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Abstract: Cnidarian toxic products, particularly peptide toxins, constitute a promising target for
biomedicine research. Indeed, cnidarians are considered as the largest phylum of generally toxic
animals. However, research on peptides and toxins of sea anemones is still limited. Moreover, most
of the toxins from sea anemones have been discovered by classical purification approaches. Recently,
high-throughput methodologies have been used for this purpose but in other Phyla. Hence, the
present work was focused on the proteomic analyses of whole-body extract from the unexplored
sea anemone Bunodactis verrucosa. The proteomic analyses applied were based on two methods:
two-dimensional gel electrophoresis combined with MALDI-TOF/TOF and shotgun proteomic
approach. In total, 413 proteins were identified, but only eight proteins were identified from gel-based
analyses. Such proteins are mainly involved in basal metabolism and biosynthesis of antibiotics
as the most relevant pathways. In addition, some putative toxins including metalloproteinases
and neurotoxins were also identified. These findings reinforce the significance of the production of
antimicrobial compounds and toxins by sea anemones, which play a significant role in defense and
feeding. In general, the present study provides the first proteome map of the sea anemone B. verrucosa
stablishing a reference for future studies in the discovery of new compounds.

Keywords: cnidarian; sea anemone; proteins; toxins; two-dimensional gel electrophoresis; MALDI-
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1. Introduction

Cnidarians represent the largest source of bioactive compounds, as candidates for pharmacological
tools [1] and even new drugs for therapeutic treatments [2–4]. Unlike toxin from terrestrial animals,
cnidarian venoms have not received as much scientific attention [5]. Each one of the around 11,000
living species [6] possess nematocysts [7], which is the organ specialized in the production, discharge
and inoculation of toxins [8]. Hence, the toxic feature can be theoretically ascribed to all the members
of this Phylum, since nematocysts are the only ones of the three categories of cnidae found in all
cnidarians [8]. However, without including components of the venom described at the transcriptomic
level, only about 250 compounds have been reported until 2012 [9], although this figure has not
increased significantly at the proteomic level in the last five years. The venom of cnidarians is composed
mainly by peptides, proteins, enzymes, protease inhibitors and non-proteinaceous substances [9].

Most of the known toxins from cnidarians belong to the Order Actiniaria, Class Anthozoa (sea
anemones) [10–36]. Among sea anemones, around 200 non-redundant proteinaceus toxins have
been recognized to date, including proteins and peptides [32,37]. In addition, another 69 new toxins
were revealed by transcriptomic-based analyses, although an additional set of 627 candidates has
been proposed comprising 15 putative neurotoxins [38] and 612 candidate toxin-like transcripts
from other venomous taxa [39]. In general, peptide toxins from sea anemones can be classified as
cytolysins, protease inhibitors or ion channel toxins (neurotoxins), mainly voltage-gated sodium
(Nav) channel toxins and voltage-gated (Kv) potassium channel toxins [9,35,40–42]. Sea anemones are
good candidates as a source of peptide/protein toxins, partly because their toxins are considerably
stable compared to other cnidarian toxins (e.g., jellyfish). Only a limited number of sea anemones,
however, have been examined for peptide/protein toxins [35], although more than 1000 species
have been recorded [43]. Thus, sea anemones represent a relatively unexplored potential source of
bioactive/therapeutic compounds.

The B. verrucosa is one of the most common species of sea anemones in the intertidal zone (Figure 1)
of Portugal coast [44], yet its proteome, including peptide toxins, remains unexplored. The main goal
of the present study was to establish a general proteomic analysis of whole-body extracts from the
sea anemone B. verrucose; a species known to occur in the northeastern Atlantic Ocean, the North
Sea and the Mediterranean Sea [45]. The specimens used in this study came from Portugal coast.
The combination of shotgun analyses and two-dimensional gel electrophoresis yielded several proteins,
including potential toxins. Until now, just a few chemical studies have been reported from this organism.
In fact, to the best of our knowledge, this study provides the first proteomic profile of this species. Most
of the proteins identified constitute first report for this species.
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Figure 1. Sampling site at Praia da Memória, Porto, Portugal: (a) Picture of tide pools in rocks where 
inhabits the species of interest Bunodactis verrucosa. Note the remained pools at low tide and the 
relative abundance of mussels in the intertidal community; (b) Picture of two individuals of  
B. verrucosa from the sampling site. 

  

Figure 1. Sampling site at Praia da Memória, Porto, Portugal: (a) Picture of tide pools in rocks where
inhabits the species of interest Bunodactis verrucosa. Note the remained pools at low tide and the relative
abundance of mussels in the intertidal community; (b) Picture of two individuals of B. verrucosa from
the sampling site.
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2. Results and Discussion

2.1. Two-Dimensional Gel Electrophoresis and MALDI-TOF/TOF Analyses

The gel-based proteome analysis revealed 61 and 36 spots from the soluble fraction (SF) and
insoluble fraction (IF), respectively. From the spots analyzed by Matrix-assisted laser desorption/
ionization time-of-flight (MALDI-TOF/TOF), 23 peptide sequences belonging to eight proteins were
identified in the SF, approximately 38% of the total analyzed (Figure 2, Table 1). Proteins identified
in the SF comprised five different enzymes: Superoxide dismutase, Triosephosphate isomerase,
Ribonuclease, two Fructose-bisphosphate aldolases and Alpha-enolase. In addition, Peroxiredoxin
and two Ferritins were identified. However, three of these proteins matched to “predicted protein”
as best hit, but were then further annotated using blastp algorithm in the NCBI with the accession
number retrieved from the custom sea anemones databases. Unlike shotgun proteomics, for gel-based
analysis were used only two sea anemones databases, since additional search was carried against
UniProtKB/Swiss-Prot in the Metazoa section. However, best results corresponded to local analysis.
On the other hand, no proteins were identified with statistic confidence from the IF (Figure S1) and
in both cases SF and IF, the use of different database like UniProtKB/Swiss-Prot did not improved
the identification. The details of blast search and protein identification by MALDI-TOF/TOF mass
spectrometry of the protein identified from the 2DE is shown in Table 1. It is noteworthy, that some of
the proteins identified have been previously reported in other cnidarians [46–48], but constitute the
first report in B. verrucosa.
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Figure 2. Two-dimensional gel electrophoresis and identification of soluble proteins from the
whole-body aqueous extract of Bunodactis verrucosa. The first-dimension separation was carried out on
17 cm, pH 3–10 IEF gel strips and the second dimension on 12% sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) gels. Gels were stained with colloidal Coomassie blue G-250. Identified
proteins are indicated with their most commonly used name.
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Table 1. Blast Search summary. Information concerning the proteins identification by Matrix-assisted
laser desorption/ionization time-of-flight (MALDI-TOF/TOF) mass spectrometry of the proteins
separated in two-dimensional gel electrophoresis.

Protein Name 1 Species 2 Protein 3

Score
Accession 4

Number
Ion 5

Score Peptide Sequence 6

predicted protein
(Peroxiredoxin)

Nematostella
vectensis

137 XP_001640260.1
15 R.LIQAFQFTDK.H
115 K.DYGVLLEDQGVALR.G

Ferritin Nematostella
vectensis 124 XP_001632011.1 114 R.QNYHEECEAGINK.Q

Ferritin Nematostella
vectensis

117 XP_001627474.1
11 K.LMKFQNQR.G
97 R.QNYHEECEAGINK.Q

predicted protein
(Ribonuclease)

Nematostella
vectensis 106 XP_001634183.1 93 R.VEIEAIAIVGEVKDE.

Superoxide dismutase
[Mn]

Exaiptasia
pallida 428 KXJ18609.1

76 K.DFGSFENFK.X
67 K.KDFGSFENFK.
103 K.AIYDVIDWTNVADR.Y

Triosephosphate
isomerase

Nematostella
vectensis

356 XP_001633516.1

56 K.FFVGGNWK.M
22 R.KFFVGGNWK.M
95 K.VIACIGELLSER.E
19 R.NIFGEKDELIGEK.V
121 K.VVIAYEPVWAIGTGK.T

predicted
protein/Alpha-enolase

Nematostella
vectensis

95 XP_001632906.1
10 K.YNQLLR.I
37 R.AAVPSGASTGIYEALELR.D
10 K.LAMQEFMLLPTGASNFR.E

Fructose-bisphosphate
aldolase

Nematostella
vectensis

151 XP_001629735.1

41 K.LTFSFGR.A
23 R.LLRDQGIIPGIK.V
28 R.LANIGVENTEENRR.L
24 R.LLRDQGIIPGIKVDK.G

Fructose-bisphosphate
aldolase

Nematostella
vectensis

97 XP_001629735.1
28 K.LTFSFGR.A
32 R.LANIGVENTEENRR.L

1 best hit NCBI accession number; 2 the name of the species best hit belongs; 3 Score obtained for the MS ion; 4 NCBI
accession number retrieved from the custom database; 5 MASCOT’s score for ion peptides; 6 peptides sequences
identified with statistical significance.

The identification rates obtained for SF are similar to those reported in previous studies of other
marine species, when comparable proteomics protocols were used [49–51]. On the other hand, the
absence of identifications in IF is an evidence that our proteomics protocol is likely not optimized
for the analysis of the type of proteins present in this fraction. Since IF may be enriched with
hydrophobic membrane proteins, the lack of identifications may be related, among other possible
causes, to incomplete separation of proteins and to the inefficient digestion of these proteins with
trypsin; thus, hindering the generation of a sufficient number of proteolytic peptide fragments for
Mass Spectrometry/Mass Spectrometry (MS/MS) sequencing analysis. This limitation of trypsin when
cleaving such proteins particularly in the hydrophobic and transmembrane domains can be overcome
by combining the activities of other proteases [52,53].

The identified proteins seem to play important roles related with RNA degradation, glycolysis
and antioxidant pathways. Moreover, some proteins like alpha aldolase seem to play diverse molecular
and physiological roles. In fact, several antibacterial, antiparasitic, antifungical and autoantigen
activities have been proposed [54]. Alpha aldolase expression and activity have been associated with
the occurrence and metastasis of cancer, as well as with growth, development and reproduction of
organisms [54]. Its expression seems to be related to heat shock [55], but it is also probably active under
anaerobic condition [54]. In general, some of these proteins act as stress protein against environmental
changes by exerting a protective effect on cells.

Ribonucleases, also known as RNases, are common and widely distributed catalytic proteins among
animals, involved in the RNA degradation [56]. Three different RNases were detected: triosephosphate
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isomerase, Fructose-bisphosphate aldolase and Alpha-enolase, which are involved in the glycolytic
pathway. Triosephosphate isomerase is a glycolytic enzyme that catalyzes the interconversion of the
three-carbon sugars such as dihydroxyacetone phosphate and D-glyceraldehyde 3-phosphate [57].
Aldolases are stereochemistry-specific enzymes acting in a diverse variety of condensation and
cleavage reactions [54]. Specifically, fructose-1,6-bisphosphate aldolase is involved in gluconeogenesis
and glycolysis, controlling the production of fructose-1,6-bisphosphate from the condensation of
dihydroxyacetone phosphate with glyceraldehyde-3-phosphate [58,59]; while Alpha-enolase is a versatile
metalloenzyme, that catalyzes the conversion of 2-phosphoglyceric acid to phosphoenolpyruvic acid [54].

On the other hand, Ferritin is one of the most important proteins in iron metabolism, acting as primary
iron storage protein or iron transporter, solubilizing iron and thus regulating its homeostasis [60,61].
Peroxiredoxin, also called thioredoxin peroxidase or alkyl hydroperoxide reductase, has been proposed
as antioxidant protein [62–64]. Both proteins, seem to play an important role by protecting the cells
against reactive oxygen species [65], so they are likely to be natural anti-Ultraviolet (UV) radiation
agents [66]. Similarly, superoxide dismutase is another relevant antioxidant protein [65,67]. The high
expression of this protein as part of the antioxidant defense system makes sense, since aerobic
organisms need to deal with oxygen species produced as a consequence of aerobic respiration and
substrate oxidation [67].

2.2. Protein Identification from Shotgun Proteomics Analysis

A methodology based on shotgun analysis was employed to investigate the whole-body proteome
of B. verrucosa. This methodology has been previously reported as suitable for diverse purposes related
to protein identification such as characterization of complex sample, inference of the main enzymatic
pathway involved in a tissue, even to reveal venom composition [68–71]. Altogether, 688 peptide
sequences were identified among the two replicates of the fractions analyzed (SF and IF), which
accounted for 412 groups of non-redundant proteins (), retrieved from custom cnidarians databases.
Of all protein detected, 97 were identified from two or more peptides. Only four proteins were detected
as potential contaminants in the first search against custom database, while 69 sequences accounted
for 35 putative proteins as contaminants against UniProtKB/Swiss-Prot database (Table S2). Of such
contaminants, 10 proteins were identified from two or more peptides and were related mostly to
human keratin and trypsin. In the case of contaminants, proteolytic fragments from trypsin and keratin
were the most commonly found, which are difficult to avoid and thus are ubiquitous in proteomic
analysis [72]. The functional annotation of all proteins (except for contaminants) was further addressed.

The fact that several IF proteins were identified by this shotgun method shows the increased
potential of this method over 2DE/MALDI-TOF/TOF for the analysis of membrane proteins, even
when carried out based on the activity of a single protease (trypsin).

All proteins identified from the gel-based analysis were also found among those identified by
the shotgun proteomic analysis. As an example, the shotgun analysis allowed the identification
of Peroxiredoxin (XP_001640260.1, see Table 1) from two peptides sequences belonging to different
organisms (Table S1): one peptide matched Peroxiredoxin-4 (KXJ19217.1) from E. pallida, and the second
one Peroxiredoxin-4 (KXJ22794.1) from E. pallida and peroxiredoxin-like isoform X2 (XP_015769163.1)
from A. digitifera. In the case of Peroxiredoxin-4 (KXJ22794.1), four peptides were identified for the
protein and four for the protein groups (see razor + unique, terms_description in Table S1). However,
only nine peptides generated by MALDI-TOF/TOF fragmentation from gel spots, were also detected
within peptides resulting from the Orbitrap’s approach. Despite the smaller number of protein
identified from 2DE gel, this methodology represented a complement for shotgun proteomics analysis,
increasing the number of peptides for the reconstruction of each protein. In fact, in 2D-MALDI
fingerprint approach the number of peptides matching some proteins such as superoxide dismutase
(KXJ18609.1), alpha-enolase (XP_001632906.1), triosephosphate isomerase (XP_001633516.1) and
both fructose-bisphosphate aldolase (XP_001629735.1; XP_001629735.1), were identified with higher
confidence in gel-based analyses than in the shotgun methodology.
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2.3. Protein Gene Ontology Annotation

The proteomics identification pipeline using the Maquant software and 4 sequence databases,
retrieved mostly “predicted” protein products. Therefore, these sequences were further blasted and
mapped using the Blast2Go software (version 2.4.4) [73], (Figure 3). From a total of the 412 proteins
identified with Maxquant software, 408 were successfully mapped using the Blast2Go software
(Figure 3). The remaining four proteins, which were not submitted to further analysis, corresponded
to potential contaminants. Out of the total number of proteins analyzed (408), 149 proteins were
successfully annotated, representing the 36.5%. Thus, 259 proteins remained without Gene Ontology
(GO) annotation, of which only four proteins were blasted without hits, 36 were mapped and 219 yielded
positive hits. In total, 223 proteins were not included into the GO annotation considering the level 2
of protein classification, likely due to the absent of similar protein sequences in the protein databases.
Moreover, most of these proteins retrieved as hits from cnidarian databases were “predicted”. This
result confirms the limited information known about sea anemones and cnidarians products.
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Among the four databases analyzed, most hits corresponded to the species E. pallida, followed
by N. vectensis (Figure 4), as expected according to its relative phylogenetic position [74], although
E. pallida has the largest number of proteins among the databases used. Afterwards, the proteins
identified as positive hits were functionally annotated per the GO nomenclature. Then, GO terms were
assigned to each contig and annotated per GO Distribution by Level (2), regarding the three major GO
categories: Biological Process (BP), Molecular Function (MF) and Cellular Components (CC).

The groups of proteins obtained from high-throughput analyses were classified per Blast2Go
software, considering the GO Distribution by Level (2) (Figure 5). The most represented GO terms in
the category of BP were metabolic process (GO:0008152), followed by cellular process (GO:0009987) and
single-organism process (GO:0044699). In the case of MF, the most matched GO terms were binding
(GO:0005488), catalytic activity (GO:0003824) and structural molecule activity (GO:0005198), in this
order; whereas in the category of CC the most significant were cell part (GO:0044464), cell (GO:0005623)
and organelle (GO:0043226). It is noteworthy that some proteins can be included in more than one GO
term, since each protein could play diverse roles. Thus, some ambiguities can be found in the proteins
reported for each category; and also, the total number of protein may apparently be overestimated.
Details of GO annotation and protein accession number can be found on Figure S2 and Table S3.
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Among the 111 proteins matching to the GO term BP, 85 proteins (76.56%) classified as metabolic
process, 77 (69.37%) for cellular process and 44 (39.64%) as single-organism process. In this group,
in the GO level 3, 64 proteins were related with the GO name of “primary metabolic process” and
“organic substance metabolic process”, both belonging to “metabolic process” as parent. Besides,
52 proteins were associated with “cellular metabolic process”, which were involved in both metabolic
process and cellular process as parents (for details of GO annotation see Figure S2, Table S3).

In total, 86 proteins were included in the category of the CC. Among them, 76 proteins (88.37%)
matched for “cell part” and “cell”. However, this is an ambiguity, since all sequences detected as
“cell part” are part of the “cell” category (Figure S2). Although, other proteins represented by the
sublevels, related to cytoplasmic elements as part of intracellular components, were also subcategories
of the “cell”. The GO “intracellular” was more represented with 73 proteins (84.88%) in level 3 than
those “organelle” and “membrane” in the superior level 2, with 51 proteins (59.3%) and 33 proteins
(38.37%), respectively.

In addition, 135 proteins were grouped into the MF category. Among them, “binding” with
99 proteins (73.3%) was the most significant one. In this group, a total of 66 (48.89%) proteins
were involved in “ion binding”, whereas both “heterocyclic compound binding” and “organic cyclic
compound binding” hit 62 proteins (45.93%). The second most significant GO term “catalytic activity”
comprised 71 proteins (52.59%), of which the most remarkable function was “hydrolase activity”,
accounting for 37 proteins (27,41%) acting mainly on acid anhydrides, in phosphorus-containing
anhydrides. Moreover, 18 of these enzymes were involved in pyrophosphatase activity, of which 17 are
associated with nucleoside-triphosphatase activity (Figure S2).

2.4. Top KEGG Pathways

On the other hand, the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed
28 enzymes involved in 41 different pathways. The accession number of the protein involved in
each pathway and other details can be found in Table S4. Considering the number of proteins
matched, the most relevant pathways were Purine and Thiamine metabolism, with 18 and 17 proteins
matched, respectively (Table 2). In addition, three enzymes: adenylpyrophosphatase, phosphatase
and RNA polymerase were found to be involved in the Purine metabolism pathway, whereas only
a phosphatase resulted in the Thiamine metabolism. The Purine metabolism pathway is close related
to the metabolism of nucleotide [75], since purine constitutes subunits of nucleic acids and precursors
for the synthesis of nucleotide cofactors, whereas Thiamine metabolism pathway is fundamental in
the metabolism of carbohydrates [76].

Interestingly, one of the most significant among the top twenty pathways was the biosynthesis
of antibiotics. In that pathway, a total of 14 proteins, accounted for 13 enzymes grouped into five
major families: dehydrogenase, transaminase, carboxykinase (GTP), hydratase, isomerase and aldolase.
Most proteins matched in this pathway belong to the larval stage of N. vectensis. This result is
particularly interesting, because of the abundance of proteins involved in defenses against pathogens,
during the most vulnerable stage in the animal life cycle. Thus, this finding supports that sea
anemones may be considered as a promising source of antibiotic compounds [77–79]. Other relevant
pathways were glycolysis/gluconeogenesis and carbon fixation in photosynthetic organisms, both
involved in the production of energy. The presence of proteins associated with carbon fixation in
photosynthetic organisms is likely due to symbionts such as zooxanthellae, considering to be present
in sea anemones [80,81].

The isomerase detected in the biosynthesis of antibiotics pathway, was the same to that identified
in the gel-based analyses as triosephosphate isomerase from N. vectensis (XP_001633516.1). This one is
also involved in other pathways such as glycolysis/gluconeogenesis, carbon fixation in photosynthetic
organisms, fructose and mannose metabolism and inositol phosphate metabolism. The predicted
protein (XP_001632906.1), homologue to alpha-enolase, and the fructose-bisphosphate aldolase
(XP_001629735.1) from N. vectensis, were both involved in the pathways of biosynthesis of antibiotics
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and glycolysis/gluconeogenesis. In addition, the mentioned predicted protein was also found
in the methane metabolism pathway, while the fructose-bisphosphate aldolase also occurred in
some pathways such as carbon fixation in photosynthetic organisms, methane metabolism, pentose
phosphate pathway and fructose and mannose metabolism. In general, these analyses support
the diverse roles of some of the proteins identified, given additional information related to its
biological function.

Table 2. Top twenty Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.

Pathway #Proteins in the Pathway #Enzymes in Pathway

Purine metabolism 18 3
Thiamine metabolism 17 1

Biosynthesis of antibiotics 14 13
Glycolysis/Gluconeogenesis 9 6

Carbon fixation in photosynthetic organisms 9 6
Amino sugar and nucleotide sugar metabolism 6 3

Methane metabolism 6 3
Pyruvate metabolism 5 4

Cysteine and methionine metabolism 4 5
Citrate cycle (TCA cycle) 4 3

Fructose and mannose metabolism 4 2
Various types of N-glycan biosynthesis 4 1

Glycosphingolipid biosynthesis—ganglio series 4 1
Glycosaminoglycan degradation 4 1

Glycosphingolipid biosynthesis—globo and isoglobo series 4 1
Other glycan degradation 4 1

Glyoxylate and dicarboxylate metabolism 3 3
Carbon fixation pathways in prokaryotes 3 2

Pentose phosphate pathway 3 2
Histidine metabolism 2 2

2.5. Detection of Potential Toxins

Among all peptides detected, 63 sequences matched for 58 potential toxins (Table S2), but only
five toxins with more than one peptide (Table 3). Specifically, the five proteins matched as potential
toxins were retrieved from different species other than cnidarians and each was reconstructed from
two peptide sequences. Besides, these peptides were not redundant to those proteins reconstructed
from the previous analyses with the four cnidarians database. In fact, the origin of such peptides by
fragmentation of the protein matched as potential toxin (Table 3), which represents a better explanation
for our results. Therefore, it is unlikely a false-positive assumption that the peptides were generated
from proteins related to potential toxins.

Table 3. Potential toxins from the sea anemone Bunodactis verrucosa. Potential toxins identified by
MaxQuant software against the venom section of UniProtKB/Swiss-Prot database.

Protein 1 Name Species 2 Score 3 Accession 4

Number
Ion 5

Score Peptide Sequence 6 Fraction 7

(Rep.)

SE-cephalotoxin Sepia esculenta 11.47 CTX_SEPES
62.7 AGYIMGNR IF (1)
42.8 LDQINDKLDK IF (1)

Basic phospholipase A2
vurtoxin

Vipera renardi 12.06 PA2B_VIPRE
2.9 CCFVHDCCYGNLPDCNPKIDR SF (1)
18.3 NGAIVCGK IF (1)

Alpha-latroinsectotoxin-Lt1a Latrodectus
tredecimguttatus 11.73 LITA_LATTR

22.7 EMGRKLDK IF (2)

3.01 NSCMHNDKGCCFPWSCVCWS
QTVSR SF (1)

Zinc
metalloproteinase/disintegrin

Deinagkistrodon
acutus

11.48 VM2M2_DEIAC
27.4 FPYQGSSIILESGNVNDYEVVY

PRK SF (1)

31.7 NTLESFGEWRAR IF (1)

Neprilysin-1 Trittame loki 11.49 NEP_TRILK
28.4 LAHETNPR IF (1)
71.3 LEAMINK SF (2)

1 UniProtKB/Swiss-Prot name of the protein identified as potential toxin; 2 name of the species best hit belongs;
3 Protein score which is derived from peptide posterior error probabilities; 4 UniProtKB/Swiss-Prot hit accession
number; 5 Andromeda score for the best associated MS/MS spectrum; 6 UniProtKB/Swiss-Prot accession number;
7 fraction (IF: Insoluble fraction; SF: Soluble fraction) where a peptide was detected and replicates they occurred.
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The proteins identified as potential toxins comprise several previously reported toxins and other
non-reported in cnidarians. Herein, we found two proteins related to metalloproteinases, one zinc
metalloproteinase/disintegrin (VM2M2_DEIAC) of the snake Deinagkistrodon acutus [82] and another
one called neprilysin-1 (NEP_TRILK) from brush-footed trapdoor spider Trittame loki [83]. Both
proteins represent two of the three classes of metalloproteinases found in the hydra genome: astacin
class, matrix metalloproteinase class, and neprilysin [84]. Metalloproteinases have been subsequently
reported in hydra [85,86], jellyfish [9,87,88], but less in sea anemones [89]. Their structure and function
seem relatively conserved among metazoans [87], since they can play a broad range of roles in biological
process related to hydrolytic functions and development [84]. However, the peptides obtained matched
specifically to proteins, which have been proposed as venom components [82,83]. In general, the most
significant role of these protein (zinc metalloproteinase/disintegrin, neprilysin-1), must be related to
its capacity of breakdown the extracellular matrix [84]. Moreover, this protein displays gelatinolytic
and fibrinolytic activities, as previously reported from the venoms of four Scyphozoan jellyfishes [88].

Another protein detected matched to a phospholipase A2 (PLA2) called vurtoxin (PA2B_VIPRE)
from the steppe viper Vipera renardi [90]. Phospholipases A2 are commonly found in the venom of
the most toxic animals like cnidarians, cephalopods, insects, arachnids, and reptiles [91]. Specifically,
vurtoxin showed homology with the neurotoxic PLA2 ammodytoxins [90]. However, it is not clear if this
toxin can act as neurotoxin in this species, since vurtoxin occurred as a minor component in the venom of
V. renardi [90]. In general, the biological role of PLA2s could be diverse. PLA2s can act in the arachidonic
pathway or in the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides,
showing a preference for phosphatidylglycerol over phosphatidylcholine [92,93]. This biological role
prevails in cnidarians, showing a significant phylogenetic distance to higher metazoans PLA2s, been
proposed as the ancestors [94]. On the other hand, the biological activity of PLA2s in reptiles has been
revealed most as antiplatelet, myotoxic, and neurotoxic [93,95].

In addition, two putative neurotoxins named as alpha-latroinsectotoxin-Lt1a (LITA_LATTR) and
SE-cephalotoxin (CTX_SEPES) were identified. The first one, also known as alpha-LIT, was purified
from venom glands of the Mediterranean black widow spider Latrodectus mactans tredecimguttatus [87].
The proposed mechanism of toxicity involved presynaptic effects, acting selectively only for insects [87].
On the other hand, SE-cephalotoxin has been characterized from the salivary gland of cuttlefish
Sepia esculenta [88]. The lethality of this toxin was very high to crab, seemingly by neurotoxic
mechanism, since the symptoms caused loss of movement, flaccid paralysis and even death [88].
However, SE-cephalotoxin has been considered as a new class of proteinaceous toxin, due to the
lack of homology with any other toxins, even those cephalotoxins from octuposes [88]. Therefore,
the evidences of a potential SE-cephalotoxin from B. verrucosa, constitutes a highlighted finding as the
first report of this toxin in sea anemones.

Furthermore, others 53 non-redundant peptide sequences matched to 53 potential toxins, but
with only one peptide identified for each protein (Table S2). Of all, 21 peptides sequences matched
to 21 potential neurotoxins comprising presynaptic and postsynaptic toxins like ion channel blockers,
mostly voltage-dependent potassium and calcium channels. Among them was found a Kunitz-type serine
protease inhibitor, which can act as inhibitor of both serine proteases and voltage-gated potassium channels
(Kv) [89]. Besides, three metalloproteases, two hyalunoridases, and a Beta-fibrinogenase were detected.
On the other hand, seven PLA2s and three PLAD occurred within potential toxins. Another potential
toxin identified with PLA2s activity, was the Helofensin-1 characterized from the genus Heloderma [96,97].
This toxin has no hemorrhagic nor hemolytic activities, instead directly inhibited the electrical stimulation
of the isolated hemi-diaphragm of mice [96]. Finally, four hemolitic/cytolytic proteins and five additional
proteins involved in the coagulation pathway (including two “snaclec”) were found.

2.6. Putative Use of Toxins by B. verrucosa in Prey Catching and Feeding

Sea anemones are ancient active predators, belonging to what is considered “the oldest extant
lineage of venomous animals” [98]. The B. verrucosa inhabits tidepools in rocks, crevices in shallow



Mar. Drugs 2018, 16, 42 11 of 20

water [99], where occurs mussels, gastropods, small crabs, and goby fishes as potential preys. This sea
anemone feeds on mussels and small gastropods at least, since we found specimens regurgitating one
or more empty mussel shells, after removal from the substrate during sampling (Figure 6). Moreover,
we found some specimens containing mussels’ shells and gastropods into the gastrovascular cavity.
It is noteworthy that in the sampling area mussels were abundant covering rocks, even in the pools
where sea anemones grow (Figure 1). Therefore, these bivalves may constitute the main food source
for B. verrucosa. This is not an isolated fact, since mussels seem to be the main food source of
other intertidal sea anemones like Anthopleura elegantissima and Anthopleura xanthogrammica [100,101].
Moreover, mussels are suitable to be fed by sea anemones in home aquariums [102]. However, bivalves
can close their valves for prolonged periods of time under adverse environmental condition [103,104].
In other words, how can sea anemones obtain nourishments from mussels, if these bivalves tightly
close the valves when feel the predator attack?

Mar. Drugs 2018, 16, x FOR PEER REVIEW  11 of 20 

 

water [99], where occurs mussels, gastropods, small crabs, and goby fishes as potential preys. This 
sea anemone feeds on mussels and small gastropods at least, since we found specimens regurgitating 
one or more empty mussel shells, after removal from the substrate during sampling (Figure 6). 
Moreover, we found some specimens containing mussels’ shells and gastropods into the 
gastrovascular cavity. It is noteworthy that in the sampling area mussels were abundant covering 
rocks, even in the pools where sea anemones grow (Figure 1). Therefore, these bivalves may 
constitute the main food source for B. verrucosa. This is not an isolated fact, since mussels seem to be 
the main food source of other intertidal sea anemones like Anthopleura elegantissima and Anthopleura 
xanthogrammica [100,101]. Moreover, mussels are suitable to be fed by sea anemones in home 
aquariums [102]. However, bivalves can close their valves for prolonged periods of time under 
adverse environmental condition [103,104]. In other words, how can sea anemones obtain 
nourishments from mussels, if these bivalves tightly close the valves when feel the predator attack? 

 
(a) (b)

Figure 6. Evidence found relating the Bunodactis verrucosa (Bv) feeding on mollusks:  
(a) Specimen of B. verrucosa regurgitating an empty mussel’s shell (ms) after body squeezing;  
(b) Gastropod (gs) found into the gastrovascular cavity of B. verrucosa after its body dissection. 

Mussels are abundant in the intertidal community (Figure 1) and their movements are limited. 
In this scenario, sea anemones can capture a close mussel with its tentacles and introduce it into the 
gastrovascular cavity. Once the mussel is captured, it immediately closes its valves and stops filtering. 
Nonetheless, the sea anemones have cnidocytes in the gastrovascular cavity [8] capable of breaking 
mussels’ protection. First, hydrolytic enzymes like zinc metalloproteinase/disintegrin, 
hyaluronidases and proteases found in B. verrucosa may be poured into the gastrovascular cavity. The 
combination of such enzymes could degrade the tissues that seals the shell, probably a dorsal elastic 
proteinaceous-ligament extending for the length of the hinge [105]; or through the ventral margin of 
the mussel. The tissues degradation by metalloproteinases can facilitate the diffusion of neurotoxins 
inside the prey. Then, neurotoxins could act on the adductor muscle, whose loss of function will lead 
to valve opening. 

Specifically, SE-cephalotoxin can diffuse inside the valves, inhibiting the adductor muscles, thus 
producing flaccid paralysis increasing the valves gape aperture. The high solubility previous 
reported for SE-cephalotoxin seems to play an important role in the diffusion of this toxin in sea 
water. This property should be useful whether preys are nearby the sea anemone, because SE-
cephalotoxin could disperse around or in the sea water remnant inside the shell after enclosed its 
valves. Besides, this feature can be used as an advantage to subdue prey prior to eating. Other 
neurotoxins detected, and the PLA2 vurtoxin, are also able to block the adductor muscles. However, 
the diversity of toxins found is likely related to others potential preys as crabs and goby fishes 
(Gobiidae, Perciformes), polychaetes worms and starfish. Interestingly, other cephalotoxins have 
been previously purified from species of octopodiform cephalopods [106–109], which are likely used 
to neutralize crabs and bivalves. Altogether, toxins found seemingly act synergistically to subdue 

Figure 6. Evidence found relating the Bunodactis verrucosa (Bv) feeding on mollusks: (a) Specimen of B.
verrucosa regurgitating an empty mussel’s shell (ms) after body squeezing; (b) Gastropod (gs) found
into the gastrovascular cavity of B. verrucosa after its body dissection.

Mussels are abundant in the intertidal community (Figure 1) and their movements are limited.
In this scenario, sea anemones can capture a close mussel with its tentacles and introduce it into
the gastrovascular cavity. Once the mussel is captured, it immediately closes its valves and stops
filtering. Nonetheless, the sea anemones have cnidocytes in the gastrovascular cavity [8] capable
of breaking mussels’ protection. First, hydrolytic enzymes like zinc metalloproteinase/disintegrin,
hyaluronidases and proteases found in B. verrucosa may be poured into the gastrovascular cavity.
The combination of such enzymes could degrade the tissues that seals the shell, probably a dorsal
elastic proteinaceous-ligament extending for the length of the hinge [105]; or through the ventral
margin of the mussel. The tissues degradation by metalloproteinases can facilitate the diffusion of
neurotoxins inside the prey. Then, neurotoxins could act on the adductor muscle, whose loss of
function will lead to valve opening.

Specifically, SE-cephalotoxin can diffuse inside the valves, inhibiting the adductor muscles, thus
producing flaccid paralysis increasing the valves gape aperture. The high solubility previous reported
for SE-cephalotoxin seems to play an important role in the diffusion of this toxin in sea water. This
property should be useful whether preys are nearby the sea anemone, because SE-cephalotoxin could
disperse around or in the sea water remnant inside the shell after enclosed its valves. Besides, this
feature can be used as an advantage to subdue prey prior to eating. Other neurotoxins detected, and
the PLA2 vurtoxin, are also able to block the adductor muscles. However, the diversity of toxins
found is likely related to others potential preys as crabs and goby fishes (Gobiidae, Perciformes),
polychaetes worms and starfish. Interestingly, other cephalotoxins have been previously purified from
species of octopodiform cephalopods [106–109], which are likely used to neutralize crabs and bivalves.
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Altogether, toxins found seemingly act synergistically to subdue mussels. Indeed, a similar mechanism
in which hydrolytic enzymes like metalloproteinase facilitate the access of neurotoxic peptides to
synaptic targets was previously proposed for the spider T. loki [83].

3. Materials and Methods

3.1. Protein Extraction

Specimens of B. verrucosa were sampled at Praia da Memória, Porto, Portugal (Lat/Long WGS84;
41◦14′00.0′ ′ N 8◦43′27.0′ ′ W). Then whole animal bodies (four specimens) were kept at −80 ◦C, freeze
dried and subsequently homogenized in a blender until obtaining a dry powder. Lyophilized material
of B. verrucosa (0.1 g) was mixed with 500 µL Tris-HCl (40 mM), MgCl2 (5 mM), Dithiothreitol (DTT)
(1 mM), protease inhibitors (87,785, Thermo Scientific, Waltham, MA, USA), at pH 8.0, (buffer 1) in
vortex (2 × 30 s). The mixture was centrifuged at 16,000× g, during 20 min at 4 ◦C. The supernatant
(soluble protein fraction, SF) was stored at −20 ◦C and the pellet was homogenized with 500 µL urea
(7 M), thiourea (2 M), CHAPS (4%, w/v), dithiothreitol (65 mM) and ampholytes (0.8%, v/v), at pH 4–7
in vortex (2 × 30 s) and incubated overnight, at 4 ◦C. The homogenate was centrifuged at 16,000× g,
during 20 min at 4 ◦C, and the supernatant (insoluble protein fraction, IF) collected and stored at
−20 ◦C. Total protein concentration was estimated according to the Bradford method [110].

3.2. Two-Dimensional Gel Electrophoresis

Two-dimensional gel electrophoresis (2DE) was performed as described previously [49]. Duplicate
IF and SF (~400 µg of protein) were diluted to 300 µL urea (7 M), thiourea (2 M), CHAPS (4%,
w/v), dithiothreitol (65 mM) and ampholytes (0.8%, v/v), at pH 4–7 and loaded onto 17 cm, pH 4–7
immobiline dry strips (Bio-Rad, Hercules, CA, USA) with active hydration (50 Volt) for 12 h. Proteins
were separated by isoelectric focusing (IEF) in a Protean IEF cell (Bio-Rad) with the following program:
step 1, 15 min at 250 V; step 2, 3 h voltage gradient to 10,000 V (linear ramp); step 3, 10,000 V until
achieving 60,000 V/h (linear ramp). Second-dimension sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) was performed in a Hoefer SE 900 vertical slab electrophoresis
system (Hoefer, Holliston, MA, USA), with 12% (w/v) acrylamide gels, at 480 mA and 20 ◦C. After
electrophoresis run the gels were stained with colloidal Coomassie blue G-250 [111]. The 2DE protein
profiles were analyzed by gel scanning with a GS-800 calibrated densitometer (Bio-Rad) and the D
analysis software (Bio-Rad) as described previously [49]. Protein spots detected by this procedure
were excised from the gels for subsequent identification.

3.3. MALDI-TOF MS Analysis

Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF/TOF) mass spectrometry
(MS) measurements were performed to identify protein spots from 2DE gels. Protein spots were
washed, distained, reduced, alkylated, and digested with trypsin following the procedure described by
Osório and Reis [112]. The solution containing the peptides was collected and stored at −20 ◦C until
application to a MALDI plate. Peptides were acidified with trifluoroacetic acid (TFA) and concentrated
using C18 micro-columns (C18 Tips, 10 µL, Thermo Scientific, 87782). Peptides were thereafter eluted
from the micro-column directly onto the MALDI plate with 1.5 µL of α-CHCA matrix (8 mg/mL)
prepared in acetonitrile (50%, v/v), TFA (0.1%, v/v) and 6 mM ammonium phosphate. MALDI mass
spectra were externally calibrated following the manufacturer’s instructions (TOF/TOF calibration
mixture, AB SCIEX) and internal calibration was applied using trypsin autolysis peaks. Peptide mass
spectra data was collected in positive ion reflector mode in the range of m/z 700–4000 (4800 Plus
MALDI TOF/TOF Analyzer, AB SCIEX).

Proteins were identified by combining Peptide Mass Fingerprint and MS/MS information.
Proteins were searched in a locally stored NCBI copy of protein sequences of the genomes of the
sea anemones Exaiptasia pallida (26,042 protein count, GenBank accession: GCA_001417965.1) and
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Nematostella vectensis (24,780 protein count, GenBank accession: GCA_000209225.1), using the Mascot
search engine (Version 2.4). The search included peaks with a signal-to-noise ratio greater than
10 and allowed for up to two missed trypsin cleavage sites, mass tolerance of 50 ppm, cysteine
carbamidomethylation (fixed modification), methionine oxidation (variable modification), and a charge
state of +1. For a match to be considered significant, protein scores with a probability greater than
95% (p < 0.05), calculated by the Mascot software, were required [112]. The data generated from
2D-MALDI procedures were also searched against UniProtKB protein sequence database in the
Metazoa section [113,114], using the same parameters mentioned before.

3.4. In Solution Protein Digestion and MS/MS Analysis

For LC-MS/MS analysis, SF and IF protein samples were processed by filter aided sample
preparation (FASP) method [115] with the following modifications. Protein samples (40 µg) were
alkylated and digested with trypsin (recombinant, proteomics grade, Roche, Basel, Switzerland),
at enzyme to protein ratio of 1:100 (w/w), for 16 h at 37 ◦C, in centrifugal filter units with nominal
molecular weight limit (NMWL) of 30 kDa (MRCF0R030, Millipore, Billerica, MA, USA). Peptides were
subsequently recovered by centrifugal filtration, acidified with formic acid (FA) (10%, v/v), desalted
and concentrated by reversed-phase extraction (C18 Tips, 100 µL, Thermo Scientific, 87784) using
acetonitrile (ACN) (70%, v/v) and TFA (0.1%, v/v) for peptide elution. Before LC–MS/MS, the peptides
were recovered in 0.1% (v/v) Formic acid (FA) to the concentration of 0.04–0.06 µg/µL.

FASP protein digests (duplicate samples) were analyzed by nano-LC coupled to a hybrid Ion-trap
mass spectrometer (LTQ Orbitrap Velos Pro—ETD, Thermo Scientific) as described previously [68].
Peptides were separated by reverse-phase chromatography (20 mm × 100 µm C18 precolumn
followed by a 100 mm × 75 µm C18 column with particle size 5 µm, NanoSeparations, Nieuwkoop,
The Netherlands) using a linear ascending gradient of buffer B (ACN + FA, 0.1%, v/v), being
buffer A TFA, 0.1%, v/v in water. The gradient started from 2% B to 30% B in 40 min and to 95%
B (v/v) in 30 min, at a flow rate of 0.3 µL/min (total elution time 70 min). Peptides were analyzed
by on-line nano-electrospray ionization (easy nano-ESI) in positive mode, with Xcalibur software
(version 2.6, Thermo Scientific). Full scans were performed at a resolution of 30,000 with scan ranges
of 380–2000 m/z. The top 20 most intense ions were isolated and fragmented with CID by applying
normalized collision energy of 30% value, isolation width of 2.0, activation time of 10 milliseconds and
Q-value of 0.25. In total 4 nano-LC-MS/MS runs were performed.

3.5. Peptide Identification

The resulting ion-trap raw data (LTQ Orbitrap) were searched against custom cnidarians protein
databases using MaxQuant freeware software (version 1.5.5.1) with the Andromeda search engine.
MS and MS/MS tolerances were set to 10 ppm and 0.6 Da, respectively. Trypsin was selected
for protein cleavage allowing for one missed cleavage. Carbamidomethylation and oxidation
were selected as static and dynamic modifications, respectively. Identifications were validated by
performing a decoy database search for the estimation of False Discovery Rate (FDR) and peptide
identifications were accepted if they could be established at a probability greater than 95.0%. Protein
identifications were accepted if they could be established at a probability greater than 99.9% and
contained at least two identified peptides (Razor + unique peptides) [116,117], based on Occam’s razor
principle). The protein database utilized was the locally stored NCBI copy of protein sequences of the
genomes of the sea anemones E. pallida (26,042 protein count, GenBank accession: GCA_001417965.1),
N. vectensis (24,780 protein count, GenBank accession: GCA_000209225.1), Hydra vulgaris (21,993 protein
count, GenBank accession: GCF_000004095.1) and Acropora digitifera (33,878 protein count, GenBank
accession: GCF_000222465.1). The identification of potential toxins was done against the manually
reviewed venom proteins and toxins database, from the animal toxin annotation project of the
UniProtKB/Swiss-Prot protein knowledgebase [118–120] (database size 1.20 MB, downloaded on
16 June 2016).
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3.6. Protein Homology Search and GO Analysis

Protein sequences with unknown function were annotated with a blast search in the National
Centre for Biotechnology Information database (NCBI, http://www.ncbi.nlm.nih.gov/) using blastp
algorithm employing a threshold e-value of 1 × 10−10. Total of proteins identified with Maxquant
software, were also blasted and mapped using the Blast2Go software (version 2.4.4) [73]. Gene ontology
(GO) terms were used to group proteins within the domains of BP, CC, andMF.

4. Conclusions

The present work revealed for the first time a draft of the whole proteome of the sea anemone
B. verrucosa. The shotgun proteomics analysis yielded most of the protein identified in a total of 412,
whereas gel-based analyses provided less data but useful as complementary information. Altogether,
both gel-based and gel-free approaches of proteomics analyses and functional bioinformatics analyses
revealed three major groups of proteins belonging to “metabolic process”, “binding” and “cell parts”
GO categories. Unlike throughput analyses, only eight proteins were identified from two-dimensional
electrophoresis combined with MALDI-TOF/TOF. These eight proteins comprised enzymes mainly
involved in the glycolytic pathway, antioxidants activities and RNA degradation. Notably, according
to the results of KEGG analysis a significant number of enzymes corresponded to the Biosynthesis
of antibiotics pathway indicating the importance of the biological antimicrobial chemical defense
mechanisms. Moreover, some potential toxins such as metalloproteinases, and neurotoxin such as
SE-cephalotoxin were identified. The combination of proteomic evidences and the ecology of the
species, shed light about its strategy to subdue preys like mussels. In this sense, the toxins seemingly
act synergically. Metalloproteinase may produce a degradation of the tissues, aiding the diffusion of
the neurotoxins to the target, producing muscle paralysis. Hence, this work constitutes a reference
proteome for future studies in sea anemones, also given insight about its potential toxin production
and its putative mechanism of action in feeding.

Supplementary Materials: The following are available online at www.mdpi.com/1660-3397/16/2/42/s1, Figure
S1: Two-dimensional gel electrophoresis of insoluble fraction (IF) from Bunodactis verrucosa, Figure S2: Combined
Graph obtained for GO Distribution by Level (2); Table S1: Proteins identified against custom cnidarians
databases title; Table S2: Proteins identified as potential toxins; Table S3: Details of GO annotation and protein
accession number obtained with the Balst2Go software; Table S4: Details of the KEGG analyses obtained with the
Balst2Go software.
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