

ulm university universität

Jun.-Prof. Dr. D. Mugnolo R. Pröpper WiSe 2011/2012

Blatt 7 zu

Funktionalanalysis

bis 12.12.

- 1. Sei X ein Banachraum und $M \subset X$. Zeige, dass folgende Aussagen äquivalent sind:
 - i) M ist beschränkt, d.h. $\exists m < \infty \, \forall x \in M : ||x||_X \leq m$,
 - ii) M ist schwach-beschränkt, d.h. $\forall \phi \in X' \exists m_{\phi} \forall x \in M : |\phi(x)| \leq m_{\phi}$.

Hinweis: Prinzip der gleichmäßigen Beschränktheit.

2. Sei H Prä-Hilbertraum über $\mathbb K$ mit Skalarprodukt $(\cdot|\cdot)$ und $x,y\in H.$

Zeige, $||x|| := (x|x)^{1/2}$ definiert eine Norm auf H.

Beweise die Polarisationsformeln:

$$(x|y) = \frac{1}{4}(\|x+y\|^2 - \|x-y\|^2)$$
, falls $\mathbb{K} = \mathbb{R}$, bzw. $(x|y) = \frac{1}{4}\sum_{k=0}^{3} i^k \|x+i^k y\|^2$, falls $\mathbb{K} = \mathbb{C}$.

Beweise die Parallelogrammgleichung: $||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$.

3. Sei E ein normierter Raum mit Norm $\|\cdot\|$.

Zeige, dass die Norm genau dann von einem Skalarprodukt induziert wird, wenn sie die Parallelogrammgleichung erfüllt. (Zur Einfachheit beschränke man sich auf $\mathbb{K} = \mathbb{R}$.)

Hinweis: Benutze die Polarisationsformel.

4. Seien X, Y, Z normierte Räume und $T \in \mathcal{L}(X, Y), S \in \mathcal{L}(Y, Z)$.

Zeige: (ST)' = T'S

Zeige: $T'' \circ i_X = i_Y \circ T$, wobei $i_X : X \mapsto X''$ bzw. $i_Y : Y \mapsto Y''$ die kanonischen Abbildungen gind