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ABSTRACT
Cyber-physical systems (CPS) aim to monitor and control
complex real-world phenomena where the computational cost
and real-time constraints could be a major challenge. Many-
core hardware accelerators such as graphics processing units
(GPUs) promise to enhancing computation, leveraging the
data parallelism often found in real-world scenarios of CPS,
but performance is limited by the overhead of the data trans-
fer between the host and the device memory. For example,
plasma control in the HBT-EP Tokamak device at Columbia
University [11, 18] must execute the control algorithm in a
few microseconds, but may take tens of microseconds to copy
the data set between the host and the device memory. This
paper presents a zero-copy I/O processing scheme that maps
the I/O address space of the system to the virtual address
space of the compute device, allowing sensors and actuators
to transfer data to and from the compute device directly.
Experiments using the plasma control system show a 33%
reduction in computational cost, and microbenchmarks with
more generic matrix operations show a 34% reduction, while
in both cases, effective data throughput remains at least as
good as the current best performers.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]:
Real-time and embedded systems; C.5 [Computer System
Implementation]: Miscellaneous; D.3.4 [Programming
Languages]: Processors—Run-time environments

1. INTRODUCTION
Cyber-physical systems (CPS) represent next generation

networked and embedded systems, tightly coupled with com-
putation and physical elements to control real-world phe-
nomena. Their control algorithms, therefore, are becom-
ing more and more complex, which distinguishes CPS from
traditional safety-critical embedded systems in terms of the
computational cost. In other words, “real-fast” (or really
fast) is often as important as “real-time” (or predictable) in
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Figure 1: Columbia’s HBT-EP “Tokamak”.

CPS due to interaction speeds of the real world. This com-
bined real-fast and real-time requirement of CPS imposes a
core challenge on computer systems technology.

Plasma control for fusion is an application of energy CPS
where complex algorithms must run at a very high rate.
Figure 1 shows the HBT-EP high-beta Tokamak device at
Columbia University [11, 18]. It must process 96 inputs and
64 outputs of data in a few microseconds to magnetically
control the 3-D magnetohydrodynamic instabilities. An idea
was to parallelize the algorithm using the graphics process-
ing unit (GPU) and CUDA [16], which is a well recognized
set of parallel computing technology. However, GPU pro-
gramming is currently not tailored to integrate sensor and
actuator devices. This is due to the fact that the current
GPU programming stack is completely independent of I/O
device drivers. Since it can take tens of microseconds to
transfer hundreds of bytes data between the CPU and the
GPU, the state of the art is not adequate to apply the GPU
for plasma control in real-time. This is a significant problem
for not only plasma control but also any CPS applications
that are augmented with compute devices.

In order to effectively utilize GPUs for low-latency large-
data CPS applications, platform systems are desired to pro-
vide a data communication scheme that can bypass the host
computer, connecting GPUs and I/O devices directly. To
the best of our knowledge, however, there is currently no
standardized support for such a direct data transfer mech-
anism other than specialized commercial products for the



InfiniBand network [13]. The CUDA programming frame-
work provides memory addressing technology that allows
the GPU to directly access data allocated on the host for
the purpose of mitigating the data transfer overhead, but
this scheme is ill-suited for low-latency GPU computing due
to the high cost of GPU’s data access to the host memory.
Given that GPUs are increasingly deployed in CPS appli-
cations [3, 10, 12, 14], and real-time GPU resource man-
agement techniques are starting to be developed [1, 2, 5, 6,
7, 8, 9], it is time to look into a tighter integration of I/O
processing and GPU computing.

Contribution: This paper presents a new zero-copy I/O
processing scheme for GPU computing. This scheme allows
I/O devices to directly transfer data to and from the GPU
by mapping of memory and I/O address space. We investi-
gate the problem of existing schemes for low-latency GPU
computing, and demonstrate performance advantages of our
zero-copy scheme with a case study using Columbia’s Toka-
mak device. Experimental results show the clear benefit of
our zero-copy scheme on the achievable latency. We also
provide microbenchmarks to highlight more generic prop-
erties of the I/O processing schemes. By clarifying these
capabilities, we aim to not only improve performance but
also broaden the scope of CPS that can benefit from state-
of-the-art parallel computing technology.

Organization: The rest of this paper is organized as
follows. Section 2 describes the system model and assump-
tions behind this paper. Section 3 presents our zero-copy
I/O processing scheme, and differentiates it from the ex-
isting schemes. Section 4 describes details of system im-
plementation. In Section 5, a case study of plasma con-
trol is provided to demonstrate the real-world impact of our
contribution. Microbenchmarks are also used to evaluate
more generic properties of the I/O processing schemes in
Section 6. Section 7 introduces related work, and this paper
concludes in Section 8.

2. SYSTEM MODEL
This paper assumes that the system is composed of com-

pute devices, input sensors, and output actuators, in addi-
tion to typical components of a host computer. We restrict
our attention to GPUs as auxiliary compute devices, which
best embrace the concept of many-core computing in the
state of the art. There must be at least three device drivers
employed by the host computer to manage the GPU, sen-
sors, and actuators, respectively. We assume that they are
connected to the Peripheral Component Interconnect Ex-
press (PCIe) bus of the host computer. The contribution of
this paper is not limited to the PCIe bus; it is applicable
to any interconnect that is mappable to I/O address space.
There are two kinds of memory associated with the address
space. One is the host memory, also referred to main mem-
ory. The other is the device memory, which is encapsulated
in the GPU. Both memory types are (and must be) map-
pable to the PCIe bus.

Algorithm Implementation: The control algorithm is
parallelized and offloaded to the GPU. We use CUDA to im-
plement the algorithm, but any programming language for
the GPU is available under our model, because the applica-
tion programming interface (API) considered in this paper
does not depend on a specific programming language. All
input data come from the sensor modules, while all output
data go to the actuator modules. The buffers for the data

can be allocated to any place visible to I/O address space.
According to the control system design, the data may or
may not be further copied to other buffers. In either case,
they are expressed as data arrays in the control algorithm.

PCIe BAR: The current form of the GPU is a PCI
device. Such a PCI-based compute device is typically de-
signed to expose base address registers (BARs) to the sys-
tem, through which the CPU can access specific areas of
the device memory. There are several BARs depending on
the target device. For example, NVIDIA GPUs provide the
following BARs:

BAR0 Memory-mapped I/O (MMIO) registers.

BAR1 Device memory aperture (windows).

BAR2 I/O port or complementary space of BAR1.

BAR3 Same as BAR2.

BAR5 I/O port.

BAR6 PCI ROM.

Often the BAR0 is used to access the control registers of the
GPU while the BAR1 makes the device memory visible to
the CPU given their different sizes of memory space. Specif-
ically the BAR1 region can be directly accessed by the GPU
using the unified memory addressing (UMA) mode that al-
lows all memory objects allocated to the host and the de-
vice memory to be referenced by the same address space.
This BAR1 region can also be accessed by the CPU using
the I/O remapping function supported by the operating sys-
tem kernel as well as I/O devices by obtaining the physical
I/O address of the corresponding BAR1 region. This pa-
per makes use of the latter technique to achieve direct data
communications between the GPU and I/O devices.

Limitation: There are several other assumptions that
simplify our system model. The system contains only the
single real-time process (task) that executes the control algo-
rithm, except for trivial background jobs to run the system.
We ignore the problem of shared resources among multiple
tasks, which have been addressed elsewhere [1, 5]. We also
focus on a single instance of the GPU to implement the con-
trol algorithm. This is not a conceptual limitation of this
paper; the algorithm implementation could just as easily use
multiple GPUs.

3. I/O PROCESSING SCHEMES
This section presents a new zero-copy I/O processing scheme

for GPU computing, which differs from existing schemes in
that both GPU execution and data transfer times are min-
imized to achieve the goal of low-latency GPU computing.
In the rest of this section, we first investigate two existing
schemes, H+D and Hpin, that are already supported by
CUDA. We then present a new scheme called Dmap and
introduce a hybrid variant of Dmap and an existing one,
suited for a specific case.

3.1 Host and Device Memory (H+D)
This is the most common scheme of GPU computing in

the literature. In this scheme, there is space overhead in that
the input and output data exist in both the device and the
host memory at the same time and must be explicitly copied
between them. Furthermore, there is a time penalty incurred
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Figure 2: The traditional H+D scheme.
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Figure 3: The traditional Hpin scheme.

to copy data at a cost nearly proportional to the data size.
When applying this scheme, we allocate the same size of
buffers to the host and the device memory individually and
copy data between them explicitly.

Figure 2 illustrates an overview of how this scheme works:

1. The device driver of the input device configures the
input device to send data to the allocated space of the
host memory.

2. The device driver of the GPU copies the data to the
PCI-mapped space of the host memory, which is ac-
cessible to the device memory.

3. The device driver of the GPU further copies the data
to the allocated space of the device memory. Now, the
GPU can access the data.

4. When GPU computation is completed, the device driver
of the GPU copies the output data back to the PCI-
mapped space of the host memory.

5. The device driver of the GPU further copies the output
data back to the allocated space of the host memory.

6. Finally, the device driver of the output device config-
ures the output device to receive the data from the
allocated space of the host memory.

As described above, the H+D scheme incurs overhead to
copy the same data twice for each direction of data transfer
between the host and the device memory. This overhead
might be a crucial penalty for low-latency GPU computing.

3.2 Host Pinned Memory (Hpin)
As an alternative to allocating the buffers to both the host

and the device memory, we can allocate the buffers to page-
locked PCI-mapped space of the host memory, also known
as pinned host memory. Since recent GPU architectures
support unified addressing, this memory space can be ref-
erenced by the GPU. A major advantage of this scheme is
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Figure 4: The new zero-copy Dmap scheme.

that the input and the output devices can also directly ac-
cess this memory space, which means that there is no need
for intermediate buffers and data copies to have the GPU
access the data.

Figure 3 illustrates an overview of how this scheme works.
Unlike the H+D scheme, the data transfer flow is pretty
simple. There are no additional data copies required, since
PCI-mapped space is directly accessible to the input and
the output devices. It is also pinned to always reside in the
host memory, and therefore the GPU can read and write the
data directly. However, this data access is expensive as it is
a PCIe communication.

3.3 Device Memory Mapped to Host (Dmap)
We now present Dmap, which overcomes the problems

of the H+D and the Hpin schemes. The key to the Dmap
scheme is having the PCIe BAR point to the allocated space
of the device memory, while mapping the allocated space
of the host memory to the PCIe BAR as well. As a re-
sult, when the input device sends data to the PCI-mapped
space of the host memory, the data seamlessly appear on the
corresponding allocated space of the device memory. This
scheme, hence, does not require the CPU to intermediate
to copy the data between the host and the device memory,
which removes the latency of data transfer observed in the
H+D scheme. On the other hand, it also maintains the per-
formance benefit of having the data on board, solving the
problem of slow data accesses faced in the Hpin scheme.

Assuming that some space is already allocated to the de-
vice memory, the system is required to support the following
functions to have I/O devices directly access this memory
space:

• Mapping Memory: As technology reads today, PCIe
BARs are the most reasonable windows that see through
the device memory from the host and I/O space. There-
fore, we first need to reserve the corresponding size of
PCIe BAR space, and next map it to the allocated
space of the device memory. Now, if the user requests
to access it from the host program, the system needs
to further remap it to the user buffers.

• Unmapping Memory: PCIe BARs are limited re-
sources. Most GPUs currently provide at most 128MB
for a single BAR. Therefore, unmapping the device
memory from the BAR is an essential function for this
scheme.

• Getting Physical Address: The mapped space is
typically referenced as virtual memory space of the
GPU or the CPU. However, I/O devices often target



physical address for data transfer. Hence, the system
needs to maintain the physical address of the PCI-
mapped space, and relay it to the device drivers of
I/O devices.

In fact, PCIe BARs are not only the windows that can
communicate with the device memory. Recent GPUs sup-
port special windows upon the memory-mapped I/O (MMIO)
space. To simplify the discussion, this paper focuses on PCIe
BARs, but the same concept of zero-copy I/O processing can
be also applied to any mapping method.

3.4 Device Memory Mapped Hybrid (DmapH )
This is a hybrid of the Dmap and the H+D schemes, which

is in particular suited to communicate between the host and
the device memory. Applications of CPS using I/O devices,
thereby, may not benefit from this scheme; if the host mem-
ory is used to store some data, this scheme is still effective.

This scheme is the same as Dmap as far as memory allo-
cation and mapping. For transferring data from the host to
the device memory, we have the host processor reference the
device memory directly through the mapped region, like the
Dmap scheme. However, we perform an explicit copy from
the device to the host memory for an opposite direction of
data transfer. The motivation to do so is that writing to the
host memory is more expensive than reading, due to func-
tionality of the host memory management unit (MMU). We
evaluate the impact of this scheme in Section 6.

4. SYSTEM IMPLEMENTATION
GPU programs often execute in virtual address spaces. In

CUDA programming, for instance, a device pointer acquired
by the memory allocation API functions, such as cuMemAl-

loc() and cuMemAllocHost(), represents a virtual address.
The relevant data-copy API functions, such as cuMemcpy-

HtoD() and cuMemcpyDtoH(), also use this pointer to the
virtual address rather than a physical address. As long as
the programs remain within the GPU or the CPU, this is a
suitable addressing model. However, CPS applications often
require I/O devices for sensing and actuation. The current
software stack and the API design of GPU programming
force these applications to use the host memory as an in-
termediate buffer to bridge between the I/O device and the
GPU. No prior system implementation has allowed data to
move directly between them.

In this section, we present our system implementation of
the Dmap and DmapH schemes using Gdev [8], an open-
source facility of the device driver and the runtime library
for NVIDIA GPUs. A key limitation is that the data access
of I/O devices is limited to the I/O address space. However,
because the GPU is typically connected to the system via the
PCIe bus, we can map the virtual address space of the device
memory to the reserved I/O address space of the PCI bus,
as mentioned in Section 3.3. In this way, I/O devices can
directly access data in the device memory. Specifically, their
device drivers can configure their hardware direct memory
access (DMA) engines to target the physical address associ-
ated with the PCI-mapped space of the device memory.

Our system implementation adds the three functions pre-
sented in Section 3.3 to Gdev. While Gdev is a Linux ker-
nel module for first-class GPU resource management, it also
provides an implementation of the CUDA Driver API [16]
for user programming. The three functions are wrapped

by the Gdev-original extended API functions, cuMemMap(),
cuMemUnmap(), and cuMemGetPhysAddr(), which are com-
patible to the form of the CUDA Driver API. We now pro-
vide the details of these functions:

• Mapping Memory: We assign the second PCIe BAR
region, i.e., BAR1 (among the five of those supported
by hardware as a window of the device memory), be-
cause this is the largest region, often equal to 128MB,
for NVIDIA GPUs. Since these GPUs provide an
MMIO register to point the PCIe BAR to any virtual
address of the device memory, we create special vir-
tual address space dedicated to the PCIe BAR when
the system is loaded. When the user context requests
mapping of some device memory object, we first find
the physical pages allocated to this memory object.
We next set up the page table of the GPU so that
these physical pages are referenced by the virtual ad-
dress space dedicated to the PCIe BAR. Now, these
physical pages are referenced by two virtual address
spaces: one dedicated to the PCIe BAR and the other
associated with the user context. As a result, the data
written to the PCIe BAR can be referenced by the user
context and the mapping is done. If the user context
furhter needs to map the same memory to the host vir-
tual address, we can use a Linux kernel primitive such
as ioremap().

• Unmapping Memory: To unmap the allocated space
of the device memory from the PCIe BAR, we simply
delete the corresponding record of the page table. If
host memory is also mapped, we also call a Linux ker-
nel primitive such as iounmap().

• Getting Physical Address: The operating system
kernel usually provides a function to return the phys-
ical addresses of PCIe BARs. In the Linux kernel, we
can use pci_resource_start() for this purpose.

5. CASE STUDY
In this section, we provide a case study of magnetic con-

trol of 3-D plasma instabilities using the HBT-EP Tokamak
equipped with the GPU and the aforementioned I/O pro-
cessing schemes. This control system requires low latency
and high computing capabilities to achieve a sampling pe-
riod of the order of ten microseconds, while processing 96
inputs and 64 outputs of 16-bit data with a complex algo-
rithm. Implementing the algorithm on the CPU failed due
to insufficient real-time performance. The case study pre-
sented herein, therefore, is significant in that we look into a
possibility of GPU implementations for the plasma control
system.

Figure 5 shows a system architecture used in this case
study. The control input comes from a set of magnetic sen-
sors through a D-TACQ ACQ196 digitizer, and the resulting
control signal is sent to two D-TACQ AO32 analog output
modules to excite control coils. These input and output
modules are connected to the NVIDIA GTX 580 upon the
PCIe bus. We evaluate three schemes against this system
architecture from the viewpoint of GPU execution costs for
the control algorithm and data I/O costs for the data trans-
fer. Each scheme is applied as follows:

• In the H+D scheme, the device driver of the digitizer
transfers the input data set to the buffers allocated



Figure 5: HBT-EP magnetic sensors and control
coils connected with the GPU.

on the host memory. The control program copies this
data set to the device memory via PCI-mapped host
memory space, and the parallelized control algorithm
runs on the GPU with the data on the device memory.
Once the output data set is produced by the GPU, the
control program copies it back to the host memory, and
it is finally pulled by the device driver of the analog
output modules. This is the traditional form of GPU
computing.

• The Hpin scheme pins the input and output buffers
to PCI-mapped host memory space. Since the data
set pushed and pulled by the device drivers of the I/O
modules is directly accessible to the GPU, there is no
need to perform data copies. However, this scheme
must compromise the latency of data access imposed
on the GPU when executing the control algorithm.

• Similarly to the Hpin scheme, the Dmap scheme pre-
sented in this paper uses pinned PCI-mapped host
memory space to allocate the input and out buffers,
and further maps it to the device memory through
PCI BAR space. Thus, there is no need of data copies
while the data access of the control algorithm is limited
within the device memory.

This paper does not provide the details of the control al-
gorithm which is outside the scope of this paper. The out-
line of the control system implementation is that the host
program launches the device program on the GPU once at
the beginning when the system is loaded. The device pro-
gram polls until the input data set arrives. This is due to a
requirement of low-latency computing. The input and out-
put modules are configured to write the input data to and
read the output data from the specified PCI regions through
DMA, respectively. These PCI regions are directly mapped
to the device memory space allocated by the control system,
using the Dmap scheme presented in this paper. In conse-
quence, once the input and output modules are configured,
and the device program is launched at the beginning, the al-
gorithm can keep executing on the GPU, without accessing
the CPU and the host memory at all.

We now show that the Dmap scheme reduces both GPU
execution costs for the control algorithm and data I/O costs
for the data transfer. Figure 6 shows the result of experi-
ments conducted under the three different schemes, respec-
tively. Note that the values of the GPU execution and the
data I/O costs are estimations. In the experiment, we could
measure the sampling periods of the plasma control system
achieved the Dmap and the Hpin schemes while there was
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no point of implementing the H+D scheme in terms of the
total latency. We could also measure the round-trip time of
the data transfer between the sensor/actuator and the GPU.
We estimate details of the GPU execution and the data I/O
costs based on these measured results. In particular, our
assumption is that the Dmap and the H+D schemes should
have the same algorithm cycle, while the the Dmap and the
Hpin schemes should have the same data latency, by na-
ture. The Dmap scheme achieves the highest rate in both
algorithm execution and data transfer. The remaining two
schemes, on the other hand, compromise one or the other of
them. The H+D and the Dmap schemes exhibit the same
performance level for algorithm execution since they both
use the device memory, while the data transfer latency of
the Hpin and the Dmap schemes are equivalent since they
both remove data copies. Comparing the H+D and the Hpin
schemes, one can also see that the impact of overhead intro-
duced by data copies, i.e., 16µs, is greater than that intro-
duced by the GPU accessing pinned host memory space, i.e.,
6µs, on the overall system performance. Curiously, there is
additional latency of 4µs observed when running the control
system. We suspect that this latency comes from some in-
teractions among the host computer, the graphics card, and
the I/O modules. Lessons learned from this evaluation are
summarized as follows:

• Zero-copy I/O processing is very effective for this con-
trol system, reducing the latency of data transfer from
16µs to 4µs. The speed-up ratio is 4×.

• Furthermore, the Dmap scheme reduces the cycle time
of algorithm execution from 6µs to 4µs. The speed-up
ratio is 1.5×. Since the HBT-EP Tokamak accommo-
dates up to 216 inputs, meaning that the cycle time
of algorithm execution is more dominated by data ac-
cesses, the benefit of the Dmap scheme over the Hpin
scheme would be more significant for a larger scale of
plasma control.

The above measurement explains that the control system
can operate at a latency of 16µs. The data transfer from
and to the input and output modules takes 4µs each. The
algorithm execution takes 4µs. Adding additional latency
of 4µs, the total control rate must be able to achieve 16µs.
Figure 7 depicts the screenshot of the oscilloscope where we
measure the signals of the input and the output modules.
The topmost and middle signals represent the input and



Figure 7: Screenshot of the oscilloscope.

the output, respectively, while the lower signal indicates the
base clock. The grid spacing of the X axis is 5µs. The time
interval from the first downward edge in the clock signal
after the input signal goes up to the instant when the output
signal starts uprising is almost equal to 16µs. This means
that the total control processing time is 16µs.

We next demonstrate that the control system is running
properly at a rate of 16µs. The control input comes from a
set of magnetic sensors arranged in a ring, as illustrated in
Figure 5, and the magnetic field that they measure is rotat-
ing, whose orientation is described by a phase. Ideally, the
phase is equivalent to multiplication of time and frequency.
To control this mode, the control system needs to produce
a control signal that generates an equal and opposite field,
which also needs to rotate. Obviously, the two fields should
have a constant phase difference, because it is given by mul-
tiplication of the control processing time and the rotation
frequency. However, in practice, the rotation frequency is
not constant but is changing. As a result, the phase dif-
ference appears to oscillate, with the base output signal,
which can be found as spikes in Figure 8. Now, we measure
the phase difference with the output signal time-shifted by
16µs. In other words, the effective control system latency
is reduced by 16µs. As shown in Figure 9, the spikes are
now all removed. This indicates that the control system is
perfectly in phase with the mode, and the effective control
system latency now must be zero, i.e., the actual latency is
16µs.

Finally, we discuss practical findings of plasma control re-
garding the HBT-EP “Tokamak” device. Figure 10 shows a
comparison of the average perturbation amplitudes with dif-
ferent phasing. The control system incorporates four arrays
of magnetic sensors and control coils, each of which controls
one specific mode. They are placed at different poloidal
angles around the toroidal ring. Due to their different loca-
tions, they measure slightly different amplitudes. From this
experiment, we find that feedback at 280 degrees excites per-
turbation, while feedback at 100 degrees is the right range
for suppression. As compared to no feedback scenario (“No
FB” in the figure), for example, we find that we can suppress
the strength of the rotating field by up to 30% for any mode
observed in this experiment.

Figure 8: Phase difference observed with the base
output signal.

Figure 9: Phase difference observed with the output
signal shifted by 16µs.

6. BENCHMARKING
We now evaluate generic properties of the presented I/O

processing schemes. To do so, we remove constraints of I/O
devices, and focus on naive microbenchmarking programs
of matrix operations performing with the host and the de-
vice memory. In particular, timing analysis of addition and
multiplication of varying sized matrices is conducted. These
programs are considered as the most basic parallel comput-
ing programs also used in prior work [19]. Since our focus
is on data access and I/O processing, but not on compu-
tation, we choose matrix addition as a microbenchmark, as
it is a straightforward operation for the GPU. Matrix mul-
tiplication, on the other hand, is also included to briefly
illustrate how an increase of computational complexity and
data accesses affects time to completion. We also showcase
effective host read and write throughput for each I/O pro-
cessing scheme. This benchmarking clarifies the capabilities
of the presented scheme, not specific to plasma control but
applicable to generic low-latency GPU computing.



Figure 10: Practical findings of plasma control.

The microbenchmarking experiments are conducted using
the NVIDIA Quadro 5000 GPU (448 cores and 2.5GB mem-
ory), which is more end-user oriented than the Tesla C2050
used in the case study. Note that the supported number of
compute cores is the same between these two GPUs.

6.1 Matrix Operations
We first demonstrate performance details of matrix op-

erations. To highlight the details, we use a large size of
2048 × 2048 matrix in this experiment. The properties of
operations focused on are listed as follows:

• Init: GPU initialization time.

• MemAlloc: Memory allocation time, with respect to
the host and/or the device memory.

• DataInit: Matrix initialization time.

• HtoD: Copy time from the host to the device memory
(only H+D).

• Exec: Execution time of the kernel function.

• DtoH: Copy time from the device to the host memory
(only H+D and DmapH ).

• DataRead: Access time to read the result.

• Close: Context destroying time.

Figure 11 shows where the system spends its time in per-
forming a 2048× 2048 integer matrix addition using each of
the four schemes. First, it is clear from Figure 11 that using
our DmapH scheme the total time to completion is less than
the others, almost 34% less than its nearest competitor, i.e.,
the H+D scheme.

A more interesting observation is the comparison of how
much time is spent for each sub-task. For most time cate-
gories, the DmapH scheme seems to enjoy the best of each of
the other three. The memory allocation time for the DmapH
scheme is nearly identical to that of the H+D and the Dmap
schemes, and clearly less than the Hpin scheme. The same
is true for the execution times. Similarly, for data initial-
ization, the DmapH scheme is just as good as the Hpin and
the Dmap scheme, which are superior to the H+D scheme.
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Figure 11: Details of matrix addition.������
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Figure 12: Details of matrix multiplication.

The most notable difference among the four schemes is
the data read time for the Dmap scheme, which is orders-
of-magnitude greater than the rest. A 2048 × 2048 inte-
ger matrix represents 16MB of data, and the Dmap scheme
reads 4 bytes at a time across the PCIe bus. This was the
motivation for our DmapH scheme. Instead of reading one
matrix element at a time, the DmapH scheme first copies
the data to the host before reading. This evinces that the
Dmap scheme may suffer from a large size of data, while it
was very effective for the case study presented in Section 5
that deals with 96 inputs and 64 outputs of 16-bit data, i.e.,
2KB of data.

The same anomaly is present in the execution time for the
Hpin scheme – the GPU must read one element at a time
from the host memory, while in the other three schemes the
data reside on the GPU during computation. This makes the
Hpin scheme increasingly inferior as the data size grows.

Figure 12 shows the same time analysis for matrix mul-
tiplication. The only difference appears in the execution
times. This is not surprising as the multiplication exper-
iments are exactly the same as the addition ones except
for the kernel function on the GPU. In fact, if execution
times are omitted, Figures 11 and 12 would look almost
identical. This observation implies that the zero-copy I/O
processing schemes are not really appreciated by strongly
compute-intensive applications.

While the above experiments do present a real-world sce-
nario, in a real-time system it is more likely that tasks are
performed repeatedly, and therefore the GPU initialization
and closing costs might occur only once – the same con-
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Figure 13: Total matrix addition times.
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Figure 14: Total matrix multiplication times.

text loaded a priori would remain active while only the data
might change. In addition, it could be the case that the
memory allocated for the task could be reused, and only the
contents modified. For these reasons, the remainder of our
analysis focuses only on read, write, transfer, and execution.

Figure 13 shows the time to completion of matrix addition
as a function of matrix size at the logarithmic scale. The
Hpin scheme appears to be the best performer until a ma-
trix size of 32 × 32, corresponding to a data size of 4KB for
each matrix, at which point the DmapH becomes superior.
This is also reflected in the matrix multiplication times, as
shown in Figure 14. One thing to note is the growth rate of
the Hpin in matrix multiplication; since each thread must
perform multiplication and addition n2 times, as compared
with one addition in matrix addition, the number of reads
that occur across the PCIe bus increases by a greater expo-
nential factor. We expect that the time for the Hpin scheme
would eventually surpass the Dmap scheme, as the trend in
the graph indicates.

6.2 Data Throughput
Finally, we evaluate the data throughput of the presented

I/O processing schemes, independent of computational units.
In other words, this evaluation shows the pure performance
of data communication between the host and the device
memory. We use the term “effective throughput” to mean
(size/time) where time is measured from the beginning of
data initialization to the point at which it is actually avail-
able to the GPU. For example, in the case of the H+D
scheme, this corresponds to the total time for the host pro-
cessor to write to each element in the data structure, which
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Figure 15: Host write throughput.������
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Figure 16: Host read throughput.

is in the host memory, plus the time to copy the data to the
device memory.

Figure 15 shows that the write throughput of the DmapH
is better than the H+D scheme by about a factor of 2 and at
least as good as the others, which all coincide almost exactly
in the graph. Meanwhile, Figure 16 paints a slightly different
picture for read throughput. It should not be surprising that
the Hpin scheme outperforms the rest as it represents the
host iterating over a data structure that is already in the
host memory. The H+D and the DmapH schemes, on the
other hand, must first copy the data from the device to the
host memory, and they achieve roughly equal performance.
Note that they coincide in the graph. Finally, the Dmap
scheme is the weakest performer due to a large number of
small reads that occur across the PCIe bus.

7. RELATED WORK
Recent GPU architectures [15, 17] support unified vir-

tual addressing (UVA), which creates a single address space
for the host memory and multiple instances of the device
memory. In particular, NVIDIA GPUs and CUDA provides
the cuMemcpyPeer() function to copy data directly between
GPUs over the PCIe bus without the involvement of the
CPU or the host memory. Yet, it is restricted for use be-
tween NVIDIA GPUs.

GPUDirect [13] and its variant are vendor-specific propri-
etary products to directly connect the GPU and the Infini-
Band network card. They may use a similar approach to
zero-copy I/O processing presented in this paper, but are
not applicable to arbitrary I/O devices. Their architectures
are also not open to the public.

CGCM [4] is an automatic system for optimizing CPU-
GPU communication. It uses compiler modifications in con-



junction with a runtime library to manipulate the timing of
events in a way that effectively reduces data transfer over-
head. PTask [19] provides programming abstractions to use
the GPU, which are supported by the OS. One aspect of
PTask is the use of a data-flow model to minimize data
communication between the host processor and the GPU.
RGEM [6] aims to bound blocking times by dividing data
into chunks, since high-priority tasks may be blocked due
to data transfer in real-time systems. This effectively cre-
ates preemption points to allow finer grained scheduling of
GPU tasks to fully exploit the ability to concurrently copy
data and execute code. All these prior work primarily focus
on the existing data communication basis, while we present
new zero-copy I/O processing schemes.

8. CONCLUSION
In this paper, we have presented a new approach to GPU

acceleration of low-latency CPS applications. This approach
uses mapping of the device memory and the PCIe BAR re-
gion, and configures I/O devices to transfer data to and from
the corresponding PCIe address space instead of the host
main memory buffer space. The plasma control system, de-
veloped as an example of CPS applications, demonstrated
that the presented zero-copy I/O processing scheme achieved
a very high rate of 16µs for full plasma control processing.
The additional microbenchmarking evaluation also clarified
an advantage of zero-copy I/O processing among those cur-
rently implementable for GPU computing. We believe that
the contribution of this paper would facilitate a grander vi-
sion of CPS using heterogeneous compute devices as well as
GPUs.

In future work, we extend the zero-copy I/O processing
scheme for multiple contexts. This extension is essential in
a sense that we can control multiple plants with a single
GPU. A key challenge is to ensure exclusive direct access to
the same memory space; device drivers and runtime libraries
are not able intermediate during DMA transfers. We also
plan to apply the same zero-copy scheme to arbitrary I/O
devices such as Ethernet and Firewire.
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