

Treasure Island: New biodiversity on Madagascar (1999 - 2010)

WWF Madagascar & West Indian Ocean Programme Office

Author: Christian Thompson (the green room) www.greenroomenvironmental.com, with contributions from Olivier van Bogaert (WWF-International), Rick Hughes, Martina Lippuner, Tiana Ramahaleo and Sylvain Rafiadana-Ntsoa (WWF Madagascar & West Indian Ocean Programme Office)

Design: Torva Thompson (the green room)

Front cover photo: *Furcifer timoni* © Jörn Köhler © Text 2011 WWF

WWF is one of the world's largest and most experienced independent conservation organisations, with over 5 million supporters and a global Network active in more than 100 countries.

WWF's mission is to stop the degradation of the planet's natural environment and to build a future in which humans live in harmony with nature, by: conserving the world's biological diversity, ensuring that the use of renewable natural resources is sustainable, and promoting the reduction of pollution and wasteful consumption.

NOTE: The discoveries referred to in this report were not made by WWF, but by researchers and scientists from institutions spanning the globe. All scientists have given WWF authorisation to use their work for the compilation of this report and are supporting or have agreed with the purpose of this report.

Rainforest, Anjanharibe Sud Special Reserve, Andapa, Madagascar

SUMMARY

EXECUTIVE An amazing 615 new species discoveries have been made in the last deacde on the island of Madagascar, located off the coast of the African continent in the Indian Ocean. The new finds comprise 385 plants, 42 invertebrates, 17 fish, 69 amphibians, 61 reptiles and 41 mammals.

Sahamalaza sportive lemur (Lepilemur sahamalazensis)

Madagascar

Madagascar is the fourth largest island in the world; at 587,000 km² it is comparable to the size of France. Neither African nor Asian despite its proximity to Africa and its Asian influence¹, Madagascar separated from the African continent some 165 million years ago and from the Indian subcontinent 80 to 100 million years ago. This long isolation from neighbouring landmasses has allowed a unique array of plants and animals to evolve, including hundreds of endemics^{II}. These characteristics have led some scientists to dub Madagascar the "eighth continent".

The region boasts four ecoregions, critical landscapes of international biological importance. The eastern part of the island is covered by a narrow band of tropical rainforests that lead to steep hills and central highlands, with volcanic mountains rising to the north in the Tsaratanana Massif. The northwest coast forms a series of natural coves, with broad plains inland, while the southwest region consists of tropical dry forests, plateaus and deserts. Because of the island's localised red soils, Madagascar has also been called the "Great Red Island".

The newly discovered species are the latest additions to the already impressive array of biodiversity found in this globally-unique landscape, including a rich assemblage of mammals, birds, amphibians and fishes.

Madagascar is one of the greatest tropical wildernesses left on Earth and home to some of the most spectacular wildlife. The island is home to 5% of the world's plant and animal species², 250,000 species, of which more than 70% are endemic to Madagascar³. The wildlife of Madagascar includes aye-aye, various species of lemur, radiated tortoises, spider tortoises, marine turtles, flying fox, fossa, fanaloka, mongoose, tenrec, snakes, chameleons, crocodiles and frogs. All 50 known species of lemur are found only on this island⁴. The bird fauna includes some extraordinary bird species, such as the ground-rollers, cuckoo-rollers, and mesites, as well as seriously endangered species such as the Madagascar serpent-eagle (Eutriorchis astur, EN) and Madagascar fish-eagle (Haliaeetus vociferoides, CR), one of WWF's flagship species.

Madagascar has more than 5,000km of coastline with over 250 islands, some of the world's largest coral reef systems, and some of the most extensive mangrove areas in the Western Indian Ocean. These ecosystems provide essential services and livelihoods to the inhabitants of Madagascar. Whales, reef sharks, tuna and five of seven marine turtles in the world - all of which belong to WWF's priority species - live in Malagasy waters. Of the estimated 14,000 plants native to Madagascar⁵, 90% are found nowhere else in the world⁶, including six species of baobab, or bottle tree.

The habitats of Madagascar continue to face ever-growing threats, including unsustainable resource extraction including small-scale, and widespread clearance of

¹ Settlement of Madagascar happened between 200 and 500 A.D, when seafarers from southeast Asia (probably from Borneo or the southern Celebes) arrived by boat. The Malagasy language shares some 90% of its basic vocabulary with the Ma'anyan language from the region of the Barito River in southern Borneo.

^{II} Endemic refers to a species that is exclusively native to a specific place and found nowhere else. For example, the kiwi is a bird endemic to New Zealand.

615 SPECIES DISCOVERED SINCE 1999 ON MADAGASCAR

habitats, primarily for firewood and charcoal production. Secondary threats are caused by subsistence agriculture, livestock grazing, and invasive species. Analysis of aerial photographs indicates that forest cover decreased by almost 40% from the 1950s to c. 2000, with a reduction in 'core forest'^{III} of almost 80%. During the rainy season Madagascar seems to be bleeding. Every year, millions of tons of laterite are washed away by streams and rivers from the highlands that are suffering from erosion as a result of deforestation. The sediments then smother the sensitive reefs of the Indian Ocean and the Mozambique Channel. This forest destruction and degradation threaten thousands of species with extinction⁷. Experts now predict that Madagascar has already lost 90 per cent of its original forest cover⁸.

For the unique species of the island, loss of vital habitat is a disaster and the increased access to species has also exacerbated the international trade in Madagascar's wildlife. Today, many animals and plants are threatened, with rosewood, tortoises, chameleons, geckos and snakes the most targeted by traffickers. Since 1995, only 4 Madagascar chameleon species are permitted to be exported from Madagascar and this moratorium is still in place today. Despite this, smugglers continue to flout the law.

Despite Madagascar's rich biodiversity, it is one of the world's poorest nations. Poverty and the environment are inextricably linked, with the environmental degradation in Madagascar threatening the livelihoods of Madagascar's 20million inhabitants.

WWF has been active on the island for 47 years, working with local communities to protect Madagascar's unique biodiversity.

WWF seeks to conserve and sustainably manage the biodiversity and ecosystems in Madagascar and the Western Indian Ocean (WIO) region by 2050. Through appropriate legal and political frameworks at local, regional and national level, and by prioritizing sustainable livelihoods, WWF aims to promote the whole region as a model for conservation of key ecosystems, habitats and species already by 2025.

Calumma tarzan, a new chameleon species described in 2010. Scientists dedicated the species to the fictional forest man "Tarzan" in the hope that this famous name will promote awareness and conservation of this highly threatened new species and its habitats.

^{III} Greater than 1 km from the forest edge.

WWF's conservation strategy for the upcoming five years (2012-2016) is organised under three priority approaches and seven objectives:

Conserving biodiversity

Objective 1: Priority terrestrial and marine landscapes

Activities focus on ten landscapes representative of the local biodiversity. They include the protection of biodiversity, especially by supporting Madagascar's National Parks System; the sustainable management of natural resources, particularly through community management and promotion of improved agricultural practices; and the restoration of natural resources through involvement of local stakeholders and partners. The goal is to link conservation with the improvement of local people's livelihoods.

Objective 2: Endemic species and migratory marine species

By improving the knowledge on endangered species such as Madagascar's tortoises and marine turtles, and ensuring that appropriate management measures are put in place, WWF aims to ensure better enforcement of the Convention on International Trade of Endangered Species of flora and fauna (CITES).

Promoting sustainable use

Objective 3: Sustainable fishing

Coastal and marine ecosystems of the WIO region are home to a very rich biodiversity and play a key role for the local – and global – economy and culture (tuna fishing is a good example). To promote sustainable fishing, WWF is building the local stakeholders' capacities to manage traditional and artisanal fishing, and help the islands' authorities manage tuna fishing. WWF also supports a model of sustainable shrimp ecobusiness.

Objective 4: Sustainable energy

Together with key actors of the Atsimo Andrefana region, in the south west of Madagascar, WWF is implementing a management plan for sustainable fuel wood. The conservation organization is also running pilot projects to show that energy efficiency and renewable energy sources are ecologically and economically pertinent, in accordance with its global policy on mitigating the effects of climate change.

Boophis lilianae male and female in amplexus. The species was newly described in 2008.

Creating the appropriate conditions

Objective 5: Integrate conservation into sectoral policies

Extractive industries, land use planning, biofuels and energy are the main sectors where WWF is active to promote policies which fully integrate environmental aspects and good practices within industrial companies, and ensure net environmental and social gains for local people.

Objective 6: Implement sound environmental governance

Responsible participation of key actors in all sectors is needed to implement sound environmental governance. In 2012-2016, WWF will continue to work closely with its partners at the State level. WWF will also build capacities in the civil society and local organizations through environmental education and information.

Objective 7: Adapt to climate change

In Madagascar and WIO islands, communities living close to natural resources already feel the effects of climate change in their daily life. To ensure a better understanding of this phenomenon, protect the people and ecosystems and develop effective adaptation measures, WWF is providing specific training and information to the region's stakeholders.

4

Such is the uniqueness of the remarkable species and habitats on Madagascar that even today hundreds of new species continue to be newly discovered, having never before been encountered.

TREASURE ISLAND

The significance of the flora and fauna of Madagascar is not only their diversity, but also their remarkable endemism. The high level of species unique to Madagascar resulted from tens of millions of years of isolation from the African mainland and from people, who only arrived 2,000 years ago. The islands have an astounding eight plant families, five bird families, and five primate families that live nowhere else on Earth.

Madagascar and the Indian Ocean Islands Diversity and Endemism

Taxonomic Group	Species	Endemic	Percent	
	Alt-	Species	Endemism	
Plants	13,000	11,600	89	
Mammals	155	144	92	
Birds	310	181	58	
Reptiles	384	367	95	
Amphibians	235	229	99	
Freshwater fish	164	-97	59	
Invertebrates	5,800	4,988	86	
			A AV AVIA A	

Sources: Conservation International, 2000. Ecosystem Profile: Madagascar Ecosystem of the Madagascar & Indian Ocean Islands Biodiversity Hotspot; Goodman, SM. and Benstead, JP. (Eds.). 2003. The Natural History of Madagascar. Chicago: University of Chicago Press; Andreone F. (Editor), 2008. A Conservation Strategy for the Amphibians of Madagascar - Monografie XLV. Museo Regionale di Scienze Naturali, Torino.

Beach on Nosy Be Island, Madagascar

NEW WONDERS FROM THE "EIGHTH CONTINENT"

A closer look at the new species...

A simply staggering number of new lemur species have been described from Madagascar over the past 11 years. In total, 28 new lemur species join the ranks of the island's known mammals. Many of these endemic new species have been recently described as new based largely on increased sampling efforts and more rigorous DNA analysis.

Among the list of new lemurs are new species of mouse lemurs, the world's tiniest primates. For example Berthe's Mouse Lemur (*Microcebus berthae*), discovered in 2000, is the smallest of the mouse lemurs and the

The land of lemurs

Randriansoli's sportive lemur (Lepilemur randriansoli)

Sahamalaza sportive lemur (Lepilemur sahamalazensis)

smallest primate in the world with an average body length of 92 millimetres (3.6 in) and weight of around 30g, it is found in the Kirindy Mitea National Park in Western Madagascar. In 1992 there were only two known mouse lemur species. This number has since jumped to 15 thanks to the dedication of scientists with at least nine discovered in the last decade. There is also incredible diversity among single species: one study by scientists examined 70 mouse lemurs with varying coat colours and from different types of forest locations and revealed that they were in fact all the same species⁹.

The name lemur comes from the Latin word lemures, which means 'spirits of the night' or 'ghosts'. Ironically, today all lemurs are in danger of vanishing, such is the extent of forest loss on the island. 17 lemur species became extinct after the arrival of the human settlers to the island approximately 2,000 years $ago^{10,11,12}$.

Lemur taxonomy is controversial, and not all experts agree, particularly with the recent increase in the number of recognized species^{13,14,15}. According to some experts there are currently 99 recognised species or subspecies of living lemur, divided into five families and 15 genera¹⁶. In contrast, other experts have labeled this as 'taxonomic inflation'¹⁷, instead preferring a total closer to 50 species¹⁸.

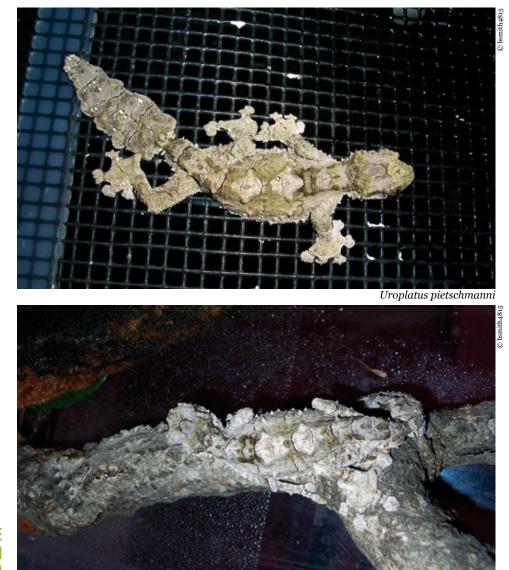
Of the 50 various species of lemurs, 6 are critically endangered, 17 are endangered and 14 are considered vulnerable¹⁹. 5 lemur species are among the 25 most threatened primate in the world: *Prolemur simus, Propithecus candidus, Eulemur cinereiceps, Lepilemur septentrionalis, Eulemur flavifrons*²⁰.

Among the other new mammal finds are seven bats, three rodents and three threatened shrews: *Microgale jenkinsae* (EN), *Microgale jobihely* (EN) and *Microgale nasoloi* (VU).

The global importance of Madagascar's lemurs

According to renowned primatologist, herpetologist and biological anthropologist Russell A. Mittermeier in *The Eighth Continent*, although Madagascar "is only one of 92 countries with wild primate populations, it is alone responsible for 21 percent (14 of 65) of all primate genera and 36 percent (five of 14) of all primate families, making it the single highest priority" for primate conservation. "Madagascar is so important for primates that primatologists divide the world into four major regions: the whole of South and Central America, all of southern and southeast Asia, mainland Africa, and Madagascar, which ranks as a full-fledged region all by itself."

Source: Tyson, Peter and Russell A. Mittermeier. *The Eighth Continent: Life, Death, and Discovery in the Lost World of Madagascar*. Morrow, William & Co, 2000.



© Urs Thalmann

A gecko that thinks it's a tree

It's easy to see why this species eluded scientists until now. The amazing Cork Bark Leaf-Tailed Gecko (*Uroplatus pietschmanni*) was discovered in 2003 by scientists in the east coast rainforest of Madagascar, in Toamasina province, at an altitude of some 1000m²¹. The 13cm-long species likes to climb thick branches, corkbark, and sturdy broadleafed plants, and has perfect camouflage. *U. pietschmanni* is much less common than most other varieties and little is known about its range and distribution in its natural habitat, although scientists believe the species is endemic to Amboasary Gara in central East-Madagascar.

All leaf-tailed geckos except *U. lineatus* are limited to primary, undisturbed rainforests and therefore are especially prone to habitat destruction. As of 2004 the genus *Uroplatus* has in its entirety been placed on Appendix 2 of CITES (Convention for International Trade in Endangered Species); this makes it the most heavily protected gecko genus by international law. The species has made its way into the pet trade in limited numbers, because their unique camouflage make them attractive display animals. On average, nearly 100 have been exported annually for trade purposes since 2004^{22} , with 262 being exported in the peak year of 2005^{23} .

61 NEW REPTILES HAVE BEEN DISCOVERED ON MADAGASCAR SINCE 1999

Uroplatus pietschmanni

(NEPHILA KOMACI)

Komac's golden orb spider (*Nephila komaci*) described from Madagascar in 2009 is one of the largest web spinning species known²⁴. *Nephila* are renowned for being the largest web-spinning spiders, making huge webs of golden silk, often greater than 1m in diameter. It is the first species of *Nephila* to be described since 1879 and it is the largest *Nephila* to date. Orb-weaving spiders exhibit extreme sexual size dimorphism: a female of the new species has a body length of 39.7mm and a male has a body length of 8.7mm! The females large size helps it avoid being eaten by predators.

Although the web of this new species has not been seen, it is likely to be the largest. More than 41,000 spider species are known with about 400–500 added each year, but new giant golden orb-weavers are extremely rare. Only three specimens of the new species have been found in the past decade.

Scientists recently also reported the discovery of the largest ever spider webs made by a new species of *Caerostris* spider, which is currently being formally described by experts²⁵.

Madagascar has 459 species of spider, with 390 (84%) being endemic to the island²⁶.

Although often perceived as insignificant, invertebrates play very important roles in ecology, such as in nutrient recycling, soil formation and quality, and as food for many predators. They are therefore essential to all animal life on Madagascar.

This photo shows a giant golden orb-web exceeding 1 metre in diameter

MADAGASCAR SINCE 1999

difference in size of female and male orb-weaving spiders (*Nephila pilipes* shown)

(LIOPHIDIUM PATTONI)

This exceptionally-coloured new snake species was discovered in 2010 at the western side of the Makira plateau, within the newly created Makira National Park, province of Mahajanga, in the North East of Madagascar²⁷. Originally found at 1,009m above sea level, *Liophidium pattoni* can be easily distinguished from all other *Liophidium* species and any other species of Madagascar snakes by its unique colour pattern. The 41cm-long species has an overall black dorsal side with four pink-red horizontal stripes, fading into blue-grey. In addition, the snake has a bright yellow underbelly.

The snake is known to eat lizards and hunts through the rainforest searching for small ground-living animals.

Despite being found in a protected area, the area of rainforest the species was found in had been recently fragmented due to human activities. Two further specimens were discovered in Masoala National Park, a UNESCO World Heritage Site. Both Masoala and Makira National Park's are currently experiencing an upsurge in illegal logging for precious rosewood destined for markets in China²⁸.

Scientists believe the species may be widespread throughout the eastern coast of Madagascar, spanning a wide altitudinal range from sea-level to 1,100m in the Makira Plateau, and occurring in very different environments from warm lowlands to relatively cool mountain rainforests.

The species is one of 61 reptiles discovered over the last 11 years.

Liophidium pattoni

) Sebastian Gehri

Liophidium pattoni

self-destructive palm tree

(TAHINA SPECTSBILIS)

An extraordinary 385 new plant species, spanning a broad range of families, have been discovered on Madagascar since 1999. This number includes 39 new Aloe species of flowering succulent plants, 10 new species from the pepper family, six new species of coffee and eight new palm trees.

Undoubtedly the most exciting discovery in the world of palms in the new millennium is the Tahina Palm (*Tahina spectabilis*), described in 2008, and found quite by accident by a cashew-grower, Xavier Metz²⁹. This magnificent and massive fan palm flowers only once in its life, with a totally spectacular, giant, whitish inflorescence that forms from the centre of the crown. After fruiting, the palm dies and collapses.

The new genus is unrelated to any other of the 170 plus palms of Madagascar and is most closely related to three genera in south and south-east Asia.

This species and genus of palm numbers fewer than 100 individuals found only in Analalava district, a small area of northwestern Madagascar, where it grows in low, seasonally dry forest or scrubland that may be flooded during the rainy season, at the foot of heavily eroded limestone hills.

The palm is very rare and efforts with the aim to protect its natural habitat have been initiated and are now managed by discoverers Xavier Metz and John Dransfield. Soon after the publication of the species, seeds were disseminated throughout the palm grower community, raising money for its conservation by the local villagers, and it has become a highly prized ornamental plant. Any profits resulting from the sale of the seeds distributed under this conservation programme will go to their community. The funds are destined towards village development, such as a pump for the village well, and aim at keeping cattle and fire away from the palms.

385 NEW PLANTS HAVE BEEN DISCOVERED ON MADAGASCAR SINCE 1999

Tahina spectabilis

In 2009, scientists discovered a new species of gecko with some remarkable transforming abilities³⁰. The new species, known from a single specimen, has a greyish-brown ground colouration resembling the bark of trees, which scientists believe provides the species with effective camouflage to escape from birds and other predators and is perhaps one reason why the species has not been discovered earlier. However, *Phelsuma borai* can quickly change its colour, which in this extent is unusual for the *Phelsuma* genus and allows the species to switch from a subtle brown to a colourful bright blue during courtship.

(PHELSUMA BORAI)

The species was discovered during a survey in the Tsingy de Bemaraha National Park, a deciduous dry forest on a karstic limestone massif in western Madagascar. This bizarre limestone massif with steep slopes and sharp needle-like peaks has revealed a remarkable number of new species of amphibians and reptiles in recent years and its herpetofauna is still far from being sufficiently known according to scientists.

There are currently 27 recognised Phelsuma species in Madagascar³¹.

Phelsuma borai

Phelsuma borai

A new threatened species of edible yam

(DIOSCOREA ORANGEANA)

Dioscorea orangeana, newly described in 2009, is a threatened species of edible yam from northern Madagascar³². Its appearance is uncharacteristic of Madagascar yams in that the species has several lobes instead of just one, making the species look like udders on a cow.

Like all the edible yams known from the Antsiranana region, favoured species are heavily exploited. The conservation and sustainable use of D. orangeana are matters of concern, because its distribution is restricted to such a small area - 1.7 km² of deciduous forest, on sand, up to 100m above sea level. Scientists are now urgently looking for *D*. orangeana in similar forests in the far north of Madagascar, which is botanically poorly explored.

In the meantime, the authors suggest that D. orangeana should be Red Listed as Critically Endangered, since it is heavily harvested and growing in the Forêt d'Orangea near Diego Suarez, an unprotected habitat. The nearest protected area is at least 20km away. D. orangeana was named by Kew botanist Paul Wilkin with colleagues from France and Madagascar, the scientific name referring to the forest in which it occurs (Forêt d'Orangea).

Dioscorea orangeana

Intensive herpetological fieldwork and taxonomic revisions during the past 15 years have led to a strong increase in the number of chameleon species. During recent field work scientists discovered a colourful and highly distinct species of chameleon, *Furcifer timoni*, in the isolated rainforests of the Montagne d'Ambre massif 850m above sea level, in northern Madagascar³³.

(FURCIFER TIMONI)

Officially described in 2009, both males and females of the species are very striking, appearing to sport vibrant 'glam rock' make-up. According to scientists, the discovery of this distinctive new *Furcifer* species was very surprising since this area has been repeatedly and intensively surveyed for reptiles over many years.

In total, 11 new chameleon species have been described since 1999.

Furcifer timoni (female)

Furcifer timoni (male)

A bright yellow frog with 'measles'

(BOOPHIS BOTTAE)

The new frog species, Boophis bottae, occurs in the eastern rainforest belt of Madagascar from Andasibe south to Ranomafana, at 800-1,000m above sea level³⁴. The species lives along streams, and also at the edge of rainforest, where it was originally found near a bridge on the road between the National Road 2 and the Andasibe village, central-eastern Madagascar. This endemic species is already threatened by habitat loss and is declining due to destruction of its forest habitat due to subsistence agriculture, timber extraction, charcoal manufacture, invasive spread of eucalyptus, livestock grazing, and expanding human settlements.

The species is one of 69 amphibians discovered over the last 11 years.

The global importance of Madagascar's amphibian species is paramount especially because of the group's extreme diversity on the island. A recent study based on DNA sequences of 2,850 specimens sampled from over 170 localities, revealed that there are twice as many amphibian species than previously thought - from the currently described 244 species to a minimum of 373, but possibly as many as 46535. Amphibians are in decline worldwide and on Madagascar the results of the survey suggests that current habitat destruction may be affecting more species than previously thought.

Scientists are now stressing the need for integrated taxonomic surveys as a basis for prioritising conservation efforts within Madagascar.

69 **NEW AMPHIBIANS HAVE BEEN DISCOVERED ON** MADAGASCAR SINCE 1999

Boophis bottae

(PARETROPLUS TSIMOLY)

The new fish species, Lamena "blue lips" (Paretroplus tsimoly), was described by scientists in 2001³⁶. Measuring 25cm in length, the species is extraordinary in that mature individuals of the species possess prominent blue lips. The native name for the fish is Lamena, which means "red one" in the local Malagasy dialect, on account of the bright red fins and edging on the eyes. The body of this species is brilliant golden orange.

The species is a rheophilic cichlid, whose natural habitat is the fast flowing rapids within these rivers, as well as isolated pools with rocky bottoms, interspersed with patches of cobble and coarse gravel.

The species was originally known from the Akalimotra and Boinakely rivers, but additional populations have recently been found in the Kamoro river basin³⁷.

17 new fish species have been discovered by scientists in the last 11 years.

Jeff Dubose

Paretroplus tsimoly

BEEN DISCOVERED ON MADAGASCAR SINCE 1999

NEW FISH HAVE

17

(GARCOROPS JADIS)

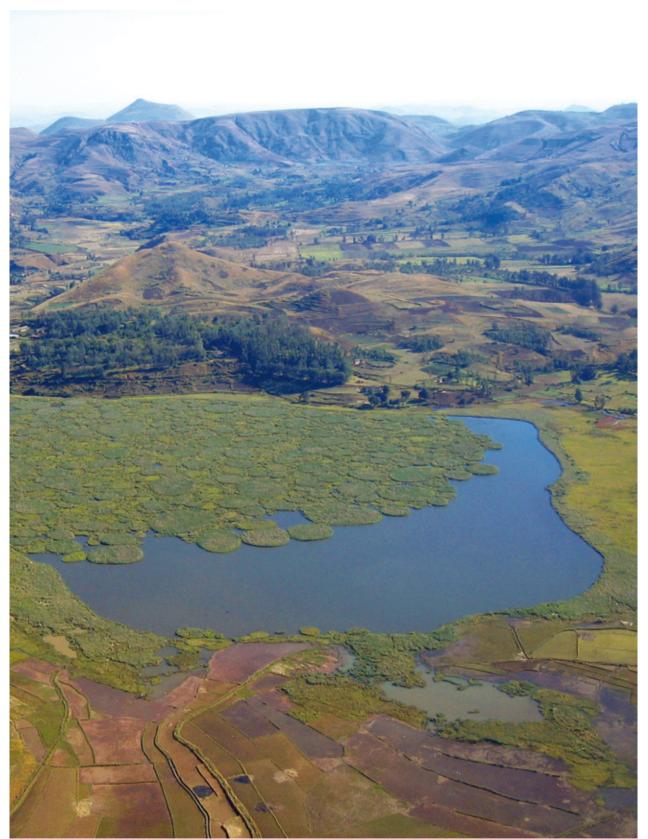
A new species of spider known only from a beached piece of copal of uncertain origins and age, was found in the vicinity of Sambava, North-East Madagascar, and officially described in 2004³⁸. One large male spider, *Garcorops jadis*, was found in copal, a hardened, subfossil diterpenoid resin estimated by different authors to be between a few hundred and four million years old.

The species is named after Jadis, the Ice Queen from C.S. Lewis' youth novel "The Lion, the Witch and the Wardrobe" because the beautiful specimen seems enclosed in ice, frozen in time forever.

The discovery has baffled scientists who are unable to ascertain whether *Garcorop jadis* may be an existing species not yet discovered in its natural habitat or long extinct species.

Garcorops jadis

Garcorops jadis


A radiant orchid

(POLYSTACHYA CLAREAE)

Among the hundreds of new plants species are 12 new orchid species. One particularly attractive species is *Polystachya clareae*, or Clare's Polystachya, a bright orange orchid described in 2003 from Manjakandriana in Madagascar's Antananarivo province, at 850m above sea level³⁹. Found in humid evergreen rainforest, the species has bright green leaves and when it blooms in Summer many bright orange flowers appear in clusters on three branches. The species apparently has a scent reminiscent of "artificial citrus sweets".

Polystachya clareae

Antananarivo province, home to Madagascar's capital city and a number of new species discoveries, including the new orchid *Polystachya clareae*

GREENING The great red Island

Madagascar has evolved remarkably diverse ecosystems including lush tropical rainforests, mountain peaks, tropical dry forests, near-desert environments, mangrove forests, and coral reefs – together supporting 5% of all plant and animal species known to man.

Today, international economic forces, a growing global demand for natural resources, and widespread regional

poverty are putting the species, forests, freshwater and marine ecosystems of this globally outstanding region at risk. Approximately 200,000 to 300,000 hectares of natural forest are cleared each year, mostly due to clearance for agriculture, cattle grazing and firewood, but poorly-planned economic development projects and extensive mining are also responsible. The result is that less than 10% of Madagascar's original forest cover now remains⁴⁰. Several factors have contributed to deforestation: rapid population growth, an increasing impoverishment of the local population, its need to increase food production and a rising demand for wood for domestic energy. For their domestic energy needs, almost 95% of Malagasy households use firewood and charcoal. Also, there are logging requirements for timber and construction. In the highlands, deep gashes caused by deforestation are leaving the land bare in many places. Local timber barons are also harvesting scarce species of rosewood and other precious wood trees and exporting the wood to China. The wood is used to make furniture and musical instruments. Most of the wood is being removed illegally from national parks in Madagascar and in the last year the trade has increased 25 fold to the value of USD220million⁴¹.

As Madagascar's forests continue to be cut, all that remains is a red trail that runs down the rivers into the sea. Soil erosion is leaving the land naked and unfit for agriculture. Downstream, increased sediment loads are silting estuaries and smothering sensitive marine habitats. As a result, marine species lose their home, and communities lose their source of income. And silted reefs are more vulnerable to climate change.

These threats place an untold number species at risk of extinction – not just the ones that have been newly discovered, but symbolic and charismatic species for which Madagascar is known the world over. Many animals and plants are also threatened with excessive hunting, killing off the island's emblematic species, including the lemur and terrestrial tortoises. It is estimated that 60,000 tortoises are collected from the wild every year to feed the pet trade in South East Asia, Japan and Europe⁴². The freshwater fishes of Madagascar are considered the island's most endangered vertebrates. An IUCN assessment of 98 endemic freshwater fish species found that 54% of the fish were either Critically Endangered, Endangered or Vulnerable⁴³.

Habitat degradation, siltation, temperature increases, agriculture and overfishing are considered the main causes of species decline. Introduced fish species have already replaced many native species in inland lakes and streams. Trade for pets and plants have weakened populations of endemic animals and vegetation, especially amphibians, reptiles and succulent plants. According to WWF studies in North Eastern and Western Madagascar, rosewood is now on the brink of local extinction because of increased illegal exploitation.

WWF has been active on the island for 47 years, working with local communities to protect Madagascar's unique environment.

WWF seeks to conserve and sustainably manage the biodiversity and ecosystems in Madagascar and the Western Indian Ocean (WIO) region by 2050. Through appropriate legal and political frameworks at local, regional and national level, and by prioritizing sustainable livelihoods, WWF aims to promote the whole region as a model for conservation of key ecosystems, habitats and species already by 2025.

WWF's conservation strategy for the upcoming five years (2012-2016) is organized under three priority approaches and seven objectives:

Conserving biodiversity

Objective 1: Priority terrestrial and marine landscapes

Activities focus on ten landscapes representative of the local biodiversity. They include the protection of biodiversity, especially by supporting Madagascar's National Parks System; the sustainable management of natural resources, particularly through community management and promotion of improved agricultural practices; and the restoration of natural resources through involvement of local stakeholders and partners. The goal is to link conservation with the improvement of local people's livelihoods.

Objective 2: Endemic species and migratory marine species

By improving the knowledge on endangered species such as Madagascar's tortoises and marine turtles, and ensuring that appropriate management measures are put in place, WWF aims to ensure better enforcement of the Convention on International Trade of Endangered Species of flora and fauna (CITES).

Promoting sustainable use

Objective 3: Sustainable fishing

Coastal and marine ecosystems of the WIO region are home to a very rich biodiversity and play a key role for the local – and global – economy and culture (tuna fishing is a good example). To promote sustainable fishing, WWF is building the local stakeholders' capacities to manage traditional and artisanal fishing, and help the islands' authorities manage tuna fishing. WWF also supports a model of sustainable shrimp ecobusiness.

Objective 4: Sustainable energy

Together with key actors of the Atsimo Andrefana region, in the south west of Madagascar, WWF is implementing a management plan for sustainable fuel wood. The conservation organization is also running pilot projects to show that energy efficiency and renewable energy sources are ecologically and economically pertinent, in accordance with its global policy on mitigating the effects of climate change.

Creating the appropriate conditions

Objective 5: Integrate conservation into sectoral policies

Extractive industries, land use planning, biofuels and energy are the main sectors where WWF is active to promote policies which fully integrate environmental aspects and good practices within industrial companies, and ensure net environmental and social gains for local people.

Objective 6: Implement sound environmental governance

Responsible participation of key actors in all sectors is needed to implement sound environmental governance. In 2012-2016, WWF will continue to work closely with its partners at the State level. WWF will also build capacities in the civil society and local organisations through environmental education and information.

Objective 7: Adapt to climate change

In Madagascar and WIO islands, communities living close to natural resources already feel the effects of climate change in their daily life. To ensure a better understanding of this phenomenon, protect the people and ecosystems and develop effective adaptation measures, WWF is providing specific training and information to the region's stakeholders.

The Holistic Conservation Programme for Forests in Madagascar is a four-year innovative and large-scale project funded by the French Foundation GoodPlanet - with Air France as sole sponsor - and implemented in the field by WWF. It aims to Reduce greenhouse gases Emissions from Reducing Deforestation and Degradation of forests (REDD) in Madagascar, is a good example of putting this strategy's objectives into action.

The project boundary covers an area of more than 500,000 ha of moist and dry forests. By March 2012, it will help to achieve the following objectives:

Improve knowledge on effective and verifiable measure of the impact of field activities to reduce greenhouse gas emissions and, to a lesser extent, sequester CO2 already present in the atmosphere.

Improve the living conditions of local communities through the transfer of natural resource management and development of sustainable agricultural practices (system of rice intensification, fish farming, bee keeping, small-scale breeding, etc.)

Fully integrate the conservation of the unique biodiversity of Madagascar. Successfully placing the region on a sustainable development path will require the commitment and the increased capacity of governments, industry and local communities alike to protect and sustainably manage one of the world's most outstanding forest, freshwater and marine landscapes.

With protection and management comes a viable future for the people and species that live there.

For more information: www.wwf.mg wwf.panda.org/what_we_do/where_we_work/madagascar/

ACKNOWLEDGEMENTS

WWF would like to thank the following for their new species discoveries and the kind assistance they provided in support of this publication:

Franco Andreone, Herpetological and Ichthyological Collections, Museo Regionale di Scienze Natural, Torino, Italy

Jeff Dubosc, Aquarium des Lagons, New Caledonia

Dr. Frank Glaw, The Zoological State Collection in Munich, Herptology Section, Munich, Germany

Dr Jörn Köhler, Zoologie Hessisches Landesmuseum Darmstadt, Germany

Matjaz Kuntner, PhD. Scientific Research Centre of the Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia

Prof. Dr. Miguel Vences, Zoological Institute, Technical University of Braunschweig, Germany

Dr Paul Wilkin, Royal Botanic Gardens, Kew, UK

Additional Photographs:

Nicole Andriaholinirina, Philippe Burnel, Mark Creeten, John Dransfield, Sabastian Gehring, Thomas Hahn, Claude Marcel Hladik, Eric Hunt, bsmith4815, Axel Strauß, Urs Thalmann and David R. Vieites.

APPENDIX

Scientist(s)

Year

2008

2003

2008

2009

2008

2008

2006

2008

2004

Madagascar new species 1999 - 2010

Plants

Aloe albostriata Aloe altimatsiatrae Aloe ambositrae Aloe ambrensis Aloe ampefyana Aloe andohahelensis Aloe antonii Aloe argyrostachys Aloe aurelienii Aloe bruynsii Aloe castilloniae Aloe charlotteae Aloe darainensis Aloe deinacantha Aloe droseroides Aloe edouardii Aloe estevei Aloe eximia Aloe florenceae Aloe ifanadianae Aloe inexpectata Aloe johannis Aloe johannis-bernardii Aloe johannis-philippei Aloe makayana Aloe manandonae Aloe mandotoensis Aloe mitsioana Aloe pachydactylos Aloe philippei Aloe pseudoparvula Aloe richaudii Aloe rodolphei Aloe roeoeslii Aloe sakarahensis Aloe saronarae Aloe tulearensis Aloe werneri Aloe zakamisyi Amorphophallus mangelsdorffii Amphistemon humbertii Amphistemon rakotonasolianus Angraecum oeonioides Anisotes divaricatus Apodytes bebile Aponogeton eggersii Aponogeton gottlebei Aponogeton masoalaensis Aponogeton schatzianus Artabotrvs darainensis Aspidostemon andohahelensis Aspidostemon antongilensis Aspidostemon apiculatus Aspidostemon capuronii Aspidostemon conoideus Aspidostemon fungiformis Aspidostemon grayi Aspidostemon insignis Aspidostemon litoralis Aspidostemon longipedicellatus Aspidostemon lucens Aspidostemon macrophyllus Aspidostemon manongarivensis Aspidostemon masoalensis Aspidostemon microphyllus Aspidostemon occultus Aspidostemon reticulatus Aspidostemon trichandra Baroniella linearifolia Bathiorhamnus capuronii Bathiorhamnus vohemarensis Beilschmiedia pedicellata Beilschmiedia rugosa Bertiera brevithyrsa Billburttia capensoides Billburttia vaginoides Bonamia ankaranensis

Scientist(s)
T.A.McCoy, Rakouth & Lavranos
JB.Castillon
JP.Castillon
JB.Castillon
JB.Castillon
JB.Castillon
JB.Castillon
Lavranos, Rakouth & T.A.McCoy
JB.Castillon
P.I.Forst.
JB.Castillon
JB.Castillon
JP.Castillon
T.A.McCoy, Rakouth & Lavranos
Lavranos & T.A.McCoy
Rebmann
Rebmann
Lavranos & T.A.McCoy
Lavranos & T.A.McCoy
JB.Castillon Lavranos & T.A.McCoy
JB.Castillon
JP.Castillon
JB.Castillon
Lavranos, Rakouth & T.A.McCoy
JB.Castillon & JP.Castillon
JB.Castillon
JB.Castillon
T.A.McCoy & Lavranos
JB.Castillon
JB.Castillon
Rebmann
JB.Castillon
Lavranos & T.A.McCoy
Lavranos & M.Teissier
Lavranos & T.A.McCoy
T.A.McCoy & Lavranos
JB.Castillon
T.A.McCoy & Lavranos
Bogner
Groeninckx Groeninckx
Bosser
T.F.Daniel, Mbola, Almeda & Phillipson
Labat, R.Rabev. & El-Achkar
Bogner & H.Bruggen
Kasselm. & Bogner
Bogner
Bogner & H.Bruggen
Deroin & L.Gaut.
van der Werff
van der Werff van der Werff
van der Werff
van der Werff
van der Werff
van der Werff
van der Werff
Klack.
Callm., Phillipson & Buerki
Callm., Phillipson & Buerki
van der Werff
van der Werff
A.P.Davis
Sales & Hedge
Sales & Hedge
Deroin

Species	Scientist(s)	Year
Brexia alaticarpa	G.E.Schatz & Lowry	2004
Brexia australis	G.E.Schatz & Lowry	2004
Brexia marioniae	G.E.Schatz & Lowry	2004
Bulbophyllum ambatoavense	Bosser	2004
Bulbophyllum jackyi	G.A.Fisch., Sieder & P.J.Cribb	2007
Bulbophyllum labatii	Bosser	2004
Bulbophyllum petrae	G.A.Fisch., Sieder & P.J.Cribb	2007
Buxus cipolinica	Lowry & G.E.Schatz	2006 2008
Cadia multifoliolata Calyptranthera filifera	Nusb. & Labat Klack.	2008
Calyptranthera sulphurea	Klack.	2007
Calyptranthera villosa	Klack.	2007
Campnosperma zacharyi	Randrian. & Lowry	2004
Celtis madagascariensis	Sattarian	2005
Cissus zombitsy	Desc.	2007
Cloiselia humbertii	S.Ortiz	2006
Cloiselia madagascariensis Coffea bissetiae	S.Ortiz A.P.Davis & Rakotonas.	2006 2008
Coffea boinensis	A.P.Davis & Rakotonas.	2008
Coffea labatii	A.P.Davis & Rakotonas.	2008
Coffea namorokensis	A.P.Davis & Rakotonas.	2008
Coffea pterocarpa	A.P.Davis & Rakotonas.	2008
Coffea toshii	A.P.Davis & Rakotonas.	2010
Colea gentryi	Zijhra	2006
Colea resupinata	Zijhra	2006
Colea rosea Colea svtsmae	Zijhra Zijhra	2006 2006
Commelina lukei	Faden	2008
Commiphora capuronii	Bard.	2002
Coptosperma mitochondrioides	Mouly & De Block	2008
Crassula ankaratrensis	Desc.	2007
Crassula bevilanensis	Desc.	2007
Crinum hanitrae	Lehmiller & Sisk	2008
Crinum lavrani Cryptocarya glabriflora	Lehmiller van der Werff	2007 2008
Cvathea basirotundata	Rakotondr. & Janssen	2008
Cyathea conferta	Janssen & Rakotondr.	2008
Cyathea dilatata	Rakotondr. & Janssen	2008
Cyathea emilei	Janssen & Rakotondr.	2008
Cyathea hebes	Janssen & Rakotondr.	2008
Cyathea impolita	Rakotondr. & Janssen	2007
Cyathea lisyae	Janssen & Rakotondr.	2008
Cyathea longispina Cyathea meridionalis	Janssen & Rakotondr. Janssen & Rakotondr.	2008 2008
Cyathea obtecta	Rakotondr. & Janssen	2008
Cyathea pseudobellisquamata	Janssen & Rakotondr.	2008
Cyathea rouhaniana	Rakotondr. & Janssen	2007
Cyathea valdesquamata	Janssen & Rakotondr.	2008
Cynorkis guttata	Hermans & P.J.Cribb	2007
Cynorkis subtilis	Bosser	2004
Cyphostemma ankaranense Cyphostemma caerulans	Desc.	2007 2007
Cyphostemma mandrakense	Desc. Desc.	2007
Cyphostemma marojejyense	Desc.	2007
Dalbergia gautieri	Bosser & R.Rabev.	2005
Dalbergia manongarivensis	Bosser & R.Rabev.	2005
Dalbergia masoalensis	Bosser & R.Rabev.	2005
Dalbergia occulta	Bosser & R.Rabev.	2005
Dalbergia pseudoviguieri Dioscorea bako	Bosser & R.Rabev.	2005
Dioscorea bosseri	Wilkin Haigh & Wilkin	2008 2005
Dioscorea buckleyana	Wilkin	2009
Dioscorea kimiae	Wilkin	2009
Dioscorea orangeana	Wilkin	2009
Dioscorea sterilis	O.Weber & Wilkin	2005
Dombeya gautieri	Dorr & Skema	2010
Dypsis andilamenensis	Rakotoarin. & J.Dransf	2010
Dypsis anjae Dypsis ankirindro	Rakotoarin. & J.Dransf W.J.Baker, Rakotoarin. & M.S.Trudge	2010 n 2009
Dypsis betsimisarakae	Rakotoarin. & J.Dransf	2010
Dypsis brittiana	Rakotoarin.	2009
Dypsis culminis	Rakotoarin. & J.Dransf	2010
Dypsis delicatula	Britt & J.Dransf.	2005
Dypsis dracaenoides	Rakotoarin. & J.Dransf	2010
Dypsis gautieri	Rakotoarin. & J.Dransf	2010
Dypsis gronophyllum Dypsis humilis	Rakotoarin. & J.Dransf M.S.Trudgen, Rakotoarin, & W.I.Bake	2010 r 2009
Dypsis numitis	M.S.Trudgen, Rakotoarin. & W.J.Bake	1 2009

Species

Dvpsis ieremiei Dypsis makirae Dypsis metallica Dypsis rakotonasoloi Dypsis reflexa Dypsis sancta Dypsis vonitrandambo Euphorbia berevoensis Euphorbia erythrocucullata Flagenium farafanganense Flagenium pedunculatum Flagenium petrikense Gaertnera bambusifolia Gaertnera brevipedicellata Gaertnera darcvana Gaertnera ianthina Gaertnera lowrvi Gaertnera monstruosa Gaertnera pauciflora Gaertnera raphaelii Gaertnera schatzii Garcinia capuronii Garcinia lowrvi Gnidia neglecta Gnidia razakamalalana Goodyera goudotii Gymnosiphon marieae Gyrostipula obtusa Habenaria tianae Heliotropium perrieri Helmiopsis polvandra Hibiscus lamalama Hildegardia dauphinensis Hilsenbergia angustifolia Hilsenbergia apetala Hilsenbergia bosseri Hilsenbergia capuronii Hilsenbergia croatii Hilsenbergia darcyana Hilsenhergia lahatii Hilsenbergia leslieae Hilsenbergia lowryana Hilsenbergia moratiana Hilsenbergia randrianasoloana Hilsenbergia schatziana Hymenodictyon antakaranensis Hymenodictyon tsingy Impatiens academiae-moguntiae Impatiens ambahatrensis Impatiens ambanizanensis Impatiens ampokafoensis Impatiens and apensis Impatiens ankaranensis Impatiens bardotiae Impatiens barthlottii Impatiens befiananensis Impatiens benitae Impatiens betsoman Impatiens callmanderi Impatiens carlsoniae Impatiens druartii Impatiens fianarantsoae Impatiens georgei-schatzii Impatiens guillaumetii Impatiens haingosonii Impatiens kraftii Impatiens kuepferi Impatiens laurentii Impatiens loki-schmidtiae Impatiens luisae-echterae Impatiens maevae Impatiens mahalevonensis Impatiens mamyi Impatiens mayae-valeriae Impatiens messmerae Impatiens mindiae Impatiens nanatonanensis Impatiens nicolliae Impatiens nidus-apis Impatiens nomenyae Impatiens nosymangabensis Impatiens nusbaumeri Impatiens paranyi Impatiens purpureolucida Impatiens purroi Impatiens rakotomalazana

Rakotoarin, & J.Dransf Rakotoarin. & Britt Rakotoarin. & J.Dransf Rakotoarin. Rakotoarin & J Dransf Rakotoarin. & J.Dransf Rakotoarin. & J.Dransf Lawant & Buddens Mangelsdorff Ruhsam & A.P.Davis Ruhsam & A.P.Davis Ruhsam & A P Davis Malcomber & A.P.Davis Malcomber & A.P.Davis Malcomber & A.P.Davis Malcomber Malcomber Malcomber Malcomber & A P Davis Malcomber Malcomber Z.S.Rogers & P.W.Sweeney Z.S.Rogers & P.W.Sweeney Z.S.Rogers Z.S.Rogers Ormerod & Cavestro Cheek Eman. & Razafim. P.J.Cribb & D.L.Roberts J.S.Mill. Appleq. Callm., Buerki & Koopman J.G.Zaborsky J.S.Mill. J S Mill J.S.Mill LS Mill J.S.Mill. J.S.Mill J.S.Mill J.S.Mill J S Mill J.S.Mill. LS Mill J.S.Mill. Razafim. & B.Bremer Razafim. & B.Bremer Eb.Fisch. & Raheliv. Eb.Fisch. & Raheliv. Eb.Fisch. & Raheliv. Eh Fisch & Raheliv Eb.Fisch. & Raheliv. Eb.Fisch., Wohlh. & Raheliv. Eb.Fisch. & Raheliv. Eb.Fisch., Wohlh. & Raheliv. Eb Fisch & Raheliv Eb.Fisch. & Raheliv. Eb.Fisch. & Raheliv. Eb Fisch & Raheliv Eb.Fisch. & Raheliv Eb.Fisch. & Raheliv Eb.Fisch., Wohlh. & Raheliv. Eb.Fisch. & Raheliv. Eb.Fisch. & Raheliv. Eb.Fisch. & Raheliv. Eb.Fisch., Wohlh. & Raheliv. Eb.Fisch. & Raheliv. Eh Fisch & Raheliv Eb.Fisch. & Raheliv. Eb.Fisch. & Raheliv Eb.Fisch. & Raheliv. Eb.Fisch., Wohlh. & Raheliv. Eb.Fisch. & Raheliv. Eb.Fisch. & Raheliv Eb.Fisch. & Raheliv. Eb.Fisch. & Raheliv. Eh Fisch & Raheliv Eb.Fisch. & Raheliv. Eb.Fisch. & Raheliv. Eb.Fisch., Wohlh. & Raheliv. Eb.Fisch., Wohlh. & Raheliv. Eb Fisch & Raheliv

Scientist(s)

Impatiens rapanarivoi Impatiens razanatsoa-charlei Impatiens renae Impatiens rivularis Impatiens salifii Impatiens saolana Impatiens scenarioi Impatiens sidiformis Impatiens stefaniae Impatiens tafononensis Impatiens tsararavina Impatiens tsingvcola Impatiens vebrowniae Impatiens vellela Impatiens volatianae Impatiens wohlhauseri Ipomoea darainensis Ixora clandestina Ixora densithvrsa Ixora peculiaris Ixora rakotonasoloi Jumellea alionae Kalanchoe inaurata Kalanchoe maromokotrensis Kalanchoe pareikiana Kalanchoe peltigera Kalanchoe rebmannii Kalanchoe tenuiflora Lastreopsis coriaceosquamata Lastreopsis fidelei Lastreopsis manongarivensis Lepisanthes sambiranensis Ludia craggiana Mantalania longipedunculata Mauloutchia annickiae Mauloutchia capuronii Memecylon acrogenum Memecylon amplifolium Memecylon impressivenum Memecylon interjectum Memecylon perditum Memecylon pterocladun Memecylon sejunctum Memecvlon xiphophyllum Micronychia bemangidiensis Micronvchia benond Micronychia kotozafii Micronychia striata Nesogordonia rakotovaoi Noronhia jeremii Oeceoclades callmanderi Olax antsiranensis Olax capuronii Oliganthes anjanaribensis Operculicarya capuronii Operculicarya multijuga Ophiocolea vokoaninensis Pandanus callmanderiana Pandanus humbertii Pandanus kuenferi Pandanus marojejicus Pandanus masoalensis Pandanus nusbaumeri Pandanus sermollianus Pandanus validus Pentopetia astephana Pentopetia viridis Peperomia ankaranensis Peneromia costata Peperomia erythrocaulis Peperomia humbertii Peperomia mantadiana Peperomia nicolliae Peperomia pluvisilvatica Peperomia ratticaudata Peperomia richardsonii Peperomia terebinthina Peponidium crassifolium Phanerodiscus capuronii Phyllarthron nocturnum Phyllarthron sahamalazensis Phyllarthron vokoaninensis Pilgerina madagascariensis Plectranthus papilionaceus Plectranthus rosulatus Plukenetia ankaranensis

Species

Year

2010

2009 2010

2009

2010

2010

2010

2008

2005

2007

2007

2007

2005

2005

2005

2009

2009

2009

2005

2009

2009

2007

2007

2009

2006 2006

2008

2007

2008

2003

2009

2009

2009

2003

2003

2003

2003

2003

2003

2003

2003

2003

2003

2003

2003

2006

2006

2007

2007

2007

2007

2007

2007

2007

2007

2007

2003

2007

2003

2007

2007

2007

2007

2007

2007

2003

2004

2007

2004

2003

2007

2007

2007

2004

2007

2003

2007

2007

2007

2007

2007

2007

2007

2003

2003

2007

Eb.Fisch. & Raheliv 2007 Eb.Fisch. & Raheliv 2007 Eb.Fisch. & Raheliv 2004 Eb.Fisch., Wohlh. & Raheliv 2003 Eb.Fisch. & Raheliv. 2007 Eb.Fisch. & Raheliv. 2007 Eb Fisch & Rabeliv 2007 Eb.Fisch. & Raheliv. 2004 Eb.Fisch. & Raheliv 2004 2007 Eb.Fisch. & Raheliv Eb.Fisch. & Raheliv 2007 Eb.Fisch. & Raheliv 2007 Eb.Fisch., Wohlh. & Raheliv. 2003 Eb Fisch & Raheliv 2004 Eb.Fisch. & Raheliv. 2007 Eb.Fisch. & Raheliv 2004 2008 Deroin, Ranir. & Nusb De Block 2009 De Block 2008 De Block 2008 De Block 2009 P.J.Cribb 2009 Desc. 2005 Desc. & Rebmann 2006 Desc. & Lavranos 2005 2005 Desc. Desc. 2006 Desc 2004 Rakotondr 2009 Rakotondr 2009 2009 Rakotondr. Buerki, Callm. & Lowry 2009 Z.S.Rogers, Randrian. & J.S.Mill. 2006 De Block & A.P.Davis 2006 Sauguet 2004 Sauquet 2004 R D Stone 2006 R.D.Stone 2006 R.D.Stone 2006 R.D.Stone 2006 2006 R.D.Stone R D Stone 2006 R.D.Stone 2006 R.D.Stone 2006 Randrian. & Lowry 2009 Randrian. & Lowry 2009 Randrian. & Lowry 2009 Randrian. & Lowry 2009 Rakotoar., Andriamb. & Callm 2009 Hong-Wa & Callm. 2009 Bosser 2006 Z.S.Rogers, Malécot & Sikes 2006 Z.S.Rogers, Malécot & Sikes Beentje & D.J.N.Hind 2006 2010 Randrian. & Lowry 2006 Randrian. & Lowry 2006 Zjhra 2006 Laivao & Buerki 2006 Laivao, Callm. & Buerki 2007 Callm., Wohlh, & Laivao 2003 Callm. & Laivao 2003 Laivao & Callm. 2000 Callm. & L.Gaut 2009 Callm. & Buerki 2008 Huvnh & Callm 2003 2007 Klack. Klack & Meve 2007 G.Mathieu 2006 G.Mathieu 2003 G.Mathieu 2006 G.Mathieu 2003 G Mathieu 2003 G.Mathieu 2003 G Mathieu 2003 G.Mathieu 2003 G.Mathieu 2006 G.Mathieu 2003 Lantz, Klack. & Razafim. 2007 Malécot, G.E.Schatz & Bosser 2003 Zjhra 2006 Zihra 2006 2006 Zjhra Z.S.Rogers, Nickrent & Malécot Ranir. & Phillipson 2008 2007 Hedge L.J.Gillespie 2005 2007

Scientist(s)

Year

Species

Scientist(s)

L.J.Gillespie

Plukenetia decidua Polyscias kalabenonensis Polyscias pachypedicellata Polyscias wohlhauseri Polystachya clareae Pouzolzia tsaratananensis Prockiopsis calcicola Pseudotectaria analamazaotrensis Pseudotectaria jouyana Pvrenacantha ambrensis Pyrenacantha andapensis Pyrenacantha perrieri Pyrenacantha rakotozafyi Pyrenacantha tropophila Pyrostria pendula Pyrostria serpentina Radcliffea smithii Ravenea beentjei Ravenea delicatula Ravenea hypoleuca Rhodocolea lemuriphila Rhodocolea multiflora Rhopalocarpus mollis Rhopalocarpus randrianaivoi Schizolaena isaloensis Schizolaena ravmondii Secamone galinae Secamone trichostemor Seddera madagascariensis Staufferia capuronii Stephanodaphne pedicellata Stephanodaphne pilosa Stephanodaphne schatzii Sterculia cheekii Suregada celastroides Tahina spectabilis Tarenna capuroniana Thamnoldenlandia ambovombensis Toliara arenacea Tricalysia ambrensis Tricalysia dauphinensis Tricalysia humbertii Tricalysia majungensis Tricalysia orientalis Trichilia sambiranensis Uncarina ankaranensis Uncarina ihlenfeldtiana Uvaria relambo Uvaria sambiranensis Warneckea masoalae Weinmannia aggregata Weinmannia magnifica Wielandia unifex Xerochlamvs coriacea Xerochlamys itremoensis Xerochlamys undulata Xylopia kalabenonensis Żygophlebia anjanaharibensis Żygophlebia goodmanii Total: 385

Invertebrates

Afrorheithrus admirabilis

Afrorheithrus fallax

Afrorheithrus mirus

Aptinoma antongil Aptinoma mangabe Cheimacheramus rossi Coptotriche alavelona Garcorops jadis Helicopsyche ambodiva Helicopsyche hadika Helicopsyche ninakosha Heptascelio novesi Heptascelio orarius Heptascelio paralugens Heptascelio sicarius Heptascelio teres Hessemydas Parkeri

Hessemyd	las tu	lear
----------	--------	------

L.J.Gillespie
Lowry & Callm.
Lowry & Callm.
Lowry & Callm.
Hermans
Friis & Wilmot-Dear
G.E.Schatz & Lowry
Rakotondr.
Rakotondr.
Labat, El-Achkar & R.Rabev.
Lantz, Klack. & Razafim.
Lantz, Klack. & Razafim.
Petra Hoffm. & K.Wurdack
Rakotoarin. & J.Dransf.
Rakotoarin.
Rakotoarin. & J.Dransf.
Zjhra
Zjhra
G.E.Schatz & Lowry
G.E.Schatz & Lowry
Rabeh. & Lowry
Lowry & Rabeh.
Klack.
Klack.
Deroin & Sebsebe
Z.S.Rogers, Nickrent & Malécot
Z.S.Rogers
Z.S.Rogers
Z.S.Rogers
Dorr
RadelSm. & Petra Hoffm.
J.Dransf. & Rakotoarin.
De Block
Groeninckx
Judz.
Ranariv. & De Block
Callm. & Phillipson
Ihlenf.
Lavranos
Deroin & L.Gaut.
Deroin & L.Gaut.
R.D.Stone
Z.S.Rogers & J.Bradford
J.Bradford & Z.S.Rogers
Petra Hoffm. & McPherson
Hong-Wa
Hong-Wa
Hong-Wa
D.M.Johnson, Deroin & Callm.
Rakotondr.
Rakotondr.

John S. Weaver Iii, François-Marie Gibon

John S. Weaver Iii, François-Marie Gibon

John S. Weaver Iii, François-Marie Gibon

Kjell Arne Johanson & János Oláh

Kjell Arne Johanson & János Oláh

Kiell Arne Johanson & János Oláh

Kjell Arne Johanson & János Oláh

Johnson & Masner B. C. Kondratieff, Ryan J. Carr &

B. C. Kondratieff, Ryan J. Carr &

& Pavel Chvojka

& Pavel Chvoika

& Pavel Chvoika

Brian L. Fisher

Brian L. Fisher

Lees And Stonis

Masner & Johnson

Johnson & Masner

Masner & Johnson Johnson & Musetti

Michael E. Irwin

Michael E. Irwin

Jan Bosselaers

Species

Year

2007

2009

2009 2009

2003 2006

2003 2010

2010

2006

2006

2006 2006

2006 2007

2007

2006

2010

2008

2010

2006 2006

2006

2006 2009

2006

2003

2005

2009

2008

2004

2004

2004 2004

2004

2008

2005

2010

2009

2007

2007

2007

2007

2007

2009

2004

2004

2006

2006

2006

2004

2004

2007

2009

2009

2009 2009

2006

2006

2008

2008

2008

2009

2009

2006

2007

2004

2006

2006

2006

2008

2008

2008

2008

2008

2005

2005

Hydrothelphusa vencesi
Laelius mekes Laelius mekes Mahafalymydas tuckeri
Mahafalymydas wiegmanni
Nephila komaci Ninetis toliara Olixon martini Olixon toliaraaensis Paduniella ambra Paduniella fiinti Paduniella mandra Paduniella sona Petrothrincus andohel Petrothrincus andring Petrothrincus dhitaparam Petrothrincus newidop Petrothrincus newidop Petrothrincus sauliani Petrothrincus sauliani Petrothrincus sauliani Petrothrincus sauliani Petrothrincus sauliani Petrothrincus sauliani
Ravavy miafina Rhoizema mahalevonum

Total: 42

Fish

Allenbatrachus meridionalis Arius festinus Arius uncinatus Bedotia albomarginata Bedotia alvevi Bedotia leucopteron Bedotia marojejy Bedotia masoala Gogo atratus Paretroplus tsimoly Parupeneus fraserorum Ptychochromis ernestmagnusi Ptychochromoides itasy Ptvchochromoides vondrozo Rheocles derhami Rheocles vatosoa

Total:17

Anodonthyla moramo Anodonthyla theoi Anodonthyla vallani Blommersia sarotra Boophis arcanus Boophis axelmeyeri Boophis baetkei Boophis bottae Boophis calcaratus Boophis entingae Boophis feonnyala Boophis haematopus Boophis haingana Boophis liami Boophis lilianae Boophis luciae Boophis miadana Boophis picturatus Boophis piperatus Boophis praedictus Boophis pyrrhus Boophis roseipalmatus Boophis sambirano Boophis sandrae Boophis schuboeae

Scientist(s)	Year
Neil Cumberlidge, Saskia A. E. Marijnissen & Jonelle Thompson	2007
D. N. Barbosa & C. O. Azevedo	2009
D. N. Barbosa & C. O. Azevedo	2009
B. C. Kondratieff, Ryan J. Carr &	2005
Michael E. Irwin	2000
B. C. Kondratieff, Ryan J. Carr &	2005
Michael E. Irwin	2000
Kuntner & Coddington	2009
Bernhard A. Huber & Hisham K. El-Hennawy	2007
Volker Lohrmann & Michael Ohl	2007
Volker Lohrmann & Michael Ohl	2007
Kjell Arne Johanson & János Oláh	2010
Kjell Arne Johanson & János Oláh	2010
Kjell Arne Johanson & János Oláh	2010
Kjell Arne Johanson & János Oláh	2010
Kjell Arne Johanson & János Oláh	2010
Kjell Arne Johanson & János Oláh	2010
Kjell Arne Johanson & János Oláh	2000
Kjell Arne Johanson & János Oláh	2000
Kjell Arne Johanson & János Oláh	2000
Kjell Arne Johanson & János Oláh	2006
Kjell Arne Johanson & János Oláh Dominik Chlond	2006
	2010
Hermes E. Escalona & Adam Slipinski	2008
Brian L. Fisher	2009
Kjell Arne Johanson & János Oláh	2006

2004

2003

2003

2005

2010

2007

2000

2001

2008 2001

2009

2010

2004

2001

2001

2002

2002

Greenfield, D.W. & Wm. L. Smith Ng & Sparks Ng & Sparks Ng & Sparks Sparks & Rush Jones, C. C., W.L. Smith & J.S. Sparks Loiselle & Rodriguez Stiassny, M.L.J. & I.J. Harrison Sparks, J.S. Ng, Sparks & Loiselle Stiassny, Chakrabarty & Loiselle Randall, J.E. & D.R. King Sparks, J.S. & M.L.J. Stiassny Sparks, J.S. Sparks & Reinthal Stiassny, M.L.J. & D.M. Rodriguez Stiassny, M.L.J., D.M. Rodriguez & P.V. Loiselle Stiassny

Sauvagella robusta

Amphibians

Anodonthyla emilei Anodonthyla hutchisoni

Anodonthyla jeanbai

Vences, Glaw, Köhler, & Wollenberg	2010
Fenolio, Walvoord, Stout, Randrianirina &	2007
Andreone	
Vences, Glaw, Köhler & Wollenberg	2010
Glaw & Vences	2005
Vences, Glaw, Köhler & Wollenberg	2010
Vences, Glaw, Köhler & Wollenberg	2010
Glaw & Vences	2002
Glaw, Köhler, De la Riva, Vieites & Vences	2010
Vences, Andreone & Vieites	2005
Köhler, Glaw & Vences	2008
Vences & Glaw	2002
Vallan, Vences & Glaw	2010
Glaw, Köhler, De la Riva, Vieites & Vences	2010
Glaw, Vences, Andreone & Vallan	2001
Glaw, Vences, Andreone & Vallan	2001
Glaw, Köhler, De la Riva, Vieites & Vences	2010
Vallan, Vences & Glaw	2003
Köhler, Glaw & Vences	2008
Glaw, Köhler, De la Riva, Vieites & Vences	2010
Glaw, Köhler, De la Riva, Vieites & Vences	2010
Glaw, Vences, Andreone & Vallan	2001
Glaw, Köhler, De la Riva, Vieites & Vences	2010
Glaw, Köhler, De la Riva, Vieites & Vences	2010
Glaw, Vences, Andreone & Vallan	2001
Glaw, Köhler, De la Riva, Vieites & Vences	2010
Vences & Glaw	2005
Glaw, Köhler, De la Riva, Vieites & Vences	2010
Glaw & Vences	2002

Species

Boophis solomaso Boophis spinophis Boophis tampoka Boophis tasymena Boophis ulftunni Boophis vittatus Cophyla berara Gephyromantis ambohitra Gephyromantis azzurrae Gephyromantis enki Gephyromantis moseri Gephyromantis runewsweeki Gephyromantis salegy Gephyromantis schilfi Gephyromantis striatus

Gephyromantis tandroka Gephyromantis tschenki Gephyromantis zavona

Guibemantis kathrinae Guibemantis timidus Heterixalus carbonei Mantella manerv Mantidactylus charlotteae Mantidactylus noralottae Mantidactylus zipperi Mantidactylus zolitschka Paradoxophyla tiarano Platypelis mavomavo Platypelis tetra Plethodontohyla fonetana Plethodontohyla guentheri Plethodontohyla mihanika Rhombophryne coronata Rhombophryne matavy Scaphiophryne boribory Scaphiophryne menabensis Spinomantis nussbaumi Spinomantis tavaratra Stumpffia helenae Tsingymantis antitra Wakea madinika

Total: 69

Reptiles

Amphiglossus mandady Amphiglossus spilostichus Amphiglossus stylus Amphiglossus tanysoma Calumma amber Calumma crvpticum Calumma hafahafa Calumma jejy Calumma peltierorum Calumma tarzan

Calumma tsycorne Calumma vatosoa Calumma vencesi Compsophis fatsibe Furcifer nicosiai Furcifer timoni Heteroliodon fohy Heteroliodon lava Liophidium maintikibo

Liophidium pattoni

Liopholidophis dimorphus Lygodactylus roavolana Madascincus nanus Paracontias fasika Paracontias hafa Paracontias kankana

Paracontias manify Paracontias tsararano Paroedura karstophila Paroedura lohatsara Paroedura maingoka Paroedura tanjaka Paroedura vahiny Paroedura vazimba Phelsuma borai

Scientist(s)

Vallan, Vences & Glaw Glaw, Köhler, De la Riva, Vieites & Vences Köhler, Glaw & Vences Vences & Glaw Wollenberg, Andreone, Glaw & Vences Glaw, Vences, Andreone & Vallan Vences, Andreone & Glaw Vences & Glaw Mercurio & Andreone Glaw & Vences Glaw & Vences Vences & De la Riva Andreone, Aprea, Vences & Odierna Glaw & Vences Vences, Glaw, Andreone, Jesu & Schimmenti Glaw & Vences Glaw & Vences Vences, Andreone, Glaw & Randrianirina Glaw, Vences & Gossmann Vences & Glaw Vences, Glaw, Jesu & Schimmenti Vences, Glaw & Böhme Vences & Glaw Mercurio & Andreone Vences & Glaw Glaw & Vences Andreone, Aprea, Odierna & Vences Andreone, Fenolio & Walvoord Andreone, Fenolio & Walvoord Glaw, Köhler, Bora & Rabibisoa Glaw & Vences Vences, Raxworthy, Nussbaum & Glaw Vences & Glaw D'Cruze, Köhler, Vences & Glaw Vences, Raxworthy, Nussbaum & Glaw Glos, Glaw & Vences Cramer, Rabibisoa & Raxworthy Cramer, Rabibisoa & Raxworthy Vallan Glaw, Hoegg & Vences Vences, Andreone, Glaw & Mattioli

Andreone & Greer
Andreone & Greer
Andreone & Greer
Andreone & Greer
Raxworthy & Nussbaum
Gehring, Pabijan, Ratsoavina, Köhler,
Vences & Glaw
Raxworthy & Nussbaum
Andreone, Mattioli, Jesu & Randrianirina
Andreone, Mattioli, Jesu & Randrianirina
Mercurio & Andreone
Esu, Mattioli & Schimmenti
Glaw, Köhler & Vences
Glaw, Vences & Nussbaum
Nussbaum & Raxworthy
Franzen, Jones, Raselimanana, Nagy,
C'cruze, Glaw & Vences
Vieites, Ratsoavina, Randrianiaina, Nagy,
Glaw & Vences
Glaw, Nagy, Franzen & Vences
Puente, Glaw, Vieites & Vences
Andreone & Greer
Köhler, Vences, Erbacher & Glaw
Andreone & Greer
Köhler, Vieites, Glaw, Kaffenberger &
Vences
Andreone & Greer
Andreone & Greer
Nussbaum & Raxworthy
Glaw, Vences & Schmidt
Nussbaum & Raxworthy
Glaw, Köhler & Vences

Year	

2003

2010

2008

2002

2008

2001

2005 2001

2007

2002

2002

2007

2003

2000

2002

2001

2001

2003

2000

2005

2000

1999

2004

2007

2004

2004

2006

2003 2003

2007

2007

2003

2003

2010

2003

2005

2008

2008

2000

2006

2002

2002

2002

2002

2002

2006

2006

2006

2006

2006

2010

2006

2001

2001

2005

1999

2009

2005

2000

2009

2010

2007

2009

2002

2010

2002

2009

2002

2002

2000

2001

2000

2000

2000

2000

2009

Species
Phelsuma hielscheri Phelsuma hoeschi Phelsuma kely Phelsuma malamakibo
Phelsuma ravenala Phelsuma roesleri Phelsuma vanheygeni Pseudoacontias menamainty Pseudoacontias unicolor Pseudoacontias unicolor Pseudoacynopus oblectator Strenoscincus yamagishii Thamnosophis martae Thamnosophis martae Thamnosophis mavatenda Trachylepis tandrefana Trachylepis tavaratra Trachylepis vezo Trachylepis volamenaloha Typhlops andasibensis Typhlops arajeryi Uroplatus giganteus Uroplatus gietschmanni Xenotyphlops mocquardi Zonosaurus anelanelany
Zonosaurus maramaintso
Zonosaurus tsingy
Total: 61
Mammals
Avahi cleesei

Cha Che Che Che Eliı Em Lep Ma Mic Mir Mir Mir Scot Sco Voa Total: 41

Scientist(s)

	Scientist(s)	Year
	Rösler	2001
	Berghof & Trautmann	2009
	Schönecker, Bach & Glaw	2004
bo	Nussbaum, Raxworthy, Raselimanana &	2000
	Ramanamanjato	
	Raxworthy, Ingram, Rabibisoa & Pearson	2007
	Glaw, Gehring, Köhler, Franzen & Vences	2010
1i	Lerner	2004
amainty	Andreone & Greer	2002
olor	Sakata & Hikida	2003
ectator	Cadle	1999
gishii	Sakata & Hikida	2003
ie	Glaw, Franzen & Vences	2005
tenda	Glaw, Nagy, Köhler, Franzen & Vences	2009
na	Nussbaum, Raxworthy & Ramanamanjato	1999
а	Ramanamanjato, Nussbaum & Raxworthy	1999
	Ramanamanjato, Nussbaum & Raxworthy	1999
aloha	Nussbaum, Raxworthy & Ramanamanjato	1999
is	Wallach & Glaw	2009
	Renoult & Raselimanana	2009
	Glaw, Kosuch, Henkel, Sound & Böhme	2006
nni	Böhle & Schönecker	2004
ardi	Wallach, Mercurio & Andreone	2007
lany	Raselimanana, Raxworthy & Nussbaum	2000
ha	Raselimanana, Raxworthy & Nussbaum	2000
intso	Raselimanana, Nussbaum & Raxworthy	2006
	Raselimanana, Raxworthy & Nussbaum	2000

Avahi cleesei	Thalmann U. & Geissmann T.	2005
Avahi unicolor	Thalmann U. & Geissmann T.	2000
Chaerephon atsinanana	Goodman, Buccas, Naidoo,	2010
	Ratrimomanarivo, Taylor & Lamb	
Chaerephon jobimena	Goodman & Cardiff	2004
Cheirogaleus minusculus	Groves	2000
Cheirogaleus ravus	Groves	2000
Eliurus antsingy	Carleton, Goodman & Rakotondravony	2001
Emballonura tiavato	Goodman, Cardiff, Ranivo, Russell & Yoder	2006
Lepilemur aeeclis	Andriaholinirina, N., Fausser, J., Roos, C.,	2006
	Rumpler, Y., et al	
Lepilemur ahmansoni	Louis, Jr	2006
Lepilemur betsileo	Louis, Jr	2006
Lepilemur fleuretae	Louis, Jr	2006
Lepilemur grewcocki	Louis, Jr	2006
Lepilemur hubbardi	Louis, Jr	2006
Lepilemur jamesi	Louis, Jr	2006
Lepilemur milanoii	Louis, Jr	2006
Lepilemur petteri	Louis, Jr	2006
Lepilemur randrianasoli	Andriaholinirina, N., Fausser, J., Roos, C.,	2006
	Rumpler, Y., et al.	
Lepilemur sahamalazensis	Andriaholinirina, N., Fausser, J., Roos, C.,	2006
	Rumpler, Y., et al.	
Lepilemur seali	Louis, Jr	2006
Lepilemur tymerlachsoni	Louis, Jr	2006
Lepilemur wrighti	Louis, Jr	2006
Macrotarsomys petteri	Goodman and Soarimalala	2005
Microcebus berthae	Rasoloarison et al.	2000
Microcebus jollyae	Louis et al	2006
Microcebus lehilahytsara	Roos and Kappeler	2005
Microcebus macarthurii	Radespiel et al.	2008
Microcebus mamiratra	Andriantompohavana et al.	2006
Microcebus mittermeieri	Louis et al.	2006
Microcebus sambiranensis	Rasoloarison et al	2000
Microcebus simmonsi	Louis et al.	2006
Microcebus tavarata	Rasoloarison et al	2000
Microgale jenkinsae	Goodman & Soarimalala	2004
Microgale jobihely	Goodman, Raxworthy, Maminirina & Olson	2006
Microgale nasoloi	Jenkins & Goodman	1999
Miniopterus petersoni	Goodman, Bradman, Maminirina, Ryan,	2008
	Christidis & Belinda Appleton	
Miniopterus sororculus	Goodman, Ryan, Maminirina, Fahr,	2007
	Christidis & Appleton	
Mirza zaza	Kappeler & Roos	2005
Scotophilus marovaza	Goodman, Ratrimomanarivo,	2006
	Randrianandrianina	
Scotophilus tandrefana	Goodman, S.M., R.K.B. Jenkins &	2005
	F.H. Ratrimomanarivo	
Voalavo antsahabensis	Goodman, Rakotondravony,	2005
	Randriamanantsoa & Rakotomalala	
TE 4 1 41		

GRAND TOTAL: 615

REFERENCES

¹ Tyson, Peter and Russell A. Mittermeier. *The Eighth Continent: Life, Death, and Discovery in the Lost World of Madagascar*. Morrow, William & Co, 2000.

² WWF International. 2010. *Madagascar and the Western Indian Ocean Region*. www. madagascar.panda.org/wherewework/

³ WWF International. 2010. *Madagascar: Facts & Figures*. www.panda.org/what_we_do/where_we_work/madagascar/

⁴ Yoder, AD. 2007. Lemurs: a quick guide. Current Biology 17 (20): 866–868.

⁵ Schatz in Goodman, SM. and Benstead, JP. (Eds.). 2003. *The Natural History of Madagascar*. Chicago: University of Chicago Press.

⁶ Conservation International. *Biodiversity hotspots: Madagascar and the Indian Ocean Islands* [Online] http://www.biodiversityhotspots.org/xp/hotspots/madagascar/Pages/ biodiversity.aspx

⁷ Harper, GJ. Steininger, MK. Tucker, CJ. Juhn, D. and Hawkins, F. 2007. Fifty years of deforestation and forest fragmentation in Madagascar. *Environmental Conservation*, 34: 325-333 Cambridge University Press.

⁸ Ibid.

⁹ New Scientist. 2006. *Gene analysis reveals lemurs' true colours*. 16 November.
 ¹⁰ Sussman, RW. 2003. *Primate Ecology and Social Structure*. Pearson Custom Publishing.

¹¹ Mittermeier, RA. Konstant, WR. Hawkins, F. Louis, EE. Langrand, O. Ratsimbazafy, J. Rasoloarison, R. Ganzhorn, JU. et al. 2006. *Lemurs of Madagascar*. Illustrated by S.D. Nash (2nd ed.). Conservation International.

¹² Gommery, D. Ramanivosoa, B. Tombomiadana-Raveloson, S. Randrianantenaina, H. Kerloc'h, P. 2009. A new species of giant subfossil lemur from the North-West of Madagascar (Palaeopropithecus kelyus, Primates). *Comptes Rendus Palevol* 3 (5): 471–480.

¹³ Yoder, AD. 2007. Lemurs: a quick guide. *Current Biology* 17 (20): 866–868.

¹⁴ Groeneveld, LF. Weisrock, DW. Rasoloarison, RM. Yoder, AD. Kappeler, PM. 2009. Species delimitation in lemurs: multiple genetic loci reveal low levels of species diversity in the genus Cheirogaleus. *BMC Evolutionary Biology* 9 (30).

¹⁵ Tattersall, I. 2007. Madagascar's lemurs: Cryptic diversity or taxonomic inflation?. *Evolutionary Anthropology* 16: 12–23.

16 Mittermeier, R. Ganzhorn, J. Konstant, W. Glander, K. Tattersall, I. Groves, C. Rylands, A.; Hapke, A. et al. (2008). Lemur diversity in Madagascar. *International Journal of Primatology* 29 (6): 1607–1656.

¹⁷ Tattersall, I. 2007. Madagascar's lemurs: Cryptic diversity or taxonomic inflation? *Evolutionary Anthropology* 16: 12–23.

¹⁸ Yoder, AD. 2007. Lemurs: a quick guide. Current Biology 17 (20): 866-868.

¹⁹ IUCN. 2009. *Red List of Threatened Species*.

²⁰ IUCN. 2010. Primates in Peril: The World's 25 Most Endangered Primates, 2008–2010.

²¹ Böhle, A. and Schönecker, P. 2003. Eine neue Art der Gattung Uroplatus Duméril,
1805, aus Ost-Madagaskar (Reptilia: Squamata: Gekkonidae). Salamandra. 39 (3-4):129-138.

 ²² CITES. 2008. Review of Significant Trade in specimens of Appendix-II species. Selection Of Species For Trade Reviews Following Cop14. Twenty-third meeting of the Animals Committee Geneva, (Switzerland), 19-24 April.
 ²³ Ibid

²⁴ Kuntner M, Coddington JA. 2009. Discovery of the Largest Orbweaving Spider Species: The Evolution of Gigantism in Nephila. *PLoS ONE* 4(10): e7516. doi:10.1371/journal. pone.0007516.

²⁵ Pers. Comm. M Kuntner, Head, Institute of Biology, Scientific Research Centre of the Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia, 28 June 2010.

²⁶ Conservation International. *Biodiversity hotspots: Madagascar and the Indian Ocean*

Islands [Online] http://www.biodiversityhotspots.org/xp/hotspots/madagascar/Pages/ biodiversity.aspx

²⁷ Vieites, DR. Ratsoavina, F. Randrianiaina, RD. Nagy, ZT. Glaw, F. & Vences, M. 2010. A rhapsody of colours from Madagascar: discovery of a remarkable new snake of the genus Liophidium and its phylogenetic relationships. *Salamandra* 46: 1-10.

²⁸ Mongabay. 2010. *Madagascar resumes shipments of illegally logged timber despite moratorium*. 10 June.

²⁹ Glaw, F. Kohler, J. & Vences, M. 2009. A new species of cryptically coloured day gecko (Phelsuma) from the Tsingy de Bemaraha National Park in western Madagascar. *Zootaxa* 2195: 61–68.

³⁰ Glaw, F. Vences, M. 2007. *A field guide to the amphibians and reptiles of Madagascar*. 3rd edition. Cologne: Vences and Glaw Publishers.

³¹ Dransfield, J. Rakotoarinivo, M. Baker, WJ. Bayton, RP. Fisher, JB. Horn, JW. Leroy, B. & Metz, X. 2008. A new coryphoid palm genus from Madagascar. Botanical *Journal of the Linnean Society* 156: 79-91.

³² Wilkin, P. Hladik, A. Weber, O. Hladik, CM. and Jeannoda, V. 2009. Dioscorea orangeana (Dioscoreaceae), a new and threatened species of edible yam from northern Madagascar. *Kew Bulletin* 64(3):461-468.

³³ Glaw, F. Kohler, J. & Vences, M. 2009. A distinctive new species of chameleon of the genus Furcifer (Squamata: Chamaeleonidae) from the Montagne d'Ambre rainforest of northern Madagascar. *Zootaxa* 2269: 32–42.

³⁴ Vences, M. and Glaw, F. 2002. Two new treefrogs of the Boophis rappiodes group from eastern Madagascar. *Tropical Zoology*: 141-163.

³⁵ Vieites, DR. Wollenberg, KC. Andreone, F. Köhler, J. Glaw, F. and Vences, M. 2008. Vast underestimation of Madagascar's biodiversity evidenced by an integrative amphibian inventory. *Proc. Natl. Acad. Sci.* U.S.A. 106: 8267-8272.

³⁶ Stiassny, MLJ. Chakrabarty, P. and Loiselle, PV. 2001. Relationships of the Madagascan cichlid genus Paretroplus Bleeker 1868, with a description of a new species from the Betsiboka River drainage of northwestern Madagascar. *Ichthyological Exploration of Freshwaters* 12(1):29-40.

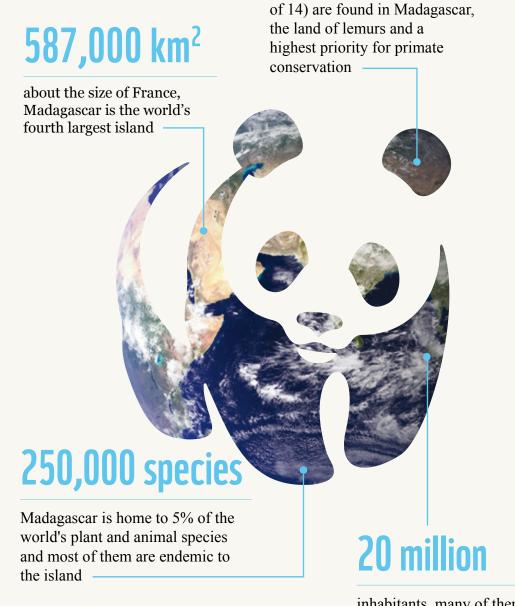
³⁷ Ibid.

³⁸ Bosselaers, J. 2004. A new Garcorops species from Madagascar copal (Araneae: Selenopidae) *Zootaxa* 445: 1–7.

³⁹ Hermans, J. 2003. A striking new species of Polystachya (Orchidaceae) from Madagascar. *Orchid Rev.* 111(1254): 354-357.

⁴⁰ Harper, GJ. Steininger, MK. Tucker, CJ. Juhn, D. and Hawkins, F. 2007. Fifty years of deforestation and forest fragmentation in Madagascar. *Environmental Conservation*, 34: 325-333 Cambridge University Press.

⁴¹ Randriamalala, H. and Liu, Z. Rosewood: Democracy & Conservation. *Madagascar Conservation & Development*. Volume 5, Issue 1 - June 2 010. Madagascar Wildlife Conservation (MWC) and the Jane Goodall Institute (JGI Switzerland).


⁴² Randriamahazo, H., Traylor-Holzer, K., Leus, K., and Byers, H.O. 2007. *Population and habitat viability assessment workshop for endemic tortoise species in Madagascar Geochelone radiata (Madagascar radiated tortoise) Pyxis arachnoïdes (spider tortoise)*. Apple Valley, MN: IUCN/SSC Conservation Breeding Specialist Group, 108 pp.

⁴³ IUCN and Species Survival Commission. 2004. *Red List assessment of Madagascar's freshwater fishes*.

Madagascar in numbers

36%

of all primate families (five

Why we are here

www.wwf.ma

To stop the degradation of the planet's natural environment and to build a future in which humans live in harmony with nature.

inhabitants, many of them facing poverty. Despite its rich biodiversity, Madagascar remains one of the world's poorest nations

100%

RFCYC