Smarandache Seminormal Subgroupoids

H. J. Siamwalla[†] and A.S.Muktibodh[‡]

 [†] Abeda Inamdar Senior College, Azam Campus, Pune, India
 Email: siamwalla.maths@gmail.com
 [‡] Shri M. Mohota College of Science, Umred Road Nagpur, India
 Email: amukti2000@yahoo.com

Abstract In this paper, we define Smarandache seminormal subgroupoids. We have proved some results for finding the Smarandache seminormal subgroupoids in Z(n) when n is even and n is odd.

Keywords Smarandache groupoids, Smarandache seminormal subgroupoids.

§1. Introduction and preliminaries

In [5] and [6], W.B.Kandasamy defined new classes of Smarandache groupoids using Z_n . In this paper we define and prove some theorems for construction of Smarandache seminormal subgroupoids according as n is even or odd.

Definition 1.1. A non-empty set of elements G is said to form a groupoid if in G is defined a binary operation called the product, denoted by * such that $a * b \in G \quad \forall a, b \in G$. We denote groupoids by (G, *).

Definition 1.2. Let (G, *) be a groupoid. A proper subset $H \subset G$ is a subgroupoid if (H, *) is itself a groupoid.

Definition 1.3. Let S be a non-empty set. S is said to be a semigroup if on S is defined a binary operation * such that

- 1. for all $a, b \in S$ we have $a * b \in S$.
- 2. for all $a, b, c \in S$ we have a * (b * c) = (a * b) * c.

(S, *) is a semi-group.

Definition 1.4. A Smarandache groupoid G is a groupoid which has a proper subset S such that S under the operation of G is a semigroup.

Definition 1.5. Let (G, *) be a Smarandache groupoid. A non-empty subgroupoid H of G is said to be a Smarandache subgroupoid if H contains a proper subset K such that K is a semigroup under the operation *.

Definition 1.6. Let G be a Smarandache groupoid. V be a Smarandache subgroupoid of G. We say V is a Smmarandache seminormal subgroupoid if aV = V for all $a \in G$ or Va =

*	a_0	a_1	a_2	a_3	a_4	a_5
a_0	a_0	a ₃	<i>a</i> ₀	a ₃	a_0	a ₃
	a_0	a_5	a_0		a_0	
				<i>a</i> ₅		<i>a</i> ₅
<i>a</i> ₂	a_4	a_1	a_4	a_1	a_4	a_1
a_3	a_0	a_3	a_0	a_3	a_0	a_3
<i>a</i> ₄	a_2	a_5	a_2	a_5	a_2	a_5
a_5	a_4	a_1	a_4	a_1	a_4	a_1

V for all $a \in G$. e.g. Let (G, *) be groupoid given by the following table:

It is a Smarandache groupoid as $\{a_3\}$ is a semigroup. $V = \{a_1, a_3, a_5\}$ is a Smarandache subgroupoid, also aV = V. Therefore V is Smarandache seminormal subgroupoid in G.

Definition 1.7. Let $Z_n = \{0, 1, ..., n-1\}, n \ge 3$ and $a, b \in Z_n \setminus \{0\}$. Define a binary operation * on Z_n as follows:

 $a * b = ta + ub \pmod{n}$ where t, u are two distinct elements in $Z_n \setminus \{0\}$ and (t, u) = 1. Here '+' is the usual addition of two integers and 'ta' means the product of the two integers t and a.

Elements of Z_n form a groupiod with respect to the binary operation *. We denote these groupiod by $\{Z_n(t, u), *\}$ or $Z_n(t, u)$ for fixed integer n and varying $t, u \in Z_n \setminus \{0\}$ such that (t, u) = 1. Thus we define a collection of groupiods Z(n) as follows $Z(n) = \{\{Z_n(t, u), *\} | \text{ for integers } t, u \in Z_n \setminus \{0\} \text{ such that } (t, u) = 1\}.$

§2. Smarandache seminormal subgroupoids when n is even

When n is even we are interested in finding Smarandache seminormal subgroupoid in $Z_n(t, t+1)$.

Theorem 2.1. Let $Z_n(t, t+1) \in Z(n)$, n is even, n > 3 and $t = 1, \ldots, n-2$. Then $Z_n(t, t+1)$ is Smarandache groupoid.

Proof. Let $x = \frac{n}{2}$. Then

$$x * x = xt + x(t + 1)$$

= $2xt + x$
= $(2t + 1)x \equiv x \mod n$

 \therefore {x} is a semigroup in $Z_n(t, t+1)$.

 $\therefore Z_n(t, t+1)$ is a Smarandache groupoid when n is even.

Remark: In the above theorem we can also show that beside $\{n/2\}$ the other semigroup is $\{0, n/2\}$ in $Z_n(t, t+1) \in Z(n)$.

<u>Proof:</u> When t is even

 $0 * t + \frac{n}{2} * (t+1) \equiv \frac{n}{2} \mod n.$ $\frac{n}{2} * t + 0 * (t+1) \equiv 0 \mod n.$ $\frac{n}{2} * t + \frac{n}{2} * (t+1) \equiv \frac{n}{2} \mod n.$

 $\mathbf{2}$

 $\begin{array}{l} 0*t+0*(t+1)\equiv 0 \mbox{ mod } n.\\ \mbox{Therefore}, \{0,\frac{n}{2}\} \mbox{ is semigroup in } Z_n(t,t+1).\\ \mbox{When } t \mbox{ is odd}\\ 0*t+\frac{n}{2}*(t+1)\equiv 0 \mbox{ mod } n.\\ \frac{n}{2}*t+0*(t+1)\equiv \frac{n}{2} \mbox{ mod } n.\\ \frac{n}{2}*t+\frac{n}{2}*(t+1)\equiv \frac{n}{2} \mbox{ mod } n. \end{array}$

 $0 * t + 0 * (t+1) \equiv 0 \mod n.$

Therefore, $\{0, \frac{n}{2}\}$ is a semigroup in $Z_n(t, t+1)$. **Theorem 2.2.** Let n > 3 be even and $t = 1, \ldots, n-2$,

- 1. If $\frac{n}{2}$ is even then $A_0 = \{0, 2, ..., n-2\} \subseteq Z_n$ is Smarandache subgroupoid in $Z_n(t, t+1) \in Z(n)$.
- 2. If $\frac{n}{2}$ is odd then $A_1 = \{1, 3, \dots, n-1\} \subseteq Z_n$ is Smarandache subgroupoid in $Z_n(t, t+1) \in Z(n)$.

Proof.

1. Let $\frac{n}{2}$ is even. $\Rightarrow \frac{n}{2} \in A_0$ We will show that A_0 is subgroupoid . Let $x_i, x_j \in A_0$ and $x_i \neq x_j$. Then

$$x_i * x_j = x_i t + x_j (t+1)$$

= $(x_i + x_j)t + x_j \equiv x_k \mod n$

for some $x_k \in A_0$ as $(x_i + x_j)t + x_j$ is even. $\therefore x_i * x_j \in A_0$ Thus A_0 is subgroupoid in $Z_n(t, t+1)$. Let $x = \frac{n}{2}$. Then

$$x * x = xt + x(t+1)$$

= $(2t+1)x \equiv x \mod n$

 $\therefore \{x\}$ is a semigroup in A_0 .

Thus A_0 is a subgroupoid in $Z_n(t, t+1)$.

2. Let $\frac{n}{2}$ is odd.

 $\Rightarrow \frac{n}{2} \in A_1$ We will show that A_1 is subgroupoid. Let $x_i, x_j \in A_1$ and $x_i \neq x_j$. Then

$$x_i * x_j = x_i t + x_j (t+1)$$

= $(x_i + x_j)t + x_j \equiv x_k \mod n$

for some $x_k \in A_1$ as $(x_i + x_j)t + x_j$ is odd. $\therefore x_i * x_j \in A_1$ Thus A_1 is subgroupoid in $Z_n(t, t+1)$. Let $x = \frac{n}{2}$. Then

$$x * x = xt + x(t+1)$$

= $(2t+1)x \equiv x \mod n$

 $\therefore \{x\}$ is a semigroup in A_1 .

Thus A_1 is a Smardandache subgroupoid in $Z_n(t, t+1)$.

Theorem 2.3. Let n > 3 be even and t = 1, ..., n - 2,

- 1. If $\frac{n}{2}$ is even then $A_0 = \{0, 2, ..., n-2\} \subseteq Z_n$ is Smarandache seminormal subgroupoid of $Z_n(t, t+1) \in Z(n)$.
- 2. If $\frac{n}{2}$ is odd then $A_1 = \{1, 3, ..., n-1\} \subseteq Z_n$ is Smarandache seminormal subgroupoid of $Z_n(t, t+1) \in Z(n)$.

Proof. By Theorem 2.1, $Z_n(t, t+1)$ is a Smarandache groupoid.

1. Let $\frac{n}{2}$ is even. Then by Theorem 2.2, $A_0 = \{0, 2, \dots, n-2\}$ is Smarandache subgroupoid of $Z_n(t, t+1)$. Now we show that either $aA_0 = A_0$ or $A_0a = A_0 \forall a \in Z_n = \{0, 1, 2, \dots, n-1\}$. Case 1: t is even. Let $a_i \in A_0$ and $a \in Z_n = \{0, 1, 2, \dots, n-1\}$. Then

$$a * a_i = at + a_i(t+1)$$
$$\equiv a_j \mod n$$

for some $a_i \in A_0$ as $at + a_i(t+1)$ is even.

$$\therefore a * a_i \in A_0 \ \forall \ a_i \in A_0.$$

 $\therefore aA_0 = A_0.$

Thus, A_0 is a Smarandache seminormal subgroupoid in $Z_n(t, t+1)$.

Case 2: t is odd.

Let $a_i \in A_0$ and $a \in Z_n = \{0, 1, 2, ..., n-1\}$. Then

$$a_i * a = a_i t + a(t+1)$$

 $\equiv a_i \mod n$

for some $a_j \in A_0$ as $a_i t + a(t+1)$ is even. $\therefore a_i * a \in A_0 \ \forall \ a_i \in A_0.$ $\therefore A_0 a = A_0.$ Thus A_0 is a Smarandache seminormal subgroupoid in $Z_n(t, t+1)$.

2. Let $\frac{n}{2}$ is odd. Then by Theorem 2.2, $A_1 = \{1, 3, 5, \dots, n-1\}$ is Smarandache subgroupoid of $Z_n(t, t+1)$.

Now we show that either $aA_1 = A_1$ or $A_1a = A_1 \forall a \in Z_n = \{0, 1, 2, ..., n-1\}$.

4

Case 1: *t* is even. Let $a_i \in A_1$ and $a \in Z_n = \{0, 1, 2, ..., n-1\}$. Then

$$a * a_i = at + a_i(t+1)$$
$$= (a + a_i)t + a_i$$
$$\equiv a_j \mod n$$

for some $a_j \in A_1$ as $(a + a_i)t + a_i$ is odd. $\therefore a * a_i \in A_1 \forall a_i \in A_1$. $\therefore aA_1 = A_1$. Thus A_1 is Smarandache seminormal subgroupoid in $Z_n(t, t + 1)$. Case 2: t is odd. Let $a_i \in A_1$ and $a \in Z_n = \{0, 1, 2, \dots, n-1\}$. Then

> $a_i * a = a_i t + a(t+1)$ $\equiv a_j \mod n$

for some $a_j \in A_1$ as $a_i t + a(t+1)$ is odd. $\therefore a_i * a \in A_1 \forall a_i \in A_1$. $\therefore A_1 a = A_1$. Thus A_1 is Smarandache seminormal subgroupoid in $Z_n(t, t+1)$.

By the above theorem we can determine the Smarandaache seminormal subgroupoid in $Z_n(t, t+1)$ of Z(n) when n is even and n > 3.

n	n/2	t	$Z_n(t,t+1)$	Smarandache seminormal
				subgroupoid in $Z_n(t, t+1)$
4	2	1	$Z_4(1,2)$	$\{0,2\}$
		2	$Z_4(2,3)$	
		1	$Z_6(1,2)$	
6	3	2	$Z_6(2,3)$	$\{1, 3, 5\}$
		3	$Z_{6}(3,4)$	
		4	$Z_{6}(4,5)$	
		1	$Z_8(1,2)$	
		2	$Z_8(2,3)$	
8	4	3	$Z_8(3,4)$	$\{0, 2, 4, 6\}$
		4	$Z_8(4,5)$	
		5	$Z_8(5,6)$	
		6	$Z_8(6,7)$	
		1	$Z_{10}(1,2)$	
		2	$Z_{10}(2,3)$	
		3	$Z_{10}(3,4)$	
10	5	4	$Z_{10}(4,5)$	$\{1, 3, 5, 7, 9\}$
		5	$Z_{10}(5,6)$	
		6	$Z_{10}(6,7)$	
		7	$Z_{10}(7,8)$	
		8	$Z_{10}(8,9)$	
		1	$Z_{12}(1,2)$	
		2	$Z_{12}(2,3)$	
		3	$Z_{12}(3,4)$	
		4	$Z_{12}(4,5)$	
12	6	5	$Z_{12}(5,6)$	$\{0, 2, 4, 6, 8\}$
		6	$Z_{12}(6,7)$	
		7	$Z_{12}(7,8)$	
		8	$Z_{12}(8,9)$	
		9	$Z_{12}(9,10)$	
		10	$Z_{12}(10,11)$	

§3. Smarandache seminormal subgroupoids depending on t and u when n is even

When n is even we are interested in finding Smarandache seminormal subgroupoid in $Z_n(t, u) \in Z(n)$ when t is even and u is odd or when t is odd and u is even.

Theorem 3.1. Let $Z_n(t, u) \in Z(n)$, if n is even, n > 3 and for each $t, u \in Z_n$, if one is even and other is odd then $Z_n(t, u)$ is Smarandache groupoid.

Proof. Let $x = \frac{n}{2}$

Then

 $\begin{array}{rcl} x*x & = & xt+xu \\ & = & (t+u)x \equiv x \bmod n \end{array}$

 \therefore {x} is a semigroup in $Z_n(t, u)$.

 $\therefore Z_n(t, u)$ is a Smarandache groupoid when n is even.

Remark: In the above theorem we can also show that beside $\{n/2\}$ the other semigroup is $\{0, n/2\}$ in $Z_n(t, u) \in Z(n)$.

Proof:

1. When t is even and u is odd, $0 * t + \frac{n}{2} * u \equiv \frac{n}{2} \mod n.$ $\frac{n}{2} * t + 0 * u \equiv 0 \mod n.$ $\frac{n}{2} * t + \frac{n}{2} * u \equiv \frac{n}{2} \mod n.$ $0 * t + 0 * u \equiv 0 \mod n.$ Therefore, $\{0, \frac{n}{2}\}$ is semigroup in $Z_n(t, u)$.

2. When t is odd and u is even, $0 * t + \frac{n}{2} * u \equiv 0 \mod n.$ $\frac{n}{2} * t + 0 * u \equiv \frac{n}{2} \mod n.$ $\frac{n}{2} * t + \frac{n}{2} * u \equiv \frac{n}{2} \mod n.$ $0 * t + 0 * u \equiv 0 \mod n.$ Therefore, $\{0, \frac{n}{2}\}$ is semigroup in $Z_n(t, u)$.

Theorem 3.2. Let n > 3 be even and $t, u \in Z_n$

- 1. If $\frac{n}{2}$ is even then $A_0 = \{0, 2, ..., n-2\} \subseteq Z_n$ is Smarandache subgroupoid of $Z_n(t, u) \in Z(n)$ when one of t and u is odd and other is even.
- 2. If $\frac{n}{2}$ is odd then $A_1 = \{1, 3, ..., n-1\} \subseteq Z_n$ is Smarandache subgroupoid of $Z_n(t, u) \in Z(n)$ when one of t and u is odd and other is even.

Proof.

1. Let $\frac{n}{2}$ is even. $\Rightarrow \frac{n}{2} \in A_0$ We will show that A_0 is subgroupoid . Let $x_i, x_j \in A_0$ and $x_i \neq x_j$. Then

$$x_i * x_j = x_i t + x_j u \equiv x_k \mod n$$

for some $x_k \in A_0$ as $x_i t + x_j u$ is even. $\therefore x_i * x_j \in A_0$ $\therefore A_0$ is a subgroupoid in $Z_n(t, u)$. Let $x = \frac{n}{2}$. Then

 $\begin{array}{rcl} x*x &=& xt+xu\\ &=& x(t+u)\equiv x \bmod n \end{array}$

 $\therefore \{x\}$ is a semigroup in A_0 . Thus, A_0 is a Smarandache subgroupoid in $Z_n(t, u)$

2. Let $\frac{n}{2}$ is odd. $\Rightarrow \frac{n}{2} \in A_1$ We will show that A_1 is subgroupoid. Let $x_i, x_j \in A_1$ and $x_i \neq x_j$. Then

$$x_i * x_j = x_i t + x_j u \equiv x_k \mod n$$

for some $x_k \in A_1$ as $x_i + x_j u$ is odd. $\therefore x_i * x_j \in A_1$ $\therefore A_1$ is subgroupoid in $Z_n(t, u)$. Let $x = \frac{n}{2}$. Then

$$x * x = xt + xu$$
$$= x(t + u) \equiv x \mod n$$

 $\therefore \{x\}$ is a semigroup in A_1 .

Thus A_1 is a Smarandache subgroupoid in $Z_n(t, u)$.

Theorem 3.3. Let n > 3 be even and t = 1, ..., n - 2.

- 1. If $\frac{n}{2}$ is even then $A_0 = \{0, 2, ..., n-2\} \subseteq Z_n$ is Smarandache seminormal subgroupoid of $Z_n(t, u) \in Z(n)$ when one of t and u is odd and other is even.
- 2. If $\frac{n}{2}$ is odd then $A_1 = \{1, 3, ..., n-1\} \subseteq Z_n$ is Smarandache seminormal subgroupoid of $Z_n(t, u) \in Z(n)$ when one of t and u is odd and other is even.

Proof. By Theorem 3.1, $Z_n(t, u)$ is a Smarandache groupoid.

1. Let $\frac{n}{2}$ is even. Then by Theorem 3.2, $A_0 = \{0, 2, \dots, n-2\}$ is Smarandache subgroupoid of $Z_n(t, u)$.

Now we show that either $aA_0 = A_0$ or $A_0a = A_0 \forall a \in Z_n = \{0, 1, 2, ..., n-1\}.$

8

Case 1: t is even and u is odd.

Let $a_i \in A_0$ and $a \in Z_n = \{0, 1, 2, ..., n-1\}$. Then

$$a * a_i = at + a_i u$$
$$\equiv a_j \mod n$$

for some $a_j \in A_0$ as $at + a_i u$ is even.

$$\therefore a * a_i \in A_0 \ \forall \ a_i \in A_0.$$

 $\therefore aA_0 = A_0.$

Thus, A_0 is a Smarandache seminormal subgroupoid in $Z_n(t, u)$.

Case 2: t is odd and u is even.

Let $a_i \in A_0$ and $a \in Z_n = \{0, 1, 2, ..., n-1\}$. Then

$$a_i * a = a_i t + a u$$
$$\equiv a_i \mod n$$

for some $a_i \in A_0$ as $a_i t + a u$ is even.

$$\therefore a_i * a \in A_0 \ \forall \ a_i \in A_0$$

 $\therefore A_0 a = A_0.$

Thus, A_0 is Smarandache seminormal subgroupoid in $Z_n(t, u)$.

2. Let $\frac{n}{2}$ is odd then by Theorem is $A_1 = \{1, 3, 5, \dots, n-1\}$ is Smarandache subgroupoid of $Z_n(t, u)$.

Now we show that either $aA_1 = A_1$ or $A_1a = A_1 \forall a \in Z_n = \{0, 1, 2, \dots, n-1\}$. Case 1: t is even and u is odd.

Let $a_i \in A_1$ and $a \in Z_n = \{0, 1, 2, ..., n-1\}$. Then

$$a * a_i = at + a_i u$$
$$\equiv a_i \mod n$$

for some $a_j \in A_1$ as $at + a_i u$ is odd.

 $\therefore a * a_i \in A_1 \ \forall \ a_i \in A_1.$ $\therefore a A_1 = A_1.$ Thus, A_1 is a Smarandache seminormal subgroupoid in $Z_n(t, u)$. Case 2: t is odd and u is even.

Let $a_i \in A_1$ and $a \in Z_n = \{0, 1, 2, \dots, n-1\}$

$$a_i * a = a_i t + a u$$

 $\equiv a_i \mod n$

for some $a_j \in A_1$ as $a_i t + au$ is odd. $\therefore a_i * a \in A_1 \ \forall \ a_i \in A_1$. $\therefore A_1 a = A_1$.

Thus, A_1 is a Smarandache seminormal subgroupoid in $Z_n(t, u)$.

n	n/2	t	$Z_n(t,u)$	Smarandache seminormal
				subgroupoid in $Z_n(t, u)$
4	2	1	$Z_4(1,2)$	$\{0,2\}$
		2	$Z_4(2,3)$	
		1	$Z_6(1,2), Z_6(1,4)$	
6	3	2	$Z_6(2,1), Z_6(2,3), Z_6(2,5)$	$\{1, 3, 5\}$
		3	$Z_6(3,2), Z_6(3,4)$	
		4	$Z_6(4,1), Z_6(4,3), Z_6(4,5)$	
		5	$Z_6(5,2), Z_6(5,4)$	
		1	$Z_8(1,2), Z_8(1,4), Z_8(1,6)$	
		2	$Z_8(2,1), Z_8(2,3), Z_8(2,5),$	
			$Z_8(2,7)$	
8	4	3	$Z_8(3,2), Z_8(3,4)$	$\{0, 2, 4, 6\}$
		4	$Z_8(4,1), Z_8(4,3), Z_8(4,5),$	
			$Z_8(4,7)$	
		5	$Z_8(5,2), Z_8(5,4), Z_8(5,6)$	
		6	$Z_8(6,1), Z_8(6,5), Z_8(6,7),$	
		7	$Z_8(7,2), Z_8(7,4), Z_8(7,6),$	
		1	$Z_{10}(1,2), Z_{10}(1,4), Z_{10}(1,6),$	
			$Z_{10}(1,8)$	
		2	$Z_{10}(2,1), Z_{10}(2,3), Z_{10}(2,5),$	
			$Z_{10}(2,7), Z_{10}(2,9)$	
		3	$Z_{10}(3,2), Z_{10}(3,4), Z_{10}(3,8),$	
10	5	4	$Z_{10}(4,1), Z_{10}(4,3), Z_{10}(4,5),$	
			$Z_{10}(4,7), Z_{10}(4,9)$	$\{1, 3, 5, 7, 9\}$
		5	$Z_{10}(5,2), Z_{10}(5,4), Z_{10}(5,6),$	
			$Z_{10}(5,8)$	
		6	$Z_{10}(6,1), Z_{10}(6,5), Z_{10}(6,7),$	
		7	$Z_{10}(7,2), Z_{10}(7,4), Z_{10}(7,6),$	
			$Z_{10}(7,8)$	
		8	$Z_{10}(8,1), Z_{10}(8,3), Z_{10}(8,5),$	
			$Z_{10}(8,7), Z_{10}(8,9)$	
		9	$Z_{10}(9,2), Z_{10}(9,4), Z_{10}(9,8)$	

By the above theorem we can determine Smarandaache seminormal subgroupoid in $Z_n(t, u) \in Z(n)$ for n > 3, when n is even and when one of t and u is odd and other is even.

n	n/2	t	$Z_n(t,u)$	Smarandache seminormal
				subgroupoid in $Z_n(t, u)$
		1	$Z_{12}(1,2), Z_{12}(1,4), Z_{12}(1,6),$	
			$Z_{12}(1,8), Z_{12}(1,10)$	
		2	$Z_{12}(2,1), Z_{12}(2,3), Z_{12}(2,5),$	
			$Z_{12}(2,7), Z_{12}(2,9), Z_{12}(2,11)$	
		3	$Z_{12}(3,2), Z_{12}(3,4), Z_{12}(3,8),$	
			$Z_{12}(3,10)$	
		4	$Z_{12}(4,1), Z_{12}(4,3), Z_{12}(4,5),$	
			$Z_{12}(4,7), Z_{12}(4,9), Z_{12}(4,11)$	
12	6	5	$Z_{12}(5,2), Z_{12}(5,4), Z_{12}(5,6),$	
			$Z_{12}(5,8)$	$\{0, 2, 4, 6, 8, 10\}$
		6	$Z_{12}(6,1), Z_{12}(6,3), Z_{12}(6,5),$	
			$Z_{12}(6,7), Z_{12}(6,11)$	
		7	$Z_{12}(7,2), Z_{12}(7,4), Z_{12}(7,6),$	
			$Z_{12}(7,8), Z_{12}(7,10)$	
		8	$Z_{12}(8,1), Z_{12}(8,3), Z_{12}(8,5),$	
			$Z_{12}(8,7), Z_{12}(8,9), Z_{12}(8,11)$	
		9	$Z_{12}(9,2), Z_{12}(9,4), Z_{12}(9,8),$	
			$Z_{12}(9,10)$	
		10	$Z_{12}(10,1), Z_{12}(10,3), Z_{12}(10,7),$	
			$Z_{12}(10,9), Z_{12}(10,11)$	
		11	$Z_{12}(11,2), Z_{12}(11,4), Z_{12}(11,6),$	
			$Z_{12}(11,8), Z_{12}(11,10)$	

§4. Smarandache seminormal subgroupoids when n is odd

When n is odd we are interested in finding Smarandache seminormal subgroupoid in $Z_n(t, u) \in Z(n)$. We have proved the similiar result in [4].

Theorem 4.1. Let $Z_n(t,u) \in Z(n)$. If n is odd, n > 4 and for each $t = 2, \ldots, \frac{n-1}{2}$ and u = n - (t-1)(t,u) = 1, then $Z_n(t,u)$ is a Smarandache groupoid. **Proof.** Let $x \in \{0, \ldots, n-1\}$. Then

 $x * x = xt + xu = (n+1)x \equiv x \mod n.$

 $\therefore \{x\}$ is semigroup in Z_n .

 $\therefore Z_n(t, u)$ is a Smarandanche groupoid in Z(n).

Remark: We note that all $\{x\}$ where $x \in \{1, \ldots, n-1\}$ are proper subsets which are semigroups in $Z_n(t, u)$.

Theorem 4.2. Let n > 4 be odd and $t = 2, \ldots, \frac{n-1}{2}$ and u = n - (t-1) such that (t, u) = 1if s = (n, t) or s = (n, u) then $A_k = \{k, k + s, \dots, k + (r - 1)s\}$ for $k = 0, 1, \dots, s - 1$ where $r = \frac{n}{s}$ is a Smarandache subgroupoid in $Z_n(t, u) \in Z(n)$.

Proof. Let $x_p, x_q \in A_k$. Then

$$x_p \neq x_q \Rightarrow \begin{cases} x_p = k + ps \\ x_q = k + qs \end{cases} \} p, q \in \{0, 1, \dots, r-1\}.$$

Also,

$$x_p * x_q = x_p t + x_q u$$

= $(k + ps)t + (k + qs)(n - (t - 1))$
= $k(n + 1) + ((p - q)t + q(n + 1))s$
 $\equiv (k + ls) \mod n$
 $\equiv x_l \mod n$

 $x_l \in A_k$ as $x_l = k + ls$ for some $l \in \{0, 1, \dots, r-1\}$. $\therefore x_p * x_q \in A_k$

 $\therefore A_k$ is a subgroupoid in $Z_n(t, u)$.

By the above remark all singleton sets are semigroup.

Thus, A_k is a Smarandache subgroupoid.

Theorem 4.3. Let n > 4 be odd and $t = 2, \ldots, \frac{n-1}{2}$ and u = n - (t-1) such that (t, u) = 1if s = (n, t) or s = (n, u) then $A_k = \{k, k + s, \dots, k + (r - 1)s\}$ for $k = 0, 1, \dots, s - 1$ where $r = \frac{n}{s}$ is a Smarandache seminormal subgroupoid in $Z_n(t, u) \in Z(n)$.

Proof. By Theorem 4.1, $Z_n(t, u)$ is a Smarandache groupoid Also by Theorem 4.2, $A_k =$ $\{k, k+s, \ldots, k+(r-1)s\}$ for $k = 0, 1, \ldots, s-1$ is Smarandache subgroupoid of $Z_n(t, u)$.

1. If
$$s = (n, t)$$

Let $x_p \in A_k$ and $a \in Z_n = \{0, 1, 2, ..., n-1\}$. Then

$$a * x_p = at + x_p u$$

= $at + (k + ps)(n - t + 1)$
= $k(n + 1) + [(a - k)v_1 + (pn - pt + p)]s$ where $t = v_1 s$
 $\equiv k + ls \mod n$

 $x_l \in A_k$ as $x_l = k + ls$ for some $l \in \{0, 1, ..., r - 1\}$ $\therefore a * x_p \in A_k$ $\therefore a * A_k = A_k$

2. If s = (n, u)Let $x_p \in A_k$ and $a \in Z_n = \{0, 1, 2, ..., n-1\}$. Then

$$x_p * a = x_p t + au$$

= $(k + ps)(n - u + 1) + au$
= $k(n + 1) + [(a - k)v_2 + (pn - pu + p)]s$ where $t = v_2s$
 $\equiv (k + ls) \mod n$

 $x_l \in A_k$ as $x_l = k + ls$ for some $l \in \{0, 1, \dots, r-1\}$. $\therefore a * x_p \in A_k$ $\therefore a * A_k = A_k$ Thus A_k is a Smarandache seminormal subgroupoid in $Z_n(t, u)$.

By the above theorem we can determine Smarandache seminormal subgroupoid in $Z_n(t, u)$ when n is odd and n > 4.

n	t	u	$Z_n(t,u)$	s=(n,u)	r = n/s	Smarandache seminormal
				or $s = (n, t)$		subgroupoid in $Z_n(t, u)$
						$A_0 = \{0, 3, 6\}$
9	3	7	$Z_{9}(3,7)$	3 = (9,3)	3	$A_1 = \{1, 4, 7\}$
						$A_2 = \{2, 5, 8\}$
						$A_0 = \{0, 3, 6, 9, 12\}$
	3	13	$Z_{15}(3, 13)$	3 = (15,3)	5	$A_1 = \{1, 4, 7, 10, 13\}$
						$A_2 = \{2, 5, 8, 11, 14\}$
15						$A_0 = \{0, 5, 10\}$
						$A_1 = \{1, 6, 11\}$
	5	11	$Z_{15}(5,11)$	5 = (15, 5)	3	$A_2 = \{2, 7, 12\}$
						$A_3 = \{3, 8, 13\}$
						$A_4 = \{4, 9, 14\}$
						$A_0 = \{0, 3, 6, 9, 12\}$
	7	9	$Z_{15}(7,9)$	3 = (15,9)	5	$A_1 = \{1, 4, 7, 10, 13\}$
						$A_2 = \{2, 5, 8, 11, 14\}$
						$A_0 = \{0, 3, 6, 9, 12, 15, 18\}$
	3	19	$Z_{21}(3,19)$	3 = (21,3)	7	$A_1 = \{1, 4, 7, 10, 13, 16, 19\}$
						$A_2 = \{2, 5, 8, 11, 14, 17, 20\}$
						$A_0 = \{0, 7, 14\}$
						$A_1 = \{1, 8, 15\}$
21						$A_2 = \{2, 9, 16\}$
				7 = (21,7)	3	$A_3 = \{3, 10, 17\}$
	7	15	$Z_{21}(7, 15)$			$A_4 = \{4, 11, 18\}$
						$A_5 = \{5, 12, 19\}$
						$A_6 = \{6, 13, 14\}$
				3 = (21, 15)		$A_0 = \{0, 3, 6, 9, 12, 15, 18\}$
					7	$A_1 = \{1, 4, 7, 10, 13, 16, 19\}$
						$A_2 = \{2, 5, 8, 11, 14, 17, 20\}$
						$A_0 = \{0, 3, 6, 9, 12, 15, 18\}$
	9	13	$Z_{21}(9,13)$	3 = (21,9)	7	$A_1 = \{1, 4, 7, 10, 13, 16, 19\}$
						$A_2 = \{2, 5, 8, 11, 14, 17, 20\}$

References

[1] G. Birkhoff and S.S. Maclane, A Brief Survey of Modern Algebra, New York, U.S.A. The Macmillan and Co., (1965).

[2] R.H. Bruck, A Survey of Binary Systems, Springer Verlag, (1958).

[3] Ivan Nivan and H.S.Zukerman, Introduction to Number theory, Wiley Eastern Limited, (1989).

[4] H.J.Siamwalla and A.S.Muktibodh, Some results on Smarandache groupoids, Scientia Magna, Vol.8(2012), No.2, pp 111-117

[5] W.B. Vasantha Kandasamy, New Classes of Finite Groupoids using Z_n , Varamihir Journal of Mathematical Science, Vol. 1, pp 135-143, (**2001**).

[6] [W.B.Vasantha Kandasamy, Smarandache Groupoids,

http://www/gallup.unm.edu~/smarandache/Groupoids.pdf.