

Assimilated materials must be metabolized and excreted

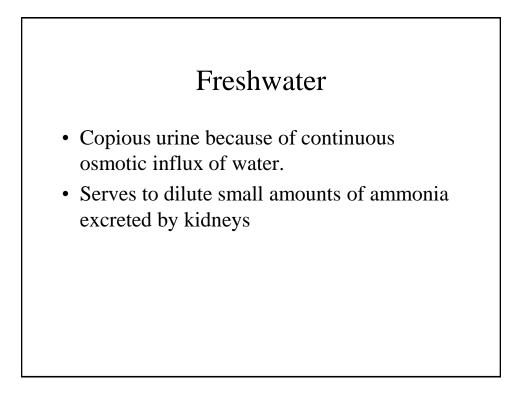
- Major end products are water, CO₂ and ammonia, with small amounts of urea, creatine, creatinine, and uric acid.
- Lipids and carbohydrates are metabolized directly to water and CO₂.
- Proteins peptides and amino acids are deaminated to yield ammonia and carbon chain oxidized to CO₂ and water.

- <u>Ammonia</u> is a gas (NH_3) and ion <u>ammonium</u> NH_4 , the sum of which is the total ammonia
- The degree to which ammonia forms the ammonium ion increases upon lowering the pH of the solution—
- Temperature and salinity also affect the proportion of NH₄⁺.

Dissociation of Ammonia Henderson-Hasselbalch Equation

- % $NH_3 \Leftrightarrow 100/(1 + antilog (pKa pH))$
- $pH = pKa + log ([NH_3/NH^{+4}])$
- The pKa is high (about 9.7 at 10°C)
- Thus little ammonia will be toxic unless water is quite alkaline (pH >> 7)

- The activity of aqueous ammonia also is <u>lower</u> at low temperatures and <u>higher</u> at warm temperatures.
- At low temperatures and low pH the activity as NH₃ is even lower, and as NH₄⁺ is even higher.
- Therefore, sensitive aquatic organisms can tolerate a higher total "ammonium-N plus ammonia-N" at low temperatures than at high temperatures due to much less aqueous NH₃ being present in the water.

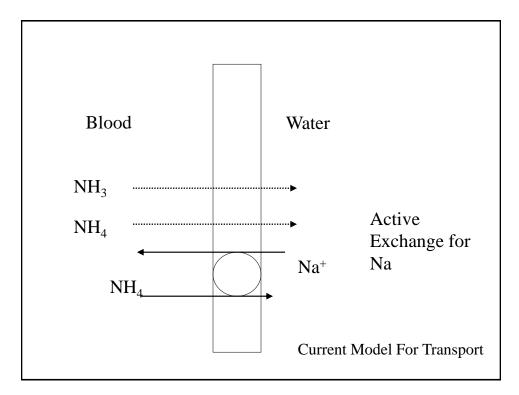

Critical Concentrations

- Un-ionized NH₃ molecules are <u>toxic</u> and can cause gill damage if higher than 0.1- 0.5 mg/L
- Amt toxic NH₃ formed is function of water pH, temperature and salinity or TDS.
- Due to solubility restraining movement is not easy.

% $NH_3 \leftrightarrow 100/(1 + antilog(pKa-pH))$

- Use charts to get an idea of this outcome
- Ammonia perturbations can affect nerve cell function, ion transport process, metabolism , pH.

	Te	empera	atures		
pН	5	10	15	20	
6.0	0.01	0.02	0.03	0.04	
6.4	0.03	0.05	0.07	0.10	Freshwater %
6.8	0.08	0.12	0.17	0.25	unionized
7.0	0.13	0.18	0.27	0.40	ammonia by
7.2	0.20	0.29	0.43	0.63	water
7.4	0.32	0.47	0.69	1.0	temperatures
7.6	0.50	0.74	1.08	1.60	From
7.8	0.79	1.16	1.71	2.45	Wedemeyer
8.0	1.24	1.83	2.68	3.83	
8.2	1.96	2.87	4.18	5.93	
8.4	3.07	4.47	6.47	9.09	
8.6	4.78	6.90	9.88	13.68	
8.8	7.36	10.51	14.80	20.07	
9.0	11.18	15.70	21.59	28.47	


Seawater

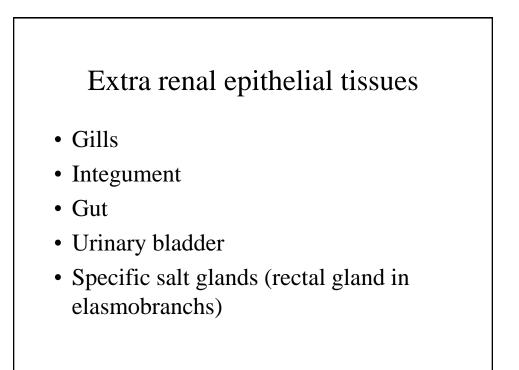
- Less urine produced and more ammonia excreted through the gills
- Sharks and rays produce urea, but as a way of increasing osmolarity of body fluids to approximately concentration seawater.

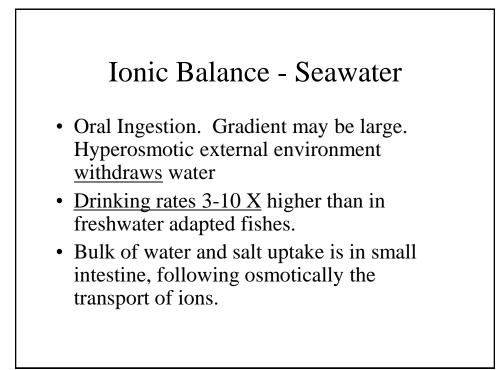
	Water temperature (°C) Seawater relationship % unionized ammonia.								
pН	5	10	15	20					
7.2	0.17	0.24	0.35	0.51					
7.4	0.26	0.38	0.56	0.81					
7.6	0.42	0.60	0.88	1.27					
7.8	0.66	0.95	1.39	2.00					
8.0	1.04	1.49	2.19	3.13					
8.2	1.63	2.34	3.43	4.88					
8.4	2.56	3.66	5.32	7.52					
8.6	4.00	5.68	8.18	11.41					
8.8	6.20	8.72	12.38	16.96					
9.0	9.48	13.15	18.29	24.45					

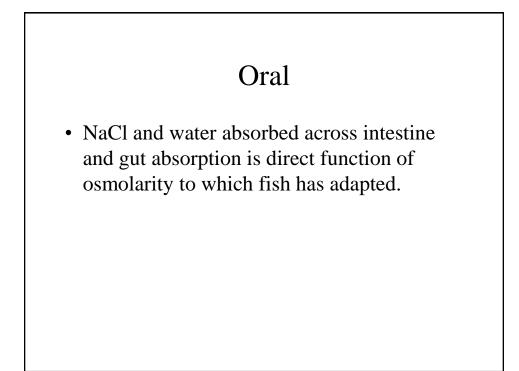
Transport

- Some blood NH₄ is exchanged by active transport for Na+ in the water. If water pH and ammonia concentration of water are lower than blood, freshwater fish can readily excrete blood ammonia.
- If water pH is more alkaline than blood and dissolved ammonia concentration higher, the <u>outward flow of ammonia is hindered</u>.

Excretion


- Most important factor affecting rate of total nitrogen excretion is feeding
- Gills account for 80- 95% of whole body nitrogen excretion
- Urea sometimes contributes and can be more important in some cases in freshwater

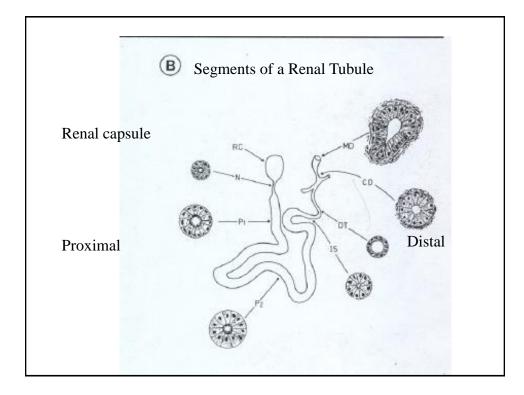

Renal Excretion


- Glomerular recruitment occurs much as lamelar recuritment
- Still, renal nitrogen excretion is not used in high percentage among fishes.

Osmotic and Ionic Regulation

- Water and small non electrolytes like urea and ammonia can move through plasma membrane at internal/external interface by moving though lipid bilayer
- Ions such as sodium, potassium and chloride will not pass easily across membrane without help of membrane transport proteins that span the lipid bilayer.

Gills & Chloride Cells


- Chloride- secreting cell (chloride cell)
- Mitochondrial rich
- Multicellular complexes
- Model of operation

Kidney(excretory)

- Renal corpuscle- glomerulus
- Neck
- Proximal segment
- Intermediate segment
- Distal segment
- Collecting tubule

Freshwater Filtration

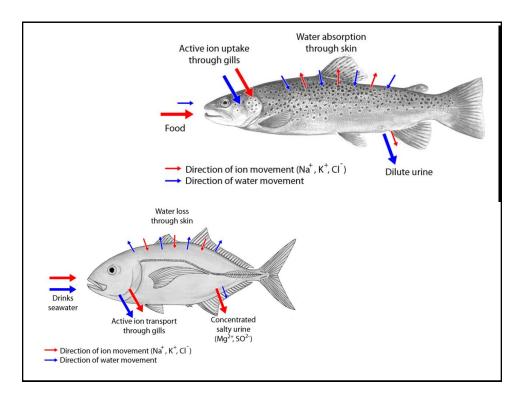
- Urine less concentrated than blood
- Large glomeruli that filter water from blood
- Reabsorbed from proximal tubule
- Monovalent ions reabsorbed at both proximal and distal tubule segments

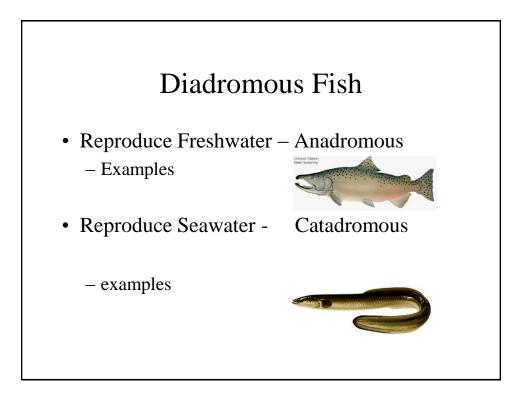
Seawater Filtration

- Less urine production. Proximal tubules long- higher metabolic cost
- More distal part secretes divalent ions Mg and SO4 into tubules

Fresh water

Bailing out


Conserving by re-sorption


Sea water

Reduction of exposure

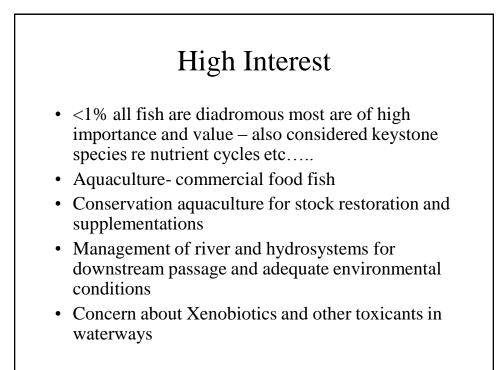
Removal of toxics of Mg SO4

Other wastes that can not pass branchial

Smoltification- Anadromous

- Parr-smolt transformation
 - Dynamic and multifactor
 - Size, time, and multifactor endocrine -physiology
 - Ontogeny of salinity tolerance
 - Different for different species and life history

Term smolt


- First used for juvenile Atlantic Salmon
- Silvery stage
- Annual cycle mostly in spring but some in autumn
- Photoperiod control
- Induced with short day to long days

Parr smolt transformation

- Developmental process
- Osmoregulatory physiology
- Growth changes
- Energetic and metabolic changes
- Behavioral changes

Physiology Endocrinology - Factors

- Many components
- Not a gold standard except actual migration and survival
- Many studies, lots of data from lab evaluations- not necessarily field
- Factors moving in different directions over time

Pacific salmonids and SH									
	Winter 0	rs in FW a 1	as Juv. 2	Duration in SW					
 Amago 	++			4-5 mo					
• Masu		++	+	1 yr					
Coho		++	+	0.5-1 yr					
• Sockeye	+	++	+	1 – 3 yr	+				
Chinook	++	++	+	1-3 yr	+				
Chum	++			1-4 yr					
• Pink	++			1 yr					
• Steelhead	[++	++ no	t all go					

Review of adaptations FW

- Gills absorption Na and Cl
- Intestine reduced fluid uptake
- Kidney high volume, absorption Na and Cl

Adaptation SW

- Gill Excretion Na and Cl & Reduced permeability to Water
- Intestine Absorption fluids, absorption Na and Cl
- Kidney Low volume, excretion of Mg++ e.g. divalent ions

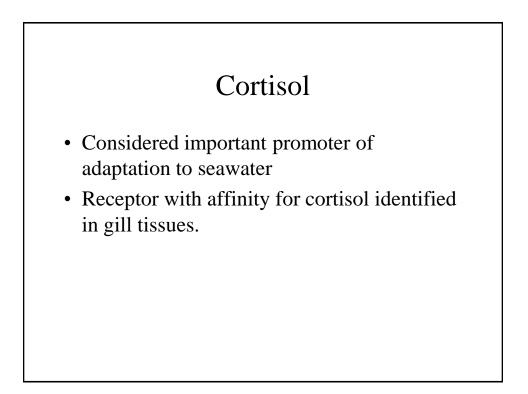
Bridging the Gap

- Transition into seawater
- Do fish go only when ready?
- What controls migration rates
- What size and time to release smolts?

Na K gill ATPase

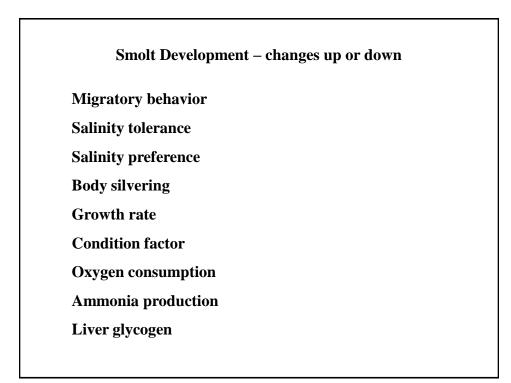
- Increases after transfer to seawater
- Ionic gradients generated by enzyme
- Mitochondrial rich chloride cells
- Chloride cells increase in number
- Na flux changes from net influx to net efflux

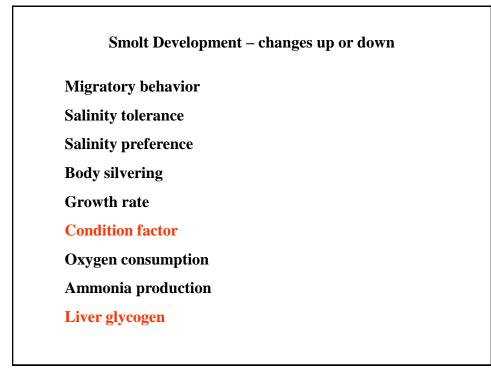
Intestinal net fluid flux

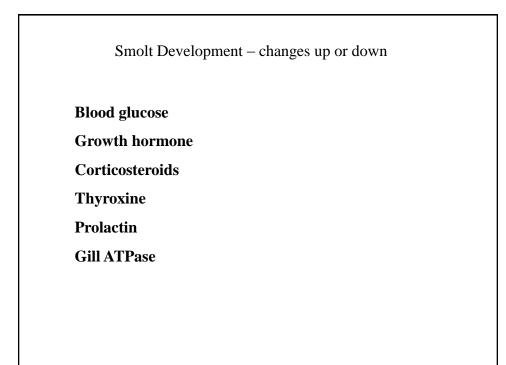

• Increased absorption of water

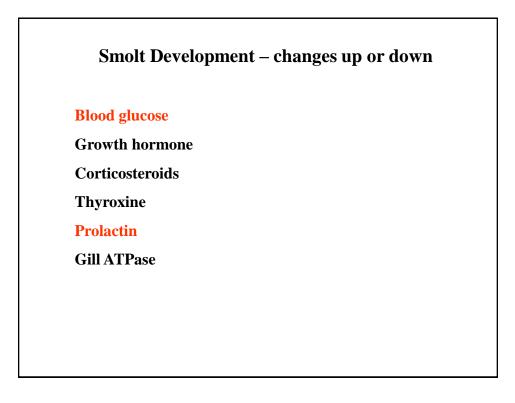
Hormonal Controls

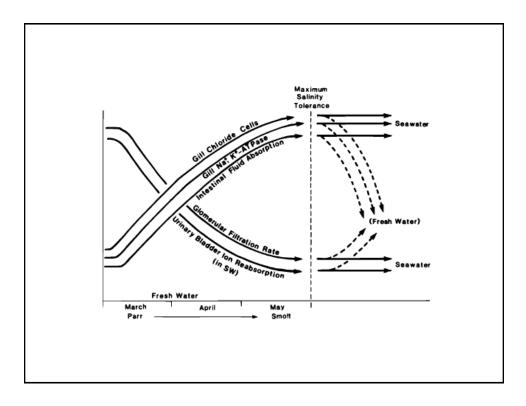
- Thyroid was highly researched
 - Usually a distinct peak in plasma thyroxine
 - Influences behavior, growth, and morphological development

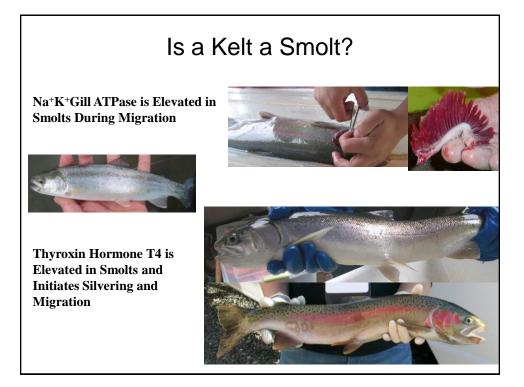

Prolactin and Growth Hormone Adenohypophysis

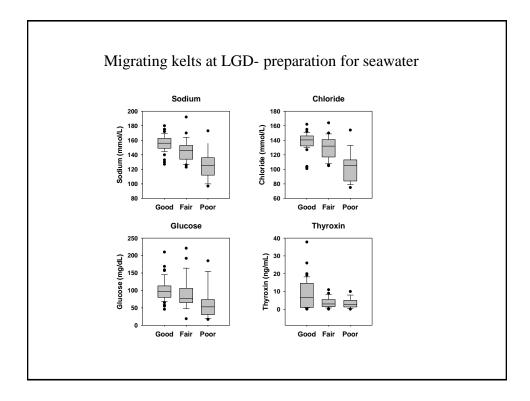

- Prolactin implicated to increase tolerance to seawater
- Plasma Insulin like growth hormone (IGF) can influence survival and osmoregulation
- Likely growth hormone secreted at greater rate in seawater

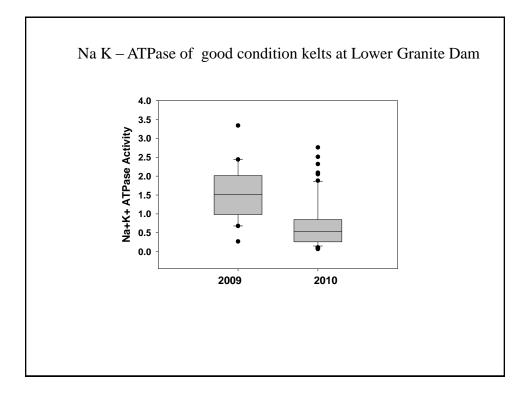


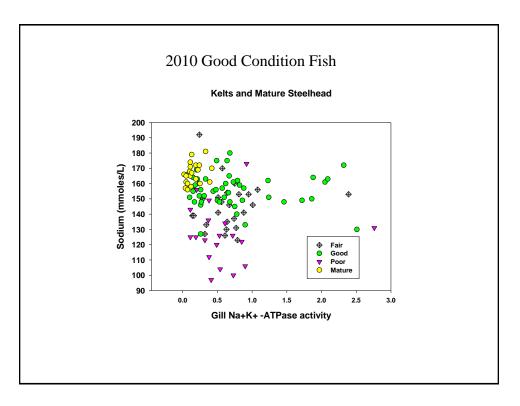

Others


- Methyl testosterone can inhibit smolting
- Corpuscles of Stannius
- Calcitonin
- Catecholamines- adrenaline
 - Chloride secretions inhibited




Return Spawning Migrations what controls that portion of the life history?


- Precociously mature physiology
 - Masu
 - Sockeye
 - Chinook


Blood Plasma Analyses Used to Characterize Steelhead Kelts

Nutritional Factors (Energy Reserves and Fitness) Cholesterol, Calcium, Alkaline Phosphatase (ALP), Triglycerides, Amylase, Lipase, Glucose, and Phosphorus Tissue Damage Factors (External / Internal Damage) Alanine Aminotransferase (ALT), Aspartate Aminotransferase (AST), and Lactate Dehydrogenase (LDH) Electrolytes (Osmoregulation) Sodium, Chloride, Potassium, and Magnesium Hormone Factors T4 – Thyroid Function Cortisol - Stress

