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Abstract
Aim: Understanding the relative importance of climatic and non-climatic distribution 
drivers for co-occurring, functionally similar species is required to assess potential conse-
quences of climate change. This understanding is, however, lacking for most ecosystems. 
We address this knowledge gap and forecast changes in distribution for habitat-forming 
seaweeds in one of the world’s most species-rich temperate reef ecosystems.
Location: The Great Southern Reef. The full extent of Australia’s temperate coastline.
Methods: We assessed relationships between climatic and non-climatic environ-
mental data known to influence seaweed, and the presence of 15 habitat-forming 
seaweeds. Distributional data (herbarium records) were analysed with MAXENT and 
generalized linear and additive models, to construct species distribution models at 
0.2° spatial resolution, and project possible distribution shifts under the RCP 6.0 
(medium) and 2.6 (conservative) emissions scenarios of ocean warming for 2100.
Results: Summer temperatures, and to a lesser extent winter temperatures, were the 
strongest distribution predictors for temperate habitat-forming seaweeds in 
Australia. Projections for 2100 predicted major poleward shifts for 13 of the 15 spe-
cies, on average losing 78% (range: 36%–100%) of their current distributions under 
RCP 6.0 and 62% (range: 27%–100%) under RCP 2.6. The giant kelp (Macrocystis py-
rifera) and three prominent fucoids (Durvillaea potatorum, Xiphophora chondrophylla 
and Phyllospora comosa) were predicted to become extinct from Australia under RCP 
6.0. Many species currently distributed up the west and east coasts, including the 
dominant kelp Ecklonia radiata (71% and 49% estimated loss for RPC 6.0 and 2.6, re-
spectively), were predicted to become restricted to the south coast.
Main conclusions: In close accordance with emerging observations in Australia and 
globally, our study predicted major range contractions of temperate seaweeds in com-
ing decades. These changes will likely have significant impacts on marine biodiversity 
and ecosystem functioning because large seaweeds are foundation species for 100s of 
habitat-associated plants and animals, many of which are socio-economically important 
and endemic to southern Australia.
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1  | INTRODUC TION

Shifts in the geographic distribution of species, in response to in-
creasing temperature, have been reported from virtually all ecosys-
tems on Earth (Parmesan & Yohe, 2003; Poloczanska et al., 2013; 
Thomas et al., 2004; Wernberg, Russell, Thomsen et al., 2011). 
This is not surprising as temperature has long been recognized as 
a major driver of broad-scale species distributions (Brown, Stevens, 
& Kaufman, 1996; Gaston, 2009; Hedgpeth, 1957; van den Hoek, 
1982b; Sunday, Bates, & Dulvy, 2012). Shifts in the distribution of 
habitat-forming species are expected to compromise the biodiver-
sity and functioning of ecosystems because these species provide 
food and shelter, and reduce environmental stress for other species, 
contributing disproportionately to the cycling of energy and mat-
ter (Halpern, Silliman, Olden, Bruno, & Bertness, 2007; Thomsen 
et al., 2010). Consequently, habitat-forming species are important 
conservation targets (Halpern et al., 2007; Hastings et al., 2007) and 
predicting their possible shifts in distribution under global climate 
change is of particular importance.

Advances in ecological theory, spatial modelling, remote sens-
ing techniques, statistical methods and increases in computational 
power have led to great progress in the capacity to model and predict 
the distribution of organisms. Species distribution models (SDMs) 
link the occurrence of an organism to climatic and other spatially ex-
plicit environmental variables (Austin, 2002; Guisan & Zimmermann, 
2000). SDMs are powerful tools to forecast the effects of global 
change on macro-ecological patterns. For example, SDMs have been 
used to track trends in biodiversity at continental scales, to select 
protected areas, to explain trends in invasions of alien species and 
in a wide range of biogeographic studies (e.g., Embling et al., 2010; 
Lobo, Lumaret, & Jay-Robert, 2002; Recio & Virgós, 2010; Rissler, 
Hijmans, Graham, Moritz, & Wake, 2006). However, in contrast to 
numerous studies from terrestrial ecosystems, examples of model-
ling and forecasting species distribution patterns for marine organ-
isms are far fewer, in particular for seaweeds, even though they are 
key habitat-formers in many coastal ecosystems (Lüning, 1990) and 
under acute pressure from anthropogenic activities (Filbee-Dexter & 
Wernberg, 2018; Krumhansl et al., 2016; Wernberg, Russell, Moore 
et al., 2011). A few exceptions include modelling distribution of sub-
tidal kelps (Assis, Lucas, Bárbara, & Serrão, 2016; Bekkby, Rinde, 
Erikstad, & Bakkestuen, 2009; Franco et al., 2017; Gorman, Bajjouk, 
Populus, Vasquez, & Ehrhold, 2013; Raybaud et al., 2013), invasive 
seaweeds (Báez et al., 2010; Tyberghein et al., 2012), threatened fu-
coids (Jueterbock et al., 2013; Martínez, Viejo, Carreño, & Aranda, 
2012) and red seaweed assemblages (Gallon et al., 2014).

The marine flora of Australia’s Great Southern Reef (Bennett 
et al., 2016) is one of the most species rich in the world, with many 
endemic species and genera (Bolton, 1994; Phillips, 2001). While 
there are several possible contributing factors, this mega-diversity 
is primarily attributed to Australia’s long geological history, histor-
ical isolation, stable climate, lack of mass extinction events and ex-
tensive reef areas (Kerswell, 2006; Phillips, 2001). Both the east and 
west coasts are bound by poleward-flowing warm currents, the East 

Australian Current (EAC) and the Leeuwin Current (LC), respectively 
(Wernberg, Thomsen et al., 2013). Consequently, from tropical (north) 
to temperate (south) Australia, there is a consistent latitudinal tem-
perature gradient with associated shifts in biogeographic provinces 
(Waters et al., 2010; Wernberg, Thomsen et al., 2013). The Southern 
Ocean waters around Victoria and Tasmania experience regular up-
welling and are significantly cooler than other temperate regions in 
Australia (Ridgway, 2007). The waters off both eastern and western 
Australia have experienced some of the highest rates of ocean warm-
ing in the world (Hobday & Pecl, 2014). Along these coasts, sea sur-
face temperatures have increased between 0.5 and 1.5°C in the last 
50 years (Pearce & Feng, 2007; Ridgway, 2007) and this increase has 
already caused poleward shifts of temperate species (Last et al., 2011; 
Poloczanska et al., 2013; Wernberg, Russell, Thomsen et al., 2011). 
Moreover, the warming trend is predicted to continue another 1–3°C 
in the coming 50–70 years (Poloczanska et al., 2007), and further pole-
ward shifts are expected to follow in conjunction with an increase in 
occupancy of tropical and/or generalist flora and fauna (Cheung et al., 
2012; Hyndes et al., 2016; Molinos et al., 2015; Vergés et al., 2014).

Evidence that Australian seaweeds are shifting poleward is in-
creasing (Johnson et al., 2011; Smale & Wernberg, 2013; Wernberg, 
Russell, Thomsen et al., 2011; Wernberg, Bennett et al., 2016) in 
agreement with observations of ongoing contractions of mac-
roalgae around the world (Díez, Muguerza, Santolaria, Ganzedo, 
& Gorostiaga, 2012; Filbee-Dexter, Feehan, & Scheibling, 2016; 
Nicastro et al., 2013; Tanaka, Taino, Haraguchi, Prendergast, & 
Hiraoka, 2012). For example, declines of the cool-temperate giant 
kelp Macrocystis pyrifera in Tasmania have been associated with in-
creasing temperatures and nutrient limitation linked with incursion 
of warm, low-nutrient EAC water (Johnson et al., 2011). Similarly, 
several large fucoids and kelp (Durvillaea potatorum, Phyllospora co-
mosa, Scytothalia dorycarpa and Ecklonia radiata) have been declin-
ing and shifting southwards on the east and west coasts (Smale & 
Wernberg, 2013; Valentine & Johnson, 2004; Wernberg, Russell, 
Moore et al., 2011; Wernberg, Bennett et al., 2016). High seawater 
temperatures have been shown to lower the resilience of E. radi-
ata kelp forests in Western Australia, reducing their tolerance to 
additional perturbations such as storms (Wernberg et al., 2010), 
and an extreme marine heatwave led to substantial loss of canopy 
cover across several hundred kilometres (Smale & Wernberg, 2013; 
Wernberg, Smale et al., 2013; Wernberg, Bennett et al., 2016). Such 
substantial changes in canopy cover would have severe implica-
tions for the whole coastal ecosystem, as these species are habitat-
formers which provide three-dimensional structure, food and 
environmental conditions supporting a broad array of associated 
organisms (Coleman, Vytopil, Goodsell, Gillanders, & Connell, 2007; 
Connell, 2003; Ling, 2008; Tuya, Wernberg, & Thomsen, 2008; 
Wernberg & Goldberg, 2008). These temperate canopy-forming 
seaweeds are therefore bioindicators of the integrity of Australian 
reef ecosystems which support a multitude of recreational, com-
mercial and scientific interests (Bennett et al., 2016; Coleman & 
Wernberg, 2017; Poloczanska et al., 2007; Wernberg, Krumhansl, 
Filbee-Dexter, & Pedersen, 2018).
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In this study, we developed SDMs for 15 ecologically important 
species of habitat-forming seaweeds in temperate Australia. Our 
aims were to (1) increase our understanding of the relative impor-
tance of climatic and non-climatic environmental conditions for the 
biogeography of ecologically relevant seaweeds and (2) to predict 
their future distribution, illustrating the magnitude of likely changes 
in response to ongoing warming of Australia’s temperate waters.

2  | MATERIAL S AND METHODS

2.1 | Environmental predictor variables

All predictor data were obtained from the Remote Sensing Division 
of the Commonwealth Scientific and Industrial Research Organisation 
(CSIRO, Australia) as part of the information managed for the National 
Marine Bioregionalisation project of the Australian Government 
(http://www.environment.gov.au/coasts/mbp/imcra/nmb.html). We 
extracted environmental data known to influence the distribution 
of seaweeds (reviewed in Lüning, 1990; Lobban & Harrison, 1994), 

retaining only those for which pairwise Pearson correlations were 
less than 0.85, a threshold indicative of excessive autocorrelation be-
tween pairs of predictors (Elith, Kearney, & Phillips, 2010). Variables 
representing extreme conditions of ecophysiological relevance were 
preferred (e.g., maximum and minimum monthly means were used 
rather than intermediate values). Predictor variables included mean 
summer (January) and winter (July) sea surface temperatures (SSTs) 
from one decade of data (1993–2003), annual mean concentrations 
of major macronutrients (dissolved Nitrogen and Phosphorous) and 
salinity from 1990 to 2000 (Table 1, Figure 1, Appendix S1). We also 
extracted data for monthly mean pelagic primary productivity for 
July and October peaks (available for 2003), as it integrates biologi-
cally relevant responses to nutrient concentrations, available light and 
water transparency, identifying coastal regions of favourable condi-
tions for seaweed growth. Finally, we considered averaged surface 
current strength from 2 months (April and October, means from 1990 
to 2000) with contrasting current strengths reflecting variability in 
forces that could affect seaweed dispersal, settlement and recruitment 
(Coleman et al., 2011).

TABLE  1 Environmental predictors showing their units, corresponding period of time, data source, and main patterns around Australia

Environmental 
predictors Units Time period Source Main pattern around Australia

SST January 
(summer)

°C 1993–2003 
monthly mean

NOAAa satellites Latitudinal increase northwards. Warming in the 
east coast due to EAC

SST July (winter) °C 1993–2003 
monthly mean

NOAAa satellites Latitudinal increase northwards. Warming in 
central Western Australia and South Australia 
due to LC

Dissolved Nitrogen μM 1990–2000 
annual mean

CARSb Low in the tropics. High in Southern Ocean 
where primary production is light and iron 
limited

Dissolved 
Phosphorus

μM 1990–2000 
annual mean

CARSb Low in the tropics. High in Southern Ocean. 
Reflects localized terrestrial inputs

Primary Productivity 
July

mg C m−2 d−1 2003 monthly 
mean

Global observations of ocean 
colour data from MODISc

Dominated by mesoscale processes (currents, 
land run-off, depth and tidal mixing)

Primary Productivity 
October

mg C m−2 d−1 2003 monthly 
mean

Global observations of ocean 
colour data from MODISc

Dominated by mesoscale processes (currents, 
land run-off, depth and tidal mixing)

Salinity ‰ 1990–2000 
annual mean

CARSb High in warm-temperate areas. Low in the 
tropics due to high precipitation and run-off. 
Increases in large embayments

Surface Currents 
October

m/s 1990–2000 
monthly mean

Geostrophic currents derived 
from annual and semi-
annual temperature and 
salinity cycles from CARS b

EAC main boundary current flowing South. 
Regional variations reflecting fronts, boundary 
currents and eddy fields

Surface Currents 
April

m/s 1990–2000 
monthly mean

Geostrophic currents derived 
from annual and semi-
annual temperature and 
salinity cycles from CARSb

EAC main boundary current flowing South. 
Western LC flowing south. Regional variations 
reflecting fronts, boundary currents and eddy 
fields

EAC, East Australian Current; LC, Leeuwin Current.
aNOAA: US national oceanographic and atmospheric administration at 1° resolution.
bCARS: CSIRO Atlas of Regional Seas, means in CARS are calculated from available oceanographic data: ship-based conductivity, temperature and 
depth sensors (CTD) and hydrology casts from the CSIRO marine archives and the NOAA World Ocean Database 98 (Ridgway, Dunn, & Wilkin, 2002) 
at 0.5° resolution.
cPrimary Production Estimates (daily carbon fixation from the surface to the bottom of the euphotic zone) from the moderate resolution (0.2°) imaging 
spectroradiometer (MODIS) of the USA National Aeronautics and Space Administration (NASA) using the Behrenfeld–Falkowski Vertical Generalised 
Production Model (Behrenfeld & Falkowski, 1997), SOURCE: (Hayes, Sliwa, Migus, McEnnulty, & Dunstan, 2005).

http://www.environment.gov.au/coasts/mbp/imcra/nmb.html
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Ocean cells not contiguous with land areas and deeper than 
50 m were excluded from the environmental training grid because 
they are outside the potential seabed habitat for large macroalgae. 
The Geospatial Data Abstraction Library (GDAL, http://www.gdal.
org/gdalwarp.html) using the Bilinear Resampling (Metz, Rocchini, & 
Neteler, 2014; Tyberghein et al., 2012; Vazquez, Perry, & Kilpatrick, 
1998) was the preferred method to downscale the environmental gra-
dient (of a minimal resolution of 0.5°, e.g., CSIRO CARS, Table 1) to 
the resolution of the species distributional records of 0.2° (see below). 
Additionally, we also considered the Nearest Neighbour correction 
(Neteler, 2010), if software specific error issues were detected, that is, 
MODIS Reprojection Tool software (MRT) was used instead of GDAL.

2.2 | Target species and records

We targeted 15 species of habitat-forming fucoid (13 species) and 
laminarian (2 species) seaweeds (Table 2), representing all major 

taxa and historical and current distribution patterns around tem-
perate Australia within these groups (Figures 2, 3 and 4). Species 
distributions were inferred from presence-only records lodged 
in the Australian Virtual Herbarium (www.sapac.edu.au/avh/), a 
public database which comprises >90,000 records—the most com-
plete and up-to-date inventory of Australian seaweeds. As of 14 
September 2009, there were 3,370 individually georeferenced 
records for the 15 target species, dated from 1844 onwards, but 
mostly collected after the 1950s. Each record corresponded to 
a specimen deposited in the state herbaria of Adelaide (South 
Australia), Brisbane (Queensland), Canberra (Australian Capital 
Territory), Darwin (Northern Territory), Hobart (Tasmania), 
Melbourne (Victoria), Perth (Western Australia) and Sydney (New 
South Wales). All records were downloaded and checked for taxo-
nomic consistency, and names updated to follow current nomen-
clature according to AlgaeBase (Guiry & Guiry, 2016). We checked 
the position of every presence record in ArcGIS® 10.3.1. software 

F IGURE  1 Mean Sea Surface Temperature of (a) January (SST January) and (b) July (SST July), (c) Mean Annual Dissolved Nitrogen, and d) 
Mean Annual Salinity, in Australian waters. See Appendix S1 for distribution maps of additional environmental variables [Colour figure can 
be viewed at wileyonlinelibrary.com]

http://www.gdal.org/gdalwarp.html
http://www.gdal.org/gdalwarp.html
http://www.sapac.edu.au/avh/
www.wileyonlinelibrary.com
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(ESRI, Redlands, CA, USA) and Google Earth (https://earth.google.
es/) to delete or re-allocate those erroneously located on the litto-
ral fringe. A final resolution of 0.2° reflects realistically that of the 
distributional records after this correction. A few cells contained 
repeated records, that is, more than one presence, that were omit-
ted and converted to a single presence for data modelling (see 
below).

2.3 | Data modelling

We first modelled the present distribution of each species with 
Maximum Entropy Modelling using the software MAXENT v3.3.3, 
given that herbarium records do not include absences (Phillips, 
Anderson, & Schapire, 2006; Phillips, Dud, & Schapire, 2004). 
Maximum entropy modelling results in better model performance 
for presence-only data than alternative approaches by com-
paring the actual species distribution pattern with background 
points of maximum entropy distribution (Elith et al., 2010, 2011). 
Nevertheless, as the choice of statistical modelling method may af-
fect the selection of the significant predictors, we supplemented 
the MAXENT analyses with generalized linear (GLM) and additive 
(GAM) models using the R package BIOMOD2 (Thuiller, 2003; 
Thuiller, Lafourcade, Engler, & Araújo, 2009). These are regression-
like approaches that rely on randomly generated pseudo-absences 
for areas of absence of the species, when real zeros are not avail-
able (Senay, Worner, & Ikeda, 2013). To select the most parsi-
monious models, that is, models explaining most of the seaweed 
distribution data with the least possible environmental predictors, 
we used BIOMOD2 stepwise variable selection procedures based 
on the Bayesian information criterion (BIC). To allow comparison 
with MAXENT procedures, the full background points (1,560) along 
the temperate and tropical coastlines of the Australian continent 
and Tasmania were considered as pseudo-absences in GLMs and 
GAMs. To check for potential over-fitting in this procedure, that is, 
inflated absence points, five sets of 600 pseudo-absences were also 
generated along this area, and for cold-temperate species appear-
ing around the south-eastern corner of Australia (Macrocystis pyrif-
era, Durvillaea potatorum, Xiphophora chondrophylla and Phyllospora 
comosa), the modelling was repeated excluding tropical areas and 
300 pseudo-absences were generated for this smaller area. After 
running these models, we considered as significant predictors those 
suggested with high consensus among the different approaches 
and re-ran MAXENT with these significant predictors to construct 
the final predictive models.

Parsimonious models based on biological knowledge of the spe-
cies are generally recommended for predictive purposes (Araújo 
& Guisan, 2006; Austin, 2002; Elith et al., 2010). Consequently, to 
further control for potential over-fitting, the statistical modelling 
above was guided by prior ecological knowledge (Araújo & Guisan, 
2006; Austin, 2002). We investigated the shape of the response 
curves by plotting the frequency of presences of the target species 
at different intervals of the environmental predictors (Figure 2, oth-
ers not shown). Settings were adjusted accordingly, using linear and 

quadratic features in MAXENT (Appendix S2) and GLMs (setting as 
“simple”) (Elith et al., 2010), and restricting GAM knots to 3 (k = 3) 
when fitting GAMs (Hastie, 1991).

2.4 | Model performance

Model accuracy was tested using the area under the curve (AUC) 
of a receiver operating characteristic (ROC) plot, as a measure that 
does not rely on any threshold of presence. We used the software 
included in the MAXENT package to calculate AUCs for the models 
including all predictors (full models) and the whole dataset, and for 
datasets obtained using internal (data-splitting) validation (Fielding 
& Bell, 1997; Guisan & Zimmermann, 2000). We performed 10 it-
erations using 70% of the herbarium data for model training and 
30% for testing. AUCs for the final models, that is, reduced models 
including only the significant variables used in predictions, are also 
provided. Model accuracy of supplementary model algorithms used 
to confirm variable selection was additionally assessed by calculat-
ing AUC values for GLMs and GAMs with the R package BIOMOD2 
(Thuiller et al. 2016).

Additionally, several threshold-dependent estimates of accuracy 
were calculated with BIOMOD2 for MAXENT, GLM and GAM full 
models. We checked the correct and incorrect classification of test 
data (30%) by calculating the ‘Sensitivity’ of the models, here de-
fined as the ratio of corrected classified presences; the ‘Specificity’, 
that is, ratio of corrected classified absences; and the Kappa coef-
ficients (k). We also checked that the final variables included in the 
model were the same before and after the data-splitting procedure 
irrespectively of the statistical model used.

2.5 | Projections

For species with distributions strongly related to temperature (all 
but two species), the final reduced models constructed by MAXENT 
were used to project future distributions from projected tempera-
ture increases. Of the four available Representative Concentration 
Pathways (RCPs) (IPCC 2014), 2.6 and 6.0 were chosen as they have 
minimal redundancy between them and represent, respectively, the 
most optimistic climate change scenario assuming low greenhouse 
gas concentration levels by the end of this century (RCP 2.6) and a 
stabilization at medium levels (RCP 6.0). The monthly maximum and 
minimum averaged Sea Surface Temperatures for 2100 under these 
two scenarios were obtained from the Bio-ORACLE repository 
(Assis et al., 2018). Layers, at a resolution of 5 arcmin (approximately 
0.08°), were cut to temperate Australia and added as projection lay-
ers in MAXENT to construct the maps of projected habitat suitability 
in future warming scenarios (Phillips et al., 2006). GLMs and GAMs 
were not used for predictions, but as explained above, allowed a 
check of the selection of final predictors.

To illustrate the magnitude of potential distributional changes 
in response to ongoing warming, we compared the projected ex-
tent of coastline of future distributions with the historical distribu-
tion of the species represented by herbarium records. For this, we 

https://earth.google.es/
https://earth.google.es/
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binarized the projected maps into presence and absence catego-
ries of habitat suitability (Figures 3 and 4) using the ‘Equal Training 
Sensitivity and Specificity’ criterion calculated with MAXENT, a 
threshold indicative of the presence of the species. That is, values 
above this threshold indicating high likelihood of presence of the 
species in the corresponding cells. Then, the length of the stretches 
of coastline (historical vs. forecasted) was calculated on a vector 
layer in ArcGIS.

3  | RESULTS

3.1 | Models and projections by environmental 
predictors

Summer SST returned the highest per cent gain contribution to the 
MAXENT models for 12 of the 15 species, and it was ranked second 
for one other species. In all but in one single species, GLMs and/or 
GAMs showed consensus with MAXENT in suggesting the signifi-
cant effect of maximum temperature (Table 2). Species restricted to 
south-eastern Australia (Macrocystis pyrifera, Durvillaea potatorum, 

Xiphophora chondrophylla and Phyllospora comosa) experience the 
coolest temperatures and the narrowest range of summer SST’s 
(Figure 1a). The response functions linking the presence of these 
seaweeds with summer SST therefore reflected a narrow realized 
thermal niche centred in the low temperature range (Figure 2a,b and 
Appendix S2). Consequently, the models predicted substantial de-
crease in habitat suitability for these species under projected future 
ocean warming for 2100 (Figures 3a,b,c,d and 4a,b,c,d), potentially 
affecting >79% of their current distribution, and the four becoming 
extinct in Australia under the RCP 6.0 medium-emission levels sce-
nario (Table 3). Moreover, projections for these species illustrate the 
overall lower habitat suitability for macroalgae at a given latitude 
in eastern than in western Australia, presumably due to the strong 
southward flow of the warm East Australian Current, which in con-
trast to the weaker Leeuwin Current, is most intense in summer 
(Coleman et al., 2011).

Summer SST was also the main predictor of distribution for 
two seaweeds distributed up along both the east and west coasts, 
namely Cystophora retroflexa and Ecklonia radiata. Model projec-
tions suggested a potential 71%–49% contraction of the distribution 

TABLE  2 Summary of the per cent gain contribution coefficients explained by each environmental predictor for the 15 species 
distribution models (SDMs) suggested by MAXENT, results from generalized linear and additive models (GLMs and GAMs, respectively), and 
performance metrics of SDMs

Environmental 
predictors MPYR DPOT XCHO PCOM CRER ERAD CSUB PDEC

SST January (summer) 53.5* 70.8** 67.9** 57.8** 50.1** 78.7** 66.8** 38.9

SST July (winter) 34.9** 2.3 18.2 8.6 9.5 3 20.9* 43.1**

Dissolved Nitrogen 2.4 15.8* 5.0 14.4* 15.4 3 8.9 2.7

Dissolved Phosphorus 4.5 2.4 0.4 5.1 4.7 0.8 0.0 0.1

Primary Productivity July 1.2 4.6 0.1 4.1 2.4 0.6 0.0 1.3

Primary Productivity 
October

3.1 1.5 0.0 2.0 1.1 0.4 0.1 0.2

Salinity 0.3 0.8 0.2 0.0 0.0 3.8 0.3 8.9*

Surface Currents 
October

0.0 0.4 5.7 4.1 7.1 0.1 2.7 4.0

Surface Currents April 0.1 1.6 2.7 3.9 9.8 9.7 0.2 0.8

Number of grid cells with 
presences (N)

58 26 41 59 46 115 92 78

AUC MAXENT 0.938 0.957 0.928 0.937 0.923 0.847 0.898 0.890

MEAN AUC 70%a 
MAXENT

0.936 0.953 0.936 0.937 0.924 0.850 0.895 0.895

AUC FINAL MODEL 
MAXENT

0.923 0.936 0.892 0.913 0.893 0.812 0.858 0.864

Sensitivity MAXENT 96.5 100.0 95.1 96.6 91.3 97.4 100.0 96.1

Specificity MAXENT 87.3 91.9 86.6 88.3 83.7 72.0 73.2 78.1

Kappa MAXENT 0.456 0.322 0.312 0.435 0.403 0.451 0.430 0.310

AUC simple GLM 0.950 0.959 0.936 0.943 0.906 0.855 0.909 0.892

Kappa simple GLM 0.399 0.309 0.270 0.368 0.231 0.419 0.375 0.298

AUC GAM 0.950 0.959 0.937 0.943 0.907 0.855 0.910 0.892

Kappa GAM 0.399 0.309 0.268 0.367 0.235 0.419 0.380 0.295

(Continues)
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along the east and west coasts for E. radiata and more broadly for 
C. retroflexa (95%–67%), in both cases including a western section of 
the south coast (Table 3, Figures 3e,f and 4e,f). Similar contractions 
in response to summer warming were predicted for a third group 
of seaweeds restricted to the west and south coast of Australia 
(Cystophora subfarcinata, Phyllotricha decipiens, Cystophora retorta 
and Scytothalia dorycarpa, Figures 3g,h,i,j and 4g,h,i,j). Interestingly, 
the response functions suggest physiological tolerance ranges sim-
ilar to those species that are present in eastern Australia (compare 
Figure 2b,c). The absences of these species from eastern Australia 

do therefore not appear to be related to temperature conditions. 
Similarly, P. comosa does not occupy areas of temperatures within 
its tolerance range in western and south-western Australia. Summer 
SST was also the main predictor (Table 2) for the final group of 
widespread seaweeds with records in relatively warm tropical and 
subtropical waters (Sargassum linearifolium, S. spinuligerum and 
Phyllotricha verruculosa) (Figures 2d, 3k,l,m and 4k,l,m, Appendix S2). 
However, with few presence records reported from warmer relative 
to cooler areas, additional field records should be evaluated to in-
crease confidence in the predicted responses of these species.

Environmental 
predictors CRET SDOR SLIN SSPI PVER SDER XGLA

SST January (summer) 73.8** 59.4* 61.3** 41.7* 69.2** 0.1 16.3

SST July (winter) 3.9 1.3 0.0 0.3 29.3** 1.5 22.2*

Dissolved Nitrogen 7.4 27.6 5.1 22.6 0.4 37.3** 54.9**

Dissolved Phosphorus 0.7 0.0 0.1 0.4 0.2 8.4 0.2

Primary Productivity 
July

0.5 1.7 0.7 1.9 0.2 13.8 1.8

Primary Productivity 
October

0.2 0.1 0.1 3.3 0.0 28.8 1.5

Salinity 0.7 2** 26.4** 11.6** 0.6 7.2 3.0

Surface Currents 
October

0.0 3.9 0.5 8.0 0.2 1.3 0.0

Surface Currents April 12.8 4.1 5.8 10.3 0.0 1.6 0.2

Number of grid cells with 
presences (N)

63 60 59 43 69 46 26

AUC MAXENT 0.893 0.904 0.855 0.845 0.857 0.788 0.977

MEAN AUC 70%a 
MAXENT

0.903 0.912 0.859 0.846 0.863 0.788 0.978

AUC FINAL MODEL 
MAXENT

0.838 0.878 0.826 0.793 0.858 0.647 0.974

Sensitivity MAXENT 98.4 93.3 94.9 79.1 95.6 65.2 100.0

Specificity MAXENT 76.4 81.7 74.7 78.8 70.9 83.4 93.2

Kappa MAXENT 0.291 0.324 0.217 0.280 0.229 0.224 0.570

AUC simple GLM 0.892 0.897 0.864 0.831 0.873 0.796 0.988

Kappa simple GLM 0.250 0.243 0.202 0.142 0.212 0.163 0.535

AUC GAM 0.891 0.898 0.861 0.832 0.871 0.793 0.988

Kappa GAM 0.239 0.250 0.188 0.145 0.227 0.170 0.558

SPECIES CODES: MPYR—Macrocystis pyrifera, DPOT—Durvillaea potatorum, XCHO—Xiphophora chondrophylla, PCOM—Phyllospora comosa, CRER—
Cystophora retroflexa, ERAD—Ecklonia radiata, CSUB—Cystophora subfarcinata, PDEC—Phyllotricha decipiens, CRET—Cystophora retorta, SDOR—
Scytothalia dorycarpa, SLIN—Sargassum linearifolium, SSPI—Sargassum spinuligerum, PVER—Phyllotricha verruculosa, SDER—Sargassopsis decurrens, 
XGLA—Xiphophora gladiata.
MAXENT per cent contribution scores ≥20% in bold.
*Significant after GLM or GAM (BIOMOD2 software).
**Significant after GLM and GAM.
aMean AUC values of 70% test data were based on 10 replicate data split (70%–30%) with associated standard errors (SE) ≤0.007. AUC: 1-0.9 good, 
0.9- 0.8 fair, 0.8-0.7 poor, 0.7-0.6 fail, following Swets (1988).
Reported values are the area under the curve (AUC) of a receiver operating characteristic plot (ROC) calibrated on all data (AUC 100%) and on the test 
datasets generated after cross-validation (mean value after 10-fold cross-validation using 70-30% partitioning calculated with MAXENT) for the full 
models (all predictors) and the final reduced models. Sensitivity (ratio of corrected classified presences), Specificity (ratio of corrected classified ab-
sences) and Kappa coefficient (k).

TABLE  2  (Continued)
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While relationships with summer SST’s were strongest for most 
species, the contribution of temperature to the distribution of five 
species (M. pyrifera, C. subfarcinata, P. decipiens, P. verruculosa and 
X. gladiata) was further demonstrated by significant relationships 
with winter SST’s (Table 2, Appendix S2). In particular, winter SST 
ranked highest in the models for P. decipiens (over summer SST, 
which was not significant using GLMs and GAMs). The influence of 
the warm Leeuwin Current, which is particularly intense during win-
ter, can be seen in the projections for these species as low habitat 
suitability on the western temperate coast and towards the inner 
Great Australian Bight (see Figures 3a,g,h,m and 4a,g,h,m). For 
one species, Xiphophora gladiata, the distribution was significantly 
related to winter SST but not summer SST by both MAXENT and 
regression-like methods (Table 2, Appendix S2). X. gladiata is found 
within a narrow thermal tolerance window of low temperatures 
along a short coastal fringe in south-eastern Australia and Tasmania 
(Figure 5) where SST’s vary little (Appendix S2).

Seawater nitrogen concentration was the variable most often 
selected among the non-climatic predictors considered in this 
study and the primary predictor for the distributions of X. gladiata 
and Sargassopsis decurrens (Table 2). As mentioned above, X. gladi-
ata is restricted to the cold and nutrient-rich waters off Tasmania, 
whereas S. decurrens is most common in nutrient-poor tropical 
waters but is also found in temperate regions except Tasmania 
(Figure 5). Being present across broad temperature regimes S. de-
currens can be considered a generalist with wide thermal toler-
ances. Seawater nitrogen concentration was also a significant 
predictor of the distribution of at least four other fucoids, al-
though ranked in a distant second position with few consensus 
among methods (Table 2). It is, however, uncertain if the relation-
ships with seawater nitrogen are causal because with the excep-
tion of X. gladiata, responses curves suggested the species being 
favoured by low-nutrient availability or the existence of an optimal 
range (Appendix S2), contradicting the physiological responses ex-
pected for seaweed (Lobban & Harrison, 1994). For some species, 
the shape of the response curves changed significantly when the 
contribution of other predictors was accounted for (Appendix S2), 
suggesting residual variance in this parameter.

3.2 | Accuracy of models and projections

Overall, GLMs and GAMs were significant for climatic factors with 
high MAXENT scores (i.e., maximal and minimal temperatures) 

F IGURE  2 Frequency of grid cell presences of target seaweeds 
at different mean Sea Surface Temperature in January (SST 
January) of (a) Macrocystis pyrifera, Durvillaea potatorum and 
Xiphophora chondrophylla; (b) Phyllospora comosa, Cystophora 
retroflexa and Ecklonia radiata; (c) Cystophora subfarcinata, 
Phyllotricha decipiens, Cystophora retorta and Scytothalia dorycarpa; 
and (d) Sargassum linearifolium, Sargassum spinuligerum and 
Phyllotricha verruculosa. Sargassopsis decurrens and Xiphophora 
gladiata not shown as these species were not related to 
temperature (Table 2)
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showing high degree of consensus among methods, but otherwise 
variable for non-climatic physical factors of large regional variation. 
The inclusion of seawater nutrient concentration and other factors 
of large regional variation, specifically salinity and surface currents, 
was dependent on the statistical method used and thus of high un-
certainty, and therefore, projections based on these parameters 
were not reliable (not shown).

Projections under different climate change scenarios all resulted 
in similar spatial patterns of change in habitat suitability, although 
suggesting different magnitudes of likely contractions (compare 
Figures 3 and 4). As expected, the most conservative RCP 2.6 sce-
nario resulted in less pessimistic poleward contractions than RCP 6.0 
(Table 3).

Area under the curve values were highly consistent among 
MAXENT, GLMs and GAMs algorithms, suggesting good 

performances of the SDMs for four species (>0.9), and high to fair dis-
crimination ability (0.9–0.8) for another 10 (Table 2). Only the model 
of Sargassopsis decurrens had poor discrimination ability. Sensitivity 
and specificity values for MAXENT (Table 2) suggested correct clas-
sification of both presences and absences, and were similar to that 
observed when using GLMs and GAMs (not shown). The latter two 
regression-like algorithms did not differ in any of the measures of 
accuracy, Kappa values being similar between them, and somewhat 
lower than those observed for MAXENT (Table 2).

4  | DISCUSSION

Our SDMs demonstrated that summer ocean temperature is by far 
the strongest predictor of species distribution for habitat-forming 

F IGURE  3 Projected maps showing the species distributional records lodged in the Australian Virtual Herbarium (green dots) and 
MAXENT logistic coefficients of habitat suitability of seaweed in temperate Australia using the projected RCP 6.0 warming scenario for 
2100. Panels b, c, d, e, f, i, j, k, l based on SST in January (summer) and panels a, g, h, m based on both in SST January (summer) and in SST 
July (winter) (cf. results in Table 2). The threshold for presence/absence suggested by the “Equal Training Sensitivity and Specificity” criterion 
is shown as a black line. No projection maps are shown for Sargassopsis decurrens and Xiphophora gladiata as their distributions were not 
strongly related to SST (cf. Table 2, Figure 5) [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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temperate seaweeds in Australia, and that projected future warm-
ing is likely to cause widespread contraction of these seaweeds. 
These climate-driven changes in distribution could potentially result 
in major impacts to ecosystem structure and function across large 
geographic areas (Wernberg, Bennett et al., 2016). Nine of the 15 
species modelled were predicted to lose >70% of their current dis-
tribution by 2100, with the iconic giant kelp Macrocystis pyrifera, and 
three prominent fucoids, namely Durvillaea potatorum, Xiphophora 
chondrophylla and Phyllospora comosa, predicted to become extinct 
in Australia under the medium-emission levels scenario RCP 6.0. The 
northern boundary of the common kelp Ecklonia radiata, a domi-
nant species of great ecological importance (Bennett et al., 2016), 
was predicted to shift southward along the western and eastern 
coastlines of the continent with the species losing almost 50% of its 
current distribution over the next 85 years. Independent statistical 

modelling methods (MAXENT, GLM and GAM) showed consensus 
in ranking summer temperature as the most important predictor. 
Projections suggested virtually the same spatial patterns for all 
RCP scenarios, with relatively small differences in the magnitude 
of likely distributional changes. Finally, the predictions in this study 
are consistent with observations of recent declines of conspicuous 
seaweeds attributed to global warming around the world, includ-
ing southern Australia (Johnson et al., 2011; Smale & Wernberg, 
2013; Wernberg, Russell, Thomsen et al., 2011; Wernberg, Bennett 
et al., 2016), Japan (Tanaka et al., 2012), southern (e.g., Díez et al., 
2012; Fernández, 2011; Nicastro et al., 2013) and northern (Moy 
& Christie, 2012) Europe, and eastern Canada (Filbee-Dexter et al., 
2016).

The mean summer SST was the main predictor of the distribution 
of habitat-forming seaweeds in temperate Australia in most of our 

F IGURE  4 Projected maps showing the species distributional records lodged in the Australian Virtual Herbarium (green dots) and 
MAXENT logistic coefficients of habitat suitability of seaweed in temperate Australia using the projected RCP 2.6 warming scenario for 
2100. Panels b, c, d, e, f, i, j, k, l based on SST in January (summer) and panels a, g, h, m based on both in SST January (summer) and in SST 
July (winter) (cf. results in Table 2). The threshold for presence/absence suggested by the “Equal Training Sensitivity and Specificity” criterion 
is shown as a black line. No projection maps are shown for Sargassopsis decurrens and Xiphophora gladiata as their distributions were not 
strongly related to SST (cf. Table 2, Figure 5) [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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models and with high consensus among statistical methods. Abiotic 
stress is known to limit the low-latitude distribution of many organ-
isms (Clarke, 1993; Hampe & Petit, 2005; Hawkins, Porter, & Felizola 
Diniz-Filho, 2003; van den Hoek, 1982a). For temperate seaweeds, 
low-latitude boundaries have been linked to ocean summer iso-
therms above the maximum thermal thresholds for survival of a crit-
ical life-cycle phase (Breeman, 1988; Eggert, 2012; van den Hoek, 

1982a; Lüning, 1990). Our results are consistent with this interpre-
tation as well as the available physiological knowledge on tolerance 
thresholds. For example, E. radiata gametophytes cannot survive be-
yond 26–29°C (tom Dieck, 1993; Novaczek, 1984), and in our study, 
E. radiata was not observed at mean temperatures above 26°C. 
Moreover, the prevalence of E. radiata decreased in areas with mean 
temperatures higher than 20°C, consistent with experiments show-
ing a negative relationship of growth of both microscopic (Mabin, 
Gribben, Fischer, & Wright, 2013; Mohring, Kendrick, Wernberg, 
Rule, & Vanderklift, 2013) and macroscopic (Bearham, Vanderklift, 
& Gunson, 2013; Hatcher, Kirkman, & Wood, 1987; Xiao et al., 2015) 
sporophytes at temperatures above 20–22°C. Our distribution re-
cords for M. pyrifera also match its survival threshold for gameto-
phytes (23–25°C (tom Dieck (Bartsch), 1993) and the poor growth 
of adult sporophytes at 20°C (Buschmann et al., 2004; Rothäusler 
et al., 2009). These results also align with experimental data demon-
strating that temperature is the dominant factor limiting the per-
formance and survival of Phyllospora comosa, Scytothalia dorycarpa, 
Sargassum spp. and Ecklonia radiata compared to non-climatic factors 
(Flukes, Wright, & Johnson, 2015; Mabin et al., 2013; Provost et al., 
2017; Xiao et al., 2015). For example, Mabin et al. (2013) and Flukes 
et al. (2015) found no effects of nitrate but strong negative effects 
of current summer temperatures (22°C) on growth and survival of 
E. radiata and P. comosa, concluding that long-term warming would 
have severe population-level effects. Consequently, although physi-
ological data are only available for very few of the modelled species, 
it appears they currently fill their thermal niches, at least within their 

F IGURE  5 Map showing the species distributional records 
lodged in the Australian Virtual Herbarium of Sargassopsis decurrens 
and Xiphophora gladiata

TABLE  3 Extent of historical and predicted future (2100) distribution under the RCP 6.0 and 2.6 climatic scenarios for 13 habitat-forming 
seaweeds in temperate Australia

RCP 6.0 RCP 2.6

Species

Historical  
distribution  
(km coastline)

Future  
distribution  
(km coastline)

Projected  
habitat loss  
(km coastline)

Projected  
habitat loss 
 (% of current  
distribution)

Future  
distribution  
(km coastline)

Projected  
habitat loss  
(km coastline)

Projected  
habitat loss  
(% of current  
distribution)

Macrocystis pyrifera 6,343 0 6,343 100 1,306 5,036 79

Durvillaea potatorum 4,126 0 4,126 100 0 4,126 100

Xiphophora 
chondrophylla

5,014 0 5,014 100 261 4,753 95

Phyllospora comosa 5,547 0 5,547 100 744 4,802 87

Cystophora retorta 8,853 246 8,607 97 1,792 7,061 80

Cystophora retroflexa 9,790 666 9,124 93 3,196 6,594 67

Phyllotricha verruculosa 11,901 1,720 10,181 86 4,556 7,345 62

Cystophora subfarcinata 9,493 1,542 7,951 84 4,433 5,060 53

Ecklonia radiata 11,462 3,365 8,097 71 5,842 5,620 49

Sargassum linearifolium 11,844 5,092 6,751 57 6,993 4,851 41

Phyllotricha decipiens 9,138 4,621 4,517 49 6,358 2,781 30

Scytothalia dorycarpa 10,300 5,522 4,778 46 7,089 3,211 31

Sargassum spinuligerum 11,190 7,209 3,981 36 8,150 3,040 27

Total length of temperate coastline was estimated to be 26,730 km. Note, projections could not be made for Sargassopsis decurrens and Xiphophora 
gladiata as the distributions of these species were not strongly related to temperature (Table 2, Figure 5).
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biogeographic provinces (cf. Waters et al., 2010). This supports the 
broader notion that the present-day distribution patterns of temper-
ate habitat-forming seaweeds are sensitive to warming, and that in-
creases in mean and extreme temperatures are likely to cause rapid 
shifts in species distributions.

In contrast to summer temperatures, we found little support for 
an overall influence of winter temperatures on the biogeography 
of most temperate Australian seaweeds. The northern limits of the 
warm-temperate Australian provinces have previously been linked 
to winter isotherms, but this is more related to the southern domi-
nance of corals (reviewed in Lüning, 1990). Nevertheless, winter heat 
did contribute significantly to explain the distribution of the giant 
kelp M. pyrifera and some canopy-forming fucoids. In New Zealand, 
13°C is the upper temperature limit for M. pyrifera gametogenesis 
(Peters & Breeman, 1993). However, this value falls within the op-
timal temperature range for gametogenesis and gametophytes in 
other Southern Hemisphere populations (South Africa, reviewed in 
Bolton, 1986) and Australian populations extend to areas of higher 
mean winter temperatures (this study). This species displays large 
plasticity in growth and life-cycle patterns among geographic areas 
making generalizations difficult (Brown, Nyman, Keogh, & Chin, 
1997). Both summer and winter ocean temperatures have been 
linked to the biogeography of this species (Hay, 1990; Lüning, 1990) 
supporting its sensitivity to warming irrespective of seasons, as con-
firmed in this study.

The response functions that link the presence of seaweeds 
with summer SST suggest that fucoids absent from eastern (e.g., 
Scytothalia dorycarpa) or western (e.g., Phyllospora comosa) Australia 
are currently not occupying all habitats with suitable environmental 
(temperature) conditions. The historic isolation by the palaeogeo-
graphic barrier maintained in the Pleistocene by the Bassian Isthmus, 
a land bridge which connected Tasmania with mainland Australia, 
could at least partially explain these absences (Waters, 2008; Waters 
et al., 2010). In addition, the southward flowing boundary currents 
(Wernberg, Thomsen et al., 2013) and complex currents and eddies 
in the transition area between the continent and Tasmania may also 
contribute to maintain the historic biogeographic isolation of the 
east coast as shown for diverse marine fauna (Waters, 2008). Other 
potential contributing mechanisms could include biotic interactions 
that differ between eastern and western Australia. For example, 
urchin-mediated barren areas dominated by encrusting coralline 
algae are common in eastern but not in western Australia (Connell 
& Irving, 2008; Waters et al., 2010). In any case, these biotic mech-
anisms did not influence, or were not captured by, our SDM’s which 
forecasted similar range contractions for temperate seaweeds on 
both coasts. This illustrates the well-known limitation of SDMs in 
niche under filling situations by biotic constrains or limited connec-
tivity between different geographic areas.

Our SDM’s and overall predictions indicated lower habitat suit-
ability at a given latitude for species on the east coast compared to the 
west coast. This likely reflects the flow of the warm East Australian 
Current, which in contrast to the west coast Leeuwin Current, is 
particularly intense in summer and also substantially stronger. Like 

other western boundary currents (Wu et al., 2012), the EAC has 
strengthened and is expected to increase further (Poloczanska et al., 
2007; Ridgway, 2007). The southward flow of both the EAC and 
the LC has been connected to range changes and tropicalization of 
Australia’s temperate ecosystems (Hyndes et al., 2016; Vergés et al., 
2014, 2016; Wernberg, Bennett et al., 2016). In eastern Tasmania, 
the increased influence of warm and nutrient-poor EAC has been 
associated with dramatic declines of giant kelp (Macrocystis pyrifera) 
forests (Johnson et al., 2011). As a consequence, in August 2012 
the Australian giant kelp forests became the first marine commu-
nity in Australia to be listed as endangered under the Environment 
Protection and Biodiversity Conservation Act (DEPENV 2012). 
Ecologist are currently gathering evidence for similar declines in 
D. potatorum, P. comosa, E. radiata and other fucoids on the east 
coast and in Tasmania. In addition to general warming, episodic ex-
treme climatic events such as the 2011 marine heatwave in Western 
Australia have been linked to ocean currents and climate change 
(Hobday et al., 2016) and represent a substantial threat to temperate 
seaweeds (Wernberg, Smale et al., 2013; Wernberg, Bennett et al., 
2016). Unfortunately, the consequences of such events are difficult 
to predict by SDMs because extremes and local variability are poorly 
resolved in projected scenarios of ocean warming. Furthermore, 
indirect effects associated with changing consumer pressure, for 
example, due to current-driven range-shifting tropical herbivores 
(Nakamura, Feary, Kanda, & Yamaoka, 2013; Wernberg, Bennett 
et al., 2016), are unaccounted for in climate projections but could 
accelerate the retreat of temperate seaweeds (Vergés et al., 2014, 
2016; Zarco-Perello, Wernberg, Langlois, & Vanderklift, 2017). Thus, 
thermal anomalies driven by variation in mesoscale warm currents, 
episodic heatwaves and cascading biological responses add a layer 
of concern above the predicted declines based on forecasted in-
creases in baseline temperatures (this study, but also see Molinos 
et al., 2015). It is unknown if adaptive responses could help deceler-
ate or offset these changes (e.g., Hoffmann & Sgro, 2011). However, 
it seems unlikely (e.g., Wernberg, Coleman et al., 2018) due to the 
relatively long generation time (~1 year) of most habitat-forming 
seaweeds and the low selection pressure for resistance against rare 
extremes and novel species interactions.

At present, it remains unknown to which extent subtropical and 
tropical seaweed species will expand to higher latitudes and, in par-
ticular, whether these will provide similar ecological functions as 
contracting temperate species. While some shifts towards warm-
affinity seaweeds have already been observed in Australia (Wernberg,  
Bennett et al., 2016) and Japan (Tanaka et al., 2012), and warm-water 
species in general are projected to expand (Molinos et al., 2015), there 
is little evidence to suggest that temperate habitat-forming seaweeds 
will be replaced by equally structurally complex habitat-forming 
warm-water species. Instead, the globally consistent pattern is that 
structurally complex habitat-forming species are replaced by small 
turf-forming species, resulting in habitat simplification with cascading 
impacts across the coastal ecosystem (reviewed in Filbee-Dexter & 
Wernberg, 2018). It is possible that more eurythermal species, such as 
the kelp E. radiata (Wernberg, de Bettignies, Bijo, & Finnegan, 2016), 
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initially could increase in abundance from competitive release follow-
ing declines in more sensitive species especially within the centre of 
E. radiata’s current and future distribution. However, our projections 
clearly suggest that the distribution of E. radiata will eventually con-
tract due to physiological constraints, causing a transition of current 
temperate marine communities in Australia into an alternative state 
of persistent turf dominated habitats of little complexity (Wernberg, 
Bennett et al., 2016). These range contractions predicted by SDMs 
will ultimately threaten numerous endemic seaweeds and seaweed-
associated species, as well as species supporting valuable commercial 
and recreational activities (Bennett et al., 2016). The expansion of spe-
cies of similar ecological functions relies on their potential to disperse 
and biotic dominance, and thus would be predicted with uncertainty 
by SDMs that are proxies of the realized tolerance to climatic and 
other physical factors.

5  | CONCLUSION

This study found strong relationships between ocean tempera-
ture, particularly in summer, and the historical and current distri-
bution of habitat-forming seaweeds across temperate Australia, 
with other environmental conditions explaining relatively little. 
With high temperatures limiting the low-latitude distribution of 
temperate seaweeds, projections of changes in distribution of 
temperate habitat-forming seaweeds suggested substantial range 
contractions under the RCP scenarios of global warming. Nine of 
15 species modelled were forecasted to lose >70% of their current 
distribution by 2100, and four prominent species, including the 
iconic giant kelp (Macrocystis pyrifera), were predicted to become 
extinct in Australia. Similar changes will likely occur in hundreds 
if not thousands of less conspicuous seaweed-associated species, 
many of which are endemic and found nowhere else in the world 
(Bennett et al., 2016). Moreover, future contractions are likely to 
also occur in other regions of the world, where evidence of decline 
of foundation seaweed is growing. While projections based on 
SDMs suffer from uncertainty thus representing crude estimates, 
they could be optimistic as they do not consider less conservative 
emission scenarios, for example, RCP 8.0, or the compounding in-
fluences of other human pressures, extreme events, ocean acidi-
fication, herbivory and other biological interactions, all of which 
are also increasing (Filbee-Dexter & Wernberg, 2018; Vergés et al., 
2014; Wernberg, Russell, Moore et al., 2011). Unless replaced by 
functionally similar species, changes of the projected magnitude, 
for such a broad suite of habitat-forming species, would have 
catastrophic consequences for Australia’s temperate marine eco-
systems and the ecosystem services they support. Little is known 
about what species might replace the temperate habitat-formers, 
but increasing evidence suggests that small structurally simple turf-
forming seaweeds will become more prominent features of temper-
ate rocky coastlines (Filbee-Dexter & Wernberg, 2018). It therefore 
seems inevitable that the coming decades will see dramatic changes 
from what currently define temperate rocky coasts of Australia.
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