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Abstract. Benthic samples were collected during two expeditions near the Antarctic Peninsula and in 
the South-Eastern Weddell Sea. During these studies, a new species of Ampharetidae Malmgren, 1867, 
Anobothrus konstantini Säring & Bick sp. nov., was found. Here we present a detailed description 
of this species. We used the traditional light microscope and scanning electron microscope (SEM) to 
identify and describe the diagnostic characters: a circular glandular band on segment 6; an elongate 
ridge between the notopodia on segment 12 and modified notochaetae on this segment; 16 thoracic, 
two intermediate and ten abdominal segments. For the first time, micro-computed tomography (micro-
CT) was used for a species description of Anobothrus. Micro-CT provided information on the shape of 
the prostomium (Ampharete-type) and the arrangement of branchiae (four pairs in two rows, without a 
gap). In addition, we provide quantitative information on the environmental niche based on sediment 
parameters (chlorophyll a content, organic matter content, chloroplast equivalent, grain size) for the new 
Anobothrus species, relevant for, e.g., species distribution modelling. Finally, an identification key for 
all Anobothrus species is provided.

Keywords. Anobothrus konstantini Säring & Bick sp. nov., Antarctic Peninsula, ecology, Filchner 
Trough, micro-CT analysis, SEM.
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Introduction
Polychaetes are one of the most speciose and dominant macrofaunal group of the Southern Ocean 
benthos (Clarke & Johnston 2003), and they are distributed in all substrates ranging from intertidal to 
abyssal depths (Schüller & Ebbe 2014). Despite comprehensive recent efforts, many species remain 
unknown. Many of the most abundant species in the Southern Ocean region belong to the hemi-sessile 
and tube-dwelling Ampharetidae (Schüller & Ebbe 2007, 2014). This family is one of the most abundant 
and species-rich among polychaetes, including so far more than 300 described species worldwide 
(Jirkov 2011; Bonifácio et al. 2015; Alalykina & Polyakova 2020; World Register of Marine Species, 
http://www.marinespecies.org). The taxonomy of Ampharetidae is complex and poorly resolved, with 
insufficient diagnoses. Major difficulties and confusion refer to different terminology and counting 
of segments and chaetigers following the prostomium. A conflict concerns the chaetae (paleae) of 
segment 2, which are excluded in the counts of chaetigers by some authors but included by others 
(Reuscher et al. 2009). The mode of counting needs to be defined to avoid uncertainties of the different 
counting expressions and misinterpretations. The terminology used in this work for counting segments, 
chaetigers, and uncinigers is shown schematically for a specimen of Anobothrus (Fig. 1).

Within the Ampharetidae Malmgren, 1867, Anobothrus Levinsen, 1884 is one of the most species-rich 
and diverse genera (Schüller & Jirkov 2013; Bonifácio et al. 2015). Anobothrus is characterized by 
modifications of the fourth-, fifth- or sixth-to-last thoracic unciniger with dorsally elevated notopodia 
and / or modified notochaetae and / or a transverse dorsal ridge between the elevated notopodia. In 
this genus, 22 species are currently considered valid, three of them having been described recently 
(Alalykina & Polyakova 2020). Species of the genus Anobothrus show a worldwide distribution 
(Alalykina & Polyakova 2020: table 3). Fourteen Anobothrus species have been described from the 
Pacific (Malmgren 1866; Hartmann-Schröder 1965; Fauchald 1972; Hilbig et al. 2000; Jirkov 2009; 
Reuscher et al. 2009; Imajima et al. 2013; Alalykina & Polyakova 2020), while only 5 species are 
reported from polar latitudes: A. laubieri (Desbruyères, 1979) from the Arctic Ocean and A. antarctica 
Monro, 1939, A. paleaodiscus Schüller & Jirkov, 2013, A. pseudoampharete Schüller, 2008 and 
A. wilhelmi Schüller & Jirkov, 2013 from the Southern Ocean.

Non-biological (seasonality of sea-ice extent, low bottom temperatures, currents, wind) and biological 
(seasonal primary production and nutrient pulses) parameters typical for polar systems shape the 
complexity of the benthic ecosystem in the Southern Ocean (Gutt et al. 2018). This study presents a 

Fig. 1. Schematic lateral view of Anobothrus konstantini Säring & Bick sp. nov. Abbreviations: see 
Material and methods. Vertical dotted line in TS6 represents circular glandular band. Vertical lines in 
TS12 represent elongated ridge between notopodia.

http://www.marinespecies.org
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detailed description of the abiotic parameters encountered at sites sampled for polychaetes to characterize 
the ecological niche, which builds a baseline for potential habitat modelling (Jansen et al. 2018) and 
species distribution modelling (Meißner et al. 2014) for the new species of Anobothrus. 

The aim of this paper is to describe a new species of Anobothrus discovered during ecological studies 
in the Antarctic Peninsula area and in the Weddell Sea (Säring et al. submitted) including a revised key 
for all species of Anobothrus described worldwide. We show how the micro-CT method can help to 
describe diagnostic features that are otherwise difficult to recognize in poorly preserved individuals. We 
finally present the key environmental factors that characterize the habitat of this species. 

Material & Methods
Study area and sample collection
Twelve specimens of Anobothrus were collected from 8 of 16 sampled stations during two expeditions 
with the RV Polarstern. The tip of the Antarctic Peninsula (Drake Passage, Bransfield Strait, North-
Western Weddell Sea) was explored during expedition PS 81 (22 Jan.–18 Mar. 2013, Gutt et al. 2013), 
while the Filchner Trough area in the South-Eastern Weddell Sea was investigated during PS 96 (6 Dec. 
2015–14 Feb. 2016, Schröder et al. 2016) (Table 1, Fig. 2; Säring et al. submitted). Water depth at the 
sampled stations ranged from 355 to 755 m. 

Samples were collected with a MUC10 equipped with eight plexiglass core liners (inner diameter 
94 mm, surface area 69.4 cm2; Säring et al. submitted). For macrofaunal samples, sediments were sieved 
over a 500-µm mesh and fixed in a 4% formaldehyde-seawater solution (borax-buffered). More details 
on sediment core handling can be found in Säring et al. (submitted). For the comparison of spatial 
distribution, we calculated the total number of individuals per identified taxon per m2 from the top until 
the bottom of the core.

For later morphological analyses, faunal samples were preserved in 70% ethanol. Environmental 
data from sediments (TOC = total organic carbon; Chla = chlorophyll a content; CPE = chloroplastic 
equivalent, grain size) were obtained from additional samples up to 5 cm depth within the same or 
additional MUC cores and have been published elsewhere (Veit-Köhler et al. 2018; Säring et al. 
2021a, b; Vanreusel et al. 2021a, b). Here, we used the sediment layer 0–1 cm for the comparison of 
the environmental parameters associated with the new species. Data for salinity and temperature of 
bottom water were obtained from data collected by the CTD at the same stations (Schröder et al. 2013, 
2016). Among the different regions, salinity varied from 34.45 psu in the North-Western Weddell Sea 
(station PS81-162-2) to 34.67 psu in the North Filchner Trough region (station PS96-017-3). The bottom 
temperature ranged from the lowest, -1.9°C, in the North-Western and South-Eastern Weddell Seas to 
0.7°C in the Drake Passage. 

Morphology
Specimens were examined using an Olympus SZH10 stereo microscope and an Olympus BH2 light 
microscope. Photographs were taken with an Olympus SZX10 stereo microscope, an Olympus BX51 
microscope and an Olympus UC30 camera. Specimens were stained with methyl blue and ShirlastainA 
to visualize specific body regions and structures. The staining fades completely when the specimens are 
returned to ethanol. Three specimens were transferred through a graded ethanol series in acetone and 
critical point dried with a Leica EM CPD300. Two of them were attached to a stub and covered with 
gold palladium and used for scanning electron microscopy (SEM). Scanning electron microscopy was 
carried out using a Zeiss DSM 960A microscope. The anterior end of the third specimen was used for 
the analysis with the micro-CT machine (Xradia 410 Versa, X-ray Microscope). The newly collected 
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Region Station no. Date Latitude
Longitude

No. 
of 

ind.

Depth 
[m]

Chla 
[µg g-1]

CPE
[µg g-1]

TOC% Silt & 
Clay%

Sand% Coarse 
Sand%

D
ra

ke
Pa

ss
ag

e PS81-235 7 Mar. 
2013

62°16.35′ S
61°10.23′ W

1 355 0.17
± 0.15

2.08
± 1.3

0.6
± 0.0

90.3
± 0.4

9.2
± 0.4

0.4
± 0.1

PS81-241 9 Mar. 
2013

62°6.60′ S
60°36.50′ W

1 403 0.16
± 0.06

0.28
± 0.1

0.8
± 0.0

89.0
± 3.5

7.0
± 1.3

4.0
± 4.9

B
ra

ns
fie

ld
 S

tra
it 

PS81-118 27 Jan. 
2013

62°26.93′ S
56°17.05′ W

0 425 0.48
± 0.00

1.74
± 0.2

0.7
± 0.0

57.8
± 10.0

31.2
± 2.1

11.0
± 7.9

PS81-202 27 Feb. 
2013

62°56.00′ S
58°0.55′ W

0 757 0.92
± 0.00

5.33
± 1.7

1.1
± 0.0

85.7
± 0.3

14.0
± 0.5

0.2
± 0.3

PS81-217 2 Mar. 
2013

62°53.25′ S
58°14.13′ W

2 532 0.31
± 0.13

1.42
± 1.1

0.4
± 0.0

38.2
± 3.3

43.1
± 0.8

18.7
± 2.5

PS81-218 2 Mar. 
2013

62°56.94′ S
58°25.73′ W

0 688 0.74
± 0.00

2.63
± 2.0

1.1
± 0.0

79.6
± 4.3

18.1
± 2.3

2.3
± 2.1

PS81-225 4 Mar. 
2013

62°56.08′ S
58°40.76′ W

1 543 0.13
± 0.11

0.90
± 0.9

0.7
± 0.0

68.2
± 3.0

24.0
± 0.7

7.8
± 2.3

N
or

th
-W

es
te

rn
W

ed
de

ll 
Se

a 
 PS81-120 28 Jan. 

2013
63°4.78′ S

54°31.45′ W
0 494 9.31

± 0.00
18.27
± 11.3

1.1
± 0.0

84.0
± 3.1

15.8
± 3.1

0.3
± 0.4

PS81-162 10 Feb. 
2013

64°0.11′ S
56°44.43′ W

0 223 5.85
± 0.00

8.58
± 2.8

2.4
± 0.0

57.4
± 1.3

42.6
± 1.3

0.0
± 0.0

PS81-163 11 Feb. 
2013

63°50.97′ S
56°25.24′ W

0 517 25.20
± 0.00

38.12
± 4.2

1.6
± 0.0

91.9
± 0.5

8.1
± 0.5

0.0
± 0.0

So
ut

h 
Fi

lc
hn

er
 

Tr
ou

gh

PS96-037 16 Jan. 
2016

75°43.30′ S
42°27.71′ W

0 391 0.33
± 0.11

4.41
± 0.8

0.4
± 0.0

77.7
± 4.3

20.1
± 1.6

2.2
± 0.8

PS96-061 21 Jan. 
2016

76°05.93′ S
30°18.23′ W

1 468 0.13
± 0.03

1.49
± 0.1

0.5
± 0.1

90.9
± 2.1

9.1
± 2.1

0.0
± 0.0

PS96-072 24 Jan. 
2016

75°51.37′ S
32°17.44′ W

1 755 0.19
± 0.04

2.88
± 0.6

0.5
± 0.0

79.7
± 0.8

19.1
± 1.0

1.2
± 0.5

N
or

th
 F

ilc
hn

er
 

Tr
ou

gh

PS96-017 4 Jan. 
2016

75°00.85′ S
32°52.51′ W

4 608 0.06
± 0.01

0.83
± 0.03

0.2
± 0.0

43.4
± 6.1

49.1
± 4.1

7.5
± 2.0

PS96-026 8 Jan. 
2016

75°15.10′ S
37°54.85′ W

1 415 0.08
± 0.06

1.49
± 1.1

0.2
± 0.1

63.2
± 19.2

33.7
± 16.3

3.0
± 2.9

PS96-048 18 Jan. 
2016

74°46.18′ S
35°20.91′ W

0 482 0.15
± 0.05

2.14
± 0.5

0.3
± 0.0

66.8
± 2.2

30.3
± 2.4

2.9
± 1.1

Table 1. Station list and sampling during RV Polarstern expeditions PS 81 (22 Jan.–18 Mar. 2013) 
around the Antarctic Peninsula (Drake Passage, Bransfield Strait, North-Western Weddell Sea) and 
PS 96 (6 Dec. 2015–4 Feb. 2016) to the South-Eastern Weddell Sea (South-Filchner Trough, North-
Filchner Trough) with the abundance of Anobothrus konstantini Säring & Bick sp. nov. (No. of ind.) for 
each station. Sediment samples for environmental characterization were collected with the multicorer 
at the same stations (Säring et al. 2021a; Vanreusel et al. 2021a). Mean and standard deviation of 
environmental parameters are given for each station. Sediment parameters: Chla = content of chlorophyll 
a; CPE = sum of chlorophyll a and phaeopigments; TOC% = total organic carbon; Silt & Clay % = grain 
size fraction < 63 µm; Sand % = grain size fraction > 63 and < 500 µm; Coarse Sand% = grain size 
fraction > 500 µm.
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Anobothrus material was deposited in the Zoologische Sammlung, Universität Rostock (ZSRO, 
Zoological collection of Rostock University). The catalogue numbers are given below. 

There is continuing confusion about the numbering anterior to the paleal segment (Day 1964; Parapar 
et al. 2012). We follow the opinion that the second segment is considered as the paleal segment; therefore, 
uncini begin on segment 6 = thoracic chaetiger 5 (Annenkova 1930; Eliason 1955; Uschakov 1965; 
Cazaux 1982; Orrhage 2001; Reuscher et al. 2009). Here we include the paleal chaetiger in our counts of 
thoracic chaetigers (thoracic chaetiger 1), as described by Reuscher et al. (2009). Furthermore, we use 
the term “intermediate segments”, as introduced by Imajima et al. (2012), for segments with neuropodia 
formed as tori (similar to those in thoracic uncinigers) but lacking notopodia and notochaetae. Therefore, 
these segments were excluded from the abdominal segment count. Fig. 1 shows a schematic overview of 
the terminology used and the counting of segments, chaetigers and uncinigers. 

Fig. 2. Sampling stations in the vicinity of the Antarctic Peninsula during RV Polarstern expedition PS 
81 (Drake Passage, Bransfield Strait, North-Western Weddell Sea, green frame) and the South-Eastern 
Weddell Sea during PS 96 (North Filchner Trough, South Filchner Trough, blue frame). Stations without 
Anobothrus konstantini Säring & Bick sp. nov. labeled with a cross. Information about sampled stations 
and number of individuals of A. konstantini Säring & Bick sp. nov. are given in Table 1. 
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Abbreviations used in the text, tables and figures
AS / AU = abdominal segment / abdominal unciniger
Chla = content of chlorophyll a
Coarse Sand% = grain size fraction > 500 µm
CPE = sum of chlorophyll a and phaeopigments
IS = intermediate segment 
PG = pygidium
Sand % = grain size fraction > 63 and < 500 µm
Silt & Clay % = grain size fraction < 63 µm
bottomT = bottom temperature (°C)
TC = thoracic chaetiger (including paleal segment) 
TOC% = total organic carbon
TS = thoracic segment (including peristomium and paleal segment) 
TU = thoracic unciniger 

Results
Class Polychaeta Grube, 1850

Order Terebelliformia Levinsen, 1883
Ampharetidae Malmgren, 1866

Family Ampharetinae Chamberlin, 1919

Genus Anobothrus Levinsen, 1844

Sosanides Hartmann-Schröder, 1965: 243–246.
Anobothrella Hartman, 1967: 155–156.
Melythasides Desbruyères, 1978: 232–246.

Type species
Ampharete gracilis Malmgren, 1866.

Generic diagnosis (after Alalykina & Polyakova (2020), Bonifácio et al. (2015), Imajima et al. 
(2013), Jirkov (2009) and Reuscher et al. (2009))
Prostomium trilobed, Ampharete-type (Jirkov 2009), without glandular ridges. Buccal tentacles smooth 
or papillose. Segments 2 and 3 can be fused; notochaetae on either segment 2 or 3 reduced, or developed 
in both segments. Three or four pairs of smooth or papillose branchiae; three pairs arising from 
segments 2–4 arranged in a transverse row, with or without a gap; fourth pair, if present, behind this 
row and originating from segment 5. A pair of median nephridial papillae, if present, behind branchiae. 
Chaetae on segment 2 present and developed as paleae, or absent. Notopodia and notochaetae on 
segment 3 may be reduced or present. 16–17 thoracic segments, 14–16 thoracic chaetigers, and 11 or 
12 thoracic uncinigers starting at segment 6. Notopodial cirri present or absent. Circular glandular band 
on thoracic unciniger 1, 2 or 3. Fourth-, fifth- or sixth-to-last thoracic unciniger with one, two or three 
modifications: elevated notopodia, a more or less pronounced glandular ridge between notopodia, and 
modified notochaetae. Subsequent thoracic uncinigers without modification but prolongated. One or two 
intermediate segments. Abdominal rudimentary notopodia absent. Pygidium with anus terminal, with or 
without numerous papillae, or with or without anal cirri.

Remarks
This generic diagnosis combines diagnoses proposed by Alalykina & Polyakova (2020), Bonifácio et al. 
(2015), Imajima et al. (2013), Jirkov (2009) and Reuscher et al. (2009), and follows the terminology of 
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counts used by Imajima et al. (2012, 2013) and Reuscher et al. (2009). Ampharetidae are usually known 
for a constant number of thoracic chaetigers and uncinigers for adult individuals (Reuscher et al. 2009; 
Stiller et al. 2020 for exclusion of Melinnidae).

Anobothrus konstantini Säring & Bick sp. nov.
urn:lsid:zoobank.org:act:6E3CCF0F-C510-4BA2-813A-CF43BDB4B744

Figs 3–6

Diagnosis
Four pairs of branchiae; three pairs in anterior transverse row with a small gap, and fourth pair posteriorly 
shifted, directly between innermost and middle branchiae of anterior row. Segment 6 (thoracic chaetiger 
5, thoracic unciniger 1) with circular glandular band. Segment 12 (thoracic chaetiger 11, thoracic 
unciniger 7) with elongated ridge between notopodia; modified notochaetae present. Segment 2 (thoracic 
chaetiger 1) with long and thin paleae, about 12–14 on each side. Sixteen thoracic segments (15 thoracic 
chaetigers, 11 thoracic uncinigers); 2 intermediate and 10 abdominal segments.

Etymology
This species is dedicated to the brother of the first author (FS), Konstantin Zülske, who will be always 
a special part of her life.

Type Material
Holotype

SOUTH-EASTERN WEDDELL SEA • body length 9.3 mm; North Filchner Trough, PS96 exp., 
station 017-3; 75°00.85′ S, 32°52.51′ W; depth 608.2 m; 4 Jan. 2016; H. Link and G. Veit-Köhler leg.; 
multicorer; ZSRO-P2655.

Paratypes
SOUTH-EASTERN WEDDELL SEA • 1 spec.; South Filchner Trough, PS96 exp., station 061-5; 
76°05.93′ S, 30°18.23′ W; depth 467.6 m; 21 Jan. 2016; same collector and sampling as for holotype; 
ZSRO-P2660 • 1 spec.; South Filchner Trough, PS96 exp., station 072-9; 75°51.37′ S, 32°17.44′ W; 
depth 755.1 m; 24 Jan. 2016; same collector and sampling as for preceding; used for SEM; ZSRO-P2661 
• 3 specs; North Filchner Trough, PS96 exp., station 017-3; 75°00.85′ S, 32°52.51′ W; depth 608.2 m; 
4 Jan. 2016; same collector and sampling as for preceding; ZSRO-P2662 • 1 spec.; North Filchner 
Trough, PS96 exp., station 026-8; 75°15.10′ S, 37°54.85′ W; depth 481.9 m; 8 Jan. 2016; same collector 
and sampling as for preceding; used for SEM; ZSRO-P2663.

Additional Material
ANTARCTIC PENINSULA • 1 spec.; Drake Passage, PS81 exp., station 235-2; 62°6.60′ S, 60°36.50’ 
W; depth 355m; 7 Mar. 2013; H. Link leg; multicorer; ZSRO-P2656 • 1 spec.; Drake Passage, PS81 
exp., station 241-5; 62°6.60′ S, 60°36.50′ W; depth 403 m; 9 Mar. 2013; same collector and sampling 
as for preceding; ZSRO-P2657 • 2 specs; Bransfield Strait, PS 81 exp., station 217-5; 62°53.25′ S, 
58°14.13′ W; depth 532 m; 2 Mar. 2013; same collector and sampling as for preceding; one specimen 
used for micro-CT; ZSRO-P2658 • 1 spec.; Bransfield Strait, PS81 exp., station 225-2; 62°56.08′ S, 
58°40.76′ W; depth 543 m; 4 Mar. 2013; same collector and sampling as for preceding; ZSRO-P2659.

Description
Complete specimens 7–13 mm long (holotype 9.3 mm), and 0.5–0.8 mm wide (holotype 0.5 mm) on 
thorax (Fig. 3D, compare Fig. 3A).

http://zoobank.org/urn:lsid:zoobank.org:act:6E3CCF0F-C510-4BA2-813A-CF43BDB4B744
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16 thoracic segments (15 thoracic chaetigers, 11 thoracic uncinigers) (Fig. 1). Thorax wider and longer 
than abdomen, abdomen tapering posteriorly (compare Figs 3A, 4A). Continuous ventral shields on 
segments 2–12 (thoracic chaetigers 1–11). Median ventral groove from segment 13 (thoracic chaetiger 
12) to pygidium.

Prostomium trilobed, anteriorly rounded, Ampharete-type (Jirkov 2009), without eye spots (compare 
Fig. 5B–C). Nuchal organs not observed. Buccal tentacles apparently smooth, observed for one specimen 
(ZSRO-P2662: paratype). 

Four pairs of branchiophores; between two groups a small gap half as wide as branchiophores. Branchiae 
were lost on almost all specimens (11), one specimen with one outer gradually tapering papillose 
branchia (compare Figs 3A, 4A). First three pairs of branchiophores arranged in anterior transversal row 
(inner, middle and outer pairs), forming a high fold, originating from segments 2–4 (thoracic chaetigers 
1–3), fourth pair of branchiae posteriorly shifted between innermost and middle branchiae of anterior 
row (Fig. 4F, compare Fig. 5A–B). Anterior end of branchiophores apparently fused together (Fig. 3D, 
compare Fig. 5A). Origin of branchiae not visible; nephridial papillae not visible. 

Segment 2 (thoracic chaetiger 1) with 12–14 long, thin and slender paleae on each side, gradually 
tapering (holotype: left, 12 paleae plus a single small palea; right, 12 paleae plus a single small palea). 
Paleae protruding clearly beyond the prostomium (Fig. 3F, compare Fig. 4A), semicircularly arranged, 
with a small thin palea at the dorsal outer margin (compare Fig. 5B).

Fig. 3. Anobothrus konstantini Säring & Bick sp. nov. Micrographs of ShirlastainA staining pattern. 
A. Complete specimen, lateral view with one outermost branchia, additional material (ZSRO-P2657). 
B. Notochaetae on segment 11 (TC 10), paratype (ZSRO-P2662). C. Modified notochaetae on segment 
12 (TC 11, TC 7), paratype (ZSRO-P2660). D. Dorsal view of anterior end, arrow: glandular circular 
band on segment 6 (TC 5, TU 1), paratype (ZSRO-P2662). E. Lateral view, arrow: reduced neuropodium 
on segment 5 (TC 4), without uncini, paratype (ZSRO-P2662). F. Lateral view of anterior end, paratype 
(ZSRO-P2662). G. Lateral view of three thoracic segments, arrow: modified notopodium with dorsal 
ridge on segment 12 (TC 11, TU 7), paratype (ZSRO-P2662). Scale bars: A = 500 µm; B = 50 µm, 
C = 20 µm; D–E = 100 µm; F–G = 200 µm.
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Notopodia from segment 3 (thoracic chaetiger 2), well developed with a simple elongated lobe, and with 
some capillary chaetae; first notopodium smaller than subsequent notopodia and slightly shifted dorsally 
(Figs 4F, 6A); notopodia without cirri or papillae. Eleven thoracic uncinigers, from segment 6 (thoracic 
chaetiger 5) to segment 16 (thoracic chaetiger 15) (Fig. 1, compare Fig. 4A). 

Segment 6 (thoracic chaetiger 5, thoracic unciniger 1) with circular glandular band (Figs 3D, 4F, 6A–B). 
Notopodia of segment 12 (thoracic chaetiger 11, thoracic unciniger 7) elevated and connected by a 
pronounced dorsal ridge (Figs 3G, 6A, compare Fig. 4K), with ciliated band (Fig. 6C).

Two intermediate segments; notopodia absent but neuropodia of thoracic type present (Figs 4L, 6E). 
Abdomen with 10 segments (10 uncinigers); notopodia and -chaetae absent. Abdominal neuropodia as 
elongated pinnules without dorsal cirri (Fig. 6D). 

Thoracic notochaetae bilimbate capillaries, tapering to slender tips (Figs 3B, 6F–H, compare Fig. 4B–
C); segment 3 (thoracic chaetiger 2) with 3–4 short notochaetae in a tuft; notochaetae of subsequent 
chaetigers arranged in two rows (Fig. 6F), anterior row with 3 shorter (compare Fig. 4C) and posterior 
row with 4 longer chaetae (compare Fig. 4B). Notochaetae of modified segment 12 (thoracic chaetiger 
11, thoracic unciniger 7) tapered more abruptly toward the tip than regular notochaetae (Figs 3C, 6I, 
compare Fig 4D–E). Thoracic neuropodia with 17–21 uncini (holotype: thoracic segment 5 with 20 
uncini, thoracic segments 10 and 16 with 17 uncini each) in one row. Thoracic uncini about 16 µm long, 
pectinated, with 6–7 teeth in lateral view, above rostral tooth 3–4 teeth in a row, and about 6 teeth in 
apical row (compare Fig. 4G–H). Neuropodia of intermediate segments with 15–22 uncini (holotype: 
intermediate segment 2 with 16 uncini), and abdominal neuropodia with 16–19 uncini (holotype: 
abdominal segments 1, 3 and 5 with 16 uncini each) in marginal position of pinnules. Abdominal uncini 
about 8 µm long, pectinated, with 5–6 teeth in lateral view, above rostral tooth 7–8 teeth in a row, about 
2 teeth in apical row (Fig. 6J–K, compare Fig. 4I–J). Number of uncini declines towards pygidium. 

Pygidium with terminal anus, without cirri but papillose folds present (Fig. 6D). 

Methyl blue staining pattern. Intensive staining of bases of noto- and neuropodia. Body uniformly 
spotted blue, without distinct pattern, but a circular glandular band on segment 6 (thoracic chaetiger 5, 
thoracic unciniger 1) becomes visible.

shirlastaina staining pattern. Staining pattern similar to methyl blue staining pattern (Fig. 3B–G, 
compare Fig. 3A), but additional structures are visible: the circular glandular band on segment 6 (thoracic 
chaetiger 5, thoracic unciniger 1) (Fig. 3D) and an elevated dorsal ridge on segment 12 (thoracic chaetiger 
11, thoracic unciniger 7) (Fig. 3G). 

Biology
Male gametes, about 9–10 µm in diameter, were observed in segments 4–11 (thoracic chaetigers 3–10) 
in one specimen, collected in January in the North Filchner Trough.

Remarks
The branchiae were lost in almost all specimens, branchiophores are apparently fused together and are 
not separated (compare Fig. 5B–D). Due to poor conservation, the segmental origin of branchiae could 
not be described in more detail. We suggest the following arrangement of branchiae of the anterior row: 
segment 2, branchiae in the middle position, segment 3, branchiae of outermost position, segment 4, 
innermost position, segment 5, branchiae in posterior position between innermost and middle branchiae 
of anterior transverse row. 
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Fig. 4. Anobothrus konstantini Säring & Bick sp. nov. A. Complete specimen with one outermost 
branchia, lateral view, arrow: dorsal ridge on segment 12 (TC 11, TU 7), additional material 
(ZSRO-P2657). B. Long thoracic notochaeta, additional material (ZSRO-P2658). C. Short thoracic 
notochaeta, additional material (ZSRO-P2658). D. Long notochaeta of the modified segment 12 (TC 
11, TU 7), additional material (ZSRO-P2658). E. Short notochaeta of the modified segment 12 (TC 11, 
TU 7), additional material (ZSRO-P2658). F. Dorsal view of the anterior end, paratype (ZSRO-P2662). 
G. Lateral view of thoracic uncinus, additional material (ZSRO-P2658). H. Frontal view of thoracic 
uncinus, additional material (ZSRO-P2658). I. Lateral view of abdominal uncinus, additional material 
(ZSRO-P2658). J. Frontal view of abdominal uncinus, additional material (ZSRO-P2658). K. Lateral 
view of three thoracic segments, arrow: dorsal ridge on segment 12 (TC 11, TU 7) with slightly elevated 
notopodia, additional material (ZSRO-P2656). L. Lateral view of last thoracic, two intermediate and first 
abdominal segments, paratype (ZSRO-P2663). Scale bars: A = 500 µm; B–E = 100 µm; F, K = 200 µm; 
G–H = 10 µm; I–J = 5 µm; L = 50 µm.
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The holotype and paratypes from the South-Eastern Weddell Sea did not show any significant differences 
in diagnostic characteristics. Specimens of the additional material showed only minor differences to 
the diagnosis of the holotype and paratypes. Therefore, the additional material was used for the light 
microscopy (Fig. 3A), drawing (Fig. 4A–E, G–K) and the micro-CT (Fig. 5). However, we found one 
modification of one specimen from the additional material (ZSRO-P2658) when analysing the images 
from the micro-CT: one pair of small and fine paleae next to the regular large and thin paleae (Fig. 5B, 
D). The small paleae are placed where newly formed chaetae are expected and may be a growing state 
(Tilic et al. 2015). However, the shape and form is different compared to the other paleae. The purpose 
of these paleae was not clearly clarified.

The presence of a reduced neuropodium on segment 5 (thoracic chaetiger 4) was presumed on one 
specimen using ShirlastainA because at the position of the thoracic neuropodia and of the same size 
as these, the same staining pattern was visible on this segment (Fig. 3E). However, uncini were not 
observed. 

Fig. 5. Anobothrus konstantini Säring & Bick sp. nov., additional material (ZSRO-P2658). Micro-CT 
graphs, additional material. A. Anterior end with arrangement of branchiae, dorsal view. B. Anterior end 
with arrangement of branchiae, frontal view (note semicircular arrangement of paleae; arrows: small 
paleae on each side). C. Frontal view of anterior end, without branchiae or paleae (note: Ampharete-type 
prostomium). D. Anterior end, transverse section of branchiae, paleae and prostomium (note arrows: 
small paleae on each side). Scale bars: A–D = 100 µm.
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Fig. 6. Anobothrus konstantini Säring & Bick sp. nov. SEM micrographs. A. Anterior end and thorax, 
dorsal view, arrows: segment 6 (thoracic chaetiger 5, thoracic unciniger 1) and segment 12 (TC 11, 
TU 7), paratype (ZSRO-P2661). B. Pores in glandular band on segment 6 (TC 5, TU 1), dorsal view, 
paratype (ZSRO-P2661). C. Elevated ridge with cilia on segment 12 (TC 11, TU 7), dorsal view, paratype 
(ZSRO-P2661). D. Posterior end with papillose pygidium, lateral view, paratype (ZSRO-P2663). E. Last 
thoracic, two intermediate and first abdominal segments, lateral view, paratype (ZSRO-P2663). F. 4 
longer and 3 shorter notochaetae of notopodium on segment 15 (TC 14, TU 10), paratype (ZSRO-P2661). 
G. Margin of short notochaetae on segment 15 (TC 14, TU 10), paratype (ZSRO-P2661). H. Margin 
of long notochaetae on segment 15 (TC 14, TU 10), paratype (ZSRO-P2661). I. Modified notochaetae 
on segment 12 (TC 11, TU 7), paratype (ZSRO-P2661). J. Abdominal uncini on abdominal segment 
8, frontal view, paratype (ZSRO-P2663). K. Abdominal uncinus on abdominal segment 8, lateral view, 
paratype (ZSRO-P2663). Scale bars: A, E = 100 µm; B, I = 2 µm; C, D = 20 µm; F, H = 10 µm; 
G = 3 µm, J–K = 1 µm.
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Uncini of the thoracic and intermediate neuropodia are about twice the size of uncini of the abdomen. A 
variation in size or shape of uncini along their row on a single neuropodium was not found. 

Due to the fixation in 4 % formaldehyde solution and the subsequent preservation in a 70% ethanol 
solution, no statement can be made about the pigmentation of fresh material. 

Anobothrus konstantini Säring & Bick sp. nov., A. bimaculatus Fauchald, 1972 and A. mancus 
Fauchald, 1972 differ from the other Anobothrus species with four pairs of branchiae and the presence 
of paleae, A. amourouxi Bonifácio, Lavesque, Bachelet & Parapar, 2015, A. anatarctica Monro 1939, 
A. glandularis (Hartmann-Schröder, 1965), A. gracilis (Malmgren, 1866), A. mironovi Jirkov, 2009, 
A. paleatus Hilbig, 2000, A. paleaodiscus Schüller & Jirkov, 2013, A. patagonicus (Kinberg, 1867), 
A. patersoni Jirkov, 2009, A. pseudoampharete Schüller, 2008, A. rubropaleatus Schüller & Jirkov, 
2013 and A. wilhelmi Schüller & Jirkov, 2013, in having 11 instead of 12 thoracic uncinigers. Within 
this group, only A. paleatus has a glandular band with an elevated ridge on the fourth-to-last thoracic 
segment (thoracic segment 14, thoracic unciniger 9) the remaining eleven Anobothrus species, as well 
as A. konstantini Säring & Bick sp. nov., show a modification of the fifth-to-last thoracic segment. 
However, due to the difference in the number of segments (12 thoracic uncinigers vs. 11 thoracic 
uncinigers), A. konstantini Säring & Bick sp. nov. posseses this character on segment 12, whereas it is 
present on segment 13 in the previously mentioned species. In addition, the first transverse band on the 
anterior part of the thorax is not mentioned for A. pseudoampharete. 

Anobothrus amourouxi, A. anatarctica, A. glandularis, A. gracilis, A. mironovi, A. paleatus, 
A. paleaodiscus and A. patersoni have a transversal band on segment 8, while A. rubropaleatus and 
A. wilhelmi have it on segment 7. Only one species, A. patagonicus, possesses a transversal band on 
segment 6, as described for A. konstantini Säring & Bick sp. nov. However, A. patagonicus differs from 
A. konstantini Säring & Bick sp. nov. by the larger body length of about 19 mm and up to 30 uncini on 
neuropodia of segment 6, while the body length A. konstantini Säring & Bick sp. nov. ranges between 7 
and 13 mm, with about 16–19 thoracic uncini on the neuropodia of segment 6.

The only two species with paleae on segment 2, four pairs of branchiae and 11 thoracic uncinigers are 
A. bimaculatus and A. mancus. However, A. bimaculatus is significantly larger (65 mm), has eyespots 
and has modified notopodia on segment 11, instead of on segment 12 as in Anobothrus konstantini 
Säring & Bick sp. nov. Anobothrus mancus is the only species with modified notopodia on segment 
12, but segments 3 and 4 are fused, and notopodia are absent on segment 3. Furthermore, A. mancus is 
missing the circular glandular band on segment 6.

Distribution
The holotype and paratypes of Anobothrus konstantini Säring & Bick sp. nov. were found in shelf 
regions in the South-Eastern Weddell Sea (North Filchner Trough and South Filchner Trough). The 
additional material was sampled from shelf regions of the Antarctic Peninsula, in the Drake Passage and 
Bransfield Strait (Fig. 2, Table 1). 

Ecology
The type material of Anobothrus konstantini Säring & Bick sp. nov. (1 holotype, 6 paratypes) was 
collected from soft sediments at water depths between 415 and 755 m from the South-Eastern Weddell 
Sea. This region is characterized by a high to constant ice cover and low bottomT (around -1.9°C, Säring 
et al. submitted: table 2; Schröder et al. 2016). The highest abundance was detected at one sampling 
site in the North Filchner Trough region (4 individuals per station), with low organic (TOC 0.2% ± 0.0) 
and the least fresh (Chla = 0.06 µg g-1 ± 0.01) material on the seafloor. This sampling site is described 
by a low amount of silt & clay (43.4%) compared to the higher amount of sand (49.1%). The remaining 
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material (3 paratypes) was found at sites with higher silt & clay (> 63.2%) and lower sand (< 33.7%) 
content, and low Chla concentrations (< 0.19 µg g-1). Anobothrus konstantini Säring & Bick sp. nov. 
occurs in a high variety of sediments, from fine mud to coarser sandy substrates in regions with low 
amount of fresh material on the seafloor.

The localities for the additional material sampled adjacent to the Antarctic Peninsula, Drake Passage 
(2 specimens) and Bransfield Strait (3 specimens), are known for no or a variable ice-cover and bottomT 
up to 0.5°C (Säring et al. submitted: table 2; Schröder et al. 2013). Nevertheless, these localities for the 
additional material show similar environmental conditions as the sampling sites of the type material: low 
Chla concentrations (< 0.31 µg g-1) and TOC content (< 0.7%), and highly variable sediment substrates 
(Table 1). 

Following the classification of functional traits by Jumars et al. (2015), A. konstantini Säring & Bick 
sp. nov. is a hemi-sessile, tube-dwelling, subsurface deposit feeder. 

Key to all species of Anobothrus Levinsen, 1844
The key accounts for the 23 species of Anobothrus Levinsen, 1844 considered valid, including the new 
species proposed here. It is modified after Bonifácio et al. (2015) and Alalykina & Polyakova (2020).

1. Paleae absent  ..................................................................................................................................... 2
– Paleae present  ................................................................................................................................... 3

2. Notochaetae always without hirsute tips; with circular band on thoracic unciniger 2  .......................
 ....................................................................................................................A. apaleatus Hilbig, 2000

– Notochaetae of modified notopodia with hirsute tips; without circular band on thoracic unciniger 2  
 ................................................................................ A. fimbriatus Imajima, Reuscher & Fiege, 2013

3. 3 pairs of branchiae in a transversal row, with or without gap  ......................................................... 4
– 4 pairs of branchiae, one transversal row or anterior and posterior rows, with or without gap  ....... 9

4. Branchiae with wide median gap  ......................................A. dayi Imajima, Reuscher & Fiege, 2013
– Branchiae without median gap  ......................................................................................................... 5

5. Segment 14 (thoracic unciniger 9) with elevated notopodia and notochaetae with hirsute 
tips  ................................................................... A. flabelligerulus Imajima, Reuscher & Fiege, 2013

– Segment 13 (thoracic unciniger 8) with elevated notopodia and notochaetae without modification  6

6. Two intermediate segments; segment 6 (thoracic unciniger 1) with circular band  ............................
 ..................................................................................... A. auriculatus Alalykina & Polyakova, 2020

– One intermediate segment, segment 7 or 8 (thoracic unciniger 2 or 3) with circular band  .............. 7

7. Segment 8 (thoracic unciniger 3) with circular band  ......... A. jirkovi Alalykina & Polyakova, 2020
– Segment 7 (thoracic unciniger 2) with circular band  ........................................................................ 8

8. Segments 2 and 3 (thoracic chaetigers 1 and 2) fused; without ventral fold; notopodia on segment 3 
present; segment 5 (thoracic chaetiger 4) with one nephridial papilla dorsally  .................................
 ..........................................................................................................A. laubieri (Desbruyères, 1979)

– Segments 2 and 3 (thoracic chaetigers 1 and 2) fused; ventral fold with 8–12 rounded papillae; 
notopodia on segment 3 absent  ............................................ A. sonne Alalykina & Polyakova, 2020
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9. 11 thoracic uncinigers  ..................................................................................................................... 10
– 12 thoracic uncinigers  ..................................................................................................................... 12

10. Segment 11 (thoracic unciniger 6) with modified notopodia; with eye spots .....................................
 ...........................................................................................................A. bimaculatus Fauchald, 1972

– Segment 12 (thoracic unciniger 7) with modified notopodia; without eye spots  ............................11

11. Segment 6 (thoracic unciniger 1) with circular glandular band; notopodia with notochaetae present 
from segment 3  ...................................................................... A. konstantini Säring & Bick sp. nov.

– Segment 6 (thoracic unciniger 1) without circular glandular band; segments 3 and 4 fused; notopodia 
and notochaetae on segment 3 absent  ...................................................... A. mancus Fauchald, 1972

12. Modified notopodia on segment 14 (thoracic unciniger 9, fourth-to-last thoracic segment)  .............
 ......................................................................................................................A. paleatus Hilbig, 2000

– Modified notopodia on segment 13 (thoracic unciniger 8, fifth-to-last thoracic segment)  ............ 13

13. Segment 6, 7 or 8 (thoracic unciniger 1, 2 or 3) without circular band; presumably dorsally shifted 
notopodia on segment 8 (thoracic unciniger 3); paleae abruptly to delicate tapering  ........................
 ................................................................................................... A. pseudoampherete Schüller, 2008

– Segment 6, 7 or 8 (thoracic unciniger 1, 2 or 3) with circular band  ............................................... 14

14. Segment 6 (thoracic unciniger 1) with circular band  .......................A. patagonicus (Kinberg, 1867)
– Segment 7 or 8 (thoracic unciniger 2 or 3) with circular band  ....................................................... 15

15. Segment 7 (thoracic unciniger 2) with circular band  ...................................................................... 16
– Segment 8 (thoracic unciniger 3) with circular band  ...................................................................... 17

16. Branchiae arranged in transversal row; two outermost branchial pairs reduced in diameter compared 
to inner branchial pairs and positioned close to each other; paleae colorless, fine and more slender 
than notochaetae  ....................................................................... A. wilhelmi Schüller & Jirkov, 2013

– First three pairs of branchiae arranged in anterior transversal row, fourth pair of branchiae posteriorly 
shifted between the two outermost branchiae of the anterior row; all branchiae with the same 
diameter; paleae stout, reddish, wider than notochaetae  ....................................................................
 .......................................................................................... A. rubropaleatus Schüller & Jirkov, 2013

17. All notochaetae with hirsute tips  .........................................................A. gracilis (Malmgren, 1866)
– Most notochaetae without hirsute tips; notochaetae of modified notopodia with or without hirsute 

tips  ................................................................................................................................................... 18

18. Modified notochaetae with hirsute tips  ........................................................................................... 19
– Modified notochaetae without hirsute tips  ...................................................................................... 21

19. 8–9 teeth on thoracic uncini in lateral view; diameter of all branchiophores almost same; paleae 
conspicuous, stout and long, originating from a prominent disc-like epidermal structure  .................
 ............................................................................................ A. paleaodiscus Schüller & Jirkov, 2013

– 5 teeth on thoracic uncini in lateral view; inner and middle or posteriorly shifted pair of branchiophores 
half as thick and / or shorter than others; without prominent disc-like epidermal structure  ........... 20

20. First three pairs of branchiae arranged in anterior transversal row, fourth pair of branchiae 
posteriorly shifted between innermost and middle branchiae of the anterior row, fourth pair of 
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branchiophores smaller and thinner than others and their branchiostyles several times shorter than 
others  .......................................................................................................... A. patersoni Jirkov, 2009

– First three pairs of branchiae arranged in anterior transversal row, fourth pair of branchiae posteriorly 
shifted between innermost and middle branchiae of the anterior row, inner and middle pairs of 
branchiophores ⅔ as long as and more slender than others  ........................A. mironovi Jirkov, 2009

21. Segment 3 with notopodia and notochaetae; 16 thoracic chaetigers; surface of branchiostyles 
papillated; 4–5 teeth on thoracic uncini in lateral view  ...........................A. antarctica Monro, 1939

– Segment 3 without or with reduced notopodia and without notochaetae; 15 thoracic chaetigers; more 
than 6 teeth on thoracic uncini in lateral view  ................................................................................ 22

22. Segment 3 (thoracic chaetiger 2) without notopodia; surface of branchiostyle smooth; 6 teeth on 
thoracic uncini in lateral view  ........................................ A. glandularis (Hartmann-Schröder, 1965)

– Segment 3 (thoracic chaetiger 2) with reduced notopodia, without notochaetae; surface of inner 
branchiostyle with transversal ciliated ridges; 6–7 teeth on thoracic uncini in lateral view  ..............
 ......................................................... A. amourouxi Bonifácio, Lavesque, Bachelet & Parapar, 2015

Discussion
Taxonomy

All specimens of A. konstantini Säring & Bick sp. nov. have 11 thoracic uncinigers starting at segment 
6, two intermediate, and 10 abdominal segments. Only one individual has been observed with a 
neuropodium-like structure on segment 5 but without uncini (Fig. 3E). The reduced neuropodium was 
detected on both sides of this segment. All other characters were identical to the remaining eleven 
specimens. It is possible that these reduced neuropodia were an artefact, or that they were not visible in 
the other specimens due to poor conditions. 

Additionally, three specimens with similar body shape and characters but with 12, instead of 11, thoracic 
uncinigers were found in the material studied but excluded here. These individuals have elevated 
notopodia with a dorsal ridge on the fifth-to last thoracic segment (thoracic unciniger 8) as it is described 
for A. patagonicus, but differ in the number of thoracic uncini: Anobothrus patatgonicus possesses up 
to 30 (Jirkov 2009) and the unidentified specimens 17–21. Due to poor conditions and damage to the 
anterior region we could neither verify a correct counting of segments nor a presence of a glandular band, 
or a fusion of segments 2 and 3. These specimens can be described elsewhere when more individuals in 
better quality are available. 

Species of Anobothrus have one or several modifications on the fourth-, fifth-, or sixth-to-last thoracic 
chaetigers: elevated notopodia and / or glandular ridge between notopodia and / or modified notochaetae. 
Anobothrus konstantini Säring & Bick sp. nov. possesses these three characters on the fifth-to-last 
thoracic segment (segment 12, thoracic chaetiger 11, thoracic unciniger 7). Additionally, another 
glandular band was observed on segment 6 (thoracic chaetiger 5, thoracic unciniger 1) using ShirlastanA 
staining (Fig. 3D). This complete circular band on the anterior thorax of Anobothrus species is often not 
clearly visible (Jirkov 2009). Within Anobothrus this character is described as absent for A. fimbriatus 
Imajima, Reuscher & Fiege, 2013 and A. dayi Imajima, Reuscher & Fiege, 2013, and is not mentioned 
in the description for A. mancus and A. pseudoampherete. However, based on the illustration in Schüller 
(2008), a modification of the notopodia on segment 8 (thoracic unciniger 3) may be assumed for the latter 
species and possibly be a hint of a circular band. In the literature, this band was compared with those 
from Melinnampharete, Eusamythella and Neosamytha (Desbruyeres 1979; Holthe 1986). However, 
the band is developed as a dorsal ridge in Melinnampharete, Eusamythella and Neosamytha, while 
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in Anobothrus it is completely circular (Jirkov 2009). Glandular pores of this band were found on the 
dorsal side using a scanning electron microscope (Fig. 6B). 

SEM micrographs are important and commonly used to detect not only epidermal structures, like pores, 
but also other hard-to-see characters. It is especially useful for small specimens and individuals in poor 
condition. Only using SEM, two rows of notochaetae were found on all thoracic chaetigers except 
for segment 3 (thoracic chaetiger 2), an anterior row with 3 shorter and a posterior row with 4 longer 
chaetae. A similar arrangement of notochaetae has been described for other Anobothrus species, e.g., 
A. amourouxi and A. wilhelmi (Schüller & Jirkov 2013; Bonifácio et al. 2015). 

A micro-computed tomography (micro-CT) scanner can also be a useful tool for studying morphological 
characters (Faulwetter et al. 2013); three-dimensional imaging could give a boost to the development of 
virtual specimen collections, allowing rapid and simultaneous access to accurate virtual representations 
of type material. This paper explores the potential of micro-computed tomography (X-ray micro-
tomography). In contrast to SEM, the advantage of micro-CT is that the examination of material is 
fast and gentle, the samples remain undamaged and are available for further investigations (Paterson 
et al. 2014). Micro-CT scanning is becoming a more widely used technique for the identification of 
new species, e.g., within the Trichobranchidae (Parapar & Hutchings 2015; Parapar et al. 2016a, b), 
and Cossuridae (Parapar et al. 2018b). Within the Ampharetidae this technique has only been utilized 
to examine the internal anatomy of Ampharete santillani (Parapar et al. 2018a). We used micro-CT 
scanning to obtain a closer insight of the anterior end, and were able to describe the prostomium and the 
arrangement of the branchiae (compare Fig. 5A–D). These characters were not visible using SEM or 
light microscopy, due to the bad condition of the specimens. Furthermore, we observed small paleae on 
the outer edge of the semicircular arrangement of the paleae (compare Fig. 5B). We could not clarify the 
purpose of these small paleae, which differed in shape and size to the remaining paleae. One assumption 
may be a growing state, based on the place where new paleae are expected (Tilic et al. 2015). To increase 
the image quality and reduce the examination time we freeze-dried our sample and cut off the posterior 
part. Due to the low number of individuals and poor condition, we did not consider a second micro-CT 
scan for this study. 

Terebelliformia, including Ampharetidae, is one of the most species-rich groups in Polychaeta, with 
around 1100 described species and a notable ecological and morphological diversity (Reuscher et al. 
2012; Eilertsen et al. 2017; Horton et al. 2021).

In addition, currently generic relationships within the Ampharetidae and the relationships of species within 
a genus, such as in Anobothrus, have not yet been clarified (Reuscher et al. 2009). The morphological 
descriptions of Anobothrus species are challenging, due to the high variation of modifications and the 
presence of many morphologically similar, small-sized species. In recent years, genetic analysis has 
been a useful tool to identify many cryptic and pseudocryptic polychaete species and record a higher 
diversity than described by morphology alone (Nygren et al. 2018). In this study, we could not perform 
genetic analyses due to preservation in 4% formaldehyde solution. To still achieve a detailed and 
unambiguous description for quantitative aspects of this new species, we carried out a multidisciplinary 
approach: traditional light microscopy with methylene blue and ShirlastanA staining to identify macro-
morphology (e.g., appendages, glands, ciliary bands), SEM to detect micro-morphology (e.g., gland 
pores, structure of chaetae and uncini), and micro-CT for internal structures and external characters 
(e.g., paleae, branchial arrangement).

Distribution and ecology 
A total of twelve individuals was found from the sampled shelf regions (355–755 m depth), whereas 
seven belong to the type material of Anobothrus konstantini Säring & Bick sp. nov., from the South-
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Eastern Weddell Sea (415–755 m depth). This region is known as a high Antarctic region with a high and 
constant ice cover, low bottomT and low input of fresh material. The remaining 5 specimens (additional 
material) are reported from the shelf regions around the Antarctic Peninsula (Drake Passage, Bransfield 
Strait, 355–543 m depth), with none or variable ice-cover and higher bottomT. However, the specimens 
from sampling sites around the Antarctic Peninsula and South-Eastern Weddell Sea showed only minor 
morphological differences. Based on current knowledge, most Anobothrus species are reported from 
the Pacific Ocean (14 species), six of which are known only from bathyal to hadal depths (Alalykina & 
Polyakova 2020; Imajima et al. 2013; Jirkov 2009). The most common and widespread species, 
A. gracilis, as well as A. dayi, A. glandularis, A. flabelligerulus Imajima, Reuscher & Fiege, 2013, 
A. mancus and A. paleatus, are found in shelf waters in the Pacific (Fauchald 1972; Hilbig et al. 2000; 
Jirkov 2009; Imajima et al. 2013), whereas A. amourouxi was described from the North Eastern Atlantic 
(Bonifácio et al. 2015). A total of five species of Anobothrus, including A. konstantini Säring & Bick 
sp. nov., are known from the Southern Ocean. Anobothrus paleaodiscus from East Antarctica, as well 
as A. pseudoampharete and A. wilhelmi from the Weddell Sea, seem to be distributed in bathyal-abyssal 
depths (1047–4720 m) (Schüller 2008; Schüller & Jirkov 2013), while A. antarctica is known from the 
circumantarctic water bodies (175–2060 m) (Jirkov 2009), and A. konstantini Säring & Bick sp. nov. so 
far only from the shelf region.

However, nothing is known about the habitat of the species of Anobothrus in terms of grain size or food 
availability parameters so far. We found no specimens of A. konstantini Säring & Bick sp. nov. at sites 
with higher fresh food input (Chla) and organic carbon (TOC), such as in the northwestern Weddell 
Sea, or in predominantly silty sediments (Table 1). Only general functional traits of Ampharetidae are 
known from the literature (Jumars et al. 2015: supplemental table A). According to this information, all 
genera within the Ampharetidae are characterized as discretely motile, tube-dwelling, surface-deposit 
feeders that use their tentacles to feed on microorganisms and particles. Combined with information on 
its general functional traits, we can assume that A. konstantini Säring & Bick sp. nov. has a preferred 
habitat with lower silt and higher sand content in the sediment and a lower content of fresh detritus on 
the surface of the sediment in the Southern Ocean.

This study is part of a larger ecological study (Säring et al. submitted) with a set of different environmental 
parameters, in which 857 polychaetes from 31 families were collected. Thirty-nine specimens were 
identified as Ampharetidae (4.5%), twelve of which belong to Anobothrus konstantini Säring & Bick 
sp. nov. It seems that the Ampharetidae have a somewhat opposite distribution to that of other deposit 
feeders, such as Maldanidae and Paraonidae, which are mostly subsurface feeders and are very abundant 
in the North-Western Weddell Sea, whereas they are less abundant in the other four regions (Säring et al. 
in prep.).

Combining taxonomic studies with the quantitative description of environmental parameters and / or 
functional traits can contribute to a better understanding of species distribution and provide the basis 
for species distribution modeling (e.g., Meißner et al. 2014). Most species descriptions, especially for 
small invertebrates, only include information on depth range and geographic distribution. Describing 
a new species including quantitative information about its habitat, as we do here, allows quantitative 
relationship analysis and can be used to predict species distributions in hard-to-reach regions or for 
changing habitats such as those expected in the Southern Ocean (Jansen et al. 2018). 
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