24.09.2013 Views

The yeast Kluyveromyces marxianus and its ... - It works!

The yeast Kluyveromyces marxianus and its ... - It works!

The yeast Kluyveromyces marxianus and its ... - It works!

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Appl Microbiol Biotechnol (2008) 79:339–354<br />

DOI 10.1007/s00253-008-1458-6<br />

MINI-REVIEW<br />

<strong>The</strong> <strong>yeast</strong> <strong>Kluyveromyces</strong> <strong>marxianus</strong> <strong>and</strong> <strong>its</strong><br />

biotechnological potential<br />

Gustavo Graciano Fonseca & Elmar Heinzle &<br />

Christoph Wittmann & Andreas K. Gombert<br />

Received: 28 January 2008 /Revised: 12 March 2008 /Accepted: 13 March 2008 /Published online: 22 April 2008<br />

# Springer-Verlag 2008<br />

Abstract Strains belonging to the <strong>yeast</strong> species <strong>Kluyveromyces</strong><br />

<strong>marxianus</strong> have been isolated from a great variety of habitats,<br />

which results in a high metabolic diversity <strong>and</strong> a substantial<br />

degree of intraspecific polymorphism. As a consequence,<br />

several different biotechnological applications have been<br />

investigated with this <strong>yeast</strong>: production of enzymes (βgalactosidase,<br />

β-glucosidase, inulinase, <strong>and</strong> polygalacturonases,<br />

among others), of single-cell protein, of aroma<br />

compounds, <strong>and</strong> of ethanol (including high-temperature <strong>and</strong><br />

simultaneous saccharification-fermentation processes); reduction<br />

of lactose content in food products; production of<br />

bioingredients from cheese-whey; bioremediation; as an<br />

anticholesterolemic agent; <strong>and</strong> as a host for heterologous<br />

protein production. Compared to <strong>its</strong> congener <strong>and</strong> model<br />

organism, <strong>Kluyveromyces</strong> lactis, the accumulated knowledge<br />

on K. <strong>marxianus</strong> is much smaller <strong>and</strong> spread over a number of<br />

different strains. Although there is no publicly available<br />

genome sequence for this species, 20% of the CBS 712 strain<br />

genome was r<strong>and</strong>omly sequenced (Llorente et al. in FEBS Lett<br />

487:71–75, 2000). In spite of these facts, K. <strong>marxianus</strong> can<br />

envisage a great biotechnological future because of some of <strong>its</strong><br />

qualities, such as a broad substrate spectrum, thermotolerance,<br />

high growth rates, <strong>and</strong> less tendency to ferment when exposed<br />

G. G. Fonseca : A. K. Gombert<br />

Department of Chemical Engineering, University of São Paulo,<br />

São Paulo, São Paulo, Brazil<br />

G. G. Fonseca : E. Heinzle : C. Wittmann<br />

Biochemical Engineering Institute, Saarl<strong>and</strong> University,<br />

Saarbrücken, Germany<br />

A. K. Gombert (*)<br />

Department of Biotechnology, Delft University of Technology,<br />

Julianalaan 67,<br />

2628BC Delft, <strong>The</strong> Netherl<strong>and</strong>s<br />

e-mail: <strong>and</strong>reas.gombert@poli.usp.br<br />

to sugar excess, when compared to K. lactis. To increase our<br />

knowledge on the biology of this species <strong>and</strong> to enable the<br />

potential applications to be converted into industrial practice, a<br />

more systematic approach, including the careful choice of (a)<br />

reference strain(s) by the scientific community, would certainly<br />

be of great value.<br />

Keywords <strong>Kluyveromyces</strong> <strong>marxianus</strong> .<br />

Yeast biotechnology . Yeast physiology . Yeast taxonomy<br />

Taxonomic history of the present species <strong>Kluyveromyces</strong><br />

<strong>marxianus</strong><br />

<strong>Kluyveromyces</strong> <strong>marxianus</strong> was first described in 1888 by E.<br />

C. Hansen, which at that time was named Saccharomyces<br />

<strong>marxianus</strong> after Marx, the person who originally isolated<br />

this <strong>yeast</strong> from grapes (Lodder <strong>and</strong> Kreger-van Rij 1952).<br />

In their monograph, Lodder <strong>and</strong> Kreger-van Rij (1952)<br />

describe ten strains of S. <strong>marxianus</strong>, among which a<br />

particular strain labeled Zygosaccharomyces <strong>marxianus</strong>,<br />

which had been deposited at the Centraalbureau voor<br />

Schimmelcultures (CBS) in 1922 by H. Schnegg, was<br />

arbitrarily chosen as the type strain. This corresponds to the<br />

present CBS 712 strain. Some differences among the ten<br />

mentioned strains were already pointed out at that time,<br />

regarding the formation of pseudomycelium, <strong>and</strong> the<br />

capacities of assimilating <strong>and</strong> fermenting lactose. Rotting<br />

leaves of sisal, sewage of a sugar factory, <strong>and</strong> “Lufthefe”<br />

(aerated <strong>yeast</strong>) are other habitats from which the strains of<br />

S. <strong>marxianus</strong> had been isolated. Already in 1939, Sacchetti<br />

had observed that inulin is fermented by S. <strong>marxianus</strong><br />

(Lodder <strong>and</strong> Kreger-van Rij 1952). Although it was already<br />

recognized at that time that S. <strong>marxianus</strong> <strong>and</strong> Saccharomyces<br />

fragilis, which had been isolated from kefir in 1909 by


340 Appl Microbiol Biotechnol (2008) 79:339–354<br />

Jörgensen, were very closely related, they were considered<br />

distinct species (Lodder <strong>and</strong> Kreger-van Rij 1952). In 1951,<br />

Luh <strong>and</strong> Phaff affirmed that S. fragilis “is the only <strong>yeast</strong><br />

species capable of attacking pectin” (Lodder <strong>and</strong> Kreger-van Rij<br />

1952). Yoghurt, soft cheese, a lung with tuberculosis, Koumiss<br />

(a beverage made of fermented mare’s milk), a human lesion<br />

of tonsils <strong>and</strong> the pharynx, <strong>and</strong> feces are other habitats from<br />

which the 11 strains belonging to the S. fragilis species had<br />

been obtained from (Lodder <strong>and</strong> Kreger-van Rij 1952).<br />

Mainly due to differences in spore <strong>and</strong> ascus morphology,<br />

in the capacity of fermenting <strong>and</strong> oxidizing different<br />

sugars, <strong>and</strong> in the occurrence of hybridization between<br />

strains, when compared to true Saccharomyces <strong>yeast</strong>s, there<br />

was a need to reclassify the former species S. fragilis <strong>and</strong> S.<br />

<strong>marxianus</strong>, besides Saccharomyces lactis, into a new taxon<br />

(van der Walt 1970). In 1956, van der Walt described the<br />

new genus <strong>Kluyveromyces</strong>, the type species of which was<br />

<strong>Kluyveromyces</strong> polysporus (van der Walt 1956). Later, it<br />

was found that the latter <strong>yeast</strong> had very similar properties to<br />

the three above-mentioned species, <strong>and</strong> consequently, they<br />

were all reclassified into the genus <strong>Kluyveromyces</strong>, which<br />

encompassed 18 species in the second edition of <strong>The</strong><br />

Yeasts, a taxonomic study (Lodder 1970). Additional<br />

habitats from which strains had been isolated include Bantu<br />

Beer, milk of a mastitic cow, asthmatic expectoration, <strong>and</strong><br />

maize meal (van der Walt 1970). Again, <strong>Kluyveromyces</strong><br />

fragilis was considered closely related but still separate<br />

from K. <strong>marxianus</strong>, mainly due to the former’s high<br />

capacity of fermenting lactose. Dairy products <strong>and</strong> human<br />

<strong>and</strong> animal lesions were the prevalent origin of strains in<br />

the K. fragilis taxon (van der Walt 1970).<br />

In the third edition of <strong>The</strong> Yeasts, a taxonomic study<br />

(Kreger-van Rij 1984), the genus <strong>Kluyveromyces</strong> was<br />

divided into 11 species. On the basis of interfertility, the<br />

taxon K. <strong>marxianus</strong> was organized into seven varieties,<br />

which are able to readily hybridize (van der Walt <strong>and</strong><br />

Johannsen 1984). Concomitantly, the former species K.<br />

fragilis <strong>and</strong> K. lactis disappeared.<br />

In the most recent edition of <strong>The</strong> Yeasts, a taxonomic study<br />

(Kurtzman <strong>and</strong> Fell 1998), the chapter on the <strong>Kluyveromyces</strong><br />

genus includes 15 species. <strong>The</strong> seven varieties within the K.<br />

<strong>marxianus</strong> species, proposed in the previous edition of the<br />

monograph, were eliminated by considering them as either<br />

independent species (e.g., K. lactis <strong>and</strong> K. dobzhanskii) or<br />

synonyms of K. lactis or K. <strong>marxianus</strong> (Lachance 1998).This<br />

is due to the examination of the genetic structure of<br />

populations, in combination with hybridization ability, as<br />

criteria for classification. Consequently, the former species or<br />

varieties <strong>Kluyveromyces</strong> bulgaricus, K. cicerisporus, K.<br />

fragilis, <strong>and</strong>K. wikenii could not be considered distinct from<br />

K. <strong>marxianus</strong> (Lachance 1998).<br />

Since the biological concept of species cannot be applied<br />

to homothallic organisms, such as the majority of <strong>yeast</strong>s in<br />

the <strong>Kluyveromyces</strong> taxon, any classification is always based<br />

on arbitrary criteria, which have changed along time, as<br />

discussed above. Since the development of rapid <strong>and</strong><br />

efficient gene sequencing tools, it became natural to utilize<br />

gene sequences as the criterion for the comparison <strong>and</strong><br />

classification of microorganisms into the different taxa.<br />

Rather than performing single gene comparisons, the most<br />

recent reports on the taxonomy of <strong>Kluyveromyces</strong> <strong>yeast</strong>s<br />

employ multigene sequence analyses for elucidating the<br />

phylogeny of the different strains. Using this strategy,<br />

Kurtzman <strong>and</strong> Robnett (2003) showed that the species<br />

described by Lachance (1998) in the <strong>Kluyveromyces</strong> genus<br />

are actually distributed into six clades, indicating the<br />

polyphyly of this group of <strong>yeast</strong>s. This is mainly due to<br />

the previous criteria employed in classification, such as<br />

ascus morphology (in this particular case, ascus deliquescence),<br />

which are inadequate as phylogenetic descriptors<br />

(Kurtzman 2003; Kurtzman <strong>and</strong> Robnett 2003). <strong>It</strong> has been<br />

proposed that genera should be circumscribed according to<br />

the phylogenetically defined clades, rather than on phenotypic<br />

analyses (Kurtzman <strong>and</strong> Robnett 2003). As a result of<br />

this, the number of species in the <strong>Kluyveromyces</strong> genus<br />

decreased to six <strong>and</strong> the species K. <strong>marxianus</strong> is proposed<br />

as the conserved type species (Kurtzman 2003; Lachance<br />

2007). <strong>The</strong> type species of the originally described<br />

<strong>Kluyveromyces</strong> genus (van der Walt 1956), namely, K.<br />

polysporus, has been reclassified into the newly proposed<br />

V<strong>and</strong>erwaltozyma genus (Kurtzman 2003; Lachance 2007).<br />

Biochemistry, metabolism, <strong>and</strong> physiology<br />

<strong>It</strong> should be noted that the great majority of studies<br />

published on K. <strong>marxianus</strong> have not aimed at looking into<br />

<strong>its</strong> biochemistry, metabolism, or physiology. Most of the<br />

<strong>works</strong> that are publicly available explored potential applications<br />

of this organism (see “Biotechnological applications”),<br />

without investigating what takes place at the<br />

intracellular level. Typically, the <strong>yeast</strong> cells have been<br />

cultivated on a specific substrate, <strong>and</strong> measurements have<br />

been carried out in such a way that only the concentrations<br />

of a substrate <strong>and</strong> of a product, besides the cell concentration,<br />

are determined. In what concerns physiology, carbon<br />

balances are very rarely looked at, meaning that it is only<br />

possible to have a rough macroscopic picture of the cellular<br />

reactions <strong>and</strong>, hence, of the organism’s physiology.<br />

Since the 1970’s, a number of studies has been published<br />

on biochemical <strong>and</strong> metabolic aspects of different K.<br />

<strong>marxianus</strong> strains (a summary is presented in Table 1).<br />

Some studies were actually aimed at identifying suitable<br />

classification methods for K. <strong>marxianus</strong>, which has always<br />

been a challenging task. <strong>The</strong>se include the observation that,<br />

in contrast to S. cerevisiae, ergosterol is the only sterol


Appl Microbiol Biotechnol (2008) 79:339–354 341<br />

Table 1 Compilation of biochemical <strong>and</strong> metabolic studies performed with the <strong>yeast</strong> K. <strong>marxianus</strong><br />

Target of the study Strain employed Reference<br />

Sterol composition K. fragilis NCYC 100 Penman <strong>and</strong> Duffus (1974)<br />

Subcellular localization of the enzyme<br />

alcohol dehydrogenase (ADH)<br />

K. fragilis H32 Künkel <strong>and</strong> May (1976)<br />

Measurement of heat evolution by<br />

microcalorimetry<br />

K. fragilis NCYC 100 Beezer et al. (1979)<br />

Characterization of the enzyme fructose-<br />

1,6-bisphosphatase<br />

K. fragilis ATCC 10022 Toyoda <strong>and</strong> Sy (1984)<br />

Lactose symporter K. <strong>marxianus</strong> CBS 397; K.<br />

Van den Broek et al. (1987);<br />

<strong>marxianus</strong> IGC 2902, CBS 712,<br />

Carvalho-Silva <strong>and</strong> Spencer-<br />

IGC 2587, IGC 2671, IGC 3014,<br />

NRRL Y-1122, CBS 397<br />

Martins (1990)<br />

High- <strong>and</strong> low-affinity glucose transporters K. <strong>marxianus</strong> IGC 2587 Gasnier (1987)<br />

Regulation of four transport systems<br />

identified during the exponential <strong>and</strong><br />

the stationary phases of batch growth<br />

on glucose<br />

K. <strong>marxianus</strong> CBS 397 De Bruijne et al. (1988)<br />

High- <strong>and</strong> low-affinity symporters of<br />

glucose <strong>and</strong> fructose<br />

K. <strong>marxianus</strong> CBS 6556 Postma <strong>and</strong> Van den Broek (1990)<br />

Proton-motive force-driven transport<br />

of galactose<br />

K. <strong>marxianus</strong> CBS 397 van Leeuwen et al. (1991)<br />

Transport of lactic acid K. <strong>marxianus</strong> IGC 3014 Fonseca et al. (1991)<br />

Mechanism of the enzyme UDP<br />

K. fragilis ATCC 10022 (presumed,<br />

Mukherji <strong>and</strong> Bhaduri (1992);<br />

glucose 4-epimerase<br />

from one of the articles)<br />

Bhattacharjee <strong>and</strong> Bhaduri (1992);<br />

Ray et al. (1995); Majumdar<br />

et al. (1998)<br />

Absence of complex I NADH<br />

ubiquinone oxidoreductase<br />

K. <strong>marxianus</strong> K5 (own collection) Büschges et al. (1994)<br />

Regulation of adenylate cyclase<br />

by Ras proteins<br />

K. <strong>marxianus</strong> CBS 5795W Verzotti et al. (1994)<br />

Coenzyme Q system <strong>and</strong> the<br />

monosaccharide pattern of cell wall<br />

K. <strong>marxianus</strong> (various strains) Molnár et al. (1996)<br />

Behaviour of K. <strong>marxianus</strong> during<br />

autolysis<br />

K. <strong>marxianus</strong> CBS 397 Amrane <strong>and</strong> Prigent (1996)<br />

Presence of killer activity K. <strong>marxianus</strong> (isolated as a<br />

result of the work)<br />

Abranches et al. (1997)<br />

Glucose repression via Mig1p K. <strong>marxianus</strong> SGE11 (Montpellier<br />

University)<br />

Cassart et al. (1997)<br />

composition of the cell wall K. <strong>marxianus</strong> R157, 1586<br />

(University of New South Wales)<br />

Nguyen et al. (1998)<br />

Presence of active efflux pumps<br />

involved in drug resistance<br />

K. <strong>marxianus</strong> IGC 2671 Prudêncio et al. (2000)<br />

Transport of malic acid via a<br />

K. <strong>marxianus</strong> ATCC 10022, KMS3<br />

Queirós et al. (1998)<br />

symport mechanism<br />

(derivative of CBS 6556)<br />

Identification <strong>and</strong> characterization<br />

K. <strong>marxianus</strong> Y-610 (identical to<br />

Yoda et al. (2000)<br />

of a cell-wall acid phosphatase<br />

ATCC 12424)<br />

Capacity of using xenobiotic<br />

K. fragilis UU1; K. <strong>marxianus</strong> IMB3 Ternan <strong>and</strong> McMullan (2000);<br />

compounds as nitrogen source<br />

Ternan <strong>and</strong> McMullan (2002)<br />

Response of the NADP+-dependent<br />

glutamate dehydrogenase to<br />

nitrogen repression<br />

K. <strong>marxianus</strong> CBS 6556 de Morais (2003)<br />

Characterization of an amine oxidase K. <strong>marxianus</strong> CBS 5795 Corpillo et al. 2003<br />

<strong>The</strong> transport mechanism of xylose K. <strong>marxianus</strong> ATCC 52486 Stambuk et al. 2003<br />

This list does not include enzymes of industrial interest, which are separately listed in Table 2.


342 Appl Microbiol Biotechnol (2008) 79:339–354<br />

present in K. <strong>marxianus</strong>; the use of microcalorimetry for<br />

identification purposes; <strong>and</strong> the characterization of coenzyme<br />

Q <strong>and</strong> monosaccharide patterns of cell walls (Table 1).<br />

In other cases, K. <strong>marxianus</strong> wassimplyusedasthe<br />

source of specific compounds, which were the actual focus of<br />

research (mainly enzymes). Examples of this kind of study<br />

include those on fructose-1,6-bisphosphatase, uridine diphosphate<br />

(UDP) glucose-4-epimerase, an acid phosphatase, an<br />

amine oxidase, protein phosphatases, carboxypeptidases, <strong>and</strong><br />

aminopeptidases (Tables 1 <strong>and</strong> 2). A number of transport<br />

studies were also carried out, namely, on the transport of<br />

sugars (lactose, glucose, fructose, galactose, <strong>and</strong> xylose) <strong>and</strong><br />

organic acids (lactic <strong>and</strong> malic acids) (Table 1). Finally, a few<br />

metabolic studies were carried out with the aim of<br />

characterizing some non-transport aspects of K. <strong>marxianus</strong>,<br />

such as the absence of complex I in the respiratory chain, the<br />

regulation of adenilate cyclase by Ras proteins, the functional<br />

characterization of Mig1p (involved in glucose repression),<br />

analysis of cell-wall composition, presence of efflux pumps<br />

<strong>and</strong> their role in drug resistance, <strong>and</strong> the regulation of the<br />

nicotinamide adenine dinucleotide phosphate (oxidized form)<br />

(NADP + )-dependent glutamate dehydrogenase (Table 1). In<br />

many cases, these studies were performed in parallel with<br />

other <strong>yeast</strong>s, mainly with S. cerevisiae.<br />

In terms of biochemical studies on enzymes that have<br />

industrial interest, K. <strong>marxianus</strong> has been used as a source<br />

of inulinase, β-galactosidase, β-glucosidase, <strong>and</strong> endopolygalacturonases<br />

(Table 2). Besides these, some less widespread<br />

enzymes with potential industrial application, such as<br />

protein phosphatases, carboxypeptidases, <strong>and</strong> aminopeptidases<br />

have also been investigated more recently (Table 2).<br />

In the 1970s, physiological studies focusing on the<br />

influence of some common environmental factors on the<br />

growth of K. <strong>marxianus</strong> started to appear in the literature,<br />

as a reflection of the eventual interest in using this <strong>yeast</strong> for<br />

industrial applications. Chassang-Douillet et al. (1973)<br />

presented the first clear physiological comparison of K.<br />

<strong>marxianus</strong> <strong>and</strong> S. cerevisiae, carried out using synthetic<br />

media <strong>and</strong> demonstrating that the so-called glucose effect<br />

was absent in K. <strong>marxianus</strong>, as opposed to S. cerevisiae.<br />

Later studies reported on the effects of pH (de Sánchez <strong>and</strong><br />

Castillo 1980), ethanol concentration (Bajpai <strong>and</strong> Margaritis<br />

1982), <strong>and</strong> sugar concentration (Margaritis <strong>and</strong> Bajpai 1983)<br />

on the growth kinetics of K. <strong>marxianus</strong>. Importantly, K.<br />

<strong>marxianus</strong> started to be included in comparative biochemical<br />

<strong>and</strong> physiological studies on <strong>yeast</strong> in general, such as those<br />

related to catabolite repression (Eraso <strong>and</strong> Gancedo 1984),<br />

sensitivity toward toxins (Sukroongreung et al. 1984), <strong>and</strong><br />

growth inhibition by fatty acids (Viegas et al. 1989).<br />

<strong>The</strong> use of defined synthetic media combined with chemostat<br />

cultivations for quantitative physiological studies started<br />

around the 1990s, with <strong>works</strong> focusing on the regulation of<br />

respiration <strong>and</strong> fermentation <strong>and</strong> on the so-called Crabtreeeffect<br />

in <strong>yeast</strong>s (van Urk et al. 1990; Verduyn et al. 1992). <strong>It</strong><br />

was then quantitatively shown that K. <strong>marxianus</strong> presents a<br />

strong Crabtree-negative character, since no ethanol production<br />

was observed after a glucose pulse applied to respiring<br />

cells, in contrast to what is commonly observed with S.<br />

Table 2 Studies on the biochemistry of enzymes of industrial interest performed with the <strong>yeast</strong> K. <strong>marxianus</strong><br />

Enzyme Application Strain Reference<br />

Inulinase Production of fructose<br />

syrup from inulin-containing<br />

feed-stocks<br />

β-galactosidase Reduction of lactose<br />

content in foods<br />

K. fragilis ATCC 12424;<br />

K. <strong>marxianus</strong> CBS 6397,<br />

CBS 6556<br />

K. fragilis (several strains);<br />

K. <strong>marxianus</strong> NCYC 111;<br />

K. <strong>marxianus</strong> ATCC 10022;<br />

K. <strong>marxianus</strong> IMB3; K.<br />

<strong>marxianus</strong> CBS 6556<br />

Workman <strong>and</strong> Day (1984);<br />

Rouwenhorst et al. (1988, 1990a,b)<br />

Mahoney et al. (1975); Gonçalves <strong>and</strong><br />

Castillo (1982); Bacci Júnior et al.<br />

(1996); Brady et al. (1995); Martins<br />

et al. (2002)<br />

β-glucosidase Hydrolysis of cellulosic materials K. fragilis ATCC 12424 Raynal <strong>and</strong> Guerineau (1984);<br />

Leclerc et al. (1987)<br />

Endopolygalacturonases Reduce of viscosity in fruit K. <strong>marxianus</strong> CCT 3172; CCT Jia <strong>and</strong> Wheals (2000)<br />

processing products<br />

3172 (overproducing mutant);<br />

an unidentified NCYC isolate<br />

Protein phosphatases modification of cheese-making<br />

qualities of caseins<br />

K. <strong>marxianus</strong> (strain not indicated) Jolivet et al. (2001)<br />

Carboxypeptidases reduction of bitter taste in proteincontaining<br />

foods<br />

K. <strong>marxianus</strong> (own isolate) Ramírez-Zavala et al. (2004b)<br />

Aminopeptidases direct processing or aging of dairy<br />

<strong>and</strong> meat products<br />

K. <strong>marxianus</strong> (own isolate) Ramírez-Zavala et al. (2004a)<br />

Only studies which focused on the biochemistry of enzymes are indicated here. For studies aiming at enzyme production, please refer to the<br />

section on “Biotechnologial applications”


Appl Microbiol Biotechnol (2008) 79:339–354 343<br />

cerevisiae <strong>and</strong>evenwithK. lactis, to a lesser extent (Kiers et<br />

al. 1998). This was later confirmed by Bellaver et al. (2004).<br />

Castrillo <strong>and</strong> Ugalde (1993) showed that when oxidoreductive<br />

metabolism sets in in K. <strong>marxianus</strong>, as a function of<br />

increasing glycolytic flux, the maximum respiratory capacity<br />

of the cells has not yet been achieved, which is in contrast<br />

with the situation in S. cerevisiae, in which the onset of<br />

respirofermentative metabolism coincides with the achievement<br />

of <strong>its</strong> maximum respiratory capacity. From these studies,<br />

K. <strong>marxianus</strong> was classified as facultatively fermentative <strong>and</strong><br />

Crabtree-negative (van Dijken et al. 1993). <strong>It</strong> is important to<br />

note that it cannot grow under strictly anaerobic conditions<br />

<strong>and</strong> that the occurrence of ethanol formation is almost<br />

exclusively linked to oxygen limitation (Visser et al. 1990;<br />

van Dijken et al. 1993; Bellaver et al. 2004). More recently,<br />

Blank et al. (2005) showedthatK. <strong>marxianus</strong> presents the<br />

highest tricarboxylic acid cycle flux during batch growth on<br />

glucose among the 14 hemiascomycetous <strong>yeast</strong>s studied<br />

within the Génolevures consortium (Souciet et al. 2000).<br />

Other physiological studies report on various issues,<br />

such as flocculation (Fern<strong>and</strong>es et al. 1992, 1993), the<br />

Table 3 Biotechnologically relevant genes sequenced in K. <strong>marxianus</strong><br />

influence of CO2 on the survival of K. <strong>marxianus</strong><br />

(Isenschmid et al. 1995), the influence of the specific<br />

growth rate on the morphology of the NRRLy2415 strain,<br />

which displays significant growth in pseudo-hyphal form<br />

(O’Shea <strong>and</strong> Walsh 2000), the effects of increased air<br />

pressure on the biomass yield of K. <strong>marxianus</strong> (Pinheiro et<br />

al. 2000), the response of K. <strong>marxianus</strong> to oxidative agents<br />

such as hydrogen peroxide (Pinheiro et al. 2002), <strong>and</strong> the<br />

macromolecular composition of K. <strong>marxianus</strong> cells as a<br />

function of the specific growth rate (Fonseca et al. 2007).<br />

<strong>The</strong> later data can be particularly useful for metabolic flux<br />

analysis studies.<br />

One important aspect on the physiology of K. <strong>marxianus</strong><br />

is the fact that significantly different growth parameters,<br />

such as μmax <strong>and</strong> Yx/s, have been reported not only for<br />

different strains within the species but also for the same<br />

strain when investigated in different laboratories (Fonseca<br />

et al. 2007).<br />

From the data in Tables 1 <strong>and</strong> 2 (<strong>and</strong> also in Table 3), it<br />

can be observed that the number of strains that have been<br />

investigated is quite large, <strong>and</strong> many of them were not<br />

Gene/function Strain Reference<br />

β-glucosidase K. fragilis ATCC 12424 Raynal et al. (1987)<br />

INU1/inulinase K. <strong>marxianus</strong> ATCC 12424 Laloux et al. (1991)<br />

LEU2/β-isopropylmalate dehydrogenase K. <strong>marxianus</strong> CBS 6556 Bergkamp et al. (1991)<br />

URA3/orotidine-5′-phosphate decarboxylase K. <strong>marxianus</strong> CBS 6556 Bergkamp et al. (1993b)<br />

PDC/pyruvate decarboxylase K. <strong>marxianus</strong> ATCC 10606 Holloway <strong>and</strong> Subden (1993)<br />

ADH1/alcohol dehydrogenase K. <strong>marxianus</strong> ATCC 12424 Ladrière et al. (1993)<br />

ABF1/a DNA binding protein K. <strong>marxianus</strong> (strain not indicated) Oberyé et al. (1993)<br />

the GAP family/glyceraldehyde-3-phosphate<br />

dehydrogenases<br />

K. <strong>marxianus</strong> ATCC 10022 Fern<strong>and</strong>es et al. (1995)<br />

LAC4/β-galactosidase K. fragilis (strains not indicated) Huo <strong>and</strong> Li (1995)<br />

MIG1/DNA-binding protein involved in<br />

glucose repression<br />

K. <strong>marxianus</strong> SGE11 (Montpellier University) Cassart et al. (1997)<br />

EPG1/endopolygalacturonase K. <strong>marxianus</strong> BKM Y-719 Šiekštelė et al. (1999)<br />

PCPL3/purine-cytosine permease K. <strong>marxianus</strong> ATCC 12424 Ball et al. (1999)<br />

ADH2/alcohol dehydrogenase K. <strong>marxianus</strong> ATCC 12424 Ladrière et al. (2000)<br />

17% of the genome (1,300 genes by a<br />

partial r<strong>and</strong>om strategy)<br />

K. <strong>marxianus</strong> CBS 712 Llorente et al. (2000)<br />

Inulinase K. <strong>marxianus</strong> (strain not indicated) GenBank AF178979<br />

URA3/orotidine-5′-phosphate decarboxylase K. cicerisporus CBS 4857 Zhang et al. (2003)<br />

QOR/NADPH quinone oxidoreductase K. <strong>marxianus</strong> KCTC 7155 Kim et al. (2003)<br />

URA 9/dihydroorotate dehydrogenase 2 K. <strong>marxianus</strong> NRRL Y-8281 GenBank AY444339<br />

HIS3/imidazoleglycerol-phosphate dehydratase K. cicerisporus CBS 4857 GenBank AY303539<br />

OYE/old yellow enzyme C. macedoniensis AKU 4588 Kataoka et al. (2004)<br />

EPG1–2/endopolygalacturonase K. <strong>marxianus</strong> CECT 1043 GenBank AY426825<br />

FPS1/plasma membrane glycerol channel K. <strong>marxianus</strong> IGC 3886 Neves et al. (2004)<br />

β-galactosidase K. <strong>marxianus</strong> (strain not indicated) GenBank AY526090<br />

Exoinulinase K. <strong>marxianus</strong> IW 9801 GenBank AY649443<br />

TPI1/triosephosphate isomerase K. <strong>marxianus</strong> (strain not indicated) GenBank AJ577476<br />

Partial gene sequences deposited in public databases <strong>and</strong> sequences coding for RNA were not included. GenBank accession numbers were only<br />

given when there is no available article to be cited.


344 Appl Microbiol Biotechnol (2008) 79:339–354<br />

obtained directly from the main culture collections worldwide.<br />

If, on the one h<strong>and</strong>, this leads to an interesting<br />

metabolic diversity <strong>and</strong> to several potential applications, as<br />

described below in this review, it makes it difficult, on the<br />

other h<strong>and</strong>, to gain fundamental knowledge on the<br />

metabolism <strong>and</strong> physiology of this <strong>yeast</strong>. In this sense, it<br />

would be necessary that researchers started using a reduced<br />

number of strains (chosen from key culture collections),<br />

similarly to the way in which the K. lactis community has<br />

been using the CBS 2359 strain (Lachance 1998; Fukuhara<br />

2006). This would allow the development of efficient<br />

molecular genetic tools for K. <strong>marxianus</strong> (probably starting<br />

with genome sequencing), which are the basis for<br />

performing systematic studies that will finally lead to a<br />

better underst<strong>and</strong>ing of the biology of this species. A<br />

possibility would be to choose one or two strains with<br />

characteristics that have given K. <strong>marxianus</strong> a clear<br />

advantage over other <strong>yeast</strong>s: thermotolerance, high growth<br />

rate, absence of fermentative metabolism upon sugar<br />

excess, <strong>and</strong> a broad substrate spectrum. For making this<br />

choice, an approach as the one reported by van Dijken et al.<br />

(2000) could be followed.<br />

Recombinant DNA technology<br />

As with any (potential) industrial organism, rational genetic<br />

manipulation is one of the most efficient ways of<br />

optimizing process yield <strong>and</strong>/or productivity. In some cases,<br />

the application of recombinant DNA (rDNA) technology<br />

may even become a prerequisite for a successful industrial<br />

process, either to increase product titer <strong>and</strong>/or purity to<br />

levels at which the process becomes economically feasible<br />

or to render the producing host capable of synthesizing a<br />

heterologous compound. This kind of activity has been well<br />

known as metabolic engineering, which is now a consolidated<br />

discipline (Stephanopoulos et al. 1998). rDNA<br />

technology is also an invaluable technique for genetic <strong>and</strong><br />

physiological studies, which in turn are essential for<br />

increasing our underst<strong>and</strong>ing of K. <strong>marxianus</strong>.<br />

Already more than two decades ago, transformation<br />

methods for inserting foreign DNA into K. <strong>marxianus</strong> have<br />

been developed. Das et al. (1984) constructed a plasmid<br />

called pGL2, containing the kanamycin resistance gene as a<br />

dominant selectable marker, <strong>and</strong> the KARS2 autonomously<br />

replicating sequence of K. lactis. <strong>The</strong>y showed that the<br />

transformation method of intact cells with alkali cations,<br />

originally developed for Saccharomyces cerevisiae by <strong>It</strong>o et<br />

al. (1983), also worked in the strain K. fragilis C21.<br />

However, the transformation efficiency was rather low.<br />

A breakthrough in molecular biology research of<br />

<strong>Kluyveromyces</strong> <strong>yeast</strong>s was the discovery of the pKD1<br />

plasmid in the species <strong>Kluyveromyces</strong> drosophilarum<br />

(Falcone et al. 1986). <strong>The</strong> 4.8-kb, 1.65 μm pKD1 plasmid<br />

proved to have a similar organization but different<br />

sequences <strong>and</strong> host specificities, when compared to other<br />

already known plasmids, such as the 2 μ plasmid of<br />

Saccharomyces <strong>yeast</strong>s (Chen et al. 1986). In contrast to the<br />

latter, pKD1 can be maintained stable in K. lactis, but not in<br />

S. cerevisiae, in the absence of selective pressure (Bianchi<br />

et al. 1987). Later, it was shown that the insertion of the<br />

kanamycin resistance gene, the URA3 gene of S. cerevisiae,<br />

a replication origin for E. coli, <strong>and</strong> the ampicillin resistance<br />

gene into pKD1 rendered a shuttle plasmid that could be<br />

transformed <strong>and</strong> maintained in K. <strong>marxianus</strong> strains CBS<br />

6556 <strong>and</strong> CBS 712, though still with low-transformation<br />

efficiencies (Chen et al. 1989). This is in accordance with<br />

the fact that ARS <strong>and</strong> centromere sequences of K. lactis<br />

work in K. <strong>marxianus</strong> <strong>and</strong> vice versa (Das et al. 1984;<br />

Iborra <strong>and</strong> Ball 1994). Thus, pKD1-based plasmids have<br />

become the most common choice for inserting foreign<br />

DNA sequences into K. <strong>marxianus</strong> (Bergkamp et al. 1993b;<br />

Bartkevičiute et al. 2000; Zhang et al. 2003).<br />

Iborra (1993) reported for the first time transformation<br />

efficiencies in the order of hundreds to thous<strong>and</strong>s of<br />

transformants per microgram of DNA with K. <strong>marxianus</strong>,<br />

either with the lithium method (<strong>It</strong>o et al. 1983) or using<br />

electroporation (Meilhoc et al. 1990). Similar results were<br />

obtained more recently by Zhang et al. (2003).<br />

Besides requiring efficient vectors <strong>and</strong> transformation<br />

protocols, foreign gene expression also depends on the<br />

promoter <strong>and</strong> eventually a signal sequence for directing the<br />

synthesized protein into the extracellular environment,<br />

which usually facilitates downstream operations. For this<br />

purpose, Bergkamp et al. (1993a) used the promoter <strong>and</strong><br />

prepro-signal sequence of the INU1 (inulinase) gene to<br />

successfully direct heterologous expression <strong>and</strong> secretion of<br />

α-galactosidase in K. <strong>marxianus</strong>, with dramatically higher<br />

efficiencies when compared to the use of classical S.<br />

cerevisiae promoters, such as PGK.<br />

With the INU1 promoter, heterologous gene expression<br />

can be fine-tuned by choosing the appropriate carbon<br />

source. Another regulated promoter that was successfully<br />

used in K. <strong>marxianus</strong> is the tetracycline repressible<br />

promoter (Pecota <strong>and</strong> da Silva 2005).<br />

Strong, constitutive promoters for driving heterologous<br />

gene expression have also been described, such as that of a<br />

purine-cytosine permease gene (Ball et al. 1999). Instead of<br />

fine-tuning foreign gene expression according to promoter<br />

strength or induction properties, Pecota et al. (2007)<br />

developed an insertion cassette that enables multicopy<br />

integration of a precise number of gene copies into K.<br />

<strong>marxianus</strong> with recycling of the selection marker.<br />

Auxotrophic mutants of K. <strong>marxianus</strong>, for their use in<br />

transformation experiments, have been reported for leucine,<br />

uracil, histidine, or triptophane requirement (Bergkamp et


Appl Microbiol Biotechnol (2008) 79:339–354 345<br />

al. 1991, 1993b; Basabe et al. 1996; Hong et al. 2007).<br />

Dominant markers applicable for the selection of K.<br />

<strong>marxianus</strong> transformants include at least the kanamycin,<br />

the aureobasidin A, <strong>and</strong> the nurseothricin resistance genes<br />

(Das et al. 1984; Hashida-Okado et al. 1998; Goldstein <strong>and</strong><br />

McCusker 1999; Steensma <strong>and</strong> Ter Linde 2001; Ribeiro et<br />

al. 2007). Recycling of the marker gene for multiple gene<br />

disruptions can be performed in K. <strong>marxianus</strong> in the same<br />

way as in S. cerevisiae <strong>and</strong> K. lactis with the Cre-loxP<br />

system (Güldener et al. 1996; Ribeiro et al. 2007).<br />

A number of genes have been cloned <strong>and</strong> sequenced in<br />

different K. <strong>marxianus</strong> strains, <strong>and</strong> the most relevant ones<br />

are indicated in Table 3.<br />

Biotechnological applications<br />

When evaluating the <strong>yeast</strong> K. <strong>marxianus</strong> for biotechnological<br />

applications, it is impossible not to consider other most<br />

popular species, mainly S. cerevisiae <strong>and</strong> K. lactis. <strong>The</strong><br />

former is probably the most employed biocatalyst in the<br />

biotechnological industry <strong>and</strong> a model organism in biological<br />

studies, whereas the latter has been chosen as a model<br />

Crabtree-negative, lactose-utilizing organism (Lachance<br />

1998; Fukuhara 2006). <strong>The</strong> fact that several K. <strong>marxianus</strong><br />

strains have obtained the generally-regarded-as-safe<br />

(GRAS) status, similarly to S. cerevisiae <strong>and</strong> K. lactis<br />

(Hensing et al. 1995) indicates that this aspect does not<br />

impose any disadvantage for the former, when compared to<br />

the latter <strong>yeast</strong>s, in terms of process approval by regulatory<br />

agencies. <strong>The</strong> fact that K. lactis was chosen by the scientific<br />

community as the model organism in the <strong>Kluyveromyces</strong><br />

genus, <strong>and</strong> not K. <strong>marxianus</strong>, led not only to a much better<br />

underst<strong>and</strong>ing of <strong>its</strong> physiology (for reviews, see e.g.,<br />

Schaffrath <strong>and</strong> Breunig 2000; Wolf et al. 2003; Breunig <strong>and</strong><br />

Steensma 2003 <strong>and</strong> the whole issue no. 3, vol. 6 of FEMS<br />

Yeast Research), <strong>and</strong> to the full sequencing of <strong>its</strong> genome<br />

(Dujon et al. 2004) but also to the development of several<br />

applications, including the expression of more than 40<br />

heterologous proteins (van Ooyen et al. 2006). This is due,<br />

to a great extent, to the fact that researchers have used, from<br />

the beginning, a very small number of K. lactis isolates<br />

(Fukuhara 2006), which has not been the case in the K.<br />

<strong>marxianus</strong> species.<br />

<strong>The</strong> development of biotechnological applications with<br />

K. <strong>marxianus</strong> has been motivated by a number of<br />

advantages it has when compared to K. lactis. <strong>The</strong>se<br />

include at least the fact that it can grow on a broader<br />

variety of substrates <strong>and</strong> at higher temperatures, <strong>its</strong> higher<br />

specific growth rates, <strong>and</strong> the lesser tendency to produce<br />

ethanol it has when exposed to sugar excess (Rouwenhorst<br />

et al. 1988; Steensma et al. 1988; Bellaver et al. 2004; see<br />

also “Biochemistry, metabolism, <strong>and</strong> physiology”).<br />

One very important aspect of the ecology of K. <strong>marxianus</strong><br />

should be taken into account when considering <strong>its</strong> biotechnological<br />

utilization: Individuals have been isolated from an<br />

enormous variety of habitats (see “Taxonomic history of the<br />

present species <strong>Kluyveromyces</strong> <strong>marxianus</strong>”).<br />

<strong>The</strong> obvious consequence is that the metabolic diversity<br />

is broad, <strong>and</strong> hence, potential biotechnological applications<br />

of K. <strong>marxianus</strong> strains are manifold. A summary of the<br />

most explored applications with this <strong>yeast</strong> follows.<br />

Although several <strong>yeast</strong>s have been reported for the<br />

production of aroma compounds, only a few of these can<br />

find industrial application due to their GRAS status<br />

(Medeiros et al. 2000, 2001). <strong>Kluyveromyces</strong> sp. produce<br />

aroma compounds such as fruit esters, carboxylic acids,<br />

ketones, furans, alcohols, monoterpene alcohols, <strong>and</strong><br />

isoamyl acetate in liquid fermentation (Scharpf et al.<br />

1986; Fabre et al. 1995). Of all these compounds, 2-phenyl<br />

ethanol (2-PE), with rose petals aroma, is the most<br />

important commercially (Welsh et al. 1989; Leclercq-Perlat<br />

et al. 2004). Natural 2-PE has a high-value (approximately<br />

US $1,000 kg −1 ) serving a current world market of<br />

approximately 7,000 tons per annum (data from 1990;<br />

Etschmann et al. 2002). This alcohol presents sensorial<br />

characteristics that influence the quality of the wine,<br />

distilled drinks, or fermented foods. <strong>It</strong> is also found in<br />

fresh beer <strong>and</strong> is added to various industrial food products<br />

such as ice creams, bullets, non-alcoholic drinks, gelatines,<br />

puddings, <strong>and</strong> bubble gums (Wittmann et al. 2002). <strong>The</strong><br />

influences of the carbon source (Fabre et al. 1998;<br />

Medeiros et al. 2000), aeration rate (Medeiros et al.<br />

2001), media composition (Etschmann et al. 2004), <strong>and</strong><br />

cultivation conditions (Etschmann <strong>and</strong> Schrader 2006) on<br />

the aroma production using K. <strong>marxianus</strong> were studied.<br />

K. <strong>marxianus</strong> possesses the natural ability to excrete<br />

enzymes. This is a desired property for cost-efficient<br />

downstream processing of low- <strong>and</strong> medium-value enzymes<br />

(Hensing et al. 1994). <strong>The</strong> enzymes that hydrolyze pectic<br />

substances are known as pectic enzymes, pectinases, or<br />

pectinolytic enzymes (Wimborne <strong>and</strong> Rickard 1978).<br />

Pectinases are industrially used in the extraction <strong>and</strong><br />

clarification of fruit juices (i.e., grape <strong>and</strong> apple; Schwan<br />

et al. 1997; Blanco et al. 1999). Other interesting<br />

applications are related to the maceration of vegetables,<br />

oil extraction, <strong>and</strong> formulation of animal feed using<br />

complex mixtures with cellulases to make the nutritional<br />

assimilation easier (Blanco et al. 1999). K. <strong>marxianus</strong> has<br />

considerable economic advantages over Aspergillus as an<br />

endo-PG source, even without genetic improvement of the<br />

strains (Harsa et al. 1993). Thus, the use of PGs from K.<br />

<strong>marxianus</strong> has attracted considerable interest (Garcia-<br />

Garibay et al. 1987b; Harsa et al. 1993; Donaghy <strong>and</strong><br />

McKay 1994). Moreover, no other pectinolytic enzyme,<br />

besides PG, was reported to be secreted by K. <strong>marxianus</strong>


346 Appl Microbiol Biotechnol (2008) 79:339–354<br />

CCT 3172 in the culture media, which should facilitate the<br />

process to produce pure enzyme (Schwan et al. 1997).<br />

In K. <strong>marxianus</strong>, the pectinolytic enzymes are only<br />

produced during exponential growth, but almost all PG is<br />

secreted in the start of the stationary phase (Schwan <strong>and</strong><br />

Rose 1994; Schwan et al. 1997; Serrat et al. 2004). Among<br />

the cultivation parameters, dissolved oxygen was reported<br />

to be the key in the production of both biomass <strong>and</strong> endo-<br />

PG (Wimborne <strong>and</strong> Rickard 1978; Garcia-Garibay et al.<br />

1987a). High rates <strong>and</strong> yields of biomass production require<br />

high oxygenation levels that, however, repress endo-PG<br />

induction (Wimborne <strong>and</strong> Rickard 1978). <strong>It</strong> was reported<br />

that K. <strong>marxianus</strong> exhibited pectolytic ability when it was<br />

grown without shaking <strong>and</strong> under anaerobic conditions,<br />

<strong>and</strong> no activity was found at high aeration rates (Barnby<br />

et al. 1990; Schwan <strong>and</strong> Rose 1994; García-Garibay<br />

et al. 1987a).<br />

<strong>The</strong> effect of temperature was assessed on both growth<br />

<strong>and</strong> endo-PG production in combination with the effect of<br />

dissolved oxygen (Schwan <strong>and</strong> Rose 1994). Temperature<br />

was also reported to have no direct effect on the synthesis<br />

of this enzyme but influenced the growth rate <strong>and</strong> had an<br />

indirect effect due to changes in oxygen solubility (Cruz-<br />

Guerrero et al. 1999). Addition of pectin in an aerobic<br />

culture in a fermenter was reported to derepress the<br />

production of the enzyme (Garcia-Garibay et al. 1987a).<br />

However, whereas some authors did not find any effect of<br />

pectin addition to the medium in an endo-PG producing<br />

strain (Schwan <strong>and</strong> Rose 1994; Schwan et al. 1997), others<br />

reported the enhancement of pectinase production by this<br />

<strong>yeast</strong> when pectin was added (Wimborne <strong>and</strong> Rickard<br />

1978; Lim et al. 1980; Cruz-Guerrero et al. 1999). K.<br />

<strong>marxianus</strong> CCT 3172 was able to break down pectin but<br />

required a usable source of carbon <strong>and</strong> energy to elaborate<br />

pectinolytic activity (Schwan <strong>and</strong> Rose 1994). <strong>It</strong> had a<br />

strong endo-PG activity between pH 4–6 with pH 5 as<br />

optimum (Schwan et al. 1997). Furthermore, the type of<br />

pectinase excreted by this strain was pointed as a feasible<br />

alternative to fungal production due to the lower broth<br />

viscosity, which can make downstream operations easier<br />

(Almeida et al. 2003a).<br />

Lactose-intolerance can be circumvented by removing<br />

lactose from the diet or by converting this sugar into<br />

glucose <strong>and</strong> galactose with β-D-galactosidase (Rajoka et al.<br />

2003). <strong>It</strong> was reported that only approximately 2% of the<br />

recognized <strong>yeast</strong> species are capable of fermenting lactose<br />

(Barnett et al. 1983), among which strains within the<br />

<strong>Kluyveromyces</strong> genus can be found. In a screening<br />

performed with <strong>yeast</strong> strains belonging to different genera,<br />

only two cultures of K. fragilis <strong>and</strong> Ferrissia fragilis<br />

showed β-galactosidase activity (Fiedurek <strong>and</strong> Szczodrak<br />

1994). Lactose is considered the primary inducer of β-Dgalactosidase<br />

synthesis (Furlan et al. 2000) <strong>and</strong> production<br />

of lactase by K. <strong>marxianus</strong> using cheese whey as a nutrient<br />

source has been investigated by several authors (Sonawat et<br />

al. 1981; Nunes et al. 1993).<br />

During the stationary phase of growth, the β-D-galactosidase<br />

activity of K. <strong>marxianus</strong> CBS 712 <strong>and</strong> CBS 6556 remained<br />

approximately constant (Rech et al. 1999). In contrast, a<br />

reduction of β-D-galactosidase activity was reported by other<br />

authors in the stationary phase (Mahoney et al. 1975). <strong>The</strong><br />

highest β-D-galactosidase activity of K. <strong>marxianus</strong> CBS 712<br />

<strong>and</strong> CBS 6556 was reported to be at 37°C, decreasing quickly<br />

at temperatures above 40°C (Rech et al. 1999), while in K.<br />

<strong>marxianus</strong> IMB3, the enzyme is optimally active at 50°C<br />

(Barron et al. 1995a). On the other h<strong>and</strong>, the β-galactosidase<br />

of K. <strong>marxianus</strong> CBS 6556 is more stable than the<br />

corresponding enzymes of other strains, when stored at low<br />

temperatures, e.g., 4°C (Rech et al. 1999; <strong>It</strong>ohetal.1982;<br />

Brady et al. 1995). When different substrates were investigated<br />

for β-galactosidase production by K. <strong>marxianus</strong>, lactose<br />

supported the highest enzyme activities (Rajoka et al. 2003;<br />

Rajoka et al. 2004).<br />

Inulinase is an enzyme that cleaves fructose molecules<br />

from inulin. <strong>It</strong>s expression is induced by inulin or sucrose,<br />

<strong>and</strong> the enzyme can be excreted to the culture medium or<br />

remain associated to the cell wall (Rouwenhorst et al. 1988;<br />

Barranco-Florido et al. 2001). K. <strong>marxianus</strong> has been<br />

widely studied for inulinase production, aiming at the<br />

production of fructose syrup from inulin (Cruz-Guerrero et<br />

al. 1995).<br />

Pessoa <strong>and</strong> Vitolo (1999) obtained the highest inulinase<br />

activities with the K. <strong>marxianus</strong> DSM 70106 strain, using<br />

inulin as the carbon source. Growth of K. <strong>marxianus</strong> on<br />

sucrose also proceeds via the action of an extracellular<br />

inulinase (Hensing et al. 1994), which is repressed when<br />

growth is not sucrose-limited (Rouwenhorst et al. 1988;<br />

Parekh <strong>and</strong> Margaritis 1985; Grootwassink <strong>and</strong> Hewitt 1983).<br />

K. <strong>marxianus</strong> has also been proposed as a source of: (1)<br />

oligonucleotides, used as flavour enhancers in food products;<br />

(2) oligosaccharides, used as prebiotics; <strong>and</strong> (3)<br />

oligopeptides, immuno stimulators added to dairy products<br />

that are released in the wort after whey protein proteolysis<br />

(Belem et al. 1997; Belem <strong>and</strong> Lee 1998, 1999). Recent<br />

studies have shown the potential of K. <strong>marxianus</strong> FII<br />

510700 biomass as an alternative source to S. cerevisiae for<br />

<strong>yeast</strong> autolysates (Lukondeh et al. 2003a), alkali-insoluble<br />

glucans (Lukondeh et al. 2003c), <strong>and</strong> a natural bioemulsifier<br />

(Lukondeh et al. 2003b).<br />

In the field of bioremediation, processes using K.<br />

<strong>marxianus</strong> were developed for the removal of copper ions<br />

(II) with molasses as a nutrients source (Aksu <strong>and</strong> Dönmez<br />

2000). Lead (II) uptake by K. <strong>marxianus</strong> from contaminated<br />

molasses had negative effects on cell growth. Nevertheless,<br />

the decrease in biomass formation did not lead to decreased<br />

lead (II) uptake; on the contrary, the biosorption ability was


Appl Microbiol Biotechnol (2008) 79:339–354 347<br />

higher at higher initial lead (II) concentrations (Skountzou<br />

et al. 2003).<br />

Ethanol production at elevated temperatures has received<br />

much attention because of the potential cost savings, which<br />

could be obtained by continuous evaporation of ethanol<br />

from the broth under reduced pressure (Hacking et al. 1984;<br />

Gough et al. 1996, 1997, 1998; Banat et al. 1998). This<br />

topic was recently reviewed for <strong>yeast</strong>s in general, including<br />

K. <strong>marxianus</strong>. <strong>The</strong> advantages described, besides the<br />

energy savings due to reduced cooling costs, were higher<br />

saccharification <strong>and</strong> fermentation rates, continuous ethanol<br />

removal, <strong>and</strong> reduced contamination (Banat et al. 1998).<br />

However, the temperature increase has a negative effect on<br />

ethanol yield <strong>and</strong> also reduces the cell viability (Anderson<br />

et al. 1986; Ballesteros et al. 1991). K. <strong>marxianus</strong> was<br />

reported to produce alcohol at temperatures above 40°C <strong>and</strong><br />

to have a maximum growth temperature of 47°C (Anderson<br />

et al. 1986), 49°C (Hughes et al. 1984), or even 52°C<br />

(Banat et al. 1992). Lower ethanol tolerance was observed<br />

when K. <strong>marxianus</strong> was compared to S. cerevisiae, <strong>and</strong> this<br />

was correlated with the activity of the plasma membrane<br />

ATPase (Rosa <strong>and</strong> Sa-Correia 1992; Fern<strong>and</strong>a <strong>and</strong> Sa-<br />

Correia 1992). Hacking et al. (1984) screened <strong>yeast</strong> strains<br />

for their ability to ferment glucose to ethanol at high<br />

temperatures. <strong>The</strong> tolerance of all species seemed to<br />

decrease with temperature, but in general, <strong>Kluyveromyces</strong><br />

strains were more thermotolerant than Saccharomyces,<br />

which in turn can produce higher ethanol yields. Anderson<br />

et al. (1986) compared K. <strong>marxianus</strong> strains isolated from<br />

sugar mills <strong>and</strong> CBS strains for ethanol production at high<br />

temperatures. <strong>The</strong> CBS strains produced the same ethanol<br />

amounts as the new isolates but with lower cell viability<br />

<strong>and</strong> higher cultivation time. Sakanaka et al. (1996) reported<br />

the fusion of a thermotolerant strain of K. <strong>marxianus</strong> with a<br />

high ethanol producing strain of S. cerevisiae; however,<br />

their fermentative capacity was severely impaired <strong>and</strong> the<br />

fusants’ thermostability was lower than for either of the<br />

parental cells.<br />

While Schwan <strong>and</strong> Rose (1994) reported that ethanol<br />

production in galactose-containing medium was not as high<br />

as when glucose was the carbon source, Duvnjak et al.<br />

1987 found that galactose was a better carbon source for<br />

ethanol production than glucose; however, the strains<br />

employed in both <strong>works</strong> were different. <strong>The</strong> conversion of<br />

xylose into ethanol by K. <strong>marxianus</strong> was already reported<br />

some time ago (Margaritis <strong>and</strong> Bajpai 1982).<br />

Different process strategies have been used for ethanol<br />

production with K. <strong>marxianus</strong>: batch cultures with elevated<br />

substrate concentrations (Grubb <strong>and</strong> Mawson 1993; Barron<br />

et al. 1996), fed-batch production (Ferrari et al. 1994;<br />

Gough et al. 1998; Love et al. 1996), continuous system<br />

(Love et al. 1998), membrane recycle bioreactors (Tin <strong>and</strong><br />

Mawson 1993), two-stage fermentation (Hack et al. 1994;<br />

Banat et al. 1996), immobilization with β-galactosidase<br />

(Hahn-Hägerdal 1985), calcium-alginate-immobilized cells<br />

(Bajpai <strong>and</strong> Margaritis 1987a,b; Marwaha et al. 1988;<br />

Nolan et al. 1994; Riordan et al. 1996; Barron et al. 1996;<br />

Brady et al. 1996, 1997a,b, 1998; Ferguson et al. 1998;<br />

Gough <strong>and</strong> Mchale 1998), cells immobilized in poly(vinyl<br />

alcohol) cryogel beads (Gough et al. 1998), or in Kissiris, a<br />

mineral glass foam derived from lava (Nigam et al. 1997;<br />

Love et al. 1996, 1998), extractive fed batch cultures (Jones<br />

et al. 1993), simultaneous saccharification <strong>and</strong> fermentation<br />

processes with added enzymes (Barron et al. 1995b, 1996,<br />

1997; Boyle et al. 1997; Nilsson et al. 1995; Ballesteros et<br />

al. 2002a,b, 2004; Kádár et al. 2004) or by cloning of<br />

heterologous cellulase genes (Hong et al. 2007), <strong>and</strong> the use<br />

of mixed cultures (Ward et al. 1995).<br />

Cheese whey contains lactose <strong>and</strong> a protein fraction<br />

sufficiently rich in essential amino acids. Cheese whey<br />

cultivations with K. <strong>marxianus</strong> have been proposed, with<br />

promising results, as a means of reducing the pollution<br />

caused by this industrial waste stream (Ghaly <strong>and</strong> Singh<br />

1989; Giec <strong>and</strong> Kosikowski 1992; Harden 1996; Aktas et<br />

al. 2005) <strong>and</strong>/or to produce single-cell protein (Giec <strong>and</strong><br />

Kosikowski 1992; Ben-Hassan et al. 1992, Ben-Hassan <strong>and</strong><br />

Ghaly 1995; Belem <strong>and</strong> Lee 1999; Schultz et al. 2006;<br />

Ghaly <strong>and</strong> Kamal 2004). Aerobic cultures of microorganisms<br />

in cheese whey can reduce up to 90–95% of <strong>its</strong> BOD<br />

(Grubb <strong>and</strong> Mawson 1993), resulting in bioingredients of<br />

high added value for the food industry (Belem et al. 1997).<br />

Other potential applications of the <strong>yeast</strong> K. <strong>marxianus</strong>,<br />

which can be found in the literature include <strong>its</strong> use as baker’s<br />

<strong>yeast</strong> (Caballero et al. 1995) <strong>and</strong> as an anticholesterolemic<br />

agent (Yoshida et al. 2004). <strong>The</strong> cellular components<br />

involved in the hypocholesterolemic activity of K. <strong>marxianus</strong><br />

were further examined (Yoshida et al. 2005).<br />

Last but not the least, K. <strong>marxianus</strong> has been investigated<br />

as a host for the production of heterologous proteins.<br />

In general, <strong>yeast</strong>s are capable of performing some posttranslational<br />

modifications of proteins, such as glycosylation<br />

<strong>and</strong>/or other modifications required for optimal<br />

biological activity <strong>and</strong> stability (Hensing et al. 1995). S.<br />

cerevisiae has been the most commonly used <strong>yeast</strong> host for<br />

the production of heterologous proteins (Romanos et al.<br />

1992; Gellissen <strong>and</strong> Hollenberg 1997; Porro et al. 2005).<br />

Nevertheless, this <strong>yeast</strong> has some drawbacks, such as <strong>its</strong><br />

strong aerobic fermentation behavior <strong>and</strong> a tendency to<br />

hyperglycosylate secreted glycoproteins (Hensing et al.<br />

1994). K. lactis has also been used for the production of<br />

heterologous proteins (van den Berg et al. 1990; Panuwatsuk<br />

<strong>and</strong> da Silva 2002; Bartkevičiute <strong>and</strong> Sasnauskas 2003; van<br />

Ooyen et al. 2006). K. <strong>marxianus</strong>, which is phylogenetically<br />

close to K. lactis, is supposed to have a similar<br />

capacity for synthesis <strong>and</strong> secretion of high molecular<br />

weight proteins (Wésolowski-Louvel et al. 1996). Some


348 Appl Microbiol Biotechnol (2008) 79:339–354<br />

examples showing that heterologous protein production in<br />

this <strong>yeast</strong> is possible have been reported in the literature<br />

(Bergkamp et al. 1993a; Bartkevičiute et al. 2000; Zhang et<br />

al. 2003). More recently, Pecota et al. (2007) successfully<br />

expressed lactate dehydrogenase activity in K. <strong>marxianus</strong>,<br />

using an integrative multi-copy system, resulting in lactate<br />

production by this <strong>yeast</strong>. Hong et al. (2007) expressed<br />

thermostable endo-β-1,4-glucanase, cellobiohydrolase, <strong>and</strong><br />

β-glucosidase, also making use of an integrative system,<br />

generating a strain capable of converting cellulosic materials<br />

into ethanol. Although these studies demonstrate that<br />

the heterologous proteins expressed in K. <strong>marxianus</strong> were<br />

functional, the capacity of K. <strong>marxianus</strong> to perform posttranslational<br />

modifications of heterologous proteins still<br />

remains to be investigated.<br />

Acknowledgements Grants from Fundação de Amparo à Pesquisa<br />

do Estado de São Paulo (FAPESP) (Brazil), Deutscher Akademischer<br />

Austausch Dienst (DAAD) (Germany), <strong>and</strong> Fundação Coordenação de<br />

Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Brazil) are<br />

acknowledged.<br />

References<br />

Abranches J, Morais PB, Rosa CA, Mendonça-Hagler LC, Hagler AN<br />

(1997) <strong>The</strong> incidence of killer activity <strong>and</strong> extracellular proteases<br />

in tropical <strong>yeast</strong> communities. Can J Microbiol 43:328–336<br />

Aksu Z, Dönmez G (2000) <strong>The</strong> use of molasses in copper (II)<br />

containing wastewaters: effects on growth <strong>and</strong> copper (II)<br />

bioaccumulation properties of <strong>Kluyveromyces</strong> <strong>marxianus</strong>. Proc<br />

Biochem 36:451–458<br />

Aktas N, Boyacı IH, Mutlu M, Tanyolac A (2005) Optimization of<br />

lactose utilization in deproteinated whey by <strong>Kluyveromyces</strong><br />

<strong>marxianus</strong> using response surface methodology (RSM). Biores<br />

Technol 97:2252–2259<br />

Almeida C, Branyik T, Moradas-Ferreira P, Teixeira J (2003a)<br />

Continuous production of pectinase by immobilized <strong>yeast</strong> cells<br />

on spent grains. J Biosci Bioeng 96:513–518<br />

Amrane A, Prigent Y (1996) Behaviour of the <strong>yeast</strong> <strong>Kluyveromyces</strong><br />

<strong>marxianus</strong> var. <strong>marxianus</strong> during <strong>its</strong> autolysis. Antonie van<br />

Leeuwenhoek 69:267–272<br />

Anderson PJ, McNeil K, Watson K (1986) High-efficiency carboidrate<br />

fermentation to ethanol at temperatures above 40°C by <strong>Kluyveromyces</strong><br />

<strong>marxianus</strong> var. <strong>marxianus</strong> isolated from sugar mills.<br />

Appl Environ Microbiol 51:1314–1320<br />

Bacci Júnior M, Siqueira CG, Antoniazi SA, Ueta J (1996) Location<br />

of the b-galactosidase of the <strong>yeast</strong> <strong>Kluyveromyces</strong> <strong>marxianus</strong> var.<br />

<strong>marxianus</strong> ATCC 10022. Antonie van Leeuwenhoek 69:357–361<br />

Bajpai P, Margaritis A (1982) Ethanol inhibition kinetics of<br />

<strong>Kluyveromyces</strong> <strong>marxianus</strong> grown on Jerusalem artichoke juice.<br />

Appl Environ Microbiol 44:1325–1329<br />

Bajpai P, Margaritis A (1987a) Kinetics of ethanol production by<br />

immobilized <strong>Kluyveromyces</strong> <strong>marxianus</strong> cells at varying sugar<br />

concentrations of Jerusalem artichoke juice. Appl Microbiol<br />

Biotechnol 26:447–449<br />

Bajpai P, Margaritis A (1987b) <strong>The</strong> effect of temperature <strong>and</strong> pH on<br />

ethanol production by free <strong>and</strong> immobilized cells of <strong>Kluyveromyces</strong><br />

<strong>marxianus</strong> grown on Jerusalem artichoke extract. Biotechnol<br />

Bioeng 30:306–313<br />

Ball MM, Raynal A, Guerineau M, Iborra F (1999) Construction of<br />

efficient centromeric, multicopy <strong>and</strong> expression vectors for the<br />

<strong>yeast</strong> <strong>Kluyveromyces</strong> <strong>marxianus</strong> using homologous elements <strong>and</strong><br />

the promoter of a purine-cytosine-like permease. J Mol Microbiol<br />

Biotechnol 1:347–353<br />

Ballesteros I, Ballesteros M, Cabanas A, Carrasco J, Martin C, Negro<br />

MJ, Saez F, Saez R (1991) Selection of thermotolerant <strong>yeast</strong>s for<br />

simultaneous saccharification <strong>and</strong> fermentation (SSF) of cellulose<br />

to ethanol. Appl Biochem Biotechnol 28:307–315<br />

Ballesteros I, Oliva JM, Negro MJ, Manzanares P, Ballesteros M<br />

(2002a) Simultaneous saccharification <strong>and</strong> fermentation process<br />

for converting the cellulosic fraction of olive oil extraction<br />

residue into ethanol. Grasas y Aceites 53:282–288<br />

Ballesteros M, Oliva JM, Manzanares P, Negro MJ, Ballesteros I<br />

(2002b) Ethanol production from paper material using a<br />

simultaneous saccharification <strong>and</strong> fermentation system in a fedbatch<br />

basis. World J Microbiol Biotechnol 18:559–561<br />

Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I (2004)<br />

Ethanol from lignocellulosic materials by a simultaneous<br />

saccharification <strong>and</strong> fermentation process (SFS) with <strong>Kluyveromyces</strong><br />

<strong>marxianus</strong> CECT 10875. Proc Biochem 39:1843–1848<br />

Banat IM, Nigam P, Marchant R (1992) Isolation of thermotolerant,<br />

fermentative <strong>yeast</strong>s growing at 52°C <strong>and</strong> producing ethanol at<br />

45°C <strong>and</strong> 50°C. World J Microbiol Biotechnol 8:259–263<br />

Banat IM, Singh D, Marchant R (1996) <strong>The</strong> use of a thermotolerant<br />

fermentative <strong>Kluyveromyces</strong> <strong>marxianus</strong> IMB3 <strong>yeast</strong> strain for<br />

ethanol production. Acta Biotechnol 16:215–223<br />

Banat IM, Nigam P, Singh D, Marchant R, McHale AP (1998) Ethanol<br />

production at elevated temperatures <strong>and</strong> alcohol concentrations: Part<br />

I - Yeasts in general. World J Microbiol Biotechnol 14:809–821<br />

Barnby FM, Morpeth FF, Pyle DL (1990) Endopolygalacturonase<br />

production from <strong>Kluyveromyces</strong> <strong>marxianus</strong>. Resolution, purification,<br />

<strong>and</strong> partial characterisation of the enzyme. Enzyme<br />

Microb Technol 12:891–897<br />

Barnett JA, Payne RW, Yarrow D (1983) Yeasts: characteristics <strong>and</strong><br />

identification. Cambridge University Press, Cambridge<br />

Barranco-Florido E, García-Garibay M, Gómez-Ruiz L, Azaola A (2001)<br />

Immobilization system of <strong>Kluyveromyces</strong> <strong>marxianus</strong> cells in<br />

barium alginate for inulin hydrolysis. Proc Biochem 37:513–519<br />

Barron N, Marchant R, McHale L, McHale AP (1995a) Partial<br />

characterization of b-glucosidase activity produced by <strong>Kluyveromyces</strong><br />

<strong>marxianus</strong> IMB3 during growth on cellobiose containing media at<br />

45°C.BiotechnolLett17:1047–1050<br />

Barron N, Marchant R, McHale L, McHale AP (1995b) Studies on the<br />

use of a thermotolerant strain of <strong>Kluyveromyces</strong> <strong>marxianus</strong> in<br />

simultaneous saccharification <strong>and</strong> ethanol formation from cellulose.<br />

Appl Microbiol Biotechnol 43:518–520<br />

Barron N, Marchant R, McHale L, McHale AP (1996) Ethanol<br />

production from cellulose at 45°C using a batch-fed system<br />

containing alginate-immobilized <strong>Kluyveromyces</strong> <strong>marxianus</strong><br />

IMB3. World J Microbiol Biotechnol 12:103–104<br />

Barron N, Mulholl<strong>and</strong> H, Boyle M, McHale AP (1997) Ethanol<br />

production by <strong>Kluyveromyces</strong> <strong>marxianus</strong> IMB3 during growth on<br />

straw-supplemented whiskey distillery spentwash at 45°C. Bioproc<br />

Eng 17:383–386<br />

Bartkevičiute D, Sasnauskas K (2003) Studies of <strong>yeast</strong> <strong>Kluyveromyces</strong><br />

lactis mutations conferring super-secretion of recombinant<br />

proteins. Yeast 20:1–11<br />

Bartkevičiūtė D, Šiekštelė R, Sasnauskas K (2000) Heterologous<br />

expression of the <strong>Kluyveromyces</strong> <strong>marxianus</strong> endopolygalacturonase<br />

gene (EPG1) using versatile autonomously replicating vector for a<br />

wide range of host. Enzyme Microb Technol 26:653–656<br />

Basabe L, Cabrera N, Yong V, Menéndez J, Delgado JM, Rodríguez L<br />

(1996) Isolation <strong>and</strong> characterization of mutants as an approach<br />

to a transformation system in <strong>Kluyveromyces</strong> <strong>marxianus</strong>. Curr<br />

Genet 30:89–92


Appl Microbiol Biotechnol (2008) 79:339–354 349<br />

Beezer AE, Newell RD, Tyrrell HJ (1979) Characterisation <strong>and</strong><br />

metabolic studies of Saccharomyces cerevisiae <strong>and</strong> <strong>Kluyveromyces</strong><br />

fragilis by flow microcalorimetry. Antonie van Leeuwenhoek<br />

45:55–63<br />

Belem MAF, Lee BH (1998) Production of bioingredients from<br />

<strong>Kluyveromyces</strong> <strong>marxianus</strong> grown on whey: an alternative. Crit<br />

Rev Food Sci Nut 38:565–598<br />

Belem MAF, Lee BH (1999) Fed-batch fermentation to produce<br />

ologonucleotides from <strong>Kluyveromyces</strong> <strong>marxianus</strong> grown on<br />

whey. Proc Biochem 34:501–509<br />

Belem MAF, Gibbs BF, Lee BH (1997) Enzymatic production of<br />

ribonucleotides from autolysates of <strong>Kluyveromyces</strong> <strong>marxianus</strong><br />

grown on whey. J Food Sci 62:851–857<br />

Bellaver LH, de Carvalho NMB, Abrahão-Neto J, Gombert AK<br />

(2004) Ethanol formation <strong>and</strong> enzyme activities around glucose-<br />

6-phosphate in <strong>Kluyveromyces</strong> <strong>marxianus</strong> CBS 6556 exposed to<br />

glucose or lactose excess. FEMS Yeast Res 4:691–698<br />

Ben-Hassan RM, Ghaly AE (1995) Continuous production of singlecell<br />

protein from cheese whey lactose using <strong>Kluyveromyces</strong><br />

fragilis. Trans ASAE 38:1121–1127<br />

Ben-Hassan RM, Ghaly AE, Ben-Abdallah N (1992) Metabolism of<br />

cheese whey lactose by <strong>Kluyveromyces</strong> fragilis for energy <strong>and</strong><br />

growth under batch condition. Appl Biochem Biotechnol 33:<br />

97–116<br />

Bergkamp RJ, Geerse RH, Verbakel JM, Musters W, Planta RJ (1991)<br />

Cloning <strong>and</strong> disruption of the LEU2 gene of <strong>Kluyveromyces</strong><br />

<strong>marxianus</strong> CBS 6556. Yeast 7:963–970<br />

Bergkamp RJM, Bootsmas TC, Toschka HY, Mooren ATA, Kox L,<br />

Verbakel JMA, Geerse RH, Planta RJ (1993a) Expression of an<br />

a-galactosidase gene under control of the homologous inulinase<br />

promoter in <strong>Kluyveromyces</strong> <strong>marxianus</strong>. Appl Microbiol Biotechnol<br />

40:309–317<br />

Bergkamp RJ, Geerse RH, Verbakel JM, Planta RJ (1993b) Cloning<br />

<strong>and</strong> sequencing of the URA3 gene of <strong>Kluyveromyces</strong> <strong>marxianus</strong><br />

CBS 6556. Yeast 9:677–681<br />

Bhattacharjee H, Bhaduri A (1992) Distinct functional roles of two<br />

active site thiols in UDPglucose 4-epimerase from <strong>Kluyveromyces</strong><br />

fragilis. J Biol Chem 267:11714–11720<br />

Bianchi MM, Falcone C, Re CX, Wéslowski-Louvel M, Frontali L,<br />

Fukuhara H (1987) Transformation of the <strong>yeast</strong> <strong>Kluyveromyces</strong><br />

lactis by new vectors derived from the 1.6 mm circular plasmid<br />

pKD1. Curr Genet 12:185–192<br />

Blanco P, Sieiro C, Villa TG (1999) Production of pectic enzymes in<br />

<strong>yeast</strong>s. FEMS Microbiol Lett 175:1–9<br />

Blank LM, Lehmbeck F, Sauer U (2005) Metabolic-flux <strong>and</strong> network<br />

analysis in fourteen hemiascomycetous <strong>yeast</strong>s. FEMS Yeast Res<br />

5:545–558<br />

Boyle M, Barron N, McHale AP (1997) Simultaneous saccharification<br />

<strong>and</strong> fermentation of straw to ethanol using the thermotolerant<br />

<strong>yeast</strong> strain <strong>Kluyveromyces</strong> <strong>marxianus</strong> IMB 3. Biotechnol Lett<br />

19:49–51<br />

Brady D, Marchant R, McHale L, McHale AP (1995) Isolation <strong>and</strong><br />

partial characterization of b-galactosidase activity produced by a<br />

thermotolerant strain of <strong>Kluyveromyces</strong> <strong>marxianus</strong> during growth<br />

on lactose-containing media. Enzyme Microb Technol 17:<br />

696–699<br />

Brady D, Nigam P, Marchant R, McHale L, McHale AP (1996)<br />

Ethanol production at 45°C by <strong>Kluyveromyces</strong> <strong>marxianus</strong> IMB3<br />

immobilized in magnetically responsive alginate matrices. Biotechnol<br />

Lett 18:1213–1216<br />

Brady D, Nigam P, Marchant R, McHale AP (1997a) Ethanol<br />

production at 45°C by alginate-immobilized <strong>Kluyveromyces</strong><br />

<strong>marxianus</strong> IMB3 during growth on lactose-containing media.<br />

Bioproc Eng 16:101–104<br />

Brady D, Nigam P, Marchant R, Singh D, McHale AP (1997b) <strong>The</strong><br />

effect of Mn2 + on ethanol production from lactose using<br />

<strong>Kluyveromyces</strong> <strong>marxianus</strong> IMB3 immobilized in magnetically<br />

responsive matrices. Bioproc Eng 17:31–34<br />

Brady D, Logan SR, McHale AP (1998) <strong>The</strong> effect of soluble alginate<br />

<strong>and</strong> calcium on b-galactosidase activity produced by the<br />

thermotolerant, ethanol-producing <strong>yeast</strong> strain <strong>Kluyveromyces</strong><br />

<strong>marxianus</strong> IMB3. Bioproc Eng 18:101–104<br />

Breunig KD, Steensma HY (2003) <strong>Kluyveromyces</strong> lactis: genetics,<br />

physiology, <strong>and</strong> application. In: de Winde JH (ed) Functional<br />

genetics of industrial <strong>yeast</strong>s, Topics in current genetics, vol. 2.<br />

Springer-Verlag, Berlin Heidelberg New York, pp 171–205<br />

Büschges R, Bahrenberg G, Zimmermann M, Wolf K (1994) NADH:<br />

ubiquinone oxidoreductase in obligate aerobic <strong>yeast</strong>s. Yeast<br />

10:475–479<br />

Caballero R, Olguín P, Cruz-Guerrero A, Gallardo F, García-Garibay<br />

M, Gómez-Ruiz L (1995) Evaluation of <strong>Kluyveromyces</strong> <strong>marxianus</strong><br />

as baker’s <strong>yeast</strong>. Food Res Int 28:37–41<br />

Carvalho-Silva M, Spencer-Martins I (1990) Modes of lactose uptake<br />

in the <strong>yeast</strong> species <strong>Kluyveromyces</strong> <strong>marxianus</strong>. Antonie van<br />

Leeuwenhoek 57:77–81<br />

Cassart JP, Ostling J, Ronne H, V<strong>and</strong>enhaute J (1997) Comparative<br />

analysis in three fungi reveals structurally <strong>and</strong> functionally<br />

conserved regions in the Mig1 repressor. Mol Gen Genet<br />

255:9–18<br />

Castrillo JI, Ugalde UO (1993) Patterns of energy metabolism <strong>and</strong><br />

growth kinetics of <strong>Kluyveromyces</strong> <strong>marxianus</strong> in whey chemostat<br />

culture. Appl Microbiol Biotechnol 40:386–393<br />

Chassang-Douillet A, Ladet J, Boze H, Galzy P (1973) Respiratory<br />

metabolism of <strong>Kluyveromyces</strong> fragilis van der Walt. Z Allg<br />

Mikrobiol 13:193–199<br />

Chen XJ, Saliola M, Falcone C, Bianchi MM, Fukuhara H (1986)<br />

Sequence organization of the circular plasmid pKD1 from the<br />

<strong>yeast</strong> <strong>Kluyveromyces</strong> drosophilarum. Nucleic Acids Res<br />

14:4471–4481<br />

Chen XJ, Bianchi MM, Suda K, Fukuhara H (1989) <strong>The</strong> host range of<br />

the pKD1-derived plasmids in <strong>yeast</strong>. Curr Genet 16:95–98<br />

Corpillo D, Valetti F, Giuffrida MG, Conti A, Rossi A, Finazzi-Agrò<br />

A, Giunta C (2003) Induction <strong>and</strong> characterization of a novel<br />

amine oxidase from the <strong>yeast</strong> <strong>Kluyveromyces</strong> <strong>marxianus</strong>. Yeast<br />

20:369–379<br />

Cruz-Guerrero A, García-Peña I, Bárzana E, García-Garibay M, Gómez-<br />

Ruiz L (1995) <strong>Kluyveromyces</strong> <strong>marxianus</strong> CDBB-L-278: a wild<br />

inulinase hyperproducing strain. J Ferm Bioeng 80:159–163<br />

Cruz-Guerrero A, Bárzana E, García-Garibay M, Gómez-Ruiz L<br />

(1999) Dissolved oxygen threshold for the repression of endopolygalacturonase<br />

production by <strong>Kluyveromyces</strong> <strong>marxianus</strong>. Proc<br />

Biochem 34:621–624<br />

Das S, Kellermann E, Hollenberg CP (1984) Transformation of<br />

<strong>Kluyveromyces</strong> fragilis. J Bacteriol 158:1165–1167<br />

de Bruijne AW, Schuddemat J, van den Broek PJA, van Steveninck J<br />

(1988) Regulation of sugar transport systems of <strong>Kluyveromyces</strong><br />

<strong>marxianus</strong>: the role of carbohydrates <strong>and</strong> their catabolism.<br />

Biochim Biophys Acta 939:569–576<br />

de Morais MA Jr (2003) <strong>The</strong> NADP + -dependent glutamate dehydrogenase<br />

of the <strong>yeast</strong> <strong>Kluyveromyces</strong> <strong>marxianus</strong> responds to<br />

nitrogen repression similarly to Saccharomyces cerevisiae. Braz<br />

J Microbiol 34:334–338<br />

de Sánchez SB, Castillo FJ (1980) Effect of pH on the growth of<br />

<strong>Kluyveromyces</strong> fragilis on deproteinized whey. Acta Cient Venez<br />

31:24–26<br />

Donaghy JA, McKay AM (1994) <strong>The</strong> use of K1uvveromyces fragilis for<br />

the extraction of orange peel pectins. J Appl Bacteriol 76:506–510<br />

Dujon B, Sherman D, Fischer G et al (2004) Genome evolution in<br />

<strong>yeast</strong>s. Nature 430:35–44<br />

Duvnjak Z, Houle C, Mok KL (1987) Production of ethanol <strong>and</strong><br />

biomass from various carbohydrates by <strong>Kluyveromyces</strong> fragilis.<br />

Biotechnol Lett 9:343–346


350 Appl Microbiol Biotechnol (2008) 79:339–354<br />

Eraso P, Gancedo JM (1984) Catabolite repression in <strong>yeast</strong>s is not<br />

associated with low levels of cAMP. Eur J Biochem 141:195–198<br />

Etschmann MMW, Schrader J (2006) An aqueous-organic two-phase<br />

bioprocess for efficient production of the natural aroma chemicals<br />

2-phenylethanol <strong>and</strong> 2-phenylethylacetate with <strong>yeast</strong>. Appl<br />

Microbiol Biotechnol 71:440–443<br />

Etschmann MMW, Bluemke W, Sell D, Schrader J (2002) Biotechnological<br />

production of 2-phenylethanol. Appl Microbiol Biotechnol<br />

59:1–8<br />

Etschmann MMW, Sell D, Schrader J (2004) Medium optimization for<br />

the production of the aroma compound 2-phenylethanol using a<br />

genetic algorithm. J Mol Catal B: Enzym 29:187–193<br />

Fabre CE, Duviau VJ, Blanc PJ, Goma G (1995) Identification of<br />

volatile flavour compounds obtained in culture of <strong>Kluyveromyces</strong><br />

<strong>marxianus</strong>. Biotechnol Lett 17:1207–1212<br />

Fabre CE, Blanc PJ, Goma G (1998) Production of 2-phenylethyl<br />

alcohol by <strong>Kluyveromyces</strong> <strong>marxianus</strong>. Biotechnol Prog 14:270–<br />

274<br />

Falcone C, Saliola M, Chen XJ, Frontali L, Fukuhara H (1986)<br />

Analysis of a 1.6-micron circular plasmid from the <strong>yeast</strong><br />

<strong>Kluyveromyces</strong> drosophilarum: structure <strong>and</strong> molecular dimorphism.<br />

Plasmid 15:248–252<br />

Ferguson P, Mulholl<strong>and</strong> H, Barron N, Brady D, McHale AP (1998)<br />

Sucrose-supplemented distillery spent-wash as a medium for<br />

production of ethanol at 45°C by free <strong>and</strong> alginate-immobilized<br />

preparations of <strong>Kluyveromyces</strong> <strong>marxianus</strong> IMB3. Bioproc Eng<br />

18:257–259<br />

Fern<strong>and</strong>a R, Sa-Correia I (1992) Ethanol tolerance <strong>and</strong> activity of<br />

plasma membrane ATPase in <strong>Kluyveromyces</strong> <strong>marxianus</strong> <strong>and</strong><br />

Saccharomyces cerevisiae. Enzyme Microb Technol 14:23–27<br />

Fern<strong>and</strong>es PA, Keen JN, Findlay JBC, Moradas-Ferreira PA (1992)<br />

Protein homologous to glyceraldehyde-3-phosphate dehydrogenase<br />

is induced in the cell wall of a flocculant <strong>Kluyveromyces</strong><br />

<strong>marxianus</strong>. Biochim Biophys Acta 1159:67–73<br />

Fern<strong>and</strong>es PA, Sousa M, Moradas-Ferreira P (1993) Flocculation of<br />

<strong>Kluyveromyces</strong> <strong>marxianus</strong> is induced by a temperature upshift.<br />

Yeast 9:859–866<br />

Fern<strong>and</strong>es PA, Sena-Esteves M, Moradas-Ferreira P (1995) Characterization<br />

of the glyceraldehyde-3-phosphate dehydrogenase gene<br />

family from <strong>Kluyveromyces</strong> <strong>marxianus</strong> - polymerase chain<br />

reaction single-str<strong>and</strong> conformation polymorphism as a tool for<br />

the study of multigenic families. Yeast 11:725–733<br />

Ferrari MD, Loperena L, Varela H (1994) Ethanol production from<br />

concentrated whey permeate using a fed-batch culture of<br />

<strong>Kluyveromyces</strong> fragilis. Biotechnol Lett 16:205–210<br />

Fiedurek J, Szczodrak J (1994) Selection of strain, culture conditions<br />

<strong>and</strong> extraction procedures for optimum production of bgalactosidase<br />

from <strong>Kluyveromyces</strong> fragilis. Acta Microbiol Pol<br />

43:57–65<br />

Fonseca A, Spencer-Martins I, van Uden N (1991) Transport of lactic<br />

acid in <strong>Kluyveromyces</strong> <strong>marxianus</strong>: evidence for a monocarboxylate<br />

uniport. Yeast 7:775–780<br />

Fonseca GG, Gombert AK, Heinzle E, Wittmann C (2007) Physiology<br />

of the <strong>yeast</strong> <strong>Kluyveromyces</strong> <strong>marxianus</strong> during batch <strong>and</strong> chemostat<br />

cultures with glucose as the sole carbon source. FEMS Yeast Res<br />

7:422–435<br />

Fukuhara H (2006) <strong>Kluyveromyces</strong> lactis - A retrospective. FEMS<br />

Yeast Res 6:323–324<br />

Furlan SA, Schneider ALS, Merkle R, Carvalho-Jonas MD, Jonas R<br />

(2000) Formulation of a lactose-free, low-cost culture medium<br />

for the production of b-D-galactosidase by <strong>Kluyveromyces</strong><br />

<strong>marxianus</strong>. Biotechnol Lett 22:589–593<br />

Garcia-Garibay M, Gómez-Ruiz L, Bárzana E (1987a) Studies on the<br />

simultaneous production of single-cell protein <strong>and</strong> endopolygalacturonase<br />

from <strong>Kluyveromyces</strong> fragilis. Biotechnol Lett<br />

9:411–416<br />

Garcia-Garibay M, Torres J, López-Munguía-Canales A, Casas LT<br />

(1987b) Influence of oxygen transfer rate on b-galactosidase<br />

production from <strong>Kluyveromyces</strong> <strong>marxianus</strong>. Biotechnol Lett<br />

9:417–420<br />

Gasnier B (1987) Characterization of low- <strong>and</strong> high-affinity glucose<br />

transports in the <strong>yeast</strong> <strong>Kluyveromyces</strong> <strong>marxianus</strong>. Biochim<br />

Biophys Acta 903:425–433<br />

Gellissen G, Hollenberg CP (1997) Application of <strong>yeast</strong>s in gene<br />

expression studies: A comparison of Saccharomyces cerevisiae,<br />

Hansenula polymorpha <strong>and</strong> <strong>Kluyveromyces</strong> lactis—a review.<br />

Gene 190:87–97<br />

Ghaly AE, Singh RK (1989) Pollution potential reduction of cheese<br />

whey through <strong>yeast</strong> fermentation. Appl Biochem Biotechnol<br />

22:181–203<br />

Ghaly AE, Kamal M (2004) Submerged <strong>yeast</strong> fermentation of acid<br />

cheese whey for protein production <strong>and</strong> pollution potential<br />

reduction. Water Res 38:631–644<br />

Giec A, Kosikowski FV (1992) Activity of lactose fermenting <strong>yeast</strong>s<br />

in producing biomass from concentrated whey permeates. J Food<br />

Sci 47:1892–1894<br />

Gonçalves JA, Castillo FJ (1982) Partial Purification <strong>and</strong> characterization<br />

of b-D-galactosidase from Kluyverornyces rnarxianus. J<br />

Dairy Sci 65:2088–2094<br />

Gough S, McHale AP (1998) Continuous ethanol production from<br />

molasses at 45°C using alginate-immobilized <strong>Kluyveromyces</strong><br />

<strong>marxianus</strong> IMB3 in a continuous-flow bioreactor. Bioproc Eng<br />

19:33–36<br />

Gough S, Flynn O, Hack CJ, Marchant R (1996) Fermentation of<br />

molasses using a thermotolerant <strong>yeast</strong>, <strong>Kluyveromyces</strong> <strong>marxianus</strong><br />

IMB3: simplex optimization of media supplements. Appl Microbiol<br />

Biotechnol 46:187–190<br />

Gough S, Brady D, Nigam P, Marchant R, McHale AP (1997) Production<br />

of ethanol from molasses at 45°C using alginate-immobilized<br />

<strong>Kluyveromyces</strong> <strong>marxianus</strong> IMB3. Bioproc Eng 16:389–392<br />

Gough S, Barron N, Zubov AL, Lozinsky VI, McHale AP (1998)<br />

Production of ethanol from molasses at 45°C using <strong>Kluyveromyces</strong><br />

<strong>marxianus</strong> IMB3 immobilized in calcium alginate gels<br />

<strong>and</strong> poly(vinyl alcohol) cryogel. Bioproc Eng 19:87–90<br />

Grootwassink JWD, Hewitt GM (1983) Inducible <strong>and</strong> constitutive<br />

formation of b-fructofuranosidase (inulase) in batch <strong>and</strong> continuous<br />

cultures of the <strong>yeast</strong> <strong>Kluyveromyces</strong> <strong>marxianus</strong>. J Gen<br />

Microbiol 129:31–41<br />

Grubb CF, Mawson AJ (1993) Effects of elevated solute concentrations<br />

on the fermentation of lactose by <strong>Kluyveromyces</strong> <strong>marxianus</strong> Y-113.<br />

Biotechnol Lett 15:621–626<br />

Goldstein AL, McCusker JH (1999) Three new dominant drug<br />

resistance cassettes for gene disruption in Saccharomyces<br />

cerevisiae. Yeast 15:1541–1553<br />

Güldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH (1996) A<br />

new efficient gene disruption cassette for repeated use in budding<br />

<strong>yeast</strong>. Nucleic Acids Res 24:2519–2524<br />

Hack CJ, Banat IM, Singh D, Marchant R (1994) Ethanol production<br />

by a strain of <strong>Kluyveromyces</strong> <strong>marxianus</strong> at elevated temperatures<br />

in various bioreactor configurations. In: Proceedings of Conference<br />

on Fermentation Physiology, Pub. Institution of Chemical<br />

Engineers, Brighton, pp 7–9<br />

Hacking AJ, Taylor IWF, Hanas CM (1984) Selection of <strong>yeast</strong>s able to<br />

produce ethanol from glucose at 40°C. Appl Microbiol Biotechnol<br />

19:361–363<br />

Hahn-Hägerdal B (1985) Comparison between immobilized <strong>Kluyveromyces</strong><br />

fragilis <strong>and</strong> Saccharomyces cerevisiae coimmobilized with bgalactosidase,<br />

with respect to continuous ethanol production from<br />

concentrated whey permeate. Biotechnol Bioeng 27:914–916<br />

Harden TJ (1996) <strong>The</strong> reduction of BOD <strong>and</strong> production of biomass<br />

from acid whey by <strong>Kluyveromyces</strong> <strong>marxianus</strong>. Food Aust<br />

48:456–457


Appl Microbiol Biotechnol (2008) 79:339–354 351<br />

Harsa S, Zaror CA, Pyle DL (1993) Production of polygalacturonases<br />

from <strong>Kluyveromyces</strong> <strong>marxianus</strong> fermentation—preliminary process<br />

design <strong>and</strong> economics. Proc Biochem 28:187–195<br />

Hashida-Okado T, Ogawa A, Kato I, Takesako K (1998) Transformation<br />

system for prototrophic industrial <strong>yeast</strong>s using the<br />

AUR1 gene as a dominant selection marker. FEBS Lett<br />

425:117–122<br />

Hensing M, Vrouwenvelder H, Hellinga C, Baartmans R, van Dijken<br />

JP (1994) Production of extracellular inulinase in high-celldensity<br />

fed-batch cultures of <strong>Kluyveromyces</strong> <strong>marxianus</strong>. Appl<br />

Microbiol Biotechnol 42:516–521<br />

Hensing MC, Rouwenhorst RJ, Heijnen JJ, van Dijken JP, Pronk JT (1995)<br />

Physiological <strong>and</strong> technological aspects of large-scale heterologousprotein<br />

production with <strong>yeast</strong>s. Antonie van Leeuwenhoek 67:<br />

261–279<br />

Holloway P, Subden RE (1993) <strong>The</strong> isolation <strong>and</strong> nucleotide sequence of<br />

the pyruvate decarboxylase gene from <strong>Kluyveromyces</strong> <strong>marxianus</strong>.<br />

Curr Genet 24:274–277<br />

Hong J, Wang Y, Kumagai H, Tamaki H (2007) Construction of<br />

thermotolerant <strong>yeast</strong> expressing thermostable cellulase genes. J<br />

Biotechnol 130:114–123<br />

Hughes DB, Tudrosaen NJ, Moye CJ (1984) <strong>The</strong> effect of temperature<br />

on the kinectics of ethanol production by a thermotolerant strain<br />

of <strong>Kluyveromyces</strong> <strong>marxianus</strong>. Biotechnol Lett 6:1–6<br />

Huo K, Li Y (1995) Cloning <strong>and</strong> expression of <strong>Kluyveromyces</strong> fragilis<br />

LAC4 gene. Sci China B 38:1332–1340<br />

Iborra F (1993) High efficiency transformation of <strong>Kluyveromyces</strong><br />

<strong>marxianus</strong> by a replicative plasmid. Curr Genet 24:181–183<br />

Iborra F, Ball MM (1994) <strong>Kluyveromyces</strong> <strong>marxianus</strong> small DNA fragments<br />

contain both autonomous replicative <strong>and</strong> centromeric elements that<br />

also function in <strong>Kluyveromyces</strong> lactis. Yeast 10:1621–1629<br />

Isenschmid A, Marison IW, von Stockar U (1995) <strong>The</strong> influence of<br />

pressure <strong>and</strong> temperature of compressed CO 2 on the survival of<br />

<strong>yeast</strong> cells. J Biotechnol 39:229–237<br />

<strong>It</strong>o H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact<br />

<strong>yeast</strong> cells treated with alkali cations. J Bacteriol 153:163–168<br />

<strong>It</strong>oh T, Susuki M, Adachi S (1982) Production of b-galactosidase from<br />

lactose-fermenting <strong>yeast</strong>s. Agric Biol Chem 46:899–904<br />

Jia J, Wheals A (2000) Endopolygalacturonase genes <strong>and</strong> enzymes<br />

from Saccharomyces cerevisiae <strong>and</strong> <strong>Kluyveromyces</strong> <strong>marxianus</strong>.<br />

Curr Genet 38:264–270<br />

Jolivet P, Bergeron E, Benyair H, Meunier JC (2001) Characterization of<br />

major protein phosphatases from selected species of <strong>Kluyveromyces</strong>.<br />

Comparison with protein phosphatases from Yarrowia lipolytica.<br />

Can J Microbiol 47:861–870<br />

Jones TD, Havard JM, Daugulis AJ (1993) Ethanol production from<br />

lactose by extractive fermentation. Biotechnol Lett 15:871–876<br />

Kádár ZS, Szengyel ZS, Réczey K (2004) Simultaneous saccharification<br />

<strong>and</strong> fermentation (SSF) of industrial wastes for the production of<br />

ethanol. Ind Crops Prod 20:103–110<br />

Kataoka M, Kotaka A, Thiwthong R, Wada M, Nakamori S, Shimizu<br />

S (2004) Cloning <strong>and</strong> overexpression of the old yellow enzyme<br />

gene of C<strong>and</strong>ida macedoniensis, <strong>and</strong> <strong>its</strong> application to the<br />

production of a chiral compound. J Biotechnol 114:1–9<br />

Kiers J, Zeeman AM, Luttik M, Thiele C, Castrillo JI, Steensma HY,<br />

van Dijken JP, Pronk JT (1998) Regulation of alcoholic<br />

fermentation in batch <strong>and</strong> chemostat cultures of <strong>Kluyveromyces</strong><br />

lactis CBS 2359. Yeast 14:459–469<br />

Kim WH, Chung JH, Back JH, Choi J, Cha JH, Koh HY, Han YS<br />

(2003) Molecular cloning <strong>and</strong> characterization of an NADPH<br />

quinone oxidoreductase from <strong>Kluyveromyces</strong> <strong>marxianus</strong>. J Biochem<br />

Mol Biol 36:442–449<br />

Kreger-van Rij NJW (1984) <strong>The</strong> <strong>yeast</strong>s: a taxonomic study, 3rd edn.<br />

Elsevier, Amsterdam<br />

Künkel W, May R (1976) Alcohol dehydrogenase (ADH) in <strong>yeast</strong><br />

cells. I. Cytoplasmic, mitochondrial <strong>and</strong> nuclear ADH in<br />

Saccharomyces carlsbergensis <strong>and</strong> <strong>Kluyveromyces</strong> fragilis. Z<br />

Allg Mikrobiol 16:529–536<br />

Kurtzman CP (2003) Phylogenetic circumscription of Saccharomyces,<br />

<strong>Kluyveromyces</strong> <strong>and</strong> other members of the Saccharomycetaceae,<br />

<strong>and</strong> the proposal of the new genera Lachancea, Nakaseomyces,<br />

Naumovia, V<strong>and</strong>erwaltozyma <strong>and</strong> Zygotorulaspora. FEMS Yeast<br />

Res 4:233–245<br />

Kurtzman CP, Fell JW (eds) (1998) <strong>The</strong> <strong>yeast</strong>s: a taxonomic study, 4th<br />

edn. Elsevier, Amsterdam<br />

Kurtzman CP, Robnett CJ (2003) Phylogenetic relationships among<br />

<strong>yeast</strong>s of the ‘Saccharomyces complex’ determined from multigene<br />

sequence analyses. FEMS Yeast Res 3:417–432<br />

Lachance MA (1998) <strong>Kluyveromyces</strong> van der Walt emend. van der<br />

Walt. In: Kurtzman CP, Fell JW (eds) <strong>The</strong> <strong>yeast</strong>s: a taxonomic<br />

study, 4th edn. Elsevier, Amsterdam, pp 227–247<br />

Lachance MA (2007) Current status of <strong>Kluyveromyces</strong> systematics.<br />

FEMS Yeast Res 7:642–645<br />

Ladrière JM, Delcour J, V<strong>and</strong>enhaute J (1993) Sequence of a gene<br />

coding for a cytoplasmic alcohol dehydrogenase from<br />

<strong>Kluyveromyces</strong> <strong>marxianus</strong> ATCC 12424. Biochim Biophys Acta<br />

1173:99–101<br />

Ladrière JM, Georis I, Guerineau M, V<strong>and</strong>enhaute J (2000) <strong>Kluyveromyces</strong><br />

<strong>marxianus</strong> exhib<strong>its</strong> an ancestral Saccharomyces cerevisiae genome<br />

organization downstream of ADH2. Gene 255:83–91<br />

Laloux O, Cassart JP, Delcour J, van Beeumen J, V<strong>and</strong>enhaute J<br />

(1991) Cloning <strong>and</strong> sequencing of the inulinase gene of<br />

<strong>Kluyveromyces</strong> <strong>marxianus</strong> var. <strong>marxianus</strong> ATCC 12424. FEBS<br />

Lett 289:64–68<br />

Leclerc M, Chemardin P, Arnaud A, Ratomahenina R, Galzy P,<br />

Gerbaud C, Raynal A, Guérineau M (1987) Comparison of the<br />

properties of the purified beta-glucosidase from the transformed<br />

strain of Saccharomyces cerevisiae TYKF2 with that of the donor<br />

strain <strong>Kluyveromyces</strong> fragilis Y610. Biotechnol Appl Biochem<br />

9:410–422<br />

Leclercq-Perlat MN, Corrieu G, Spinnler HE (2004) Comparison of<br />

volatile compounds produced in model cheese medium deacidified<br />

by Debaryomyces hansenii or <strong>Kluyveromyces</strong> <strong>marxianus</strong>. JDairy<br />

Sci 87:1545–1550<br />

Lim J, Yamasaki Y, Suzuki Y, Ozawa J (1980) Multiple forms of<br />

endo-polygalacturonase from Saccharomyces fragilis. Agric Biol<br />

Chem 44:473–480<br />

Llorente B, Malpertuy A, Bl<strong>and</strong>in G, Artiguenave F, Wincker P,<br />

Dujon B (2000) Genomic exploration of the hemiascomycetous<br />

<strong>yeast</strong>s: 12. <strong>Kluyveromyces</strong> <strong>marxianus</strong> var. <strong>marxianus</strong>. FEBS Lett<br />

487:71–75<br />

Lodder J (1970) <strong>The</strong> <strong>yeast</strong>s: a taxonomic study, 2nd edn. NHPC,<br />

Amsterdam<br />

Lodder J, Kreger-van Rij NJW (1952) <strong>The</strong> <strong>yeast</strong>s: a taxonomic study.<br />

NHPC, Amsterdam<br />

Love G, Nigam P, Barron N, Singh D, Marchant R, McHale AP<br />

(1996) Ethanol production at 45°C using preparations of<br />

<strong>Kluyveromyces</strong> <strong>marxianus</strong> IMB3 immobilized in calcium alginate<br />

<strong>and</strong> kissiris. Bioproc Eng 15:275–277<br />

Love G, Gough S, Brady D, Barron N, Nigam P, Singh D, Marchant<br />

R, McHale AP (1998) Continuous ethanol fermentation at 45°C<br />

using <strong>Kluyveromyces</strong> <strong>marxianus</strong> IMB3. Immobilized in calcium<br />

alginate <strong>and</strong> kissiris. Bioproc Eng 18:187–189<br />

Lukondeh T, Ashbolt NJ, Rogers PL (2003a) Evaluation of <strong>Kluyveromyces</strong><br />

<strong>marxianus</strong> as a source of <strong>yeast</strong> autolysates. J Ind Microbiol<br />

Biotechnol 30:52–56<br />

Lukondeh T, Ashbolt NJ, Rogers PL (2003b) Evaluation of<br />

<strong>Kluyveromyces</strong> <strong>marxianus</strong> FII 510700 grown on a lactose-based<br />

medium as a source of a natural bioemulsifier. J Ind Microbiol<br />

Biotechnol 30:715–720<br />

Lukondeh T, Ashbolt NJ, Rogers PL (2003c) Confirmation of an<br />

alkali-insoluble glucans from <strong>Kluyveromyces</strong> <strong>marxianus</strong> cultivated


352 Appl Microbiol Biotechnol (2008) 79:339–354<br />

on a lactose-based medium. World J Microbiol Biotechnol 19:<br />

349–355<br />

Mahoney RR, Nickerson TA, Whitaker JR (1975) Selection of strain,<br />

growth conditions <strong>and</strong> extraction procedures for optimum<br />

production of lactase from <strong>Kluyveromyces</strong> fragilis. J Dairy Sci<br />

58:1620–1629<br />

Majumdar S, Bhattacharjee H, Bhattacharyya D, Bhaduri A (1998)<br />

UDP-galactose 4-epimerase from <strong>Kluyveromyces</strong> fragilis: reconstitution<br />

of holoenzyme structure after dissociation with parachloromercuribenzoate.<br />

Eur J Biochem 257:427–433<br />

Margaritis A, Bajpai P (1982) Direct fermentation of D-xylose to<br />

ethanol by <strong>Kluyveromyces</strong> <strong>marxianus</strong> strains. Appl Environ<br />

Microbiol 44:1039–1041<br />

Margaritis A, Bajpai P (1983) Effect of sugar concentration in<br />

Jerusalem artichoke extract on <strong>Kluyveromyces</strong> <strong>marxianus</strong> growth<br />

<strong>and</strong> ethanol production. Appl Environ Microbiol 45:723–725<br />

Martins DB, de Souza CG Jr, Simões DA, de Morais MA Jr (2002)<br />

<strong>The</strong> b-galactosidase activity in <strong>Kluyveromyces</strong> <strong>marxianus</strong><br />

CBS6556 decreases by high concentrations of galactose. Curr<br />

Microbiol 44:379–382<br />

Marwaha SS, Kennedy JF, Sehgal VK (1988) Simulation of process<br />

conditions of continuous ethanol fermentation of whey permeate<br />

using alginate entrapped <strong>Kluyveromyces</strong> <strong>marxianus</strong> NCYC-179<br />

cells in a packed-bed reactor system. Proc Biochem 23:17–22<br />

Medeiros ABP, P<strong>and</strong>ey A, Freitas RJS, Christen P, Soccol CR (2000)<br />

Optimization of the production of aroma compounds by<br />

<strong>Kluyveromyces</strong> <strong>marxianus</strong> in solid-state fermentation using<br />

factorial design <strong>and</strong> response surface methodology. Biochem<br />

Eng J 6:33–39<br />

Medeiros ABP, P<strong>and</strong>ey A, Christen P, Fontoura PSG, de Freitas RJS,<br />

Soccol CR (2001) Aroma compounds produced by <strong>Kluyveromyces</strong><br />

<strong>marxianus</strong> in solid state fermentation on a packed bed column<br />

bioreactor. World J Microbiol Biotechnol 17:767–771<br />

Meilhoc E, Masson JM, Teissié J (1990) High efficiency transformation<br />

of intact <strong>yeast</strong> cells by electric field pulses. J Biotechnol<br />

8:223–227<br />

Molnár O, Prillinger H, Lop<strong>and</strong>ic K, Weigang F, Staudacher E (1996)<br />

Analysis of coenzyme Q systems, monosaccharide patterns of<br />

purified cell walls, <strong>and</strong> RAPD-PCR patterns in the genus<br />

<strong>Kluyveromyces</strong>. Antonie van Leeuwenhoek 70:67–78<br />

Mukherji S, Bhaduri A (1992) An essential histidine residue for the<br />

activity of UDPglucose 4-epimerase from <strong>Kluyveromyces</strong> fragilis.<br />

J Biol Chem 267:11709–11713<br />

Neves L, Oliveira R, Lucas C (2004) Yeast orthologues associated with<br />

glycerol transport <strong>and</strong> metabolism. FEMS Yeast Res 5:51–62<br />

Nguyen TH, Fleet GH, Rogers PL (1998) Composition of the cell<br />

walls of several <strong>yeast</strong> species. Appl Microbiol Biotechnol<br />

50:206–212<br />

Nigam P, Banat IM, Singh D, McHale AP, Marchant R (1997)<br />

Continuous ethanol production by thermotolerant <strong>Kluyveromyces</strong><br />

<strong>marxianus</strong> IMB3 <strong>yeast</strong> immobilized on mineral kissiris at 45°C.<br />

World J Microbiol Biotechnol 13:283–288<br />

Nilsson U, Barron N, McHale L, McHale AP (1995) <strong>The</strong> effects of<br />

phosphoric <strong>and</strong> pretreatment on conversion of cellulose to<br />

ethanol at 45°C using the thermotolerant <strong>yeast</strong> <strong>Kluyveromyces</strong><br />

<strong>marxianus</strong> IMB3. Biotechnol Lett 17:985–988<br />

Nolan AM, Barron N, Brady D, McAree T, Smith D, McHale L,<br />

McHale AP (1994) Ethanol production at 45°C by an alginateimmobilized<br />

strain of <strong>Kluyveromyces</strong> <strong>marxianus</strong> following growth<br />

on glucose-containing media. Biotechnol Lett 16:849–852<br />

Nunes MFA, Massaguer S, Alegre RM (1993) Produção e propriedades<br />

de b-galactosidase de <strong>Kluyveromyces</strong> <strong>marxianus</strong> NRRL Y-2415.<br />

Rev Farm Bioquim Univ S Paulo 29:25–30<br />

Oberyé EH, Maurer K, Mager WH, Planta RJ (1993) Structure of the<br />

ABF1-homologue from <strong>Kluyveromyces</strong> <strong>marxianus</strong>. Biochim<br />

Biophys Acta 1173:233–236<br />

O’Shea DG, Walsh PK (2000) <strong>The</strong> effect of culture conditions on the<br />

morphology of the dimorphic <strong>yeast</strong> <strong>Kluyveromyces</strong> <strong>marxianus</strong><br />

var. <strong>marxianus</strong> NRRLy 2415: a study incorporating image<br />

analysis. Appl Microbiol Biotechnol 53:316–322<br />

Panuwatsuk W, da Silva NA (2002) Evaluation of pKD1-based plasmid<br />

systems for heterologous protein production in <strong>Kluyveromyces</strong><br />

lactis. Appl Microbiol Biotechnol 58:195–201<br />

Parekh S, Margaritis A (1985) Inulinase (b-fructofuranosidase)<br />

production by <strong>Kluyveromyces</strong> <strong>marxianus</strong> in batch culture. Appl<br />

Microbiol Biotechnol 22:446–448<br />

Pecota DC, da Silva NA (2005) Evaluation of the tetracycline<br />

promoter system for regulated gene expression in <strong>Kluyveromyces</strong><br />

<strong>marxianus</strong>. Biotechnol Bioeng 92:117–123<br />

Pecota DC, Rajgarhia V, da Silva NA (2007) Sequential gene<br />

integration for the engineering of <strong>Kluyveromyces</strong> <strong>marxianus</strong>. J<br />

Biotechnol 127:408–416<br />

Penman CS, Duffus JH (1974) Ergosterol is the only sterol in<br />

<strong>Kluyveromyces</strong> fragilis. Antonie van Leeuwenhoek 40:529–531<br />

Pessoa Jr A, Vitolo M (1999) Inulinase from <strong>Kluyveromyces</strong> <strong>marxianus</strong>:<br />

culture medium composition <strong>and</strong> enzyme extraction. Braz J Chem<br />

Eng 16:237–245<br />

Pinheiro R, Belo I, Mota M (2000) Air pressure effects on biomass<br />

yield of two different <strong>Kluyveromyces</strong> strains. Enzyme Microb<br />

Technol 26:756–762<br />

Pinheiro R, Belo I, Mota M (2002) Oxidative stress response of<br />

<strong>Kluyveromyces</strong> <strong>marxianus</strong> to hydrogen peroxide, paraquat <strong>and</strong><br />

pressure. Appl Microbiol Biotechnol 58:842–847<br />

Porro D, Sauer M, Br<strong>and</strong>uardi P, Mattanovich D (2005) Recombinant<br />

protein production in <strong>yeast</strong>s. Mol Biotechnol 31:245–259<br />

Postma E, van der Broek PJA (1990) Continuous-culture study of the<br />

regutation of glucose <strong>and</strong> fructose transport in <strong>Kluyveromyces</strong><br />

<strong>marxianus</strong> CBS 6556. J Bacteriology 172:2871–2876<br />

Prudêncio C, Sansonetty F, Sousa MJ, Côrte-Real M, Leão C (2000)<br />

Rapid detection of efflux pumps <strong>and</strong> their relation with drug<br />

resistance in <strong>yeast</strong> cells. Cytometry 39:26–35<br />

Queirós O, Casal M, Althoff S, Moradas-Ferreira P, Leão C (1998)<br />

Isolation <strong>and</strong> characterization of <strong>Kluyveromyces</strong> <strong>marxianus</strong><br />

mutants deficient in malate transport. Yeast 14:401–407<br />

Rajoka MI, Khan S, Shahid R (2003) Kinetics <strong>and</strong> regulation studies of the<br />

production of b-galactosidase from <strong>Kluyveromyces</strong> <strong>marxianus</strong> grown<br />

on different substrates. Food Technol Biotechnol 41:315–320<br />

Rajoka MI, Latif F, Khan S, Shahid R (2004) Kinetics of improved<br />

productivity of b-galactosidase by a cycloheximide-resistant mutant<br />

of <strong>Kluyveromyces</strong> <strong>marxianus</strong>. Biotechnol Lett 26:741–746<br />

Ramirez-Zavala B, Mercado-Flores Y, Hern<strong>and</strong>ez-Rodriguez C, Villa-<br />

Tanaca L (2004a) Purification <strong>and</strong> characterization of a lysine<br />

aminopeptidase from <strong>Kluyveromyces</strong> <strong>marxianus</strong>. FEMSMicrobiol<br />

Lett 235:369–375<br />

Ramirez-Zavala B, Mercado-Flores Y, Hern<strong>and</strong>ez-Rodriguez C, Villa-<br />

Tanaca L (2004b) Purification <strong>and</strong> characterization of a serine<br />

carboxypeptidase from <strong>Kluyveromyces</strong> <strong>marxianus</strong>. Int J Food<br />

Microbiol 91:245–252<br />

Ray S, Mukherji S, Bhaduri A (1995) Two tryptophans at the active<br />

site of UDP-glucose 4-epimerase from <strong>Kluyveromyces</strong> fragilis. J<br />

Biol Chem 270:11383–11390<br />

Raynal A, Guerineau M (1984) Cloning <strong>and</strong> expression of the<br />

structural gene for b-glucosidase of <strong>Kluyveromyces</strong> fragilis in<br />

Escherichia coli <strong>and</strong> Saccharomyces cerevisiae. Mol Gen Genet<br />

195:108–115<br />

Raynal A, Gerbaud C, Francingues MC, Guerineau M (1987)<br />

Sequence <strong>and</strong> transcription of the b-glucosidase gene of<br />

<strong>Kluyveromyces</strong> fragilis cloned in Saccharomyces cerevisiae. Curr<br />

Genet 12:175–184<br />

Rech R, Cassini CF, Secchi AR, Ayub MAZ (1999) Utilization of proteinhydrolyzed<br />

chesse whey for the production of b-galactosidase by<br />

<strong>Kluyveromyces</strong> <strong>marxianus</strong>. J Ind Microbiol Biotechnol 23:91–96


Appl Microbiol Biotechnol (2008) 79:339–354 353<br />

Ribeiro O, Gombert AK, Teixeira JA, Domingues L (2007)<br />

Application of the Cre-loxP system for multiple gene disruption<br />

in the <strong>yeast</strong> <strong>Kluyveromyces</strong> <strong>marxianus</strong>. J Biotechnol 131:20–26<br />

Riordan C, Love G, Barron N, Nigam P, Marchant R, McHale L, McHale<br />

AP (1996) Production of ethanol from sucrose at 45°C by alginateimmobilized<br />

preparations of the thermotolerant <strong>yeast</strong> strain<br />

<strong>Kluyveromyces</strong> <strong>marxianus</strong> IMB3. Biores Technol 55:171–173<br />

Romanos MA, Scorer CA, Clare JJ (1992) Foreign gene expression in<br />

<strong>yeast</strong>: a review. Yeast 8:423–488<br />

Rosa FM, Sa-Correia I (1992) Ethanol tolerance <strong>and</strong> activity of<br />

plasma membrane ATPase in <strong>Kluyveromyces</strong> <strong>marxianus</strong> <strong>and</strong><br />

Saccharomyces cerevisiae. Enzyme Microb Technol 14:23–27<br />

Rouwenhorst RJ, Visser LE, van der Baan AA, Scheffers WA, van<br />

Dijken JP (1988) Production, distribution, <strong>and</strong> kinetic properties<br />

of inulinase in continuous culture of <strong>Kluyveromyces</strong> <strong>marxianus</strong><br />

CBS 6556. Appl Environ Microbiol 54:1131–1137<br />

Rouwenhorst RJ, Hensing M, Verbakel J, Scheffers WA, van Dijken<br />

JP (1990a) Structure <strong>and</strong> properties of the extracellular inulinase<br />

of <strong>Kluyveromyces</strong> <strong>marxianus</strong> CBS 6556. Appl Environ Microbiol<br />

56:3337–3345<br />

Rouwenhorst RJ, Ritmeester WS, Scheffers WA, van Dijken JP<br />

(1990b) Localization of inulinase <strong>and</strong> invertase in <strong>Kluyveromyces</strong><br />

species. Appl Environ Microbiol 56:3329–3336<br />

Sakanaka K, Yan W, Kishida M, Sakai T (1996) Breeding a<br />

fermentative <strong>yeast</strong> at high temperature using protoplast fusion. J<br />

Ferment Bioeng 81:104–108<br />

Schaffrath R, Breunig KD (2000) Genetics <strong>and</strong> molecular physiology<br />

of the <strong>yeast</strong> <strong>Kluyveromyces</strong> lactis. Fung Genet Biol 30:173–190<br />

Scharpf LG, Seitz EW, Morris JA, Farbood MI (1986) Generation of<br />

flavor <strong>and</strong> odor compounds through fermentation processes. In:<br />

Parliament TH, Croteau R (eds) Biogeneration of aroma,<br />

American Chemical Society, Washington, DC, vol. 317,<br />

pp 323–346<br />

Schultz N, Chang L, Hauck A, Reuss M, Syldatk C (2006) Microbial<br />

production of single-cell protein from deproteinized whey<br />

concentrates. Appl Microbiol Biotechnol 69:515–520<br />

Schwan RF, Rose AH (1994) Polygalacturonase production by<br />

<strong>Kluyveromyces</strong> <strong>marxianus</strong>: effect of medium composition. J<br />

Appl Bacteriol 76:62–67<br />

Schwan RF, Cooper RM, Wheals AE (1997) Endopolygalacturonase<br />

secretion by <strong>Kluyveromyces</strong> <strong>marxianus</strong> <strong>and</strong> other cocoa pulpdegrading<br />

<strong>yeast</strong>s. Enzyme Microb Technol 21:234–244<br />

Serrat M, Bermudez RC, Villa TG (2004) Polygalacturonase <strong>and</strong><br />

ethanol production in <strong>Kluyveromyces</strong> <strong>marxianus</strong>—potential use<br />

of polygalacturonase in foodstuffs. Appl Biochem Biotechnol<br />

117:49–64<br />

Šiekštelė R, Bartkevičiūtė D, Sasnauskas K (1999) Cloning, targeted<br />

disruption <strong>and</strong> heterologous expression of the <strong>Kluyveromyces</strong><br />

<strong>marxianus</strong> endopolygalacturonase gene (EPG1). Yeast 15:<br />

311–322<br />

Skountzou P, Soupioni M, Bekatorou A, Kanellaki M, Koutinas AA,<br />

Marchant R, Banat IM (2003) Lead(II) uptake during baker’s<br />

<strong>yeast</strong> production by aerobic fermentation of molasses. Proc<br />

Biochem 38:1479–1482<br />

Sonawat HM, Agrawal A, Dutta SM (1981) Production of bgalactosidase<br />

from <strong>Kluyveromyces</strong> fragilis grown on whey. Folia<br />

Microbiol 26:370–376<br />

Souciet J-L, Artiguenave MAF, Bl<strong>and</strong>in G, Bolotin-Fukuhara M, Bon<br />

E, Brottier P et al (2000) Genomic exploration of the hemiascomycetous<br />

<strong>yeast</strong>s: 1. A set of <strong>yeast</strong> species for molecular<br />

evolution studies. FEBS Letters 487:3–12<br />

Stambuk BU, Fr<strong>and</strong>en MA, Singh A, Zhang M (2003) D-Xylose<br />

transport by C<strong>and</strong>ida succiphila <strong>and</strong> <strong>Kluyveromyces</strong> <strong>marxianus</strong>.<br />

Appl Biochem Biotechnol 108:255–263<br />

Steensma HY, Ter Linde JJ (2001) Plasmids with the Cre-recombinase<br />

<strong>and</strong> the dominant nat marker, suitable for use in prototrophic<br />

strains of Saccharomyces cerevisiae <strong>and</strong> <strong>Kluyveromyces</strong> lactis.<br />

Yeast 18:469–472<br />

Steensma HY, de Jongh FCM, Linnekamp M (1988) <strong>The</strong> use of<br />

electrophoretic karyotypes in the classification of <strong>yeast</strong>s:<br />

<strong>Kluyveromyces</strong> <strong>marxianus</strong> <strong>and</strong> K. lactis. Curr Genet 14:311–317<br />

Stephanopoulos GN, Aristidou AA, Nielsen J (1998) Metabolic Engineering<br />

Principles <strong>and</strong> Methodologies. Academic Press, San Diego<br />

Sukroongreung S, Schappert KT, Khachatourians GG (1984) Survey<br />

of sensitivity of twelve <strong>yeast</strong> genera toward T-2 toxin. Appl<br />

Environ Microbiol 48:416–419<br />

Tin CSF, Mawson AJ (1993) Ethanol production from whey in a<br />

membrane recycle bioreactor. Proc Biochem 28:217–221<br />

Ternan NG, McMullan G (2000) <strong>The</strong> utilization of 4-aminobutylphosphonate<br />

as sole nitrogen source by a strain of Kluuyveromyces<br />

fragilis. FEMS Microbiol Lett 184:237–240<br />

Ternan NG, McMullan G (2002) Iminodiacetate <strong>and</strong> nitrilotriacetate<br />

degradation by <strong>Kluyveromyces</strong> <strong>marxianus</strong> IMB3. Biochem<br />

Biophys Res Comm 290:802–805<br />

Toyoda Y, Sy J (1984) Purification <strong>and</strong> phosphorylation of fructose-<br />

1,6-bisphosphatase from <strong>Kluyveromyces</strong> fragilis. J Biol Chem<br />

259:8718–8723<br />

van den Berg JA, van der Laken KJ, van Ooyen AJJ, Renniers<br />

TCHM, Rietveld K et al (1990) <strong>Kluyveromyces</strong> as a host for<br />

heterologous gene expression. Expression <strong>and</strong> secretion of<br />

prochymosin. Bio/Techno 8:135–139<br />

van den Broek PJ, de Bruijne AW, van Steveninck J (1987) <strong>The</strong> role<br />

of ATP in the control of H+-galactoside symport in the <strong>yeast</strong><br />

<strong>Kluyveromyces</strong> <strong>marxianus</strong>. Biochem J 242:729–734<br />

van der Walt JP (1956) <strong>Kluyveromyces</strong>- a new <strong>yeast</strong> genus of the<br />

Endomycetales. Antonie van Leeuwenhoek 22:265–272<br />

van der Walt JP (1970) <strong>Kluyveromyces</strong> van der Walt emend. van der<br />

Walt. In: Lodder J (ed) <strong>The</strong> <strong>yeast</strong>s: a taxonomic study, 2nd edn.<br />

NHPC, Amsterdam, pp 316–378<br />

van der Walt JP, Johannsen E (1984) <strong>Kluyveromyces</strong> van der Walt<br />

emend. van der Walt. In: Kreger-van Rij NJW (ed) <strong>The</strong> <strong>yeast</strong>s: a<br />

taxonomic study, 3rd edn. Elsevier, Amsterdam, pp 224–251<br />

van Dijken JP, Weusthuis RA, Pronk JT (1993) Kinetics of growth <strong>and</strong><br />

sugar consumption in <strong>yeast</strong>s. Antonie van Leeuwenhoek 63:343–<br />

352<br />

van Dijken JP, Bauer J, Brambilla L et al (2000) An interlaboratory<br />

comparison of physiological <strong>and</strong> genetic properties of four<br />

Saccharomyces cerevisiae strains. Enz Microb Technol 26:706–714<br />

van Leeuwen CC, Postma E, van den Broek PJ, van Steveninck J<br />

(1991) Proton-motive force-driven D-galactose transport in plasma<br />

membrane vesicles from the <strong>yeast</strong> <strong>Kluyveromyces</strong> <strong>marxianus</strong>.<br />

J Biol Chem 266:12146–12151<br />

van Ooyen AJ, Dekker P, Huang M, Olsthoorn MM, Jacobs DI,<br />

Colussi PA, Taron CH (2006) Heterologous protein production in<br />

the <strong>yeast</strong> <strong>Kluyveromyces</strong> lactis. FEMS Yeast Res 6:381–392<br />

van Urk H, Voll WSL, Scheffers WA, van Dijken JP (1990)<br />

Transient-state analyses of metabolic fluxes in Crabtree-positive<br />

<strong>and</strong> Crabtree-negative <strong>yeast</strong>s. Appl Environ Microbiol 56:281–<br />

287<br />

Verduyn C, Postma E, Scheffers WA, van Dijken JP (1992) Effect of<br />

benzoic acid on metabolic fluxes in <strong>yeast</strong>s: a continuous-culture<br />

study on the regulation of respiration <strong>and</strong> alcoholic fermentation.<br />

Yeast 8:501–517<br />

Verzotti E, Geymonat M, Valetti F, Lanzetti L, Giunta C (1994) In the<br />

budding <strong>yeast</strong> <strong>Kluyveromyces</strong> <strong>marxianus</strong>, adenylate cyclase is<br />

regulated by Ras protein(s) in vitro. Yeast 10:993–1001<br />

Viegas CA, Rosa MF, Sá-Correia I, Novais JM (1989) Inhibition of<br />

<strong>yeast</strong> growth by octanoic <strong>and</strong> decanoic acids produced during<br />

ethanolic fermentation. Appl Environ Microbiol 55:21–28<br />

Visser W, Scheffers WA, Batenburg-van der Vegte WH, van Dijken JP<br />

(1990) Oxygen requirements of <strong>yeast</strong>s. Appl Environ Microbiol<br />

56:3785–3792


354 Appl Microbiol Biotechnol (2008) 79:339–354<br />

Yoda K, Ko JH, Nagamatsu T, Lin Y, Kaibara C, Kawada T, Tomishige N,<br />

Hashimoto H, Noda Y, Yamasaki M (2000) Molecular characterization<br />

of a novel <strong>yeast</strong> cell-wall acid phosphatase cloned from<br />

<strong>Kluyveromyces</strong> <strong>marxianus</strong>. Biosci Biotechnol Biochem 64:142–148<br />

Ward C, Nolan AM, O’Hanlon F, McAree T, Barron N, McHale L,<br />

McHale AP (1995) Production of ethanol at 45°C on starchcontaining<br />

media by mixed cultures of the thermotolerant,<br />

ethanol-producing <strong>yeast</strong> <strong>Kluyveromyces</strong> <strong>marxianus</strong> IMB3 <strong>and</strong><br />

the thermophilic filamentous fungus Talaromyces emersonii CBS<br />

813.70. Appl Microbiol Biotechnol 43:408–411<br />

Wésolowski-Louvel M, Breunig KD, Fukuhara H (1996) <strong>Kluyveromyces</strong><br />

lactis: genetics, biochemistry <strong>and</strong> molecular biology of nonconventional<br />

<strong>yeast</strong>. Springer-Verlag, Berlin Heidelberg New York<br />

Welsh FW, Murray WD, Williams RE (1989) Microbiological <strong>and</strong><br />

enzymatic production of flavor <strong>and</strong> fragrance chemicals. Crit Rev<br />

Biotechnol 9:105–169<br />

Wimborne MP, Rickard PAD (1978) Pectinolytic activity of Saccharomyces<br />

fragilis cultured in controlled environments. Biotechnol Bioeng<br />

20:231–242<br />

Wittmann C, Hans M, Bluemke W (2002) Metabolic physiology of<br />

aroma-producing <strong>Kluyveromyces</strong> <strong>marxianus</strong>. Yeast 19:1351–1363<br />

Wolf K, Breunig K, Barth G (eds) (2003) Non-conventional <strong>yeast</strong>s in<br />

genetics, biochemistry <strong>and</strong> biotechnology: practical protocols.<br />

Springer-Verlag, Berlin Heidelberg New York<br />

Workman WE, Day DF (1984) <strong>The</strong> cell wall-associated inulinase of<br />

<strong>Kluyveromyces</strong> fragilis. Antonie van Leeuwenhoek 50: 349–353<br />

Yoshida Y, Yokoi W, Wada Y, Ohishi K, <strong>It</strong>o M, Sawada H (2004)<br />

Potent hypocholesterolemic activity of the <strong>yeast</strong> <strong>Kluyveromyces</strong><br />

<strong>marxianus</strong> YIT 8292 in rats fed a high cholesterol diet. Biosci<br />

Biotechnol Biochem 68:1185–1192<br />

Yoshida Y, Yokoi W, Ohishi K, <strong>It</strong>o M, Naito E, Sawada H (2005)<br />

Effects of the cell wall of <strong>Kluyveromyces</strong> <strong>marxianus</strong> YIT 8292 on<br />

the plasma cholesterol <strong>and</strong> fecal sterol excretion in rats fed on a<br />

high-cholesterol diet. Biosci Biotechnol Biochem 69:714–723<br />

Zhang J, Yuan H, Wen T, Xu F, Di Y, Huo K, Li YY (2003) Cloning of<br />

the KcURA3 gene <strong>and</strong> development of a transformation system for<br />

<strong>Kluyveromyces</strong> cicerisporus. Appl Microbiol Biotechnol 62:<br />

387–391

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!