGρc

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

=
Pc

2πGρc
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

= R
π

So              Pc = 2G
π

ρc
2R2

Also        ξ ≡ αr =
πr
R

  ⇒        θ = Sin(ξ)
ξ

= R
πr

Sin(
πr
R

)  so 

P =Pcθ
2 == Pc

R
πr

Sin πr
R

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟

2

ρ = ρcθ = ρc

R
πr

Sin πr
R

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟

n=1	
  con2nued	
  



  

M = −4πα 3ρc ξ1
2 dθ

dξ
⎞
⎠⎟ ξ1

ξ1
2 dθ

dξ
⎞
⎠⎟ ξ1

= − π for n = 1    

so M =−4πα 3ρc ξ1
2 dθ

dξ
⎞
⎠⎟ ξ1

= 4π 2ρc

R
π

⎛
⎝⎜

⎞
⎠⎟

3

= 4
π

ρcR
3

but   Pc = 2G
π

ρc
2R2        so R3 =

πPc

2Gρc
2

⎛

⎝⎜
⎞

⎠⎟

3/2

and Pc  = Kρc

n+1
n = Kρc

2  so R3 = πK
2G

⎛
⎝⎜

⎞
⎠⎟

3/2

R= πK
2G

⎛
⎝⎜

⎞
⎠⎟

1/2

     independent of M!

n=1	
  con2nued	
  



 

The density adjusts to keep the same radius no matter 
what M is. R is independent of M. 

This may seem a bit strange but actally neutron stars
are approximately polytropes with index  0.5 < n < 1.
Central density rises with M but radius does not vary much.

n=1 continued 



    

n =5

1
ξ 2

d
dξ

ξ 2 dθ
dξ

⎛
⎝⎜

⎞
⎠⎟
=−θ 5

θ = 1+ 1
3
ξ 2⎡

⎣
⎢

⎤

⎦
⎥

−1/2

which →0 only asξ → ∞

ρ
ρc

= 1+ 1
3
ξ 2⎡

⎣
⎢

⎤

⎦
⎥

−5/2

M = 2i34 K 3

πG3

⎡

⎣
⎢

⎤

⎦
⎥ ρc

−1/5

Pc =
πM 2G3

2•34

⎡

⎣
⎢

⎤

⎦
⎥

1/3

ρc
4/3

This configuration, which is not very physical has an infinite 
radius and a finite mass, central density and central pressure.  
It is infinitely centrally concentrated and we will see later has  
infinite binding energy. There are no solutions, analytic or  
otherwise for n > 5. Most physically relevant polytropes   
have 1.5 < n < 3. 

see	
  12	
  	
  
pages	
  back	
  



Analy3c	
  Solu3ons	
  
Note tendency of all to agree with n = 0 at the origin 

 θ(ξ)



The General Case  
(0 < n < 5) 

The general solution requires numerical integration of 
the Lane Emden equation. There are tools available for  
this purpose. A simple program is also given at the  
class website 
 
http://nucleo.ces.clemson.edu/home/online_tools/polytrope/0.8/ 



From Pols (2011) 

  
In his notation zn = ξ1 θn =− ξ1

2 dθ
dξ

⎛
⎝⎜

⎞
⎠⎟ ξ1



  

In the general case, we know M, n, and K (e.g. from the EOS):

First get α from the given mass

M =-4πα 3 (n +1)K
4πGα 2

⎡

⎣
⎢

⎤

⎦
⎥

n/(n−1)

 ξ1
2 dθ

dξ
⎛
⎝⎜

⎞
⎠⎟ ξ1

⇒  α  as function of M, K, and n

Where we have replaced ρc  using the definition of α

   α =
Pc (n +1)
4πGρc

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

=
Kρc

(n+1)/n(n +1)
4πGρc

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

=
Kρc

(1−n)/n(n +1)
4πGρc

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

ρc =
n +1( )K
4πGα 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

n/(n−1)



  
ρc =

n +1( )K
4πGα 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

n/(n−1)

  Once one has n, α  and K, ρc,ρ, and R easily follow.

  

ρc

ρ
= Dn

R = 3M
4πρ

⎛
⎝⎜

⎞
⎠⎟

1/3



  

Note the existence of a mass-radius relation

M =-4πα 3 (n +1)K
4πGα 2

⎡

⎣
⎢

⎤

⎦
⎥

n/(n−1)

 ξ1
2 dθ

dξ
⎛
⎝⎜

⎞
⎠⎟ ξ1

M
−ξ1

2 dθ / dξ( )ξ1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

(n−1)

= 4πα 3( )(n−1) (n +1)K
4πGα 2

⎡

⎣
⎢

⎤

⎦
⎥

n

M
−ξ1

2 dθ / dξ( )ξ1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

(n−1)

= 4π( )−1
α 3n−3−2n (n +1)K

G
⎡

⎣
⎢

⎤

⎦
⎥

n

M
−ξ1

2 dθ / dξ( )ξ1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

(n−1)

α 3−n = 1
4πG

1
G

⎛
⎝⎜

⎞
⎠⎟

n−1

(n +1)K( )n
move	
  	
  to	
  other	
  side	
  



   

M
−ξ1

2 dθ / dξ( )ξ1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

(n−1)

α 3−n = 1
4πG

1
G

⎛
⎝⎜

⎞
⎠⎟

n−1

(n +1)K( )n

GM
−ξ1

2 dθ / dξ( )ξ1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

(n−1)

α 3−n =
n +1( )K⎡⎣ ⎤⎦
4πG

n

Substituting  the value of R      α=R/ξ1

GM
−ξ1

2 dθ / dξ( )ξ1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

(n−1)

R
ξ1

⎛

⎝⎜
⎞

⎠⎟

3−n

=
n +1( )K⎡⎣ ⎤⎦
4πG

n

For a given n and K, the right hand side is constant and

MR(n−3)/(n−1) or R  M (n−1)/(n−3)

move	
  Gn-­‐1	
  to	
  other	
  side	
  



  

GM
−ξ1

2 dθ / dξ( )ξ1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

(n−1)

R
ξ1

⎛

⎝⎜
⎞

⎠⎟

3−n

=
n +1( )K⎡⎣ ⎤⎦
4πG

n

Note the existence of "singularities" at n = 1 and n =3
For n = 1 the mass dependence drops out and the radius 
is independent of the mass (the central density just adjusts).
Even more interesting for n = 3, the radiis drops out and 
one just a critical mass whose radius is undefined. This
will have important implications for the maximum mass of
white dwarfs and for massive stars.



   

For a non-relativistic white dwarf γ =5/3 which implies n = 3/2

GM
−ξ1

2 dθ / dξ( )ξ1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

1/2

R
ξ1

⎛

⎝⎜
⎞

⎠⎟

3/2

=
5 / 2( )K⎡⎣ ⎤⎦
4πG

3/2

R
ξ

⎛
⎝⎜

⎞
⎠⎟

3/2

=
5 / 2( )K⎡⎣ ⎤⎦

3/2

4πG
GM

−ξ1
2 dθ / dξ( )ξ1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

−1/2

R
ξ

⎛
⎝⎜

⎞
⎠⎟
=

5 / 2( )K⎡⎣ ⎤⎦
4π( )2/3

G

M
−ξ1

2 dθ / dξ( )ξ1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

−1/3

K =1.00 ×1013 Ye
5/3

R =
3.654 2.5( ) 1.00 ×1013( )⎡

⎣
⎤
⎦

4π( )2/3
6.67 ×10−8( )⎡

⎣⎢
⎤
⎦⎥

2.714( )1/3
Ye

5/3M −1/3

= 8800 km
Ye

0.5
⎛

⎝⎜
⎞

⎠⎟

5/3
M

M
⎛

⎝⎜
⎞

⎠⎟

1/3

=0.0127 R
Ye

0.5
⎛

⎝⎜
⎞

⎠⎟

5/3
M

M
⎛

⎝⎜
⎞

⎠⎟

1/3

Mass radius relation for white dwarfs: 

  

ξ1 =3.654

−ξ1
2 dθ / dξ( )ς1

=2.714



hKp://en.wikipedia.org/wiki/White_dwarf	
  



The Chandrasekhar Mass 

   

GM
−ξ1

2 dθ / dξ( )ξ1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

(n−1)

R
ξ1

⎛

⎝⎜
⎞

⎠⎟

3−n

=
n +1( )K⎡⎣ ⎤⎦
4πG

n

If fully relativstic throughout, P= Kρ4/3   and n = 3

GM
−ξ1

2 dθ / dξ( )ξ1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

2

=
4K⎡⎣ ⎤⎦

4πG

3

M
2.01824

=
4K( )3/2

4π( )1/2
G3/2

MCh =
2.01824( ) 4( ) 1.2435×1015Ye

4/3( )( )3/2

4π( )1/2
6.67 ×10−8( )3/2

= 1.456
Ye

0.5
⎛

⎝⎜
⎞

⎠⎟

2

M



  

Another useful expression is for the central pressure

Pc = Kρc
(n+1)/n

Use the previous equation for the mass-radius relation to solve for K
 as a function of R and M and put it in the equation for Pc

GM
−ξ1

2 dθ / dξ( )ξ1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

(n−1)

R
ξ1

⎛

⎝⎜
⎞

⎠⎟

3−n

=
n +1( )K⎡⎣ ⎤⎦
4πG

n

Pc =Kρc
(n+1)/n = (4πG)1/n

(n +1)
⎡

⎣
⎢

⎤

⎦
⎥

GM
−ξ1

2 dθ / dξ( )ξ1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

(n−1)/n

R
ξ1

⎛

⎝⎜
⎞

⎠⎟

(3−n)/n

ρc
(n+1)/n

But ρc = ρDn = 3M
4πR3 − 3

ξ1

dθ
dξ

⎛
⎝⎜

⎞
⎠⎟1

⎛

⎝⎜
⎞

⎠⎟

−1

 so we have R in terms of ρc  and M

R
ξ1

⎛

⎝⎜
⎞

⎠⎟

3

= 3M

4πρcξ1
3 −3

ξ1

dθ
dξ

⎛
⎝⎜

⎞
⎠⎟1

⎡

⎣
⎢

⎤

⎦
⎥

R
ξ1

⎛

⎝⎜
⎞

⎠⎟

(3−n)/n

= 3M

4πρcξ1
3 −3

ξ1

dθ
dξ

⎛
⎝⎜

⎞
⎠⎟1

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

(3−n)/3n



  

So we can obtain Pc  as a function of just M and ρc

Pc =
1

n +1
4π( )1/n−1/n+1/3

G1/n+1−1/n M1−1/n+1/n−1/3ξ1
−2+2/n−2/n+2/3

dθ
dξ

⎛
⎝⎜

⎞
⎠⎟ ξ1

−1+1/n−1/n+1/3

ρc
1+1/n−1/n+1/3

Pc =
(4π )1/3G

n +1
M 2/3 ρc

4/3 ξ1
−4/3 dθ

dξ
⎛
⎝⎜

⎞
⎠⎟ ξ1

−2/3

Pc =CnGM 2/3ρc
4/3

Cn =
4π( )1/3

n +1
  ξ1

2 dθ
dξ

⎛
⎝⎜

⎞
⎠⎟ ξ1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−2/3

 Pols. p 49  (4.18)

 which is a slowly varying function of n

Cn=1 = 0.542 Cn=2 = 0.431

Cn=3 =0.364



  

Pc =CnGM 2/3ρc
4/3

1) For a given polytropic index and mass the ratio 
Pc

3

ρc
4

    is a constant as the star expands or contracts.
2) For a given polytropic index this ratio increases

   as M2

3) For a given mass this ratio does not vary much 
    across a reasonable range of polytropic indices
     1.5≤n≤3

Important example: Suppose P = Pideal =
ρNAkT

µ

           Then 
Tc

3

ρc

in a contracting polytrope is a constant

            (that increases with mass). Stellar cores will evolve

            trying to keep ρc ∝ Tc
3 and higher mass stars will

            have a higher central temperature at a given central 
            density



  

Pc =CnGM 2/3ρc
4/3

Pc
3 =Cn

3G3M 2ρc
4

NAkTc

µCnG
⎛

⎝⎜
⎞

⎠⎟

3

= M 2ρc

Tc
3 ∝M 2ρc



M
1
>M

2



CO-cores 

Ne-O cores 

He-cores 

Actual	
  models	
  
Not	
  polytropes	
  
No	
  burning	
  

Include	
  radia3on	
  



Cri3cal	
  Masses	
  

 

0.08 M


 Lower limit for hydrogen ignition

0.45 M


                          helium ignition

7.25  M
                                carbon ignition

9.25  M
  neon, oxygen, silicon ignition (off center)

~11 M


                   ignite all stages at the stellar center

These	
  are	
  for	
  models	
  that	
  ignore	
  rota3on.	
  With	
  	
  rota3on	
  the	
  
numbers	
  may	
  be	
  shi@ed	
  to	
  lower	
  values.	
  Low	
  metallicity	
  may	
  
raise	
  the	
  numbers	
  slightly	
  since	
  less	
  ini3al	
  He	
  means	
  a	
  smaller	
  
helium	
  core.	
  



3
T∝ρ



   

One can solve explicitly for the central temperature
in terms of the density if the pressure is entirely due
 to ideal gas

Pc =GM 2/3ρc
4/3 Cn  = Pideal =

ρcNAkTc

µ

Tc =
GM 2/3ρc

1/3 µCn

NAk
Cn = 0.36 for n = 3

      Tc =1.51×107  K  M
M

⎛

⎝⎜
⎞

⎠⎟

2/3
µ

0.61
⎛
⎝⎜

⎞
⎠⎟

Cn

0.36
⎛
⎝⎜

⎞
⎠⎟
ρc

1/3

 if ρc = 160 g cm−3  for the sun 
                (actually 15.7 M K today from neutrinos)

Temperature as functions of  c "



The structure of the sun and earth compared with polytropes of  
various indices (from M. Zingale). The sun is about an n = 3 polytrope. 





Polytropes:  
Binding Energies and the  
“Standard Model” (n = 3) 

Prialnik Chapter 5 
Glatzmaier and Krumholz Chapter 10 

Pols 4 

Lecture 7b 



The gravitational binding energy of polytropes 

  

First a useful identity:

For a polytrope P = Kργ = Kρ
n+1
n = Kρ

1+1
n

dP = K n +1
n

ρ1/n dρ

but
P
ρ

= K ρ1/n  

   

d P
ρ

⎛
⎝⎜

⎞
⎠⎟
= K

n
ρ (1−n)/n dρ = K n +1

n
ρ1/n dρ

⎛
⎝⎜

⎞
⎠⎟

1
ρ

1
n +1( )

= 1
n +1( )

dP
ρ

 

multiply and divide 
by (n+1) 



The gravitational binding energy of polytropes 

  

 So now let's calculate the  gravitational binding energy:

Ω = -
Gm

r0

R

∫ dm = − 1
2

G
rcent

surf

∫ d(m2)

Integrate by parts

d(uv)=uv = u∫∫ dv + v du∫
udv =uv − v du∫∫

Ω =− Gm2

2r
⎡

⎣
⎢

⎤

⎦
⎥

cent

surf

− 1
2

Gm2

r 2
cent

surf

∫ dr        since 
d
dr

G
r

⎛
⎝⎜

⎞
⎠⎟
=− G

r 2

=− GM 2

2R
− 1

2
Gm2

r 2
cent

surf

∫ dr

At the surface the first term is zero 



  

Now use the equation of hydrostatic equilibrium

dP=- −Gm / r( ) ρ / r( )dr

Ω= − GM 2

2R
− 1

2
Gm2

r 2
cent

surf

∫ dr from previous page

= − GM 2

2R
+ 1

2
m dP

ρcent

surf

∫       from hydrostatic equilibrium

= − GM 2

2R
+ n +1

2
m d P

ρ
⎛
⎝⎜

⎞
⎠⎟cent

surf

∫

since 
dP
ρ

= n +1( )d P
ρ

⎛
⎝⎜

⎞
⎠⎟

 from ID  2 pages ago



  

Ω = − GM 2

2R
+ n +1

2
m d P

ρ
⎛
⎝⎜

⎞
⎠⎟cent

surf

∫     from previous page

= − GM 2

2R
+ n +1

2
m P

ρ
⎡

⎣
⎢

⎤

⎦
⎥

cent

surf

− n +1
2

P
ρ

dm
cent

surf

∫
at the center m = 0; at the surface P= 0; drop 2nd term

Ω = − GM 2

2R
− n +1

2
P
ρ

dm
cent

surf

∫
but by the Virial Theorem

P
ρ

dm
cent

surf

∫ = − Ω
3

 So        Ω = − GM 2

2R
+ n +1

6
Ω

Ω 1− n +1
6

⎛
⎝⎜

⎞
⎠⎟
= Ω 6 − n −1

6
⎛
⎝⎜

⎞
⎠⎟
=− GM 2

2R

Ω = − 6
5 − n

⎛
⎝⎜

⎞
⎠⎟

GM 2

2R



  
Ω = − 3

5 − n
⎛
⎝⎜

⎞
⎠⎟

GM 2

R

This is the gravitational binding energy of a polytrope of index 
n with mass M and radius R. Note the singularity at n = 5 and 
also the correct n = 0 limit. Note also that the polytrope of 
mass M and radius R is more tighly bound if it is more  
centrally condensed, i.e., n is larger 



For example if the sun could be characterized by 
a polytropic index n = 3, its binding energy 
would be 

   

Ω = 3
2

GM
2

R
= 1.5

6.67x10−8( ) 1.99x1033( )2

6.96x1010( )
= 5.7×1048 erg

Accurate stellar models give 6.9×1048 erg
To the extent that any star is supported by ideal gas pressure,
the Virial theorem holds and the total energy of the star

Etot = U +Ω=Ω
2

=− 3
10 − 2n

⎛
⎝⎜

⎞
⎠⎟

GM 2

R

(note	
  typo	
  with	
  “–”	
  sign	
  fixed	
  from	
  earlier	
  version)	
  



Kelvin Helmholz time scale (again) 

   

The time scale required for an adjustment of
stellar structure in the absence of energy sources
other than gravitation is the Kelvin-Helmholtz time 

τKH = 3
10 − 2n

GM 2

RL
where L is the luminosity of the star (or region of the 
the star in light (or neutrinos).

For the sun  τKH ≈ 3
10 − 2n

GM 2

L
= 3

4
GM

2

RL
=7.4×1014  sec = 23 million years

(n	
  =	
  3)	
  

which is close to correct 



  

Consider a star in which radiation pressure is important
(though not necessarily dominant)

dPrad

dr
= d

dr
1
3

aT 4⎛
⎝⎜

⎞
⎠⎟
= 4

3
aT 3 dT

dr

But for radiative diffusion, 
dT
dr

= 3κρ
16πacT 3

L(r )
r 2   so

             
dPrad

dr
= − κρ

4πc
L(r )
r 2

but hydrostatic equilibrium requires 
dP
dr

= − Gmρ
r 2

Recall the definition of the Eddington lumnosity and divide 2 eqns

                   LEd = 4πGMc
κ

⇒

dPrad

dP
= κL(r )

4πGmc
= L(r )

LEdd

Eddington’s standard model (n=3) 



  

Define β =
Pgas

P
 = 1-

Prad

P
 where P= Pgas +Prad ,

dPrad

dP
= (1− β)= κL(r )

4πGmc
= L(r )

LEdd

If, and it is a big IF, β   (or 1-β) were a constant throughout 
the star, then one could write everywhere

                      L(r) = 1− β( )  LEd  



  

β = constant would imply that the star was an n=3 polytrope!

P=
Prad

(1− β)
= aT 4

3(1− β)
⇒T = 3P(1− β)

a
⎡

⎣
⎢

⎤

⎦
⎥

1/4

P =
Pgas

β
=

NAk
µβ

ρT ⇒ P =
NAk
µβ

ρ 3P(1− β)
a

⎡

⎣
⎢

⎤

⎦
⎥

1/4

hence   P3/4 =
NAk
µβ

ρ 3(1− β)
a

⎡

⎣
⎢

⎤

⎦
⎥

1/4

 and 

              P = 
3(NAk)4(1− β)

a(µβ)4

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/3

ρ4/3

If β  = constant thoughout the star, this would be the equation 

for an n = 3 polytrope and the multiplier of ρ4/3 is K. 



   

Recall M = −
n +1( )3/2

4π
ξ1

2 dθ
dξ

⎞
⎠⎟ ξ1

K
G

⎛
⎝⎜

⎞
⎠⎟

3/2

ρc

3−n
2n

K =
3(NAk)4(1− β)

a(µβ)4

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/3

For n = 3, this becomes

M = − 4

π
ξ1

2 dθ
dξ

⎛
⎝⎜

⎞
⎠⎟ ξ1

K
G

⎛
⎝⎜

⎞
⎠⎟

3/2

= 4.56
K
G

⎛
⎝⎜

⎞
⎠⎟

3/2

M = 4.56
3(NAk)4(1− β)

a(µβ)4G3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

M =
18.1M

µ2

1− β
β 4

⎛
⎝⎜

⎞
⎠⎟

1/2Eddington’s quartic  
     equation 

  

lim
β→0

M →0

lim
β→1

M →∞



  

Alternatively

1− β = aG3

3(NAk)4

⎛

⎝⎜
⎞

⎠⎟
π

16ξ1
4 dθ

dξ
⎛
⎝⎜

⎞
⎠⎟

2 µ4β 4 M 2

For stars of constant β, Eddington's quartic equation 
says how β  varies with mass and composition, µ.

Prialnik 5.3 
This is wrong!!! 

  

For each β  there is a unique
M. R drops out. Like a Chandrasekhar

mass, but Mcrit  = f β( )

X	
  



 

µ2 ≈ 0.37 for main 
sequence stars

Correct figures  
from Clayton p. 163 



   

1− β = 4.13×10−4 M
M

⎛

⎝⎜
⎞

⎠⎟

2
µ

0.61
⎛
⎝⎜

⎞
⎠⎟

4

β 4  and since

L(r) =   (1 - β ) LEdd

L= aG3

3(NAk)4

⎛

⎝⎜
⎞

⎠⎟
π

16ξ1
4 dθ / dξ( )ξ1

2 µ4 β 4M 2 4πGc
κ

M

= π 2

12ξ1
4 dθ / dξ( )ξ1

2

acG4

(NAk)4

⎛

⎝⎜
⎞

⎠⎟
µ4β 4

κ
⎛
⎝⎜

⎞
⎠⎟

M 3

= 5.5β 4 µ
0.61

⎛
⎝⎜

⎞
⎠⎟

4
1 cm2  g−1

κ surf

⎛

⎝⎜
⎞

⎠⎟
M
M

⎛

⎝⎜
⎞

⎠⎟

3

L

where κ surf  is the value of the opacity near the surface.

This was obtained with no mention of nuclear reactions.

Mass luminosty 
   Relation 



   

For M not too far from M β is close to 1 and L ∝M3.

 
At higher masses however the mass dependence of β

 becomes important. 0.0004
M
M

⎛

⎝⎜
⎞

⎠⎟

2
µ

0.61
⎛
⎝⎜

⎞
⎠⎟

4

β 4  eventually

dominates and β 4 ∝ M −2 so that L∝M. In fact, as we have 
discussed, the luminosity of very massive stars approaches
the Eddington limit as β → 0



This was all predicated on a very doubtful postulate 
however that  is a constant throughout the  
star (or L(r)/Ledd is a constant). Why or when  
might this be approximately true? 

  

Recall
dPrad

dP
= κL(r )

4πGmc
= L(r )

LEdd

and the energy equation  
dL
dr

=4πr 2ρε(r )   or 
dL
dm

=ε(m)

where ε  is the nuclear energy generation in erg g−1s−1

ε(r ) =
ε(m)dm

0

r

∫

dm
0

r

∫
   and clearly ε(R) =L / M

    define η(r)=
ε(r )

ε(R)
= L(r )

L*

/
m(r )
M*



  

dPrad

dP
= κ (r )L(r )

4πGm(r )c
= L

4πGMc
κ (r )η(r )

Integrating from the surface, where both Prad  and P

are assumed to be zero,  inwards

Prad =
L

4πGMc
κη(r ) P where κη(r ) = 1

P r( ) κηdP '
0(surf )

r

∫
which yields 

1− β =
L

4πGMc
κη(r )



  
1− β = L

4πGMc
κη(r )

The condition for the right hand side being 
a constant, which leads to  being a constant, 
is that, at each r, the pressure weighted  
average product  of opacity times  average energy 
generation interior to r be a constant. Since the energy  
generation is centrally concentrated . 

  

L(r )
L*

/
m(r )
M*

  is slowly decreasing  with m(r) except

at the center. κ (r) on the other hand is slowly increasing  
with r. Either it is a constant (electron scattering) or Kramer's

like proportional to ρT−7/2. But roughly ρ ∝ T3. So the 
product is approximately constant especially where P
is large. This was Eddington's reasoning.



   

For n = 3 one can also derive useful equations for the central
conditions based upon the original polytropic equation for 
mass

M = −4πα 3ρc ξ1
2 dθ

dξ
⎞
⎠⎟ ξ1

= 2.01824 (4πα 3ρc )

and the definitions  α =
Pc (n +1)
4πGρc

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

=      
Pc

πGρc
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

and Pc =
Pideal

β
=
ρcNAkTc

µβ
    and 

ρc

ρ
=

4πR3ρc

3M
= 54.18

Pc =1.242×1017
M / M( )2

R / R( )4

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Tc =19.57×106 βµ
M / M( )
R / R( )

⎛

⎝
⎜

⎞

⎠
⎟ K

Tc =4.62×106 βµ M / M( )2/3
ρc

1/3 K



   

For example,

Tc =4.62×106 βµ M / M( )2/3
ρc

1/3 K

  

The central density of the zero age sun (when its

composition was constant) was 82 g cm−3  and its 
temperature was 13.6 MK (Bohm-Vitense, Sellar Structure
and Evolution, Vol 3, p 156). Its radius was 0.884 times its
present radius. The formula gives for β ≈1, µ = 0.61

Tc = 19.57 (0.61)(1/ 0.884)

=13.5 MK    in very good agreement



   

In order to specfify a the radius (or equivalently the 
mean density)on the on the main sequence, it is 
necessary to specify and energy source, e.g., nuclear
reactions, which we have not done so far. But taking the 

empirical (relation on the MS) that 
R
R

= M
Msun

⎛

⎝⎜
⎞

⎠⎟

2/3

 one has

for β ≈1 (a better job could be done with the quartic equation)
and the ZAMS value for the solar radius

Tc =19.6×106 (0.61)
M / M( )
R / R( )

⎛

⎝
⎜

⎞

⎠
⎟ =  13.5 M / M( )1/3

 MK

These two relations for R  and T predict correctly that more
massive stars should have higher central temperatures and 
lower central densities on the main sequence. 
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Comparison of 
the n=3 polytrope  
of the Sun versus  
the Standard Solar 
Model.  
 
The surface is not 
well fit because the  
surface of the sun 
is convective 
 



l  Trends:	
  
Massive	
  stars	
  have	
  more	
  radia3on	
  pressure	
  dominance	
  
Massive	
  stars	
  have	
  higher	
  T	
  

l  Note:	
  this	
  is	
  best	
  for	
  a	
  ZAMS	
  star—structure	
  
changes	
  as	
  the	
  star	
  evolves	
  


