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THE STUDY OF THE BUCKLING PHENOMENON OF
INDUSTRIAL RAILWAYS IN THE JIUL VALLEY

ILDIKO BRiNAS'

Abstract: The compression load of straight bars, for which the cross-sections are
smaller compared to their length, causes a phenomenon of bending along the longitudinal axis.
Upon reaching a certain level, called the critical level of the stresses, the bending deformations
begin to increase beyond the bearing limit of the bar. It yields instantly, due to an unstable
elastic deformation state, although the material's resistance limit has not been exceeded. The
irreversibility of the phenomenon is dangerous especially for the railway tracks and is not fully
mastered by calculation methods. They can eventually establish the level of the critical demand,
which has values specific to each rail configuration. It is accepted that for loads lower than this
level, buckling of the respective rail does not occur. The longitudinal tension in the railway
tracks occurs due to the expansion caused by their heating under the action of the sun's rays, but
also due to the friction between the rails and the train wheels. This paper proposes the
realization of a study model of the buckling of the railway tracks. This model is represented by
an assembly, built in the SOLIDWORKS application for which a Buckling simulation was
made. The imposition of two distinct temperatures on the rails and crossties is the source of the
model's request. The increase in the temperature of the component parts of the assembly causes
their expansion, so implicitly the appearance of some longitudinal deforming forces, specific to
the buckling phenomenon.
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1. GENERAL PRESENTATION OF RAILWAY TRANSPORT

Railway transport involves a complex of well-correlated and coordinated work
processes, which carry out the punctual, safe and regular transport of goods and people.
A train is a railway vehicle consisting of two or more wagons linked together in certain
ways and set in motion by one or more locomotives. The railway represents the
infrastructure of railway transport. It consists of understructure and superstructure, with
the railway superstructure (figure 1) placed on the understructure.
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The railways

The crosstie

Understructure
Fig. 1. Railway superstructure

Two rails placed in parallel at an equal, constant distance, called gauge, form
the railway (figure 2).

=

Fig. 2. The railway

The traverse can be made of wood or reinforced concrete. The prestressed
reinforced concrete crossties (figure 3 and 4) have a longer service life than the
wooden crossties. But these are more expensive, harder to handle and more fragile.

Fig. 3. Prestressed reinforced concrete crosstie
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Fig. 4. The elevations of the prestressed reinforced concrete crosstie

2. SIMULATION MODEL OF THE BUCKLING PHENOMENON

In order to simulate the buckling of the railway under the action of
temperature, the model in figure 5 was built in SOLIDWORKS. It is an assembly made

up of parts, namely two rails and two crossties.

Fig. 5. The assembly of crossties with rails

2.1 The rail of the model

The rail is made out of alloy steel. The mechanical and thermal characteristics
of the material from which the rails are made are shown in figure 6 and are
automatically provided by the SOLIDWORKS application.
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Fig. 6. Characteristics of the material from which the rail is made
2.2 The crosstie of the model

The crosstie is made of concrete, and figure 7 shows its characteristics.
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Fig. 7. Characteristics of the material from which the crosstie is made
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2.3 Building the model

The model of the railway subjected to the simulation of buckling under the
action of temperature consists of, as I mentioned before, two rails and two crossties.
Standard geometric links (concurrence and distance) specific to the SOLIDWORKS
application were established between them, as can be seen in figure 8.

55 SOLIDWORKS | ™ 58 Vew tment Toon Smtien motevendo weiew v # | - -W-@-D-F s B - Aty Tese Sine SLOKSM = B wwmsowwoms e O« 7 - - B X

Acsernihy | Layout | Shetch | Evsuste | Rendes Tock Semotaion Fiow Smulston | Semdab POF Exporter |
x4 14 5 B T T

fasRbas

" ‘w C Detadts Protsverks Cugtay Sute »)
b Snacts Dotk el ot Ouioy Sse>)

ol

Fig. 8. Establishi;lg the geome/tric links between the component parts of the assembly
3. MODELING OF THE RAILWAY BUCKLING
3.1. Establishing the buckling simulation parameters

The model presented and built in section 2 was subjected to a Buckling type
simulation in SOLIDWORKS as seen in figure 9. In the simulation we considered that
the rigid elements in terms of deformation are the crossties, and the assignment of this
property is shown in figure 10.

It was considered that the railway tracks are fixed at the ends. Figure 11 shows
how to establish this property by assigning the Fixed Geometry feature to the rail end
surfaces.
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Fig. 10. Establishiﬁg the Rigid characteristic for the crossties
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Fig. 11. Assigning the Fixed Geometry feature to the rail track end surfaces

The crosstie - railway assembly can move only in the horizontal plane during
the simulation. This aspect was materialized in the simulation setting for the bottom
ground contact surfaces of the crossties and for the contact surfaces of the rails and
crossties, with a Roller type attaching connection as shown in figure 12.
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Fig. 12. Establishing the Roller type attaching connection
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We simulated the heating of the rails and crossties through thermal stress. The
rail has a lower temperature (figure 13) because the material from which it is built has
a higher thermal conductivity than the material from which the crossties are built,
which were imposed a higher temperature (figure 14).
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3.2. Establishing the properties of the Buckling simulation, discretization
of the model

The simulation properties were set as seen in figure 15. Accessing the option
causes the window in figure 16 to open where the number of buckling modes was set to
17.
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Fig. 15. Accessing the simulation options
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The simulation assumes in a first stage the discretization of the assembly
subjected to the simulation. Different dimensions were adopted for the finite elements
of rails and crossties. Figure 17 shows the obtained ensemble.

Fig. 17. Discretization of the study ensembl
4. RESULTS OBTAINED AFTER THE SIMULATION

The obtained results are presented in figures 18—34. They indicate the trend or
shape of the railway deformation for the 17 buckling modes imposed.
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Fig. 34. Deformation of the railway for buckling mode 17

Table 1 shows the maximum buckling amplitudes corresponding to modes
1-17. As can be seen, the table is sorted in ascending order according to the size of the
deformation. Thus, it can be noted that the amplitude of the largest deformations due to
buckling, correspond to modes 11 and 2.

Correlating this observation with the shapes of the deformations shown in
figures 19 and 28 respectively, we can draw the conclusion that the maximum
deformations due to buckling correspond to those shapes that show a displacement of
the crossties in the plane horizontally. Of these two cases, the maximum deformation
occurs when the two crossties move in the same direction.
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Table I Maximum buckling amplitudes

No. Buckling mode Deformation [mm]
1 11 3.72E-04
2 2 1.87E-04
3 13 8.40E-05
4 7 6.90E-05
5 17 5.50E-05
6 4 5.34E-05
7 3 5.10E-05
8 16 5.10E-05
9 6 4.80E-05
10 10 4.60E-05
11 14 4.60E-05
12 15 4.60E-05
13 5 4.40E-05
14 9 4.17E-05
15 1 3.70E-05
16 8 3.30E-05
17 12 3.30E-05

Figure 35 shows the safety factor values for each buckling mode.
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Fig. 35. Safety factor values depending on the buckling mode

Analyzing the values in figure 35, shows that the lowest safety factor
corresponds to buckling mode 1, despite the fact that this mode does not have the
largest deformation of the assembly shape.

CONCLUSIONS

The phenomenon of longitudinal buckling is a specific one, with an
irreversible character, involving mechanical yielding under a certain stress. Buckling
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often has catastrophic consequences for railways. For the study of this phenomenon
that can also occur due to an expansion generated by thermal stress, we built a model
for simulating the buckling of railway tracks in SOLIDWORKS, performing a
Buckling type simulation. In order to obtain a more complete picture of the buckling
phenomenon, we set the number of modes to 17. The request of the model is a thermal
type and it is obtained by imposing two distinct temperatures on the rails and cross
members of the assembly. Increasing the temperature of the component parts of the
assembly causes their expansion. Following the dilation, longitudinal deforming forces
appear that are specific to the buckling phenomenon.

For the considered model, it is found that the amplitude of the largest
deformations due to buckling correspond to modes 11 and 2. From the analysis of the
shape corresponding to these modes, it is observed that both show a displacement of
the crossties in the horizontal plane. The maximum value of the deformation amplitude
is obtained if the two crossties move in the same direction. Buckling mode 1 has the
lowest safety factor, although this mode does not determine the largest amplitude
deformation of the shape of the assembly under analysis. The presented method can be
applied to other railway configurations, which require a different shape of rails, a
different shape of crossties, other materials from which they are made, but not least,
the imposition of other temperatures as sources of longitudinal stresses.
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