Functional Consequences of Repeated Organophosphate Exposure: Potential Non-Cholinergic Mechanisms

Alvin V. Terry, Jr., Ph.D.

Professor of Pharmacology and Toxicology

(IIIII) Georgia Health Sciences University

Source: "Fundamental Neuroscience", Second Edition, Copyright, 2003, Academic Press

Organophosphates

Chemicals Derived From:

Phosphoric Acid

Phosphonic Acid

Phosphinic Acid

Organophosphate-Based Chemicals Found in:

- Insecticides (e.g., malathion, parathion, diazinon, chlorpyrifos)
- Chemical Warfare ("nerve") Agents (e.g., soman, sarin, tabun, VX)
- Ophthalmic Agents (e.g., echothiophate, isoflurophate)
- Antihelmintics (e.g., trichlorfon)
- Herbicides (e.g., tribufos, merphos)
- Solvents, Plasticizers, and Extreme Pressure Additives for Lubricants

Reviewed, Katz and Brooks, 2010

Gulf War Illness and OPs

- Exposure to one or more acetylcholinesterase inhibitors appears to offer a particularly plausible explanation for several of the neurological-based symptoms of GWI (Golomb et al., 2008)
- An estimated 41,000 military personnel in the first gulf war were exposed to insecticides that contained either carbamate or OP-based AChEls (Fricker et al., 2000; US Department of Defense, 2003)
- As many as 100,000 military personnel may have been exposed to low (i.e., non-acutely toxic) levels of sarin/cyclosarin following the destruction of an Iraqi munitions storage complex at Khamisiyah, Iraq, in March 1991 (Berardocco, 1997).

OP-Pesticide Use in the First Gulf War

- Fly Bait
 - azamethiphos
- Pest Strips
 - dichlorvos
- Sprayed Liquids
 - chlorpyrifos, diazinon, malathion
- Fogs
 - chlorpyrifos, malathion

Source: http://www.gulflink.osd.mil/pest_final/index.html.

Organophosphate Toxicity

Acute

- <u>Muscarinic</u> (postganglionic parasympathetic) "DUMB-BELS": diaphoresis and diarrhea, urination, miosis, bradycardia, bronchospasm, emesis, lacrimation, salivation.
- <u>Nicotinic</u> (neuromuscular junction)- muscle fasciculations, weakness, paralysis, respiratory failure; (CNS)- seizures or CNS depression/coma.
- Chronic and/or Repeated Low-Level Exposures*
 - Anxiety, depression, psychotic symptoms, deficits in short-term memory, learning, attention, information processing, eye-hand coordination and reaction time, and extrapyramidal symptoms.

* Data primarily from case reports and retrospective epidemiological studies.

Overall Objectives

- Determine the consequences of repeated, "subthreshold" exposures to representative organophosphates on cognitive function in animal models.
 - Information processing and attention
 - Spatial Learning
 - Recognition Memory
 - Working Memory
- Determine the consequences of repeated, low-level exposures to representative organophosphates on neurobiological substrates of cognitive function
 - Cholinergic Markers
 - Neurotrophins
 - Axonal Transport
- Identify therapeutic targets for drug development

Summary of Previous Chlorpyrifos Studies (repeated Subthreshold exposures)

- Impairments in spatial learning
- Impairments in Prepulse Inhibition of the auditory startle response
- Decreased expression of cholinergic marker proteins in the brain
- Decreased expression of neurotrophin-related proteins in the brain
- Impairments of anterograde and retrograde axonal transport ex vivo

Terry et al., *J. Pharmacol Exp Ther* 305: 375-384, 2003. Terry et al., *J. Pharmacol Exp Ther* 322: 1117-1128, 2007.

The Rat, Five Choice Serial Reaction Time Task (5C-SRTT)

Continuous Performance Task (CPT) AX Type		Hit Lever
АНХЈ	ЈАКХОІҮАИВ	A X

5C-SRTT-Chlorpyrifos Experiments Conclusion

Repeated exposures to subthreshold levels of chlorpyrifos lead to protracted impairments of sustained attention and an increase in impulsive behaviors in rats.

Middlemore-Risher et al., Neurotoxicology and Teratology 32: 415-424, 2010

Summary (CPF & CPO in Neuronal Culture)

- Concentration-dependent decrease in the transport of mitochondria in axons, an increase in mitochondrial length, and a decrease in mitochondrial number (indicative of increased fusion versus fission events)
- The neuronal changes occurred at OP concentrations that did not inhibit AChE activity, they were not blocked by cholinergic antagonists, and they did not appear to be associated with directly toxic effects on mitochondria (i.e., alterations in ATP production, mitochondrial membrane potential, superoxide production).
- The results suggest that an underlying mechanism of OP-based alterations in neurological function might involve alterations in mitochondrial dynamics and/or their transport in axons.

Middlemore-Risher et al., J Pharm Exp Ther 339:341-349, 2011

Fig 1. The effects of repeated exposures to CPF 18.0 mg/kg (Left) or DFP 0.75 mg/kg (Right) on cholinesterase activity in the plasma and brain at various time points during a 45 day OP-free washout period. Data (mean \pm SEM) are presented as % of vehicle-matched control levels. (N=3-6).

Terry et al., Neurotoxicology and Teratology 34:1-8, 2012

8-Arm Radial Maze (Delayed Non-Match-to Sample)

* Behavioral Testing Began on day 50 of the OP-washout period

* Behavioral Testing Began on day 50 of the OP-washout period

Conclusion

"Repeated, subthreshold exposures to CPF and DFP may lead to chronic deficits in spatial learning and memory (i.e., long after cholinesterase inhibition has abated) and that insecticide and nerve agent OPs may have differential effects depending on the cognitive domain evaluated".

Current and Future Studies

- Specific Aim #1: Determine the consequences of repeated subthreshold exposures to representative OPs on axonal transport in the living rat brain.
 - Manganese-Enhanced Magnetic Resonance Imaging (MEMRI) Studies
- Specific Aim #2: Determine the consequences of repeated subthreshold exposures to representative OPs on myelin in the living rat brain.
 - Diffusion tensor imaging (DTI)
 - Black Gold II Histology

Approved DOD-CDMRP Proposal (GW110073) "Organophosphate-Related Alterations in Myelin and Axonal Transport in the Living Mammalian Brain"

Summary/Conclusions

- Repeated, subthreshold exposures to both insecticide and nerve agent OPs lead to protracted impairments of attention and memory-related behavioral tasks in animals.
- Insecticide and nerve agent OPs may have differential effects on specific domains of cognition.
- The mechanisms underlying OP-related impairments of cognition may involve deleterious effects on mitochondrial morphology and movement, axonal transport, and neurotrophin signaling.

Potential Therapeutic Strategies

- Cholinergic-Based Compounds
- Glutamate Receptor Antagonists
- Mitochondrial-Targeted Antioxidants
- Drugs that Increase Axonal Transport?
- Drugs that Improve Neurotrophin Function
- Cytokine-Based Treatments

Reviewed, Terry, 2012, Pharmacology and Therapeutics 134:355-365

Other Acknowledgements

- Michael Bartlett, Ph.D.
- Nathan Yanasak, Ph.D.
- Adviye Ergul, M.D., Ph.D.
- Alexey Skachkov
- Gary Schwarz
- NIH/NIEHS ES012241