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Abstract: Demosponges of the genus Halichondria Fleming (1828) are common in coastal marine
ecosystems worldwide and have been well-studied over the last decades. As ecologically important
filter feeders, Halichondria species represent potentially suitable model organisms to link and fill in
existing knowledge gaps in sponge biology, providing important novel insights into the physiology
and evolution of the sponge holobiont. Here we review studies on the morphology, taxonomy,
geographic distribution, associated fauna, life history, hydrodynamic characteristics, and coordinated
behavior of Halichondria species.
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1. Introduction

The genus Halichondria Fleming (1828) [1] (Demospongiae, Porifera; subgenera Hali-
chondria and Eumastia) contains the most common marine sponge species of the North
Atlantic [2], including the common “bread-crumb” sponge Halichondria (Halichondria) pan-
icea Pallas (1766) [3] and Bowerbank’s horny sponge H. bowerbanki Burton (1930) [4]. The
most studied species, H. panicea, occurs in habitats covering a broad range of salinities,
temperatures, turbidities, and flow conditions [5,6] and has been recorded in marine in-
tertidal and sublittoral zones down to depths of more than 500 m [2]. Halichondria panicea
provides substrate for many other marine organisms, including a large and varied associ-
ated fauna [7-9], symbiotic algae [10,11], and numerous bacteria [12,13]. The life histories
of Halichondria spp. are characterized by different modes of asexual and sexual reproduc-
tion [14], with the latter revealing strong species- and habitat-specific adaptations [15-18].
Halichondria sponges are filter feeders capable of processing large volumes of seawater (up
to six times their own body volume per minute [19]) and efficiently retaining small food
particles [20], thus playing a key role in nutrient recycling of coastal marine ecosystems [8].
Modular arrangement of their leuconoid aquiferous systems [21,22] has made it possible
to study the hydrodynamic properties of the sponge filter-pump, which may help to shed
light on the evolution of complex filter-feeding systems in sponges (cf. [23]). Despite their
apparently simple bauplan without a nervous or muscular system, Halichondria spp. show
coordinated responses to changing environmental conditions, including phototactic re-
sponses of larvae [24], sponge body shape changes [25], and contractile behavior [22,26-28].
The detailed mechanisms underlying coordinated behavior in sponges are still unclear [29],
but existing data for Halichondria points out the importance of cellular communication
based on a neuronal-like ‘toolkit” and could serve as a milestone towards an improved
understanding of tissue organization in the first animals.

The vast majority of studies on Halichondria (a total of 11,100 research articles according
to Google scholar) are based on H. panicea (36.4% of total research articles) with a focus on
the biological and ecological aspects, whereas much fewer studies within these research
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fields have addressed other species, such as H. bowerbanki (4.0%), H. melanadocia Lauben-
fels (1936) [30] (1.5%), H. moorei Bergquist (1961) [31] (1.0%), or H. semitubulosa Lamarck
(1814) [32] (0.2%, Table 1).

Table 1. Number of research articles on Halichondria Fleming (1828) based on genus- and species-level
(cf. [33]) according to Google Scholar (Web of Science) along with the main Web of Science research
categories (accessed on 6 July 2022).

Species No. Articles (%) Web of Science Categories (%)
Halichondria panicea 4040 (229) 36.4 Marine Freshwater Biology (43.5), Ecology (19.2), Oceanography (16.2)
Halichondria okadai 2980 (96) 26.8 Organic Chemistry (39.6), Pharma%czlocigg;’gfg;acy (16.7), Biochemistry Molecular
Halichondria sp./spp. 1390 (73) 125 Organic Chemistry (34.3), Medicinal Chemistry (20.6), Pharmacology Pharmacy (20.6)
Genus Halichondria 723 (14) 65 Organic Chemistry (21.4), Pharma(éﬁgigigfg;acy (21.4), Biochemistry Molecular
Halichondria bowerbanki 447 (10) 4.0 Ecology (50.0), Marine Freshwater Biology (40.0), Zoology (30.0)
Halichondria japonica 260 (20) 2.3 Biochemistry Molecular Biology (30.0), Organic Chemistry (20.0), Fisheries (15.0)
Halichondria cylindrata 173 (10) 16 Organic Chemistry (70.0), Medic]igrilgi ;:;Tk;eg(i)sél;y (30.0), Biochemistry Molecular
Halichondria melanadocia 169 (17) 15 Marine Freshwater Biology (52.9), Ecology (29.4), Anatomy Morphology (50.0)
Halichondria moorei 108 (2) 1.0 Marine and Freshwater Biology (50.0), Multidisciplinary Sciences (50.0)
Halichondria sitiens 89 (5) 0.8 Biodiversity Conservation (20.0), Biology (20.0), Ecology (20.0)
Halichondria oshoro 82 (2) 0.7 Microbiology (100.0)
Halichondria 67 2) 06 Applied Chemistry (50.0), Medicinal Chemistry (50.0), Ecology (50.0)
magniconulosa ’ pp y U8, Vedicmal Lherstry (98.0), Beology (58
Halichondria semitubulosa 25 (1) 0.2 Zoology (100.0)
Halichondria cartilaginea 19 (0) 0.2 -
Halichondria genitrix 19 (0) 0.2 -
Halichondria albescens 18 (0) 0.2 -

Halichondria lutea 18 (3) 0.2 Biochemistry Molecular Biology (66.7), Ecology (66.7), Evolutionary Biology (66.7)
Halichondria coerulea 14 (1) 0.1 Ecology (100.0), Marine Freshwater Biology (100.0), Oceanography (100.0)
Halichondria glabrata 14 (2) 0.1 Anatomy and Morphology (50.0), Biology (50.0), Food Science Technology (50.0)

Halichondria diazae 13 (0) 0.1 -

Halichondria cebimarensis 12 (1) 0.1 Ecology (100.0), Marine Freshwater Biology (100.0)
Halichondria phakellioides 12 (1) 0.1 Fisheries (100.0), Limnology (100.0), Marine Freshwater Biology (100.0)
Halichondria attenuata 11 (2) 0.1 Marine Freshwater Biology (50.0), Zoology (50.0)
Halichondria contorta 10 (1) 0.1 Zoology (100.0)
Halichondria topsenti 10 (0) 0.1 -
Halichondria oblonga 9 (0) 0.1 -
Halichondria aspera 8 (0) 0.1 -
Halichondria cristata 7 (0) 0.1 -
Halichondria agglomerans 5(0) 0.0 -
Halichondria flava 5(0) 0.0 -
Halichondria kelleri 5(0) 0.0 -
Halichondria migottea 5(0) 0.0 -
Halichondria osculum 5(1) 0.0 Medicinal Chemistry (100.0), Pharmacology Pharmacy (100.0)
Halichondria colossea 4(0) 0.0 -
Halichondria marianae 4(2) 0.0 Marine Freshwater Biology (50.0), Zoology (50.0)
Halichondria prostrata 4(0) 0.0 -
Halichondria tenebrica 4(0) 0.0 -
Halichondria capensis 3(0) 0.0 -
Halichondria convolvens 3(0) 0.0 -
Halichondria elenae 3(1) 0.0 Ecology (100.0), Marine Freshwater Biology (100.0)
Other species 316 (36) 2.1 Cell biology (100.0), Zoology (100.0)
Total 11,100 (532) 100.0 Marine and Freshwater Biology (27.3), Organic Chemistry (17.5), Ecology (12.8)

Other studies have explored the metabolite chemistry of Halichondria, mainly for the
species H. okadai Kadota (1922) [34] (26.8%, Table 1), for undefined species (Halichondria
sp./spp., 12.5%), or on a genus-level (6.5%), reflecting partially unresolved and still ongoing
taxonomic revisions of Halichondria species [35]. Molecular biology, including studies on
the sponge microbiome, has mainly been investigated on H. okadai, H. japonica Kadota
(1922) [34] (2.3%), H. cylindrata Tanita & Hoshino (1989) [36] (1.6%), and H. oshoro Tanita
(1961) [37] (0.7%). Few morphological studies exist for H. melanadocia and H. glabrata
Keller (1891) [38] (0.1%), while research on the hydrodynamics of sponges has remained
restricted to H. panicea and H. coerulea Berquist (1967) [39] (0.1%). Despite the relevance
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of comparative studies on sponge cell biology, most Halichondria species have remained
understudied (2.1%, Table 1). The aim here is to provide a compilation of studies concerning
sponges in the genus Halichondria and point out existing knowledge gaps that may aid in
future studies of these ecologically important demosponges.

2. Morphology, Taxonomy, and Distribution

The genus Halichondria is placed in the animal phylum Porifera, class Demospongiae,
subclass Heteroscleromorpha, order Suberitida, and family Halichondriidae. Growth forms
of Halichondria species include encrusting, massive, occasionally irregularly branching, or
digitate sponges with smooth or papillate surfaces. An important morphological character
to separate the two subgenera, Halichondria and Eumastia, is the absence or presence of
short conical papillae on the sponge surface, respectively [2]. Members of the genus
Halichondria typically form chimneys of variable size (up to 5 cm high) with conspicuous,
relatively large oscula (2-4 mm in diameter). They are characterized by their firm but
compressible texture and variable color, from olive-green (due to symbiotic algae) over
orange-yellow to creamy-yellow [2] (cf. Appendix A, Figure Al). The siliceous spicule
skeleton of Halichondria consists exclusively of oxeas or oxea derivates in a wide size range,
which are arranged in an ectosomal crust (200-300 um thick) and appear scattered or in
tight bundles in the choanosome along with spongin fibers [2,40]. While the functional
cell morphology and number of cell types in Halichondria has remained largely unknown,
18 distinct cell types which comprise four major cell families, including contractile, digestive,
and amoeboid-neuroid cells, have recently been described in the freshwater demosponge
Spongilla lacustris [41].

Species identification is traditionally based on morphological characteristics, such as
the shape and structure of the skeleton and the size and form of spicules [42], but several
of these characters show strong intra-specific variation and are, therefore, of rather poor
quality to distinguish species. For instance, a variety of growth forms are represented by
H. panicea, ranging from thin encrusting (Figure Ala) to erect ramose (Figure Alb), which
seems to depend on the intensity of ambient water currents [43] (cf. [44]). Moreover, an
extensive overlap of spicule sizes in different species has been documented [2]. Molecular
data used in phylogenetic studies includes complete mitochondrial genomes of several
Halichondria species [45-47] and mitochondrial and ribosomal markers [48,49]. The clas-
sification of genus Halichondria, as defined in [2], is still in need of a major revision at
an ordinal level [35,50], as classification based on morphology disagrees with phyloge-
netic analyses using molecular data. Overall, morphological, biochemical, and molecular
characters applied in recent phylogenetic analyses seem to point out that Halichondria is
nonmonophyletic [51-54].

To date, about 100 Halichondria species are accepted [33,55,56]. They occur in different
types of marine habitats around the world, being widespread in European [4,11,57,58],
American [2], and Brazilian coastal waters of the Atlantic [59], but also in parts of the
Baltic Sea [60], the White Sea [61], and the Mediterranean Sea [62]. Halichondria species
also occur in the North Pacific, including Alaska [63,64], Japan [65], Korea [42,66], and the
South China Sea [67]. The closely related species H. panicea, H. bowerbanki, and other species
in this complex may serve as a suitable model to illuminate possible speciation events
due to their overlapping distribution in the North Atlantic, where H. panicea is mainly
found in shallow, protected coastal regions of the eastern parts, and shows adaptation
to frequent air exposure, while H. bowerbanki is most common in exposed habitats of the
western parts, where it tolerates high levels of siltation [11]. A molecular study based
on a part of the mitochondrial marker COI suggests that North East Pacific H. cf. panicea
is genetically distant from and forms a sister group to a species complex consisting of
European H. panicea and H. bowerbanki [53]. Halichondria panicea has also been reported
from the Tropical Southwestern Atlantic, along with other species such as H. magniconulosa
Hechtel (1965) [68], H. cebimarensis, H. tenebrica, H. migottea, H. sulfurea Carvalho & Hajdu
(2001) [59] and H. marianae Santos et al. (2018) [69]. Common species in the Pacific Ocean
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are H. japonica [65], H. okadai, H. oshoro [70], H. gageoenesis and H. muanensis Kang & Sim
(2008) [42], while H. panicea and H. bowerbanki have been reported from Alaska [63,64]
and Korea [66], respectively. Revisions of the classification system should include more
molecular data and more species and be used to reevaluate the morphological characters
used in the traditional classification [50] (cf. [53,54]).

3. The Holobiont Halichondria

Halichondria spp. occur on a variety of inorganic and organic hard substrates, including
mussel banks, small stones and rocks, and macroalgae [8,9,43,71]. The sponges themselves
provide habitat for a diverse associated fauna and various symbiotic microorganisms. The
associated epi- and endofauna of H. panicea include various Arthropoda such as skeleton
shrimps (Caprella spp.) and copepods, but also molluscs, e.g., the scallop Chlamys varia,
annelids, platyhelminths, and demersal fish that prey almost exclusively upon sponge
epifauna [7-10]. Symbiosis with the dinoflagellate Prorocentrum lima has been documented
in H. okadai [72,73], and H. panicea seems to harbor (intracellular) green algae [10,11]. How-
ever, many Halichondria species have not been investigated, indicating numerous other
yet undiscovered symbiotic interactions, e.g., with dinoflagellates, cryptophytes, microal-
gae, and diatoms [73]. While the growth of pathogenic bacteria on H. panicea can cause
sponge mortality under stagnant flow conditions [74], sponges harbor diverse microbial
assemblages that contribute positively to host metabolism and defense [12,75,76]. Hali-
chondria spp. are characterized as low microbial abundance (LMA) sponges with high
variability in their bacterial diversity across species and environments [12,13,76]. While
only 7 operational taxonomic units (OTUs) of microorganisms have been identified in
H. okadai from Korea [77], about 500 OTUs were detected in H. panicea and H. (Eumastia)
sitiens Schmidt (1870) [78] from the White Sea [76], respectively, and 1779 OTUs seem to be
unique to H. bowerbanki from the mid-Atlantic region of the eastern United States [13]. The
microbiome of H. panicea is dominated by a core taxon of Alphaproteobacteria within the
class Amylibacter which has recently been named ‘Candidatus Halichondribacter symbi-
oticus’ [12,76,79-82]. Transmission of bacterial symbionts occurs in a mixed vertical (i.e.,
direct through reproduction) and horizontal mode (i.e., indirect through the environment)
in H. bowerbanki; it is likely to vary across Halichondria species [13]. Metagenomics have
revealed that distinct viromes with low similarity to known viral sequences are associated
with H. panicea and H. sitiens, suggesting the existence of bacterial antiphage systems in
sponges [76].

Halichondria sponges and their microbial symbionts produce a broad spectrum of
mainly symbiont-derived bioactive metabolites [83] with cytotoxic or cell growth-inhibiting
properties. Substances isolated from Halichondria sponges include halichondrin B and
okadaic acid in H. okadai [72,84,85] or gymnostatins and dankastatins from an H. japon-
ica-derived fungal strain [86] which may additionally serve Halichondria sponges as a
defense mechanism against pathogens, predators, and biofouling [73,87]. Okadaic acid
is a biotoxin known for its cyto-, neuro-, immune-, embryo-, and genotoxicity in marine
animals [87-89] and has been suggested to protect the demosponge Suberites domuncula
from bacterial and parasitic infections [87]. Epibiotic H. panicea can negatively affect the
heart performance of blue mussels (Mytilus edulis), which may be due to the sponges’
release of excretory/secretory products. Such substances with cytotoxic properties and
antimicrobial activity seem to benefit H. panicea in the competition for space and food across
benthic fouling communities [90]. Neuroactive bacteria-derived compounds in H. pan-
icea [73] suggest the relevance of symbiotic interactions for essential physiological processes
such as coordinated behavior. The natural variability of sponge-microbe associations in
Halichondria seems to provide a meaningful framework for modeling symbiotic interactions
in metazoans (cf. [91]). In H. bowerbanki, for instance, changes in microbial communities
after exposure to thermal stress have been documented [92], pointing out the relevance of
future studies on sponges for assessing possible shifts in symbiont community composition
and structure in response to global warming.
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4. Life History

The life histories of Halichondria species typically include a reproductive period of
2-3 months in temperate regions [15,71,93]. Halichondria spp. are ovoviviparous and
characterized by asynchronous gameto- and embryogenesis, while habitat-specific dif-
ferences include successive hermaphroditism in White Sea populations of H. panicea and
H. sitiens [18], simultaneous hermaphroditism in H. panicea and H. bowerbanki from the
southwest coast of the Netherlands [16], incomplete gonochorism in Halichondria sp. from
Mystic Estuary, US [15], or gonochorism in H. panicea from Kiel Bight, Germany [17]. In tem-
perate regions, environmental parameters such as temperature and salinity drive the onset
of sexual reproduction in H. panicea [17]. Differentiation of gametes from somatic cells has
been observed in both H. panicea and H. semitubulosa, indicating the development of sperma-
tocytes from choanocytes or archaeocytes, a process that may be species-dependent [62,94].
The larvae of Halichondria species are typically of parenchymella type and sometimes
contain choanocyte chambers before settlement [24,95]. The release of Halichondria larvae
seems to follow a light cue, being triggered by the onset of darkness in the temperate species
H. panicea [96], while tropical H. melanadocia release larvae on exposure to light following
a period of dark adaptation [24]. Phototactic responses of larvae range from positive to
neutral to negative before settlement upon various hard substrates [24] (Figure A2a,b).

The growth of Halichondria sponges is dependent on temperature [70] and the concen-
tration of available food, which mainly consists of bacteria and phytoplankton [97]. Pump-
ing rates of H. panicea increase linearly with temperature and require relatively low energy
demands for filtering large volumes of seawater [20,98], as expressed by F/R-ratios >15.6 L
H,0 (mL O,)~!, which are comparable to other filter-feeding marine invertebrates [19]. In
contrast, the energetic cost of growth is high in sponges [20,99], with exponential growth at
a maximum rate of 4% d~! in H. panicea under natural conditions [100]. The weight-specific
growth of H. panicea is constant over sponge size, which has been pointed out as a unique
feature among most other filter-feeding invertebrates, reflecting the modular organization
of sponges [100]. A study of H. panicea from the Western Baltic Sea suggested that stored
glycogen reserves fueled sexual reproduction and that the sponges degenerated in the
end of the following year after reproduction [71]. Tissue regression and high mortality
during the colder months of the year have also been reported for temperate Halichondria
sp. from the Mystic and Thames estuaries, US [57,101] and for Halichondria bowerbanki
from New England, US [102], respectively, while the longevity of H. okadai in Japanese
waters may exceed 3 years when considering asexual reproduction, i.e., fission and fusion
of sponge fragments [14]. Halichondria panicea is capable of rapid regeneration of damaged
parts, as expressed in >3-fold increased growth rates in response to predation [103] or
during the reorganization of the aquiferous system in explant cuttings within approxi-
mately 6-10 days [22] (Figs. A2c-f), while other species, such as H. magniconulosa, seem
to regenerate at slower rates [104]. Several Halichondria species, including H. lutea Alco-
lado (1984) [105], H. magniconulosa, and H. melanadocia have been recognized as important
members of the Caribbean mangrove and coral reef communities, where they are preyed
upon by fish [106,107]. H. panicea can also serve as a food source for hermit crabs, shrimp,
large isopods (e.g., Idothea sp.), or the nudibranch Archidoris montereyensis, which may
appear in such high density that it can eliminate large and long-lived sponge popula-
tions [63,64]. Halichondria sponges play an important role in nutrient recycling of coastal
marine ecosystems due to their unique ability to retain small particles (<0.1 um) [20,108].
Regular tissue sloughing has been observed in H. panicea in response to sedimentation of
organic material and settlement of small organisms on the sponge surface [109], along with
seasonal remineralization of released H. panicea biomass following reproduction [8]. As the
water pumping activity of H. panicea leads to an accumulation of pollutants, such as heavy
metals, in direct proportion to ambient concentrations, their potential use as biomonitoring
organisms has been proposed [40,110].
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5. Hydrodynamics

As for other demosponges, the aquiferous system of Halichondria is leuconoid [21,40,111]
and characterized by choanocytes organized in small spherical chambers which create
a unidirectional flow of ambient water through a complex canal system [112,113]. The
aquiferous elements of Halichondria act like a sieve for particles of variable size due to their
aperture diameters (Figure A3a). As documented for H. panicea, they include numerous
inhalant openings (ostia; 7-32 pm) through which seawater is drawn into incurrent canals
(50-200 pm), finer incurrent canal branches (prosodi; 5 pm), and the prosopyles (1-4 um)
of choanocyte chambers (18-35 pum; Figure A3b) [113]. Here, choanocytes retain small food
particles <0.1 um [20] on their microvilli collars (Figure A4a). Each choanocyte chamber of
H. panicea contains about 40-120 choanocytes at an estimated choanocyte chamber density
of 18,000 mm 3 [113]. Water leaves choanocyte chambers through an apopyle (7-17 um;
Figure A4b) via excurrent canals (140450 um), which drain into an atrium (2.1 mm) from
where the water exits the sponge in an excurrent jet through the osculum (1.2 mm) [113]
(but see also [21]).

Each osculum represents a functional unit of aquiferous elements in a certain sponge
volume (cf. Figure A2b-d), thus characterizing Halichondria sponges with multiple oscula
as an array of several autonomous aquiferous modules [22,114,115]. The pumping rate of
each aquiferous module is directly proportional to the density of choanocyte chambers in
H. panicea [22], implying constant choanocyte densities for different Halichondria species.
However, module size seems to determine the volume-specific pumping rates of H. panicea,
which can reach a maximum of 15 mL min~! (cm3 sponge)~! in growing modules, as ob-
served in single-osculum explants [26,27] (Figure A2c,d), while the modules in multi-oscula
explants seem to pump at a lower maximum rate of 3 mL min~! (cm® sponge)~! [22], prob-
ably due to a decrease in choanocyte chamber density with increasing module volume [116].
Based on the volume-specific pumping rate and choanocyte chamber density of H. panicea,
the pumping rate per choanocyte chamber in a multi-oscula sponge can be estimated to
(3/18,000)/60 = 2.78 x 10~® mm?> s~ ! = 2778 um 3 s~!, and thus the pumping rate per
choanocyte at an average of 80 choanocytes per chamber [113], to (2778/80 = 35 um3 s71).
This value is in range with a previous estimate of (4.46 x 107 mm3 s71/95 =47 um3 s 1)
for the demosponge Haliclona permollis [113,117] (their Table 1, respectively). A recent
hydrodynamic model on the pump characteristics of leuconoid sponges assumed the
presence of flagellar vanes along with a glycocalyx mesh which distally connects the mi-
crovilli collars of choanocytes, as has been shown for the freshwater sponge Spongilla
lacustris [118,119], in order to deliver observed pump pressures [23]. These ultra-structural
features of choanocytes have so far not been documented in Halichondria (cf. Figure A4a),
pointing out the need for further studies on ultrastructure and hydrodynamic properties,
which may provide valuable insight into the evolution of demosponge filter-pump systems
(cf. [120]).

6. Coordinated Behavior

At least three different basic cell types are found in Halichondria species, including
choanocytes, pinacocytes, and amoeboid (mesohyl) cells [24,121]. The coordinated behavior
of sponge cells mediates the hydrodynamic and physical properties of the aquiferous system
required for efficient filter feeding under different environmental conditions. Communica-
tion between motile cells is the basic principle underlying continuous tissue reorganization,
regeneration, and microscale movements in sponges [122-125]—a topic which has, unfor-
tunately, so far only been addressed by a few studies on Halichondria spp. Continuous
tissue remodeling in H. panicea, as expressed by fusion, shape changes, and movement
of sponges, has been observed in aquaria and intertidal rocky pools [25]. Halichondria
japonica explants have been shown to fuse with explants of the same sponge, while they
reject cells from other H. japonica sponges or from H. okadai [126]. Several types of mesohyl
cells seem to be involved in this process of “self and nonself” recognition in H. japonica,
including amoeboid archaeocytes, motile (granule-rich) gray cells, and collencytes [126].
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Recent work on H. panicea points out the importance of cellular transport for the removal
of inedible particles from the aquiferous system [27]. At the same time, sponge sandwich
cultures may provide a suitable method (Figure AZe,f) for studying the cell types and
mechanisms mediating capture, transport, and digestion/removal of edible and inedible
particles (Figure A5).

Coordinated behavior further includes contraction of various parts of the aquiferous
system, including the osculum [26], in- and excurrent canals, ostia and apopylar open-
ings of the choanocyte chambers, resulting in reduction and temporal shut down of the
water flow through single-osculum explants of H. panicea [27,28]. Contractile behavior
is common among sponges and seems to follow species-specific cycles of distinct fre-
quency and intensity [127-131] which can be expressed in asynchronous patterns across
conspecifics in H. panicea [28,132]. Contractions can occur spontaneously in H. panicea
explants under undisturbed conditions in the laboratory and can be induced by chem-
ical messengers (y-aminobutyric acid and L-glutamate) or by mechanical stimulation
with inedible particles [28]. Coordinated contractions of different aquiferous modules
in H. panicea explants with multiple oscula have been observed in response to external
stimuli [22]. Peristaltic-like waves of contraction travel through the sponge, resulting in
osculum closure at speeds of up to 233 nm s~ ! in H. panicea (15 °C) [28]. Comparatively,
observed contraction speeds of up to 12 um s~! in the marine demosponge Tethya wilhema
(26 °C) [129] and 122 um s~ ! in the freshwater demosponge Ephydatia muelleri (21 °C) [131]
seem considerably higher, emphasizing the need for future studies on the contraction
kinetics of Halichondria species. During contractions, H. panicea shows reduced pump-
ing activity [19,26,27], an associated decrease in respiration rates [132], and local internal
oxygen depletion [133]. These physiological changes have been suggested as adaptations
to variable environmental conditions, including food limitation [134], resuspension of
sediment during storm events [135] (cf. [136]), seasonal changes in water temperature,
changes in illumination period, spawning events of other sponge species [128], and facilita-
tion of suitable habitat for specific symbiotic microorganisms [132,133]. Contractions may
serve Halichondria sponges as an important mechanism to protect the sponge filter-pump
in distinct aquiferous modules from clogging and damage and seem to be mediated by
exo- and endopinacocytes [22,27,28,134,137], while the underlying cellular pathways have
remained unclear. Previous studies have described contractile epithelial cells in sponges
that function based on a ‘toolkit” of neuronal-like elements, including sensory cilia, con-
duction pathways, and signaling molecules [41,134,138-140]. The pinacocytes of other
demosponges exhibit actomyosin-based contractility [41,130,137,139,141,142], and myosin
type II has been isolated from cells of H. okadai [143].

It is likely that communication between sponge cells in Halichondria is based on the
extracellular spreading of chemical messengers [41,123,144], neuronal-like receptors [145],
and cell contacts via cellular processes/membrane junctions [146-148]. As the abovemen-
tioned examples emphasize, cellular communication pathways require further attention in
future studies. More detailed information on the functional cell morphology of Halichondria,
as can now be accessed using whole-body single-cell RNA sequencing (cf. [41]), is needed
to shed light on the principles underlying coordinated behavior in sponges. We encourage
future work on the LMA demosponge H. panicea as a model organism to revisit functional
coordination pathways with an integral perspective on the underlying morphological
structures combining molecular, cytological, and physiological techniques.
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7. Conclusions

Halichondria sponges are well-studied and the literature represents a strong base for
our present understanding of the ecology and physiology of demosponges. Previous
work has mainly focused on H. panicea, paving the foundations for modeling sponge-
microbe interactions, hydrodynamics of the sponge filter pump, and cell communication in
demosponges. We encourage future research to fill in present knowledge gaps regarding
the functional cell morphology and filter-pump characteristics of H. panicea, along with
comparative studies including other Halichondria species, to improve and verify existing
models based on this ubiquitous demosponge genus.
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Appendix A

Figure A1l. Growth forms of Halichondria panicea Pallas (1766) in the inlet to Kerteminde Fjord,
Denmark (55°26/59” N, 10°3941” E). (a) Growing on a piece of rope, collected in November 2020 and
(b) with finger-shaped chimneys, found on wood in November 2020. Pictures: Héloise Hamel.
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Figure A2. Aquiferous module formation in Halichondria panicea. (a) Sponge cells after larval
settlement, (b) development of choanocyte chambers (cc), excurrent canals (ex-c) and an osculum
(osc) in a juvenile sponge, (c) single-osculum explant (side-view), (d) explant (top-view) with visible
incurrent (in-c) and excurrent canals (ex-c), (e) sandwich culture with choanocyte chambers (cc),
spicules (sp), and endopinacoderm (enp) lining aquiferous canals, (f) sandwich culture after addition
of edible particles (tp) for tracing water flow in the incurrent canal (in-c) which is separated from the
flow in the excurrent canal (ex-c) by endopinacocytes (enp) and mesohyl (m).

(a)

-~ ' .
v o 9200 I in-c

o Po° gexch N
o o

op 0:.0800o
°'A m.ot\

(b) —» pro in-c enp
&‘-‘ ‘-'.’- \a—‘
ex-c

Figure A3. Schematic illustration of the aquiferous system in a functional module of Halichondria
panicea. (a) Left: external surface with ostia (open circles), right: canal system with choanocyte cham-
bers (black circles) and flow direction towards osculum indicated by arrows (b) water flow (arrows)
through choanocyte chambers (cf. [111,117], their Figures 9d and 2b, respectively). Abbreviations:
exp = exopinacoderm, os = ostium, in-c = incurrent canal, enp = endopinacoderm, pro = prosopyle,
cc = choanocyte chamber, ap = apopyle, m = mesohyl, sp = spicule, ex-c = excurrent canal, at = atrium,
osc = osculum.
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Figure A4. Halichondria panicea. SEM of cryo-fractured explants. (a) Choanocyte chamber with
choanocytes (c) and their microvilli collars (mv) surrounding the flagellum (fl), (b) the fracture shows
components of the aquiferous system with prosopyles (pro) and apopyles (ap) connected to incurrent
(in-c) and excurrent canals (ex-c), respectively, embedded in mesohyl (m) with choanocyte chambers
(cc) and spicules (sp).

Recovered

Figure A5. Exposure of Halichondria panicea to different particle types. Single-osculum explant (top-
view) after (a) feeding on Rhodomonas salina (Cryptophyceae); note the red color originating from
added algae, (b) exposure to inedible ink (Pelikan Scribtol, 2 x 10*-fold diluted) for 1 h; note black
color, and (c) recovery in particle-free seawater for 24 h. Pictures: Janni Magelund Degn Larsen.
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