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Abstract. A two-patch predator-prey model with the Holling type II func-

tional response is studied, in which predators are assumed to adopt adaptive

dispersal to inhabit the better patch in order to gain more fitness. Analytical
conditions for the persistence and extinction of predators are obtained under

different scenarios of the model. Numerical simulations are conducted which
show that adaptive dispersal can stabilize the system with either weak or strong

adaptation, when prey and predators tend to a globally stable equilibrium in

one isolated patch and tend to limit cycles in the other. Furthermore, it is
observed that the adaptive dispersal may cause torus bifurcation for the model

when the prey and predators population tend to limit cycles in each isolated

patch.

1. Introduction. Foraging behaviour is a common phenomenon in nature. As
indicated in [19], foraging behaviour varies from ambush to active, in response to
changes in environment and other circumstances. Although the foraging mode for
a certain individual may change from time to time, many species have adopted the
most advantageous foraging strategy through long-term evolution, either ambush
or active, to maximize their survival probability. Species like spiders, or snakes, as
indicated in [25], are classified as ambush predators because they “sit and wait”
and then pounce when the opportunity arises. In contrast, other species, like wild
dogs, as described in [6], move actively to forage prey.

Active foragers move back and forth searching for prey. Foraging behaviour of
predators does not depend only on intra-species competition, but also depends on
spatial abundance of resources and interspecies interaction in different patches. It
has been widely observed in nature that many species migrate between different
patches to search for resources because of apparent differences of resources, land-
scapes, or other environmental factors that affect the predators’ survival probability
in different patches. Consequently, patch models have been introduced to simulate
predator-prey dynamics with active foraging behaviour and dispersal of predators,
as indicated in [3], [4], [16], and [17].

Patch models with dispersal of certain species have been studied extensively, see,
e.g., [3], [4], [16], [17], [24] and the references therein. The common point in [16]
and [17] is the assumption of density-independent dispersal rates. However, more
and more experimental results and field observations in nature seem to suggest that
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predators have the ability to choose a better patch in which they can gain more
fitness. Predators are more likely to move between different patches adaptively.

In behavioural ecology, an adaptive behaviour is a behaviour which contributes
directly or indirectly to an individual’s survival or reproductive success and is thus
subject to the forces of natural selection ([22]). Adaptations are commonly defined
as evolved solutions to recurrent environmental problems of survival and reproduc-
tion ([2]). Ecological species have the ability to adapt through learning ([21]). An
individual will adjust its behaviour or strategy by learning in response to a change of
the environment in order to survive and acquire the highest payoff. In evolutionary
biology, analyzing an evolutionary stable strategy (ESS) under adaptation is one of
the central topics. Another important concern is how species distribute themselves
among different patches under adaptive dispersal. Based on the assumption that
each individual has the ability to assess the condition of different patches and can
move freely to maximize the individual fitness, the ideal free distribution (IFD)
is proposed to illustrate the ecological equilibrium under adaptive dynamics ([10],
[3]). It is natural to analyze the relationship between the ecological equilibrium and
the evolutionary stable strategy. Several papers of [9], [7], [3], [14], [4] studied a
variety of models including a single-species model, a two-patch competition model,
a two-patch predator-prey model and an interacting-species model within finitely-
many patches. They conclude that under certain conditions and assumptions, the
evolutionary stable strategies are those which lead to the ideal free distribution.

In addition to the evolutionary and ecological aspects, predation behaviour can
also produce a significant effect on predator-prey systems. As indicated in [1],
different behaviour mechanisms can result in surprisingly different outcomes. Be-
havioural dynamics exerts significant effect on ecological and evolutionary dynamics.
Functional responses are used to connect different behavioural dynamics of prey and
predators. One important functional response which connects prey density and prey
catch-per-predator is the Holling type II functional response, which was proposed
by Holling ([13]). In contrast to the classical linear functional response, the Holling
type II functional response assumes that the encounter rate of prey by predators
is density-dependent. This matches experimental data for many species very well,
as indicated in [20], [5]. Seitz et al. ([20]) conducted a series of experiments to
study predator-prey dynamics of thin-shelled clams and their predators, the blue
crabs, which inhabit the Chesapeake Bay. As indicated in [20], the predation on
Mya arenaria (soft-shell clam) in mud and M. mercenaria (hard clam) in sand by
their major predators, the blue crabs, obeys the Holling type II functional response.
Clark et al. ([5]) conducted another experiment about foraging behaviour of the
blue crabs in the Chesapeake Bay, but focused on studying the mechanism of forag-
ing behaviour of the blue crabs between patches. In addition to predation of clams
by the blue crabs in the Chesapeake Bay, there are other species in the ecological
system which have similar predation mode, such as predation behaviour of rotifers
on sessile planktonic species, and grazing behaviour of large herbivores. The above
biological instances share one feature in common: all predators are mobile and mi-
grate between different patches to forage prey or resources while prey or resources
are sessile. In addition, as mentioned above, foraging behaviour of predators is
adaptive because predators try to maximize individual fitness.

Křivan and Cressman ([15]) studied fast behaviour of predators moving be-
tween patches and showed that there exists a complicated relationship involving
behavioural, population and evolutionary dynamics by studying three different
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predator-prey models. Their study is based on the assumption that the behavioural
dynamics runs on a much faster time scale than the demographical time scale and
thus simplifies the original system. Křivan and Cressman ([15]) also explored the
effect of adaptive dispersal exerting on population dynamics by using computer
simulations. Based on [15], we consider a two-patch predator-prey model where
predators move between two patches foraging on prey freely but each individual of
the prey resides only within one patch. We combine population dynamics and be-
havioural dynamics together and investigate detailed dynamics of the whole system
under the effect of adaptive dispersal.

The rest of the paper is organized as follows. In Section 2, we present the two-
patch predator-prey model with the Holling type II functional response and adaptive
dispersal of predators. In Section 3, mathematical analysis of the model is carried
out to provide analytical conditions for persistence and extinction of the predators.
Section 4 contains some numerical simulations. One interesting observation from
these simulations is that if under isolation, the populations of the prey and predators
in one patch tend to an equilibrium but those in the other patch tend to a limit cycle,
then either weak or strong adaptation of the predators may stabilize the system in
the sense that populations in both patches will tend to an equilibrium. Moreover,
the strength of adaption has influences on the average biomass of predators. When
the populations of the prey and predators tend to limit cycles in both patches under
isolation, adaptive dispersal of predators may results in torus bifurcation. In Section
5, we summarize our findings and discuss some possible future projects along this
line.

2. Model formulation. Our model will be built upon a two-patch predator-prey
model with the Holling type II functional response, which is also known as the
Rosenzweig-MacArthur model. This model is based on the assumptions that (i) prey
and predators inhabit two patches which are totally separated; (ii) an individual
of the prey does not disperse between the two patches and only predators move
between two patches to forage on prey; (iii) the predators, they have the complete
knowledge on the patch qualities and always tend to move to the better patch to
gain more payoff which is measured by the per capita growth rate of predators.
Under these assumptions, the two-patch Rosenzweig-MacArthur model is given by
the following system of ordinary differential equations

dx1
dt

= x1 (r1 − a1 x1)− s1 x1 v y

1 + h1 s1 x1
,

dx2
dt

= x2 (r2 − a2 x2)− s2 x2 (1− v) y

1 + h2 s2 x2
, (1)

dy

dt
= y

(
−m1 v −m2 (1− v) +

s1 x1 e1 v

1 + h1 s1 x1
+
s2 x2 e2 (1− v)

1 + h2 s2 x2

)
,

where x1 denotes the density of prey in patch 1, x2 denotes the density of prey
in patch 2, y represents the density of predators, v is the proportion of time that
predators stay in patch 1 on average, ri for i = 1, 2, is the intrinsic growth rate of
prey in patch i, ri/ai is the carrying capacity of prey in patch i, si is the attacking
rate of the predators in patch i, ei is the expected biomass of prey converted to
predators in patch i, mi is the per capita mortality rate of predators in patch i, and
hi is the handling time of the predation in patch i respectively.
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In model (1), the proportional time v that predators spend in patch 1 is assumed
to be constant. However, predators seem to choose their habitat intelligently accord-
ing to resource abundance in patches. In other words, they migrate between patches
adaptively with the change of surrounding environment. If v increases, prey in patch
1 will be reduced due to the high predation risk and meanwhile, intra-specific com-
petition of predators will be increased. As a consequence, predators tend to migrate
to the second patch in order to maximize energy intake. Consequently, aggregation
of predators in the second patch will again cause prey reduction in this patch, and
this in turn impels predators to migrate to the first patch. Through adaptation of
predators, v in model (1) should change with time rather than remain as a constant.
Thus v can be viewed as the strategy of predators.

We now derive the strategy equation based on [10] and the idea of the replicator
dynamics. As indicated in [10], the assumption that predators have the complete
knowledge about patch qualities and always tend to move to a better patch to gain
more fitness is valid. Let

f1 = −m1 +
e1 s1 x1

1 + h1 s1 x1
, f2 = −m2 +

e2 s2 x2
1 + h2 s2 x2

,

which measures the fitness of predators in patches 1 and 2 respectively. Because
the proportion of time that predators forage in patch 1 is v and the corresponding
proportion of time that predators stay in patch 2 is 1 − v, the average fitness of
predators switching over the two patches is

f = v f1 + (1− v)f2. (2)

By the theory of adaptive dynamics ([12]), we have

dv

dt
= k v

(
f1 − f

)
. (3)

By plain language, this means that the relative change rate of v is proportional to
the difference of the fitness in patch 1 and the mean fitness over the two patches.
In equation (3), k is a positive constant, with large k accounting for strong (fast)
adaptation of predators in response to a change of prey abundance in the local
patch, while small k explaining weak (slow) adaptation of predators.

Plugging (2) into (3), we obtain

dv

dt
= k v (1− v) (f1 − f2)

= k v (1− v)

(
−m1 +m2 +

e1 s1 x1
1 + h1 s1 x1

− e2 s2 x2
1 + h2 s2 x2

)
. (4)

Combining (1) and (4), we obtain our model system which describes both population
dynamics and adaptive dynamics:

dx1
dt

= x1 (r1 − a1 x1)− s1 x1 v y

1 + h1 s1 x1
,

dx2
dt

= x2 (r2 − a2 x2)− s2 x2 (1− v) y

1 + h2 s2 x2
,

dy

dt
= y

(
−m1 v −m2 (1− v) +

s1 x1 e1 v

1 + h1 s1 x1
+
s2 x2 e2 (1− v)

1 + h2 s2 x2

)
, (5)

dv

dt
= k v (1− v)

(
−m1 +m2 +

e1 s1 x1
1 + h1 s1 x1

− e2 s2 x2
1 + h2 s2 x2

)
.

In the next section, we will analyze this model system.
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3. Mathematical analysis. We first address the well-posedness of the model (5),
including non-negativity and boundedness of solutions. Since (5) is of Gauss type,
the solution with any set of non-negative initial values for the four unknowns will
remain non-negative for all t at which the solution exists. Moreover, if x1(0) = 0,
then x1(t) = 0 for all t ≥ 0. The same conclusion also holds for all other unknowns.
For the strategy variable v(t), writing the last equation in (5) as the following
integral form

v(t) = 1− 1/

(
1 + v(0)/(1− v(0)) exp

{∫ t

0

ψ(ξ)dξ

})
, (6)

where

ψ(ξ) =k
(
−m1 +m2 + (e1 s1 x1(ξ))/(1 + h1 s1 x1(ξ))

− (e2 s2 x2(ξ))/(1 + h2 s2 x2(ξ))
)
.

(7)

From (6), we know that v(t) ∈ [0, 1] for t ≥ 0, as long as v(0) ∈ [0, 1]; if the
case v(0) = 0 then v(t) = 0 for all t ≥ 0; if v(0) = 1 then v(t) = 1 for t ≥ 0;
and if v(0) ∈ (0, 1) then so is v(t) for all t ≥ 0. Although the dedicated cases
v(0) = 0 and v(0) = 1 will be addressed for mathematical purpose, we are mainly
interested in the case of v(0) ∈ (0, 1). This can be justified by assuming that
initially there are predators in both patches. Next, we address boundedness of
solutions. To this end, let (x1(t), x2(t), y(t), v(t)) be any non-negative solution with
x1(0) ≥ 0, x2(0) ≥ 0, y(0) ≥ 0 and v(0) ∈ [0, 1]. We have seen from the above
that v(t) ∈ [0, 1] for all t ≥ 0 where the solution exists. We only need to confirm
the boundedness of x1(t), x2(t) and y(t). To this end, let G = e1 x1 + e2 x2 + y. By
direct calculation, we obtain

dG

dt
=−m1 v G−m2 (1− v)G+ [e1 r1 +m1 v e1 +m2 (1− v) e1]x1

+ [e2 r2 +m1 v e2 +m2 (1− v) e2]x2 − e1 a1 x21 − e2 a2 x22

≤ −m1 v G−m2 (1− v)G+
[e1 r1 +m1 v e1 +m2 (1− v) e1]

2

4 e1 a1

+
[e2 r2 +m1 v e2 +m2 (1− v) e2]

2

4 e2 a2
.

(8)

Because we have shown that v is bounded between 0 and 1, we obtain

dG

dt
≤ −m0G+ η0, (9)

where m0 = min{m1,m2} and η0 is a positive constant. By the comparison princi-
ple, we conclude that

lim sup
t→∞

G(t) =
η0
m0

,

implying that G is bounded. This also indicates that η0/m0e1, η0/m0e2 and η0/m0

are also a priori bounds of x1(t), x2(t) and y(t) respectively. The boundedness of
the solution also implies that it exists globally, that it, it exists for all t ∈ (0,∞).

The above analysis also show that the set

X = R4
+ = {(x1, x2, y, v) : x1 ≥ 0, x2 ≥ 0, y ≥ 0, 0 ≤ v ≤ 1},

is positively invariant, and we will only need to consider the dynamics of the model
in this set.
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In order to analyze the long-term behaviour of system (5), we first discuss the
structure of all possible equilibria for this system. For convenience of notations, we
let

A1 =
e1 s1 r1

a1 + h1 s1 r1
−m1, A2 =

e2 s2 r2
a2 + h2 s2 r2

−m2,

A3 = e2, A4 = e2 −m2 h2, A5 = r2 s2, A6 = a2m2,

A7 = e1, A8 = e1 −m1 h1, A9 = r1 s1, A10 = a1m1.

(10)

Denote

x∗1 =
m1

s1(e1 −m1 h1)
, y∗1 =

e1(r1 s1 e1 − r1 s1 h1m1 − a1m1)

s21(e1 −m1 h1)2
,

x∗2 =
m2

s2(e2 −m2 h2)
, y∗2 =

e2(r2 s2 e2 − r2 s2 h2m2 − a2m2)

s22(e2 −m2 h2)2
.

(11)

Then, direct calculations show that there are always eight equilibria for the biolog-
ically meaningful parameters:

E2
0 = (0, 0, 0, 0), E2

1 =

(
r1
a1
, 0, 0, 0

)
, E2

2 =

(
0,
r2
a2
, 0, 0

)
, E2

3 =

(
r1
a1
,
r2
a2
, 0, 0

)
,

E1
0 = (0, 0, 0, 1), E1

1 =

(
r1
a1
, 0, 0, 1

)
, E1

2 =

(
0,
r2
a2
, 0, 1

)
, E1

3 =

(
r1
a1
,
r2
a2
, 0, 1

)
.

In addition, five other equilibria including a unique positive equilibrium may come
into existence under certain conditions on the model parameters:

E1
4 = (x∗1, 0, y

∗
1 , 1), E1

5

(
x∗1,

r2
a2
, y∗1 , 1

)
,

E2
4 = (0, x∗2, y

∗
2 , 0), E2

5 =

(
r1
a1
, x∗2, y

∗
2 , 0

)
,

E∗ = (x̃∗1, x̃
∗
2, ỹ
∗, ṽ∗) with x̃∗1 > 0, x̃∗2 > 0, ỹ∗ > 0, ṽ∗ ∈ (0, 1).

Obviously, y∗1 > 0 if and only if A1 > 0 which implies A8 > 0 (hence x∗1 > 0).
Similarly, y∗2 > 0 if and only if A2 > 0 which implies A4 > 0 (hence x∗2 > 0). Here,
all equilibria, except for E∗, have explicit formulas and each represents one situation
of the specialist strategies (v = 0 or v = 1) meaning that all predators choose to
inhabit in one patch. However, E∗ with ṽ∗ ∈ (0, 1) represents a generalist strategy,
which can not be obtained explicitly; indeed, its existence will be established by an
argument using abstract persistence theory.

The stability/instability of these equilibria can be analyzed by the standard
method of investigating the characteristic equation at each of them, except for
E∗. Below, we showcase the analysis on E2

5 .

Theorem 3.1. Assume that A2 > 0 so that E2
5 exists. Then, it is locally asymp-

totically stable if and only if

A1 < 0 and A4A5 (A3 −A4) < A6 (2A3 −A4) . (12)
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Proof. The Jacobian matrix of (5) is

J11 0 − s1 x1 v

1 + h1 s1 x1
− s1 x1 y

1 + h1 s1 x1

0 J22 −s2 x2 (1− v)

1 + h2 s2 x2

s2 x2 y

1 + h2 s2 x2
e1 v s1 y

(1 + h1 s1 x1)
2

e2 (1− v) s2 y

(1 + h2 s2 x2)
2 J33 J34

k v (1− v) e1 s1

(1 + h1 s1 x1)
2 −k v (1− v) e2 s2

(1 + h2 s2 x2)
2 0 J44


, (13)

where

J11 = r1 − 2 a1 x1 −
s1 v y

(1 + h1 s1 x1)
2 ,

J22 = r2 − 2 a2 x2 −
s2 (1− v) y

(1 + h2 s2 x2)
2 ,

J33 = −m1 v −m2 (1− v) + e1 v
s1 x1

1 + h1 s1 x1
+ e2 (1− v)

s2 x2
1 + h2 s2 x2

,

J34 = y
(
−m1 +m2 +

e1 s1 x1
1 + h1 s1 x1

− e2 s2 x2
1 + h2 s2 x2

)
,

J44 = k (1− 2 v)
(
−m1 +m2 +

e1 s1 x1
1 + h1 s1 x1

− e2 s2 x2
1 + h2 s2 x2

)
.

Substituting equilibrium E2
5 into the Jacobian matrix (13) gives the characteristic

equation at E2
5 :

(λ+ r1)
(
λ− J44

) (
λ2 − J22λ− J23 J32

)
= 0, (14)

where

J44 = k

(
−m1 +m2 +

e1 s1 r1
a1 + h1 s1 r1

− e2 s2 x
∗
2

1 + h2 s2 x∗2

)
,

J22 = r2 −
2 a2m2

s2 (−m2 h2 + e2)
− s2 y

∗
2

(1 + h2 s2 x∗2)
2 ,

J23 = − s2 x
∗
2

1 + h2 s2 x∗2
, J32 =

e2 s2 y
∗
2

(1 + h2 s2 x∗2)
2 .

Obviously, λ1 = −r and λ2 = J44 are real roots of (14), and the other two roots of
(14) are determined by the quadratic equation:

λ2 − J22λ− J23 J32 = 0. (15)

Note that J23 J32 < 0. Thus, the two roots of (15) have negative real parts if and
only if J22 < 0. Therefore, all roots of (14) have negative real parts if and only if

J22 < 0 and J44 < 0,

which are, by the notations defined in (11), equivalent to the two conditions in (12).
This completes the proof.

The analysis of stability/instability of other equilibria, except for E∗, can be
similarly done and will be omitted here since it would cost too much space. Table
1 summarizes such results.

As mentioned before, the existence of E∗ can not established through solving the
equations for equilibria. Instead it is established as a result of uniform persistence
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Equilibrium Existence Stability Condition for stability
E2

0(0, 0, 0, 0) always exists unstable

E2
1

(
r1
a1
, 0, 0, 0

)
always exists unstable

E2
2

(
0,
r2
a2
, 0, 0

)
always exists unstable

E2
3

(
r1
a1
,
r2
a2
, 0, 0

)
always exists Locally Stable A2 < 0, A1 < A2

E2
4(0, x∗0, y

∗
0 , 0) 0 < A2 unstable

E2
5

(
r1
a1
, x∗0, y

∗
0 , 0

)
0 < A2 Locally Stable A1 < 0, A4A5(A3 −A4) < A6(2A3 −A4)

E1
0(0, 0, 0, 1) always exists unstable

E1
1

(
r1
a1
, 0, 0, 1

)
always exists unstable

E1
2

(
0,
r2
a2
, 0, 1

)
always exists unstable

E1
3

(
r1
a1
,
r2
a2
, 0, 1

)
always exists Locally Stable A1 < 0, A2 < A1

E1
4(x∗1, 0, y

∗
1 , 1) 0 < A1 unstable

E1
5

(
x∗1,

r2
a2
, y∗1 , 1

)
0 < A1 Locally Stable A2 < 0, A8A9(A7 −A8) < A10(2A7 −A8)

E(x̃∗1, x̃
∗
2, ỹ
∗, ṽ∗) 0 < A1, 0 < A2

Table 1. The upper index i (i = 1, 2) indicates that predators forage
only in patch i without migrating to the other patch. E(x̃∗

1, x̃
∗
2, ỹ

∗, ṽ∗)
is the unique positive equilibrium.

of the model. To this end, we will first establish the uniform persistence of the
population with a generalist strategy (v ∈ (0, 1)) under the conditions A1 > 0 and
A2 > 0. For this purpose, we need to obtain some information about the patch-
wise dynamics, that is, the population dynamics when the predator only stays in
one patch, by considering the following system (obtained by taking taking v = 0 or
v = 1 in (5)): 

dxi
dt

= xi (ri − ai xi)−
si xi y

1 + hi si xi
,

dy

dt
= y

(
−mi + ei

si xi
1 + hi si xi

)
.

(16)

For such a classic prey-predator model, generally, when the carrying capacity of
the prey is not too large, the populations of prey and predator tend to a unique
positive steady state; while when the carrying capacity of the prey is sufficiently
large, oscillations will occur and the populations of prey and predators tend to
a globally stable limit cycle. To state this more precisely, we first note that for
i = 1, 2, Ai > 0 is equivalent to

mi hi
si hi(ei −mi hi)

<
ri
ai
,

which is also the condition for x∗i and y∗i to be positive (hence existence of positive
equilibrium (x∗i , y

∗
i ) for (16)). Thus, if both A1 and A2 are negative, regardless of

whether choosing to stay in patch 1 (v(t) = 1) or patch 2 (v(t) = 0), the predator
will go to extinction. Indeed, in such a case, this conclusion remains true for any
general strategies in (5), as is confirmed in the following theorem.

Theorem 3.2. The predators go to extinction if A1 < 0 and A2 < 0.
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Proof. Applying the comparison principle to the first and the second equation in
(5), we have the estimates:

lim sup
t→∞

xi(t) ≤
ri
ai
, i = 1, 2.

Thus, for any ε > 0, there exists t∗ > 0 such that

xi(t) ≤
r1
a1

+ ε for t ≥ t∗. (17)

This together with the third equation in (5) lead to

dy

dt
≤ By, (18)

where

B = −m1 v −m2 (1− v) +
e1 v s1(r1 + a1 ε)

a1 + h1 s1(r1 + a1 ε)
+
e2 (1− v) s2(r2 + a2 ε)

a2 + h2 s2(r2 + a2 ε)
.

Noting that

lim
ε→0

(
−m1 v −m2 (1− v) +

e1 v s1(r1 + a1 ε)

a1 + h1 s1(r1 + a1 ε)
+
e2 (1− v) s2(r2 + a2 ε)

a2 + h2 s2(r2 + a2 ε)

)
= v(A1 −A2) +A2 = vA1 + (1− v)A2 < 0.

(19)

One can choose ε > 0 sufficiently small such that B < 0. This together with (18)
implies that y(t)→ 0 as →∞, that is, the predator goes to extinction.

By this theorem, in order for the predators to be persistent, at least one of the two
quantities A1 and A2 must be positive. To proceed further, we need the following
lemma, which can be easily proved by standard methods (see, e.g., [18]), on the
prey-predator model (16).

Lemma 3.3. Assume that Ai > 0. If

(Hi)
ri
ai
<

ei +mi hi
si hi(ei −mi hi)

,

then, every positive solution of (16) approaches to a positive equilibrium; and if

(H−i )
ei +mi hi

si hi(ei −mi hi)
<
ri
ai
,

then, every positive solution of (16) tends to a positive limit cycle, except for those
solutions starting from unstable equilibria.

In the remainder of this section, we consider the case when both A1 and A2 are
positive, and will leave the case that A1A2 < 0 to the next section for discussion
where we will present some numerical simulation results.

Now we are in the position to establish the persistence of the predators, as well
as of the strategy functions v(t) and 1− v(t) for the case when both A1 and A2 are
positive.

Theorem 3.4. Assume that A1 > 0 and A2 > 0. Then the predator population in
system (5) is uniformly persistent.

Proof. We apply the theory in [11, 23] to complete the proof. To this end, we
distinguish four cases:

(I) (H1) and (H2) hold; (II) (H1) and (H−2 ) hold;
(III) (H−1 ) and (H2) hold; (IV) (H−1 ) and (H−2 ) hold.
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We only give the proof for Case (I), since the proofs for the other three cases are
similar and are thus omitted to save space.

Define

X = {(x1, x2, y, v) : x1 ≥ 0, x2 ≥ 0, y ≥ 0, 0 ≤ v ≤ 1},
X0 = {(x1, x2, y, v) : x1 ≥ 0, x2 ≥ 0, y > 0, 0 ≤ v ≤ 1}, (20)

Y = X/X0 = {(x1, x2, y, v) : x1 ≥ 0, x2 ≥ 0, y = 0, 0 ≤ v ≤ 1}.

There are eight equilibria in set Y :

E2
0(0, 0, 0, 0), E2

1

(
r1
a1
, 0, 0, 0

)
, E2

2

(
0,
r2
a2
, 0, 0

)
, E2

3

(
r1
a1
,
r2
a2
, 0, 0

)
,

E1
0(0, 0, 0, 1), E1

1

(
r1
a1
, 0, 0, 1

)
, E1

2

(
0,
r2
a2
, 0, 1

)
, E1

3

(
r1
a1
,
r2
a2
, 0, 1

)
.

Following notations in [11], A∂ being the global attractor in the boundary set Y ,
we have

Ã∂ = ∪
x∈A∂

ω(x)

= ∪Eji , i = 0, 1, 2, 3, j = 1, 2.

In order to show Ã∂ is isolated and has an acyclic covering, first, we consider the
system restricted on Y :

dx1
dt

= x1(r1 − a1x1),

dx2
dt

= x2(r2 − a2x2), (21)

dv

dt
= kv(1− v)

(
−m1 +m2 +

e1 s1 x1
1 + h1 s1 x1

− e2 s2 x2
1 + h2 s2 x2

)
.

Note that among equilibria Eji for i = 0, 1, 2, 3; j = 1, 2, the sequence E2
i , i =

0, 1, 2, 3 correspond to v = 0 and the sequence E1
i , i = 0, 1, 2, 3 correspond to

v = 1. First, we show the analysis for the former case. When v = 0, the three-
dimensional system (21) reduces to a two-dimensional system. Because equilibrium
E2

3 is globally asymptotically stable for the two-dimensional system, it is clear that
E2

0 , E
2
1 , E

2
2 , E

2
3 are isolated and acyclic in set Y . By checking eigenvalues of each

equilibrium, it can be shown that E2
0 , E

2
1 , E

2
2 , E

2
3 are also isolated in set X.

Next, we show that W s(E2
3) ∩ X0 = ∅. Suppose this is not true. Then there

exists a solution of (5) with y(t) positive such that

lim
t→∞

(x1(t), x2(t), y(t), v(t)) =

(
r1
a1
,
r2
a2
, 0, 0

)
. (22)

Denote

R(t) = −m1 v −m2 (1− v) +
e1 v s1 x1

1 + h1 s1 x1
+
e2 (1− v) s2 x2

1 + h2 s2 x2
.

Then (22) implies that R(t)→ A2 > 0 as →∞. Thus, for ε ∈ (0, A2), there exists
T > 0 such that R(t) > A2 − ε > 0 for t ≥ T . Therefore,

dy

dt
= R(t)y ≥ (A2 − ε)y, for t ≥ T, (23)
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which implies that y grows unboundedly by the comparison principle. This contra-
dicts the boundedness of y(t). Therefore, W s(E2

3)∩X0 = ∅ if A2 > 0. Similarly, we
can prove W s(E2

i ) ∩X0 = ∅ for i = 0, 1, 2 when condition A2 > 0 holds.
For the case corresponding to v = 1, we can prove that A1 > 0 implies W s(E1

i )∩
X0 = ∅ for i = 0, 1, 2, 3. The proof here is similar to the proof for the case v = 0 (it
is actually a result of the conjugacy of v and 1− v) and is thus omitted.

Now, by the theoretical results in persistence theory (see, e.g., [11] or [23]), we
have proved that the predator’s population in system (5) is uniformly persistent.

Next, we show that strategy variable v(t) is also persistent if both A1 and A2

are positive. We also distinguish the local case (Hi) (convergence to equilibrium)
from the local case (H−i ) (convergence to limit cycle).

Theorem 3.5. Assume that A1 > 0 and A2 > 0. Then the strategy functions v(t)
and 1−v(t) are uniformly persistent in the sense that there exists a η > 0 such that

lim inf
t→∞

v(t) > η, and lim inf
t→∞

[1− v(t)] > η.

In order to prove the strategy’s persistence, we need to prove that v = 0 and
v = 1 are both uniform repellers. To this end, we define the same set X as in the
proof of Theorem 3.4 but define the interior set and the boundary set with respect
to v and 1− v by

X̂0 = {(x1, x2, y, v) : x1 ≥ 0, x2 ≥ 0, y ≥ 0, 0 < v < 1},

Ŷ = X/X̂0 = Y1 ∪ Y2,

where, Y1 = {(x1, x2, y, v) : x1 ≥ 0, x2 ≥ 0, y ≥ 0, v = 0} and Y2 = {(x1, x2, y, v) :
x1 ≥ 0, x2 ≥ 0, y ≥ 0, v = 1}.

As in the proof of Theorem 3.4, we also distinguish four local cases as in the
proof of Theorem 3.5, depending on whether the local dynamics is convergence to
equilibrium (i.e., under (Hi)), or convergence to limit cycle (i.e., under (H−i )).

Proof of Case (I). (H1) and (H2) hold. First, we prove that v = 0 (i.e. Y1) is a
uniform repeller. When v = 0, six equilibria, namely

E2
0(0, 0, 0, 0), E2

1

(
r1
a1
, 0, 0, 0

)
, E2

2

(
0,
r2
a2
, 0, 0

)
,

E2
3

(
r1
a1
,
r2
a2
, 0, 0

)
, E2

4 (0, x∗2, y
∗
2 , 0) , E2

5

(
r1
a1
, x∗2, y

∗
2 , 0

)
,

exist in set Y1. Let us consider the system restricted in Y1:

dx1
dt

= x1(r1 − a1 x1),

dx2
dt

= x2(r2 − a2 x2)− s2 x2 y

1 + h2 s2 x2
, (24)

dy

dt
= y

(
−m2 +

e2 s2 x2
1 + h2 s2 x2

)
.

For system (24), equilibrium E2
5 is globally asymptotically stable when A2 > 0,

i.e. when equilibrium E2
5 exists. Therefore, equilibria E2

0 , E
2
1 , E

2
2 , E

2
3 , E

2
4 , E

2
5 are

isolated and acyclic in the set Y. By checking the eigenvalues of each equilibrium,
we can see that E2

i for i = 0, 1, 2, 3, 4, 5 are also isolated in set X.
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Next, we prove that W s(E2
5)∩X0 = ∅. Suppose that is not the case. Then there

exists a solution of (5) in X0, such that

lim
t→∞

(x1(t), x2(t), y(t), v(t)) =

(
r1
a1
, x∗2, y

∗
2 , 0

)
. (25)

Denote

r(t) = −m1 +m2 +
e1 s1 x1

1 + h1 s1 x1
− e2 s2 x2

1 + h2 s2 x2
.

Then (25) implies that r(t) → A1 > 0 as t → ∞. Thus for any ε ∈ (0, A1), there
exists T > 0 such that r(t) > A1 − ε for t ≥ T. Therefore,

dv

dt
= k v(1− v)r(t) ≥ k v(1− v)(A1 − ε), for t ≥ T, (26)

which implies that v is increasing in t. This contradicts the fact that v → 0 when
t→∞. Therefore, W s(E2

5) ∩X0 = ∅ if condition A1 > 0 is satisfied. Similarly, we
can prove that W s(E2

i ) ∩X0 = ∅, for i = 0, 1, 2, 3, 4.
For the case where v = 1, we can prove that W s(E1

i )∩X0 = ∅ for i = 0, 1, 2, 3, 4, 5
if A2 > 0 by the conjugacy of v and 1− v.

Based on persistence theory (e.g.,[11] or [23]), we have proved that the strategy
is uniformly persistent.

Proof of Case (II). (H−1 ) and (H−2 ) hold. We assume the period in patch 1 is T1
and the period in patch 2 is T2, and T2 > T1 for convenience. First, we show that
v = 0, i.e. Y1 is a uniform repeller. Let (x2(t), y(t)) denote points of the limit cycle.

It is sufficient to prove W s

(
r1
a1
, x2, y, 0

)
∩X0 = ∅ in order to prove that v = 0 is a

uniform repeller. Suppose this is not the case. Then there exists a solution of (5)
such that

lim
t→∞

(x1(t), x2(t), y(t), v(t)) =

(
r1
a1
, x2, y, 0

)
. (27)

As indicated in (6), we have obtained the solution of v as

v(t) = 1− 1/

(
1 + v(0)/(1− v(0)) exp

{∫ t

0

ψ(ξ)dξ

})
.

We rewrite exp
{∫ t

0
ψ(ξ)dξ

}
as

exp

{∫ t

0

ψ(ξ)dξ

}
= exp


(∫ t

0
ψ(ξ)dξ

)
t

t

 . (28)

Substituting (7) into
∫ t
0
ψ(ξ)dξ/t, we obtain

− k(m2 + ε e2 s2 L1) +
k e1 s1(r1/a1 − ε)

1 + h1 s1(r1/a1 − ε)

≤
k
∫ nT2

0
(e1 s1 x1)/(1 + h1 s1 x1)ds

nT2
−
k
∫ nT2

0
(e2 s2 x2)/(1 + h2 s2 x2)ds

nT2

≤ k e1 s1(r1/a1 + ε)

1 + h1 s1(r1/a1 + ε)
− k(m2 − ε e2 s2 L2).

(29)
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Substituting t = nT2 into (29), we obtain∫ nT2

0
k ((e1 s1 x1)/(1 + h1 s1 x1)− (e2 s2 x2)/(1 + h2 s2 x2)) dξ

nT2

=
k
∫ nT2

0
(e1 s1 x1)/(1 + h1 s1 x1)dξ

nT2
−
k
∫ nT2

0
(e2 s2 x2)/(1 + h2 s2 x2)dξ

nT2
.

(30)

The predator’s equation in system (5) shows

dy

y
=

(
−m2 +

e2 s2 x2
1 + h2 s2 x2

)
dt. (31)

Substituting (x2, y) into (31) and integrating both sides of (31) from 0 to nT2 gives∫ nT2

0

d y

y
=

∫ nT2

0

(
−m2 +

e2 s2 x2
1 + h2 s2 x2

)
dt. (32)

Direct calculations indicate that
∫ nT2

0
d y
y = 0. Further calculations show that the

right-hand side of (32) equals −m2 nT2 +
∫ nT2

0
(e2 s2 x2)/(1+h2 s2 x2)dt. Therefore,

we obtain ∫ nT2

0

e2 s2 x2
1 + h2 s2 x2

dt = nm2 T2. (33)

Let

f(x) =
e2 s2 x

1 + h2 s2 x
.

The function f(x) is increasing. In addition, from (27), for ε small enough, there
exists n∗ > 0 such that x2− ε < x2 < x2 + ε. Using the above two properties, when
n > n∗, we obtain,

e2 s2 (x2 − ε)
1 + h2 s2 x2

<
e2 s2 (x2 − ε)

1 + h2 s2 (x2 − ε)
<

e2 s2 x2
1 + h2 s2 x2

<
e2 s2 (x2 + ε)

1 + h2 s2 (x2 + ε)
<
e2 s2 (x2 + ε)

1 + h2 s2 x2
.

By using (33),when n > n∗, we have∫ nT2

0
(e2 s2 (x2 + ε)) / (1 + h2 s2 x2) dξ

nT2

=

∫ nT2

0
(e2 s2 x2) / (1 + h2 s2 x2) dξ

nT2
+

∫ nT2

0
(e2 s2 ε) / (1 + h2 s2 x2) dξ

nT2

=
nm2 T2
nT2

+

∫ nT2

0
(e2 s2 ε) / (1 + h2 s2 x2) dξ

nT2

= m2 +
ε e2 s2

∫ nT2

0
1/ (1 + h2 s2 x2) dξ

nT2
.

(34)

Because x2 is bounded, we assume

L2 ≤ 1/(1 + h2 s2 x2) ≤ L1, (35)

where L1 and L2 are positive constants. By using (35), we obtain

ε e2 s2 L2 ≤
ε e2 s2

∫ nT2

0
1/(1 + h2 s2 x2)dξ

nT2
≤ ε e2 s2 L1, when n > n∗.
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From the above analysis, when n > n∗, we have

m2 − ε e2 s2 L2 ≤
∫ nT2

0
(e2 s2 (x2 − ε)) / (1 + h2 s2 x2) dξ

nT2

≤
∫ nT2

0
(e2 s2 x2)/(1 + h2 s2 x2)dξ

nT2

≤
∫ nT2

0
(e2 s2 (x2 + ε))/(1 + h2 s2x2)dξ

nT2
≤ m2 + ε e2 s2 L1.

(36)

Again from (27), when n > n∗, we have

r1
a1
− ε < x1(t) <

r1
a1

+ ε.

By using the above inequality, we obtain

e1 s1 (r1/a1 − ε)
1 + h1 s1 (r1/a1 − ε)

<
e1 s1 x1

1 + h1 s1 x1
<

e1 s1 (r1/a1 + ε)

1 + h1 s1 (r1/a1 + ε)
. (37)

Integrating (37) from 0 to nT2, we obtain

nT2 e1 s1 (r1/a1 − ε)
1 + h1 s1 (r1/a1 − ε)

<

∫ nT2

0

(e1 s1 x1)/(1 + h1 s1 x1)dξ

<
nT2 e1 s1 (r1/a1 + ε)

1 + h1 s1 (r1/a1 + ε)
.

(38)

It is obvious that (38) is equivalent to

k e1 s1 (r1/a1 − ε)
1 + h1 s1 (r1/a1 − ε)

<
k
∫ nT2

0
(e1 s1 x1)/(1 + h1 s1 x1)dξ

nT2

<
k e1 s1 (r1/a1 + ε)

1 + h1 s1 (r1/a1 + ε)
.

(39)

Comparing (36), (39) with (30), when n > n∗, we obtain

− k(m2 + ε e2 s2 L1) +
k e1 s1(r1/a1 − ε)

1 + h1 s1(r1/a1 − ε)

≤
k
∫ nT2

0
(e1 s1 x1)/(1 + h1 s1 x1)ds

nT2
−
k
∫ nT2

0
(e2 s2 x2)/(1 + h2 s2 x2)ds

nT2

≤ k e1 s1(r1/a1 + ε)

1 + h1 s1(r1/a1 + ε)
− k(m2 − ε e2 s2 L2).

(40)

From (40), we have

lim sup
n→∞

k
∫ nT2

0
(e1 s1 x1)/(1 + h1 s1 x1)ds

nT2
−
k
∫ nT2

0
(e2 s2 x2)/(1 + h2 s2 x2)ds

nT2

=
k e1 s1 r1

a1 + h1 s1 r1
− km2,

lim inf
n→∞

k
∫ nT2

0
(e1 s1 x1)/(1 + h1 s1 x1)ds

nT2
−
k
∫ nT2

0
(e2 s2 x2)/(1 + h2 s2 x2)ds

nT2

=
k e1 s1 r1

a1 + h1 s1 r1
− km2.

(41)
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By comparing (41) and (29), we obtain∫ t
0
ψ(ξ)dξ

t
→ −km1 +

w e1 s1 r1
a1 + h1 s1 r1

, when t→∞. (42)

Let α = k ((e1 s1 r1)/(a1 + h1 s1 r1)−m1) = k A1. From (6) and (42), we obtain

v(t) = 1− 1/

(
1 + (v(0)/(1− v(0))) exp

{∫ t

0

ψ(ξ)dξ

})
→ 1, when t→∞. (43)

This contradicts the fact that v → 0, when t→∞. Therefore, we can conclude that
v = 0 is a uniform repeller.

The proof of v = 1 being a uniform repeller is similar to the proof above. The
only difference lies in choosing t = nT1 instead of t = nT2. Here we omit this part.

When t 6= nT1 or t 6= nT2, from (41), we see that∫ nT2

0

(ei si xi)/(1 + hi si xi)ds, i = 1, 2

are bounded because x1, x2 are bounded. When n is sufficiently large, (41) is still
valid. Taking all the above into consideration, we can conclude that if A1 > 0, A2 >
0, the strategies v(t) and 1− v(t) are uniformly persistent.

Proof of Case (III). (H1) and (H−2 ) hold. When (H1) and (H−2 ) hold, we assume the
period of the limit cycle of (5) in patch 2 is T . First, we prove that v = 0 is a uniform
repeller. When v = 0, predators forage only in patch 2. Let (x20(t), y0(t)) denote

points of the limit cycle in patch 2. It is sufficient to prove W s

(
r1
a1
, x20, y0, 0

)
∩

X0 = ∅ in order to prove that v is a uniform repeller. The remaining proof is similar
to the proof of Case (II) except that we choose t = nT here instead of t = nT1 or
t = nT2. Following the same procedure as in the proof of Case (II), we can prove
that v = 0 is a uniform repeller when conditions A1 > 0, A2 > 0 are satisfied. The
proof of v = 1 being a uniform repeller is similar to the proof of v = 0 being a
uniform repeller of Case (II), and is thus omitted.

The proof of the theorem is completed.

4. Numerical simulations. We now discuss the mixed scenario of either “A1 > 0
and A2 < 0” or “A1 < 0 and A2 > 0”. In such a case, if the two patches are
fully isolated, then the results on the dynamics of the patch-wise model (16) show
that the predators will persist in the advantageous patch (i.e., with Ai > 0) but
go to extinction in the disadvantageous patch (i.e., with Ai < 0). When the two
patches are not isolated, v(t) evolves in (0, 1). Unfortunately we are unable to obtain
any theoretical results at this moment for such a case. However, our numerical
explorations seem to suggest that the above conclusion remains true. For example,
if we take the parameter values r1 = 2.0, r2 = 0.3, a1 = 2, a2 = 1.3, s1 = 1.2, s2 =
1,m1 = 0.2,m2 = 0.1, e1 = 0.4, e2 = 0.3, h1 = 0.3, h2 = 0.2, k = 1.0, we have
A1 > 0 and A2 < 0. Numerical simulation shows that v(t)→ 1 as t→∞ (see Fig.
1(a)), implying that the predators will eventually stay in patch 1 (the advantageous
patch). Then by the theory of asymptotically autonomous systems, we obtain
the above conclusion. Similarly, by choosing the parameter values r1 = 0.8, r2 =
2.0, a1 = 2, a2 = 1.3, s1 = 1.2, s2 = 1,m1 = 0.2,m2 = 0.1, e1 = 0.4, e2 = 0.3, h1 =
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0.3, h2 = 0.2, k = 1.0, we have A1 < 0 and A2 > 0, and simulation shows that
v(t)→ 0 as t→∞ (see Fig. 1(b)), leading to the above conclusion again.

Mathematical results in Section 3 show that the dispersal rate of predators or
the strength of adaptation (i.e., k) does not affect the persistence or extinction
of the predators. However, numerical simulations indicate that k may induce rich
patterns and have an effect on average biomass of the predators. Figures 2, 3, 4 are
obtained under the case where the carrying capacity of prey in patch 1 is small
and the carrying capacity of prey in patch 2 is large enough to support oscillations,
reflected by the conditions “A1 > 0 and A2 > 0” together with “(H1) and (H−2 )”.

Figure 2 indicates that when k is large or small, i.e. when the adaptation strength
of predators is strong or weak, the dispersal of predators stabilizes the system; while
when the adaptation strength is mediate, there will be Hopf bifurcation. Figures
3 and 4 show that in the interval of Hopf bifurcation, prey, predators and the
strategy behave periodically. Figure 5 shows that there is a complicated relationship
between predator’s average biomass and the dispersal rate k in the interval of Hopf
bifurcation.

When the carrying capacity of prey in each isolated patch is large enough to
support oscillations, i.e. conditions (H−1 ) and (H−2 )in Lemma 3.3 are satisfied, a
torus bifurcation may occur. Figures 6(a) and 6(b) are produced under conditions
(H−1 ) and (H−2 ) in Lemma 3.3. Figure 6(a) shows modulated oscillation. Figure
6(b) shows a torus surface. As indicated in [8], a torus bifurcation may be due to
the aperiodic behavior of predators. Making use of the simulations in Figures 3,
4, or 5, we increase the local recruitment rate of prey in patch 1 such that prey
and predators in both patches exhibit periodic behaviour. Because the amplitude
of the periodic solutions in two patches are different, the aperiodic behaviour of the
predators occurs, which leads to the torus bifurcation.

5. Conclusion and discussions. In this paper, we have studied the dynamics
of a two-patch predator-prey model with the Holling type II functional response
and allowing the predators to move adaptively between the two patches to gain
fitness. We have analyzed the persistence and extinction of predators and the cor-
responding mixed strategy, in terms of the combined parameters Ai, i = 1, 2 which
determine whether patch i is advantageous or disadvantageous to the predators.
When patches are isolated, in an advantageous patch, by Lemma 3.3, prey and
predators can persist in two different modes: (i) convergence to a positive equilib-
rium; (ii) convergence to a positive periodic solution, depending on whether (Hi)
or its opposite (H−i ) holds.

With the adaptive dispersal, we have proved that predators will go to extinction
on both patches when A1 < 0 and A2 < 0; and when A1 > 0, A2 > 0, the predators
will persist in both patches, and so will be the dispersion strategy function v(t).
Interestingly, the strength of adaptation (i.e. k) does not affect the above conclusion.
However, numerical simulations indicate that it does have an impact on the patterns
of persistence and affect the average population of the predators. When prey and
predators tend to an equilibrium in one patch and tend to a limit cycle in the
other patch, numerical simulations show that the adaptive movement of predators
can stabilize the system when the adaptation of predators is either weak or strong,
and there is an intermediate window for the adaptation strength in which Hopf
bifurcation occurs, causing periodic fluctuations for prey and predator populations
in both patches. Also found by numerical simulations is that the average biomass



ON A PREDATOR-PREY MODEL WITH HABITANCY OF PREDATORS 693

of predators has a complicated relationship with the dispersal rate of the predators.
Moreover when prey and predators tend to limit cycles in each isolated patch, a
torus bifurcation is numerically observed.

For the case of A1A2 < 0 (i.e., one patch is advantageous and the other is
disadvantageous), we are unable to obtain theoretical results. In such situation, our
numerical investigations seem to show that adaptive dispersal also does not affect
the global outcome in the sense that the predators will persist in the advantageous
patch and go extinct in the disadvantageous patch. In plain language, the adaptive
dispersal is always in favor of the advantageous patch, if any.

We point out that recently Cressman and Křivan ([8]) studied a two-patch
predator-prey model focusing on adaptive dispersals of both prey and predators.
In contrast to their work, we consider a system including both population dynam-
ics and adaptive dynamics. By studying the combined system, we can gain more
biological and mathematical insights.
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(a) Adaptive dispersion is in favor
of patch 1
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(b) Adaptive dispersion is in favor
of patch 2

Figure 1. Adaptive dispersion. (a) The initial values are
(0.2, 0.1, 12, 0.35), and the parameter values are r1 = 2.0, r2 =
0.3, a1 = 2, a2 = 1.3, s1 = 1.2, s2 = 1,m1 = 0.2,m2 = 0.1, e1 =
0.4, e2 = 0.3, h1 = 0.3, h2 = 0.2, k = 1.0 leading to A1 > 0 and
A2 < 0; (b) The initial values are (0.5, 0.2, 12, 0.35), and the param-
eter values are r1 = 0.8, r2 = 2.0, a1 = 2, a2 = 1.3, s1 = 1.2, s2 =
1,m1 = 0.2,m2 = 0.1, e1 = 0.4, e2 = 0.3, h1 = 0.3, h2 = 0.2, k =
1.0 leading to A1 < 0 and A2 > 0.
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[15] V. Křivan and R. Cressman, On evolutionary stability in predator-prey models with fast

behavioral dynamics, Evolutionary Ecology Research, 11 (2009), 227–251.
[16] Y. Kuang and Y. Takeuchi, Predator-prey dynamics in models of prey dispersal in two-patch

environments, Mathematical Biosciences, 120 (1994), 77–98.
[17] S. A. Levin, Dispersion and population interactions, The American Naturalist , 108 (1974),

207–228.

[18] J. D. Murray, Mathematical Biology, I, An Introduction, Springer, 2002.
[19] I. Scharf, E. Nulman, O. Ovadia and A. Bouskila, Efficiency evaluation of two competing

foraging modes under different conditions, The American Naturalist , 168 (2006), 350–357.

http://www.ams.org/mathscinet-getitem?mr=MR0982666&return=pdf
http://dx.doi.org/10.1137/0520025
http://www.ams.org/mathscinet-getitem?mr=MR1635735&return=pdf
http://dx.doi.org/10.1017/CBO9781139173179
http://dx.doi.org/10.4039/entm9745fv
http://dx.doi.org/10.4039/entm9745fv
http://www.ams.org/mathscinet-getitem?mr=MR1281745&return=pdf
http://dx.doi.org/10.1016/0025-5564(94)90038-8
http://dx.doi.org/10.1016/0025-5564(94)90038-8
http://dx.doi.org/10.1086/282900
http://www.ams.org/mathscinet-getitem?mr=MR1908418&return=pdf
http://dx.doi.org/10.1086/506921
http://dx.doi.org/10.1086/506921


ON A PREDATOR-PREY MODEL WITH HABITANCY OF PREDATORS 697

0 100 200 300 400 500
0

5

10

15

20

25

 

 
x1
x2
x3
x4

(a) Modulated oscillation

0 0.5 1 1.5 2 2.5

0
1

2

14

15

16

17

18

19

20

21

22

x2x1
x
3

(b) Torus surface

Figure 6. A torus surface exists when A1 > 0, A2 > 0, H−1 , H
−
2 ,

which indicates a torus bifurcation. Parameters are r1 = 9, r2 =
8, a1 = 2, a2 = 2, s1 = 1, s2 = 1,m1 = 0.2,m2 = 0.2, e1 = 0.4, e2 =
0.4, h1 = 0.4, h2 = 0.4, w = 1.0.

[20] R. D. Seitz, R. N. Lipcius, A. H. Hines and D. B. Eggleston, Density-dependent predation,
habitat variation, and the persistence of marine bivalve prey, Ecology, 82 (2001), 2435–2451.

[21] J. E. Staddon, Adaptive Behaviour and Learning, CUP Archive, 1983.

[22] C. Starr, R. Taggart, C. Evers and L. Starr, Biology: The Unity And Diversity of Life,
Yolanda Cossio, 2009.

[23] H. R. Thieme, Persistence under relaxed point-dissipativity (with application to an endemic

model), SIAM Journal on Mathematical Analysis, 24 (1993), 407–435.
[24] W. Wang and Y. Takeuchi, Adaptation of prey and predators between patches, Journal of

Theoretical Biology, 258 (2009), 603–613.

[25] D. K. Wasko and M. Sasa, Food resources influence spatial ecology, habitat selection, and
foraging behavior in an ambush-hunting snake (Viperidae: Bothrops asper): an experimental

study, Zoology, 115 (2012), 179–187.

Received July 2014; revised January 2015.

E-mail address: xwang663@uwo.ca

E-mail address: xzou@uwo.ca

http://www.ams.org/mathscinet-getitem?mr=MR1205534&return=pdf
http://dx.doi.org/10.1137/0524026
http://dx.doi.org/10.1137/0524026
http://www.ams.org/mathscinet-getitem?mr=MR2973268&return=pdf
http://dx.doi.org/10.1016/j.jtbi.2009.02.014
http://dx.doi.org/10.1016/j.zool.2011.10.001
http://dx.doi.org/10.1016/j.zool.2011.10.001
http://dx.doi.org/10.1016/j.zool.2011.10.001
mailto:xwang663@uwo.ca
mailto:xzou@uwo.ca

	1. Introduction
	2. Model formulation
	3. Mathematical analysis
	4. Numerical simulations
	5. Conclusion and discussions
	REFERENCES

