

Autonomous Flight Termination System (AFTS)

Joel J. K. Parker

PNT Policy Lead NASA Goddard Space Flight Center

> ICG-14 WG-B 10 Dec 2019

AFTS

Concept of Autonomous Flight Termination System

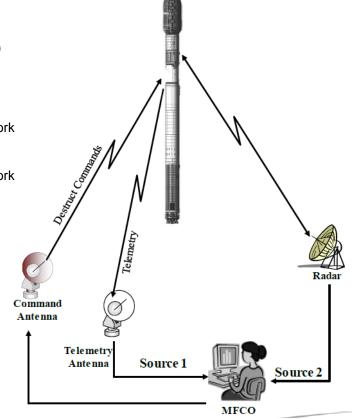
- Box on the vehicle (AFTU)
 - Tracking from GPS and INS sensors
 - Rule set built in pre-flight period
 - If a rule is violated the flight is terminated
- Radar and Command stations recede into past
- Telemetry down-link drops from safety critical to sit awareness, post-flight, & mishap

Some jobs stay with the humans

- Clear to launch
 - Good AFTU load
 - Clear range
 - Weather constraints
- Mishap announcement and investigation
- Post-flight data review
- Status:
 - After hardware qualification, software certification, and 8 shadow flights, the NASA AFTU flew operationally on Rocket Lab Electron on Friday, Dec 6, 2019

Traditional FTS

Flight Systems

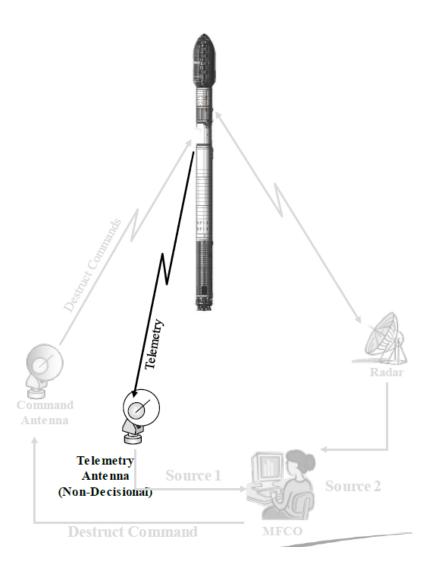

- Flight Termination System
 - Receiver
 - FTS Logic Box
 - Battery
 - UHF Antenna
 - Hybrid Coupler
 - Safe & Arm
 - Ordnance
- Metric Tracking Sources (RCC 324)
 - GPS
 - Telemetry Encoder
 - Telemetry Transmitter
 - S-band Antenna
 - L-band Antenna
 - Couplers
 - Power Distribution Box
 - Vehicle Battery
- Radar Transponder
 - Transponder
 - C-band Antenna
 - Hybrid Coupler
 - Power Distribution Box
 - Vehicle Battery

Ground Systems

- Command Transmitters
 - Power Supplies (Redundant Sources)
 - Antennas (Omnis & Directional)
 - Amplifiers (10 kW Tubes)
- Telemetry Receivers
 - Antennas
 - Decoders
 - Ground Communications Network
- Radars
 - Radar Sites
 - Ground Communications Network
 - Timing Infrastructure
- Mission Flight Control
 - MFCO
 - Telemetry Officer
 - Certified Displays

Operational Considerations

- Telemetry Formats
- Telemetry Tapes
- Launch Constraints
- Range assets are degrading and/or being decommissioned


Autonomous FTS

Flight Systems

- Metric Tracking Sources (RCC 324)
 - GPS
 - L-band Antennas
 - Coupler
 - IMU/INS
 - Flight Computer
 - Power Distribution Box
 - Vehicle Battery
- Flight Termination System
 - Autonomous Flight Termination Unit
 - Safe & Arm
 - Thrust termination/Ordnance

Other

Preflight Testing

Project: Autonomous Flight Termination System (AFTS)

- Definition
 - The Autonomous Flight Termination System (AFTS) is an independent, self-contained subsystem mounted onboard a launch vehicle
 - AFTS autonomously makes flight termination / destruct decisions using configurable software-based rules implemented on redundant flight processors using data from redundant GPS/IMU navigation sensors
- Applications
 - Primary FTS for unmanned Range Safety Operations
 - Primary FTS or Crew advisory system for human space flight
- Advantages
 - Cost reduction due to decreased need for ground-based assets
 - Global coverage (vehicle does not have to be launched from a range)
 - Increased launch responsiveness
 - Boundary limits increase due to 3-5 second gain from not having MFCO
 - Can support multiple vehicles simultaneously (such as flyback boosters)

AFTS Launch Demonstrations to mature flight software

Flight/Launch Demos:

- Sept. 27, 2005, aircraft flight test near Kennedy Space Center
- Apr. 5, 2006, Two-stage Terrier Orion Sounding Rocket at WSMR
- Mar. 21, 2007, SpaceX Falcon 1 at Reagan Test Site, Kwajalein
- Nov. 8, 2007, F-104 aircraft at Kennedy Space Center SLF
- Sept. 21, 2010, Two-stage Terrier Orion Sounding Rocket at WFF
- Nov. 19, 2013, DoD ORS demonstrated ATK AFTS on Minotaur from WFF

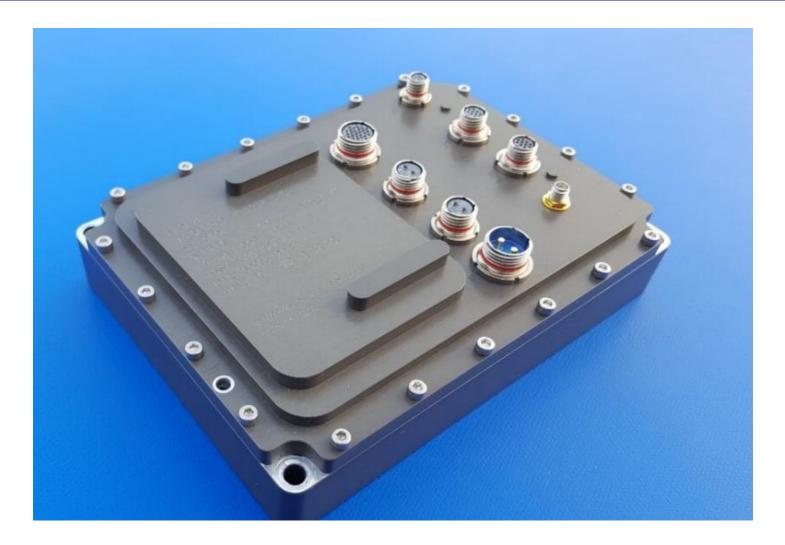
Sounding Rocket at WSMR

Project: AFTS Technical Progress

CASS Software

- NASA wrote the original AFTS Core Autonomous Safety Software (CASS) algorithms and software
- The USAF Air Force (30th Space Wing) rewrote CASS to make it safety critical for operational use, and distributes CASS to users via SUA within ITAR
- KSC performed testing, IV&V and AFTS project management
- An AFTS using CASS Operational Release 1.1 (OR 1.1) was flown operationally for the first time by a launch vehicle provider on February 19, 2017 with many other companies to follow.
- All launch vehicle providers plan to use CASS in their AFTS, even though their AFTS hardware and wrapper software may vary from company to company

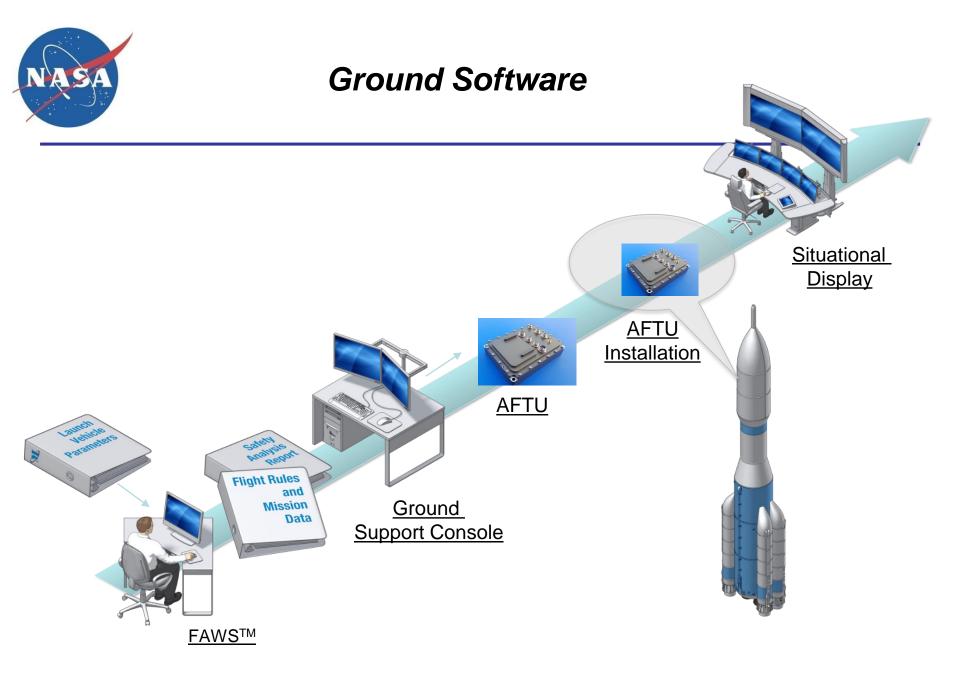
WRAPPER Software


- The Wrapper software is necessary to interface between CASS and AFTS hardware
- NASA KSC has released Wrapper software via free technology transfer to Range Users within ITAR

AFTS Hardware Development

- One launch vehicle provider has developed, certified, and qualified their proprietary AFTS hardware, along with their custom Wrapper software, for operations on the Eastern and Western Ranges
- KSC has designed a generic AFTS hardware architecture that can be used as a reference by future Range Users wanting to implement an AFTS on their launch vehicle – the commercialization office at KSC has released the NASA hardware design via free technology transfer to Range Users within ITAR

AFTS Engineering Flight Hardware


AFTS Overview

AFTU Overview

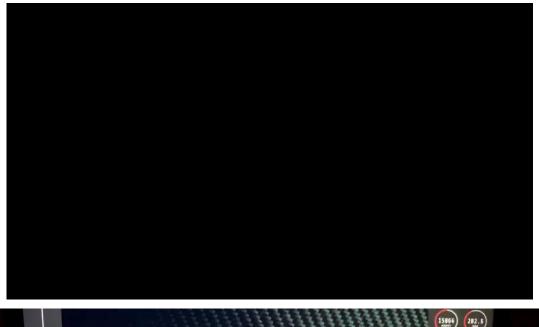
- < 1.3kg
- Nominally <7 watts at 28 V DC
- Estimate 5cm X 14cm X 19cm
- Outputs discrete signals or up to 5.5 amps at 28 V DC
- Term or TermNOT (for normally closed valves) configurable
- Using Mil-spec parts (simplified piece parts plan) in critical circuits
- Qualifying to AF/NASA/FAA range requirements.
- Up to 5 sensor combinations may be connected to one AFTU
 - GPS, INS, GPS/INS hybrid or IMU.
- Single or cross strapped configurations.

Key Requirements

- No single point failure (failsafe exception for single AFTU)
- Ensure no inadvertent termination
- 0.999 Reliable at 95% Confidence.
- RCC 319-14
- RCC 324-11
- 91-712
- CASS Requirement Spec

NASA AFTU Flight Tests

Rocket Lab Electron Launch



UP Aerospace Spaceloft Launch

- DARPA initiated a partnership with NASA on a low cost, flight demo to flight test KSC's AFTS Reference Design Hardware
- The ride share demonstrated the AFTS system (with validated CASS SW).
- This demonstrated a path forward that doesn't require traditional Range support for vehicle tracking and command destruct.
- The DARPA funded, NASA AFTS payload launched on Rocket Lab's Electron Launch Vehicle from New Zealand in 5/2017.
- DARPA has selected three additional RL flights to fly two of their AFTS units on each as shadow/certification flights.
 - All three certification flights have been completed
- NASA AFRC purchased 6 units; two flown on UP Aerospace SL-12 launch, on a bonus RL launch, two (from SL-12) reflown on UP Aerospace SL-14, two to NASA WFF for testing. WFF flew one on a sounding rocket in Oct 2019.
- The first launch using the DARPA/NASA AFTU for primary operations occurred on Friday, Dec 6, 2019.
- Several launch vehicles have baselined the NASA AFTS units into their vehicles for operational use in the future.

Rocket Lab Electron Launch NASA AFTS First Operational Flight

https://youtu.be/bTylS5a

JSGI?t=1535