

Tema 8. Fósforo y sus Compuestos

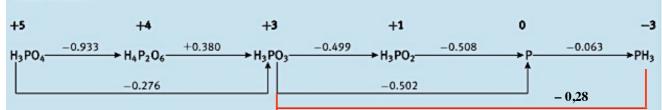
Prof. Responsable: José María Moratal Mascarell Catedràtic de Química Inorgànica (jose.m.moratal@uv.es)

Facultat de Química

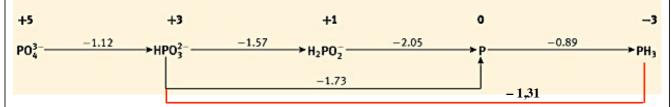
Tema 8. Fósforo y sus compuestos

Indice

Química del Fósforo


- 1.- El Elemento
 - estabilidad de los EO's del Fósforo
 - alotropía, reactividad del Fósforo
- 2.- Obtención industrial del Fósforo
- 3.- Oxidos de Fósforo
- 4.- Oxoácidos del Fósforo
- 5.- Fosfatos
- 6.- Cloruros de Fósforo
- 7.- Fosfina
- 8.- Aspectos biológicos del P y As

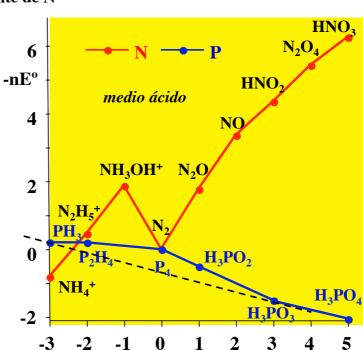
1. Estabilidad de los EO's


1. El Elemento

- EO's comunes \rightarrow -3, 0, +3, +5
 - química redox de P → muy diferente de N
 - **■** EO's comunes de P → reductores
 - mejores reductores en medio básico

Basic solution

(adaptada de: P.W. Atkins, T.L. Overton, J.P. Rourke, M. T. Weller, F. A. Armstrong, Inorganic Chemistry, 5th ed, W. H. Freeman Co, 2010)


$$E^{o}(H_2O/H_2) = -0.828 V$$

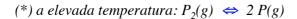
3

1. Estabilidad de los EO's

1. El Elemento

- EO's comunes \rightarrow -3, 0, +3, +5
 - química redox de P → muy diferente de N
 - a) EO's altos
 - $-N \rightarrow oxidantes (*)$
 - $-P \rightarrow estables$
 - » P(+5) el más estable termoquímicamente
 - **• b**) **EO −3**
 - P(-3) menos estable que N(-3)
 - $^{\circ}$ c) EO = 0
 - $N(0) \rightarrow muy estable$
 - ¿P(0)? → debería dismutarse
 - » sólo efectiva en medio básico

(*) NO₃- buen oxidante sólo en medio ácido.


2. Alotropía y reactividad del Fósforo

1. El Elemento

- varias formas alotrópicas y polimórficas
- P(l)/(g) → moléculas P_4 , T_d simétricas (< $PPP = 60^\circ$)
- 1.- Fósforo blanco, P₄
 - alótropo más común ($\Delta G_f^o = 0, \Delta H_f^o = 0$)
 - siempre que condensa $P(g, l \rightarrow s)$ se obtiene fóforo blanco (P_4)
 - paradoja → es la forma más volátil y reactiva
 - termoquímicamente la menos estable
 - a) ¿tipo de sustancia? p.f. = 44° C; p.e. = 280° C
 - molecular, sólido blanco, céreo (d = 1,82 g/cm³)
 - a baja presión, por encima de 800 °C se disocia

$$P_4(g) \Leftrightarrow 2 P_2(g)$$
 [a 1800°C, 1 atm, ~ 50% $P_2(g)$]

221 pm

https://delphipages.live/ ciencias/quimica/oxide

[2800 °C, 50% P(g)]

2. Alotropía y reactividad del Fósforo

• 1.- Fósforo blanco, P₄

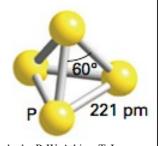
- insoluble en agua
- soluble en disolventes apolares orgánicos

» a
$$10^{\circ}$$
C \longrightarrow 880 g $P_4/100$ g de $CS_2(l)$

- muy tóxico
 - » por inhalación, ingestión o contacto con la piel
 - \rightarrow dosis letal \sim 50 mg

b) reactividad

- sustancia muy reactiva, debido a ...
 - » estructura tetraédrica → enlaces muy tensionados (*)


$$\Rightarrow$$
 < PPP = 60°; d(PP) = 2,21 Å

– i) arde espontáneamente expuesto al aire → pirofórico

$$P_4(s) + 5 O_2(g) \rightarrow P_4O_{10}(s)$$

» reacción vigorosa → llama verde

1. El Elemento

(adaptada de: P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller, F. A. Armstrong, Inorganic Chemistry, 5th ed, W. H. Freeman and Co, 2010)

H. Brandt (1630-1692)

2. Alotropía y reactividad del Fósforo

1. El Elemento

- 1.- Fósforo blanco, P₄
 - **b**) reactividad
 - su nombre deriva de las palabras griegas
 - » phos (luz) + phorus (portador)
 - » P_4 expuesto al aire, en la oscuridad \rightarrow emite resplandor fosforescente
 - ii) expuesto a radiación UV → se transforma en P(rojo)
 - c) ¿cómo se protege del aire el P₄?
 - se guarda bajo agua hervida (dismutación inhibida)
 - se corta con cuchillo bajo agua (es blando)

H. Brandt (1630-1692)

NOTA. Fosforescencia → una forma de quimioluminiscencia

- emisión de luz por una molécula que permanece excitada después de cesar el estímulo
- los óxidos resultantes de la reacción del fósforo con oxígeno se forman en estados electrónicamente excitados
 - » se emite luz cuando los electrones se desexcitan y caen al estado fundamental

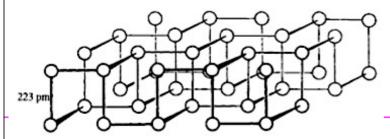
7

• 2.- Fósforo rojo ($\Delta G_f^o = -12 \text{ kJ/mol}$; $\Delta H_f^o = -18 \text{ kJ/mol}$)

1. El Elemento

a) obtención

- (adaptada de: N.J. Tro, *Chemistry*. *A Molecular Approach*, 3rd ed, Pearson Educ. Inc., 2014)
- calentar varios días P₄ en atmósfera inerte a 270-300°C
- **b**) estructura
 - red tridimensional polimérica



- » rotura de un enlace P-P de cada tetraedro y unión de unidades P₄ en cadenas entrelazadas (estructura complicada)
- » átomo de P → tricoordinado (y piramidal)
- » < P-P-P_{promedio} $\approx 101^{\circ}$; d(PP) $\approx 2,22 \text{ Å} \rightarrow$ enlaces menos tensionados que en P₄
- c) propiedades
 - insoluble en cualquier disolvente; más denso que P_4 (d = 2,16 g/cm³)
 - mayor p. f. ($\sim 600^{\circ}$ C)
 - » al fundir se rompe enlace covalente entre unidades P₄
 - mucho menos reactivo que P₄ → manejo más fácil y seguro
 - estable al aire → reacciona con O_2 a $t^a > 400$ °C

2. Alotropía y reactividad del Fósforo

1. El Elemento

- 3.- Fósforo negro ($\Delta H_f^o = -39,3 \text{ kJ/mol}$)
 - alótropo más estable termoquímicamente
 - el más denso ($d = 2,69 \text{ g/cm}^3$)
 - el menos reactivo
 - el más difícil de preparar
 - calentar P₄ a 200 °C y presión elevada
 - » 1,2 ·10⁶ kPa (≈ 12000 atmósferas)
 - estructura
 - polimérica compleja
 - » tubos de átomos de P → tricoordinados piramidales

(adaptada de: N. N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd ed, Butterworth Heinemann, 1998)

Fósforo rojo y fósforo negro

sólo existen en fase sólida

Recordar:

3. Aplicaciones del Fósforo

1. El Elemento

- 1.- 80–90% del P \rightarrow producción H₃PO₄
- 2.- Cerillas \rightarrow producción anual ~ 10^{12} 10^{13} unidades
 - a) antecedentes
 - combustión espontánea P₄ estimuló fabricación cerillas
 - la fabricación produjo innumerables muertes → intoxicación
 - b) fósforos de seguridad
 - cabeza del fósforo → agente oxidante KClO₃
 - cinta de raspar → fósforo rojo y Sb₂S₃
 - » ambos se oxidan al frotarlos con el oxidante
 - c) antigua cerilla de cabeza blanca
 - se inflama frotando en cualquier superficie rugosa
 - cabeza fósforo mezcla de
 - » agente oxidante (KClO₃), agente reductor (P₄S₃) y S (mantiene la llama)
 - fricción proporciona la energía de activación para inicio reacción

$$P_4S_3(s) + 8 O_2(g) \rightarrow P_4O_{10}(s) + 3 SO_2(g)$$
; $\Delta H^0 = -3616 \text{ kJ}$

$$\Delta H^{\circ} = -3616 \text{ kJ}$$

2. Obtención industrial del P

- 1.- ¿Cómo se encuentra el Fósforo en la Naturaleza?
 - P es muy reactivo
 - principal fuente de P → fosfatos
 - grandes depósitos → Florida, Sáhara, isla Nauru (Pacífico)
 - abundancia terrestre → posición 11ª
 - minerales más importantes
 - apatitos: $Ca_{10}(PO_4)_6X_2$, fórmula idealizada $3 Ca_3(PO_4)_2 \cdot CaX_2$ » X = F, Cl, OH
 - fosforita: composición parecida a fluoroapatito Ca₅(PO₄)₃F
- 2.- ¿Cómo se obtiene el Fósforo?
 - síntesis en atmósfera reductora (sin O₂); horno eléctrico (~1500 °C)
 - reacción global ($\Delta H^{o} = -3060 \text{ kJ}$)

$$2 \text{ Ca}_{3}(PO_{4})_{2}(s) + 6 \text{ SiO}_{2}(s) + 10 \text{ C}(s) \xrightarrow{\Delta} 6 \text{ CaSiO}_{3}(s) + 10 \text{ CO}(g) + P_{4}(g)$$
 (*)

(*)
$$P_4(g) \Leftrightarrow P_2(g)$$

11

2. Obtención industrial del P

- 2.- ¿Cómo se obtiene el Fósforo?
 - b) condiciones de trabajo
 - horno eléctrico alta ta ~1500°C
 - » 12 metros de diámetro
 - 3 electrodos de carbono de 60 T cada uno
 - » corriente aplicada entre electrodos ~1,8 $\cdot 10^5$ A, 500 V
 - » gran consumo energía eléctrica
 - » la mena se envía a países con energía eléctrica abundante y de bajo costo (Europa, USA)
 - horno estándar puede producir 4 T de P_4 /hora $\approx 30 \cdot 10^3$ T/año
 - c) ¿qué reacciones ocurren?
 - no están claras, hay 2 propuestas
 - la más probable es ...

- 2.- ¿Cómo se obtiene el Fósforo?
 - c) ¿qué reacciones ocurren?
 - i) reducción del fosfato por CO

$$2 \text{ Ca}_3(PO_4)_2(s) + 10 \text{ CO}(g) \xrightarrow{\Delta} 6 \text{ CaO}(s) + 10 \text{ CO}_2(g) + P_4(g)$$

- ii) reacción del CaO con SiO₂ → formación de CaSiO₃(escoria)

$$6 \text{ CaO(s)} + 6 \text{ SiO}_2(\text{s}) \xrightarrow{\Delta} 6 \text{ CaSiO}_3(\text{l})$$

- iii) CO₂ reducido a CO por el coque

$$10 CO_2(g) + 10 C(s) \xrightarrow{\Delta} 20 CO(g)$$

- Reacción global:

2
$$Ca_3(PO_4)_2(s) + 6 SiO_2(s) + 10 C(s) \xrightarrow{\Delta} 6 CaSiO_3(s) + 10 CO(g) + P_4(g)$$

 $\Delta H^0 = -3060 \text{ kJ}$

13

• 2.- ¿Cómo se obtiene el Fósforo?

2. Obtención industrial del P

- d) ¿qué se hace con los productos y subproductos obtenidos?
 - parte superior horno sale → $P_4/P_2(g)$ y CO(g)
 - se bombea a una torre y se rocia con agua a 70°C
 - » para condensar P₄(l)
 - el subproducto CO se quema
 - » calor producido → secar materias primas
- e) consumibles y productos

Para obtener 1 T de P₄

Se requieren Se producen

8-10 T de fosfato cálcico 1 T de P_4

3 T de SiO₂ (arena) 8 T de silicato cálcico (escoria)

1,5 T carbón (coque) 0,25 T fosfuros de Fe

14 Mwh energía eléctrica 0,1 T polvo

0,4 T de electrodo de carbono 2500 m³ de gases de combustión

• 2.- ¿Cómo se obtiene el Fósforo?

2. Obtención industrial del P

- f) principales contaminantes generados
 - polvo
 - gases de combustión
 - lodos que contienen fósforo y agua
 - » provinientes de la torre de enfriamiento
 - plantas antiguas → graves problemas ambientales
 - con la nueva tecnología
 - » más barato cerrar planta antigua → construir planta nueva
- g) futuro del proceso
 - demanda de P en disminución
 - » menor uso de fosfatos en detergentes
 - costes energéticos elevados
 - proceso preferido para preparar compuestos fosforados de alta pureza
 - » insecticidas fosforados, cerillas, ...

15

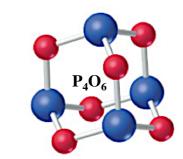
• 1.- ¿Qué óxidos forma el Fósforo?

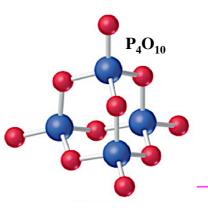
■ 2 óxidos → sólidos blancos

$$-P(+3) \rightarrow P_4O_6$$

$$-P(+5) \rightarrow P_4O_{10}$$

- 2.- Síntesis
 - \bullet a) $P_4O_6(s)$
 - cuando P₄ arde en ambiente con defecto de O₂

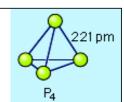

$$P_4(s) + 3 O_2(g) \rightarrow P_4O_6(s)$$

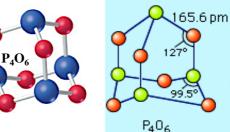

- **b**) P₄O₁₀(s) → óxido más común e importante
 - cuando P₄ arde en presencia de exceso de O₂

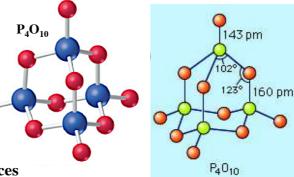
$$P_4(s) + 5 O_2(g) \rightarrow P_4O_{10}(s)$$

3. Oxidos de Fósforo

(adaptadas de: R.H. Petrucci, W.S. Harwood, G.E. Herring, *General Chemistry*, 8th ed, Prentice-Hall, 2002)






3. Oxidos de Fósforo

- 3.- Estructura y Enlace
 - estructuras \rightarrow derivan del tetraedro P_4
 - a) P₄O₆ (fósforo piramidal)
 - insertar átomo de O entre cada 2 P
 - » convierte $P-P \rightarrow P-O-P$
 - $d(PO) = 1,656 \text{ Å}; < OPO = 99,5^{\circ}$
 - **b**) P₄O₁₀ (fósforo tetraédrico)
 - insertar átomo de O entre cada 2 P
 - $> d(PO) = 1,60 \text{ Å}; < OPO = 102^{\circ}$
 - átomo de O adicional unido a cada P
 - » se proyectan hacia fuera desde los vértices

$$\rightarrow$$
 d(PO)_t = 1,43 Å \rightarrow ¿OE? = 2

(adaptadas de: R.H. Petrucci, W.S.

Chemistry, 8th ed, Prentice-Hall, 2002)

Harwood, G.E. Herring, General

https://delphipages.live/ ciencias/quimica/oxide

17

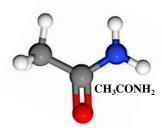
• 4.- Reactividad

3. Oxidos de Fósforo

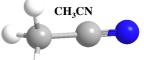
- a) óxidos P_4O_6 y P_4O_{10} ¿ácidos/básicos? \rightarrow ácidos
- "anhidridos" de ácido → se hidrolizan fácilmente a los respectivos oxoácidos
- a) P₄O₆(s) → reacciona con agua fría
 - se rompen los 6 enlaces P-O-P pero no se forma un ácido triprótico

$$P_4O_6(s) + 6 H_2O(l) \rightarrow 4 H_3PO_3(ac)$$

b) P₄O₁₀(s) → gran avidez por el agua


$$P_4O_{10}(s) + 6 H_2O(l) \rightarrow 4 H_3PO_4(ac)$$

- -buen agente deshidratante (extrae 2 H + 1 O)
 - » i) "deshidrata" HNO₃ → N₂O₅
 - » ¿deshidratación inter o intramolecular? (*)
 - » ¿cuántas moles de HNO_3 por mol de P_4O_{10} ?


$$P_4O_{10}(s) + 12 \text{ HNO}_3(l) \rightarrow 4 \text{ H}_3PO_4(s) + 6 \text{ N}_2O_5(s)$$

» ii) "deshidrata" (**) amida orgánica (RCONH₂) → nitrilo (RCN)

 $P_4O_{10}(s) + 6 CH_3CONH_2(l) \rightarrow 4 H_3PO_4(s) + 6 CH_3CN(l)$

https://www.molinstincts.com/sdf-molfile/acetamide-sdf-CT1002438335.html

https://www.acs.org/ content/acs/en/ molecule-of-theweek/archive/a/ acetonitrile.html

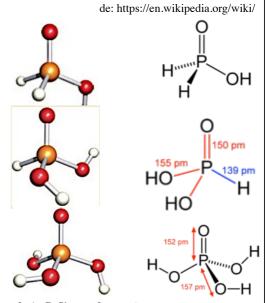
deshidratación: (*) intermolecular; (**) intramolecular

4. Oxoácidos de Fósforo

1. Oxoácidos más comunes

- 1.- 3 oxoácidos más comunes
 - P (+1) ácido hipofosforoso (o fosfínico) → H₃PO₂
 - P (+3) ácido fosforoso (o fosfónico) → H₃PO₃
 - P (+5) ácido fosfórico \longrightarrow H₃PO₄ el más importante

E.O.	Fórmula	Nombre	Observaciones	
+1	H_3PO_2	ácido hipofosforoso	ácido monoprótico, agente reductor	
+3	H_3PO_3	ácido fosforoso	ácido moderado diprótico	
+5	H_3PO_4	ácido fosfórico	ácido triprótico sólido blanco oxidante muy débil	

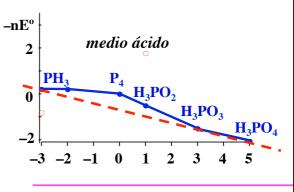

19

1. Oxoácidos más comunes

4. Oxoácidos de Fósforo

- 2.- Estructuras
 - P tetraédrico
 - sólo un O terminal, no hidroxílico, P=O; (¿m? = 1 grupo oxo)
 - todos son ácidos moderados

Fórmula	nº H ionizable	nº H unidos a P	pK _{a1}
H ₃ PO ₂	1	2	1,1
H_3PO_3	2	1	2,0
H_3PO_4	3	0	2,15


(de: C. E. Housecroft, A. G. Sharpe, *Inorganic Chemistry*, 4th ed, Pearson Ed. Ltd, 2012)

2. Acido hipofosforoso, H₃PO₂, hipofosfitos

- ácido fosfínico, fosfinatos
 - propuesta IUPAC → escasa aceptación
- a) H_3PO_2 (cristales blancos \rightarrow p. f. = 26,5 °C)

- i) agente reductor \rightarrow E°(H₃PO₃/H₃PO₂) = -0.5 V
- ii) síntesis:
 - -acidificar disolución de hipofosfito (HCl + $\mathrm{KH_2PO_2})$
- ¿cómo se puede obtener el ácido puro?
- ¿eliminación de disolvente calentando?
 - en caliente H₃PO₂ se oxida
 - \rightarrow H₃PO₃ y H₃PO₄
 - también se dismuta → PH₃ y H₃PO₃
 - soluble en éter etílico (KCl insoluble)
 - » extracción en continuo con éter etílico
 - » densidad éter $(20 \, ^{\circ}\text{C}) = 0.7134 \, \text{g/mL}$
 - cristales blancos H₃PO₂

21

2. H₃PO₂, hipofosfitos

4. Oxoácidos de Fósforo

- b) hipofosfitos, H₂PO₂
 - buenos agentes reductores

$$- E^{\circ}(HPO_3^{2-}/H_2PO_2^{-}) = -1,57 \text{ V}$$

- síntesis:
 - calentar P₄ en medio básico

$$P_4(s) + 3 \text{ KOH(ac)} + 3 H_2O(l) \xrightarrow{\Delta} PH_3(g) + 3 KH_2PO_2(ac)$$
 (*)

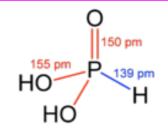
- ¿cómo obtendrías $H_3PO_2(s)$ a partir de $P_4(s)$ y KOH(ac)?
- aplicaciones:
 - industria farmacéutica
 - tratamiento de aguas
 - decolorar polímeros
 - recubrimiento químico de metales y no metales

3. Acido fosforoso, H₃PO₃

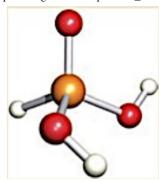
- sólido delicuescente, p. f. = 70,1 °C
- 1.- Síntesis H₃PO₃
 - i) proceso industrial
 - hidrólisis de PCl₃(l)

$$PCl_3(l) + 3 H_2O(l) \xrightarrow{\Delta} H_3PO_3(l) + 3 HCl(g)$$

• ii) hidrólisis de P₄O₆(s)


$$P_4O_6(s) + 6 H_2O(l) \rightarrow 4 H_3PO_3(ac)$$

- 2.- propiedades de H₃PO₃(ac)
 - H₃PO₃(s) → muy soluble en agua
 - i) ácido moderado, diprótico


$$H_3PO_3(ac) + H_2O(l) \Leftrightarrow H_2PO_3^-(ac) + H_3O^+(ac)$$
;

$$H_2PO_3^-(ac) + H_2O(1) \Leftrightarrow HPO_3^{2-}(ac) + H_3O^+(ac)$$
;

4. Oxoácidos de Fósforo

https://en.wikipedia.org/wiki/Phosphorous_acid

(de: C. E. Housecroft, A. G. Sharpe, *Inorganic Chemistry*, 4th ed, Pearson Ed. Ltd, 2012)

4. Oxoácidos de Fósforo

$$pK_{a1} = 2,0$$

$$pK_{a2} = 6.7$$

23

3. Acido fosforoso, H₃PO₃

- 2.- Disolución acuosa H₃PO₃(ac)
 - ii) agente reductor \rightarrow E°(H₃PO₄/H₃PO₃) = -0,276 V
 - expuesto al aire se oxida lentamente
 - lo oxidan los halógenos, ...
 - puede reducir iones metálicos a metales (*)

$$H_3PO_3(ac) + 2 Ag^+(ac) + H_2O(l) \rightarrow H_3PO_4(ac) + 2 H^+(ac) + 2 Ag(s)$$

 $E^0(Ag^+/Ag) = + 0.80 V$

- 3.- Oxosales
 - se pueden aislar sales de los aniones HPO₃²⁻, H₂PO₃⁻
 - sales de alcalinos → solubles en agua (en disolución se oxidan a fosfato)

$$-E^{o}(PO_4^{3-}/HPO_3^{2-}) = -1,12 \text{ V}$$

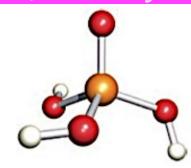
4. Acido fosfórico, H₃PO₄,

- único oxoácido del fósforo de interés industrial
- sólido incoloro, higroscópico
 - p. f. = 42,4 °C
 - ¿por qué es muy soluble en agua? enlace-H
- 1.- Síntesis
 - i) obtención de H₃PO₄ puro → proceso térmico
 - reacción de $P_4(s)$ con $O_2(g)$ e hidrólisis del óxido resultante

$$P_4(s) + 5 O_2(g) \rightarrow P_4O_{10}(s) + calor$$

$$P_4O_{10}(s) + 6 H_2O(l) \rightarrow 4 H_3PO_4(l)$$

- obtención H₃PO₄ libre de impurezas → productos para consumo humano
- ii) H₃PO₄ impuro → proceso húmedo
 - cuando <u>no</u> se requiere H₃PO₄ puro
 - tratar apatito con H₂SO₄


4. Acido fosfórico, H₃PO₄,

• ii) H₃PO₄ impuro → proceso húmedo

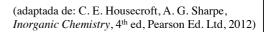
 $Ca_5(PO_4)_3F(s) + 5H_2SO_4(ac) + 10H_2O(l) \rightarrow 3H_3PO_4(ac) + 5CaSO_4 \cdot 2H_2O(s) + HF(ac)$

- filtrar y concentrar por evaporación (HF↑ volátil)
- H₃PO₄(conc) con impurezas metálicas y residuos de sulfatos y fluoruros
- $-H_3PO_4(conc, impuro) \rightarrow síntesis de fertilizantes y aplicaciones metalúrgicas$
- 2.- Estructura del H₃PO₄
 - i) átomo de P tetraédrico, unido a,
 - -3 grupos OH \rightarrow d(P-OH) = 1,57 Å
 - -1 grupo oxo \rightarrow d(P=O) = 1,52 Å
 - ii) H₃PO₄ cristalino
 - estructura en capas → red de enlace de hidrógeno
 - iii) H₃PO₄(l)
 - líquido viscoso → mantiene red de enlace–H

4. Oxoácidos de Fósforo

(de: C. E. Housecroft, A. G. Sharpe, *Inorganic Chemistry*, 4th ed, Pearson Ed. Ltd, 2012)

H O H


4. Oxoácidos de Fósforo

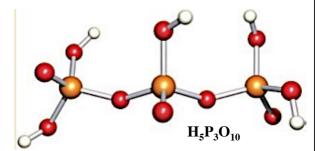
https://en.wikipedia.org/wiki/Phosphoric_acid

4. Acido fosfórico, H₃PO₄,

- 3.- ¿Qué ocurre al calentar H₃PO₄(l)?
 - pérdida de agua por etapas → condensación
 - i) primer producto → ácido pirofosfórico, H₄P₂O₇

$$^{\sim 240^{\circ}\text{C}}$$

2 H₃PO₄(l) \longrightarrow H₄P₂O₇(l) + H₂O(g)



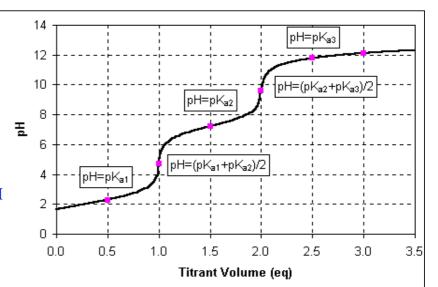
H₄P₂O

- 2 unidades tetraédricas comparten un vértice
- ii) si se continúa calentando → ácido tripolifosfórico, H₅P₃O₁₀

$$3 \text{ H}_4\text{P}_2\text{O}_7(l) \xrightarrow{\Delta} 2 \text{ H}_5\text{P}_3\text{O}_{10}(l) + \text{H}_2\text{O}(l)$$

- condensación de 3 tetraedros
- un tetraedro comparte 2 vértices
- iii) siguientes condensaciones
 - productos con mayor grado de polimerización

(adaptada de: C. E. Housecroft, A. G. Sharpe, *Inorganic Chemistry*, 4th ed, Pearson Ed. Ltd, 2012)


27

4. Acido fosfórico, H₃PO₄

- 4.- H₃PO₄(ac)
 - i) H₃PO₄(conc.)
 - disolución comercial
 - » ~85% (masa)
 - muy viscoso → enlace–H

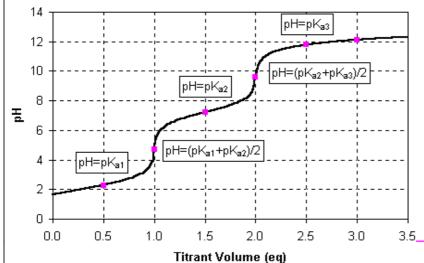
- ácido moderado, triprótico

- ii) H₃PO₄(ac) diluído
 - oxidante muy débil

http://ion.chem.usu.edu/~sbialkow/ Classes/3600/Overheads/H3A/H3A.html

- -oxidante sólo frente a buenos reductores
- curva de valoración ¿por qué no se observa el 3er punto de equivalencia?

$$H_3PO_4(ac) + H_2O(l) \Leftrightarrow H_2PO_4^-(ac) + H_3O^+(ac)$$
; $pK_{a1} = 2,15$


$$H_2PO_4^-(ac) + H_2O(l) \Leftrightarrow HPO_4^{2-}(ac) + H_3O^+(ac)$$
; $pK_{a2} = 7.21$

$$HPO_4^{2-}(ac) + H_2O(1) \Leftrightarrow PO_4^{3-}(ac) + H_3O^+(ac)$$
; $pK_{a3} = 12,34$; $(pK_{b1} = 1,66)$

Acido fosfórico, H₃PO₄: Curva de valoración

4. Oxoácidos de Fósforo

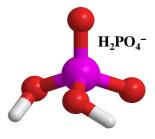
- presenta 3 etapas → 2 inflexiones
- 1^a inflexión \rightarrow pH ~ 4.5
 - corresponde a la formación de NaH₂PO₄(ac)
 - se puede detectar con naranja de metilo $(pK_i = 3,5)$
- $2^a inflexión \rightarrow pH \sim 9,5$
 - corresponde a la formación de Na₂HPO₄(ac)
 - se puede detectar con fenolftaleína ($pK_i = 9.5$)

- 3er punto de equivalencia:
 - no se puede detectar
 - formación de Na₃PO₄ no es estequiométrica
 - PO₄³⁻ se hidroliza extensamente

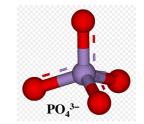
http://ion.chem.usu.edu/~sbialkow/ Classes/3600/Overheads/H3A/H3A.html

29

4. Acido fosfórico, H₃PO₄,


4. Oxoácidos de Fósforo

- 5.- Aplicaciones del H₃PO₄
 - i) ácido puro obtenido por proceso térmico
 - aditivo en alimentación y bebidas gaseosas
 - » su acidez impide crecimiento bacteriano
 - productos farmacéuticos
 - fosfatos para detergentes
 - tratamiento de metales para evitar corrosión
 - ii) ácido impuro obtenido por proceso húmedo
 - mayoritariamente para síntesis de fertilizantes
 - aplicaciones metalúrgicas


5. Fosfatos

1. Característica generales

- a) 3 tipos de aniones derivados del H₃PO₄
 - dihidrogenofosfato H₂PO₄-,
 - monohidrogenofosfato HPO₄^{2−}
 - (orto)fosfato PO₄³⁻
- b) fosfatos → elevadas energías reticulares
 - todos los fosfatos son insolubles
 - excepto de metales alcalinos y de NH₄+
- c) se conocen HPO₄²⁻ y H₂PO₄⁻ sólidos de,
 - iones monopositivos
 - alcalinos y NH₄⁺
 - alguno de catión dipositivo como el Ca²⁺

https://www.freepng.es/png-bhuvni/

21

2. Aplicaciones de los fosfatos y polifosfatos

5. Fosfatos

- 1.- principal aplicación → fertilizantes
 - a) Ca(H₂PO₄)₂

$$\mathbf{Ca_3(PO_4)_2(s) + 2\ H_2SO_4(conc) \Rightarrow Ca(H_2PO_4)_2(s) + 2\ CaSO_4(s)}$$

- $-Ca(H_2PO_4)_2(s)$ → ligeramente soluble en agua
- fosforita → demasiado insoluble para aplicación directa
- **b**) $(NH_4)_2HPO_4$, $(NH_4)H_2PO_4$ → buenos fertilizantes (contienen P y N)
- 2.- $(NH_4)_3PO_4 \rightarrow Retardante de llama$
 - usado en cortinas, escenarios teatrales y prendas de vestir
- 3.- Na₃PO₄ → Limpieza doméstica
 - base moderada (pK_{b1} = 1,66) $PO_4^{3-}(ac) + H_2O(l) \Leftrightarrow HPO_4^{2-}(ac) + OH^{-}(ac)$
 - adecuada para reacción con grasas
 - además el fosfato es complejante

2. Aplicaciones de los fosfatos y polifosfatos

5. Fosfatos

- 4.- Na₂HPO₄ → Elaboración de queso pasteurizado
 - no se sabe como actúa
- 5.- Fosfatos de calcio
 - a) Ca(H₂PO₄)₂ → ingrediente del polvo para hornear
 - basado en la reacción del Ca(H₂PO₄)₂ con NaHCO₃

$$Ca(H_2PO_4)_2(ac) + NaHCO_3(ac) \rightarrow CaHPO_4(ac) + NaH_2PO_4(ac) + CO_2(g) + H_2O(g)$$
 (*)

- b) Otros fosfatos de calcio
 - abrasivos suaves y agentes de pulido de dientes
 - Na₂PO₃F → monofluorofosfato de sodio (MFP)
 - » pastas de dientes → fuente de flúor
- 6.- Aditivos en detergentes
 - $Na_4P_2O_7$ y $Na_5P_3O_{10}$ (TPP) → complejación iones Ca^{2+} y Mg^{2+}

(*)
$$pK_{a2} (H_3PO_4) = 7,2;$$

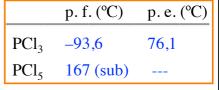
$$HCO_3^-$$
: $pK_{b2} = 7,63$; $pK_{a2} = 10,33$

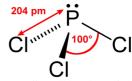
33

• 1.- Síntesis

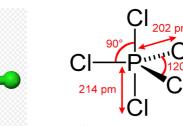
6. Cloruros de Fósforo, PCl₃ y PCl₅

- a) PCl₃(l) → líquido incoloro
 - se obtiene por reacción del Cl_2 con exceso de $\operatorname{P}_4(s)$


$$P_4(s) + 6 Cl_2(g) \rightarrow 4 PCl_3(l)$$


- b) PCl₅(s) → sólido blanco
 - se obtiene por reacción del $P_4(s)$ con exceso de Cl_2

$$P_4(s) + 10 Cl_2(g) \rightarrow 4 PCl_5(s)$$


- a) PCl₃(l)
 - molécula piramidal
 - -d(PCl) = 2,04 Å
- **b)** PCl₅(s, g)
 - fase gas → bipirámide trigonal
 - fase sólida → iones PCl₄+ y PCl₆-

https://en.wikipedia.org/wiki/ Phosphorus_trichloride

https://www.cleanpng.com/ png-phosphorus-trichlorideni-1348461/

https://en.wikipedia.org/wiki/ Phosphorus_pentachloride

https://www.cleanpng.com/png-phosphorus-pentachloride-an-2959585/

PCl₅

6. Cloruros de Fósforo, PCl₃ y PCl₅

- 3.- Reacción con el agua
 - PCl₃ y PCl₅ se hidrolizan
 - a) PCl₃(l) → ácido fosforoso H₃PO₃ y HCl
 PCl₃(l) + 3 H₂O(l) → H₃PO₃(l) + 3 HCl(g)
 - b) PCl₅(s) → se hidroliza en 2 etapas
 - i) formación de cloruro de fosforilo, POCl₃ y HCl
 - ii) POCl₃ se hidroliza dando ácido fosfórico

$$PCl_5(s) + H_2O(l) \rightarrow POCl_3(l) + 2 HCl(g)$$

 $POCl_3(l) + 3 H_2O(l) \rightarrow H_3PO_4(l) + 3 HCl(g)$ (reacción lenta)

- 4.- Aplicaciones
 - ambos cloruros son de interés industrial
 - PCl₃(l) → se obtienen ~ 250.000 T/año
 - PCl₅(s) → se obtienen ~ 20.000 T/año
 - PCl₃ y PCl₅ → preparación de compuestos organoclorados

35

- 1.- Características de la Fosfina
 - gas incoloro

$$-$$
 p. f. = $-133,5$ °C; p. e. = $-87,7$ °C

- extremadamente tóxico y muy reactivo
- 2.- Estructura y enlace
 - molécula piramidal
 - **<HPH** = **93**,6° (NH₃ 107°)
 - » híbridos "sp³" con mucho carácter p
 - distancia enlace d(PH) =1.42 Å
 - molécula polar → μ = 0,58 D
- 3.- Reactividad
 - a) $\chi(P) < \chi(N) \rightarrow$ polaridad enlace P-H < N-H
 - PH₃ no forma enlace-H
 - » insoluble en H₂O
 - » soluble en disolventes orgánicos: CS₂,...

7. Fosfina, PH_3

https://es.wikipedia.org/wiki/ Archivo:Phosphine-3D-balls.png

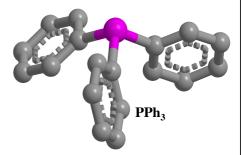
- a) $\chi(P) < \chi(N) \rightarrow \text{polaridad enlace } P-H < N-H$
 - :PH3 baja capacidad dadora
 - base muy débil
 - » ión PH₄+ difícil de preparar
- **b**) buen agente reductor
 - i) muchas sales metálicas → reducidas al metal
 - ii) O_2 oxida fácilmente $PH_3 \rightarrow H_3PO_4$ $PH_3(g) + 2 O_2(g) \rightarrow H_3PO_4(l)$
 - » la fosfina pura arde → ~150°C
 - » contaminada con trazas de $P_2H_4 \rightarrow$ inflama espontáneamente
- c) reacción industrialmente importante
 - síntesis de cloruro de tetraquis(hidroximetil)fosfonio
 - para vestidos resistentes al fuego

$$PH_3 + 4 HCHO + HCl \rightarrow [P(CH_2OH)_4]Cl$$

37

• 4.- Síntesis y Aplicaciones

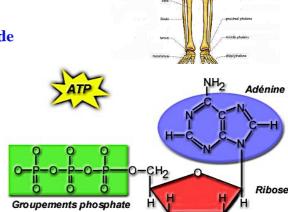
7. Fosfina, PH3


- a) proceso industrial
 - "hidrólisis básica" de fósforo blanco $P_4(s)$

$$P_4(s) + 3 \text{ KOH(ac)} + 3 \text{ H}_2\text{O(l)} \xrightarrow{\Delta} PH_3(g) + 3 \text{ KH}_2PO_2(ac)$$

- » reacción de dismutación del Fósforo (medio básico)
- b) hidrólisis de fosfuro de metal muy electropositivo

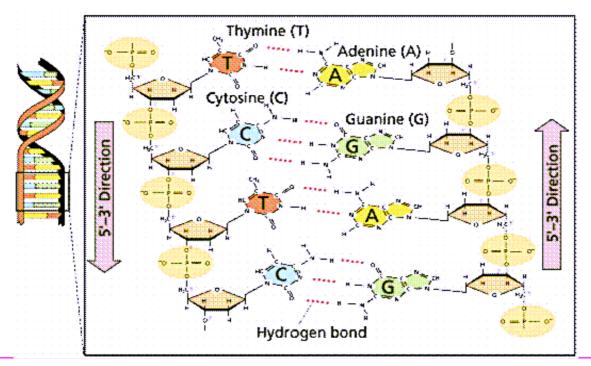
$$Ca_3P_2(s) + 6 H_2O(1) \rightarrow 2 PH_3(g) + 3 Ca(OH)_2(ac)$$


- c) aplicaciones
 - fosfinas sustituídas
 - » muy usadas como ligandos de iones metálicos de transición
 - » trifenilfosfina $P(C_6H_5)_3 \rightarrow PPh_3$

8. Aspectos biológicos del P y As

1. Aspectos biológicos del Fósforo

- Fósforo → elemento esencial para la vida
 - el hueso → mineral fosfórico,
 - hidroxifosfato de calcio, comúnmente llamado apatita Ca₅(PO₄)₃(OH)
 - iones H₂PO₄⁻/HPO₄²-
 - forman parte del sistema tampón de pH de la sangre
 - fosfato parte fundamental del ATP (adenosintrifosfato)
 - unidad básica de almacenamiento de energía de los organismos vivos
 - hidrólisis grupo fosfato → exotérmica


https://slideplayer.es/slide/4283208/

39

1. Aspectos biológicos del Fósforo

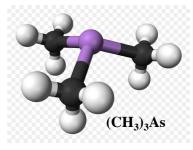
8. Aspectos biológicos del P y As

- Fósforo → elemento esencial para la vida
 - Fosfato → unidad enlazante ésteres de azúcares del ADN y ARN

http://cic.javerianacali.edu.co/wiki/lib/exe/fetch.php?media=grupos:destino:biologia_molecularintroduccion.pdf

2. Aspectos biológicos del Arsénico

- Arsénico → muy tóxico
 - toxicidad conocida desde antigüedad,
 - probable elemento esencial para la vida
- Napoleón murió envenenado por As
 - análisis químico
 - presencia arsénico en sus cabellos
 - origen más probable
 - papel pintado habitación en Santa Elena
 - contenía "arsenito ácido de cobre" CuHAsO₃ (*), (verde de Paris o verde esmeralda)
 - en clima seco no hay problema
 - en clima húmedo por acción del moho sobre pigmento verde
 - » se transforma en trimetilarsina, (CH₃)₃As,
 - » gas altamente tóxico


(*) hidrogenoarseniato(III) de cobre(II)

8. Aspectos biológicos del P y As

https://es.wikipedia.org/ wiki/Napoleón_Bonaparte

Napoleón (1769-1821)

https://www.freepng.es/png-y8ktel/

4

8. Aspectos biológicos del P y As

2. Aspectos biológicos del Arsénico

- As → utilizado como antibiótico
 - 1863, Antoine Béchamps, médico francés,
 - descubrió capacidad bactericida de los compuestos de Arsénico
 - Paul Erhlich descubrió un compuesto de As que atacaba de forma selectiva la bacteria Treponema Pallidum,
 - organismo causante de la sífilis,
 - » (Colón, Felipe II, Carlos V,...)
 - » gran sufrimiento, demencia, muerte
 - » s. XIX causaba estragos
 - consiguió el primer fármaco eficaz para esa enfermedad

(1816-1908) https://es.wikipedia.org/ wiki/Antoine_Béchamp

P. Erhlich (1854-1915) http://microilustres.blogspot.com/ 2006/12/paul-ehrlich-1854-1915.html