PRÁCTICA 11

RADIACIÓN TÉRMICA

OBJETIVO

Determinación de la densidad de flujo de radiación procedente de superficies diferentes y estimación de sus emisividades. Determinación de la transmisividad de un vidrio a distintas longitudes de onda. Comprobación de la ley de Stefan-Boltzmann.

MATERIAL NECESARIO

- ✓ Sensor de radiación
- ✓ Lámpara de Stefan-Boltzmann
- ✓ Cubo de Leslie
- ✓ Pantalla opaca
- ✓ Lámina de vidrio

- ✓ Amperímetro
- ✓ Óhmetro
- ✓ Fuente de alimentación
- ✓ Cables para conexiones

INTRODUCCIÓN TEÓRICA

Al conjunto de radiación electromagnética emitida por un cuerpo, a temperatura superior al cero absoluto, se le denomina *radiación térmica*. Esto sucede tanto si se encuentra o no en equilibrio termodinámico. A temperaturas ordinarias (por debajo de unos 600 °C), la radiación térmica emitida por un cuerpo negro (emisor perfecto) no es visible porque la energía radiada presenta una distribución espectral centrada en la región infrarroja del espectro electromagnético (figura 1). Al irse calentando el cuerpo la distribución anterior se desplaza hacia longitudes de ondas más cortas. Entre 600 y 700 °C, se emite suficiente cantidad de energía dentro del espectro visible como para que el cuerpo brille con un color rojo oscuro. A temperaturas aún más elevadas, el cuerpo se hace rojo brillante, e incluso "rojo blanco" (como el filamento de una lámpara).

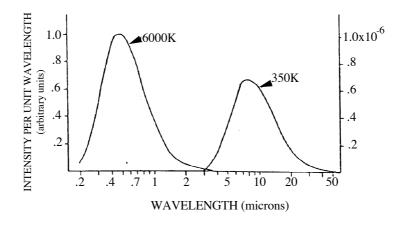


Figura 1. Distribución espectral de la radiación de un cuerpo negro a 6000 K y 350 K.

La ley de Planck justifica la distribución espectral de la radiación para un cuerpo negro. De la misma se deducen además dos corolarios: (i) La ley de Wien ($\lambda_{\max}T=cte$), que establece la longitud de onda a la que se alcanza la máxima emisión, cuyo valor disminuye a medida que aumenta la temperatura, y (ii) la ley de Stefan-Bolztmann, que establece que la densidad de energía emitida por unidad de tiempo (densidad de flujo) J_n es proporcional a la cuarta potencia de la temperatura del cuerpo,

$$J_n = \sigma T^4 \tag{2}$$

siendo $\sigma = 5.67 \times 10^{-8} \, \mathrm{Wm^{-2} K^{-4}}$ la constante de Stefan-Boltzmann. Para un cuerpo no negro, el ritmo al cual se emite la energía radiante depende de la temperatura y de la naturaleza de su superficie, de forma que la densidad de energía emitida por unidad de tiempo viene dada por

$$J = \varepsilon \sigma T^4, \tag{1}$$

siendo ε una característica de la superficie (que denominamos emisividad) relacionada con la naturaleza de la misma, su textura, etc. El valor máximo de la emisividad es 1, y se corresponde con el cuerpo negro.

Por otra parte, cuando la radiación incide en una superficie, parte de la misma se refleja (J_r), parte se transmite (J_t) y parte se absorbe (J_a). La relación entre cada una de estas tres densidades de flujo y la densidad de flujo incidente (J_i) se denomina reflectividad, transmisividad y absortividad, respectivamente. Al igual que la emisividad, definida previamente, todas estas características ópticas son función de la longitud de onda. En esta práctica, en concreto, se determinará la transmisividad $\tau = J_t/J_i$ de una lámina de vidrio en dos regiones espectrales diferentes (onda corta y onda larga).

PROCEDIMIENTO EXPERIMENTAL

Descripción del material

Figura 2. Sensor de radiación

PRECAUCIÓN: EL CUBO PUEDE ESTAR MUY CALIENTE

Figura 3. Cubo de Leslie

El sensor de radiación

Este sensor mide la intensidad de la radiación térmica que incide sobre su abertura (Figura 2). La radiación incidente depende de la que emiten los cuerpos delante del sensor. El elemento sensible es una termopila miniatura que genera una tensión de salida que es proporcional a la intensidad de la radiación. La respuesta espectral comprende desde 0,5 a 40 µm y tiene una tensión de salida entre 1 mV y unos 100 mV, de modo que un milivoltímetro digital es adecuado para la realización de las medidas.

Nótese que aunque no se conoce la relación de calibrado entre la tensión de salida de la termopila y la intensidad de la radiación térmica incidente, la primera es proporcional a la segunda.

Un anillo, desplazable a lo largo del cuerpo del sensor, actúa como obturador de la ventana del aparato. Durante los experimentos dicha ventana permanecerá cerrada mientras no se estén realizando medidas. Esto reduce las variaciones de temperatura en la unión de referencia de la termopila que pueden causar cierta deriva de la respuesta del sensor. (El voltaje producido por el sensor es proporcional a la radiación incidente menos la radiación emitida por el mismo, despreciable si conseguimos que se mantenga aproximadamente a temperatura ambiente, es decir, siempre que se cubra la ventana del aparato.)

Abrir y cerrar el obturador del sensor puede modificar la posición del mismo. En las experiencias en las que la posición del sensor sea crítica, conviene utilizar una delgada pantalla de material aislante que se interpone, mientras no se está midiendo, entre el foco de radiación y el sensor.

El cubo de Leslie

Se trata de un cubo hueco de paredes de aluminio cuyas caras exteriores tienen los siguientes tratamientos: metal pulido, metal mate, pintura blanca y pintura negra (Figura 3). Como foco de calor se utiliza una bombilla de 100 W situada en su interior. La temperatura del cubo se mide mediante un termistor embebido en uno de sus vértices (ver tabla 2 para la conversión de resistencias a temperaturas). El cubo dispone de un interruptor de encendido y de un regulador de la potencia de calefacción que llamamos selector.

La lámpara de Stefan-Boltzmann

Fuente de radiación térmica a alta temperatura (puede alcanzar hasta unos 3000 °C) que consiste de una lámpara incandescente con filamento de tungsteno que se considera tiene una emisividad igual a la unidad (figura 4). Funciona conectada una a fuente alimentación de baja tensión AC/DC con dos salidas: una en corriente continua (DC) con regulación en tensión (de 0 a 21 V) o en intensidad (de 0 a 8 A), y otra en corriente alterna (AC) con incrementos de tensión de 2 V, entre 0 y 24 V. Variando la tensión aplicada a la lámpara mediante la fuente de alimentación, que no debe exceder los 11 V, se obtienen distintas temperaturas del filamento de la lámpara. La temperatura del filamento se calcula utilizando

la tabla 1, que relaciona la resistencia relativa R/R_0 con la temperatura, donde R_0 es la resistencia a temperatura ambiente.

Figura 4. Lámpara de Stefan-Boltzmann

Medida de la emisividad de las superficies del cubo de Leslie.

Se procede a calentar el cubo de Leslie con el selector de potencia en una posición intermedia/alta y, cuando el óhmetro se estabilice (temperatura del cubo aproximadamente constante), mediremos la radiación procedente de las cuatro paredes del cubo (figura 5) empleando el menor tiempo posible. El sensor se ha de situar con sus pivotes en contacto con la superficie del cubo.

Considerando que la cara negra se comporta como un cuerpo negro y que todas las caras se encuentran a la misma temperatura, estimaremos las emisividades del resto de las caras (blanca, Al pulido, Al mate)

mediante el cociente entre la densidad de flujo de radiación emitida por cada una de ellas (J) y la emitida por la cara negra (J/J_n).

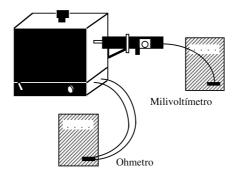


Figura 5. Dispositivo experimental para estimar las emisividades de las caras del cubo.

Al finalizar no conviene desconectar el cubo de Leslie. Sigue utilizándose a la misma temperatura en el siguiente apartado.

Determinación de la transmisividad del vidrio a longitudes de onda corta y larga

En este apartado se trabajará con dos fuentes de energía radiante: (a) Cubo de Leslie; (b) Filamento incandescente de una lámpara.

- (a) Mantendremos el cubo de Leslie a una temperatura constante (la alcanzada en el apartado anterior). Situamos el sensor a unos 5 cm de la cara negra del cubo y medimos J_i . A continuación interpondremos la placa de vidrio y mediremos J_t . Con ambas medidas estimaremos la transmisividad del cubo $\tau \equiv J_t/J_i$, en este caso con radiación de onda larga.
- (b) Con la lámpara con el filamento incandescente se han de realizar medidas similares (se ha de procurar no variar la alimentación de la lámpara para asegurar constancia en la temperatura del filamento). Se estimará la transmisividad del vidrio, en este caso, para radiación de onda corta.

Ley de Stefan-Boltzmann

En este apartado vamos a estudiar la variación de la radiación emitida por un cuerpo con la temperatura. Tomamos como fuente de energía radiante el filamento de la lámpara y admitimos $\varepsilon=1$. El sensor y la lámpara los situaremos tal como muestra la figura 6, cuidando que en todo el proceso no varíen su posición, ni su orientación. Entre medida y medida se colocará entre ambos la pantalla opaca, con la cara reflectora mirando a la lámpara. Para efectuar cada medida retiraremos la pantalla unos instantes, el mínimo tiempo que se necesite, para evitar que el sensor se caliente por encima de la temperatura ambiente. Conectaremos la fuente de alimentación variando la tensión de salida para obtener unos cinco valores entre 2 y 10 V (valores que indique el voltímetro conectado a la lámpara). A cada valor de la tensión (medida en el voltímetro), se mide la intensidad I y la indicación del sensor J. Se calcula la resistencia R del filamento, la resistencia relativa R/R_0 y finalmente la temperatura del filamento T, usando la tabla 2. El valor de la resistencia del filamento R_0 a la temperatura ambiente se ha medido con un puente de Wheatstone de precisión y los resultados se indican en la base de la lámpara.

Dado que no conocemos la relación de calibrado del sensor, la medida de la radiación (J) se realiza siempre en mV (o bien, en unidades arbitrarias). Por lo tanto, en este apartado se comprobará si existe una relación lineal entre J y T^4 , pero la pendiente no coincidirá en ningún caso con el valor de la constante de Stefan-Boltzmann σ .

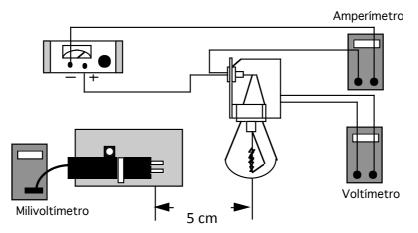


Figura 6. Dispositivo experimental.

PRESENTACIÓN DE RESULTADOS

- (a) Tabla de emisividades de las distintas caras del cubo de Leslie, indicando la temperatura a la que se han realizado las medidas.
- (b) Transmisividad del vidrio para bajas y altas temperaturas. Relaciona los resultados obtenidos con el efecto invernadero.
- (c) Comprueba la ley de Stefan-Boltzmann verificando en una gráfica (ajuste lineal) la proporcionalidad entre la densidad de flujo de la radiación J (en ordenadas) y T^4 (en abcisas).

Tabla 1. Temperatura en función de R/R₀ para el filamento de la lámpara de Stefan-Boltzmann.

R/R ₀	T (K)						
1,0	300	5,48	1200	10,63	2100	16,29	3000
1,43	400	6,03	1300	11,24	2200	16,95	3100
1,87	500	6,58	1400	11,84	2300	17,62	3200
2,34	600	7,14	1500	12,46	2400	18,28	3300
2,85	700	7,71	1600	13,08	2500	18,97	3400
3,36	800	8,28	1700	13,72	2600	19,66	3500
3,88	900	8,86	1800	14,34	2700	26,35	3600
4,41	1000	9,44	1900	14,99	2800		

Tabla 2. Equivalencias resistencia-temperatura para el termistor del cubo de Leslie.

R (Ω)	t (°C)	R (Ω)	t (°C)	R (Ω)	t (°C)	R (Ω)	t (°C)	R (Ω)	t (°C)	R (Ω)	t (°C)
207850	10	66356	34	24415	58	10110	82	4615.1	106	2281.0	130
197560	11	63480	35	23483	59	9767.2	83	4475.0	107	2218.3	131
187840	12	60743	36	22590	60	9437.7	84	4339.7	108	2157.6	132
178650	13	58138	37	21736	61	9120.8	85	4209.1	109	2098.7	133
169950	14	55658	38	20919	62	8816.0	86	4082.9	110	2041.7	134
161730	15	53297	39	20136	63	8522.7	87	3961.1	111	1986.4	135
153950	16	51048	40	19386	64	8240.6	88	3843.4	112	1932.8	136
146580	17	48905	41	18668	65	7969.1	89	3729.7	113	1880.9	137
139610	18	46863	42	17980	66	7707.7	90	3619.8	114	1830.5	138
133000	19	44917	43	17321	67	7456.2	91	3513.6	115	1781.7	139
126740	20	43062	44	16689	68	7214.0	92	3411.0	116	1734.3	140
120810	21	41292	45	16083	69	6980.6	93	3311.8	117	1688.4	141
115190	22	39605	46	15502	70	6755.9	94	3215.8	118	1643.9	142
109850	23	37995	47	14945	71	6539.4	95	3123.0	119	1600.6	143
104800	24	36458	48	14410	72	6330.8	96	3033.3	120	1558.7	144
100000	25	34991	49	13897	73	6129.8	97	2946.5	121	1518.0	145
95447	26	33591	50	13405	74	5936.1	98	2862.5	122	1478.6	146
91126	27	32253	51	12932	75	5749.3	99	2781.3	123	1440.2	147
87022	28	30976	52	12479	76	5569.3	100	2702.7	124	1403.0	148
83124	29	29756	53	12043	77	5395.6	101	2626.6	125	1366.9	149
79422	30	28590	54	11625	78	5228.1	102	2553.0	126	1331.9	150
75903	31	27475	55	11223	79	5066.6	103	2481.7	127		
72560	32	26409	56	10837	80	4910.7	104	2412.6	128		
69380	33	25390	57	10467	81	4760.3	105	2345.8	129		