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We have reached a point where we have most of the
information required to solve realistic stellar models.

A critical piece still mixing is the nuclear physics, but it

turns out that many of the observed properties of stars,
except their lifetimes and radii, reflect chiefly the need to

be in hydrostatic and thermal equilibrium, and not the energy
source.

Historically, prior to computers, stellar structure was often
calculated using polytropes. Even today. they provide a
valuable tool for understanding many stellar properties.



The Stellar Structure Equations
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Still to be defined - ¢



In addition we have or will have the physics equations
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atr=0 L(r)=0, m=0
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atr=R P(R)=0, m=M, T= L(Rz) =~
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These are 7 equations in 7 unknowns: p, T, P, L, ¢, k, andr
which, in principle, given M and initial composition, can

be solved as a function of time for the boundary conditions.

Most of our theoretical knowledge of stellar evolution comes
from doing just that.



Aside: Boundary Conditions

. Radiative Zero BC:

|deally we would use some atmospheric model to tell us
what the temperature BC is at the surface

The T change over the whole star is so large that the
difference between 0 and the real T _; at surface is small —
except when computing a luminosity.

To get effective T at the end, use:
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Polytropes

We assume a global relation between pressure and
density:

Po< p" y=(n+1)/n

n is called the polytropic index. Don’t confuse this
with the adiabatic index which is local.

Some examples:P < p™ or p** n=constant
« Fully convective (adiabatic):

« White dwarfs (completely degenerate):

« Pressure is a mix of gas + radiation, but the ratio is
constant throughout



Polytropes

« Consider HSE
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Polytropes

« Now make this dimensionless
Central density: Q¢

Define: 6 such that p(r) = p.0" (1)
Then:

P(r)=Kp(r)
=K pl07(r) T T
— Kpl—H/n 9n+1(r)

Given n, K, and p_these two equations define the
distribution of pressure and density in the star



Use these assumptions in the equation for
hydrostatic equilibrium
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P(n+N|1d( ,d0)_
4nGp; |r*dr dr

Note that the quantity in brackets has units length?

Define it to be o? then
— —1/2

? P (n+1
oc_zi r2£ =—0" with o= | 2)
redr\ dr | 4nGp; |

dyne gm* cm®

~ = cm” for the dimension of o”

cm? dyne cm*gm



Now define r=oc with £ a dimensionless radius-

like variable. Then
1 d[e00)_ 4
E2dE\ " d&

This is the Lane Emden equation. It involves only

dimensionless quantities and can be solved for a given
n to give 6(&). n does not have to be an integer.

Basically all that went into it was
hydrostatic equilibrium, mass conservation,
and a power law equation of state



Polytrope boundary conditions

ne" =L so at L-¢£=0 0=1

P, o
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but p=p 6" so —=np 6" —
P= P ar Pe dr
N d9: 1  dp and ae o dp

but in spherical symmetry for hydrostatic equilibrium

p is alocal maximumatr=0, so O(;—f =0

Soatat£=0 ﬁ:O

dg



That is
ﬁz— Gmir)p >0 asr—0
ar re
because m(r) o r° approaches 0 faster than r?

And since P=K p* —=yKp"" —

SO % also —0. The density and pressure have local

maxima at the center of the star - no "cusps"

Porp




Polytrope boundary conditions

3) At the surface r = R the density (first) goes to zero so

R.=ad, where &, is where 0(S) first reaches 0



For any value of n, the mass

R ¢
1 — R —
M = J4nr2pdr = 4ro’p, Jézén dé r=os %
0 0 p=p.0"
But the Lane Emden equation says
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The quantity ¢ d_éj IS uniquely determined by n and
&

is given in tables. So we have an equation connecting
M, a. and p_ for a given polytropic index, n.



Cox and Guilli (1965)

2d9 _&

— D
51 1 dg n f_)

0 2.4494 4 BORE 1.0000

1 3.14159  3.14159 3. 28987
1.5 3.65375 2.71406 2.9%071
2 4 35287 241105 11.40254
3 689685  2.01824 54,1825
4 14.97155  1.79723 622.408
4.5 31.8365 1.73780 618947

5 &N 1.73205 o




Further o can be expressed in terms of p_ and K

N 12| +a ~1/2
o = P (n+1) _ Kp. " (n+1) _ Kp. " (n+1)
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which is another useful form which gives M in terms of p_

(or vice versa) for a given K and n. Note that Mis
independent of p_if n = 3.



Another interesting quantity that can be obtained
from the tables is the ratio of central density to average
density - how compact the core of the star is.

D, = P
[J
47 R3
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Pe™a
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See the previous table. The case n =0, D, =1 is the
sphere of constant density case




Analytic solutions

Forn=20, 1, 5, and only for these values, there
exist analytic solutions to the Lane Emden

equation.

Unfortunately none of them correspond to
common stars, but the solutions help to
demonstrate how polytropes can be solved

and they can used for interesting approximate
cases.



n=_0
Technically the case n = 0 is a singularity

P=Kp""" divergesasn —0

This reflects the fact that constant density can only
be maintailed in the face of gravity if the fluid is
iIncompressible (like the ocean; P can vary but not p).

Nevertheless, some interesting properties of polytropes
can be illustarted with n = 0 so long as we don't use the
pressure-density relation explicitly



n=0 -the constant density case
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http://www.vistrails.org/index.php/User:Tohline/SSC/Structure/Polytropes




The first zero of 6 =1-E isat & =\/E
62 1 ,g,:
SO R=\/605

P(r)=P6™'(r)=P6(r) forn=0

P(r):P[1—§—2]=P [1— rj ]
’ 6 © 0“6

2
but(x=R: R SO P(r):PC(1—r—2]
& e R

For ideal gas pressure and constant composition

T would have the same dependence (p=constant)
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p=Pla T(r):TC(1—r—2j
u R
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but also g =| —& > = C > =—— SO
 4nGp; 4nGp; \/E
4
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L _21R'Gp? _ (3” pcij_GMp
c 3 B 2R 1 2R

This agrees with what can be obtained by
integration of the equation of hydrostatic equilibrium.
aP  GM
dar - r

surf
de P ——Gijdr Gzﬂgp

but from the polytropic equation we learn how

o,

P varies with r



Recall M=—4ra°p & Zgj

This last quantity, §fd—gj , IS @ number that
&

depends on the poytropic index n. For n = 0 it is just -2\/5
(see table) and so

M=4

6
6\/7 be

as one would expect for constant density. So we understand
sars of constant density quite well.



Other analytic solutions exist forn=1and 5

n=1

1d(,.d0)_
?d_«&( d&j ’

The solution is order zero Spherical Bessel function

Sin R
0(&)= 5§:>§1=7rat9=0 o= —
nb. lim 27 1 (I'Hopital's rule)

E—0



n=1 continued

1/2 1/2
P_(n+1) P R
o= = -
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So P =—p’R*

Ao E=ar="" o =S _R gy o
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n=1 continued

M= —4ro’p &7 @]
;

fﬂQ =—n forn=1
dé :
3
so M =—4ra’p 512@ =47°p Rl_4 p R’
Cc dg 5 C ﬂ 72: C
ZG P 3/2
but P. = —p°R? soR®= | = -
T 2Gp;



n=1 continued

The density adjusts to keep the same radius no matter
what M is. R is independent of M.

This may seem a bit strange but actally neutron stars
are approximately polytropes with index 0.5 <n<1.
Central density rises with M but radius does not vary much.



n=5

1d(,.d0) .
?d_&( dé] ’

-1/2
0 = {1+%52} which =0 only asé — o

_5/2
o 1 ~ 2.3* K3 | see 12
p_ = {1 + 552} M = [ e PC1/5 pages back
13
aM?*G®
p_ 4/3

This configuration, which is not very physical has an infinite
radius and a finite mass, central density and central pressure.
It is infinitely centrally concentrated and we will see later has
infinite binding energy. There are no solutions, analytic or

otherwise for n > 5. Most physically relevant polytropes
have 1.5 <n <3.



Analytic Solutions
Note tendency of all to agree with n = 0 at the origin

1.0 — n=0—

— n=1
-_— nNn=5
0.8}

0.4

0.2}

0.0




The General Case
(0 <n<5)

The general solution requires numerical integration of
the Lane Emden equation. There are tools available for
this purpose. A simple program is also given at the
class website

http://nucleo.ces.clemson.edu/home/online tools/polytrope/0.8/




From Pols (2011) do
In his notationz_=¢§, 6 =—¢&7 ( )

Table 4.1. Numerical values for pcf pic :

n Zn 0, pelp
0 2.44949 4 89898 1.00000
1 3.14159 3.14159 3.28987
1.5 3.65375 2.71406 5.99071
2 4 35287 241105 11.40254
3 6.89685 201824 54.1825
4 1497155 1.79723 622.408
45 31.8365 1.73780 6189 .47

5 0o 1.73205 00




In the general case, we know M, n, and K (e.g. from the EOS):

First get o from the given mass

AnGo* "\ g

n/(n-1)
M =-4ro° {(HH)K} 52(0“9) = o as function of M, K, and n
N >

Where we have réplaced p_ using the definition of o

1/2 1/2 1/2
[P N Ko 0+ _[ ket +1)
4nGp? | 4nGp? - 4nGp?

— —n/(n-1)

(n+1)K
_4nGa2_
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Once one has n, « and K, p_,p,and R easily follow.

— —n/(n-1)

~ (n+1)K
p"__47rGoc2 )
Pe = p,
p



Note the existence of a mass-radius relation

n/(n-1)
W=t [ IR a0
ArGo’ "\ dé
&
—(n-1) ]
M B ( 47m3)<n—1) (n+1DK
~E2(do dé)é 4nGo?
) i
M :(471_)‘1 03132 (n+1)K
~£2(d6/dg), G
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move ¢ to other side



n—1
M an 1 (1
~£%(de/de), ) 4ne(e] ((n+1)K)
- ~(n-1) n
GM a3—n_ |:(I’7-I—1)K:|
-&?(do/d¢), 476G
Substituting the value of R a=R/¢,
- ~(n-1) .
GM R 3_”_ [(n+1)K]
~£2(de/dg), &) 4nG

(n-1)

n

move G"1 to other side

For a given n and K, the right hand side is constant and

M~ R(n—3)/(n—1)

or

R _ M(n—1)/(n—3)



GM B 3_n_ [(n+1)K]n
_512(d6/d§)5 E,  47nG

Note the existence of "singularities” atn =1 and n =3

For n = 1 the mass dependence drops out and the radius
IS independent of the mass (the central density just adjusts).
Even more interesting for n = 3, the radiis drops out and
one just a critical mass whose radius is undefined. This
will have important implications for the maximum mass of
white dwarfs and for massive stars.



Mass radius relation for white dwarfs:

For a non-relativistic white dwarf y=5/3 which implies n = 3/2

GM
—¢r(dordE),
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http://en.wikipedia.org/wiki/White dwarf




The Chandrasekhar Mass

7(n=1)

ou (e Lo

&i(dordg), | \&) 4G
) ] 4/3

If fully relativstic throughout, P=Kp™® andn =3

o | [4KT
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M (4K)
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Ch 3/2
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Another useful expression is for the central pressure
P — Kp(n+1)/n
Use the previous equation for the mass-radius relation to solve for K

as a function of R and M and put it in the equation for P
- ~(n=1)

GM [5}“_ [(n+1)K]’

~E2(do/ dé)g E AnG
gl =i (3-n)in
P :Kp(n+1)/n — |:(47TG) :| GM [E] p(n+1)/n
e (n+1) ]| ~&(do/dg), ¢ ;

-1
Butp =pD_ = 3M3 _3[d0 so we have Rinterms of p_ and M
° " 4rnR G\ d¢ ). ¢

(3-n)/3n
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So we can obtain P_ as a function of just Mand p_

—_1 Vn=Un+1I3 ~4/ns1-1in g g1-An+1in-13 g-2+2/n-2/n+2/3
Fe= n+1 (47r) G M S
—1+1/n-1/n+1/3
[ﬁ] p1+1/n—1/n+1/3
dé :
—2/3
p :(475)1/SGM2/3 p4/3 §—4/3 @
° n+1 c 7t | dé 5
P =C GM2/3p4/3
1/3 B 1-2/3
4
Cn=( )1 & (?j Pols. p 49 (4.18)
n-+ I 5 ;|

which is a slowly varying function of n

C_ =0.542 C_, =0.431
C_, =0.364

n=



PC — CnGM2/3p;1/3
3

1) For a given polytropic index and mass the ratio —=-

Pe
is a constant as the star expands or contracts.
2) For a given polytropic index this ratio increases
as M?
3) For a given mass this ratio does not vary much
across a reasonable range of polytropic indices
1.5<n<3

N kT
Important example: Suppose P =P = P
U

3

T
Then — in a contracting polytrope is a constant
Pe

(that increases with mass). Stellar cores will evolve
trying to keep p_ TC3 and higher mass stars will
have a higher central temperature at a given central
density
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Log Temperature (K)

Actual models
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Critical Masses

0.08 M, Lower limit for hydrogen ignition

045 M, helium ignition

725 M, carbon 1gnition

925 M, neon, oxygen, silicon ignition (off center)
~11 M, ignite all stages at the stellar center

These are for models that ignore rotation. With rotation the
numbers may be shifted to lower values. Low metallicity may

raise the numbers slightly since less initial He means a smaller
helium core.



log Central T [K]

log Central Density [g/em**3]




Temperature as functions of p,

One can solve explicitly for the central temperature
in terms of the density if the pressure is entirely due

to ideal gas
_ PNKT,
'Dc:GI\/Izlgpjl3 Cr = Poea = ‘S
GM2/3 1/3 C
T = Pe B C =0.36 forn=3
N k

2/3

C

T=151x107 K | M| [ ) B |y

C M_| 061) 036)"
if p_=160 g cm™ for the sun

(actually 15.7 M K today from neutrinos)



1.0 p

n==~0

B _ ~— Sun & Earth

0.8—

0.6—

plr) / Pc

0.4—

0.2

0.0—

r /R,
The structure of the sun and earth compared with polytropes of
various indices (from M. Zingale). The sun is about an n = 3 polytrope.



Useful Polytropic Indices

n ¥ Description
0 - Incompressible gas; constant density
0.42857 10/3  Thomas-Fermi EOS
1 2 analytic solution to Lane-Emden equgation; constant F,
1.5 5/3 ideal monatomic gas EOS; convective; non-relativistic degenerate
2 3/2 Holzer & Axford’s maximum ~ for an accelerating solar wind
2.5 /5 ideal diatomic gas EOS
3 4/3 Eddington’s standard model; ultra-relativistic degenerate; constant M,
3.25 17/13 Chandrasekhar’s constant-e Kramers model
5 6/5 Schuster sphere of infinite radius
00 1 Isothermal gas; Bonnor-Ebert sphere
. £2
n=0 6¢=1-= £o =6
n=1 0O ="5 G-
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The gravitational binding energy of polytropes

First a useful identity:
n+1 1

For a polytrope P=Kp’ = Kp " = Kp

dP= K”T”p“” dp

P

but — =Kp""
P multiply and divide
by (n+1)
d(E] :5P(1—”)/” dp:(Kn_—Hp1/n dp]l 1
o) n n p(n+1)
1 dP

(n+1) p



The gravitational binding energy of polytropes

So now let's calculate the gravitational binding energy:

Q=- —dm—

0 cent

Integrate by parts
jd(uv):uv = Judv+ Jvdu

Judv:uv—Jvdu

em* " 1% Gm? d(G) G
Q =- — — dr since ot Il e

Gm 1 ST‘f _d

2r

GM? 1 °F Gm?
=— — — dr
2R 2 r?

At the surface the first term is zero




Now use the equation of hydrostatic equilibrium
dP=-(—Gm/r)(p/r)dr

GM? 1 °7 Gm? .
— dr from previous page

Q=

2R 2 J
2 surf
= — GM +1 j m£ from hydrostatic equilibrium
2R 2 cent p
2 surf
:_GM +n+1 de P
2R 2 cent p

since 2F - (n+1)d(£] from ID 2 pages ago
p p



GM? n+1°f (Pj .
J md| — | from previous page
2R 2 cent p

 GM* +[n+1 ET’” n+1%f P
2R 2 P cent cent

at the center m = 0; at the surface P= 0; drop 2nd term
GM* n+1°f P

Q= - —dm
2R 2 cent p
but by the Virial Theorem
surf
Edm -2
cent p 3
2
So O _ GM MLk 1 O
2R 6

2
O 1_n+1 _0 6—n—1 :_GM
6 6 2R

o

5-n) 2R



2
O _ 3 \GM
5-n)] R

This is the gravitational binding energy of a polytrope of index
n with mass M and radius R. Note the singularity at n = 5 and
also the correct n = 0 limit. Note also that the polytrope of
mass M and radius R is more tighly bound if it is more
centrally condensed, i.e., n is larger



For example if the sun could be characterized by
a polytropic index n = 3, its binding energy
would be

L _36M_ 5(6.67x10‘8)(1 99x10%)’
° 2 R, (6.96x10")
=5.7x10" erg
Accurate stellar models give 6.9x10* erg
To the extent that any star is supported by ideal gas pressure,
the Virial theorem holds and the total energy of the star
Q 3 ]GMZ

E_=U+Q=""=—
z 2 (10-2n) R

(note typo with “—” sign fixed from earlier version)



Kelvin Helmholz time scale (again)

The time scale required for an adjustment of
stellar structure in the absence of energy sources
other than gravitation is the Kelvin-Helmholtz time
. 3 GM?
" 10-2n RL
where L is the luminosity of the star (or region of the
the star in light (or neutrinos).

3 GM* 3GM,
1 10-2n L 4R

=7.4x10" sec = 23 million years

Forthesun 1
(n=3)

which is close to correct



Eddington’s standard model (n=3)

Consider a star in which radiation pressure is important
(though not necessarily dominant)

Pog (17| 447007
dr dr\3 3 ar
But for radiative diffusion, ﬂ= 3kp _ L(r) SO

dr 16macT® r?
d'Drad _ Kp L(r)

ar 4rec r?
but hydrostatic equilibrium requires
daP  Gmp
dar P
Recall the definition of the Eddington lumnosity and divide 2 egns
4rGMc
L., = ” =

dP kL(r)  L(r)

rad __

dP  4nGmc L_,




P
Define f =—2= =1- ;’d where P=P_ +P_,,

P
dP kL(r L(r
rad:(»l_ﬁ): ( ) — ( )
dP drGme L_

If, and it is a big IF, S (or 1-) were a constant throughout
the star, then one could write everywhere

L(r) = (1— /3) L.



8 = constant would imply that the star was an n=3 polytrope!

P 4 _ 1/4
e AT :T:{st ﬁ)}

“(1-B)  3(1-B) a

P. Nk Nk [3P(1- ﬁ)}“4
p =9 _ T=P-=

B uﬁp AR { 2

hence P** =

3-8 | g
uﬂ { a }

3<NAk>4<1—ﬁ>r i
a(uB)”

If B = constant thoughout the star, this would be the equation

for an n = 3 polytrope and the multiplier of p** is K.



3/2 3/2
n+1 8-n
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For n = 3, this becomes
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Alternatively
For each f3 there is a unique

_ ﬁ aG’ T ‘u4 ﬁ4 M?2 M. R drops out. Like a Chandrasekhar
3(N,k)* 16" (d@) mass, but M_, =f(j3)

ds

For stars of constant 3, Eddington's quartic equation
says how 3 varies with mass and composmon L.
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Figure 5.3 Solution of the Eddington quartic equation.
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_ MY 1Y g aras
1- B=4.13x10 [M@] (O.61j B* and since
L(r)= (1-ﬁ)LEdd

3
L:( aG 4] T : 1 B 47rGCM
SINKY" ) 16¢/ (d6 1 dg). K

_ - ( acG* ](,LL“,B“) 1
12¢! (do1dg) (INK)" )L«

4 3 .
1em?a’t Ml M Mass luminosty
:5'5'34( - ] ( : j( ) L@ Relation

0.61 K M

surf O

where k_ . is the value of the opacity near the surface.

rf
This was obtained with no mention of nuclear reactions.



For M not too far from M_ Bis close to 1 and L e<M".

At higher masses however the mass dependence of 3
2 4
: M H 4
becomes important. 0.0004 B* eventually
M_ ) \0.61

dominates and 8* «« M~* so that Lo<M. In fact, as we have
discussed, the luminosity of very massive stars approaches
the Eddington limitas § — 0



This was all predicated on a very doubtful postulate
however that § is a constant throughout the

star (or L(r)/L.44 is @ constant). Why or when

might this be approximately true?

dP 47erc L

dL dL
and the enerqy equation —=47nr’pe(r) or — =g(m
gy eq R (r) im (m)

where ¢ is the nuclear energy generationinergg™'s™

(e(r)) =2— and clearly (e(R))=L/M

L(f) m(r)
<8(R > M*




dPrad — K(r)L(r) _ L

= K(r)n(r
P~ 4nGmir)c  4nGhe M)
Integrating from the surface, where both P__ and P

are assumed to be zero, inwards

L r
P = P where r dP'
o= T K) kn(r) J h
which yields
L _
1-p= K1 (r)

AnGMc



L
=P 4rGMc
The condition for the right hand side being
a constant, which leads to § being a constant,
IS that, at each r, the pressure weighted
average product of opacity times average energy

generation interior to r be a constant. Since the energy
generation is centrally concentrated .

Kkn(r)

L(r) , m(r)
L.
at the center. x(r) on the other hand is slowly increasing

is slowly decreasing with m(r) except

with r. Either it is a constant (electron scattering) or Kramer's
like proportional to pT~""?. But roughly p o« T°. So the

product is approximately constant especially where P

Is large. This was Eddington's reasoning.



For n = 3 one can also derive useful equations for the central
conditions based upon the original polytropic equation for
mass

M = —4na’p & dg] =2.01824 (4na’p,)
&
P 1 1/2 P 1/2
n+
and the definitions o = A 2) = —
4rGp; nGp;
P N kT AR’
and P_= ool _ Pel' e andp_cz " P _ 5448
5 up p

P =1.242><1017

R/R

T =19. 57><106/3u[( j))]

T =4.62x10° Bu(M/M_)" p



For example,
2/3 1/3

T.=4.62x10° Bu(M /M )" p* K

The central density of the zero age sun (when its
composition was constant) was 82 g cm™ and its
temperature was 13.6 MK (Bohm-Vitense, Sellar Structure
and Evolution, Vol 3, p 156). Its radius was 0.884 times its
present radius. The formula gives for =1, u=0.61

T =19.57 (0.61)(1/0.884)

=13.5 MK in very good agreement



In order to specfify a the radius (or equivalently the
mean density)on the on the main sequence, it is
necessary to specify and energy source, e.g., nuclear
reactions, which we have not done so far. But taking the

2/3
empirical (relation on the MS) that RE = (Mi) one has

©) sun

for B =1 (a better job could be done with the quartic equation)
and the ZAMS value for the solar radius

T =19.6x10° (0.61)[(M/M©)] = 135(M/M,)" MK

RIR.)

These two relations for R and T predict correctly that more
massive stars should have higher central temperatures and
lower central densities on the main sequence.
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e Trends:
Massive stars have more radiation pressure dominance
Massive stars have higher T

« Note: this is best for a ZAMS star—structure
changes as the star evolves

Table 7.2. Eddington Standard Model

M/ Mg 3

1.0 0.9970
2.0 0.9885
5.0 0.9412
10.0 0.8463

50.0 0.5066




