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Abstract: Nematode biodiversity is mostly unknown; while about 20,000 nematode species have
been described, estimates for species diversity range from 0.1 to 100 million. The study of nematode
diversity, like that of meiofaunal organisms in general, has been mostly based on morphology-based
taxonomy, a time-consuming and costly task that requires well-trained specialists. This work
represents the first study on the taxonomy of Mexican nematodes that integrates morphological
and molecular data. We added eleven new records to the Mexican Caribbean nematode species
list: Anticomidae sp.1, Catanema sp.1, Enoploides gryphus, Eurystomina sp.1, Haliplectus bickneri,
Metachromadora sp.1, Odontophora bermudensis, Oncholaimus sp.1, Onyx litorale, Proplatycoma fleurdelis,
and Pontonema cf. simile. We improved the COI database with 57 new sequences from 20 morphotypes.
All COI sequences obtained in this work are new entries for the international genetic databases
GenBank and BOLD. Among the studied sites, we report the most extensive species record (12 species)
at Cozumel. DNA barcoding and species delineation methods supported the occurrence of 20
evolutionary independent entities and confirmed the high taxonomic resolution of the COI gene.
Different approaches provided consistent results: ABGD and mPTP methods disentangled 20 entities,
whereas Barcode Index Numbers (BINs) recovered 22 genetic species. Results support DNA barcoding
being an efficient, fast, and low-cost method to integrate into morphological observations in order to
address taxonomical shortfalls in meiofaunal organisms.
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1. Introduction

Nematodes are hyper-diverse, abundant, and distributed worldwide [1]. Free-living species
play critical ecological roles in benthic energy flow and contribute to the ecosystem by facilitating
mineralization and nutrient cycling [2–7]. In the presence of high inputs of organic matter,
their abundance increases, helping to regulate this resource. They are also a source of high-quality
food for other animals [8–11]. Currently, about 20,000 nematode species—of which 6500 are marine
benthic (= meiofaunal)—have been formally described [12,13], with estimates ranging between 0.1
and 100 million species [14]. The number of existing species is still uncertain because such estimates
have been made at the local level, whereas little is known on a global scale. Gathering evidence of
nematode diversity and distribution, increasing the record of marine nematodes species, especially in
overlooked regions, is nowadays crucial [15].

Nematode taxonomy is an overlooked field of study in Mexico, with only about 119 genera
and 183 species known for the country [16–22]. The majority of studies of marine nematodes in
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this region address ecological questions [17–21,23,24], whereas only five studies are focused on
taxonomy [16,25–27]. For this reason, faunistic lists for nematodes in Mexico are at the family or genus
level in most cases. The slow advance in the taxonomic knowledge of marine nematodes is due to
technical difficulties. The identification of marine benthic nematodes is mostly based on morphological
traits of male genital structures in mature individuals [28,29]. However, the occurrence of adult
specimens is often rare. For this reason, nematode diversity is commonly disentangled to the family
or genus level, especially in ecological studies. Morphology-based taxonomy is a time-consuming
task that requires well-trained specialists who are becoming rare [30,31]. The use of morphological
traits, in most cases, descriptive and potentially affected by convergent evolution and phenotypic
plasticity, could also prevent an accurate quantification of the true nematode diversity [32–34]. Hence,
there is an increasing need for methods that can rapidly and cost-effectively estimate nematode
diversity in marine sediments. Molecular tools for taxonomic identification, delimitation of species,
and an approach to the phylogeny hold the potential to overcome difficulties where morphological
studies are painstakingly difficult and/or where the number of species far outweighs the availability of
taxonomists. The identification of free-living marine nematodes is particularly difficult [35–39], and an
integrated approach including genetic, morphological, and ideally, also ecological and behavioral data
is needed [40].

Only one study conducted in Mexico (in Baja, CA, USA) [41] considered genetic tools to investigate
the diversity of nematodes. Pereira and collaborators [41] revealed both a wide genetic diversity
and geographic distribution of populations of Mesacanthion species. They used two molecular
markers: 28S ribosomal rRNA gene and 18S, with 28S showing a better taxonomic resolution than
18S in delineating also cryptic species (similarly to [42]). The two markers did not show differences
in the phylogenetic relationships among the investigated taxa, except for species of the genus
Rhabdodemania [41].

In the Caribbean, two relevant studies have been conducted on the nematode fauna and none from
Mexico [43,44]. In both studies, two molecular markers were considered: cytochrome oxidase subunit
I (COI) and 18S ribosomal RNA gene (18S rRNA). Armenteros and collaborators [43] disentangled
species of Desmodorid from Punta Francés, Cuba. They generated 34 sequences for COI across five
genera and 27 sequences for 18S rRNA gene across six genera. Either marker could fully resolve
the phylogenetic relationships of some lineages (i.e., within the subfamilies Desmodorinae and
Spiriniinae). However, COI showed a better resolution than 18S among closely related and cryptic
species. Macheriotou et al. [44] generated 18S and COI sequences from nematodes sampled in the
equatorial North Pacific, Cuba, Italy (Panarea Island), Papua New Guinea, the Netherlands, Tunisia,
and Vietnam. They generated 290 COI and 438 18S sequences; using reference databases for marine
nematodes, they identified 39 OTUs (Operational Taxonomic Units with High Throughput Sequencing;
HTS). Although the ribosomal marker outperformed the mitochondrial marker in terms of species and
genus-level detections., they concluded that, for HTS technologies, it is urgent to continue creating
high-quality taxon-specific reference sequence databases.

Free-living marine nematode species are poorly represented in public sequence databases. Limited
availability of nematode reference sequences, especially from overlooked both localities and habitats
such as the deep-sea, seagrass beds, and tropical coral reefs, hinders biogeographic patterns and
characterization of ecosystems. Moreover, although DNA taxonomy is most successful when applied
to fast-evolving genes such as the mitochondrial gene COI [42,45–48], genetic reference databases
for nematodes mostly include nuclear markers such as 18S and 28S [36,43,48,49]. COI is poorly
represented [44,47,50] because of the difficulty in amplifying this gene in a wide range of taxa within the
phylum using ‘universal’ primers. Several studies regularly report low success in the amplification of
COI and the necessity to design new specific primers to obtain a robust database [44,50,51]. The limited
COI sequence datasets for marine nematodes prevent the establishment of an adequate understanding
of intraspecific divergence.
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The main objectives of this study are to (i) improve our knowledge of the geographic distribution
of meiofaunal nematodes in the Mexican Caribbean; (ii) contribute with new COI sequences to the
public genetic databases; and, (iii) apply different delimitation models to test the taxonomic resolution
of COI in marine nematodes. Integrating different species delineation models should prevent biased
conclusions and disclose patterns of diversity and distribution [52]. We aim to disentangle nematode
diversity by applying Automatic Barcode Gap Discovery (ABGD) [53], Barcode Index Number system
(BINs) [54], and Poisson Tree Processes model (PTP) [55] on COI sequences.

2. Materials and Methods

2.1. Nematode Sampling and Identification

Marine meiofaunal nematodes were collected in March and September 2011 from the intertidal
zone in seven sites along the coast of Quintana Roo State, Mexico (Figure 1, Table 1). Four sediment
samples were collected from each site using a Falcon corer (10 × 2 cm) [56]. Individuals were extracted
by decantation in the field using two sieves (180 and 63 µm mesh) and fixed with DESS solution [57] or
Formalin 10% [58]. In the laboratory, individuals were separated one-by-one and picked up under
a stereomicroscope (NIKON SMZ-1). Then, nematodes specimens were individually transferred to
temporary slides in a drop of MilliQ water covered by a coverslip and observed with an OLYMPUS
BX51 microscope at different magnifications (10×, 40×, and 100×). Well-preserved specimens were
identified morphologically and photographed with a camera (Canon G11). When was possible, more
than one representative for each morphotype was subsequently selected for further molecular analyses.
Morphological identification was carried out using available taxonomic keys for marine nematodes and
comparison with original descriptions using several morphological parameters: length and maximum
body width, size and position of setae, size and position of amphids, cuticle ornamentation, size and
shape of spicula, presence of precloacal supplements, type and tail size and de Man’s ratios (a, b and c):
a = body length/body width, b = body length/esophagus length and c= body length/tail length [59–61].
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Table 1. List of sites where samples were collected. Coordinates are express in decimals *.

Sites Site ID Lat Long Date of Sampling
mm/yy/2011

Cancún A 21.140 −86.677 03/11
Puerto Morelos B 20.508 −86.525 03/11

Cozumel (Playa Azul) C 20.548 −86.929 03/11
Cozumel (Punta sur) D 20.291 −86.959 03/11

Tulum E 20.395 −87.315 03/11
Mahahual F 18.708 −87.712 09/11

Xcalak G 18.2475 −87.8944 09/11

* Lat, latitude; Long, longitude.

2.2. DNA Extraction, PCR Amplification, and DNA Sequencing

Under the microscope, each selected nematode was removed from the temporary slide using a fine
paintbrush, cut in pieces with a scalpel, and preserved in DESS. The DNA was extracted from single
individual animals with a HotSHOT technique [62]. DNA was stored at 4 ◦C for further amplification
of the COI gene. PCR reactions were performed in a final volume of 12.5 µL containing 6.25 µL of
trehalose 10%, 2 µL of ddH20, 1.25 µL of 10X PCR Buffer, 0.625 µL of MgCl2 50 Mm, 0.125 µL of
each primer (10 µM), 0.0625 µL of dNTPs (10 mM), 0.06 µL of Platinum® Taq Polymerase (Invitrogen,
Carlsbad, CA, USA), and 2.0 µL of DNA template [63]. We used two primer sets according to [64]:
LC01490_t1 and HC02198_t1 (TGTAAAACGACGGCCAGTGGTCAACAAATCATAAAGATATTGG/

CAGGAAACAGCTATGACTAAACTTCAGGGTGACCAAAAAATCA); LC01490 and HC02198
(GGTCAACAAATCATAAAGATATTGG/ TAAACTTCAGGGTGACCAAAAAATCA). Thermocycler
conditions, for both primer sets, were: 1 min at 94 ◦C, 5 cycles of 40 s at 94 ◦C, 40 s at 45 ◦C, and
1 min at 72 ◦C, followed by 35 cycles of 40 s at 94 ◦C, 40 s at 51 ◦C and 1 min at 72 ◦C, and a final
extension of 5 min at 72 ◦C. PCR products were visualized on 2% agarose gels stained with ethidium
bromide. Amplicons for LC01490_t1/LC01490_t1 were bidirectionally sequenced with M13F and M13R
primers [65]; ABI 3730 capillary sequencer (ABI, Thermo Fisher Scientific, Carlsbad, CA, USA) using
the BigDye© Terminator v.3.1 Cycle Sequencing Kit (Applied Biosystems, Foster, CA, USA). Sequences
were obtained at the Canadian Centre for DNA Barcoding (CCDB) following standard protocols for
high-volume samples [66].

2.3. Data Analysis

Sequences were assembled and edited with Codon Code Aligner v 3.0.3 software. The Clustal W
program was used for the sequence alignment with default parameters. Phred score [67] was used to
assess the quality of the sequences applying the following categories: no sequences = failed, mean
Phred < 30 = low quality, 30 < mean Phred < 40 = medium quality, and mean Phred > 40 = high quality.
Sequences with low quality and cross-contamination were removed for the analysis. COI sequences
are available as part of the project FMN (Free-Living Marine Nematodes from Quintana Roo, Mexico)
on Barcode of Life Data Systems (BOLD, www.boldsystems.org) [68].

Genetic divergence was calculated in MEGA v6 [69] using the Kimura two-parameter (K2P)
distance model [70]. The presence of stop codons and indels was verified to discard any contaminants
such as NUMTs (nuclear mitochondrial DNA segments) [71,72]. Basic Local Alignment Search Tool
(BLAST) [73] and Identification Request, on GenBank and BOLD, respectively, were used to identify
matches to the DNA sequences generated in this study.

2.4. Phylogenetic Tree Reconstruction and DNA Taxonomy

A Maximum-Likelihood (ML) tree was reconstructed in MEGA v6 software using 1000 bootstrap
replications. The tree was reconstructed with sequences generated in this study and others retrieved
from GenBank according to length, quality (stop codons presence), position (concerning barcoding

www.boldsystems.org


Diversity 2020, 12, 107 5 of 16

region), and taxonomy (Accession numbers are in Supplement Table S1). The best-fitting substitution
model was the General Time Reversible model with nonuniform evolutionary rates and invariant sites
(GTR+G+I) and as chosen in MEGA. The COI sequence Bursaphelenchus sp. (order Tylenchina) was
selected as the outgroup [74].

To delimit evolutionary independent entities of marine nematode species and test the resolution of
the sequenced COI gene, we applied three methods: (1) Automatic Barcode Gap Discovery (ABGD) [53]
with the following parameters: relative gap (X) of 1.1, minimal intraspecific distance (Pmin) of 0.001,
maximal intraspecific distance (Pmax) of 0.1, K2P [70] and JC69 (Jukes-Cantor) [75] as distance
metrics, (2) Barcode Index Number (BIN) system [54], and (3) mPTP by selecting single-locus species
delimitation with p-value 0.001 (http://mptp.h-its.org/#/tree) [55].

3. Results

3.1. Morphological Identification

A total of 30 morphotypes from 107 individuals were identified. The list of morphotypes and
sampling locations is available in Table 2. The order Enoplida was represented by the highest number
of morphotypes (11), followed by Desmodorida and Chromadorida (7), Monhysterida (3), Aerolaimida
(1) and Plectida (Table 2). Families Desmodoridae and Chromadoridae were the best represented with
five genera each and six and five species, respectively. Eighteen specimens, all morphological very
similar, belonged to the Spirinia genus. However, based on de Man´s ratios (different proportions
of bulb and tail sizes), we considered the presence of two distinct morphotypes: Spirinia sp.1 and
S. sp.2 (Figure 2). Such morphological differences are supported by the results of integrative taxonomy
(see below).

In Tulum, one individual resembling the species Pontonema simile (Figure 3) was identified. This
species was initially described by Southern as Oncholaimus similis [76] and redescribed by Filipjev [77]
as P. simile. The Pontomema cf. simile reported in the present study had a shorter size (2100 µm) and a
shorter spicule (32 µm) compared to the species described by Filipjev [77].
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Table 2. Morphotypes identified at the collection sites. Species are listed by nematode Order. The
number of individuals and COI sequences analyzed in this study are indicated. Taxonomy classification
is based on Nemys database (www.marinespecies.org) [12]. Sites are indicated as below: Cancún = A;
Puerto Morelos= B; Cozumel, Playa Azul = C; Cozumel, Punta Sur = D; Tulum = E; Mahahual = F; and
Xcalak = G.

Taxonomy Identified Specimens (n) Sites Sequences (n)

Araeolaimida
Odontophora bermudensis
(Jensen & Gerlach, 1976) 2 D 0

Chromadorida
Actinonema sp.1 1 B 0

Chromadoridae sp.1 1 G 0
Chromadoridae sp.2 1 E 0
Chromadorida sp.1 2 F 2
Chromadorita sp.1 1 D 0

Rhips sp.1 9 A; B 6
Prochromadorella sp.1 4 E 0

Desmodorida
Catanema sp.1 1 D 1

Epsilonema sp.1 6 C; E 5
Metachromadora sp.1 2 F 2
Monoposthia mirabilis

(Schulz, 1932) 10 A; B; D 8

Onyx litorale
(Schulz, 1938) 2 D; F 2

Spirinia sp.1 11 D; F; G 9
Spirinia sp.2 7 G 6

Enoplida
Anticomidae sp.1 3 B 3
Eurystomina sp.1 1 D 1
Enoploides sp.1 1 D 1
Enoploides sp.2 3 C 2

Enoploides gryphus
(Wieser& Hopper, 1967) 2 E 2

Epacanthion sp.1 5 D 0
Halalaimus sp.1 6 B 2

Metaparoncholaimus sp.1 1 E 0
Oncholaimus sp.1 9 E 0

Pontonema cf. simile
(Southern, 1914) Filipjev, 1921 1 E 1

Proplatycoma fleurdelis
(Hope, 1988) 10 C; B; E 1

Monhysterida
Monhysteridae sp.1 1 F 1

Xyala striata
(Cobb, 1920) 2 D 1

Terschellingia longicaudata
(de Man, 1907) 1 G 0

Plectida
Haliplectus bickneri
(Chitwood, 1956) 1 B 1

Among the sampled localities, Cozumel harbored the highest species richness (12 species),
which all are new for this locality. From the other localities, we found fewer species but a greater
abundance of individuals. Enoploides gryphus (Wieser & Hopper, 1967) is a new record for the Mexican
Caribbean while Haliplectus bickneri (Chitwood, 1956), Proplatycoma fleurdelis (Hope, 1988), Pontonema
cf. simile (Southern, 1914) Filipjev, 1921, Rhips sp.1, Epsilonema sp.1, Metachromadora sp.1, Spirinia
sp.2, Odonthophora bermudensis (Jensen & Gerlach, 1976), Onyx litorale (Schulz, 1938), Epacanthion sp.1,
Halalaimus sp.1, and Metaparoncholaimus sp.1, are new for Mexico.

www.marinespecies.org
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(A) Habitus. (B) Head showing dorsal tooth. (C) Tail short and rounded. (D) Posterior part of the body
showing spicule and tail.

3.2. Amplification and Sequencing

Overall, DNA amplification was successful for 67 individuals. However, sequences with low
quality were discarded, and 57 sequences from 20 morphological species were considered (Table 2).
Individuals of the species Actinonema sp.1, Epacanthion sp.1, Metaparoncholaimus sp.1, Odontophora
bermudensis, Oncholaimus sp.1, Prochromadorella sp.1, and some specimens of chromadorids could not
be sequenced (Table 2). All COI sequences produced in this study are new for the molecular databases
GenBank and BOLD. According to Phred score [67], all sequences were of high quality (mean Phred >

40), longer than 500 bp (502–667 bp), and without internal stop codons. BLAST match values were
between 71% and 85% with Nematoda. The mean genetic divergence was 0.43% and 26.45% for
intraspecific and interspecific variation, respectively. In most cases, we observed a clear barcoding gap,
although low interspecific variation was detected in a few cases (Figure 4). This study provides the
first record of mtCOI sequence for Monoposthia mirabilis, Onyx litorale, Enoploides gryphus, Pontonema
cf. simile, Proplatycoma fleurdelis, Xyala striata, and Haliplectus bickneri, and other higher-ranked taxa
(Table 2).

3.3. Phylogenetic Analysis and DNA Taxonomy

Maximum-likelihood analysis using the 57 COI sequences obtained in this work and an additional
70 [47,74,78,79] sequences from GenBank showed congruence between DNA barcode and morphological
identification. Sequences were grouped in clusters represented by the morphological identity. The tree
was supported in recent clades with bootstrap values >90% (Figure 5). The maximum genetic distance
values were observed in Epsilonema sp.1 clade (4.02%) and Enoploides sp.2 (2.24%). The sequences of
Spirinia sp.1 and S. sp.2, with interspecific divergence values of 7.7%, formed two distinct clades.
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To ascertain the number of entities, sequences obtained in this work were analyzed using three
different methods: ABGD, mPTP, and BINs (Table 3). ABGD analysis with K2P showed 20 initial and 25
recursive partitions with prior maximal distances (PMD) of 0.0010; 20 initial and 21 recursive partitions
with PMDs ranging from 0.0017 to 0.0028; and 20 initial and 20 recursive partitions with PMDs ranging
from 0.0046 to 0.0129. With the JC69 model, the same results were observed (see Table 3). The mPTP
method based on our phylogenetic tree recovered 20 evolutionary independent entities (p = 0.001).
BINs split Enoploides sp.2 and Epsilonema sp.1: BOLD: AAU8181 (n = 1) and BOLD: AAU8183 (n = 1)
for the first species, and BOLD: AAU8184 (n = 4); BOLD: AAV1242 (n = 1) for the second species. A
total of 22 BINs were recovered. Interestingly, results obtained with integrative taxonomy supported
that Spirinia sp.1 and S. sp.2 are two distinct species.

Table 3. Evolutionary independent entities recovered from the COI sequences with the three different
delimitation algorithms. Relative gap (X) of 1.1, minimal intraspecific distance (Pmin) of 0.001, maximal
intraspecific distance (Pmax) of 0.1, K2P [70], and JC69 (Jukes-Cantor) [75] were selected as distance
metrics. I = Initial partition, R= Recursive partition. EiEs = Evolutionary Independent Entities.

ALGORITHMIC APPROACHES

BIN
System

mPTP
Model ABGD

p-value 0.001

Subst. model K2P JC69

Prior intraspecific divergence (P) 0.0010 0.0017 0.0028 0.0046 0.0077 0.129 0.0010 0.0017 0.0028 0.0046 0.0077 0.129

Partition I R I R I R I R I R I R I R I R I R I R I R I R

EiEs 22 20 20 25 20 21 20 21 20 20 20 20 20 20 20 25 20 21 20 21 20 20 20 20 20 20

4. Discussion

4.1. Diversity and Distribution of Meiofaunal Marine Nematodes in Mexico

This study contributes to the current knowledge of the diversity and distribution of meiofaunal
marine nematodes in Mexico. The faunistic information in Mexico, and Central America, in general,
is traditionally scarce, reflecting the low number of taxonomic experts in the area [80]. Until now,
a total of 183 species of marine nematodes are known for Mexico, of which seven have type locality in
Mexico [16,22,26,81,82]. In the Mexican Caribbean specifically, there are few ecological and taxonomic
studies focusing on marine nematodes [17,18,20] with Isla Mujeres and Banco Chinchorro being the
most investigated localities. The Chromadorida order was the most represented in both sites [18,20].
Our results confirm the presence of Terschellingia longicaudata (de Man, 1907), Monoposthia mirabilis
(Schulz, 1932), and Xyala striata (Cobb, 1920), all species that have been previously reported for Isla
Mujeres [20].

This study adds twelve morphological records to the Mexican list of marine nematodes.
Specifically, Haliplectus bickneri, Proplatycoma fleurdelis, Pontonema cf. simile, Rhips sp.1, Epsilonema sp.1,
Metachromadora sp.1, Spirinia sp.2, Odonthophora bermudensis, Onyx litorale, Epacanthion sp.1, Halalaimus
sp.1, and Metaparoncholaimus sp.1 are all new records for the country. Due to specimen immaturity and
small sample size, it is necessary to collect additional specimens to obtain proper identification for
some of the sampled taxa (e.g., Anticomid, chromadorid, and monhysterid).

The report of Desmodoridae taxon is particularly relevant. This family is globally represented
with a high number of species (320 species) [80]. Nevertheless, genetic sequence records for this family
are scarce compared with the number of species described [80]. Here, we add 20 COI new sequences
from Desmodoridae taxa. However, species identification based only on morphology was particularly
tricky due to the lack of well-defined diagnostic traits, weak taxonomic keys reference, and absence of
updated databases, including species lists [43,47,80].

We report for the first time meiofaunal nematode species from the Cozumel Island, namely
Chromadorita sp.1, Catanema sp.1, Epsilonema sp.1, Epacanthion sp.1, Eurystomina sp.1, two species
of Enoploides, Monoposthia mirabilis, Odontophora bermudensis, Onyx litorale, Proplatycoma fleurdelis,
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and Xyala striata. Cozumel was represented by the highest number of species, supporting that islands,
with a high grade of endemism [83], are particularly relevant areas for the study of biodiversity also
for meiofaunal species.

Regarding P. simile, specimens found in this work are very similar to the ones described by
Southern, 1914 [76], due to comparable buccal cavities with a dorsal tooth, tail shapes, and spicules
size. However, we hypothesize that the Mexican record may correspond to a new species for science.
First, the original record was found in the intertidal zona of West Ireland, far away from our sample
locality. Second, spicule size and total length are appreciably different in individuals from the two
populations. Additional investigations comparing specimens from both localities are needed to support
our hypothesis.

Individuals of Monoposthia mirabilis, Epsilonema sp.1, and Onyx litorale, were respectively
represented by the same COI haplotypes even across different sampling sites, including Cozumel Island
and continental sites such as Cancún, Puerto Morelos, Tulum, Mahahual, and Xcalak. This observation
suggests that such species have a widespread distribution and a low genetic divergence within and
among populations. Therefore, individuals of M. mirabilis reported for Isla Mujeres [20] and Onyx
litorale for Cuba [80], could belong to the same, widely distributed, species.

4.2. COI Amplification

We recommend using HotSHOT technique to extract DNA from marine nematodes [62] because, at
least in our study, it provided fairly good results. However, the amplification success rate was difficult
(85.07%), confirming previous studies [44,47,79,84]. The problem lies in the high mitochondrial genome
diversity among nematodes [85–87] and, consequently, a low success rate using universal primers
as well as low availability of specific primers for the Nematoda group [47,88]. In five individuals,
the length of COI sequences varied (approximately 150 bp) but these sequences were not found related
to any nematode taxa at the rank of genus or family. Specifically, we consistently observed a low success
of COI amplification for Epacanthion sp.1, Halalaimus sp.1, Prochromadorella sp.1, Proplatycoma fleurdelis,
Odontophora bermudensis, and Oncholaimus sp.1, which highlights the need for new primers specifically
designed for these taxa. COI sequences obtained by combining existing protocols developed for
zooplankton eggs [62] and by Ivanova et al. for invertebrates [63], allowed us to obtain high-quality
DNA barcodes and amplify the complete ‘barcode region’ (> 500 bp). Obtaining long sequences is
particularly important; when COI sequences are amplified in a region without a definite barcoding gap
(e.g., JB2/JB3) due to overlapping intra/inter-specific distances, the delineation of species boundaries
could be unreliable [44,79,84]. Although not all the sequences could be assigned to a species-level
taxon, our results will significantly help the taxonomic identification of nematodes in further studies
and when high-throughput sequencing approach on environmental DNA is applied.

4.3. Integrative Taxonomy

COI sequences generated in this work contribute to increasing the record of public genetic
repositories and are references for future studies focused on the patterns of diversity and distribution
of marine nematodes. In meiofauna and particularly marine nematodes, taxonomic gaps may be
compensated only with the integration of DNA and morphological-based taxonomy [31,46]. The
combination of both approaches allows us to disentangle diversity at the species level. For example,
the two Spirinias species showed different morphological traits. However, we could certainly assign
them to different species only through integrative taxonomy. In fact, all specimens of Sprinia sp.1 were
immature, although preliminary observations allowed to ascribe this species to either S. parasitifera or
S. septentrionalis, both previously reported for Mexico [20,22]. Spirinia sp.2 was represented by several
adult specimens. However, none of the morphometric measurements were sufficient to ascribe them
to a known species. Spirinia sp.2 could be ascribed to S. amata or S. parasitifera because of the number
of precloacal supplements; however, the larger size of spicules and larger total length size suggest
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similarities with S. inaurita. We do not discard the possibility that Spirinia sp.2 could belong to new
species to science.

4.4. Application of Species Delineation Models to Disentangle Diversity

Our results confirm the advantage of disentangling species and estimating marine nematode
diversity using the COI gene. Fast-evolving genes and relatively short genes such as mtCOI are
not expected to resolve the phylogenetic relationships in the deeper nodes [39,89]. The use of a
multiple-gene approach is needed to clarify the tree topology, thereby uncovering phylogeographic
relationships and historical biogeography within the group [42]. However, as previous studies
suggested, mtCOI can resolve relationships among closely related species [79] and, as suggested by
Derycke et al. [47], we support that COI is a useful biomarker to disentangle the diversity of nematodes
to the species level. The design of new primers for different taxonomic groups of marine nematodes
and the increase of COI data sequences will advance our knowledge of the diversity in different
ecosystems [84] as well as provide a better estimate of global species diversity [44].

Analytical methods ABGD and mPTP supported the presence of the 20 species identified
morphologically. The ABGD method relies on user-selected parameters (distance model and a prior
limit on intraspecific divergence). In our case, we took care not to select a high prior intraspecific
divergence (P) to avoid combining all sequences in one single group [53]. For this reason, a prior value
was set after analyzing the interspecific divergence values within our generated sequences. The value
of 0.01 for prior intraspecific divergence showed the strongest congruence between groups recovered
and species defined as proposed by Puillandre et al. [53]. Moreover, we obtained an equal number of
groups after the third partition (P = 0.0046) with both models (K2P and JC9); this supports that the
threshold for the barcoding gap in the sequences considered in this work is well-defined.

The BINs method showed a 90% match for the recovered evolutionary independent entities. Only
Epsilonema sp.1 and Enoploides sp.2 were split into four BIN numbers. It is essential to consider that
this method initially employs single linkage clustering, coupled with a 2.2% threshold to establish
preliminary OTU boundaries [54]. If the threshold is higher than 2.2%, the method tends to separate a
higher number of entities and overestimate diversity. Epsilonema sp.1 and Enoploides sp.2 both showed
the highest intraspecific divergence values > 4% (4.02% and 2.24% respectively), although they are
identical morphologically. Based on all the criteria, we recognized Epsilonema sp.1 and Enoploides sp.2
as a single species, concordantly to the results obtained by applying ABGD and mPTP methods. We
should carefully consider the BIN numbers as a tool for disentangling nematode species until a more
robust genetic database is developed.

5. Conclusions

Our work contributes towards building a more robust taxonomic and genetic database of
meiofaunal nematodes, as well as advancing our knowledge of nematode diversity and distribution.
At present, DNA sequencing techniques have opened up new possibilities for taxonomic research in
meiofaunal nematodes. However, barcode sequences from marine nematodes are underrepresented in
light of the diversity of the phylum [34]. Our study combines classical morphology-based taxonomy
with DNA sequences to successfully delimit 20 marine nematode species. Although a new set of
primers should be designed for some species, our data support that the COI gene represents an
excellent molecular marker to disentangle nematode diversity. Moreover, we validate and support the
intraspecific distance value threshold of 5% for nematode species [43,47,84]. Lastly, our study reports
new records from an unexplored region and contributes to understanding patterns of diversity and
distribution of nematodes in Mexico and worldwide.
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