
IN3200/IN4200: Chapter 1
Modern processors

Textbook: Hager & Wellein, Introduction to High Performance Computing for Scientists and
Engineers



Objectives of Chapter 1

A high-level overview of the architecture of modern
cache-based microprocessors
Introduction of important concepts, which will be useful for
writing efficient code later
Discussion of inherent performance limitations



“Stored-program computer”



The “stored-program computer” concept

Instructions (produced by a compiler) and data are stored in
memory
Instructions are read and executed by a control unit
An arithmetic/logic unit “does the work” which is coded in the
instructions
The speed of memory determines how fast instructions and
data can be fed to the control and arithmetic units—limitation
of performance
I/O facilities enable interaction with users



CPU

CPU (central processing unit)—is the “brain” of a computer.

CPU incorporates control and arithmetic units (and many other
components), together with appropriate interfaces to memory and
I/O.

CPU has a “clock”, which at each clock cycle synchronizes the logic
units within the CPU to process instructions.



Cache-based microprocessor



Important hardware components

Arithmetic units for floating-point (FP) and integer (INT)
operations
Registers hold operands to be accessed by instructions
Load (LD) and store (ST) units handle instructions that
transfer data to and from registers
Instructions are sorted into several queues, waiting to be
executed (probably not in the order they were issued)
Caches hold data and instructions to be (re-)used



Pipelined functional units

Subdividing complex operations into simple components that can
be executed using different functional units, it is possible to
increase instruction throughput—the number of instructions
executed per clock cycle.

This is the most elementary example of instruction-level parallelism
(ILP).

Optimally pipelined execution leads to a throughput of one
instruction per cycle per pipeline.



Pipelining

Pipelining in microprocessors follows the same principle of
assembly lines in manufacturing: Workers (functional units)
are highly skilled and specialized for a single task.
Each worker executes the same step, over and over again, on
different objects.
If it takes m different steps to finish the product, m products
are continuously worked on, in different stages of completion.
If all tasks take the same amount of time, and all workers are
continuously busy, eventually (after the initial m steps) one
product will be finished per time step.



A simple example of no pipelining

For simplicity, let us suppose every instruction has five stages, each
taking one cycle.

The following picture shows the situation of no pipelining:



The situation with instruction pipelining



More about pipelining

Complex operations such as loading and storing data or performing
floating-point arithmetic cannot be executed in a single cycle. The
“fetch–decode–execute” pipeline is thus applicable, in which each
stage can operate independently of the others.

These still complex tasks are usually broken down even further.
The benefit of elementary subtasks is the potential for a higher
clock rate as the functional units are kept simple.



Example of “vector product”

Arrays of floating-point values: A B C

for (i=0; i<N; i++)
A[i] = B[i] * C[i];

Suppose a floating-point multiplication is decomposed into five
subtasks. (A floating-point value is (sign)× mantissa × 2exponent.)

1 separation of mantissa and exponent on B[i] and C[i]
2 multiply mantissas of B[i] and C[i] (recall that a mantisa is

a binary fraction with non-zero leading bit)
3 add exponents of B[i] and C[i]
4 normalize result
5 insert sign



Depiction of a pipeline



Simple mathematical model for pipelining

An m-stage pipeline has latency (or depth) of m cycles. The
wind-up and wind-down periods are both m − 1 cycles.

For a pipeline of depth m, executing N independent operations
takes N +m − 1 cycles. The speedup versus “no pipeling” is

Tseq

Tpipe
=

N ·m
N +m − 1

The throughput, average number of operations finished per cycle,
can be calculated as

N

Tpipe
=

1
1+ m−1

N



Example of pipeline throughput



Pipeline bubbles

Very complex calculations (like floating-point division or special
math functions) tend to have very long latencies, and are only
pipelined to a small level or not at all. In such cases, stalling the
instruction stream becomes inevitable, leading to so-called “pipeline
bubbles”.

Avoiding such complex functions, if possible, is a useful technique
for code optimization (to be discussed in Chapter 2).



Superscalarity

Goal: To produce more than one “result” per cycle.

Multiple instructions are fetched and decoded concurrently
Address and other integer calculations are performed in
multiple integer (add, mult, shift, mask) units
Multiple floating-point pipelines run in parallel
Caches are fast enough to sustain more than one load or store
operation per cycle

Superscalarity is a special form of parallel execution, and a variant
of ILP.

Out-of-order execution and compiler optimization must work
together to fully exploit superscalarity.



SIMD

The SIMD (single-instruction-multiple-data) concept became widely
known with the first vector supercomputers in 1970s.

Modern cache-based processors have instruction set extensions for
both integer and floating-point operations. They allow the
concurrent execution of arithmetic operations on “wide” registers,
each holding multiple numerical values.



Example of SIMD



Memory hierarchy

Data can be stored in a computer system in many different ways.

CPU has a set of registers, which can be accessed without delay.

In addition, there are several levels of cache, holding copies of
recently used data items.

Main memory of a computer is much slower (than the caches).



Depiction of memory hierarchy



Cache

Caches are low-capacity, high-speed memories that are commonly
integrated on the CPU die.

L1 (level 1) data cache
L1 instruction cache
L2 and L3 unified caches

The purpose of cache—reducing the impact of main memory’s
small bandwidth and high latency.



Cache hit and miss

Whenever the CPU issues a read request (“load”) for transferring a
data item to a register, the L1 data cache is checked. If the wanted
data item is found in L1, this is called a cache hit, otherwise a
cache miss occurs.

In case of a cache miss in L1, data must be fetched from upper
cache levels or, in the worst case, from main memory.



Cache eviction

If a data item needs to be loaded into a cache where all cache
entries are occupied. One of the occupant entries has to be evicted
by a hardware-implemented algorithm (typically following the
least-recently used strategy) to give space.



Temporal locality

If data items loaded into a cache are to be used again “soon
enough”, then this is called good temporal locality.

Suppose accessing a data item in cache is a factor of τ faster than
accessing the main memory. Let β denote the cache reuse ratio.
Suppose access time to main memory is denoted by Tm, access
time to cache thus Tc = Tm/τ .

The average access time will be

Tav = βTc + (1− β)Tm

Performance gain due to cache can be calculated by

G (τ, β) =
Tm

Tav
=

τTc

βTc + (1− β)τTc
=

τ

β + (1− β)τ



Curves of performance gain



Cache lines

The content of a cache is organized as cache lines. (A cache line
has space for multiple data items.) This is for reducing the latency
penalty for streaming—large amounts of data are loaded into the
CPU, modified, and written back without the potential of reuse “in
time”.

All data transfers between caches and main memory happen on the
cache line level.

If a code has good spatial locality, that is, the probability of
successive accesses to neighboring items is high, the latency
problem can be significantly reduced.



Cache mapping

If a line of data items from main memory, to be loaded into cache,
can be freely placed on any unoccupied cache line, it is called a
fully associative mapping.

Unfortunately, it is hard to build large, fast and fully associative
caches because of large bookkeeping overhead.

On the other end, a directly-mapped cache—a line of data items
can be placed only on a prescribed cache line—runs the risk of low
cache utilization.



Directly-mapped cache



m-way associative



The problem of “first cache miss”

Although exploiting spatial locality and cache lines can improve
cache efficiency, there is still the problem of latency on the first
miss.



Prefetch

Prefetching supplies the cache with data ahead of the actual
requirements from an application code.

Typically, a hardware pre-fetcher can detect regular access patterns
and try to read ahead the needed data.

To completely hide the cache miss latency, the memory subsystem
must be able to sustain a certain number of outstanding prefetch
operations.



How many outstanding prefetch operations needed?

If T` is the cache miss latency and B is the bandwidth.

Suppose each cache line is of length Lc (in bytes), then loading a
cache line due to cache miss takes a time of

T = T` +
Lc

B

The number of cache lines that can be transferred (without paying
the latency penalty) during time T is the number of outstanding
prefetches, P , that the processor must be able to sustain. So we
have

P =
T` +

Lc
B

Lc
B

= 1+
T`
Lc
B



Prefetch helps to overlap computation with data transfer



Multithreaded processors

All modern microprocessors are heavily pipelined. In case there are
frequent “pipeline bubbles” caused by, for example,

dependencies
memory latencies
insufficient loop length,
branch mispredictions

The consequence is that a large part of the execution resources is
idle (wasted resources).



Multithreading

Hyper threading or simultaneous multithreading (SMT) capabilities
are thus built into modern processors.

Multiple architectural states of a CPU core
An architectural state comprises all data, stauts and control
registers
However, resources such as arithmetic units, caches, queues,
memory interfaces are not duplicated

One CPU core “appears to be composed of several cores (also
called logical processors). Multiple instruction streams, or threads,
can be executed in parallel.



SMT

All threads share the same execution resources, so sometimes it is
possible to fill pipeline bubbles that arise due to installs in one
thread. SMT may enhance instruction throughput (instructions
executed per cycle).

Whether the concept of SMT pays off is code-dependent and
hardware-dependent!



Performance metrics

Theoretically, the components of a CPU core can operate at some
maximum speed called peak performance.

Whether this limit can be reached for a specific application code
depends on many factors (one of the key topics of Chapter 3).

Performance metrics:

The performance at which the floating-point units generate
results for multiply and add operations is measured as
floating-point operatins per second (Flops/sec).
The most important data paths are those to and from the
caches and main memory. The performance, called bandwidth,
of these paths is quantified in GBytes/sec.



Multicore processors

A higher clock frequency will allow a CPU to execute the
instructions faster. However, Increasing the clock frequency can
have a serious impact on the power dissipation.

On the other hand, reducing the clock frequency allows placing
more than one CPU core on the same CPU die (or more generally,
the same package), while keeping the same power envelope.



More about multicore CPU

The caches on the different levels can be private or shared. Sharing
a cache enables superfast communication between the cores. An
opposite effect of sharing can be cache bandwidth bottlenecks.



Example of a 4-core CPU

Intel Nehalem (actually a very old CPU)



Challenges with using multicore CPUs

In order to use all the resources belonging to the multiple
cores, parallel programming must be adopted. (This will be
one of the topics for later lectures.)
The memory bandwidth available per core can be a challenge.
So programming techniques for memory traffic reduction will
be even more important!



Vector processors

An very important processor architecture for HPC in the past
However, some of the concepts and techniques related to
vectorization are still used today



Basic ideas

Instructions operate on vector registers that can hold a large
number of arguments
The width of a vector register is called the vector length Lv

MULT and ADD pipelines are multitrack
One or several load, store or combined load/store pipes are
connected directly to main memory

The paradigm of SIMD



Block diagram of vector processor



SIMD for A = B + C

Target calculation

for (s=0; s<N, s++)
A[s] = B[s] + C[s];

A vectorization-capable compiler will automatically translate into
the following pseudocode:

for (s=0; s<N, s+=L) {
int E = min(N-1,s+L-1);
vload V1(0:L-1) = B(s:E);
vload V2(0:L-1) = C(s:E);
vadd V3(0:L-1) = V1(0:L-1) + V2(0:L-1);
vstore A(s:E) = V3(0:L-1);

}

V1 V2 V3: vector registers, L: vector length Lv



Vectorization

Writing a program so that the compiler can generate effective
SIMD vector instruction is called vectorization.

Sometime this requires reformulation of code or inserting directives
to help the compiler identify SIMD parallelism.

If a code cannot be vectorized, it makes no sense to use a vector
computer!

A prerequisite for vectorization is true data independence across
iterations of a loop. (Forward references are allowed, but not
backward references.)



Branches in vectorized loops (example 1)

for (i=0; i<N; i++) {
if (y[i] < 0.)

x[i] = s*y[i];
else

x[i] = y[i]*y[i];
}



Mask registers

First, a vector of boolean values is generated by the logic pipeline.
Then both branches are executed for all loop indices. Finally the
boolean vector is used to choose the correct results.



Branches in vectorized loops (example 2)

for (i=0; i<N; i++) {
if (y[i] > 0.)

x[i] = sqrt(y[i]);
}

There is only the if branch (no else branch). Also, the sqrt
calculation is expensive. Execution for all loop indices can be a
huge waste of resource. What should be done in such a case?



The gather/scatter method


