Not to be cited without prior reference to and permission from the author.

# **Estimating Secondary Production from the Epifaunal and**

# **Infaunal Macrobenthos**



Edited by Leonie Robinson, Mike Robertson and Johan Craeymeersch

Fisheries Research Services, The Marine Laboratory – Aberdeen, Scotland, UK. l.robinson@marlab.ac.uk

Work Package 4Deliverable 10MAFCONS Report 2004:004Managing Fisheries to Conserve Groundfish and Benthic Invertebrate Species Diversity<br/>(MAFCONS Project: EC project number Q5RS-2002-00856)



# CONTRIBUTORS

| Leonie Robinson<br>Mike Robertson<br>Helen Fraser<br>Simon Greenstreet<br>Nicolas Jacob | Fisheries Research Services (FRS)<br>The Marine Laboratory, Aberdeen<br>P.O. Box 101, 375 Victoria Road<br>Aberdeen. AB11 9DB.<br>Scotland, UK. |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Henning Reiss<br>Ingrid Kröncke                                                         | Senckenberg Institute,<br>Dept. for Marine Research<br>Suedstrand 40, D - 26382 Wilhelmshaven,<br>Germany.                                      |
| Siegfried Ehrich                                                                        | Federal Research Centre for Fisheries,<br>Institute for Sea Fisheries (ISH),<br>Palmaille 9, D-22767 Hamburg.<br>Germany.                       |
| Ruth Callaway<br>John Lancaster                                                         | University of Wales Swansea,<br>Singleton Park,<br>Swansea, SA2 8PP<br>Wales, UK.                                                               |
| Steven Degraer<br>Annelies Goffin                                                       | Ghent University,<br>Department of Biology, Marine Biology Section,<br>K. L. Ledeganckstraat 35, B 9000, Gent,<br>Belgium.                      |
| Johan Craeymeersch<br>Ingeborg de Boois                                                 | The Netherlands Institute for Fisheries Research<br>Centre for Shellfish Research<br>P.O. Box 77, 4400 AB Yerseke<br>The Netherlands            |
| Lis Lindal Jørgenson                                                                    | Institute of Marine Research,<br>Nordnesgaten 50, P.b. 1870,<br>Nordnes N-5024, Bergen,<br>Norway.                                              |

# CONTENTS

| 1. Intro | oduction                                                                | . 4 |
|----------|-------------------------------------------------------------------------|-----|
| 2. Meth  | nods                                                                    | . 6 |
| 2.1      | Sampling of Infauna and Epifauna                                        | . 6 |
| 2.2      | Description of Edgar's empirical model                                  | . 8 |
| 2.3      | Applying Edgar's model                                                  | . 8 |
| 3. Resu  | ılts1                                                                   | 11  |
| 3.1      | Secondary production from the epifauna1                                 | 11  |
| 3.2      | Secondary production from the infauna 1                                 | 12  |
| 4. Cond  | clusions and Future Work 1                                              | 16  |
| 4.1      | Summary of findings 1                                                   | 16  |
| 4.2      | Comparison with other empirical models                                  | 16  |
| 4.3      | Missing Production1                                                     | 17  |
| 5. Refe  | rences1                                                                 | 19  |
| Append   | dix 1: Epifaunal species list with assigned production analysis groups2 | 21  |
| Append   | dix 2: Infauna taxon groups with assigned production analysis groups    | 35  |

## **1. Introduction**

Traditional methods for calculating secondary production from the benthos have been applied to single animals or populations based on the change in body mass or growth over time. However, the methods used to calculate this generally involve the destruction of samples and require intensive sampling of the same population to account for changes over time. Methods include those based on cohort analysis, size class based methods and the relationship between productivity and mortality (Cushman *et al.*, 1978; Wildish & Peer, 1981; Crisp, 1984; Morin *et al.*, 1987). None of these methods are practical when trying to quantify secondary production at the community level. In the MAFCONS project, assessments of the secondary production from the infaunal and epifaunal benthos at between 100 and 150 stations per year over two years are being undertaken. The ultimate aim is to examine the relationship between demersal fish diversity and composition, and the distribution of secondary production and fisheries disturbance (www.mafcons.org/).

Over the last 20 years, efforts have turned towards parameterising empirical models that can be used to estimate secondary production (for review see Brey, 2002). These models describe the relationships between easily measured parameters such as biomass, individual body mass and water temperature with production (P) or the production/biomass (P/B) ratio for individual populations. Empirical relationships between these parameters are calculated using the combined published results of the traditional studies as described above. It is then possible to predict P or the P/B ratio for new sampled populations just using data for the easily measured parameters such as biomass and temperature. All of these approaches depend more or less directly on the negative exponential relationship between metabolic rate and body mass (see e.g. Peters 1983).

The earliest empirical models related the P/B ratio to one parameter. For example, the P/B ratio was related to lifespan by Robertson (1979), to adult body mass (at maturity) by Banse & Mosher (1980) and to mean individual body mass by Schwinghamer *et al.* (1986). Two-parameter models were published by Brey (1990) (P vs. biomass and mean individual body mass) and by Edgar (1990a) (P vs. mean individual body mass and bottom water temperature). Even more complex three-parameter models were published by Morin & Bourassa (1992), who related production of stream benthos to biomass, mean body mass and

annual mean water temperature; Plante and Downing (1989), who related production of lake benthos to biomass, maximum body mass, and surface water temperature, and; Tumbiolo & Downing (1994), who related production of marine benthos to biomass, maximum body mass, surface water temperature and water depth. More recent models have generally all included environmental parameters (usually water temperature and sometimes depth) in recognition of the influence of these on growth rates and thus also productivity.

Brey *et al.* (1996) and Brey (1999) unified all previous habitat-specific approaches into one large model for macrofaunal benthos in general. In Brey *et al.* (1996) "Artificial Neural Networks" were trained to estimate P/B from body mass, taxon, mode of living, water temperature and water depth and it is suggested that this approach performs slightly better than the usual multiple linear models. The latest models are available on a website maintained by Brey (2002). Here the relationships are updated regularly to include any new field studies of direct measurements of population production and P/B ratios, thus increasing the number of studies that the empirical model is based on.

In all cases, models are based on data for individual species populations. Thus production is calculated for each species making up a community and all species totals are then summed to give total community production. Where species level data do not exist, the variability around mean individual weight will be likely to increase as taxonomic resolution decreases and this may affect the validity of using the empirical models that include mean individual weight as a parameter. However, Edgar's (1990a) model was parameterised using individuals that had been sorted to higher taxonomic groups but also size structured using a sieving method. Here the size structuring should reduce the variability around the mean individual weight per taxon group. When carrying out routine, large-scale surveys such as those undertaken in this project, it may not be feasible to work up the data to species level (particularly for the infaunal samples). In this report, the secondary production of size structured infaunal data has been estimated using Edgar's (1990a and b) method. This approach is also applied to the epifaunal data, which although not size structured by sieving, are available as mean individual weights per species. The validity of using this approach for the epifaunal and infaunal macrobenthos of the North Sea is explored and discussed.

# 2. Methods

## 2.1 Sampling of Infauna and Epifauna

At each station, one five minute 2metre beam trawl tow was taken for epifauna and five  $0.1m^2$  Van Veen grabs for infauna. Bottom water temperature data were recorded using a CTD at the time of sampling. A total of 134 Stations were sampled across the North Sea (Figure 2.1).

The following countries contributed to the 2003 MAFCONS survey: Scotland (FRS Marine Laboratory) England (University of Wales Swansea with CEFAS, Lowestoft;) The Netherlands (RIVO, Ijmuiden) Belgium (Gent University) Germany (Senckenburg Institute and Institute for Sea Fisheries) Norway (Institute for Marine Research).

Epibenthic samples were washed through a 5mm and 2mm sieve (internal mesh size), invertebrates and fish separated from the remains. All epifaunal animals were enumerated, weighed and measured to the highest resolved taxonomic level (species level in most cases). For the epifauna, total abundance (N) and total biomass (B) were standardised to numbers per  $1000m^2$  by dividing the individual totals by the station specific swept area (m<sup>2</sup>) and multiplying by 1000. Swept area was itself calculated by multiplying the total track fished by the width of the beam trawl (two metres).

Infaunal samples were washed through a stack of sieves (0.5mm, 1mm, 2mm and 4mm) and all material preserved before processing in the laboratory. Total abundance and total biomass of animals in the 1-4mm sieves were recorded for animals sorted to one of 71 possible taxon groups (Appendix 2; see original list in Deliverable 1, www.mafcons.org/). The criteria used to determine the taxon groups were; (1) The ease to separate out animals into these groups during the sorting process (i.e. no requirement for use of keys; obvious at first sight); (2) the likelihood of the groups within Phyla having different morphologies and different behaviours in the sieving process. A detailed description of the sample processing is given in the MAFCONS methods manual (Deliverable 1 available at <u>www.mafcons.org/</u>).

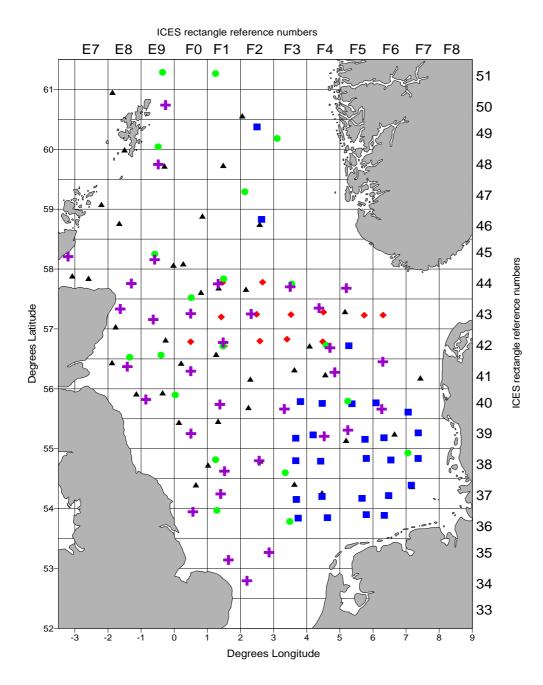



Figure 2.1 Stations sampled for epifauna and infauna by the participants of the EC project MAFCONS in 2003.

Institutes participating in the 2003 MAFCONS surveys:



The Senckenburg Institute & Sea Fisheries Institute University of Wales Swansea & CEFAS Institute for Marine Research, Tromso FRS Marine Laboratory, Aberdeen RIVO and Gent University

## 2.2 Description of Edgar's empirical model

Edgar's (1990a) empirical model is based on the relationship between production, mean individual body mass and water temperature.

Log P = -1.99 + 0.78 \* log B + 0.68 \* log T (Epifauna)

Where:

P = daily production ( $\mu$ g.day<sup>-1</sup>) B = mean individual weight (AFDM/ $\mu$ g) T = bottom water temperature (°C)

The model was developed using a dataset of actual data for all of these parameters from studies of 41 individual species. On examining this relationship, Edgar found that models for mollusca and crustacea separated from other infauna and other epifauna. Thus all the taxa in the infaunal and epifaunal databases were assigned to any of these four groups before the empirical relationships for each one was applied (see Appendices 1 & 2). In the infaunal dataset some of the taxon groups were known to include both epifaunal and infaunal species, however, it was assumed that as these data were collected with an infaunal sampler, the infaunal species within that taxon group would be prevalent. If there were no infaunal species known within a taxon group, this was assigned as epifaunal. For the epifaunal dataset, the data were per species so it was possible to assign these to either epifauna or infauna directly based on knowledge of the living habit of the specific species. If an animal is both epifaunal and infaunal, it was assigned to the living habit for which it was known to spend over 50 % of its time.

#### 2.3 Applying Edgar's model

For each sample (whole sample as retained on the 5mm sieve for epifauna and each sieve fraction for infauna), total biomass per taxon was converted to ash free dry mass (AFDM) using published conversion factors (Brey, 2002) (see 2.3.1. below) and the mean individual weight per species calculated using the total number of individuals and total weight (AFDM) (see 2.3.2. below). Water temperatures were taken from the environmental data recorded at

each station. Daily production per taxon was then calculated and all taxa in a sample summed to give total daily production of the sampled community.

#### 2.3.1. Converting wet mass to ash free dry mass

Using Edgar's method, all wet mass (WM) biomass values need to be converted to ash free dry mass (AFDM). Brey (2002) has a table of WM>AFDM conversion factors for invertebrates and fish at the level of taxonomic resolution for which there are sufficient data to assign a value. All conversion factors are based on calculations of the difference between wet mass and ash free dry mass for a number of examples for each group (a full reference list can be obtained from the author). Each species in the epifaunal database and taxon group in the infaunal database was assigned to a corresponding Brey group, but where no corresponding link to a Brey group was available, a number of steps were followed. If there was a known WM>AFDM conversion factor for that group from another reference source, this conversion was used and the source recorded. If no alternative source of conversion factor was available, but it was agreed that a taxon resembled a group with a Brey conversion factor, based on its behaviour in the ashing and drying procedure, this alternative group's conversion factor was used. For 'Other organic matter', where fragments of biomass were found in a sample but it was not possible to assign them to any taxonomic group, the WM>AFDM conversion was a mean of the Mollusca, Echinodermata, Annelida and Crustacea values (see Appendices 1 & 2 for assigned Brey groups).

#### 2.3.2. Missing data

For Edgar's model both the total number of individuals and total ash free dry mass (biomass) are required to calculate the mean individual weight required by the empirical relationship. For a number of taxa in the epifaunal database there were no biomass data as the animal encountered was encrusting and thus it could not be weighed. In these cases no production could be calculated. More commonly however, for taxa from both the epifauna and the infauna, biomass data were available but abundance data were not. This occurred either because animals were colonial and thus it was not possible to count the number of individuals, or where individual animals were fragmented. In these cases it was not possible to account for production directly by applying Edgar's model. However, where biomass data were available but no abundance data were given it was still possible to assign total production using P/B

ratios. A P/B ratio was assigned to the taxon group following the steps described below and then biomass multiplied by the ratio to give total production.

Four steps were followed to assign P/B ratios to taxa with missing values. Firstly, where P/B values were missing but values were available for that taxon from the same sample (and size fraction in the case of the infauna), the average P/B value for that taxon was calculated and applied. This occurred when individuals and fragments of taxa had been entered as separate records in the database, giving a record for total number and total biomass based on the whole individuals and another record for total biomass from the fragments. Secondly, where the taxon was not represented within the same station or sieve, values were applied from the "nearest neighbour" station (based on nearest geographic neighbour using a GIS-based distance matrix). Thirdly, if neither of the two methods detailed above could assign P/B values, a published P/B value for that taxon was used. Finally, where biomass was classified as 'Other Organic Matter' the average of all P/B ratios from within the same sample was assigned, based on the assumption that the unrecognisable fragments (classified as 'other organic matter') would be fragments of the taxa found within the sample.

## **3. Results**

#### **3.1** Secondary production from the epifauna

The distribution of epifaunal production across the North Sea in 2003, based on Edgar's (1990a and b) method, is shown in Figure 3.1.1. Total community production ranged between 0.5 and 450 milligrams per day (per m<sup>2</sup>). Edgar (1990b) calculated total community production using the same approach as that used here, for macrofaunal communities of seagrass beds in Western Australia. Total production ranged between 4.9 and 47.2 grams per year (per m<sup>2</sup>), which translates to 13.42 to 129.32 milligrams per day (per m<sup>2</sup>), based on the assumption that productivity is constant across the year. This fits within the range observed in this study. Stations with over 80 milligrams production per day (per m<sup>2</sup>) were found along the continental coast in the southern North Sea, in the central west North Sea, east of Scotland and in the northwest North Sea due northeast of Orkney.

Individual P/B ratios per species ranged between 0.02 and 0.74. Total production per species ranged between  $0.904*10^{-5}$  to 25.45 milligrams per day (per m<sup>2</sup>). This large difference in total production per species represents the range in number of individuals and mean individual weights recorded across the survey. At the highest epifaunal productivity station (ICES rectangle 34F2 in Figure 3.1.1.) the sample was dominated by a very large population of Ophiuroids (~115 individuals per  $m^2$ ). Whilst at the second highest epifaunal production station (ICES rectangle 41E8 in Figure 3.1.1.) numbers of individuals were not as high but several of the key species had high mean individual weights. High productivity per species was found either where the mean individual weight was high and/or there was a high total number of individuals. Brey (1990) presented production values for a number of macrofaunal species using an alternative empirical relationship based on the relationship between production and mean individual weight and total biomass. Brey's values for total production per species ranged between 0.04 to 13.56 grams per year (per  $m^2$ ). This would translate to 0.11 to 37.40 milligrams per day (per  $m^2$ ), if it were assumed that productivity is constant across the year. These values are comparable with the upper end of the species production values found for this report.

The empirical relationship developed by Edgar (1990a) was designed to be applied to samples that have been size structured by sieving prior to analysis. The epifaunal samples analysed

here contained all animals retained on a 5mm sieve with no further size classes. It is likely that the mean individual weights calculated here will have been skewed by the presence of either very high or very low body mass individuals. Jennings *et al.* (2001) estimated community production of epifauna for a number of sites in the North Sea using a size-based method. Their estimates of total community production ranged between approximately 50 and 700 grams per sample per year. If it is assumed that productivity is constant over that year and that the area sampled was on average 400m<sup>2</sup> (2metre-beam trawl tow for 5 minutes at 1-1.5knots), this translates to a range of 0.34 to 4.79 milligrams per day (per m<sup>2</sup>). This range is all within the lowest productivity range of the estimated values for the MAFCONS 2003 survey as calculated here using the Edgar (1990) method without size structuring.

## **3.2** Secondary production from the infauna

The distribution of infaunal production across the North Sea in 2003, based on Edgar's (1990a and b) method, is shown in Figure 3.1.2. At this stage, it was only possible to analyse infaunal data from 104 stations but this will be updated to at least 110 stations when the analysis is refined and reapplied to the 2003 data (see Section 4). Total community production ranged between 50 and 7000 milligrams per day (per  $m^2$ ). Only a fifth of the stations produced less than 300 milligrams per day (per  $m^2$ ) from the infauna, compared to 132 out of 134 of all stations based on epifauna (see scales in Figures 3.1.1. and 3.1.2.). Given the negative exponential relationship between body size and metabolic rate these results confirm the theory that smaller animals (i.e. the infauna retained in sieves between 1-4mm) are more productive than larger animals (i.e. the epifauna retained in the 5mm sieve). The southern North Sea had the greatest aggregation of high productivity infauna stations with a number of other stations off the east coast of Scotland and one in the northern North Sea. Stations that had particularly low production based on epifauna, were not always amongst the lowest productivity stations based on infauna and *vice versa* (e.g. see ICES rectangles 38 and 39F4, 38 and 39F5 – Figures 3.1.1. and 3.1.2.).

Individual P/B ratios per infaunal taxon group ranged between 0.03 and 2.24. Total production per taxon group ranged between  $1.42*10^{-3}$  to 3641.38 milligrams per day (per m<sup>2</sup>). This is higher than was found for total production per species in the epifauna, but not really comparable because there may have been many more individuals when aggregated to a taxon group. The large difference in total production per taxon group represents the range in number

of individuals and mean individual weights recorded across the survey. At the highest productivity station (ICES rectangle 38F7 in Figure 3.1.2.) all of the individual Van Veen grabs had high production from the very large sampled populations of Phoronids (between 1500-8500 individuals per sieve fraction – an area less than  $0.1\text{m}^2$ ). Whilst at the second highest production station (ICES rectangle 37F6 in Figure 3.1.2.) numbers of individuals in any particular taxon group were not as high, but several of the key taxon groups such as Irregular Echinoids and Sedentary Polychaetes had high mean individual weights. As with the epifauna, high productivity per taxon group was found either where the mean individual weight was high and/or there was a high total number of individuals. Brey's (1990) values for total production per species, which convert to 0.11 to 37.40 milligrams per day (per m<sup>2</sup>) are within the range of the values for the taxon groups here.

Infaunal samples were size structured by sieving through 0.5mm, 1mm, 2mm and 4mm sieves, with results presented here for the 1-4mm sieves. Individual P/B ratios per infaunal taxon group were lower in the 4mm sieves (between 0.03 to 1.65, compared to 0.05 to 2.22 for the 2mm and 0.06 to 2.24 for the 1mm sieves), confirming the theory that even within this size range metabolic rate appears to have a negative relationship with body size. Jennings *et al.* (2001) estimated community production of infauna for a number of sites in the North Sea using a size-based method where all individuals were weighed. Their estimates of total community production ranged between approximately 5 and 80 grams per sample per year. If it is assumed that productivity is constant over that year and that the area sampled was on average  $0.2m^2$  ( $0.2m^2$  subsample taken from an anchor dredge), this translates to a range of 68.5 to 1095.9 milligrams per day (per m<sup>2</sup>). This is all within the range of the estimated values for the MAFCONS 2003 infauna samples as calculated here using the Edgar (1990) method with sieve size structuring. Of 104 stations analysed, 99 ranged between 50 and 2400 milligrams per day (per m2) total infaunal community production.



Figure 3.1.1. Distribution of secondary production from the epifauna (milligrams.day.m<sup>-2</sup>)

Deliverable 10, Final Version, Feb 2005

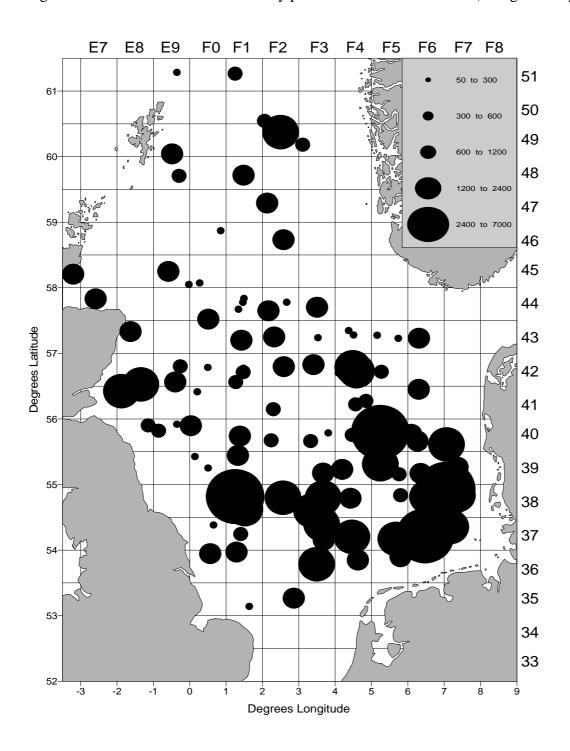



Figure 3.1.2. Distribution of secondary production from the infauna (milligrams.day.m<sup>-2</sup>)

Deliverable 10, Final Version, Feb 2005

# 4. Conclusions and Future Work

#### 4.1 Summary of findings

Empirical models relating production of a population to easy to measure parameters such as biomass and water temperature provide a method that could be used for large-scale, routine assessments of secondary production. Edgar's (1990a & b) model provides a method that can be applied to data that are not even identified to the species level by using sieve size fractioning to decrease the error around the mean individual weights assigned per taxon group. Using Edgar's method, community level production, for both the infauna and the epifauna, was calculated for stations sampled across the North Sea as part of the EC project MAFCONS 2003 survey. Overall, secondary production was much higher per unit area from the infauna than the epifauna. However, given that the infauna as sampled, will have on average been of smaller body size than the epifauna sampled, this fits the theory that there is a negative exponential relationship between body size and metabolic rate.

Spatial distributions of total production overlapped in some areas, but were not always the same, suggesting that different factors may drive community level production for the two different benthic components. High production was particularly noticeable in the southern North Sea from the infaunal component of the benthos. For both components, the highest production stations were found to include either taxa with very high total numbers per unit area and/or taxa with very high mean individual weights. Initial comparisons with other published studies of macrofaunal production suggest the figures found here to be broadly comparable. However, the very high production stations of infauna were much higher than any of the results of the other studies found. It should be noted that all samples for this study were taken in the summer months when productivity is likely to be at a peak and future work will focus on trying to find comparable studies to further validate the results found here.

# 4.2 Comparison with other empirical models

Edgar's empirical relationship was based on studies of 41 species and for some of the taxa sampled here, particularly in the epifaunal samples, there are many taxa that do not have representatives within those 41 species. For example, in the Mollusca category, most of the species, for which there are measurements, are bivalves. However, in the epifaunal dataset of the MAFCONS 2003 survey, there were also Gastropods, Chitons, Nudibranchs,

Caudofoveata, and even Cephalopods! The relationships for production as a function of mean individual weight and temperature for bivalves, may not be very representative for some of these other mollusc groups. In future analyses, a number of other empirical models will be tested to see how comparable the results are with Edgar's model (e.g. Tumbiolo & Downing, 1994; Brey, 1999; Jennings *et al.*, 2001). The epifaunal dataset will also be size structured based on the method described in Jennings *et al* (2001) to see how this affects the estimation of overall community production.

#### 4.3 Missing Production

Another important objective for future work will be to try to account for missed production due to catchability problems associated with the samplers used. In the case of the infauna, the Van Veen grab samples the macrofaunal component of the infauna representatively to a certain depth within the sediment, but deep dwelling animals are missed. A number of stations have also been sampled with 0.25m<sup>2</sup> Unsel Box Corers, which routinely penetrate down to 20-40cm in comparison with an average penetration depth of 10cm for the grab. These samples will be used to compare production for a given area based on box core samples with Van Veen grab samples and, where possible, corrections will be applied to the infaunal production estimates for missing production from deep dwelling animals. Analysis of data from the 0.5mm sieve fractions of the infaunal samples will also be undertaken to calculate how much of the infaunal production is attributable to this size fraction. The infaunal samples taken were for macrofauna and it is certain that production due to meiofauna is missing in this analysis. The contribution of meiofauna to demersal fish and macrofaunal epibenthic invertebrate diets will be assessed and a review of the literature on productivity attributable to the meiofaunal component of the benthos undertaken to try to account for the likely significance of missing this component in the assessment of secondary production.

The epifauna were sampled with a 2metre beamtrawl and it is known that this is not a fully quantitative sampler. In a study undertaken in the southern North Sea, the catchability of the 2metre beamtrawl was investigated by towing three beamtrawls directly behind eachother. Initial results from this study showed that only 34-39% of the total available productivity was sampled. When considering individual species, the lowest catch efficiency based on abundance and biomass was for the swimming crab *Liocarcinus holsatus* (only 9% of available population sampled), whilst the highest catch efficiency based on abundance and

biomass was for shrimps of the genus *Processa* (72% of available abundance and 83% of available biomass) (Reiss, *pers comm.* 2005). The study by *Reiss et al.* (pers comm., 2005) did not suggest big differences in catchability between the two different habitats that were tested, suggesting that the results presented here should at least be consistent in the underestimation of numbers and biomass. However, further efforts will be made to assess whether it is possible to apply catchability correction factors to the estimation of total community production.

In this study only the 5mm-sieve fraction of the epifaunal sample was considered. Future work will examine what proportion of the total production per sample is attributable to the material retained in the 2mm sieve fraction. It is also thought that there may be missing production from the hyperbenthos, which are not representatively sampled by either the Van Veen grab or the beamtrawl. Studies undertaken in the North Sea using samplers specifically designed for the hyperbenthos will be consulted to evaluate which groups are underrepresented in the data collected for this study.

# **5. References**

- Banse, K. & Mosher, S. 1980. Adult body mass and annual production/biomass relationship of field populations. *Ecological Monographs* 50, 355-379.
- Brey, T. 1990. Estimating productivity of macrobenthic invertebrates from biomass and mean individual weight. *Meeresforsch 32*, 329-343.
- Brey, T. 1999. A collection of empirical relations for use in ecological modelling. *NAGA The ICLARM Quarterly* 22(3), 24-28.
- Brey, T. 2001. Population dynamics in benthic invertebrates. A virtual handbook. V.0.12 http://www.awi-bremerhaven.de/Benthic/Ecosystem/FoodWeb/Handbook/main.html Alfred Wegener Institute for Polar and Marine Research, Germany.
- Brey, T., Jarre-Teichmann, A. & Borlich, O. 1996. Artificial neural network versus multiple linear regression: predicting P/B ratios from empirical data. *Marine Ecology Progress Series 140*, 251-256.
- Crisp, D.J., 1984. Energy flow measurement. In: N.A. Holme & A.D. McIntyre (eds) Methods for the Study of Marine Benthos. IBP Handbook No 16, 2nd edition, Blackwell, Oxford, pp. 284-372.
- Cushman, R.M., Shugart, H.H., Hildebrandt, S.G. & Elwood, J.W., 1978. The effect of growth curve and sampling regime on instantaneous-growth, removal-summation, and Hynes/Hamilton estimates of aquatic insect production: A computer simulation. *Limnology and Oceanography 23*, 184-189.
- Edgar, G.J. 1990a. The use of the size structure of benthic macrofaunal communities to estimate faunal biomass and secondary production. *Journal of Experimental Marine Biology and Ecology 137*, 195-214.
- Edgar, G.J. 1990b. The influence of plant structure on the species richness, biomass and secondary production of macrofaunal assemblages associated with Western Australian seagrass beds. *Journal of Experimental Marine Biology and Ecology 137*, 215-240.
- Jennings, S., Dinmore, T. A., Duplisea, D.E., Warr, K.J. & & Lancaster, J. E. 2001. Trawling disturbance can modify benthic production processes. *Journal of Animal Ecology* 70, 459-475.
- Morin, A. & Bourassa, N. 1992. Modèles empiriques de la production anuelle et du rapport P/B d'invertébrés benthiques d'eau courante. *Canadian Journal of Fisheries and Aquatic Science 49*, 532-539.

- Morin, A., Mousseau, T.A., Roff, D.A., 1987. Accuracy and precision of secondary production estimates. *Limnology and Oceanography 32*, 1342-1352.
- Peters, R.H. 1983. *The Ecological Implications of Body Size*. Cambridge University Press, Cambridge, 329p.
- Plante, C., Downing, J.A. 1989. Production of freshwater invertebrate populations in lakes. *Canadian Journal of Fisheries and Aquatic Sciences* 46, 1489-1498.
- Robertson, A.I. 1979. The relationship between annual production ratio and lifespans for marine macrobenthos. *Oecologia* 38, 193-202.
- Schwinghamer, P., Hargrave, B., Peer, D. & Hawkins, C.M. 1986. Partitioning of production and respiration among size groups of organisms in an intertidal benthic community. *Marine Ecology Progress Series 31*, 131-142.
- Tumbiolo, M.L. & Downing, J.A. 1994. An empirical model for the prediction of secondary production in marine benthic invertebrate populations. *Marine Ecology Progress Series 114*, 165-174.
- Wildish, D.J. & Peer, D., 1981. Methods for estimating secondary production in marine Amphipoda. *Canadian Journal of Fisheries and Aquatic Sciences* 38, 1019-1026.

# **Appendix 1: Epifaunal species list with assigned production analysis groups**

| Edgar Group | Brey Group | Taxon Group | Species or Taxon        |
|-------------|------------|-------------|-------------------------|
| Crustacea   | Amphipoda  | Amphipoda   | Ampelisca brevicornis   |
| Crustacea   | Amphipoda  | Amphipoda   | Ampelisca diadema       |
| Crustacea   | Amphipoda  | Amphipoda   | Ampelisca macrocephala  |
| Crustacea   | Amphipoda  | Amphipoda   | Ampeliscidae            |
| Crustacea   | Amphipoda  | Amphipoda   | Amphipoda indet         |
| Crustacea   | Amphipoda  | Amphipoda   | Aristias neglectus      |
| Crustacea   | Amphipoda  | Amphipoda   | Caprella linearis       |
| Crustacea   | Amphipoda  | Amphipoda   | Caprellidae             |
| Crustacea   | Amphipoda  | Amphipoda   | Epimeria cornigera      |
| Crustacea   | Amphipoda  | Amphipoda   | Gammaridae              |
| Crustacea   | Amphipoda  | Amphipoda   | Gammaropsis maculata    |
| Crustacea   | Amphipoda  | Amphipoda   | Gammaropsis nitida      |
| Crustacea   | Amphipoda  | Amphipoda   | Hippomedon denticulatus |
| Crustacea   | Amphipoda  | Amphipoda   | Iphimedia obesa         |
| Crustacea   | Amphipoda  | Amphipoda   | Lysianassidae           |
| Crustacea   | Amphipoda  | Amphipoda   | Parapleustes assimilis  |
| Crustacea   | Amphipoda  | Amphipoda   | Scopelocheirus hopei    |
| Crustacea   | Amphipoda  | Amphipoda   | Tmetonyx cicada         |
| Crustacea   | Amphipoda  | Amphipoda   | Tryphosites longipes    |
| Crustacea   | Amphipoda  | Amphipoda   | Westwoodilla caecula    |
| Crustacea   | Cirripedia | Cirripedia  | Balanus balanus         |
| Crustacea   | Cirripedia | Cirripedia  | Balanus crenatus        |
| Crustacea   | Cirripedia | Cirripedia  | Lepadidae               |
| Crustacea   | Cirripedia | Cirripedia  | Scalpellum scalpellum   |
| Crustacea   | Cirripedia | Cirripedia  | Verruca stroemia        |
| Crustacea   | Crustacea  | Chelicerata | Nymphon gracile         |
| Crustacea   | Crustacea  | Chelicerata | Nymphon hirtum          |
| Crustacea   | Crustacea  | Chelicerata | Pycnogonida             |
| Crustacea   | Crustacea  | Chelicerata | Pycnogonum littorale    |
| Crustacea   | Crustacea  | Crustacea   | Leptomysis gracilis     |
| Crustacea   | Crustacea  | Crustacea   | Malacostraca            |
| Crustacea   | Crustacea  | Crustacea   | Mysidae                 |

Page 1 of 14

| Edgar Group | <b>Brey Group</b> | Taxon Group       | Species or Taxon        |
|-------------|-------------------|-------------------|-------------------------|
| Crustacea   | Crustacea         | Crustacea         | Schistomysis kervillei  |
| Crustacea   | Crustacea         | Crustacea         | Schistomysis spiritus   |
| Crustacea   | Cumacea           | Cumacea           | Eudorella emarginata    |
| Crustacea   | Decapoda          | Decapoda          | Decapoda                |
| Crustacea   | Decapoda          | Decapoda natantia | Calocaris macandreae    |
| Crustacea   | Decapoda          | Decapoda natantia | Caridion gordoni        |
| Crustacea   | Decapoda          | Decapoda natantia | Caridion steveni        |
| Crustacea   | Decapoda          | Decapoda natantia | Crangon allmanni        |
| Crustacea   | Decapoda          | Decapoda natantia | Crangon crangon         |
| Crustacea   | Decapoda          | Decapoda natantia | Crangon trispinosus     |
| Crustacea   | Decapoda          | Decapoda natantia | Crangonidae             |
| Crustacea   | Decapoda          | Decapoda natantia | Eualus gaimardii        |
| Crustacea   | Decapoda          | Decapoda natantia | Eualus pusiolus         |
| Crustacea   | Decapoda          | Decapoda natantia | Hippolyte varians       |
| Crustacea   | Decapoda          | Decapoda natantia | Natantia indet          |
| Crustacea   | Decapoda          | Decapoda natantia | Nephrops norvegicus     |
| Crustacea   | Decapoda          | Decapoda natantia | Pandalidae              |
| Crustacea   | Decapoda          | Decapoda natantia | Pandalina brevirostris  |
| Crustacea   | Decapoda          | Decapoda natantia | Pandalus borealis       |
| Crustacea   | Decapoda          | Decapoda natantia | Pandalus montagui       |
| Crustacea   | Decapoda          | Decapoda natantia | Pandalus sp             |
| Crustacea   | Decapoda          | Decapoda natantia | Pandalus sp.            |
| Crustacea   | Decapoda          | Decapoda natantia | Pasiphaea               |
| Crustacea   | Decapoda          | Decapoda natantia | Philoceras bispinosus   |
| Crustacea   | Decapoda          | Decapoda natantia | Philoceras echinulatus  |
| Crustacea   | Decapoda          | Decapoda natantia | Philoceras trispinosus  |
| Crustacea   | Decapoda          | Decapoda natantia | Philocheras echinulatus |
| Crustacea   | Decapoda          | Decapoda natantia | Philocheras sculptus    |
| Crustacea   | Decapoda          | Decapoda natantia | Pontophilus             |
| Crustacea   | Decapoda          | Decapoda natantia | Pontophilus spinosus    |
| Crustacea   | Decapoda          | Decapoda natantia | Processa canaliculata   |
| Crustacea   | Decapoda          | Decapoda natantia | Processa canuliculata   |
| Crustacea   | Decapoda          | Decapoda natantia | Processa modica modica  |
| Crustacea   | Decapoda          | Decapoda natantia | Processa nouveli        |

Page 2 of 14

| Edgar Group | <b>Brey Group</b> | Taxon Group        | Species or Taxon          |
|-------------|-------------------|--------------------|---------------------------|
| Crustacea   | Decapoda          | Decapoda natantia  | Processa nouveli holthui  |
| Crustacea   | Decapoda          | Decapoda natantia  | Schlerocrangon boreas     |
| Crustacea   | Decapoda          | Decapoda natantia  | Spirontocaris lilljeborgi |
| Crustacea   | Decapoda          | Decapoda natantia  | Thoralus cranchii         |
| Crustacea   | Decapoda          | Decapoda natantia  | Upogebia deltaura         |
| Crustacea   | Decapoda          | Decapoda reptantia | Anapagurus chiroacanth    |
| Crustacea   | Decapoda          | Decapoda reptantia | Anapagurus laevis         |
| Crustacea   | Decapoda          | Decapoda reptantia | Atelecyclus rotundatus    |
| Crustacea   | Decapoda          | Decapoda reptantia | Cancer pagurus            |
| Crustacea   | Decapoda          | Decapoda reptantia | Corystes cassivelaunus    |
| Crustacea   | Decapoda          | Decapoda reptantia | Ebalia cranchii           |
| Crustacea   | Decapoda          | Decapoda reptantia | Ebalia tuberosa           |
| Crustacea   | Decapoda          | Decapoda reptantia | Ebalia tumefacta          |
| Crustacea   | Decapoda          | Decapoda reptantia | Eurynome aspera           |
| Crustacea   | Decapoda          | Decapoda reptantia | Galathea                  |
| Crustacea   | Decapoda          | Decapoda reptantia | Galathea dispersa         |
| Crustacea   | Decapoda          | Decapoda reptantia | Galathea intermedia       |
| Crustacea   | Decapoda          | Decapoda reptantia | Galathea nexa             |
| Crustacea   | Decapoda          | Decapoda reptantia | Galathea squamifera       |
| Crustacea   | Decapoda          | Decapoda reptantia | Galathea strigosa         |
| Crustacea   | Decapoda          | Decapoda reptantia | Geryon trispinosus        |
| Crustacea   | Decapoda          | Decapoda reptantia | Goneplax rhomboides       |
| Crustacea   | Decapoda          | Decapoda reptantia | Hyas araneus              |
| Crustacea   | Decapoda          | Decapoda reptantia | Hyas coarctatus           |
| Crustacea   | Decapoda          | Decapoda reptantia | Inachus dorsettensis      |
| Crustacea   | Decapoda          | Decapoda reptantia | Inachus phalangium        |
| Crustacea   | Decapoda          | Decapoda reptantia | Liocarcinus               |
| Crustacea   | Decapoda          | Decapoda reptantia | Liocarcinus depurator     |
| Crustacea   | Decapoda          | Decapoda reptantia | Liocarcinus holsatus      |
| Crustacea   | Decapoda          | Decapoda reptantia | Liocarcinus marmoreus     |
| Crustacea   | Decapoda          | Decapoda reptantia | Liocarcinus pusillus      |
| Crustacea   | Decapoda          | Decapoda reptantia | Lithodes maia             |
| Crustacea   | Decapoda          | Decapoda reptantia | Macropipus tuberculatus   |
| Crustacea   | Decapoda          | Decapoda reptantia | Macropodia deflexa        |

Page 3 of 14

| Edgar Group | <b>Brey Group</b> | Taxon Group        | Species or Taxon        |
|-------------|-------------------|--------------------|-------------------------|
| Crustacea   | Decapoda          | Decapoda reptantia | Macropodia rostrata     |
| Crustacea   | Decapoda          | Decapoda reptantia | Macropodia tenuirostri  |
| Crustacea   | Decapoda          | Decapoda reptantia | Munida rugosa           |
| Crustacea   | Decapoda          | Decapoda reptantia | Oxyrhyncha              |
| Crustacea   | Decapoda          | Decapoda reptantia | Paguridae               |
| Crustacea   | Decapoda          | Decapoda reptantia | Pagurus alatus          |
| Crustacea   | Decapoda          | Decapoda reptantia | Pagurus bernhardus      |
| Crustacea   | Decapoda          | Decapoda reptantia | Pagurus carneus         |
| Crustacea   | Decapoda          | Decapoda reptantia | Pagurus cuanensis       |
| Crustacea   | Decapoda          | Decapoda reptantia | Pagurus prideaux        |
| Crustacea   | Decapoda          | Decapoda reptantia | Pagurus pubescens       |
| Crustacea   | Decapoda          | Decapoda reptantia | Pagurus sp.             |
| Crustacea   | Decapoda          | Decapoda reptantia | Pagurus variabilis      |
| Crustacea   | Decapoda          | Decapoda reptantia | Porcellana platycheles  |
| Crustacea   | Isopoda           | Isopoda            | Astacilla longicornis   |
| Crustacea   | Isopoda           | Isopoda            | Astacilla sp.           |
| Crustacea   | Isopoda           | Isopoda            | Cirolana borealis       |
| Crustacea   | Isopoda           | Isopoda            | Janira maculosa         |
| Epifauna    | Actinaria         | Anthozoa           | Anthozoa                |
| Epifauna    | Actinaria         | Hexacorallia       | Actinauge richardi      |
| Epifauna    | Actinaria         | Hexacorallia       | Actinia equina          |
| Epifauna    | Actinaria         | Hexacorallia       | Actiniaria              |
| Epifauna    | Actinaria         | Hexacorallia       | Adamsia carciniopados   |
| Epifauna    | Actinaria         | Hexacorallia       | Bolocera tuediae        |
| Epifauna    | Actinaria         | Hexacorallia       | Calliactis parasitica   |
| Epifauna    | Actinaria         | Hexacorallia       | Caryophyllia smithii    |
| Epifauna    | Actinaria         | Hexacorallia       | Epizoanthus incrustatus |
| Epifauna    | Actinaria         | Hexacorallia       | Flabellum macandrewi    |
| Epifauna    | Actinaria         | Hexacorallia       | Hexacorallia            |
| Epifauna    | Actinaria         | Hexacorallia       | Hormathia               |
| Epifauna    | Actinaria         | Hexacorallia       | Hormathia digitata      |
| Epifauna    | Actinaria         | Hexacorallia       | Hormathiidae            |
| Epifauna    | Actinaria         | Hexacorallia       | Metridium senile        |
| Epifauna    | Actinaria         | Hexacorallia       | Scleractinia            |

Page 4 of 14

| Edgar Group | <b>Brey Group</b> | <b>Taxon Group</b> | Species or Taxon        |
|-------------|-------------------|--------------------|-------------------------|
| Epifauna    | Actinaria         | Hexacorallia       | Stomphia coccinea       |
| Epifauna    | Actinaria         | Hexacorallia       | Urticina eques          |
| Epifauna    | Actinaria         | Hexacorallia       | Urticina sp.            |
| Epifauna    | Actinaria         | Hydrozoa           | Abietinaria abietina    |
| Epifauna    | Actinaria         | Hydrozoa           | Abietinaria filicula    |
| Epifauna    | Actinaria         | Hydrozoa           | Aglaophenia sp.         |
| Epifauna    | Actinaria         | Hydrozoa           | Bougainvillia           |
| Epifauna    | Actinaria         | Hydrozoa           | Dicoryne conferta       |
| Epifauna    | Actinaria         | Hydrozoa           | Diphasia alata          |
| Epifauna    | Actinaria         | Hydrozoa           | Diphasia sp.            |
| Epifauna    | Actinaria         | Hydrozoa           | Gonothyraea loveni      |
| Epifauna    | Actinaria         | Hydrozoa           | Grammaria abietina      |
| Epifauna    | Actinaria         | Hydrozoa           | Halecium beanii         |
| Epifauna    | Actinaria         | Hydrozoa           | Halecium halecinum      |
| Epifauna    | Actinaria         | Hydrozoa           | Halecium sessile        |
| Epifauna    | Actinaria         | Hydrozoa           | Halecium sp             |
| Epifauna    | Actinaria         | Hydrozoa           | Hydrallmania falcata    |
| Epifauna    | Actinaria         | Hydrozoa           | Hydrozoa                |
| Epifauna    | Actinaria         | Hydrozoa           | Lafoea dumosa           |
| Epifauna    | Actinaria         | Hydrozoa           | Lafoea sp               |
| Epifauna    | Actinaria         | Hydrozoa           | Lytocarpia myriophyllun |
| Epifauna    | Actinaria         | Hydrozoa           | Nemertesia antennina    |
| Epifauna    | Actinaria         | Hydrozoa           | Nemertesia ramosa       |
| Epifauna    | Actinaria         | Hydrozoa           | Obelia longissima       |
| Epifauna    | Actinaria         | Hydrozoa           | Plumularia setacea      |
| Epifauna    | Actinaria         | Hydrozoa           | Tamarisca tamarisca     |
| Epifauna    | Actinaria         | Hydrozoa           | Thuiaria thuja          |
| Epifauna    | Actinaria         | Hydrozoa           | Tubularia               |
| Epifauna    | Actinaria         | Hydrozoa           | Tubularia indivisa      |
| Epifauna    | Actinaria         | Hydrozoa           | Tubularia larynx        |
| Epifauna    | Actinaria         | Octocorallia       | Alcyonium               |
| Epifauna    | Actinaria         | Octocorallia       | Alcyonium digitatum     |
| Epifauna    | Actinaria         | Octocorallia       | Alcyonium glomeratum    |
| Epifauna    | Actinaria         | Octocorallia       | Octocorallia            |

Page 5 of 14

| Edgar Group | <b>Brey Group</b> | <b>Taxon Group</b> | Species or Taxon        |
|-------------|-------------------|--------------------|-------------------------|
| Epifauna    | Actinaria         | Octocorallia       | Pennatula phosphorea    |
| Epifauna    | Actinaria         | Octocorallia       | Virgularia mirabilis    |
| Epifauna    | Ascidiae          | Ascidiae           | Ascidia sp              |
| Epifauna    | Ascidiae          | Ascidiae           | Ascidia virginea        |
| Epifauna    | Ascidiae          | Ascidiae           | Ascidiacea              |
| Epifauna    | Ascidiae          | Ascidiae           | Ascidiella aspersa      |
| Epifauna    | Ascidiae          | Ascidiae           | Ascidiella scabra       |
| Epifauna    | Ascidiae          | Ascidiae           | Ascidiella sp.          |
| Epifauna    | Ascidiae          | Ascidiae           | Ciona intestinalis      |
| Epifauna    | Ascidiae          | Ascidiae           | Corella parallelogramma |
| Epifauna    | Ascidiae          | Ascidiae           | Eugyra arenosa          |
| Epifauna    | Asteroidea        | Asteroidea         | Asterias rubens         |
| Epifauna    | Asteroidea        | Asteroidea         | Asteroidea              |
| Epifauna    | Asteroidea        | Asteroidea         | Astropecten irregularis |
| Epifauna    | Asteroidea        | Asteroidea         | Crossaster papposus     |
| Epifauna    | Asteroidea        | Asteroidea         | Henricia                |
| Epifauna    | Asteroidea        | Asteroidea         | Henricia oculata        |
| Epifauna    | Asteroidea        | Asteroidea         | Henricia sanguinolenta  |
| Epifauna    | Asteroidea        | Asteroidea         | Hippasteria phrygiana   |
| Epifauna    | Asteroidea        | Asteroidea         | Leptasterias muelleri   |
| Epifauna    | Asteroidea        | Asteroidea         | Luidia sarsi            |
| Epifauna    | Asteroidea        | Asteroidea         | Porania pulvillus       |
| Epifauna    | Asteroidea        | Asteroidea         | Solaster endeca         |
| Epifauna    | Asteroidea        | Asteroidea         | Stichastrella rosea     |
| Epifauna    | Bryozoa           | Bryozoa            | Alcyonidium             |
| Epifauna    | Bryozoa           | Bryozoa            | Alcyonidium diaphanum   |
| Epifauna    | Bryozoa           | Bryozoa            | Alcyonidium parasiticum |
| Epifauna    | Bryozoa           | Bryozoa            | Bryozoa                 |
| Epifauna    | Bryozoa           | Bryozoa            | Buskea dichotoma        |
| Epifauna    | Bryozoa           | Bryozoa            | Cellaria sp             |
| Epifauna    | Bryozoa           | Bryozoa            | Chartella barleei       |
| Epifauna    | Bryozoa           | Bryozoa            | Dendrobeania            |
| Epifauna    | Bryozoa           | Bryozoa            | Dendrobeania fessa      |
| Epifauna    | Bryozoa           | Bryozoa            | Dendrobeania murrayana  |

Page 6 of 14

| Edgar Group | <b>Brey Group</b> | <b>Taxon Group</b> | Species or Taxon           |
|-------------|-------------------|--------------------|----------------------------|
| Epifauna    | Bryozoa           | Bryozoa            | Eucratea loricata          |
| Epifauna    | Bryozoa           | Bryozoa            | Flustra                    |
| Epifauna    | Bryozoa           | Bryozoa            | Flustra foliacea           |
| Epifauna    | Bryozoa           | Bryozoa            | Porella                    |
| Epifauna    | Bryozoa           | Bryozoa            | Scrupocellaria             |
| Epifauna    | Bryozoa           | Bryozoa            | Securiflustra securifrons  |
| Epifauna    | Bryozoa           | Bryozoa            | Sertella (Bryozoa)         |
| Epifauna    | Bryozoa           | Bryozoa            | Sertella beaniana          |
| Epifauna    | Bryozoa           | Bryozoa            | Tubulipora                 |
| Epifauna    | Chaetognatha      | Chaetognatha       | Chaetognatha               |
| Epifauna    | Echinoidea        | Echinoidea         | Echinoidea                 |
| Epifauna    | Echinoidea        | Echinoidea regular | Echinidae                  |
| Epifauna    | Echinoidea        | Echinoidea regular | Echinus                    |
| Epifauna    | Echinoidea        | Echinoidea regular | Echinus (Juveniles)        |
| Epifauna    | Echinoidea        | Echinoidea regular | Echinus acutus             |
| Epifauna    | Echinoidea        | Echinoidea regular | Echinus elegans            |
| Epifauna    | Echinoidea        | Echinoidea regular | Echinus esculentus         |
| Epifauna    | Echinoidea        | Echinoidea regular | Psammechinus miliaris      |
| Epifauna    | Echinoidea        | Echinoidea regular | Strongylocentrotus         |
| Epifauna    | Gastropoda        | Gastropoda         | Troschelia berniciensis    |
| Epifauna    | Holothuroidea     | Holothuroidea      | Aslia lefevrei             |
| Epifauna    | Holothuroidea     | Holothuroidea      | Labidoplax digitata        |
| Epifauna    | Holothuroidea     | Holothuroidea      | Leptopentacta elongata     |
| Epifauna    | Holothuroidea     | Holothuroidea      | Paracucumaria hyndmani     |
| Epifauna    | Holothuroidea     | Holothuroidea      | Pseudothyone raphanus      |
| Epifauna    | Holothuroidea     | Holothuroidea      | Psolus phantapus           |
| Epifauna    | Holothuroidea     | Holothuroidea      | Psolus squamatus           |
| Epifauna    | Holothuroidea     | Holothuroidea      | Thyone fusus               |
| Epifauna    | Holothuroidea     | Holothuroidea      | Thyonidium hyalinum        |
| Epifauna    | Holothuroidea     | Holothuroidea      | Thyonidium sp.             |
| Epifauna    | Ophiuroidea       | Ophiuroidea        | Ophiocomina nigra          |
| Epifauna    | Ophiuroidea       | Ophiuroidea        | Ophiopholis aculeata       |
| Epifauna    | Ophiuroidea       | Ophiuroidea        | Ophiothrix fragilis        |
| Epifauna    | Ophiuroidea       | Ophiuroidea        | Ophiothrix quinquemaculate |

Page 7 of 14

| Edgar Group | <b>Brey Group</b>     | Taxon Group           | Species or Taxon           |
|-------------|-----------------------|-----------------------|----------------------------|
| Epifauna    | Ophiuroidea           | Ophiuroidea           | Ophiura                    |
| Epifauna    | Ophiuroidea           | Ophiuroidea           | Ophiura affinis            |
| Epifauna    | Ophiuroidea           | Ophiuroidea           | Ophiura albida             |
| Epifauna    | Ophiuroidea           | Ophiuroidea           | Ophiura ophiura            |
| Epifauna    | Ophiuroidea           | Ophiuroidea           | Ophiura sarsi              |
| Epifauna    | Ophiuroidea           | Ophiuroidea           | Ophiuroidea                |
| Epifauna    | Other Organic Matter  | Other Organic Matter  | Gubbelscheibe              |
| Epifauna    | Other Organic Matter  | Other Organic Matter  | Other organic material     |
| Epifauna    | Polychaeta errantia   | Polychaeta errantia   | Aphrodita aculeata         |
| Epifauna    | Polychaeta errantia   | Polychaeta errantia   | Aphroditidae               |
| Epifauna    | Polychaeta errantia   | Polychaeta errantia   | Hyalinoecia tubicola       |
| Epifauna    | Polychaeta errantia   | Polychaeta errantia   | Laetmonice filicornis      |
| Epifauna    | Polychaeta errantia   | Polychaeta errantia   | Lepidonotus squamatus      |
| Epifauna    | Polychaeta sedentaria | Polychaeta sedentaria | Filograna implexa          |
| Epifauna    | Polychaeta sedentaria | Polychaeta sedentaria | Hydroides                  |
| Epifauna    | Polychaeta sedentaria | Polychaeta sedentaria | Hydroides norvegica        |
| Epifauna    | Polychaeta sedentaria | Polychaeta sedentaria | Pomatoceros triqueter      |
| Epifauna    | Polychaeta sedentaria | Polychaeta sedentaria | Serpula vermicularis       |
| Epifauna    | Polychaeta sedentaria | Polychaeta sedentaria | Thelepus cincinnatus       |
| Epifauna    | Porifera              | Porifera              | Axinella                   |
| Epifauna    | Porifera              | Porifera              | Axinella infundibuliformis |
| Epifauna    | Porifera              | Porifera              | Halichondria bowerbanki    |
| Epifauna    | Porifera              | Porifera              | Halichondria panicea       |
| Epifauna    | Porifera              | Porifera              | Haliclona oculata          |
| Epifauna    | Porifera              | Porifera              | Myxilla fimbriata          |
| Epifauna    | Porifera              | Porifera              | Phakellia ventilabrum      |
| Epifauna    | Porifera              | Porifera              | Porifera                   |
| Epifauna    | Porifera              | Porifera              | Stelligera stuposa         |
| Epifauna    | Porifera              | Porifera              | Suberites                  |
| Epifauna    | Porifera              | Porifera              | Suberites carnosus         |
| Epifauna    | Porifera              | Porifera              | Suberites ficus            |
| Epifauna    | Porifera              | Porifera              | Suberites pagurorum        |
| Epifauna    | Porifera              | Porifera              | Suberites sp               |
| Epifauna    | Porifera              | Porifera              | Ute ensata                 |

Page 8 of 14

| Edgar Group | <b>Brey Group</b>   | Taxon Group          | Species or    |
|-------------|---------------------|----------------------|---------------|
| Infauna     | Annelida            | Polychaeta           | Polychaeta    |
| Infauna     | Echinoidea          | Echinoidea irregular | Brissopsis ly |
| Infauna     | Echinoidea          | Echinoidea irregular | Echinocardi   |
| Infauna     | Echinoidea          | Echinoidea irregular | Echinocardi   |
| Infauna     | Echinoidea          | Echinoidea regular   | Echinocyam    |
| Infauna     | Echinoidea          | Echinoidea regular   | Spatangus p   |
| Infauna     | Echinoidea          | Echinoidea regular   | Spatangus r   |
| Infauna     | Nemertea            | Nemertea             | Nemertea      |
| Infauna     | Nemertea            | Platyhelminthes      | Platyhelmin   |
| Infauna     | Ophiuroidea         | Ophiuroidea          | Amphiura b    |
| Infauna     | Ophiuroidea         | Ophiuroidea          | Amphiura cl   |
| Infauna     | Polychaeta errantia | Polychaeta errantia  | Alentia gela  |
| Infauna     | Polychaeta errantia | Polychaeta errantia  | Anaitides gr  |
| Infauna     | Polychaeta errantia | Polychaeta errantia  | Eunicidae     |
| Infauna     | Polychaeta errantia | Polychaeta errantia  | Eunoe nodo.   |
| Infauna     | Polychaeta errantia | Polychaeta errantia  | Gattyana an   |
| Infauna     | Polychaeta errantia | Polychaeta errantia  | Gattyana cit  |
| Infauna     | Polychaeta errantia | Polychaeta errantia  | Glycera cap   |
| Infauna     | Polychaeta errantia | Polychaeta errantia  | Glycera rou   |
| Infauna     | Polychaeta errantia | Polychaeta errantia  | Glycera sp    |
| Infauna     | Polychaeta errantia | Polychaeta errantia  | Glycera uni   |
| Infauna     | Polychaeta errantia | Polychaeta errantia  | Glyceridae    |
| Infauna     | Polychaeta errantia | Polychaeta errantia  | Goniada ma    |
| Infauna     | Polychaeta errantia | Polychaeta errantia  | Harmothoe     |
| Infauna     | Polychaeta errantia | Polychaeta errantia  | Harmothoe     |
| Infauna     | Polychaeta errantia | Polychaeta errantia  | Harmothoe     |
| Infauna     | Polychaeta errantia | Polychaeta errantia  | Harmothoe     |
| Infauna     | Polychaeta errantia | Polychaeta errantia  | Harmothoe     |
| Infauna     | Polychaeta errantia | Polychaeta errantia  | Harmothoe     |
| Infauna     | Polychaeta errantia | Polychaeta errantia  | Harmothoe     |
| Infauna     | Polychaeta errantia | Polychaeta errantia  | Harmothoe     |
| Infauna     | Polychaeta errantia | Polychaeta errantia  | Hediste dive  |
| Infauna     | Polychaeta errantia | Polychaeta errantia  | Lumbrineris   |
| Infauna     | Polychaeta errantia | Polychaeta errantia  | Marphysa b    |

r Taxon

lyrifera dium cordatum dium flavescens nus pusillus purpureus raschi nthes brachiata chiajei atinosa roenlandica osa mondseni irrosa pitata uxii icornis aculata extenuata e fragilis e fraserthomsoni glabra impar sp. spinifera versicolor is latreilli bellii

Page 9 of 14

| Edgar Group | Brey Group            |
|-------------|-----------------------|
| Infauna     | Polychaeta errantia   |
| Infauna     | Polychaeta sedentaria |
|             |                       |

#### **Taxon Group**

Polychaeta errantia Polychaeta sedentaria Polychaeta sedentaria

#### **Species or Taxon**

Neanthes fucata Neanthes virens Nephtys assimilis Nephtys caeca Nephtys hombergii Nephtys kersivalensis Nephtys longosetosa Nephtys paradoxa Nephtys sp Nereis Nereis pelagica Nereis zonata Nothria conchylega Notophyllum foliosum Orbinia armandi Orbinia sertulata Orbiniidae Perinereis cultrifera Phyllodoce sp Polynoidae Sthenelais boa Sthenelais limicola Amphictene auricoma Amphitrite cirrata Branchiomma bombyx Chaetopteridae Ditrupa arietina Jasmineira elegans Lagis koreni Lanice conchilega Notomastus latericeus Ophelia limacina *Ophelina acuminata* Owenia fusiformis

Page 10 of 14

| Edgar Group | Brey Group            | Taxon Group           | Spe  |
|-------------|-----------------------|-----------------------|------|
| Infauna     | Polychaeta sedentaria | Polychaeta sedentaria | Poly |
| Infauna     | Polychaeta sedentaria | Polychaeta sedentaria | Rho  |
| Infauna     | Polychaeta sedentaria | Polychaeta sedentaria | Sabe |
| Infauna     | Polychaeta sedentaria | Polychaeta sedentaria | Sabe |
| Infauna     | Polychaeta sedentaria | Polychaeta sedentaria | Scal |
| Infauna     | Polychaeta sedentaria | Polychaeta sedentaria | Scol |
| Infauna     | Polychaeta sedentaria | Polychaeta sedentaria | Tere |
| Infauna     | Polychaeta sedentaria | Polychaeta sedentaria | Tere |
| Infauna     | Sipunculida           | Sipunculida           | Golf |
| Infauna     | Sipunculida           | Sipunculida           | Pha. |
| Infauna     | Sipunculida           | Sipunculida           | Sipu |
| Infauna     | Sipunculida           | Sipunculida           | Sipu |
| Mollusca    | Bivalvia              | Bivalvia              | Abra |
| Mollusca    | Bivalvia              | Bivalvia              | Abra |
| Mollusca    | Bivalvia              | Bivalvia              | Abra |
| Mollusca    | Bivalvia              | Bivalvia              | Acar |
| Mollusca    | Bivalvia              | Bivalvia              | Aequ |
| Mollusca    | Bivalvia              | Bivalvia              | Anor |
| Mollusca    | Bivalvia              | Bivalvia              | Arct |
| Mollusca    | Bivalvia              | Bivalvia              | Asta |
| Mollusca    | Bivalvia              | Bivalvia              | Biva |
| Mollusca    | Bivalvia              | Bivalvia              | Care |
| Mollusca    | Bivalvia              | Bivalvia              | Cha  |
| Mollusca    | Bivalvia              | Bivalvia              | Chle |
| Mollusca    | Bivalvia              | Bivalvia              | Chla |
| Mollusca    | Bivalvia              | Bivalvia              | Circ |
| Mollusca    | Bivalvia              | Bivalvia              | Cort |
| Mollusca    | Bivalvia              | Bivalvia              | Cusp |
| Mollusca    | Bivalvia              | Bivalvia              | Don  |
| Mollusca    | Bivalvia              | Bivalvia              | Dos  |
| Mollusca    | Bivalvia              | Bivalvia              | Dos  |
| Mollusca    | Bivalvia              | Bivalvia              | Ensi |
| Mollusca    | Bivalvia              | Bivalvia              | Gar  |
| Mollusca    | Bivalvia              | Bivalvia              | Gar  |
|             |                       |                       |      |

#### Species or Taxon

lyphysia crassa odine loveni oella crassicornis ellaria spinulosa alibregma inflatum olelepis squamata ebellidae rebellides stroemi lfingia vulgaris ascolion strombus uncula unculidae ra longicallus ra nitida ra prismatica anthocardia echinata quipecten opercularis omia ephippium ctica islandica arte sulcata valves rdiidae amelea gallina lamys lamys varia comphalus casina rbula gibba spidaria cuspidata nax vittatus sinia exoleta sinia lupinus sis ensis ri depressa ri fervensis

Page 11 of 14

| Edgar Group | <b>Brey Group</b> | Taxon Group | <b>Species or Taxon</b>  |
|-------------|-------------------|-------------|--------------------------|
| Mollusca    | Bivalvia          | Bivalvia    | Goodallia triangularis   |
| Mollusca    | Bivalvia          | Bivalvia    | Hiatella arctica         |
| Mollusca    | Bivalvia          | Bivalvia    | Lucinoma borealis        |
| Mollusca    | Bivalvia          | Bivalvia    | Modiolula phaseolina     |
| Mollusca    | Bivalvia          | Bivalvia    | Modiolus barbatus        |
| Mollusca    | Bivalvia          | Bivalvia    | Modiolus modiolus        |
| Mollusca    | Bivalvia          | Bivalvia    | Mysia undata             |
| Mollusca    | Bivalvia          | Bivalvia    | Nucula nitidosa          |
| Mollusca    | Bivalvia          | Bivalvia    | Nucula nucleus           |
| Mollusca    | Bivalvia          | Bivalvia    | Nucula sulcata           |
| Mollusca    | Bivalvia          | Bivalvia    | Palliolum tigerinum      |
| Mollusca    | Bivalvia          | Bivalvia    | Parvicardium exiguum     |
| Mollusca    | Bivalvia          | Bivalvia    | Parvicardium scabrum     |
| Mollusca    | Bivalvia          | Bivalvia    | Pecten maximus           |
| Mollusca    | Bivalvia          | Bivalvia    | Phaxas pellucidus        |
| Mollusca    | Bivalvia          | Bivalvia    | Pododesmus patelliformis |
| Mollusca    | Bivalvia          | Bivalvia    | Pseudamussium            |
| Mollusca    | Bivalvia          | Bivalvia    | Pseudomussium            |
| Mollusca    | Bivalvia          | Bivalvia    | Spisula elliptica        |
| Mollusca    | Bivalvia          | Bivalvia    | Spisula solida           |
| Mollusca    | Bivalvia          | Bivalvia    | Spisula subtruncata      |
| Mollusca    | Bivalvia          | Bivalvia    | Tapes decussatus         |
| Mollusca    | Bivalvia          | Bivalvia    | Tellimya ferruginosa     |
| Mollusca    | Bivalvia          | Bivalvia    | Tellinidae               |
| Mollusca    | Bivalvia          | Bivalvia    | Timoclea ovata           |
| Mollusca    | Bivalvia          | Bivalvia    | Tridonta                 |
| Mollusca    | Bivalvia          | Bivalvia    | Tridonta elliptica       |
| Mollusca    | Bivalvia          | Bivalvia    | Tridonta montagui        |
| Mollusca    | Cephalopoda       | Cephalopoda | Alloteuthis subulata     |
| Mollusca    | Cephalopoda       | Cephalopoda | Eledone cirrhosa         |
| Mollusca    | Cephalopoda       | Cephalopoda | Loligo forbesii          |
| Mollusca    | Cephalopoda       | Cephalopoda | Rossia macrosoma         |
| Mollusca    | Cephalopoda       | Cephalopoda | Sepiola atlantica        |
| Mollusca    | Gastropoda        | Gastropoda  | Aporrhais pespelecani    |

Page 12 of 14

| Mollusca<br>Mollusca<br>Mollusca<br>Mollusca | Gastropoda<br>Gastropoda | Gastropoda     | Aporrhais serresianus  |
|----------------------------------------------|--------------------------|----------------|------------------------|
| Mollusca                                     | Gastropoda               |                |                        |
|                                              | Gastropoda               | Gastropoda     | Buccinum undatum       |
| Molluson                                     | Gastropoda               | Gastropoda     | Calliostoma zizyphinum |
| Monusca                                      | Gastropoda               | Gastropoda     | Capulus ungaricus      |
| Mollusca                                     | Gastropoda               | Gastropoda     | Colus gracilis         |
| Mollusca                                     | Gastropoda               | Gastropoda     | Colus islandicus       |
| Mollusca                                     | Gastropoda               | Gastropoda     | Colus jeffreysianus    |
| Mollusca                                     | Gastropoda               | Gastropoda     | Colus sp               |
| Mollusca                                     | Gastropoda               | Gastropoda     | Comarmondia gracilis   |
| Mollusca                                     | Gastropoda               | Gastropoda     | Epitonium clathrus     |
| Mollusca                                     | Gastropoda               | Gastropoda     | Erato voluta           |
| Mollusca                                     | Gastropoda               | Gastropoda     | Euspira                |
| Mollusca                                     | Gastropoda               | Gastropoda     | Euspira catena         |
| Mollusca                                     | Gastropoda               | Gastropoda     | Gibbula cineraria      |
| Mollusca                                     | Gastropoda               | Gastropoda     | Hinia reticulata       |
| Mollusca                                     | Gastropoda               | Gastropoda     | Iothia fulva           |
| Mollusca                                     | Gastropoda               | Gastropoda     | Liomesus ovum          |
| Mollusca                                     | Gastropoda               | Gastropoda     | Macandrevia cranium    |
| Mollusca                                     | Gastropoda               | Gastropoda     | Neptunea               |
| Mollusca                                     | Gastropoda               | Gastropoda     | Neptunea antiqua       |
| Mollusca                                     | Gastropoda               | Gastropoda     | Oenopota turricula     |
| Mollusca                                     | Gastropoda               | Gastropoda     | Polinices fuscus       |
| Mollusca                                     | Gastropoda               | Gastropoda     | Polinices montagui     |
| Mollusca                                     | Gastropoda               | Gastropoda     | Polinices pulchellus   |
| Mollusca                                     | Gastropoda               | Gastropoda     | Puncturella noachina   |
| Mollusca                                     | Gastropoda               | Gastropoda     | Raphitoma echinata     |
| Mollusca                                     | Gastropoda               | Gastropoda     | Terebratulina retusa   |
| Mollusca                                     | Gastropoda               | Gastropoda     | Trivia arctica         |
| Mollusca                                     | Gastropoda               | Gastropoda     | Trophon muricatus      |
| Mollusca                                     | Gastropoda               | Gastropoda     | Turritella             |
| Mollusca                                     | Gastropoda               | Gastropoda     | Turritella communis    |
| Mollusca                                     | Gastropoda               | Gastropoda     | Velutina velutina      |
| Mollusca                                     | Gastropoda               | Gastropoda     | Volutopsius norwegicus |
| Mollusca                                     | Gastropoda               | Polyplacophora | Hanleya hanleyi        |

Page 13 of 14

| Edgar Group | Brey Group   | Taxon Group     | Species or Taxon          |
|-------------|--------------|-----------------|---------------------------|
| Mollusca    | Gastropoda   | Polyplacophora  | Lepidochitona cinerea     |
| Mollusca    | Gastropoda   | Polyplacophora  | Leptochiton asellus       |
| Mollusca    | Gastropoda   | Polyplacophora  | Polyplacophora            |
| Mollusca    | Gastropoda   | Scaphopoda      | Antalis                   |
| Mollusca    | Gastropoda   | Scaphopoda      | Antalis entalis           |
| Mollusca    | Gastropoda   | Scaphopoda      | Antalis vulgaris          |
| Mollusca    | Gastropoda   | Scaphopoda      | Scaphopoda                |
| Mollusca    | Nudibranchia | Nudibranchia    | Acanthodoris pilosa       |
| Mollusca    | Nudibranchia | Nudibranchia    | Archidoris pseudoargus    |
| Mollusca    | Nudibranchia | Nudibranchia    | Coryphella lineata        |
| Mollusca    | Nudibranchia | Nudibranchia    | Diaphorodoris luteocincta |
| Mollusca    | Nudibranchia | Nudibranchia    | Tritonia                  |
| Mollusca    | Nudibranchia | Nudibranchia    | Tritonia lineata          |
| Mollusca    | Nudibranchia | Nudibranchia    | Tritonia sp               |
| Mollusca    | Nudibranchia | Opisthobranchia | Acteon tornatilis         |
| Mollusca    | Nudibranchia | Opisthobranchia | Philine sp                |
| Mollusca    | Nudibranchia | Opisthobranchia | Scaphander                |
| Mollusca    | Nudibranchia | Opisthobranchia | Scaphander lignarius      |

Page 14 of 14

# Appendix 2: Infauna taxon groups with assigned production analysis groups

| Edgar Group | Brey Group    | Taxon Group        |
|-------------|---------------|--------------------|
| Crustacea   | Amphipoda     | Amphipoda          |
| Crustacea   | Amphipoda     | Caprellidae        |
| Crustacea   | Cirripedia    | Cirripedia         |
| Crustacea   | Copepoda      | Copepoda           |
| Crustacea   | Crustacea     | Crustacea          |
| Crustacea   | Crustacea     | Cumacea            |
| Crustacea   | Crustacea     | Leptostraca        |
| Crustacea   | Crustacea     | Mysidacea          |
| Crustacea   | Crustacea     | Ostracoda          |
| Crustacea   | Crustacea     | Tanaidacea         |
| Crustacea   | Cumacea       | Cumacea            |
| Crustacea   | Decapoda      | Decapoda           |
| Crustacea   | Decapoda      | Decapoda-Natantia  |
| Crustacea   | Decapoda      | Decapoda-Reptantia |
| Crustacea   | Decapoda      | Pleocyemata        |
| Crustacea   | Euphausiacea  | Euphausiacea       |
| Crustacea   | Isopoda       | Isopoda            |
| Epifauna    | Actinaria     | Hydrozoa           |
| Epifauna    | Ascidiae      | Cephalochordata    |
| Epifauna    | Bryozoa       | Foraminifera       |
| Epifauna    | Bryozoa       | Hydrozoa           |
| Epifauna    | Chaetognatha  | Chaetognatha       |
| Epifauna    | Crustacea     | Pycnogonida        |
| Epifauna    | Demersal Fish | Myxine glutinosa   |
| Epifauna    | Echinoidea    | Echinoidea-regular |
| Epifauna    | Fish          | Acrania            |
| Epifauna    | Fish          | Fish               |
| Epifauna    | Fish          | Osteichthyes       |
| Epifauna    | Fish          | Pleuronectiformes  |
| Epifauna    | Porifera      | Porifera           |
| Infauna     | Actinaria     | Actinaria          |
| Infauna     | Actinaria     | Anthozoa           |
|             |               |                    |

Page 1 of 3

| Edgar Group | Brey Group            | Taxon Group           |
|-------------|-----------------------|-----------------------|
| Infauna     | Actinaria             | Hexacorallia          |
| Infauna     | Actinaria             | Octocorallia          |
| Infauna     | Actinaria             | Pennatulidae          |
| Infauna     | Annelida              | Hirudineans           |
| Infauna     | Annelida              | Nematoda              |
| Infauna     | Annelida              | Polychaeta            |
| Infauna     | Ascidiae              | Ascidia               |
| Infauna     | Ascidiae              | Pleurogona            |
| Infauna     | Asteroidea            | Asteroidea            |
| Infauna     | Bryozoa               | Bryozoans             |
| Infauna     | Bryozoa               | Entoprocta            |
| Infauna     | Echinodermata         | Echinoderms           |
| Infauna     | Echinoidea            | Echinoidea-irregular  |
| Infauna     | Echinoidea            | Echinoids             |
| Infauna     | Holothuroidea         | Holothuroidea         |
| Infauna     | Nemertea              | Nemertea              |
| Infauna     | Nemertea              | Platyhelminthes       |
| Infauna     | Nudibranchia          | Aplacophora           |
| Infauna     | Oligochaeta           | Oligochaeta           |
| Infauna     | Oligochaeta           | Phoronida             |
| Infauna     | Oligochaeta           | Pogonophora           |
| Infauna     | Ophiuroidea           | Ophiuroidea           |
| Infauna     | Other Organic Matter  | Other Organic Matter  |
| Infauna     | Polychaeta errantia   | Polychaeta-errantia   |
| Infauna     | Polychaeta sedentaria | Polychaeta-sedentaria |
| Infauna     | Priapulida            | Echiura               |
| Infauna     | Priapulida            | Priapulida            |
| Infauna     | Sipunculida           | Sipunculida           |
| Mollusca    | Bivalvia              | Bivalvia              |
| Mollusca    | Bivalvia              | Caridea               |
| Mollusca    | Gastropoda            | Gastropoda            |
| Mollusca    | Gastropoda            | Opisthobranchia       |
| Mollusca    | Gastropoda            | Scaphopoda            |
| Mollusca    | Mollusca              | Mollusca              |

Page 2 of 3

| Edgar Group | Brey Group   | Taxon Group     |
|-------------|--------------|-----------------|
| Mollusca    | Mollusca     | Polyplacophora  |
| Mollusca    | Nudibranchia | Aplacophora     |
| Mollusca    | Nudibranchia | Caudofoveata    |
| Mollusca    | Nudibranchia | Nudibranchia    |
| Mollusca    | Nudibranchia | Opisthobranchia |