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1  |  INTRODUC TION

When atmospheric CO2 levels rise increasing amounts of this gas 
dissolve in seawater causing ocean acidification. This acidifica-
tion can cause seawater carbonate saturation to fall below levels 

suitable for the biogenic construction of calcareous reefs (Albright 
et al., 2018), as confirmed by the fossil record from before and 
after ocean acidification events (Hönisch et al., 2012). For example, 
volcanic activity caused a quadrupling of atmospheric CO2 levels 
201 million years ago (Mya) which acidified the ocean and triggered 
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Abstract
Calcified coralline algae are ecologically important in rocky habitats in the marine 
photic zone worldwide and there is growing concern that ocean acidification will se-
verely impact them. Laboratory studies of these algae in simulated ocean acidification 
conditions have revealed wide variability in growth, photosynthesis and calcification 
responses, making it difficult to assess their future biodiversity, abundance and con-
tribution to ecosystem function. Here, we apply molecular systematic tools to assess 
the impact of natural gradients in seawater carbonate chemistry on the biodiversity of 
coralline algae in the Mediterranean and the NW Pacific, link this to their evolution-
ary history and evaluate their potential future biodiversity and abundance. We found 
a decrease in the taxonomic diversity of coralline algae with increasing acidification 
with more than half of the species lost in high pCO2 conditions. Sporolithales is the 
oldest order (Lower Cretaceous) and diversified when ocean chemistry favoured low 
Mg calcite deposition; it is less diverse today and was the most sensitive to ocean 
acidification. Corallinales were also reduced in cover and diversity but several species 
survived at high pCO2; it is the most recent order of coralline algae and originated 
when ocean chemistry favoured aragonite and high Mg calcite deposition. The sharp 
decline in cover and thickness of coralline algal carbonate deposits at high pCO2 high-
lighted their lower fitness in response to ocean acidification. Reductions in CO2 emis-
sions are needed to limit the risk of losing coralline algal diversity.

K E Y W O R D S
adaptation, biodiversity, climate change, ecosystem engineers, evolutionary history, 
macroalgae, psbA, seaweeds

www.wileyonlinelibrary.com/journal/gcb
https://orcid.org/0000-0001-7003-3850
https://orcid.org/0000-0002-4971-1634
https://orcid.org/0000-0001-9040-9296
https://orcid.org/0000-0001-9359-3543
https://orcid.org/0000-0002-2202-0542
https://orcid.org/0000-0001-7699-7589
https://orcid.org/0000-0001-7807-4569
mailto:﻿
https://orcid.org/0000-0002-6915-2518
http://creativecommons.org/licenses/by/4.0/
mailto:jhall-spencer@plymouth.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fgcb.15757&domain=pdf&date_stamp=2021-07-16


4786  | PEÑA et al.

the extinction of around 80% of all living species on Earth. After 
ocean acidification events, weathering of rocks on land slowly in-
creased the carbonate saturation state of the ocean, allowing cal-
careous organisms to diversify over timescales of millions of years. 
Volcanic CO2 release 55.6 Mya is the closest geological analog to 
anthropogenic ocean acidification: Although it was slower than the 
present day rate of ocean acidification it led to major declines in the 
diversity and abundance of marine calcified organisms (Haynes & 
Hönisch, 2020).

Coralline algae are the only group of seaweeds that deposit cal-
cite within their cell walls (Hurd et al., 2014), and thanks to these 
mineral cell walls they have an extensive fossil record (Aguirre 
et al., 2000). As calcium carbonate ‘biofactories’, they act as eco-
system engineers (Ballesteros, 2006; Nelson, 2009; Peña et al., 
2021; Riosmena-Rodríguez et al., 2017) from the intertidal to deep 
water (down to 265 m) and from the tropics to the poles (Amado-
Filho et al., 2012; Littler et al., 1985). They stimulate the settlement 
and metamorphosis of many invertebrates, including commercially 
important species such as lobsters, scallops, sea urchins and aba-
lone (Huggett et al., 2006; Nelson, 2009). Loss of coralline algae 
simplifies coastal ecosystems (Harvey et al., 2021; Kroeker et al., 
2013) and has a negative impact on ocean health and ecosystems 
services (Hall-Spencer & Harvey, 2019). An understanding of which 
coralline algae will be able to survive the current ocean acidifica-
tion event is lacking, but needed given their critical role in coastal 
ecosystems.

Laboratory and field studies have shown that coralline algal re-
cruitment, growth, skeletal strength and survival are generally neg-
atively affected by increased CO2 (McCoy & Kamenos, 2015; Smith 
et al., 2020). Observations along natural gradients of increasing CO2 
around shallow water volcanic seep systems show that many cor-
alline algae are vulnerable to ocean acidification but a lack of tax-
onomic information in these observations is a key knowledge gap 
(Agostini et al., 2018; Fabricius et al., 2015; Kamenos et al., 2016; 
Martin et al., 2008; Porzio et al., 2011). Some coralline algae are re-
silient to ocean acidification which seems to be partly down to the 
conditions that they live in. For example, intertidal coralline algae 
can divert energy to fight ocean acidification conditions (Bradassi 
et al., 2013) and the intertidal often has rapid changes in water car-
bonate chemistry (Wootton et al., 2008). The rate of acidification 
is also important, as some coralline algae can tolerate gradual but 
not rapid change (Kamenos et al., 2013). Coralline algae are mostly 
long-lived organisms (Halfar et al., 2000, 2011); but some thin coral-
line algal crusts can grow and reproduce quickly and build resilience 
to ocean acidification conditions within a few generations (Cornwall 
et al., 2020).

Our key question is ‘Does ocean acidification change the di-
versity of coralline algal communities?’ and some clues lay in their 
fossil record. The Sporolithales, Hapalidiales, Corallinales and the 
Corallinapetrales are fully calcified orders of coralline algae (Jeong 
et al., 2021; Le Gall et al., 2010; Nelson et al., 2015; Peña et al., 
2020). The Sporolithales is the oldest of these and first appeared 
ca. 137 Mya, in the Lower Cretaceous (Peña et al., 2020). In the 

Cretaceous, surface seawater carbonate saturation levels were 
high and marine life with calcareous shells and skeletons pro-
liferated. This is when the Hapalidiales originated (ca. 116  Mya) 
followed by the Corallinales (ca. 112  Mya). A meteor strike that 
killed most dinosaurs 66  Mya caused ocean acidification which 
killed an estimated 67% of coralline algal species (Aguirre et al., 
2000; Henehan et al., 2019). After this mass extinction event 
Sporolithales diversity remained low, whereas the Hapalidiales 
diversified (Aguirre et al., 2000) and then, during an increase in 
tropical coral reefs worldwide (ca. 28–12  Mya), the Corallinales 
became highly diverse with ca. 600 species alive today (Gabrielson 
et al., 2018; Guiry & Guiry, 2021; Peña et al., 2019; Rösler et al., 
2016).

Research into the effects of ocean acidification on coralline algae 
has so far relied on the use of morphological characteristics for their 
identification, likely underestimating the impacts of ocean acidifi-
cation on their diversity. Molecular systematics show that coralline 
algae have high levels of cryptic diversity globally (Gabrielson et al., 
2018; Pardo et al., 2014; Pezzolesi et al., 2019) and are morphologi-
cally very variable and so are difficult to identify without DNA-based 
methods (Carro et al., 2014; Peña et al., 2021; Sissini et al., 2014). 
Here, we used molecular systematic tools to evaluate the impact of 
ocean acidification on the biodiversity of coralline algae along gra-
dients of increasing seawater CO2 in the Pacific and Mediterranean 
basins to assess the capacity of this important algal group to resist or 
adapt to changing ocean conditions.

2  |  MATERIAL S AND METHODS

2.1  |  Study sites and carbonate chemistry

We used natural gradients in seawater carbonate chemistry at 
seabed CO2 seeps off the volcanic coasts of Italy (Vulcano Island, 
Mediterranean Sea, 34°19′N, 139°12′E) and Japan (Shikine Island, 
North-Western Pacific, 38°25′N, 14°57′E). Physicochemical sur-
veys have established these locations as natural analogues for the 
future effects of ocean acidification, as long as care is taken to 
avoid confounding factors (Agostini et al., 2015; Boatta et al., 2013). 
Monitoring has revealed locations where benthic organisms settle, 
grow and reproduce at higher pCO2 levels than reference sites, 
but experience no differences in temperature, salinity, dissolved 
oxygen, total alkalinity, nutrients, wave exposure, current strength, 
substratum type or depth (NW Pacific: Agostini et al., 2018; Cattano 
et al., 2020; Harvey et al., 2019, 2021; Mediterranean: Aiuppa et al., 
2021; Cornwall, Revill, et al., 2017; Harvey et al., 2016; Milazzo 
et al., 2014).

In the NW Pacific, seawater pH, temperature and salinity were 
measured in situ using a TOA-DKK multisensor (WQ-22C, TOA-DKK, 
Japan) and a durafet pH sensors (Seafet, Sea-Bird Scientific, Canada) 
during June and July 2017 (published in Agostini et al., 2018). Total 
alkalinity samples were collected at each site: ‘Reference 1’ (n = 26), 
‘Reference 2’ (n = 26), ‘Increased CO2’ (n = 21), ‘High CO2 1’ (n = 41), 
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‘High CO2 2’ (n  =  4) and ‘Very high CO2’ (n  =  4), immediately fil-
tered at 0.45 μm using disposable cellulose acetate filters (Dismic; 
Advantech) and stored at room temperature in the dark until mea-
surement. Total alkalinity was measured using an auto-titrator (916 
Ti-Touch; Metrohm) with HCl at 0.1 mol L−1, and then calculated from 
the Gran function between pH 4.2 and 3.0. In the Mediterranean, 
carbonate chemistry was characterized on three visits in late May 
and June 2014 for four sites: (i) ‘Reference’, ‘Increased CO2’, ‘High 
CO2’ and ‘Very high CO2’. Temperature and salinity were measured 
in situ  using a 556 MPS YSI. Seawater pH was measured using a 
meter (Orion Star A216 pH/RDO/DO) and pH electrode (Orion 
8107BNUMD—Ross Ultra pH/AIC triode). Total alkalinity samples 
were collected at each site: ‘Reference’ (n  =  3), ‘Increased CO2’ 
(n = 3), ‘High CO2’ (n = 2) and ‘Very high CO2’ (n = 3). Total alkalin-
ity was measured using an open-cell titration system (Metrohm 809 
Titrando and 800 Dosino).

Carbonate chemistry parameters for both Shikine and Vulcano 
were calculated using the CO2SYS software (Pierrot et al., 2006). 

Measured pH, total alkalinity, temperature and salinity were used 
as the input variables, alongside the disassociation constants 
from Mehrbach et al. (1973), as adjusted by Dickson and Millero 
(1987), KSO4 using Dickson (1990), and total borate concentrations 
(Table 1).

2.2  |  Sampling and data collection

In the Mediterranean, intertidal and subtidal bedrock at four CO2 lev-
els were surveyed and sampled in May 2014 (Table 1): (i) ‘Reference’ 
(mean pCO2 385 ± 48 [SD] μatm); (ii) ‘Increased CO2’ (mean pCO2 
467 ± 33 [SD] μatm); (iii) ‘High CO2’ (mean pCO2 735 ± 315 [SD] μatm); 
and (iv) ‘Very high CO2’ (mean pCO2 1012  ±  139 [SD]  μatm). 
Intertidal bedrock was surveyed and sampled using 25  ×  25  cm 
quadrats (n = 5 per site) thrown haphazardly. Coralline algal cover 
(%, from 0—absence—to 100%) was recorded using a 5 × 5 cm grid 
in the quadrats to assist these in situ estimates. Specimens were 

TA B L E  1  Carbonate chemistry of reference and elevated pCO2 sites in the NW Pacific (Shikine Island) and Mediterranean (Vulcano 
Island). The pHT, salinity and total alkalinity (AT) were measured, others were calculated using the CO2SYS program. Values presented as 
means, with standard deviation below

pCO2 (μatm)
Salinity  
(psu)

AT (μmol 
kg−1) pHT

DIC (μmol 
kg−1)

HCO3− (μmol 
kg−1)

CO
2−

3
 (μmol 

kg−1) Ωcalcite Ωaragonite

NW Pacific

Reference

310.8 34.5 2264.8 8.14 1964.0 1742.3 211.6 5.08 3.30

46.0 0.42 15.8 0.05 34.3 55.0 22.2 0.53 0.34

Increased

530.3 34.6 2258.1 7.94 2043.0 1868.7 157.9 3.80 2.48

123.1 0.06 17.2 0.08 37.9 58.5 23.3 0.56 0.36

High CO2

763.6 34.5 2269.6 7.81 2124.2 1983.2 116.3 2.79 1.81

241.6 0.35 19.8 0.09 34.5 45.6 18.4 0.44 0.28

Very high CO2

1796.3 34.7 2268.1 7.53 2212.0 2081.6 75.8 1.82 1.19

1285.2 0.74 20.5 0.24 82.9 82.3 33.3 0.80 0.52

Mediterranean

Reference

385.2 38.2 2500.8 8.08 2186.1 1948.9 224.8 5.24 3.41

47.5 0.05 16.5 0.04 27.7 44.1 17.9 0.42 0.27

Increased

467.0 38.2 2456.7 8.01 2189.7 1981.8 193.0 4.50 2.93

32.8 0.04 69.0 0.03 13.7 21.4 8.6 0.20 0.13

High CO2

734.6 38.3 2518.7 7.87 2313.9 2132.8 157.6 3.67 2.39

314.6 0.10 2.4 0.15 72.1 104.8 42.8 1.00 0.65

Very high CO2

1012.5 38.2 2515.6 7.73 2385.6 2240.4 112.4 2.62 1.71

138.5 0.11 13.3 0.05 20.0 26.7 10.9 0.26 0.17
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collected from the quadrats of all the different thallus morpholo-
gies present (using a chisel where necessary) and placed into labelled 
ziplock bags for subsequent laboratory investigation. In the subtidal 
survey conducted at 2–6-m depth, cover was not assessed but col-
lections of specimens were made for molecular identification, as in 
the intertidal.

In the NW Pacific, intertidal bedrock and two subtidal ben-
thic habitats (bedrock and rubble) were surveyed in July 2017 for 
coralline algal cover and sampled for molecular identification at 
four different levels of seawater CO2 (Table 1): (i) ‘Reference’ (two 
sites, mean pCO2 311  ±  46 [SD]  μatm); (ii) ‘Increased CO2’ (one 
site, mean pCO2 530 ± 123 [SD] μatm); (iii) ‘High CO2’ (two sites, 
mean pCO2 764  ±  242 [SD]  μatm); and (iv) ‘Very high CO2’ (one 
site, mean pCO2 1796 ± 1285 [SD] μatm). SCUBA diving was used 
for subtidal surveys in both benthic habitats (n  =  6 per habitat 
per site) at a same depth range to the Mediterranean study site 
(2–6-m depth).

2.3  |  Molecular identification of coralline algae

Specimens were rinsed in freshwater, air-dried and preserved in zi-
plock bags with silica gel. A fragment of each specimen was cleaned 
under a stereomicroscope, then a clean part was ground into 
powder for DNA extraction. Genomic DNA was extracted using a 
NucleoSpin® 96 Tissue kit (Macherey-Nagel, GmbH and Co. KG) 
following the manufacturer's protocol. The psbA locus was ampli-
fied using primer pairs: psbA-F1/psbA-R2 and psbA-F1/psbA-600R 
(Yoon et al., 2002), and eventually the primer pair psbA21-350F/
psbA22-350R generated for coralline algae (Anglés d'Auriac et al., 
2019). The mitochondrial COI-5P fragment was PCR-amplified for 
some Mediterranean specimens using the primer pair Gaz-F1/
Gaz-R1 (Saunders, 2005). The thermal profile for psbA and COI-5P 
amplifications and PCR reactions followed Peña et al. (2015). PCR 
products were purified and sequenced by Genoscope (Bibliothèque 
du Vivant program, Centre National de Séquençage, France) and 
Eurofins (Eurofins Scientific, France). Sequences were assembled 
and aligned with the assistance of CodonCode Aligner® (CodonCode 
Corporation) and adjusted by eye using SeaView version 4 (Gouy 
et al., 2010). Sequences were submitted to the Barcode of Life Data 
Systems (project ‘NGCOR’, BOLD, http://www.bolds​ystems.org; 
Ratnasingham & Hebert, 2007) and GenBank (accession numbers 
are listed in Table S1). Calculation of genetic distance among psbA 
sequences (uncorrected p-distances) was calculated in MEGA v.6 
(Tamura et al., 2013). Putative species boundaries were estimated 
using Poisson Tree Processes model (PTP, Zhang et al., 2013) on a 
phylogenetic tree inferred from Bayesian inference analysis of psbA 
sequences using MrBayes 3.2.1 (Ronquist & Huelsenbeck, 2003). 
Analyses were performed under a generalized time-reversible with 
invariant sites heterogeneity model (GTR+I+G, jModeltest 2.1.3, 
Darriba et al., 2012), with four Markov Chain Monte Carlo method 
for 10  million generations, and tree sampling every 1000 genera-
tions. Our species delimitation was contrasted with interspecific 

divergence—uncorrected p-distances—usually applied for psbA and 
COI-5P sequences generated for coralline red algae (e.g. Hind et al., 
2016; Peña et al., 2015, 2021; Pezzolesi et al., 2017, 2019). For spe-
cies identification, sequences were compared with publicly available 
sequences of coralline algae from GenBank.

2.4  |  Carbonate biomass and complexity of 
biogenic habitat

Coralline algae collected from quadrats (n = 6) at each NW Pacific 
site (excluding the ‘Very high CO2’ area as it lacked corallines) were 
dried at 60°C, then they were weighed and decalcified using HCl. 
After decalcification, samples were rinsed with distilled water, dried 
again and re-weighed. The CaCO3 content in each site (as g 0.1 m−2)
was calculated based on the weight difference before and after de-
calcification, the estimated area occupied by each specimen within 
the quadrat (625 cm2) and adjusted with the percentage cover es-
timated for coralline algae. A further set of samples of a coralline 
algal species that was common at the low tide mark was collected 
at low water from different levels of seawater pCO2 and examined 
using micro-computed tomography (micro-CT scan, Skyscan 1172 
system). Tomography was used to illustrate changes in thickness and 
CaCO3 content of coralline algae. Parameters used were: 70 kV, 142 
µA, 13.57-µm pixel size, 180° rotational angle and a rotation step 
of 0.4°. A 0.5-mm-thick aluminium filter was used. X-ray projection 
images obtained during scanning were reconstructed with the soft-
ware NRecon (Bruker). Sections were processed with software pro-
grams CTAn and DataViewer (Bruker).

2.5  |  Statistical analyses

Differences in coralline algae cover recorded at increasing levels 
of seawater CO2 were assessed using one-way ANOVA tests, or by 
Welch and Brown–Forsythe tests if the requirement of equality of 
variance (Levene test) was not met. Site comparisons were analysed 
by post hoc Tukey's HSD tests. Statistical analyses were conducted 
by IBM® SPSS® Statistics v. 24 (IBM Corporation, license University 
of A Coruña).

3  |  RESULTS

3.1  |  Carbonate chemistry

The salinity of our NW Pacific sites was 34.5–34.7 with an alkalinity 
range of 2258–2269 μmol kg−1 compared with 38.2–38.3 and 2456–
2518 μmol kg−1 in the Mediterranean (Table 1). These are typical val-
ues for these regions. Reference conditions in the NW Pacific had 
relatively low values of around 310 μatm pCO2 compared with 385 
μatm in the Mediterranean. In both regions, increasing pCO2 levels 
resulted in significant seawater acidification down from ca. pH 8.1 at 

http://www.boldsystems.org
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reference sites to 7.53 at our ‘Very high CO2’ Pacific site (1796 μatm 
pCO2) and 7.73 at our ‘Very high CO2’ Mediterranean site (1012 μatm 
pCO2) and both of these locations had low mean aragonite seawater 
saturation levels with periods of aragonite undersaturation (Table 1).

3.2  |  Fall in coralline algal diversity at increasing 
levels of CO2

We generated 223 sequences (211 psbA and 12 COI-5P) for 221 
specimens collected (166 in the NW Pacific, 55 in the Mediterranean). 
The largest dataset (psbA) had 189 haplotype sequences with 348–
891 base pairs, with 369 variable sites. The phylogenetic tree in-
ferred from our psbA data estimated 57–90 putative species using 
the maximum likelihood approach and 66–70 putative species using 
the bayesian approach. Based on these estimates and the known 
range of infraspecific pairwise distances recorded in coralline algae 
(up to 2.92% for the highly diverse Lithophyllum byssoides (Lamarck) 
Foslie, Pezzolesi et al., 2017), we estimated that 41 coralline algal 
species were collected at our NW Pacific sites and 19 were col-
lected at our Mediterranean sites (Figure 1; Tables S1 and S2) with 
the largest infraspecific divergences found among clades within the 
Mediterranean, Neogoniolithon brassica-florida and Neogoniolithon 

sp.1 (1.9%–2.1%). These belonged to the three orders: Sporolithales, 
Hapalidiales and Corallinales, with the latter being the most diverse 
(40 spp.). No shared taxa were found between our NW Pacific and 
Mediterranean collections, and sequences generated for most of the 
taxa did not return a species match in GenBank.

Both ocean basins had a sharp decline in coralline species diversity 
with increasing CO2, in both intertidal and subtidal habitats (Figure 2; 
Table S2); 38 species found at ‘Reference’ sites were not observed in 
any of the elevated CO2 sites. Sporolithales were only detected at the 
NW Pacific Reference sites. Seven species of geniculate coralline algae, 
in four genera (Corallina, Ellisolandia, Jania and Amphiroa), were found 
at reference sites but only two species (Corallina cf. crassissima and 
Amphiroa sp.) occurred at elevated CO2. In the Mediterranean the cor-
alligenous habitat forming species L. stictiforme only occurred at the 
‘Reference’ site and epiphytic corallines (Lithophyllum cf. pustulatum, 
Lithophyllum sp. 8, L. sp. 9, Corallinales sp.) were also lost as CO2 levels 
increased above ‘Reference’ levels.

Although coralline algal diversity declined with increasing ocean 
acidification, 15 of the coralline taxa found in ‘Reference’ sites (nine 
in the NW Pacific, six in the Mediterranean) were also found living 
at elevated CO2 sites (Figure 1; Table S2). In particular, ten species 
were able to survive in the ‘High CO2’ areas although none were 
found at the ‘Very high CO2’ sites. Except for two taxa of the order 

F I G U R E  1  Species of Corallinales, 
Hapalidiales and Sporolithales coralline 
algae recorded along CO2 gradients in the 
NW Pacific and Mediterranean. For each 
order, the number of species recorded and 
the current number of species estimated 
from Algaebase (Guiry & Guiry, 2021) 
are shown in brackets. Colours show the 
different levels of ocean acidification 
(‘Reference’, ‘Increased CO2’ and ‘High 
CO2’) that the taxa were able to survive. 
Time calibration of the three calcified 
orders based on Peña et al. (2020) [Colour 
figure can be viewed at wileyonlinelibrary.
com]
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Hapalidiales (Melobesioideae sp.1 and Phymatolithon sp.5), the re-
maining species found across the CO2 gradient belonged to the order 
Corallinales. By contrast, seven species collected at ‘Increased’ and 
‘High CO2’sites were not recorded in the ‘Reference’ sites; all these 
species corresponded to the order Corallinales, and four of them be-
longed to the same genus (Lithophyllum).

3.3  |  Coralline algal cover, complexity of biogenic 
habitat and carbonate biomass

In both regions, the cover of coralline algae—expressed in 
%—decreased significantly as CO2 levels rose (Figure 3; Table S3). 
Significant differences were detected between ‘Reference’ sites and 

the ‘High CO2’ and ‘Very high CO2’sites in the intertidal (66 ± 13% 
vs. 30 ± 24% and 0% in the NW Pacific, and 67 ± 43 vs. 0% in the 
Mediterranean) as well as subtidally (93 ± 9% vs. 28 ± 2% and 0%, 
respectively in the NW Pacific).

At community scale, in both regions, as coralline algae declined, 
non-calcified macroalgae were more abundant among which we 
can list the reds Grateloupia elata (Okamura) S. Kawaguchi & H.W. 
Wang and crustose Peyssonnelia spp. and Hildenbrandia spp., the 
browns Cystoseira spp. sensu lato, Padina pavonica (Linnaeus) Thivy 
and Taonia atomaria (Woodward) J. Agardh, and the green Caulerpa 
spp., as well as large diatom colonies in the ‘Very high CO2’ NW 
Pacific site (Figure 4). In addition to the reduction in coralline cover, 
the complexity of biogenic habitat created by coralline algae de-
creased with increasing CO2. Intertidal samples of Phymatolithon sp. 

F I G U R E  2  Coralline algal species richness recorded at different levels of CO2 in the NW Pacific (a) and the Mediterranean (b). Species 
richness recorded per CO2 level is shown as well as the number of species found in subtidal, intertidal and both shore levels (overlap). ‘0’ 
indicates the absence of coralline algae at the given site
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5 (Figure 5) had thick crusts (up to 2 cm) with a diverse and abundant 
associated calcified faunal community in ‘Reference’ site conditions, 
but as CO2 levels increased the cover of this intertidal coralline alga 
decreased, forming only very thin crusts (<0.2 cm in the ‘High CO2’) 
with minimal associated calcified fauna and becoming completely 
absent at ‘Very high CO2’.

In the NW Pacific site, the coralline algal calcium carbonate per 
unit area showed a profound decline with increasing CO2 (Figure 6). 
The calcium carbonate per unit area in the ‘High CO2’ sites (7.96–
8.73  ±  4.01–7.97  g CaCO3 0.1  m−2) was <2% of that found at
‘Reference’ sites (505.77–700.48 ± 173.44–275.49 g CaCO3 0.1 m−2).
Subtidal rubble was the most impacted habitat with low amounts of 
coralline algal CaCO3 at the ‘Increased CO2’ and ‘High CO2’ sites.

4  |  DISCUSSION

This is the first molecular systematic study of the effects of ocean 
acidification on coralline algae and shows that this approach is es-
sential for an accurate understanding of how the diversity of coral-
line algae is affected by CO2 emissions (Twist et al., 2020). Highly 
diverse coralline algal assemblages were simplified under elevated 
levels of CO2. Corallinales, the most recently evolved order of the 
coralline algae (Peña et al., 2020), was the most diverse of the or-
ders we recorded and the most resilient to acidification, with 35% 
of the species present at high CO2. By contrast, only ca. 12% of the 
Hapalidiales were found in the high CO2 sites, and the Sporolithales 
disappeared with increased CO2. We expected Sporolithales and 
Hapalidiales to be more resistant to ocean acidification since they 

first appeared in a period of Earth's history when seawater CO2 lev-
els were high (600–1500  ppm) whereas Corallinales originated in 
waters with relatively low CO2 (400  ppm; Bergstrom et al., 2020; 
Hansen et al., 2013; Hönisch et al., 2012; Royer et al., 2004). A me-
socosm study of six species (Bergstrom et al., 2020) has found that 
the Sporolithales and Hapalidiales species generally had a greater 
capacity for CO2 use than the Corallinales species and related these 
differences with ocean pCO2 conditions that prevailed when each 
group originated. An experimental study on Sporolithon has shown 
that recruits were more sensitive to elevated temperature/pCO2 
than adult plants (Page & Diaz-Pulido, 2020) which may explain the 
absence of any of these taxa at our increased CO2 sites. Laboratory 
work showing the vulnerability of Sporolithon durum to ocean acidi-
fication and the resilience of Neogoniolithon (Comeau et al., 2018; 
Cornwall, Comeau, et al., 2017) and Chamberlainium sp. (Kim et al., 
2020) confirm our field results.

A lack of accurate identification of the coralline species using 
molecular tools makes comparison of our results with previous stud-
ies problematic. At Mediterranean CO2 seeps, Porzio et al. (2011) 
observed the replacement of thick coralline algal communities by 
thin crusts of Hydrolithon cruciatum—order Corallinales—at low pH 
sites. On settlement tiles at volcanic CO2 seeps, the most pH toler-
ant taxa were found to be thin crusts of Lithoporella melobesioides, 
Dawsoniolithon conicum and Porolithon onkodes (order Corallinales) 
in Papua New Guinea (Fabricius et al., 2015), and Lithophyllum, 
Titanoderma (Corallinales) and Phymatolithon (Hapalidiales) in Italy 
(Kamenos et al., 2016). In addition, except for a few experimental 
studies (e.g. Bergstrom et al., 2020; Comeau et al., 2018; Cornwall, 
Comeau, et al., 2017) that encompassed several coralline taxa 

F I G U R E  4  Representative pictures 
of coralline algal decline at ‘Reference’, 
‘Increased CO2’ and ‘High CO2’ levels in 
the NW Pacific and the Mediterranean. 
Japan intertidal (a–c) and subtidal 
(d–f); Italy intertidal (g–i) and subtidal 
(j–l) [Colour figure can be viewed at 
wileyonlinelibrary.com]
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F I G U R E  5  Reconstructed 3D images of intertidal samples of Phymatolithon sp. 5 and calcified fauna concretions along a NW Pacific CO2 
gradient. Images obtained by micro-computed tomography (surface view and vertical section). b, barnacle crustacean; B, bivalve mollusc and 
on the bottom right image r (rock); p, Phymatolithon sp. 5; s, serpulid polychate; v, vermetid mollusc
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belonging to different orders, most of the literature is focused on the 
physiological responses of a single species, and it often pertains to 
the order Corallinales because of their ecological role as reef build-
ers (e.g. Hydrolithon, Porolithon, Lithophyllum; Comeau et al., 2013; 
Martin et al., 2013; Scherner et al., 2016; Semesi et al., 2009). In 
response to ocean acidification, both acclimation and adaptation can 
be crucial to the survival and prevalence of organisms (Sunday et al., 
2014). Despite long-term exposure to increased pCO2, no evidence 
of acclimatization of the reef coralline Lithophyllum kotschyanum has 
been shown (Comeau et al., 2019) whereas Cornwall et al. (2020) 
observed that Hydrolithon reinboldii (now H. boergesenii) gained 
tolerance to ocean acidification over several generations. Our re-
sults show that 15 coralline species, most of them from the order 
Corallinales, can survive high pCO2 conditions; in particular, the 
genus Lithophyllum which is one of the most diverse genera (130 spe-
cies, Guiry & Guiry, 2021). Higher genetic diversity may give them 
an advantage over the less-resistant taxa, particularly Hapalidiales 
and Sporolithales species. On the other hand, mechanistic reasons 
related with their skeletal structure could be also involved. Kamenos 
et al. (2016) observed changes to a less reactive polymorph of 
CaCO3 in small crustose corallines growing under high pCO2 in vol-
canic CO2 vents at Ischia (Italy). In addition, the reduction of calcium 
carbonate production may particularly affect thick species (McCoy 
& Ragazzola, 2014) and it is also related with alterations in the spe-
cies dominance (McCoy et al., 2016; McCoy & Pfister, 2014).

As in many other studies along natural gradients in pCO2 we ob-
served large reductions in the cover of the coralline algae as carbon-
ate saturation state declined. The thickness and amount of CaCO3 
per unit area also declined abruptly in intertidal and subtidal rubble 
samples with increasing seawater pCO2. Samples from subtidal bed-
rock had a similar amount of CaCO3 per unit area at high pCO2 due 
to the presence of Peyssonnelia algal crusts. These observed declines 
in coralline algal thickness and cover are likely due to a combination 
of disruption to spore settlement and growth, increased energetic 
burden of skeletal maintenance, increased dissolution, and high sen-
sitivity of the unpigmented algal tissues plus disruption (Bradassi 
et al., 2013; Diaz-Pulido et al., 2012; Kato et al., 2014; McCoy & 
Kamenos, 2015; Ordoñez et al., 2017; Porzio et al., 2018). It was 
conspicuous in the field, and well illustrated using tomography, that 
a thickly encrusting species (Phymatolithon sp.5) dominated the low 
intertidal fringe of our study region of Japan but showed severe re-
ductions in cover and thickness with increased pCO2.

In the Mediterranean CO2 vents of Ischia (Italy), Porzio et al. (2011) 
recorded a decrease in the diversity and abundance of coralline algae. 
This loss of habitat complexity provided by coralline algae has many 
ecological implications. For instance, decreased size and thickness in-
creases coralline algal susceptibility to grazing (Johnson & Carpenter, 
2012; McCoy & Kamenos, 2018) and reduces their ability to com-
pete for space with other seaweeds (Kroeker et al., 2013; Linares 
et al., 2015). The knock-on effects of reduced coralline algal diversity 
and dominance by species with a thin growth form can include: re-
duced reef accretion in tropical and temperate environments (Adey, 
1978; Ballesteros, 2006; Fine et al., 2017; Goreau, 1963), reduced 

habitat provisioning for associated fauna and endolithic organisms 
(e.g. Tribollet & Payri, 2001), and alterations in epiphytic microbial 
biofilms (Huggett et al., 2018) that disrupt settlement and larval re-
cruitment of marine invertebrates (e.g. coral, sea urchins, Doropoulos 
et al., 2012; Gómez-Lemos et al., 2018; Rahmani & Ueharai, 2001; 
Steller & Cáceres-Martínez, 2009). Considering adverse effects re-
lated to the interaction with other stressors, like coastal pollution 
(Schubert et al., 2019), predatory fishery (Fragkopoulou et al., 2021) 
and the importance of their ecosystems to socio-environmental and 
economic well-being (Moura et al., 2021), besides reducing CO2 emis-
sions, further effort should look to improve ocean health as a whole 
(Laffoley et al., 2020), fostering the creation of no-take marine pro-
tected areas with focus on these reef builders to enhance their resil-
ience and survival (Sissini et al., 2020).

Here we also showed with molecular systematic tools that cor-
alline algal assemblages can be highly diverse on hard substrata in 
shallow waters. Our study, conducted in the North-Western Pacific 
ocean basin and the Mediterranean Sea, detected 60 coralline 
algal species belonging to the orders Sporolithales, Hapalidiales 
and Corallinales, with the latter being the most diverse. This rep-
resents ca. 14% of the known species of Hapalidiales and ca. 7% of 
the known species of Corallinales and Sporolithales (Guiry & Guiry, 
2021). The Japanese site was much more diverse than the Italian 
one (41 vs. 19 species) due a naturally more diverse flora in Japan 
combined to the fact that we sampled a variety of habitats (bedrock 
and rubble) but only bedrock in Italy. Most (87%) of the species de-
tected in the present study (52 out of 60) did not return a relevant 
match with the publicly available GenBank dataset (containing ca. 
3780 psbA sequences). This highlights the substantial diversity of 
coralline algae (Gabrielson et al., 2018; Pezzolesi et al., 2019) and 
emphasizes a clear need for molecular systematics tools, particularly 
in global biodiversity hotspots such as Japan (Tittensor et al., 2010) 
which remains poorly studied using this approach (except for Kato & 
Baba, 2019; Kato et al., 2011, 2013).

5  |  CONCLUSION

We show, for the first time, that ocean acidification can cause a de-
cline in the biodiversity of coralline algae. We reveal an exceedingly 
high level of cryptic diversity in the Japanese coralline algal flora and 
show that the effects of ocean acidification on coralline algal diver-
sity worldwide have previously been underestimated. It is now clear 
that identification using molecular systematics tools significantly 
advances insights into the responses of marine communities to 
global change. Shallow-water CO2 seep systems in two widely sepa-
rated biogeographic regions revealed consistent long-term, multi-
generational assemblage shifts in the coralline algae. A decrease of 
coralline algal species diversity was accompanied by a major loss in 
seabed cover and we quantify, for the first time, the extent to which 
ocean acidification reduces algal carbonate accretion. The order 
Corallinales, in particular the genus Lithophyllum, was by far the most 
diverse group of taxa able to survive ocean acidification. The ability 
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of coralline algal species to tolerate rising CO2 levels is underpinned 
by what these species experience in terms of environmental vari-
ability today, as well as their evolutionary history. Ocean acidifica-
tion reduces coralline algal habitat complexity and is projected to 
adversely affect ecosystem services, and so reductions in CO2 emis-
sions are needed to reduce risks to coastal ocean function.
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