29.12.2013 Views

Timoclea ovata - Portal da Biodiversidade dos Açores ...

Timoclea ovata - Portal da Biodiversidade dos Açores ...

Timoclea ovata - Portal da Biodiversidade dos Açores ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

AÇOREANA<br />

Revista de Estu<strong>dos</strong> Açoreanos


AÇOREANA<br />

Revista de Estu<strong>dos</strong> Açoreanos<br />

PROPRIEDADE <strong>da</strong><br />

Socie<strong>da</strong>de Afonso Chaves<br />

Associação de Estu<strong>dos</strong> Açorianos<br />

Sede: Edifício do Museu “Carlos Machado”<br />

Apartado 258 – 9501-903 Ponta Delga<strong>da</strong><br />

São Miguel, <strong>Açores</strong>, Portugal<br />

PRESIDENTE e EDITOR<br />

António M. de Frias Martins<br />

QUADRO EDITORIAL<br />

Brian Morton<br />

Scientific Associate<br />

Department of Zoology<br />

The Natural History Museum<br />

Cromwell Road<br />

London SW7 5BD, UK<br />

António Serralheiro<br />

Departamento de Geologia<br />

Universi<strong>da</strong>de de Lisboa, Portugal<br />

Paulo A.V. Borges<br />

Departamento de Ciências Agrárias<br />

Universi<strong>da</strong>de <strong>dos</strong> <strong>Açores</strong>, Portugal<br />

PAGINAÇÃO<br />

CLASSICOR, LDA.<br />

IMPRESSÃO E ACABAMENTO<br />

EGA - Empresa Gráfica Açoreana, L<strong>da</strong><br />

Edição subsidia<strong>da</strong> pela<br />

Direcção Regional <strong>da</strong> Ciência,<br />

Tecnologia e Comunicações<br />

do Governo Regional <strong>dos</strong> <strong>Açores</strong><br />

Setembro de 2009<br />

TIRAGEM<br />

750 exemplares<br />

DEPÓSITO LEGAL<br />

113 234 / 98<br />

ISSN<br />

0874 - 0380<br />

Esta edição é totalmente impressa (à excepção <strong>da</strong> capa)<br />

em papel ecológico, sem cloro, áci<strong>dos</strong> ou branqueamentos ópticos


AÇOREANA<br />

Revista de Estu<strong>dos</strong> Açoreanos<br />

SUPLEMENTO 6 SETEMBRO 2009<br />

THE MARINE FAUNA AND FLORA OF THE AZORES<br />

Proceedings of the<br />

Third International Workshop of Malacology<br />

and Marine Biology<br />

Vila Franca do Campo, São Miguel, <strong>Açores</strong><br />

July 17-28, 2006<br />

Sponsored by<br />

Edited by<br />

Socie<strong>da</strong>de Afonso Chaves<br />

Departamento de Biologia<br />

Universi<strong>da</strong>de <strong>dos</strong> <strong>Açores</strong><br />

Ponta Delga<strong>da</strong>


C O N T E Ú D O / C O N T E N T S<br />

7 LIST OF PARTICIPANTS<br />

9 THE AZOREAN WORKSHOPS<br />

António M. de Frias Martins<br />

15 ILLUSTRATED CHECKLIST OF THE INFRALITTORAL MOLLUSCS OFF<br />

VILA FRANCA DO CAMPO<br />

António M. de Frias Martins, José Pedro Borges, Sérgio Ávila, Ana C. Costa,<br />

Patrícia Madeira & Brian Morton<br />

105 ASPECTS OF THE BIOLOGY AND FUNCTIONAL MORPHOLOGY OF<br />

TIMOCLEA OVATA (BIVALVIA: VENEROIDEA: VENERINAE) IN THE<br />

AÇORES, PORTUGAL, AND A COMPARISON WITH CHIONE ELEVATA<br />

(CHIONINAE)<br />

Brian Morton<br />

121 ANATOMY AND BIOLOGY OF MITRA CORNEA LAMARCK, 1811 (MOL-<br />

LUSCA, CAENOGASTROPODA, MITRIDAE) FROM THE AZORES<br />

M. G. Harasewych<br />

137 COMPARATIVE STUDY OF CHEMICAL DEFENCES FROM TWO<br />

ALLOPATRIC NORTH ATLANTIC SUBSPECIES OF HYPSELODORIS<br />

PICTA (MOLLUSCA: OPISTHOBRANCHIA)<br />

Helena Gaspar, Ana Isabel Rodrigues & Gonçalo Calado<br />

145 THE BIOLOGY OF THE ZONING SUBTIDAL POLYCHAETE DITRUPA<br />

ARIETINA (SERPULIDAE) IN THE AÇORES, PORTUGAL, WITH A<br />

DESCRIPTION OF THE LIFE HISTORY OF ITS TUBE<br />

Brian Morton & Andreia Salvador<br />

157 DRILLING PREDATION UPON DITRUPA ARIETINA (POLYCHAETA:<br />

SERPULIDAE) FROM THE MID-ATLANTIC AÇORES, PORTUGAL<br />

Brian Morton & E.M. Harper<br />

167 THE PYCNOGONIDS (ARTHROPODA: PYCNOGONIDA) OF SÃO<br />

MIGUEL, AZORES, WITH DESCRIPTION OF A NEW SPECIES OF<br />

ANOPLODACTYLUS WILSON, 1878 (PHOXICHILIDIIDAE)<br />

Roger N. Bamber & Ana Cristina Costa<br />

183 THE TANAIDACEANS (ARTHROPODA: PERACARIDA: TANAIDACEA)<br />

OF SÃO MIGUEL, AZORES, WITH DESCRIPTION OF TWO NEW<br />

SPECIES, AND A NEW RECORD FROM TENERIFE<br />

Roger N. Bamber & Ana Cristina Costa<br />

201 THE SOFT-SEDIMENT INFAUNA OFF SÃO MIGUEL, AZORES, AND A<br />

COMPARISON WITH OTHER AZOREAN INVERTEBRATE HABITATS<br />

Roger N. Bamber & Roni Robbins<br />

211 SHELL OCCUPANCY BY THE HERMIT CRAB CLIBANARIUS ERYTHRO-<br />

PUS (CRUSTACEA) ON THE SOUTH COAST OF SÃO MIGUEL, AÇORES<br />

Pedro Rodrigues & Roshan K. Rodrigo<br />

217 A CONSERVATIONAL APPROACH ON THE SEABIRD POPULATIONS<br />

OF ILHÉU DE VILA FRANCA DO CAMPO, AZORES, PORTUGAL<br />

Pedro Rodrigues, Joana Micael, Roshan K. Rodrigo & Regina T. Cunha<br />

227 REMEMBERING Joseph C. Britton (1942-2006)


1<br />

2<br />

3<br />

4<br />

5<br />

6 8 10<br />

12<br />

11<br />

7<br />

14 15<br />

9 13 16<br />

Third International Workshop on Malacology and Marine Biology. 1, António M. de Frias Martins;<br />

2, Brian Morton; 3, José Pedro Borges; 4, Ana Cristina Costa; 5, Roshan Rodrigo; 6, Jerry<br />

Harasewych; 7, Vera Malhão; 8, Sérgio Ávila; 9, Joana Xavier; 10, Roni Robbins; 11, Paola Rachello;<br />

12, Roger Bamber; 13, Patrícia Madeira; 14, Andreia Salvador; 15, Pedro Rodrigues; 16, Daniela<br />

Gabriel.<br />

LIST OF PARTICIPANTS<br />

Ana Cristina Costa - Departamento de Biologia, Universi<strong>da</strong>de <strong>dos</strong> <strong>Açores</strong>, 9501-801<br />

Ponta Delga<strong>da</strong>, São Miguel, <strong>Açores</strong>, Portugal - accosta@uac.pt<br />

Andrea Cunha - Departamento de Biologia, Universi<strong>da</strong>de <strong>dos</strong> <strong>Açores</strong>, 9501-801 Ponta<br />

Delga<strong>da</strong>, São Miguel, <strong>Açores</strong>, Portugal -andrea_cunha@linus.uac.pt<br />

Andreia Salvador - Environment: Coastal & Marine, The Natural History Museum,<br />

Cromwell Road, London SW7 5BD, United Kingdom - a.salvador@nhm.ac.uk<br />

António M. de Frias Martins - Departamento de Biologia, Universi<strong>da</strong>de <strong>dos</strong> <strong>Açores</strong>,<br />

9501-801 Ponta Delga<strong>da</strong>, São Miguel, <strong>Açores</strong>, Portugal - frias@uac.pt<br />

Brian Morton - Scientific Associate, Department of Zoology, The Natural History<br />

Museum, Cromwell Road, London SW7 5BD, U.K. - prof_bsmorton@hotmail.com<br />

Daniela Gabriel - Departamento de Biologia, Universi<strong>da</strong>de <strong>dos</strong> <strong>Açores</strong>, 9501-801 Ponta<br />

Delga<strong>da</strong>, São Miguel, <strong>Açores</strong>, Portugal - <strong>da</strong>nielagferreira@hotmail.com;<br />

dgabriel@uac.pt


Gonçalo Calado - IPM-Instituto Português de Malacologia, Zoomarine EN 125 KM 65,<br />

8200-864 Guia, Portugal - bagoncas@mail.telepac.pt<br />

Jerry Harasewych - Curator of Marine Mollusca, Smithsonian Institution, National Museum<br />

of Natural History, Department of Invertebrate Zoology, P.O. Box 37012 MRC 163,<br />

Washington DC 20013-7012, USA - HarasewychJ@si.edu<br />

Joana Micael - Departamento de Biologia, Universi<strong>da</strong>de <strong>dos</strong> <strong>Açores</strong>, 9501-801 Ponta<br />

Delga<strong>da</strong>, São Miguel, <strong>Açores</strong>, Portugal - joanamicael@cimar.org; jomicap@hotmail.com<br />

Joana Xavier - Institute for Biodiversity and Ecosystem Dynamics (IBED), University of<br />

Amster<strong>da</strong>m, Faculty of Science, Mauritskade 57, 1092 AD Amster<strong>da</strong>m, Netherlands -<br />

xavier@science.uva.nl<br />

José Pedro Borges - IPM-Instituto Português de Malacologia, Zoomarine EN 125 KM 65,<br />

8200-864 Guia, Portugal - josepedroborges@sapo.pt<br />

Kathe Jensen - Reasearch Associate, Zoological Museum, Copenhagen; Sjælør Boulevard 49,<br />

2.tv., 2450 København SV, Denmark - KRJensen@zmuc.ku.dk<br />

Manuela Parente - Departamento de Biologia, Universi<strong>da</strong>de <strong>dos</strong> <strong>Açores</strong>, 9501-801 Ponta<br />

Delga<strong>da</strong>, São Miguel, <strong>Açores</strong>, Portugal - mparente@uac.pt<br />

Maria Ana Dionísio - Departamento de Biologia, Universi<strong>da</strong>de <strong>dos</strong> <strong>Açores</strong>, 9501-801 Ponta<br />

Delga<strong>da</strong>, São Miguel, <strong>Açores</strong>, Portugal - anamdionisio@gmail.com<br />

PaolaG. Rachello Dolmen - Institute for Biodiversity and Ecosystem Dynamics (IBED),<br />

University of Amster<strong>da</strong>m, Faculty of Science, Mauritskade 57, 1092 AD Amster<strong>da</strong>m,<br />

Netherlands - P.Rachello@student.uva.nl<br />

Patrícia Madeira - Departamento de Biologia, Universi<strong>da</strong>de <strong>dos</strong> <strong>Açores</strong>, 9501-801 Ponta<br />

Delga<strong>da</strong>, São Miguel, <strong>Açores</strong>, Portugal - tamissa@hotmail.com<br />

Pedro Rodrigues - Departamento de Biologia, Universi<strong>da</strong>de <strong>dos</strong> <strong>Açores</strong>, 9501-801 Ponta<br />

Delga<strong>da</strong>, São Miguel, <strong>Açores</strong>, Portugal - pedroreisrodrigues@yahoo.com<br />

Roger Bamber - Consultancy Leader, Environment: Coastal & Marine, The Natural History<br />

Museum, Cromwell Road, London SW7 5BD, United Kingdom - r.bamber@nhm.ac.uk<br />

Roni Robbins - Environment: Coastal & Marine, The Natural History Museum, Cromwell<br />

Road, London SW7 5BD, United Kingdom - r.robbins@nhm.ac.uk<br />

Roshan K. Rodrigo - No.47, Saman Mawatha, Gangula, Panadura, Sri Lanka -<br />

rodrigoroshan@yahoo.com<br />

Sérgio Ávila - Departamento de Biologia, Universi<strong>da</strong>de <strong>dos</strong> <strong>Açores</strong>, 9501-801 Ponta<br />

Delga<strong>da</strong>, São Miguel, <strong>Açores</strong>, Portugal - avila@notes.uac.pt<br />

Vera Malhão - Departamento de Biologia, Universi<strong>da</strong>de <strong>dos</strong> <strong>Açores</strong>, 9501-801 Ponta<br />

Delga<strong>da</strong>, São Miguel, <strong>Açores</strong>, Portugal - vmalhao@notes.uac.pt;<br />

veramalhao@hotmail.com


AÇOREANA, Suplemento 6, Setembro 2009: 9-13<br />

THE AZORES WORKSHOPS<br />

António M. de Frias Martins<br />

Socie<strong>da</strong>de Afonso Chaves, 9501-903 Ponta Delga<strong>da</strong>, São Miguel, <strong>Açores</strong>, Portugal<br />

e-mail: afonsochaves.sac@gmail.com<br />

Twenty-one years ago, as a joint initiative<br />

of Socie<strong>da</strong>de Afonso Chaves and<br />

the Department of Biology of the<br />

University of the Azores, and under the<br />

sponsorship of the local Municipality,<br />

about half a dozen foreign scientists gathered<br />

in Vila Franca do Campo and, setting<br />

up an improvised laboratory in the <strong>da</strong>rk<br />

and humid facilities of the local newspaper<br />

“A Crença”, made history with the<br />

realization of the 1 st International<br />

Workshop of Malacology. The workshop<br />

participants came from the most prestigious<br />

scientific institutions: the<br />

Universities of Hong Kong, Harvard,<br />

Rhode Island, Liverpool, from the<br />

Smithsonian Institution, the Muséum<br />

national d’Histoire naturelle, Paris and<br />

the California Academy of Sciences. With<br />

another half dozen local scientists and<br />

academics, and aspiring young students,<br />

science was made right there, next to one<br />

of Vila Franca’s most significant monuments<br />

to culture and education of: the<br />

“Externato”. So worried with the (primitive)<br />

logistics were the organizers that<br />

they did not think of registering the event<br />

photographically for posterity.<br />

Nevertheless, in 1990 the proceedings of<br />

this first workshop came to light and<br />

remain to<strong>da</strong>y a reference document for<br />

the scientific study of the Ilhéu de Vila<br />

Franca do Campo and of the malacological<br />

fauna of the Azorean littoral.<br />

The research workshops, as regular<br />

events, were popularized in the scientific<br />

community by Brian Morton when<br />

Professor of Marine Ecology at the<br />

University of Hong Kong and Director of<br />

the Swire Institute of Marine Science.<br />

Through them, every three years, Brian<br />

rendered available for invited specialists<br />

in various scientific fields two weeks of<br />

research, with but one requisite in return:<br />

to publish in the proceedings of the event<br />

at least one research paper on the marine<br />

biology of Hong Kong. Brian Morton had<br />

visited the Azores in 1965, as a Chelsea<br />

College graduate, and since then has<br />

developed a special appreciation for these<br />

islands. It was then that I had the opportunity<br />

of meeting him and, from that time<br />

on, a relationship based on friendship<br />

and mutual respect developed that time<br />

has only made stronger.<br />

The 2 nd workshop, in 1991, and this<br />

time in the facilities of the fish market in<br />

Vila Franca do Campo, attracted about 40<br />

participants, national and foreign, with<br />

the corresponding scientific production<br />

broadened to other endeavours of marine<br />

biology besides malacology. The spectrum<br />

of participants was equally widened<br />

to include Australia and Hong Kong, various<br />

American institutions (University of<br />

Rhode Island, Smithsonian Institution,


10 AÇOREANA<br />

2009, Sup. 6: 9-13<br />

Harbor Branch Oceanographic Institution,<br />

Field Museum of Natural History,<br />

Chicago, Texas Christian University, Long<br />

Island University) and a fair representation<br />

from Europe (Odense University,<br />

Zoological Museum, Copenhagen, both<br />

in Denmark, Antwerp University/Institut<br />

Royal des Sciences naturelles de Belgique;<br />

University Marine Biological Station,<br />

Millport, UK). The workshop added the<br />

novelty of a panel on Marine<br />

Conservation, sponsored by UNESCO’s<br />

National Committee. The proceedings of<br />

the workshop were published in 1995.<br />

Ecology of the <strong>Açores</strong> had been undertaken<br />

by the Socie<strong>da</strong>de Afonso Chaves to<br />

replace a workshop, so that a systematic<br />

and all-encompassing study of the littoral<br />

would be conducted and reported upon<br />

comprehensively for the benefit, especially<br />

of local students. On the other hand,<br />

the famous expeditions of Albert the 1 st ,<br />

Prince of Monaco, had unravelled some<br />

of the biological secrets of the great<br />

depths around the Azores. To know better<br />

that band between 50 and 200 metres,<br />

well known to the fishermen for its abun<strong>da</strong>nt<br />

fish life but practically absent from<br />

scientific publications due to lack of<br />

research directed at it, was then an obvious<br />

choice for a workshop project.<br />

This practical objective – to better<br />

know Azorean marine biodiversity – was<br />

linked to another, more theoretical goal,<br />

resulting from studies of the distribution<br />

of species through time. Knowing that<br />

After a long interval, marked by other<br />

types of events – for example, the production<br />

of the book Coastal Ecology of the<br />

<strong>Açores</strong>, in 1998 –, the Socie<strong>da</strong>de Afonso<br />

Chaves and the Department of Biology of<br />

the University of the Azores united in<br />

their efforts once again to promote, in the<br />

eternal capital of the island of São Miguel,<br />

from July 17 to 28 of 2006, the 3 rd<br />

International Workshop of Malacology<br />

and Marine Biology, under the auspices of<br />

the Municipality of Vila Franca do Campo<br />

and with the much-appreciated collaboration<br />

of the Clube Naval de Vila Franca<br />

do Campo.<br />

Although open to every aspect of science<br />

of interest to the participants, the 3 rd<br />

workshop had a specific objective: to<br />

research virtually unstudied grounds. In<br />

fact, the Azorean coastal zone has been<br />

profusely studied and the book Coastal<br />

cyclical variations in temperature resulting<br />

from the glaciations lead to the disappearance<br />

of species less a<strong>da</strong>pted to such<br />

fluctuations, could we find species of previous<br />

colder ages that have sought refuge<br />

deeper, where temperatures are lower?<br />

The solution to this double quest rested<br />

on a dredging plan down to 200 metres.<br />

In fact, as it transpired, samples of the sea<br />

bed off Vila Franca do Campo were taken<br />

down to 360 metres during the workshop.


MARTINS: THE AZORES WORKSHOPS 11<br />

The collected material has been deposited<br />

in the Department of Biology reference<br />

collection and remains available to everyone<br />

who desires to conduct further<br />

research on it.<br />

Honouring the core interest of the<br />

workshop – Malacology – special attention<br />

was paid to molluscs and a listing of<br />

those species collected is provided.<br />

However, many other inhabitants of the<br />

sea bed came up in the dredge.<br />

The larger fractions of such samples were<br />

sorted immediately and the finer fractions<br />

preserved for sorting later, in the<br />

laboratory.<br />

As in previous meetings, the proceedings<br />

of the 3 rd workshop are published.<br />

The papers included in the proceedings<br />

result from short projects that the participants<br />

had taken upon themselves to<br />

develop, on the basis of any particular scientific<br />

aspect judged appropriate for the<br />

short time available for gathering <strong>da</strong>ta.


12 AÇOREANA<br />

2009, Sup. 6: 9-13<br />

Whenever possible, a photographic<br />

record of each living animal was<br />

obtained. The wealth of species collected<br />

is a clear sign that this workshop needs to<br />

be continued.<br />

The scientific content of the workshop<br />

is the most visible, desirable, outcome of<br />

an effort that had its roots in the statutes<br />

of the oldest scientific society in the<br />

Azores - the Socie<strong>da</strong>de Afonso Chaves –<br />

and which are to promote the realization<br />

of scientific meetings dealing with the<br />

natural history of the Azores. As in previous<br />

events, the participation of the<br />

Department of Biology of the University of<br />

the Azores provided the scientific support.<br />

The warm hospitality of the Mayor of Vila<br />

Franca do Campo, Rui Melo, and the enthusiastic<br />

collaboration of the Clube Naval and<br />

its president, Paulo Melo, paved the way to<br />

comfortable and efficient logistics. The skill<br />

of Moisés Bolarinho, the skipper of the "Vila<br />

Franca" and the dedication of is crew took<br />

us to the best sites for successful dredging.<br />

The indispensable financing for this 3 rd<br />

workshop came from the DRCT – the<br />

regional governmental organism responsible<br />

for Science and Technology. The Luso-<br />

American Foun-<strong>da</strong>tion for Development<br />

(FLAD), the Foun<strong>da</strong>tion for Science and<br />

Technology (FCT) and the Municipality of<br />

Vila Franca do Campo were also generous<br />

in this area.


MARTINS: THE AZORES WORKSHOPS 13<br />

The choice of Vila Franca do Campo<br />

for the base camp of each workshop is<br />

somehow connected with the beautiful<br />

islet which is the ex-libris of this noble old<br />

capital of the island of São Miguel.<br />

Science is obviously the primary objective<br />

of these meetings. However, besides the<br />

knowledge acquired due to the research<br />

therein developed, there is a clear interest<br />

in fostering culture and education within<br />

the community. We are sure that the better<br />

knowledge about the Ilhéu de Vila<br />

Franca do Campo, in particular, resulting<br />

from the workshops has contributed to<br />

the strengthening of its stature as a nature<br />

reserve, cared for and respected by the<br />

thousands of users that visit it every summer.<br />

The prospect of an aquarium in<br />

Vila Franca do Campo has turned the<br />

attention of the local community towards<br />

one of its most precious resources - the<br />

sea.<br />

Finally, and, as a silent highlight of the<br />

workshop meetings, past, present and<br />

future, the generous offer of the founder<br />

of the workshop concept and of the Swire<br />

Institute of Marine Science, Professor<br />

Brian Morton, to help in the setting up of<br />

a Marine Biology Station in the facilities<br />

where this 3 rd workshop took place, will<br />

continue to bring to Vila Franca do<br />

Campo, a nucleus of resident researchers<br />

and academic guests from around the<br />

world who will undoubtedly act as a catalyst<br />

for science and education in the<br />

community which has so generously<br />

hosted these pioneering adventures.<br />

It is the belief of this author, his local<br />

colleagues and the groups of overseas scientists<br />

who have contributed, over the<br />

years, to the greater understanding of the<br />

unique marine life of the Azores in general<br />

and of the waters of Vila Franca do<br />

Campo in particular, that there is no better<br />

place where a permanent, international,<br />

marine research facility would not just<br />

flourish but would act as the archipelago’s<br />

flagship promoting marine conservation<br />

and technological advancement.<br />

For the benefit of all.


AÇOREANA, Suplemento 6, Setembro 2009: 15-103<br />

ILLUSTRATED CHECKLIST OF THE INFRALITTORAL MOLLUSCS<br />

OFF VILA FRANCA DO CAMPO<br />

António M. de Frias Martins 1 , José Pedro Borges 2 , Sérgio P. Ávila 3,4 , Ana C. Costa 1 ,<br />

Patrícia Madeira 3 & Brian Morton 5<br />

1<br />

CIBIO-Pólo <strong>Açores</strong>, Department of Biology, University of the Azores, 9501-801 Ponta Delga<strong>da</strong>, São Miguel,<br />

Azores, Portugal. e-mail: frias@uac.pt<br />

2<br />

IPM-Instituto Português de Malacologia, Zoomarine EN 125 KM 65, 8200-864 GUIA, Portugal<br />

3<br />

Marine PalaeoBiogeography group, Department of Biology, University of the Azores, 9501-801 Ponta Delga<strong>da</strong>,<br />

São Miguel, Azores, Portugal<br />

4<br />

Centro do IMAR <strong>da</strong> Universi<strong>da</strong>de <strong>dos</strong> <strong>Açores</strong>, 9901-862 Horta, Azores, Portugal<br />

5<br />

Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, U.K.<br />

ABSTRACT<br />

A list of the molluscan species dredged during the 3 rd International Workshop of<br />

Malacology and Marine Biology is presented. Positive identification has not been possible<br />

for a number of taxa. However, almost all species are illustrated so as to provide a practical<br />

guide to the species which may occur as beach drift and others which naturally range<br />

up into the interti<strong>da</strong>l.<br />

The distribution of the species at the various collecting stations is also presented as a<br />

table organized by depth, and identifying where specimens were collected alive or, in the<br />

case of bivalves, with both valves attached.<br />

RESUMO<br />

Apresenta-se uma listagem <strong>da</strong>s espécies de moluscos draga<strong>da</strong>s durante o 3º Workshop<br />

Internacional de Malacologia e Biologia Marinha. Uma identificação positiva não foi<br />

possível para um determinado número de taxa. No entanto, quase to<strong>da</strong>s as espécies estão<br />

ilustra<strong>da</strong>s, de modo a providenciar um guia prático para as que podem ocorrer no material<br />

arrojado nas praias e outras que naturalmente estendem a sua distribuição até ao<br />

interti<strong>da</strong>l.<br />

A distribuição <strong>da</strong>s espécies pelas várias estações de colheita é também apresenta<strong>da</strong><br />

numa tabela organiza<strong>da</strong> por profundi<strong>da</strong>de, identificando também onde os exemplares<br />

foram recolhi<strong>dos</strong> vivos ou, no caso <strong>dos</strong> bivalves, com ambas as valvas liga<strong>da</strong>s.<br />

INTRODUCTION<br />

The main purpose behind the 3 rd<br />

International Workshop of Malacology<br />

and Marine Biology was to test the hypothesis<br />

that the deeper, colder, waters around<br />

the Azorean islands acted as a refuge during<br />

the warm periods that interspersed<br />

glaciations. It is thought that when surface<br />

temperatures began to rise, cold-water<br />

species would likely follow their temperature<br />

optima by descending to appropriate<br />

depths. Present results, preliminary as<br />

they are, do not support such a suggestion.<br />

The extensive dredging has produced a<br />

wealth of information about the molluscan<br />

biodiversity of the sublittoral off Vila<br />

Franca do Campo, in a depth range poorly<br />

studied by previous authors in the Azores.<br />

This herein published list of 232 molluscan<br />

species and the pictorial representations of<br />

most of them is a contribution to that<br />

knowledge. The illustrations, whenever<br />

possible, were not only of the collected<br />

shells but of the living animals. This will<br />

provide students and researchers with an<br />

easier identification guide to facilitate<br />

their studies. Also, although in many


16 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

cases positive identifications were not<br />

possible, the provided illustrations supply<br />

a basis for further studies leading to<br />

more accurate taxonomic determinations.<br />

The micromolluscs are unevenly<br />

reported upon because the minimum<br />

dredge mesh was 2.5 mm and only some<br />

hauls were sieved to retain the residual<br />

1mm fraction.<br />

A list of the stations related to the<br />

workshop is provided (see Text figure 1).<br />

All species sorted are reported upon<br />

(Table 1), even though their shells could<br />

only have been transported from other<br />

habitats, including the interti<strong>da</strong>l. Such<br />

situations are commented upon for each<br />

species identified. To facilitate inferences<br />

related to depth distribution, the species<br />

collected alive or, in the case of bivalves,<br />

with both valves attached, are shown in<br />

bold in the Taxonomic List, and the sampling<br />

depths also indicated. Also, in<br />

Table 1 the stations are arranged by<br />

increasing depth and the state of the collected<br />

specimens (fragment, empty<br />

shell/one valve, with animal/two valves)<br />

is differentiated by variations in the density<br />

of their gray overlays, so as to give an<br />

overall pictorial view of the distribution<br />

of each taxon.<br />

The depth ranges of the species given<br />

by Poppe & Gotto (1991-1993) (P&G) and<br />

Macedo et al. (1999) (MM&B) are referred<br />

whenever possible. Also, where appropriate,<br />

reference is made to the species<br />

found alive in the nearby Ilhéu de Vila<br />

Franca do Campo (IVFC) (Martins, 2004).<br />

This is intended as a clarification to the<br />

distribution of these species in the<br />

dredged material.<br />

Previous works on Ilhéu de Vila<br />

Franca do Campo have listed the marine<br />

molluscs of that islet or of the shores nearby,<br />

and Ávila et al. (2000) have provided<br />

the most recent list of the shallow-water<br />

marine molluscs of São Miguel. For comparison<br />

purposes reference to these publications<br />

will be made under the appropriate<br />

taxa. Species are presented following<br />

their current systematic position as set<br />

out in CLEMAM (Check List of European<br />

Marine Molluscs) (http://www.somali.asso.fr/<br />

clemam/index.clemam.html).<br />

LIST OF SAMPLING STATIONS<br />

Forty-six stations were sampled during<br />

the workshop (Text figure 1). Stations 3-4,<br />

9-11, 17 were dive sites and are not included<br />

in this report, except in the notes provided<br />

under the respective station code.<br />

Stations 47-54 were sampled after the<br />

workshop timeframe but followed the<br />

same procedure and are, therefore included<br />

herein. Similarly, stations 56-58,<br />

sampled during fieldwork undertaken for<br />

the Malacology class of the Department of<br />

Biology of the University of the Azores,<br />

were added to the workshop material.<br />

Station 55 represented from the biological<br />

material collected from a stone snagged<br />

by a fishing net.<br />

STATION 1 – in front of the marina – Vila<br />

Franca do Campo.<br />

Date: 17-07-2006.<br />

Depth: 32 fathoms (57 m).<br />

Co-ordinates: N 37° 42’ 12” W 25° 25’ 09”.<br />

Collected by: Frias Martins, Brian Morton, Jerry<br />

Harasewych.<br />

Observations: (large dredge) two tows (A and B)<br />

pooled.<br />

STATION 2 – in front of the marina - Vila<br />

Franca do Campo.<br />

Date: 17-07-2006.<br />

Depth: 75 fathoms (135 m).<br />

Co-ordinates: N 37° 41’ 42” W 25° 25’ 22”.<br />

Collected by: Frias Martins, Brian Morton, Jerry<br />

Harasewych.<br />

Observations: (large dredge).<br />

STATION 3 – around Farilhão, SE of Ilhéu de<br />

Vila Franca do Campo.<br />

Date: 18-07-2006.<br />

Depth: 5-19 m.


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 17<br />

TEXT FIGURE 1. Distribution of the stations.<br />

Co-ordinates: —-<br />

Collected by: Joana Xavier, Paola Rachello, José<br />

Pedro Borges, Gonçalo Calado.<br />

Observations: (SCUBA) 1 ophiurid (10 m)<br />

Hypselodoris picta webbi (4 spcs.), Chromodoris<br />

purpurea (2 spcs.), Platydoris argo


18 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

(1 spc.), Flabellina (1 spc.), Hypselodoris<br />

mi<strong>da</strong>tlantica (1 spc.); Umbraculum<br />

umbraculum (1 spc. feeding on Halichondria<br />

aurantiaca).<br />

STATION 4 – off Cais do Tagarete, Vila Franca<br />

do Campo.<br />

Date: 18-07-2006.<br />

Depth: 7 m.<br />

Co-ordinates: —-<br />

Collected by: Gonçalo Calado, José Pedro<br />

Borges, Paola Rachello.<br />

Observations: (SCUBA).<br />

STATION 5<br />

Date: 19-07-2006.<br />

Depth: 23-24 fathoms (41-43 m)<br />

Co-ordinates: N 37° 42’ 02” W 25° 27’ 18”.<br />

Collected by: Brian Morton, Sérgio Ávila, Pedro<br />

Rodrigues.<br />

Observations: (dredge) 6 minute tow at 1.5<br />

knotts.<br />

STATION 6<br />

Date: 19-07-2006.<br />

Depth: 22-23 fathoms (40-41 m).<br />

Co-ordinates: N 37° 42’ 02” W 25° 27’ 13”.<br />

Collected by: Brian Morton, Sérgio Ávila, Pedro<br />

Rodrigues.<br />

Observations: (dredge) “earthworm” sand fish<br />

Apterichthus caecus (Linnaeus, 1758).<br />

STATION 7<br />

Date: 19-07-2006.<br />

Depth: 93-105 fathoms (167-189 m).<br />

Co-ordinates: N 37° 41’ 34” W 25° 27’ 34”.<br />

Collected by: Brian Morton, Sérgio Ávila, Pedro<br />

Rodrigues.<br />

Observations: (dredge) 10 min tow at 1.5 – 2<br />

knotts.<br />

STATION 8<br />

Date: 19-07-2006.<br />

Depth: 70-95 fathoms (126-171 m).<br />

Co-ordinates: N 37° 41’ 34” W 25° 27’ 15”.<br />

Collected by: Brian Morton, Sérgio Ávila, Pedro<br />

Rodrigues.<br />

Observations: (dredge) 6 minute tow at 1.5 – 2<br />

knotts.<br />

STATION 9 – Portinho <strong>da</strong> Ribeirinha.<br />

Date: 20-07-2006.<br />

Depth: 5-14 m.<br />

Co-ordinates: —-<br />

Collected by: Gonçalo Calado, Joana Xavier,<br />

Patrícia Madeira, Paola Rachello.<br />

Observations: (SCUBA) ophiurids.<br />

STATION 10 – wall and mouth of the marina –<br />

Vila Franca do Campo.<br />

Date: 20-07-2006.<br />

Depth: 6 m.<br />

Co-ordinates: —-<br />

Collected by: Gonçalo Calado, Patrícia Madeira.<br />

Observations: (SCUBA) echinoderms.<br />

STATION 11 – Ilhéu de Vila Franca do Campo<br />

(NE).<br />

Date: 19-07-2006.<br />

Depth: 16 m.<br />

Co-ordinates: —-<br />

Collected by: Gonçalo Calado, José Pedro<br />

Borges, Joana Xavier, Paola Rachello,<br />

Patrícia Madeira.<br />

Observations: (SCUBA).<br />

STATION 12<br />

Date: 21-07-2006.<br />

Depth: 53-67 fathoms (95-121 m).<br />

Co-ordinates: N 37° 41’ 39” W 25° 27’ 11”.<br />

Collected by: Brian Morton.<br />

Observations: (dredge).<br />

STATION 13<br />

Date: 21-07-2006.<br />

Depth: 47.9–40.8 fathoms (86-73 m).<br />

Co-ordinates: N 37° 41’ 34” W 25° 26’ 57”.<br />

Collected by: Brian Morton.<br />

Observations: (dredge).<br />

STATION 14<br />

Date: 21-07-2006.<br />

Depth: 25-26.2 fathoms (45-47 m).<br />

Co-ordinates: N 37° 41’ 51” W 25° 27’ 14”.<br />

Collected by: Brian Morton.<br />

Observations: (dredge).<br />

STATION 15<br />

Date: 21-07-2006.<br />

Depth: 25,7 – 26 fathoms (46-47 m).<br />

Co-ordinates: N 37° 41’ 52” W 25° 27’ 13”.<br />

Collected by: Brian Morton.<br />

Observations: (dredge).


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 19<br />

STATION 16<br />

Date: 21-07-2006.<br />

Depth: 9.9 – 11 fathoms (18-20 m).<br />

Co-ordinates: N 37° 42’ 39” W 25° 27’ 26”.<br />

Collected by: Brian Morton.<br />

Observations: (dredge).<br />

STATION 17 – mouth of Ilhéu de Vila Franca<br />

do Campo.<br />

Date: 20-07-2006.<br />

Depth: 6 m.<br />

Co-ordinates: —-<br />

Collected by: Andrea Cunha, Daniela Gabriel.<br />

Observations: (SCUBA) sponges, sand urchin,<br />

algae.<br />

STATION 18 – off Ribeira <strong>da</strong>s Tainhas.<br />

Date: 21-07-2006.<br />

Depth: 40 fathoms (72 m).<br />

Co-ordinates: N 37° 42’ 16” W 25° 24’ 45”.<br />

Collected by: Frias Martins, Brian Morton, Roger<br />

Bamber.<br />

Observations: (small dredge) 5 minute tow.<br />

STATION 19 – off Ribeira <strong>da</strong>s Tainhas.<br />

Date: 21-07-2006.<br />

Depth: 13 fathoms (23 m).<br />

Co-ordinates: N 37° 42’ 33” W 25° 24’ 53”.<br />

Collected by: Roger Bamber, Frias Martins, Brian<br />

Morton.<br />

Observations: (grab).<br />

STATION 20 – off Ribeira <strong>da</strong>s Tainhas.<br />

Date: 21-07-2006.<br />

Depth: 28 fathoms (50 m).<br />

Co-ordinates: N 37° 42’ 21” W 25° 24’ 43”.<br />

Collected by: Roger Bamber, Frias Martins, Brian<br />

Morton.<br />

Observations: (grab).<br />

STATION 21 – off Ribeira <strong>da</strong>s Tainhas.<br />

Date: 21-07-2006.<br />

Depth: 66 fathoms (118 m).<br />

Co-ordinates: N 37° 42’ 16” W 25° 24’ 34”.<br />

Collected by: Roger Bamber, Frias Martins, Brian<br />

Morton.<br />

Observations: (grab).<br />

STATION 22 – off Ribeira <strong>da</strong>s Tainhas.<br />

Date: 24-07-2006.<br />

Depth: 6 fathoms (11 m).<br />

Co-ordinates: N 37° 42’ 51” W 25° 24’ 45”.<br />

Collected by: Frias Martins, Brian Morton.<br />

Observations: (large dredge).<br />

STATION 23 – off Ribeira <strong>da</strong>s Tainhas.<br />

Date: 24-07-2006.<br />

Depth: 65-25 fathoms (117- 45 m).<br />

Co-ordinates: N 37° 42’ 05” W 25° 25’ 03”.<br />

Collected by: Frias Martins, Brian Morton.<br />

Observations: (large dredge)<br />

STATION 24 – off Ribeira <strong>da</strong>s Tainhas.<br />

Date: 24-07-2006.<br />

Depth: 65-27 fathoms (117-48 m).<br />

Co-ordinates: 37° 42’ 04” W 25° 25’ 02”.<br />

Collected by: Frias Martins, Brian Morton.<br />

Observations: (large dredge).<br />

STATION 25 – off Praia <strong>da</strong> Vinha <strong>da</strong> Areia.<br />

Date: 24-07-2006.<br />

Depth: 7.6 fathoms (14 m).<br />

Co-ordinates: N 37° 42’ 45” W 25° 25’ 24”.<br />

Collected by: Frias Martins, Brian Morton.<br />

Observations: (large dredge).<br />

STATION 26 – off Ribeira <strong>da</strong>s Tainhas.<br />

Date: 21-07-2006.<br />

Depth: 94 fathoms (169 m).<br />

Co-ordinates: N 37° 42’ 15” W 25° 24’ 28”.<br />

Collected by: Roger Bamber, Frias Martins, Brian<br />

Morton.<br />

Observations: (dredge).<br />

STATION 27 – off Ribeira <strong>da</strong>s Tainhas.<br />

Date: 24-07-2006.<br />

Depth: 60-55 fathoms (108-99 m).<br />

Co-ordinates: N 37° 42’ 01” W 25° 25’ 14”.<br />

Collected by: Sérgio Ávila.<br />

Observations: (large dredge) Holothuria.<br />

STATION 28– off Ribeira <strong>da</strong>s Tainhas.<br />

Date: 24-07-2006.<br />

Depth: 65-81 fathoms (117-145 m).<br />

Co-ordinates: N 37° 42’ 01” W 25° 25’ 01”.<br />

Collected by: Sérgio Ávila.<br />

Observations: (large dredge).<br />

STATION 29 – off Ribeira <strong>da</strong>s Tainhas.<br />

Date: 24-07-2006.<br />

Depth: 110-80 fathoms (198-144 m).<br />

Co-ordinates: N 37° 41’ 57” W 25° 25’ 08”.<br />

Collected by: Sérgio Ávila.<br />

Observations: (large dredge).


20 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

STATION 30 – off Ribeira <strong>da</strong>s Tainhas.<br />

Date: 24-07-2006.<br />

Depth: 35-19 fathoms (63-34 m).<br />

Co-ordinates: N 37° 42’ 17” W 25° 25’ 09”.<br />

Collected by: Sérgio Ávila.<br />

Observations: (large dredge).<br />

STATION 31 – off Cais do Tagarete, Vila<br />

Franca do Campo.<br />

Date: 25-07-2006.<br />

Depth: 29 fathoms (52 m).<br />

Co-ordinates: N 37° 42’ 07” W 25° 25’ 14”.<br />

Collected by: Frias Martins.<br />

Observations: (large dredge).<br />

STATION 32 – off Cais do Tagarete, Vila<br />

Franca do Campo.<br />

Date: 25-07-2006.<br />

Depth: 100 fathoms (180 m).<br />

Co-ordinates: N 37° 41’ 53” W 25° 25’ 15”.<br />

Collected by: Frias Martins.<br />

Observations: (large dredge).<br />

STATION 33 – off Rosto Branco, Água d’Alto.<br />

Date: 25-07-2006.<br />

Depth: 82-120 fathoms (147-216 m).<br />

Co-ordinates: N 37° 41” 08” W 25° 27’ 18”.<br />

Collected by: Frias Martins.<br />

Observations: (large dredge).<br />

STATION 34<br />

Date: 25-07-2006.<br />

Depth: 9.3 fathoms (17 m).<br />

Co-ordinates: N 37° 42’ 42” W 25° 24’ 38”.<br />

Collected by: Roger Bamber, Joana Xavier, Paola<br />

Rachello.<br />

Observations: (grab) two samples pooled.<br />

STATION 35<br />

Date: 25-07-2006.<br />

Depth: 12.7 fathoms (23 m).<br />

Co-ordinates: N 37° 42’ 37” W 25° 24’ 34”.<br />

Collected by: Roger Bamber, Joana Xavier, Paola<br />

Rachello.<br />

Observations: (grab) two samples pooled.<br />

STATION 36<br />

Date: 25-07-2006.<br />

Depth: 20 fathoms (36 m).<br />

Co-ordinates: N 37° 42’ 33” W 25° 24’ 35”.<br />

Collected by: Roger Bamber, Joana Xavier, Paola<br />

Rachello.<br />

Observations: (grab) two samples pooled.<br />

STATION 37<br />

Date: 25-07-2006.<br />

Depth: 130-75 fathoms (234-135 m) (G); 117-65<br />

fathoms (210-117 m) (H).<br />

Co-ordinates: N 37° 42’ 13” W 25° 24’ 36” (G)<br />

N 37° 41’ 59” W 25° 24’ 44” to N 37° 42’ 11”<br />

W 25° 24’ 45” (H).<br />

Collected by: Joana Xavier, Paola Rachello,<br />

Roger Bamber.<br />

Observations: (large dredge) G+H were pooled.<br />

STATION 38<br />

Date: 25-07-2006.<br />

Depth: 115-72 fathoms (207-129 m).<br />

Co-ordinates: N 37° 41’ 41” W 25° 25’ 06” to N<br />

37° 41’ 17” W 25° 25’ 10”.<br />

Collected by: Joana Xavier, Paola Rachello,<br />

Roger Bamber.<br />

Observations: (large dredge).<br />

STATION 39<br />

Date: 25-07-2006.<br />

Depth: 6.7 fathoms (12 m).<br />

Co-ordinates: N 37° 42’ 47” W 25° 25’ 34”.<br />

Collected by: Roger Bamber, Joana Xavier, Paola<br />

Rachello.<br />

Observations: (grab) two samples pooled.<br />

STATION 40 – off Amora, Ponta Garça.<br />

Date: 26-07-2006.<br />

Depth: 21 fathoms (38 m).<br />

Co-ordinates: N 37° 42’ 43” W 25° 21’ 33”.<br />

Collected by: Frias Martins, Jerry Harasewych.<br />

Observations: (small dredge).<br />

STATION 41 – off Amora, Ponta Garça.<br />

Date: 26-07-2006.<br />

Depth: 200-87 fathoms (360-156 m).<br />

Co-ordinates: N 37° 41’ 57” W 25° 22’ 08”.<br />

Collected by: Frias Martins, Jerry Harasewych.<br />

Observations: (large dredge); bottom drops suddenly<br />

to about 600 fathoms; tow up slope.<br />

STATION 42 – off Praia de Água d’Alto.<br />

Date: 26-07-2006.<br />

Depth: 83.6 fathoms (150 m).<br />

Co-ordinates: N 37° 42’ 35” W 25° 29’ 10”.<br />

Collected by: Frias Martins, Jerry Harasewych.<br />

Observations: (large dredge) rocky; octopus.<br />

STATION 43 – off Praia de Água d’Alto.<br />

Date: 26-07-2006.


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 21<br />

Depth: 130 fathoms (234 m).<br />

Co-ordinates: N 37° 41’ 44” W 25° 28’ 44”.<br />

Collected by: Frias Martins, Jerry Harasewych.<br />

Observations: (large dredge) rock.<br />

STATION 44 – off Praia de Água d’Alto.<br />

Date: 26-07-2006.<br />

Depth: 37 fathoms (66 m).<br />

Co-ordinates: N 37° 42’ 24” W 25° 28’ 59”.<br />

Collected by: Frias Martins, Jerry Harasewych.<br />

Observations: (small dredge).<br />

STATION 45 – off Vinha <strong>da</strong> Areia, Vila Franca<br />

do Campo.<br />

Date: 26-07-2006.<br />

Depth: 16.5 fathoms (30 m).<br />

Co-ordinates: N 37° 42’ 18” W 25° 25’ 26”.<br />

Collected by: Frias Martins, Jerry Harasewych.<br />

Observations: (small dredge) near sewage outlet.<br />

STATION 46 – off Vinha <strong>da</strong> Areia, Vila Franca<br />

do Campo.<br />

Date: 26-07-2006.<br />

Depth: 31 fathoms (56 m).<br />

Co-ordinates: N 37° 42’ 37” W 25° 25’ 18”.<br />

Collected by: Frias Martins, Jerry Harasewych.<br />

Observations: (small dredge).<br />

STATION 47 – off Vinha <strong>da</strong> Areia, Vila Franca<br />

do Campo.<br />

Date: 05-09-2006.<br />

Depth: 43 fathoms (77 m).<br />

Co-ordinates: N 37° 42’ 09” W 25° 25’ 04”.<br />

Collected by: Frias Martins, Patrícia Madeira,<br />

Henk van Goor.<br />

Observations: (small dredge).<br />

STATION 48 – off Vinha <strong>da</strong> Areia, Vila Franca<br />

do Campo.<br />

Date: 05-09-2006.<br />

Depth: 35 fathoms (63 m).<br />

Co-ordinates: N 37° 42’ 12” W 25° 25’ 09”.<br />

Collected by: Frias Martins, Patrícia Madeira,<br />

Henk van Goor.<br />

Observations: (small dredge).<br />

STATION 49 – off Vinha <strong>da</strong> Areia, Vila Franca<br />

do Campo.<br />

Date: 05-09-2006.<br />

Depth: 45 fathoms (81 m).<br />

Co-ordinates: N 37° 42’ 00” W 25° 25’ 15”.<br />

Collected by: Frias Martins, Patrícia Madeira,<br />

Henk van Goor.<br />

Observations: (small dredge).<br />

STATION 50 – off Vinha <strong>da</strong> Areia, Vila Franca<br />

do Campo.<br />

Date: 05-09-2006.<br />

Depth: 37 fathoms (66 m).<br />

Co-ordinates: N 37° 41’ 59” W 25° 25’ 22”.<br />

Collected by: Frias Martins, Patrícia Madeira,<br />

Henk van Goor.<br />

Observations: (small dredge).<br />

STATION 51 – off Amora, Ponta Garça.<br />

Date: 05-09-2006.<br />

Depth: 195 fathoms (351 m).<br />

Co-ordinates: N 37° 42’ 06” W 25° 20’ 47”.<br />

Collected by: Frias Martins, Patrícia Madeira,<br />

Henk van Goor.<br />

Observations: (large dredge) sponge, corals.<br />

STATION 52 – off Amora, Ponta Garça.<br />

Date: 05-09-2006.<br />

Depth: 150 fathoms (270 m).<br />

Co-ordinates: N 37° 42’ 07” W 25° 21’ 24”.<br />

Collected by: Frias Martins, Patrícia Madeira,<br />

Henk van Goor.<br />

Observations: (large dredge).<br />

STATION 53 – off Ponta Garça.<br />

Date: 05-09-2006.<br />

Depth: 177 fathoms (318 m).<br />

Co-ordinates: N 37° 42’ 01” W 25° 23’ 07”.<br />

Collected by: Frias Martins, Patrícia Madeira,<br />

Henk van Goor.<br />

Observations: (large dredge).<br />

STATION 54 – off Vinha <strong>da</strong> Areia, Vila Franca<br />

do Campo.<br />

Date: 05-09-2006.<br />

Depth: 37 fathoms (66 m).<br />

Co-ordinates: N 37° 42’ 11” W 25° 25’ 04”.<br />

Collected by: Frias Martins, Patrícia Madeira,<br />

Henk van Goor.<br />

Observations: (small dredge).<br />

STATION 55 – off Vila Franca do Campo.<br />

Date: 07-09-2006.<br />

Depth: 90 fathoms (162 m).<br />

Co-ordinates: —<br />

Collected by: Moisés Bolarinho, skipper of the<br />

fishing boat ‘Vila Franca’.


22 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

Observations: rock snagged on fishing gear;<br />

covered with mud, two white gorgonians,<br />

some sponges and living Chama.<br />

STATION 56 – off Vila Franca do Campo, east<br />

of Ilhéu.<br />

Date: 03-10-2006.<br />

Depth: 32 fathoms (58 m).<br />

Co-ordinates: N 37° 42’ 12” W 25° 25’ 08”.<br />

Collected by: Malacology class (Department of<br />

Biology, University of Azores).<br />

Observations: (small dredge) one tow 5 min<br />

and another 15 min, pooled.<br />

STATION 57 – off Vila Franca do Campo,<br />

west of Ilhéu.<br />

Date: 03-10-2006.<br />

Depth: 18 fathoms (32 m).<br />

Co-ordinates: N 37° 42’ 08” W 25° 26’ 49”.<br />

Collected by: Malacology class (Department of<br />

Biology, University of Azores).<br />

Observations: (small dredge) tow during 15<br />

min.<br />

STATION 58 – off Vila Franca do Campo,<br />

west of Ilhéu.<br />

Date: 03-10-2006.<br />

Depth: 18 fathoms (32 m).<br />

Co-ordinates: N 37° 42’ 08” W 25° 26’ 49”.<br />

Collected by: Malacology class (Department of<br />

Biology, University of Azores).<br />

Observations: (grab) 4 samples, pooled.<br />

TAXONOMIC LIST<br />

Phylum MOLLUSCA<br />

Class POLYPLACOPHORA Gray, 1821<br />

Order LEPIDOPLEURIDA Thiele, 1909<br />

Family Leptochitoni<strong>da</strong>e Dall, 1889<br />

Lepidochiton cimicoides (Monterosato, 1879)<br />

(Figure 1)<br />

Remarks: Specimens collected only at Station<br />

37; alive. Depth range: 0-50 m (P&G); 0-200 m<br />

(MM&B); this study, alive: 117-234 m.<br />

Order CHITONIDA Thiele, 1909<br />

Family Acanthochitoni<strong>da</strong>e Simroth, 1894<br />

Acanthochitona fascicularis (Linnaeus, 1767)<br />

(Figure 2)<br />

Remarks: Only loose valves were found; however,<br />

the number and freshness of the valves<br />

collected suggests that it could live on nearby<br />

rocky habitats. Ávila et al., 2000. Depth range:<br />

0-50 m (P&G); 0-200 m (MM&B); this study:<br />

30-129 m. Alive on IVFC (Martins, 2004).<br />

Class GASTROPODA Cuvier, 1797<br />

Subclass PROSOBRANCHIA Milne Edwards,<br />

1848<br />

Order ARCHAEOGASTROPODA Thiele, 1925<br />

Suborder DOCOGLOSSA Troschel, 1866<br />

Superfamily PATELLOIDEA Rafinesque, 1815<br />

Family Patelli<strong>da</strong>e Rafinesque, 1815<br />

Patella candei d’Orbigny, 1840<br />

Patella aspera Röding, 1798<br />

Remarks: Only small and very worn shells<br />

were found. These are known shallow water<br />

species and their presence in the samples is<br />

considered accidental. Alive on IVFC<br />

(Martins, 2004). Patella aspera has been incorrectly<br />

synonymized with P. ulyssiponensis<br />

Gmelin, 1791. Weber & Hawkins (2005) consider<br />

both genetically distinct, the name P.<br />

aspera referring to the Macaronesian populations<br />

whereas P. ulyssiponenis is applied to<br />

those in the continental coasts.<br />

Superfamily LOTIOIDEA Gray, 1840<br />

Family Lotii<strong>da</strong>e Gray, 1840<br />

Tectura virginea (O.F. Müller, 1776)<br />

(Figure 3)<br />

Remarks: Worn shells, in various degrees of<br />

preservation were found. The abun<strong>da</strong>nce,<br />

size and freshness of some specimens indicate<br />

that they could live on nearby rocky habitats.<br />

Ávila et al., 2000. Depth range: 0-100 m (P&G);<br />

this study: 14-360 m. Common alive on IVFC<br />

(Martins, 2004).<br />

Family Lepeti<strong>da</strong>e Gray, 1840<br />

Propilidium exiguum (Thompson, 1844)<br />

(Figure 4)<br />

Remarks: Only one specimen found. Depth<br />

range: 7-600 m (P&G); 1.480-2.190 m (MM&B,<br />

as P. ancyloide Forbes, 1849); this study: 156-<br />

360 m.<br />

Suborder VETIGASTROPODA Salvini-<br />

Plawén, 1980<br />

Superfamily FISSURELLOIDEA Fleming, 1822<br />

Family Fissurelli<strong>da</strong>e Fleming, 1822<br />

Emarginula sp.<br />

(Figure 5)<br />

Remarks: Only one specimen found, probably


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 23<br />

E. rosea Monterosato in Locard, 1892, or a juvenile<br />

of E. guernei Dautzenberg & Fischer, 1896.<br />

Depth range: 0-90 m (P&G); 0 m (MM&B); this<br />

study: 117-234 m.<br />

Family Scissurelli<strong>da</strong>e Gray, 1847<br />

Sinezona cingulata (O.G. Costa, 1861)<br />

(Figure 6)<br />

Remarks: Only one specimen found. Bullock et<br />

al., 1990 as Scissurella crispata Fleming, 1828;<br />

Bullock, 1995 as Schismope fayalensis<br />

Dautzenberg, 1889; Ávila et al., 2000. Depth<br />

range: 900 m (MM&B); this study: 117-145 m.<br />

Superfamily HALIOTOIDEA Rafinesque, 1815<br />

Family Halioti<strong>da</strong>e Rafinesque, 1815<br />

Haliotis coccinea Reeve, 1846<br />

(Figure 7)<br />

Remarks: Only small and worn shells were<br />

found. It is possible that the presence of shells<br />

in deeper water is accidental. Ávila et al., 2000.<br />

Depth range: 2-25 m (P&G; MM&B); this study:<br />

30-360 m. Common alive on IVFC (Martins,<br />

2004).<br />

?Haliotis sp.<br />

(Figure 8)<br />

Remarks: The only specimen collected had two<br />

holes topically similar to those of Haliotis and<br />

could be a juvenile. However, the shell morphology<br />

differs from that typical of the genus,<br />

namely the flattened columellar lip, and, therefore,<br />

it is only tentatively referred to Haliotis.<br />

Superfamily LEPETELLOIDEA Dall, 1882<br />

Family Lepetelli<strong>da</strong>e Dall, 1882<br />

Lepetella laterocompressa (de Rayneval & Ponzi,<br />

1854)<br />

(Figure 9)<br />

Remarks: Common in small fractions of deeper<br />

samples. Depth range, this study: 99-234 m.<br />

Family Addisonii<strong>da</strong>e Dall, 1882<br />

Addisonia excentrica (Tiberi, 1855)<br />

(Figure 10)<br />

Remarks: Only one specimen found. Depth<br />

range: 370-3.307 m (MM&B); this study: 117-<br />

234 m.<br />

Superfamily TROCHOIDEA Rafinesque, 1815<br />

Family Trochi<strong>da</strong>e Rafinesque, 1815<br />

Clelandella azorica Gofas, 2005<br />

(Figures 11-12)<br />

Remarks: Live specimens found only when the<br />

dredge hit hard surface. Endemic. Depth<br />

range, this study: 30-360 m; alive: 144-198 m.<br />

Clelandella sp.<br />

(Figure 13)<br />

Remarks: Rare. Depth range: 117-234 m.<br />

Jujubinus pseudogravinae Nordsieck, 1973<br />

(Figures 14-15)<br />

Remarks: Although live specimens were not collected,<br />

some shells were fresh, indicating that<br />

they could live in nearby habitats. Endemic.<br />

Ávila et al., 2000. Depth range: 0-200 m (P&G,<br />

MM&B, as J. exasperatus (Pennant, 1777)); this<br />

study: 18-360 m. Common alive on IVFC<br />

(Martins, 2004).<br />

Gibbula delgadensis Nordsieck, 1982<br />

(Figures 16-17)<br />

Remarks: Uncommon. Not collected alive but<br />

some shells were fresh, indicating that they<br />

could live in nearby habitats. Endemic. Depth<br />

range, this study: 38-234 m. Common alive on<br />

IVFC (Martins, 2004).<br />

Gibbula magus (Linnaeus, 1758)<br />

(Figures 18-22)<br />

Remarks: Common on sandy bottoms. The<br />

specimens from the Azores are smaller than<br />

their European conspecifics. Bullock et al.,<br />

1990; Ávila et al., 2000. Depth range: 0-70 m<br />

(P&G); this study: 14-360 m; alive: 18-360 m.<br />

Common alive on IVFC (Martins, 2004)<br />

Margarites sp.<br />

(Figure 23)<br />

Remarks: A few rolled specimens collected.<br />

Depth range, this study: 99-198 m.<br />

Family Solarielli<strong>da</strong>e Powell, 1951<br />

Solariella azorensis (Watson, 1886)<br />

(Figures 24-26)<br />

Remarks: Relatively common. Some ultrajuvenile<br />

specimens collected (Figure 26) fit<br />

the description provided by A<strong>da</strong>m &<br />

Knudsen (1969) for Rhodinoliotia roseotincta<br />

(Smith, 1871); since specimens of the latter<br />

species were not available for comparison, a<br />

decision on synonymy is not warranted.


24 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE I<br />

1. Leptochiton cimicoides (Monterosato, 1879) (Sta37)<br />

2. Acanthochitona fascicularis (Linnaeus, 1767) (Sta31)<br />

3. Tectura virginea (O.F. Müller, 1776) (Sta28)<br />

4. Propilidium exiguum (Thompson, 1844) (Sta41)<br />

5. Emarginula sp. (Sta37)<br />

6. Sinezona cingulata (O.G. Costa, 1861) (Sta28)<br />

7. Haliotis coccinea Reeve, 1846 (Sta26)<br />

8. ?Haliotis cf. coccinea Reeve, 1846 (juvenile) (Sta29)<br />

9. Lepetella laterocompressa (Rayneval & Ponzi, 1854) (Sta38)<br />

10. Addisonia excentrica (Tiberi, 1855) (Sta37)<br />

11. Clelandella azorica Gofas, 2005 (Sta29)<br />

12. Clelandella azorica Gofas, 2005 (Sta53)<br />

13. Clelandella sp. (Sta37)<br />

14. Jujubinus pseudogravinae Nordsieck, 1973 (Sta44)<br />

15. Jujubinus pseudogravinae Nordsieck, 1973 (Sta27)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 25


26 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE II<br />

16. Gibbula delgadensis Nordsieck, 1982 (Sta6)<br />

17. Gibbula delgadensis Nordsieck, 1982 (Sta46)<br />

18. Gibbula magus (Linnaeus, 1758) (Sta44)<br />

19. Gibbula magus (Linnaeus, 1758) (Vila Franca do Campo, 1991)<br />

20. Gibbula magus (Linnaeus, 1758) (Sta15)<br />

21. Gibbula magus (Linnaeus, 1758) (Sta15)<br />

22. Gibbula magus (Linnaeus, 1758) (Sta15)<br />

23. Margarites sp. (Sta29)<br />

24. Solariella azorensis Watson, 1886 (Sta29)<br />

25. Solariella azorensis Watson, 1886 (ultrajuvenile) (Sta12)<br />

26. Solariella azorensis Watson, 1886 (ultrajuvenile) (Sta12)<br />

27. Calliostoma hirondellei Dautzenberg & Fischer, 1896 (Sta37)<br />

28. Calliostoma lividum Dautzenberg 1927 (Sta37)<br />

29. Calliostoma lividum Dautzenberg 1927 (Sta45)<br />

30. Cirsonella gaudryi (Dautzenberg & Fisher, 1896) (Sta37)<br />

31. Tricolia pullus azorica (Dautzenberg, 1889) (Sta56)<br />

32. Tricolia pullus azorica (Dautzenberg, 1889) (Sta38)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 27


28 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE III<br />

33. Bittium cf. latreillii (Payraudeau, 1826) (Sta1)<br />

34. Bittium cf. latreillii (Payraudeau, 1826) (Sta40)<br />

35. Bittium latreillii (Payraudeau, 1826) (Sta32)<br />

36. Fossarus ambiguus (Linnaeus, 1758 (Sta28)<br />

37. Fossarus ambiguus (Linnaeus, 1758 (Sta2)<br />

38. Cheirodonta pallescens (Jeffreys, 1867) (Sta1)<br />

39. Cheirodonta pallescens (Jeffreys, 1867) (Sta12)<br />

40. Cheirodonta pallescens (Jeffreys, 1867) (Sta18)<br />

41. Cheirodonta pallescens (Jeffreys, 1867) (Sta28)<br />

42. Similiphora similior (Bouchet & Guillemot, 1978) (Sta18)<br />

43. Similiphora similior (Bouchet & Guillemot, 1978) (Sta25)<br />

44. Similiphora similior (Bouchet & Guillemot, 1978) (Sta56)<br />

45. Similiphora similior (Bouchet & Guillemot, 1978) (Sta40)<br />

46. Similiphora similior (Bouchet & Guillemot, 1978) (Sta6)<br />

47. Marshallora adversa (Montagu, 1803) (Sta13)<br />

48. Marshallora adversa (Montagu, 1803) (Sta44)<br />

49. Marshallora adversa (Montagu, 1803) Sta56)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 29


30 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE IV<br />

50. Marshallora adversa (Montagu, 1803) (Sta1)<br />

51. Marshallora adversa (Montagu, 1803) (Sta38)<br />

52. Marshallora adversa (Montagu, 1803) (Sta56)<br />

53. Marshallora adversa (Montagu, 1803) (Sta1)<br />

54. Marshallora adversa (Montagu, 1803) (Sta37)<br />

55. Marshallora cf. adversa (Montagu, 1803) (Sta32)<br />

56. Monophorus sp. (Sta1)<br />

57. Monophorus erythrosoma (Bouchet & Guillemot, 1978) (Sta54)<br />

58. Monophorus erythrosoma (Bouchet & Guillemot, 1978) (Sta56)<br />

59. Monophorus erythrosoma (Bouchet & Guillemot, 1978) (Sta40)<br />

60. Monophorus erythrosoma (Bouchet & Guillemot, 1978) (Sta24)<br />

61. Pogonodon pseudocanaricus (Bouchet, 1985) (Sta1)<br />

62. Monophorus thiriotae Bouchet, 1985 (Sta32)<br />

63. Monophorus thiriotae Bouchet, 1985 (Sta1)<br />

64. Monophorus thiriotae Bouchet, 1985 (Sta1)<br />

65. Strobiligera brychia (Bouchet & Guillemot, 1978) (Sta37)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 31


32 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE V<br />

66. Metaxia cf. abrupta (Watson, 1880) (Sta38)<br />

67. Cerithiopsis tubercularis (Montagu, 1803) (Sta2)<br />

68. Cerithiopsis tubercularis (Montagu, 1803) (Sta56)<br />

69. Cerithiopsis tiara (Monterosato, 1874) (Sta38)<br />

70. Cerithiopsis jeffreysi Watson, 1885 (Sta28)<br />

71. Cerithiopsis scalaris Locard, 1892 (Sta1)<br />

72. Cerithiopsis scalaris Locard, 1892 (Sta1)<br />

73. Cerithiopsis scalaris Locard, 1892 (Sta38)<br />

74. Cerithiopsis scalaris Locard, 1892 (Sta29)<br />

75. Cerithiopsis minima (Brusina, 1865) (Sta40)<br />

76. Cerithiopsis minima (Brusina, 1865) (Sta15)<br />

77. Cerithiopsis cf. minima (Brusina, 1865) (Sta2)<br />

78. Cerithiopsis cf. minima (Brusina, 1865) (Sta1)<br />

79. Cerithiopsis fayalensis Watson, 1886 (Sta28)<br />

80. Cerithiopsis fayalensis Watson, 1886 (Sta37)<br />

81. Krachia cf. guernei (Dautzenberg & Fischer, 1896) (Sta37)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 33


34 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE VI<br />

82. Epitonium turtonis (Turton, 1819) (Sta44)<br />

83. Epitonium clathrus (Linnaeus, 1758) (Sta44)<br />

84. Epitonium pulchellum (Bivona, 1832) (Sta12)<br />

85. Epitonium pulchellum (Bivona, 1832) (Sta27)<br />

86. Epitonium pulchellum (Bivona, 1832) (Sta56)<br />

87. Epitonium celesti (Ara<strong>da</strong>s, 1854) (Sta7)<br />

88. Epitonium celesti (Ara<strong>da</strong>s, 1854) (Sta44)<br />

89. Epitonium celesti (Ara<strong>da</strong>s, 1854) (Sta1)<br />

90. Epitonium celesti (Ara<strong>da</strong>s, 1854) (Sta1)<br />

91. Punctiscala cerigottana (Sturany, 1896) (Sta38)<br />

92. Opaliopsis atlantis (Clench & Turner, 1952) (Sta7)<br />

93. Cirsotrema cf. cochlea (Sowerby, 1844) (Sta31)<br />

94. Cirsotrema cf. cochlea (Sowerby, 1844) (Sta18)<br />

95. Acirsa subdecussata (Cantraine, 1835) (juvenile) (Sta1)<br />

96. Opalia hellenica (Forbes, 1844) (Sta48)<br />

97. Opalia sp. 1 (Sta27)<br />

98. Opalia sp. 2 (Sta38)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 35


36 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE VII<br />

99. Melanela bosci Payraudeau, 1826 (Sta37)<br />

100. Melanella cf. crosseana (Brusina, 1886) (Sta13)<br />

101. Melanella cf. crosseana (Brusina, 1886) (Sta2)<br />

102. Melanella cf. trunca (Watson, 1897) (Sta40)<br />

103. Parvioris microstoma (Brusina, 1864) (Sta2)<br />

104. Parvioris sp. (Sta2)<br />

105. Crinophteiros collinsi (Sykes, 1903) (Sta37)<br />

106. Sticteulima jeffreysiana (Brusina, 1869) (Sta12)<br />

107. Vitreolina sp. (Sta2)<br />

108. Vitreolina curva (Monterosato, 1884) (Sta1)<br />

109. Vitreolina curva (Monterosato, 1884) (Sta32)<br />

110. Pelseneeria minor Koehler & Vaney, 1908 (Sta28)<br />

111. Skeneopsis planorbis (Fabricius, 1870) (Sta1)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 37


38 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE VIII<br />

112. Rissoa guernei Dautzenberg, 1889 (Sta27)<br />

113. Rissoa guernei Dautzenberg, 1889 (Sta44)<br />

114. Rissoa guernei Dautzenberg, 1889 (Sta28)<br />

115. Rissoa sp. 1 (Sta28)<br />

116. Rissoa sp. 2 (Sta28)<br />

117. Setia subvaricosa Gofas, 1991 (Sta27)<br />

118. Setia subvaricosa Gofas, 1991 (Sta27)<br />

119. Setia cf. quisquiliarum (Watson 1886) (Sta41)<br />

120. Crisilla postrema (Gofas, 1991) (Sta27)<br />

121. Crisilla cf. postrema (Sta27)<br />

122. Crisilla cf. postrema (Sta28)<br />

123. Pseu<strong>dos</strong>etia azorica Bouchet & Warén, 1993 (Sta18)<br />

124. Pseu<strong>dos</strong>etia azorica Bouchet & Warén, 1993 (Sta38)<br />

125. Cingula trifasciata (A<strong>da</strong>ms, 1798) (Sta2)<br />

126. Manzonia unifasciata Dautzenberg, 1889 (Sta1)<br />

127. Manzonia unifasciata Dautzenberg, 1889 (Sta37)<br />

128. Manzonia unifasciata Dautzenberg, 1889 (Sta1)<br />

129. Onoba moreleti Dautzenberg, 1889 (Sta12)<br />

130. Onoba moreleti Dautzenberg, 1889 (Sta2)<br />

131. Onoba moreleti Dautzenberg, 1889 (Sta37)<br />

132. Onoba moreleti Dautzenberg, 1889 (Sta37)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 39


40 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE IX<br />

133. Alvania angioyi van Aartsen, 1982 (Sta1)<br />

134. Alvania angioyi van Aartsen, 1982 (Sta28)<br />

135. Alvania poucheti (Dautzenberg, 1889) (Sta1)<br />

136. Alvania poucheti (Dautzenberg, 1889) (Sta27)<br />

137. Alvania poucheti (Dautzenberg, 1889) (Sta32)<br />

138. Alvania mediolittoralis Gofas, 1989 (Sta1)<br />

139. Alvania punctura (Montagu, 1803) (Sta37)<br />

140. Alvania sp. (?tarsodes Watson, 1886) (Sta1)<br />

141. Alvania sleursi (Amati, 1987) (Sta1)<br />

142. Alvania sleursi (Amati, 1987) (Sta37)<br />

143. Alvania cancellata (<strong>da</strong> Costa, 1778) (Sta1)<br />

144. Alvania cancellata (<strong>da</strong> Costa, 1778) (Sta58)<br />

145. Alvania cancellata (<strong>da</strong> Costa, 1778) (Sta44)<br />

146. Alvania cancellata (<strong>da</strong> Costa, 1778) (Sta44)<br />

147. Alvania cancellata (<strong>da</strong> Costa, 1778) (Sta37)<br />

148. Alvania platycephala Dautzenberg & Fisher, 1896 (Sta41)<br />

149. Alvania platycephala Dautzenberg & Fisher, 1896 (Sta41)<br />

150. Alvania platycephala Dautzenberg & Fisher, 1896 (Sta37)<br />

151. Alvania platycephala Dautzenberg & Fisher, 1896 (Sta37)<br />

152. Alvania cimicoides (Forbes, 1844) (Sta37)<br />

153. Alvania cimicoides (Forbes, 1844) (Sta37)<br />

154. Alvania cf. cimicoides (Forbes, 1844) (Sta41)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 41


42 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE X<br />

155. Caecum wayae Pizzini & Nofroni, 2001 (Sta12)<br />

156. Caecum wayae Pizzini & Nofroni, 2001 (Sta18)<br />

157. Talassia cf. tenuisculpta (Watson 1873) (Sta37)<br />

158. Talassia cf. tenuisculpta (Watson 1873) (Sta27)<br />

159. Capulus ungaricus (Linnaeus, 1758) (Sta7)<br />

160. Lamellaria perspicua (Linnaeus, 1758) (Vila Franca do Campo, 1991)<br />

161. Lamellaria perspicua (Linnaeus, 1758) (Sta56)<br />

162. Trivia pulex (Solander in J.E. Gray, 1828 (Vila Franca do Campo, 1991)<br />

163. Trivia pulex (Solander in J.E. Gray, 1828 (Sta56)<br />

164. Trivia pulex (Solander in J.E. Gray, 1828 (Sta56)<br />

165. Trivia candidula (Gaskoin, 1835) (Sta44)<br />

166. Erato sp. (juvenile) (Sta2)<br />

167. Erato sp. (juvenile) (Sta38)<br />

168. Aperiovula juanjosensii Perez & Gomez, 1987 (Sta38)<br />

169. Notocochlis dillwynii (Payraudeau, 1826) (Sta53)<br />

170. Natica prietoi (Hi<strong>da</strong>lgo, 1873) (Sta15)<br />

171. Natica prietoi (Hi<strong>da</strong>lgo, 1873) (Sta40)<br />

172. Natica prietoi (Hi<strong>da</strong>lgo, 1873) (Sta56)<br />

173. Natica cf. prietoi (Hi<strong>da</strong>lgo, 1873) (Sta57)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 43


44 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XI<br />

174. Atlanta peronii Lesueur, 1817 (Sta13)<br />

175. Protatlanta souleyeti (E.A. Smith, 1888) (Sta13)<br />

176. Ocenebra erinaceus juvenile (Linnaeus, 1758) (Sta27)<br />

177. Ocenebra sp. (Sta56)<br />

178. Ocinebrina aciculata (Lamarck,1822) (Sta40)<br />

179. Ocinebrina cf. aciculata (Payraudeau, 1826) (Sta41)<br />

180. ? Ocinebrina aciculata (Lamarck,1822) (Sta40)<br />

181. ?Ocinebrina cf. aciculata (Payraudeau, 1826) (Sta27)<br />

182. ?Ocinebrina sp. (Sta15)<br />

183. Orania fusulus (Brocchi, 1814) (Sta1)<br />

184. Orania fusulus (Brocchi, 1814) (Sta1)<br />

185. Orania fusulus (Brocchi, 1814) (Sta41)<br />

186. Trophonopsis barvicensis (Johnston, 1825) (Sta29)<br />

187. Trophonopsis barvicensis (Johnston, 1825) (Sta29)<br />

188. Trophonopsis barvicensis (Johnston, 1825) (Sta29)<br />

189. Trophonopsis barvicensis (Johnston, 1825) (Sta44)<br />

190. Trophonopsis barvicensis (Johnston, 1825) (Sta27)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 45


46 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XII<br />

191. Trophonopsis barvicensis (Johnston, 1825) (Sta46)<br />

192. Trophonopsis barvicensis (Johnston, 1825) (Sta15)<br />

193. Trophonopsis cf. muricatus (Montagu,1803) (Sta5)<br />

194. Trophonopsis cf. muricatus (Montagu,1803) (Sta27)<br />

195. Coralliophila cf. meyendorfii (Calcara, 1845) (Sta7)<br />

196. Coralliophila panormitana (Monterosato, 1896) (Sta37)<br />

197. Stramonita haemastoma (Linnaeus, 1767) (Sta27)<br />

198. Gibberula vignali (Dautzenberg & Fischer 1896) (Sta41)<br />

199. Gibberula cf. lazaroi Contreras, 1992 (Sta37)<br />

200. Mitra cornea Lamarck, 1811 (Sta31)<br />

201. Pollia dorbignyi (Payraudeau, 1826) (Sta45)<br />

202. Pollia dorbignyi (Payraudeau, 1826) Ilhéu de Vila Franca do Campo.<br />

203. Nassarius incrassatus (Ström, 1768) (Sta40)<br />

204. Nassarius incrassatus (Ström, 1768) (Sta30)<br />

205. Nassarius incrassatus (Ström, 1768) (Sta26)<br />

206. Nassarius incrassatus (teratology) (Ström, 1768) (Sta40)<br />

207. Nassarius cf. cuvierii (Payraudeau, 1826). Juvenile (Sta44)<br />

208. Nassarius recidivus (Martens, 1876) (Sta53)<br />

209. Columbella a<strong>da</strong>nsoni Menke, 1853 (Sta44)<br />

210. Mitrella pallaryi (Dautzenberg, 1927) (Sta37)<br />

211. Anachis avaroides Nordsieck, 1975 (Sta44)<br />

212. Anachis avaroides Nordsieck, 1975 (Sta1)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 47


48 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XIII<br />

213. Brocchinia clenchi Petit, 1986 (Sta49)<br />

214. Brocchinia clenchi Petit, 1986 (Sta1)<br />

215. Mitromorpha azorensis Mifsud, 2001 (Sta46)<br />

216. Mitromorpha azorensis Mifsud, 2001 (Sta1)<br />

217. Bela nebula (Montagu, 1803) (Sta56)<br />

218. Bela nebula (Montagu, 1803) (Sta1)<br />

219. Bela nebula (Montagu, 1803) (Sta1)<br />

220. Bela nebula (Montagu, 1803) (Sta56)<br />

221. Bela nebula (Montagu, 1803) (Sta56)<br />

222. Bela nebula (Montagu, 1803) (Sta18)<br />

223. Mangelia cf. costata (Donovan, 1804) (Sta25)<br />

224. Mangelia cf. costata (Donovan, 1804) (Sta29)<br />

225. Mangelia cf. costata (Donovan, 1804) (Sta29)<br />

226. Mangelia cf. costata (Donovan, 1804) (Sta30)<br />

227. Mangelia cf. costata (Donovan, 1804) (Sta1)<br />

228. Mangelia cf. costata (Donovan, 1804) (Sta1)<br />

229. Mangelia cf. costata (Donovan, 1804) (Sta18)<br />

230. Raphitoma purpurea (Montagu, 1803) (Sta56)<br />

231. Raphitoma linearis (Montagu, 1803) (Sta40)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 49


50 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XIV<br />

232. Raphitoma cf. aequalis (Jeffreys, 1867) (Sta56)<br />

233. Raphitoma cf. aequalis (Jeffreys, 1867) (Sta27)<br />

234. Raphitoma cf. aequalis (Jeffreys, 1867) (Sta57)<br />

235. Raphitoma cf. aequalis (Jeffreys, 1867) (Sta56)<br />

236. Raphitoma cf. aequalis (Jeffreys, 1867) (Sta40)<br />

237. Raphitoma cf. aequalis (Jeffreys, 1867) (Sta5)<br />

238. Raphitoma cf. aequalis (Jeffreys, 1867) (Sta56)<br />

239. Raphitoma cf. aequalis (Jeffreys, 1867) (Sta30)<br />

240. Raphitoma cf. aequalis (Jeffreys, 1867) (Sta40)<br />

241. Raphitoma sp. (Sta58)<br />

242. Pleurotomella gibbera Bouchet & Warén, 1980 (Sta29)<br />

243. Pleurotomella gibbera Bouchet & Warén, 1980 (Sta32)<br />

244. Pleurotomella gibbera Bouchet & Warén, 1980 (Sta27)<br />

245. Pleurotomella cf. gibbera Bouchet & Warén, 1980 (Sta29)<br />

246. Teretia teres (Reeve, 1844) (Sta28)<br />

247. Teretia teres (Reeve, 1844) (Sta27)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 51


52 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XV<br />

248. Crassopleura maravignae (Bivona, 1838) (Sta56)<br />

249. Crassopleura maravignae (Bivona, 1838) (Sta50)<br />

250. Crassopleura maravignae (Bivona, 1838) (Sta37)<br />

251. Haedropleura septangularis (Montagu, 1803) (Sta15)<br />

252. Haedropleura septangularis (Montagu, 1803) (Sta56)<br />

253. Philippia krebsi (Mörch, 1875) (Sta46)<br />

254. Pseudotorinia architae (O.G. Costa, 1841) (Sta32)<br />

255. Pseudomalaxis zanclaeus (Philippi, 1844) (Sta37)<br />

256. Mathil<strong>da</strong> cochlaeformis Brugnone, 1873 (Sta29)<br />

257. Mathil<strong>da</strong> retusa Brugnone, 1873 (Sta37)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 53


54 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XVI<br />

258. ?Rissoella sp. 1 (Sta41)<br />

259. ?Rissoella sp. 2 (Sta2)<br />

260. Omalogyra atomus (Philippi, 1841) (Sta28)<br />

261. O<strong>dos</strong>tomella doliolum (Philippi, 1844) (Sta37)<br />

262. O<strong>dos</strong>tomella doliolum (Philippi, 1844) (Sta32)<br />

263. Chrysalli<strong>da</strong> cf. flexuosa (Monterosato, 1874 ex Jeffreys) (Sta41)<br />

264. O<strong>dos</strong>tomia bernardi Aartsen, Gittenberger & Goud, 1998 (Sta58)<br />

265. O<strong>dos</strong>tomia cf. verhoeveni Aartsen, Gittenberger & Goud, 1998 (Sta1)<br />

266. O<strong>dos</strong>tomia duureni Aartsen, Gittenberger & Goud, 1998 (Sta15)<br />

267. O<strong>dos</strong>tomia cf. striolata Forbes & Hanley, 1850 (Sta18)<br />

268. Eulimella sp. (Sta38)<br />

269. Turbonilla rufa (Philippi, 1836) (Sta1)<br />

270. Turbonilla lactea (Linnaeus, 1758) (Sta56)<br />

271. Turbonilla sp. 1 (Sta38)<br />

272. Turbonilla sp. 2 (Sta38)<br />

273. Turbonilla sp. 3 (Sta37)<br />

274. Turbonilla sp. 4 (Sta38)<br />

275. Ebala nitidissima (Montagu, 1803) (Sta28)<br />

276. Ebala nitidissima (Montagu, 1803) (Sta18)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 55


56 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XVII<br />

277. Colpo<strong>da</strong>spis pusilla Sars, 1870 (Sta7)<br />

278. Retusa truncatula (Bruguière, 1792) (Sta27)<br />

279. Retusa truncatula (Bruguière, 1792) (Sta1)<br />

280. Haminoea cf. orteai Talavera, Murillo & Templado, 1987 (Sta58)<br />

281. Atys macandrewi E.A. Smith, 1872 (Sta56)<br />

282. Atys sp. (Sta15)<br />

283. Philine approximans Dautzenberg & Fischer, 1896 (Sta13)<br />

284. Philine sp. (Sta18)<br />

285. ?Chelidonura africana Pruvot-Fol, 1953 (Sta37)<br />

286. Cavolinia inflexa (Lesueur, 1813) (Sta56)<br />

287. Cavolinia inflexa (Lesueur, 1813) (Sta29)<br />

288. Cavolinia tridentata (Forskal, 1775) (Sta37)<br />

289. Diacria trispinosa (Lesueur, 1821) (Sta50)<br />

290. Diacria trispinosa (Lesueur, 1821) (Sta12)<br />

291. Cuvierina atlantica (Bé, MacClintock & Currie, 1972) (Sta38)<br />

292. Clio pyrami<strong>da</strong>ta Linnaeus, 1767 (Sta29)<br />

293. Clio pyrami<strong>da</strong>ta Linnaeus, 1767 (Sta12)<br />

294. Limacina cf. helicina (Phipps, 1774) (Sta32)<br />

295. Limacina inflata (d’Orbigny, 1836) (Sta1)<br />

296. Umbraculum umbraculum (Lightfoot, 1786) (Sta31)<br />

297. Tylodina perversa (Gmelin, 1791) (Sta28)<br />

298. Williamia gussonii (O.G. Costa, 1829) (St12)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 57


58 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

Endemic. Depth range, this study: 14-360 m;<br />

alive from 14-207 m.<br />

Calliostomati<strong>da</strong>e Thiele, 1924<br />

Calliostoma hirondellei Dautzenberg & Fisher,<br />

1896<br />

(Figure 27)<br />

Remarks: Rare. Depth range, this study: 72-<br />

234 m.<br />

Calliostoma lividum Dautzenberg, 1927<br />

(Figures 28-29)<br />

Remarks: Sometimes subti<strong>da</strong>l in the Azores.<br />

Endemic. Ávila et al., 2000 as C. cf. conulus<br />

(Linnaeus, 1758). Depth range: 20-200 m<br />

(P&G and MM&B, as C. conulum (L.)); this<br />

study: 30-360 m. Alive on IVFC (Martins,<br />

2004).<br />

Superfamily TURBINOIDEA Rafinesque,<br />

1815<br />

Family Turbini<strong>da</strong>e Rafinesque, 1815<br />

Cirsonella gaudryi (Dautzenberg & Fisher,<br />

1896)<br />

(Figure 30)<br />

Remarks: Rare. Depth range, this study: 117-<br />

234 m.<br />

Family Phasianelli<strong>da</strong>e Swainson, 1840<br />

Tricolia pullus azorica (Dautzenberg, 1889)<br />

(Figures 31-32)<br />

Remarks: Some specimens were fresh, indicating<br />

that they could live in nearby habitats.<br />

Endemic. Bullock et al., 1990, Bullock, 1995<br />

and Knudsen, 1995 as T. pullus (Linnaeus,<br />

1758); Ávila et al., 2000. Depth range: interti<strong>da</strong>l-35<br />

m (P&G, as T. pullus (L.)); this study:<br />

14-360 m. Common alive on IVFC (Martins,<br />

2004).<br />

Order APOGASTROPODA Salvini-Plawén &<br />

Haszprunar, 1987<br />

Suborder CAENOGASTROPODA Cox, 1959<br />

Superfamily CERITHIOIDEA Fleming, 1822<br />

Family Cerithii<strong>da</strong>e Fleming, 1822<br />

Bittium cf. latreillii (Payraudeau, 1826)<br />

(Figures 33-34)<br />

Remarks: This form of Bittium has been questionably<br />

ascribed to B. latreillii, and awaits further<br />

study to clarify its taxonomic status.<br />

Shells are very common. Bullock et al., 1990<br />

and Bullock, 1995 as B. reticulatum (<strong>da</strong> Costa,<br />

1779); Ávila et al., 2000. Depth range: littoral<br />

(MM&B); this study: 14-360 m; alive at 38 m.<br />

Common alive on IVFC (Martins, 2004).<br />

Bittium latreillii (Payraudeau, 1826)<br />

(Figure 35)<br />

Remarks: Very rare. This specimen conforms to<br />

the description of B. latreillii. Depth range: littoral<br />

(MM&B); this study: 180 m.<br />

Family Planaxi<strong>da</strong>e Gray, 1850<br />

Fossarus ambiguus (Linaeus, 1758)<br />

(Figures 36-37)<br />

Remarks: Occurs regularly in the samples.<br />

Houbrick, 1990; Bullock, 1995; Knudsen, 1995;<br />

Ávila et al., 2000. Depth range: littoral<br />

(MM&B); this study: 30-180 m. Common alive<br />

on IVFC (Martins, 2004).<br />

Superfamily TRIPHOROIDEA Gray, 1847<br />

Triphori<strong>da</strong>e Gray, 1847<br />

NOTE: Triphorids were present in most samples.<br />

No living specimens were collected,<br />

although some shells appeared to be fresh;<br />

commonly, they exhibited clear signs of pre<strong>da</strong>tion.<br />

The species of this family are difficult to<br />

identify without information on the animal<br />

and the larval shell; the granulation of the<br />

spiral and basal cords is often less distinct and<br />

intermediate. Although tentatively identified<br />

to species, they are however illustrated<br />

profusely to record their variability, and<br />

to provide a basis for further, perhaps more<br />

accurate identifications. Information on<br />

www.naturamediterraneo.com, based on<br />

Bouchet & Guillemot (1978) and Bouchet<br />

(1984), was helpful for species identification.<br />

Cheirodonta pallescens (Jeffreys, 1867)<br />

(Figures 38-41)<br />

Remarks: Shell light-brown to whitish, uniformly<br />

coloured; protoconch bi-carinated; spiral<br />

cord 4 and basal cords smooth; supranumerary<br />

cords on last whorl. Depth range, this study:<br />

30-145 m.<br />

Similiphora similior (Bouchet & Guillemot, 1978)<br />

(Figures 42-46)<br />

Remarks: Shell brownish, variously coloured; 1 st<br />

whorl of protoconch uni-carinated, remaining<br />

bi-carinated; spiral cord 4 granulated, basal


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 59<br />

cords smooth; supranumerary cords on last<br />

whorl. Depth range, this study: 14-360 m.<br />

Marshallora adversa (Montagu, 1803)<br />

(Figures 47-54)<br />

Remarks: Shell brownish, variously coloured;<br />

protoconch bi-carinated; spiral cord 4 and<br />

basal cords smooth; tubercles on last whorl<br />

elongated; absence of supranumerary cords on<br />

last whorl. Depth range, this study: 30-234 m.<br />

Marshallora cf. adversa (Montagu, 1803)<br />

(Figure 55)<br />

Remarks: The presence of brownish markings<br />

between tubercles is reminiscent of M. thiriotae,<br />

but other characters indicate affinity with M.<br />

adversa. Depth range, this study: 46 m.<br />

Monophorus sp.<br />

(Figure 56)<br />

Remarks: Depth range, this study: 40-135 m.<br />

Monophorus erythrosoma (Bouchet & Guillemot,<br />

1978)<br />

(Figures 57-60)<br />

Remarks: Shell brownish, unicoloured or variously<br />

coloured; protoconch bi-carinated; spiral<br />

cord 4 granulated, basal cords 1-2 granulated, 3<br />

smooth; supranumerary cords on last whorl.<br />

Depth range, this study: 38-243 m.<br />

Monophorus thiriotae Bouchet, 1985<br />

(Figures 62-64)<br />

Remarks: Shell brownish, variously coloured;<br />

protoconch bi-carinated; spiral cord 4 granulated,<br />

basal cords 1-2 granulated, 3 smooth;<br />

absence of supranumerary cords on last whorl;<br />

brownish intertuberculary markings. Depth<br />

range, this study: 30-207 m.<br />

Pogonodon pseudocanaricus (Bouchet, 1985)<br />

(Figure 61)<br />

Remarks: Shell whitish, brown vertical markings;<br />

protoconch redish, bi-carinated; spiral cord 4<br />

granulated, basal cords 1-2 granulated. Only<br />

one apparently fresh specimen, but with last<br />

whorl crushed. Depth range, this study: 57 m.<br />

Strobiligera brychia (Bouchet & Guillemot,<br />

1978)<br />

(Figure 65)<br />

Remarks: Tubercles of spiral cord 1 smaller than<br />

those of remaining cords. Rare. Depth range,<br />

this study: 117-234 m.<br />

Metaxia cf. abrupta (Watson, 1880)<br />

(Figure 66)<br />

Remarks: Only one specimen collected, apparently<br />

a juvenile. Depth range, this study: 129-<br />

207 m.<br />

Family Cerithiopsi<strong>da</strong>e A<strong>da</strong>ms H. & A., 1853<br />

Cerithiopsis tubercularis (Montagu, 1803)<br />

(Figures 67-68)<br />

Remarks: Relatively rare. Depth range: littoral-<br />

100 m (MM&B); this study: 41-207m.<br />

Cerithiopsis tiara (Monterosato, 1874)<br />

(Figure 69)<br />

Remarks: Rare. Depth range, this study: 129-<br />

207 m.<br />

Cerithiopsis jeffreysi Watson, 1885<br />

(Figure 70)<br />

Remarks: Rare. Depth range, this study: 117-<br />

207 m.<br />

Cerithiopsis scalaris Locard, 1892<br />

(Figures 71-74)<br />

Remarks: Shells uncommon but some specimens<br />

appeared fresh. Depth range, this study:<br />

57-234 m.<br />

Cerithiopsis minima (Brusina, 1865)<br />

(Figures 75-76)<br />

Remarks: Uncommon. Depth range, this study:<br />

38-207 m.<br />

Cerithiopsis cf. minima (Brusina, 1865)<br />

(Figures 77-78)<br />

Remarks: Uncommon. Depth range, this study:<br />

57-135 m.<br />

Cerithiopsis fayalensis Watson, 1886<br />

(Figures 79-80)<br />

Remarks: Shells uncommon but some specimens<br />

appeared fresh. Depth range, this study:<br />

99-234 m.<br />

Krachia cf. guernei (Dautzenberg & Fischer,<br />

1896)<br />

(Figure 81)<br />

Remarks: Rare. Depth range, this study: 117-<br />

234 m.


60 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

Superfamily JANTHINOIDEA Gray, 1847<br />

Family Epitonii<strong>da</strong>e S.S. Berry, 1910 (1812)<br />

Gyroscala lamellosa (Lamarck, 1822)<br />

Remarks: Only one fragment. Depth range:<br />

Infralittoral to 620 m (MM&B); this study: 56 m.<br />

Epitonium turtonis (Turton, 1819)<br />

(Figure 82)<br />

Remarks: Rare. Depth range: 5-70 m (P&G); this<br />

study: 66m.<br />

Epitonium clathrus (Linnaeus, 1758)<br />

(Figure 83)<br />

Remarks: Rare. Depth range: 5-70 m (P&G); this<br />

study: 66-72 m.<br />

Epitonium pulchellum (Bivona, 1832)<br />

(Figures 84-86)<br />

Remarks: Not uncommon. Depth range: 20-40 m<br />

(P&G; MM&B); this study: 58-145 m.<br />

Epitonium celesti (Ara<strong>da</strong>s, 1854)<br />

(Figures 87-90)<br />

Remarks: Not uncommon. Depth range: 50-1250<br />

m (P&G; MM&B); this study: 57-207 m.<br />

Punctiscala cerigottana (Sturany, 1819)<br />

(Figure 91)<br />

Remarks: Rare. Only one <strong>da</strong>maged specimen<br />

found. Depth range: 50-600 m (MM&B); this<br />

study: 129-207 m.<br />

Opaliopsis atlantis (Clench & Turner, 1952)<br />

(Figure 92)<br />

Remarks: Rare. Only one <strong>da</strong>maged specimen<br />

found. Depth range: 810-825 m (MM&B); this<br />

study: 167-189 m.<br />

Cirsotrema cf. cochlea (Sowerby, 1844)<br />

(Figures 93-94)<br />

Remarks: Uncommon. The Azorean specimens<br />

are stouter and more globose than the illustrations<br />

consulted (P&G). Depth range:<br />

Infralittoral-60 m (MM&B); this study: 40-318 m;<br />

alive: 66-72 m.<br />

Acirsa subdecussata (Cantraine, 1835)<br />

(Figure 95)<br />

Remarks: Only one fresh specimen collected.<br />

Depth range: 12-500 m (P&G; MM&B); this study:<br />

57 m.<br />

Opalia hellenica (Forbes, 1844)<br />

(Figure 96)<br />

Remarks: Uncommon. Ávila et al., 2000. Depth<br />

range: 20-770 m (MM&B); this study: 63-234 m;<br />

alive: 66-81 m.<br />

Opalia sp. 1<br />

(Figure 97)<br />

Remarks: Rare. Depth range, this study: 99-<br />

108 m.<br />

Opalia sp. 2<br />

(Figure 98)<br />

Remarks: Only one shell collected, with broken<br />

tip. Depth range, this study: 129-207 m.<br />

Superfamily EULIMOIDEA Philippi, 1853<br />

Family Eulimi<strong>da</strong>e Philippi, 1853<br />

Melanella bosci Payraudeau, 1826<br />

(Figure 99)<br />

Remarks: Rare. Depth range: 10-150 m (P&G);<br />

this study: 45-234 m.<br />

Melanella cf. crosseana (Brusina, 1886)<br />

(Figures 100-101)<br />

Remarks: Uncommon. Depth range, this study:<br />

73-145 m.<br />

Melanella cf. trunca (Watson, 1897)<br />

(Figure 102)<br />

Remarks: Rare. Depth range, this study: 30-<br />

38 m.<br />

Parvioris microstoma (Brusina, 1864)<br />

(Figure 103)<br />

Remarks: Rare. Depth range, this study: 135 m.<br />

Parvioris sp.<br />

(Figure 104)<br />

Remarks: Rare. Depth range, this study: 135-<br />

207 m.<br />

Crinophteiros collinsi (Sykes, 1903)<br />

(Figure 105)<br />

Remarks: Rare. Depth range, this study: 117-<br />

234 m.<br />

Sticteulima jeffreysiana (Brusina, 1869)<br />

(Figure 106)<br />

Remarks: Rare. Depth range, this study: 95-<br />

121 m.


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 61<br />

Vitreolina sp.<br />

(Figure 107)<br />

Remarks: Rare. Depth range, this study: 135 m.<br />

Vitreolina curva (Monterosato, 1884)<br />

(Figures 108-109)<br />

Remarks: Rare. Depth range, this study: 57-180 m.<br />

Pelseneeria minor Koehler & Vaney, 1908<br />

(Figure 110)<br />

Remarks: Only one specimen collected. Depth<br />

range: 90-185 m (MM&B); this study: 117-145 m.<br />

Superfamily LITTORINOIDEA Children, 1834<br />

Family Littorini<strong>da</strong>e Children, 1834<br />

Littorina striata King & Broderip, 1832<br />

Remarks: This is a supralittoral species, and<br />

its presence in the dredged material is accidental.<br />

Melarhaphe neritoides (Linnaeus, 1758)<br />

Remarks: This is a supralittoral species, and its<br />

presence in the dredged material is accidental.<br />

Family Skeneopsi<strong>da</strong>e Ire<strong>da</strong>le, 1915<br />

Skeneopsis planorbis (Fabricius, 1870)<br />

(Figure 111)<br />

Remarks: Uncommon. Reported as very common<br />

(Bullock et al., 1990; Bullock, 1995). Knudsen, 1995;<br />

Ávila et al., 2000. Depth range: Infralittoral to 70m<br />

(P&G; MM&B); this study: 32-145 m. Common<br />

alive on IVFC (Martins, 2004).<br />

Superfamily RISSOOIDEA Gray, 1847<br />

Family Rissoi<strong>da</strong>e Gray, 1847<br />

Rissoa guernei Dautzenberg, 1889<br />

(Figures 112-114)<br />

Remarks: Uncommon but some specimens<br />

appeared fresh. Endemic. Reported as very common<br />

(Bullock et al., 1990; Ávila, 2000). Gofas, 1990;<br />

Knudsen, 1995; Ávila et al., 2000. Depth range, this<br />

study: 32-234 m. Common alive on IVFC<br />

(Martins, 2004).<br />

Rissoa sp. 1<br />

(Figure 115)<br />

Remarks: Rare. Depth range, this study: 117-145 m.<br />

Rissoa sp. 2<br />

(Figure 116)<br />

Remarks: Rare. Depth range, this study: 99-180 m.<br />

Setia subvaricosa Gofas, 1990<br />

(Figures 117-118)<br />

Remarks: Rare. Endemic. This species is<br />

common in 15-20 m (Gofas, 1990; Ávila, 2000).<br />

Ávila et al., 2000. Depth range, this study: 99-<br />

135 m. Collected alive at IVFC (Martins, 2004).<br />

Setia cf. quisquiliarum (Watson 1886)<br />

(Figure 119)<br />

Remarks: Rare. Endemic. Depth range, this<br />

study: 237-360 m.<br />

Crisilla postrema (Gofas, 1990)<br />

(Figure 120)<br />

Remarks: Rare. Endemic. Infralittoral to 20 m;<br />

collected alive at IVFC (Gofas, 1990). Bullock et<br />

al., 1990 as Rissoa pulcherima (Jeffreys, 1848);<br />

Bullock, 1995 as Alvania postrema. Depth range,<br />

this study: 56-360m.<br />

Crisilla cf. postrema (Gofas, 1990)<br />

(Figures 121-122)<br />

Remarks: Rare. Depth range, this study: 99-<br />

207 m.<br />

Pseu<strong>dos</strong>etia azorica Bouchet & Warén, 1993<br />

(Figures 123-124)<br />

Remarks: Rare. Endemic. Depth range, this<br />

study: 72-207 m.<br />

Cingula trifasciata (A<strong>da</strong>ms, 1798)<br />

(Figure 125)<br />

Remarks: Rarely collected. Specimens eroded,<br />

probably transported from the interti<strong>da</strong>l,<br />

where it is common. Depth range, this study:<br />

38-180 m.<br />

Manzonia unifasciata Dautzenberg, 1889<br />

(Figures 126-128)<br />

Remarks: Relatively common; probably transported<br />

from infralittoral zone where it is very<br />

common from 0-10 m (Ávila, 2003). Bullock et<br />

al., 1990 and Bullock, 1995 as M. crassa<br />

(Kanmacher, 1798); Gofas, 1990; Knudsen,<br />

1995; 1995; Ávila et al., 2003. Depth range, this<br />

study: 237-360 m. Collected alive at IVFC<br />

(Martins, 2004).<br />

Onoba moreleti Dautzenberg, 1889<br />

(Figures 129-132)<br />

Remarks: Uncommon. Endemic. Depth range,<br />

this study: 95-234 m.


62 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

Alvania angioyi van Aartsen, 1982<br />

(Figures 133-134)<br />

Remarks: Rare. Endemic. Infralittoral to 20 m<br />

(Gofas, 1990). Bullock et al., 1990 as A, watsoni<br />

(Schwartz MS) Watson, 1873; Bullock, 1995;<br />

Knudsen, 1995; Ávila et al. 2000. Depth range,<br />

this study: 57-360 m. Collected alive at IVFC<br />

(Martins, 2004).<br />

Alvania poucheti Dautzenberg, 1889<br />

(Figures 135-137)<br />

Remarks: Relatively common; some specimens<br />

appeared fresh. Endemic. Gofas, 1990;<br />

Bullock et al., 1990; Bullock, 1995; Knudsen,<br />

1995; Ávila et al. 2000. Depth range, this<br />

study: 38-207 m. Collected alive at IVFC<br />

(Martins, 2004).<br />

Alvania mediolittoralis Gofas, 1989<br />

(Figure 138)<br />

Remarks: Rare. Common interti<strong>da</strong>lly (Gofas,<br />

1990). Depth range, this study: 30-207 m.<br />

Alvania punctura (Montagu, 1803)<br />

(Figure 139)<br />

Remarks: Very rare. Depth range, this study:<br />

117-234 m.<br />

Alvania sp. (?tarsodes Watson, 1886)<br />

(Figure 140)<br />

Remarks: Very rare. Depth range, this study:<br />

57 m.<br />

Alvania sleursi (Amati, 1987)<br />

(Figures 141-142)<br />

Remarks: Common; some specimens appeared<br />

fresh. Infralittoral, common at 20 m (Gofas,<br />

1990; Knudsen, 1995). Depth range, this study:<br />

30-234 m.<br />

Alvania cancellata (<strong>da</strong> Costa, 1778)<br />

(Figures 143-147)<br />

Remarks: Common; some specimens appeared<br />

fresh. Infralittoral, most common at 20 m<br />

(Gofas, 1990; Knudsen, 1995). Depth range,<br />

this study: 30-360 m.<br />

Alvania platycephala Dautzenberg & Fischer,<br />

1896<br />

(Figures 148-151)<br />

Remarks: Rare. Endemic. Depth range, this<br />

study: 129-360 m.<br />

Alvania cimicoides (Hoenselaar & Goud,<br />

1998)<br />

(Figures 152-153)<br />

Remarks: Rare. Depth range, this study: 99-<br />

360 m. Collected alive at 117-234.<br />

Alvania cf. cimicoides (Hoenselaar & Goud,<br />

1998)<br />

(Figure 154)<br />

Remarks: Only one specimen collected. Depth<br />

range, this study: 156-360 m.<br />

Family Caeci<strong>da</strong>e Gray, 1850<br />

Caecum wayae Pizzini & Nofroni, 2001<br />

(Figures 155-156)<br />

Remarks: Common. Depth range, this study:<br />

57-171 m.<br />

Superfamily VANIKOROIDEA Gray, 1840<br />

Family Vanikori<strong>da</strong>e Gray, 1840<br />

Talassia cf. tenuisculpta (Watson, 1873)<br />

(Figures 157-158)<br />

Remarks: Rare. Depth range, this study: 99-234 m.<br />

Superfamily CAPULOIDEA Fleming, 1822<br />

Family Capuli<strong>da</strong>e Fleming, 1822<br />

Capulus ungaricus (Linnaeus, 1758)<br />

(Figure 159)<br />

Remarks: Rare. Depth range: sublittoral to 850<br />

m (P&G). Depth range, this study: 117-189 m.<br />

Superfamily VELUTINOIDEA Gray, 1850<br />

Family Velutini<strong>da</strong>e Gray, 1850<br />

Lamellaria perspicua (Linnaeus, 1758)<br />

(Figures 160-161)<br />

Remarks: Uncommon. Depth range: littoral to<br />

200 m (P&G; MM&B.) Depth range, this study:<br />

58-135 m. Collected alive at about 20 m, in previous<br />

workshop.<br />

Family Trivii<strong>da</strong>e Troschel, 1863<br />

Trivia pulex (Solander in J.E. Gray, 1828)<br />

(Figures 162-164)<br />

Remarks: Common. Depth range, this study:<br />

30-234 m. Ávila et al., 2000. Collected alive at<br />

about 20 m, during previous workshop.<br />

Trivia candidula (Gaskoin, 1835)<br />

(Figure 165)<br />

Remarks: Common; some specimens appeared<br />

fresh. Interti<strong>da</strong>l (MM&B). Ávila et al., 2000.<br />

Depth range, this study: 12-360 m.


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 63<br />

Erato sp.<br />

(Figures 166-167)<br />

Remarks: Rare; the specimens herein represented<br />

are tentatively identified as juveniles.<br />

Depth range, this study: 135-207 m<br />

Family Ovuli<strong>da</strong>e Feming, 1822<br />

Aperiovula juanjosensii Perez & Gomez, 1987<br />

(Figure 168)<br />

Remarks: Only a fragment was collected.<br />

Depth range, this study: 129-207 m.<br />

Superfamily NATICOIDEA Guilding, 1834<br />

Family Natici<strong>da</strong>e Guilding, 1834<br />

Notocochlis dillwynii (Payraudeau, 1826)<br />

(Figure 169)<br />

Remarks: Rare. Depth range: 1-25 m (MM&B;<br />

P&G); this study: 318 m<br />

Natica prietoi Hi<strong>da</strong>lgo, 1873<br />

(Figures 170-172)<br />

Remarks: Common, variable. Previously cited<br />

as Natica a<strong>da</strong>nsoni de Blainville, 1825 (Ávila et<br />

al., 2000). Depth range: infralittoral to 200 m<br />

(MM&B); this study: 14-360 m; alive: 18-<br />

318 m.<br />

Natica cf. prietoi Hi<strong>da</strong>lgo, 1873<br />

(Figure 173)<br />

Remarks: Rare. Depth range, this study: 32 m.<br />

Superfamily TONNOIDEA Suter, 1913<br />

Family Tonni<strong>da</strong>e Suter, 1913<br />

Phalium undulatum (Gmelin, 1791)<br />

Remarks: Only fragments. Depth range: 8-80<br />

m (P&G); infralittoral to 115 m (MM&B); this<br />

study: 32-207 m.<br />

Superfamily PTEROTRACHEOIDEA<br />

Rafinesque, 1814<br />

Family Atlanti<strong>da</strong>e Rang, 1829<br />

Atlanta peroni Lesueur, 1817<br />

(Figure 174)<br />

Remarks: Pelagic.<br />

Protatlanta souleyeti (E.A. Smith, 1888)<br />

(Figure 175)<br />

Remarks: Pelagic.<br />

Superfamily MURICOIDEA Rafinesque, 1815<br />

Family Murici<strong>da</strong>e Rafinesque, 1815<br />

Ocenebra erinaceus (Linnaeus, 1758)<br />

(Figure 176)<br />

Remarks: Rare. Only juveniles collected. Depth<br />

range: interti<strong>da</strong>l to150 m (P&G); this study: 32-<br />

207 m.<br />

Ocenebra sp.<br />

(Figure 177)<br />

Remarks: Uncommon. Depth range, this study:<br />

58-189 m.<br />

Ocinebrina aciculata (Lamarck, 1822)<br />

(Figure 178)<br />

Remarks: Relatively common. Ávila et al., 2000.<br />

Depth range: interti<strong>da</strong>l to at least 25 m (P&G); this<br />

study: 30-360 m.<br />

Ocinebrina cf. aciculata (Lamarck, 1822)<br />

(Figure 179)<br />

Remarks: Relatively common. Depth range, this<br />

study: 38-360 m.<br />

?Ocinebrina cf. aciculata (Lamarck, 1822)<br />

(Figures 180-181)<br />

Remarks: Uncommon. Depth range, this study:<br />

45-207 m.<br />

?Ocinebrina sp.<br />

(Figure 182)<br />

Remarks: Rare. Depth range, this study: 45-47 m.<br />

Orania fusulus (Brocchi, 1814)<br />

(Figures 183-185)<br />

Remarks: Depth range: 95-920 m (MM&B); 100-<br />

150 m (P&G); this study: 30-360 m; alive: 30-57 m.<br />

Trophonopsis barvicensis (Johnston, 1825)<br />

(Figures 186-192)<br />

Remarks: Commonly found. Depth range: 440-550<br />

m (MM&B); this study: 32-207 m.<br />

Trophonopsis cf. muricatus (Montagu, 1803)<br />

(Figures 193-194)<br />

Remarks: Commonly found. Ávila et al., 2000.<br />

Depth range: 10-200 m, with records down to<br />

2000 m (MM&B; P&G); this study: 41-108 m.<br />

Coralliophila cf. meyendorfii (Calcara, 1845)<br />

(Figure 195)<br />

Remarks: Uncommon. Depth range: infralittoral<br />

to circalittoral (MM&B); this study: 30-189 m.<br />

Coralliophila panormitana (Monterosato, 1896)<br />

(Figure 196)<br />

Remarks: Rare. Depth range: below low tide to<br />

640m (P&G); this study: 99-234 m.


64 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

Stramonita haemastoma (Linnaeus, 1767)<br />

(Figure 197)<br />

Remarks: Uncommon; specimens rolled, mostly<br />

juvenile, probably transported from the littoral.<br />

Knudsen, 1995 as Thais haemastoma flori<strong>da</strong>na<br />

(Conrad, 1837); Ávila et al., 2000. Depth range:<br />

interti<strong>da</strong>l to 3 m (P&G); this study: 32-360 m.<br />

Alive on IVFC (Martins, 2004).<br />

Family Cystici<strong>da</strong>e Stimpson, 1865<br />

Gibberula vignali (Dautzenberg & Fischer 1896)<br />

(Figure 198)<br />

Remarks: Rare. Depth range, this study: 156-360m.<br />

Gibberula cf. lazaroi Contreras, 1992<br />

(Figure 199)<br />

Remarks: Rare. Could be a juvenile of G. vignali,<br />

but resembles Gibberula lazaroi, described from the<br />

interti<strong>da</strong>l of Pico and Terceira islands (Contreras,<br />

1992). Depth range, this study: 117-234 m.<br />

Family Mitri<strong>da</strong>e Swainson, 1831<br />

Mitra cornea Lamarck, 1811<br />

(Figure 200)<br />

Remarks: Uncommon; specimens rolled, mostly<br />

juveniles. Knudsen, 1995 as M. nigra (Gmelin,<br />

1791); Ávila et al., 2000. Depth range: interti<strong>da</strong>l<br />

to 40 m (MM&B, as M. cornicula (Linnaeus);<br />

this study: 30-207 m; alive at IVFC (Martins,<br />

2004).<br />

Superfamily BUCCINOIDEA Rafinesque, 1815<br />

Family Buccini<strong>da</strong>e Rafinesque, 1815<br />

Pollia dorbignyi (Payraudeau, 1826)<br />

(Figures 201-202)<br />

Remarks: one fresh fragment. Depth range: in and<br />

just above littoral zone (MM&B; P&G); this study:<br />

30 m; alive at IVFC (Martins, 2004).<br />

Family Nassarii<strong>da</strong>e Ire<strong>da</strong>le, 1916<br />

Nassarius incrassatus (Ström, 1768)<br />

(Figures 203-206)<br />

Remarks: Common, mostly fragmented shells.<br />

Ávila et al., 2000. Depth range: interti<strong>da</strong>l to 200 m<br />

(MM&B; P&G); this study: 18-.360 m.<br />

Nassarius cf. cuvierii (Payraudeau, 1826)<br />

(Figure 207)<br />

Remarks: One juvenile specimen collected.<br />

Depth range: in and just above littoral zone<br />

(MM&B; P&G); this study: 66 m.<br />

Nassarius recidivus (Martens, 1876)<br />

(Figure 208)<br />

Remarks: Rare. Depth range, this study: 167-318 m.<br />

Family Columbelli<strong>da</strong>e Swainson, 1840<br />

Columbella a<strong>da</strong>nsoni Menke, 1853<br />

(Figure 209)<br />

Remarks: Uncommon, mostly fragmented shells;<br />

some juveniles appeared fresh. Knudsen, 1995;<br />

Ávila et al., 2000. Depth range: 4-1402 m (MM&B,<br />

as C. rustica (Linnaeus)); this study: 30-360 m;<br />

common alive at IVFC (Martins, 2004).<br />

Mitrella pallaryi (Dautzenberg, 1758)<br />

(Figure 210)<br />

Remarks: Rare. Depth range: 40-200 m (MM&B;<br />

P&G); this study: 129-360 m.<br />

Anachis avaroides Nordsieck, 1975<br />

(Figures 211-212)<br />

Remarks: Common. Ávila et al., 2000. Depth<br />

range: infralittoral (MM&B), this study: 30-207 m;<br />

common alive at IVFC (Martins, 2004).<br />

Superfamily CANCELLARIOIDEA Forbes &<br />

Hanley, 1851<br />

Family Cancellarii<strong>da</strong>e Forbes & Hanley, 1851<br />

Brocchinia clenchi Petit, 1986<br />

(Figures 213-214)<br />

Remarks: Frequent in some samples. Depth range,<br />

this study: 40-07 m; alive: 58-81 m.<br />

Superfamily CONOIDEA Fleming, 1822<br />

Family Coni<strong>da</strong>e Fleming, 1822<br />

Mitromorpha (Mitrolumna) azorensis Mifsud, 2001<br />

(Figures 215-216)<br />

Remarks: Uncommon. Bullock, 1995 as Mitrolumna<br />

olivoidea (Cantraine, 1835); Ávila et al., 2000.<br />

Depth range, this study: 30-207 m<br />

Bela nebula (Montagu, 1803)<br />

(Figures 217-222)<br />

Remarks: Common throughout the sampled depth<br />

range. Ávila et al., 2000. Depth range: 10-30 m<br />

(P&B); this study: 14-360 m; alive: 38-169 m.<br />

Mangelia cf. costata (Montagu, 1803)<br />

(Figures 223-229)<br />

Remarks: Common. Depth range: infralittoral<br />

40 m (MM&B); this study: 14-360 m; alive: 66-<br />

189 m.


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 65<br />

Raphitoma purpurea (Montagu, 1803)<br />

(Figure 230)<br />

Remarks: Uncommon. Depth range, this study:<br />

30-207 m<br />

Raphitoma linearis (Montagu, 1803)<br />

(Figure 231)<br />

Remarks: Uncommon. Depth range: Interti<strong>da</strong>l to<br />

200 m (P&G); this study: 38-234 m.<br />

Raphitoma cf. aequalis (Jeffreys, 1867)<br />

(Figures 232-240)<br />

Remarks: Common. Depth range: interti<strong>da</strong>l<br />

(MM&B); this study: 14-360 m; alive: 46-58 m.<br />

Raphitoma sp.<br />

(Figure 241)<br />

Remarks: Rare. Depth range, this study: 32-207 m.<br />

Pleurotomella gibbera Bouchet & Warén, 1980<br />

(Figures 242-244)<br />

Remarks: Rare. Depth range, this study: 72- 234 m.<br />

Pleurotomella cf. gibbera Bouchet & Warén, 1980<br />

(Figure 245)<br />

Remarks: Rare. Depth range, this study: 144-198m.<br />

Teretia teres (Reeve, 1844)<br />

(Figures 246-247)<br />

Remarks: Rare. Depth range: 30-1385 (MM&B);<br />

this study: 99-234 m.<br />

Family Drillii<strong>da</strong>e Olsson, 1964<br />

Crassopleura maravignae (Bivona, 1838)<br />

(Figures 248-250)<br />

Remarks: Common at deeper sandy bottoms.<br />

Ávila et al., 2000. Depth range, this study: 14-360<br />

m; alive at: 58-234 m.<br />

Family Turri<strong>da</strong>e H. & A. A<strong>da</strong>ms, 1853<br />

Haedropleura septangularis (Montagu, 1803)<br />

(Figures 251-252)<br />

Remarks: Uncommon. Ávila et al., 2000. Depth<br />

range: 7-70 m (P&G); this study: 30-207 m<br />

Subclass HETEROBRANCHIA Gray, 1840<br />

Order HETEROSTROPHA Fischer P., 1885<br />

Superfamily ARCHITECTONICOIDEA Gray,<br />

1850<br />

Family Architectonici<strong>da</strong>e Gray, 1850<br />

Philippia krebsi (Mörch, 1875)<br />

(Figure 253)<br />

Remarks: Rare. Depth range, this study: 56-207 m.<br />

Pseudotorinia architae (Costa O.G., 1841)<br />

(Figure 254)<br />

Remarks: Rare. Ávila et al., 2000. Depth range,<br />

this study: 180-234 m; alive at: 180m.<br />

Pseudomalaxis zancleus (Philippi, 1844)<br />

(Figure 255)<br />

Remarks: Rare. Depth range: 644 m (MM&B);<br />

this study: 117-234 m.<br />

Superfamily MATHILDOIDEA Dall, 1889<br />

Family Mathildi<strong>da</strong>e Semper, 1865<br />

Mathil<strong>da</strong> cochlaeformis Brugnone, 1873<br />

(Figure 256)<br />

Remarks: Rare; only one fresh, broken shell. Depth<br />

range: 1205 m (MM&B); this study: 144-198 m.<br />

Mathil<strong>da</strong> retusa (Brocchi, 1814)<br />

(Figure 257)<br />

Remarks: Rare; only one specimen collected.<br />

Depth range, this study: 117-234 m.<br />

Superfamily RISSOELLOIDEA Gray, 1850<br />

Family Rissoelli<strong>da</strong>e Gray, 1850<br />

?Rissoella sp. 1<br />

(Figure 258)<br />

Remarks: Rare. Depth range, this study: 156-360m.<br />

? Rissoella sp. 2<br />

(Figure 259)<br />

Remarks: Rare. Depth range, this study: 135 m.<br />

Superfamily OMALOGYROIDEA Sars, 1878<br />

Family Omalogyri<strong>da</strong>e Sars, 1878<br />

Omalogyra atomus (Philippi, 1841)<br />

(Figure 260)<br />

Remarks: Rare; only one specimen; however,<br />

the rarity of minute species can be seen as an<br />

artefact of sampling, for most of the fine fraction<br />

was discarded. Bullock et al. (1990) reported<br />

it to be very common on algal samples.<br />

Bullock, 1995; Knudsen, 1995; Ávila et al., 2000.<br />

Depth range: interti<strong>da</strong>l to 20 m (MM&B); this<br />

study: 117-145 m.<br />

Superfamily PYRAMIDELLOIDEA Gray, 1840<br />

Family Pyramidelli<strong>da</strong>e Gray, 1840<br />

O<strong>dos</strong>tomella doliolum (Philippi, 1844)<br />

(Figures 261-262)<br />

Remarks: Rare; one very fresh shell collected.<br />

Ávila et al., 2000. Depth range: 10-800 m<br />

(MM&B); this study: 180-234 m.


66 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

Chrysalli<strong>da</strong> cf. flexuosa (Monterosato, 1874 ex<br />

Jeffreys)<br />

(Figure 263)<br />

Remarks: Rare. Depth range, this study: 156-<br />

300 m.<br />

O<strong>dos</strong>tomia bernardi Aartsen, Gittenberger &<br />

Goud, 1998<br />

(Figure 264)<br />

Remarks: Common in fine fractions. Endemic.<br />

Depth range, this study: 30-360m.<br />

O<strong>dos</strong>tomia cf. verhoeveni Aartsen, Gittenberger<br />

& Goud, 1998<br />

(Figure 265)<br />

Remarks: Uncommon. Depth range, this study:<br />

30-207 m.<br />

O<strong>dos</strong>tomia duureni Aartsen, Gittenberger &<br />

Goud, 1998<br />

(Figure 266)<br />

Remarks: Rare. Depth range, this study: 57 m.<br />

O<strong>dos</strong>tomia cf. striolata Forbes & Hanley, 1850<br />

(Figure 267)<br />

Remarks: Rare. Depth range, this study: 72-<br />

234 m.<br />

Eulimella sp.<br />

(Figure 268)<br />

Remarks: Rare. Depth range, this study: 129-<br />

207 m.<br />

Turbonilla rufa (Philippi, 1836)<br />

(Figure 269)<br />

Remarks: Rare. Depth range, this study: 57-<br />

234 m.<br />

Turbonilla lactea (Linnaeus, 1758)<br />

(Figure 270)<br />

Remarks: Regularly present. Ávila, 2000.<br />

Depth range: Infralittoral to 80 m (MM&B); this<br />

study: 30-207 m.<br />

Turbonilla sp. 1<br />

(Figure 271)<br />

Remarks: Rare. Depth range, this study: 129-207 m.<br />

Turbonilla sp. 2<br />

(Figure 272)<br />

Remarks: Rare. Depth range, this study: 144-<br />

234 m.<br />

Turbonilla sp. 3<br />

(Figure 273)<br />

Remarks: Rare. Depth range, this study: 129-<br />

207 m.<br />

Turbonilla sp. 4<br />

(Figure 274)<br />

Remarks: Rare. Depth range, this study: 129-<br />

207 m.<br />

Family Murchisonelli<strong>da</strong>e Casey, 1905<br />

Ebala nitidissima (Montagu, 1803)<br />

(Figures 275-276)<br />

Remarks: Uncommon. Depth range, this<br />

study: 57-145 m.<br />

Subclass OPISTHOBRANCHIA Milne-<br />

Edwards, 1848<br />

Order CEPHALASPIDEA Fischer P., 1883<br />

Family Diaphani<strong>da</strong>e Odhner, 1914<br />

Colpo<strong>da</strong>spis pusilla Sars, 1870<br />

(Figure 277)<br />

Remarks: Rare. Depth range, this study: 135-<br />

189 m.<br />

Family Retusi<strong>da</strong>e Thiele, 1925<br />

Retusa truncatula (Bruguière, 1792)<br />

(Figures 278-279)<br />

Remarks: Common. Mikkelsen, 1995. Depth<br />

range: below low tide to 200 m (P&G); this<br />

study: 38-145 m.<br />

Family Haminoei<strong>da</strong>e Pilsbry, 1895<br />

Haminoea cf. orteai Talavera, Murillo &<br />

Templado, 1987<br />

(Figure 280)<br />

Remarks: Uncommon. Mikkelsen, 1995.<br />

Depth range, this study: 32-145 m.<br />

Atys macandrewi E.A. Smith, 1872<br />

(Figure 281)<br />

Remarks: Uncommon. Mikkelsen, 1995.<br />

Depth range, this study: 58-145 m.<br />

Atys sp.<br />

(Figure 282)<br />

Remarks: Rare. Depth range, this study: 46-47 m.<br />

Family Philini<strong>da</strong>e Gray, 1850<br />

Philine approximans Dautzenberg & Fisher, 1896<br />

(Figure 283)<br />

Remarks: Rare. Depth range, this study: 86-234 m.


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 67<br />

Philine sp.<br />

(Figure 284)<br />

Remarks: Rare. Depth range, this study: 72 m.<br />

Family Aglaji<strong>da</strong>e Pilsbry, 1895<br />

?Chelidonura africana Pruvot-Fol, 1953<br />

(Figure 285)<br />

Remarks: Rare. Depth range, this study: 117-<br />

234 m.<br />

Order THECOSOMATA de Blainville, 1824<br />

Family Cavolinii<strong>da</strong>e Gray, 1850<br />

Cavolinia inflexa (Lesueur, 1813)<br />

(Figures 286-287)<br />

Remarks: Common; it is a pelagic species.<br />

Cavolinia tridentata (Forskal, 1775)<br />

(Figure 288)<br />

Remarks: Common; it is a pelagic species.<br />

Diacria trispinosa (Lesueur, 1821)<br />

(Figures 289-290)<br />

Remarks: Rare; it is a pelagic species.<br />

Cuvierina atlantica (Bé, MacClintock & Currie,<br />

1972)<br />

(Figure 291)<br />

Remarks: Rare; it is a pelagic species.<br />

Clio pyrami<strong>da</strong>ta (Lesueur, 1821)<br />

(Figures 292-293)<br />

Remarks: Rare; it is a pelagic species.<br />

Family Limacini<strong>da</strong>e Gray, 1840<br />

Limacina cf. helicina (Phipps, 1774)<br />

(Figure 294)<br />

Remarks: Rare. Limacina helicina is a boreal,<br />

pelagic species; the specimens of the Azores,<br />

however, resemble those reported to this<br />

species elsewhere (Rolán, 2005).<br />

Limacina inflata (d’Orbigny, 1836)<br />

(Figure 295)<br />

Remarks: Rare; it is a pelagic species.<br />

Order NOTASPIDEA Fischer P., 1883<br />

Family Umbraculi<strong>da</strong>e Dall, 1889<br />

Umbraculum umbraculum (Lightfoot, 1786)<br />

(Figure 296)<br />

Remarks: Uncommon. Depth range, this study:<br />

52-198 m.<br />

Family Tylodini<strong>da</strong>e Gray, 1847<br />

Tylodina perversa (Gmelin, 1791)<br />

(Figure 297)<br />

Remarks: Rare. Depth range, this study: 117-<br />

145 m.<br />

Subclass PULMONATA Cuvier, 1817<br />

Superfamily SIPHONARIOIDEA Gray, 1827<br />

Family Siphonarii<strong>da</strong>e Gray, 1827<br />

Williamia gussonii (O.G. Costa, 1829)<br />

(Figure 298)<br />

Remarks: Uncommon. Ávila et al., 2000. Depth<br />

range, this study: 40-180 m.<br />

Order ARCHAEOPULMONATA<br />

Superfamily ELLOBIOIDEA Pfeiffer, 1854<br />

Family Ellobii<strong>da</strong>e Pfeiffer, 1854<br />

Ovatella vulcani (Morelet, 1860)<br />

Remarks: Only one shell; this is a suprati<strong>da</strong>l<br />

pulmonate.<br />

Pedipes pedipes Bruguière, 1789<br />

Remarks: Only one shell; this is a suprati<strong>da</strong>l<br />

pulmonate.<br />

Class BIVALVIA Linnaeus, 1758<br />

Order PTEROMORPHIA Beurlen, 1944<br />

Superfamily ARCOIDA Stoliczka, 1871<br />

Family Arci<strong>da</strong>e Lamarck, 1809<br />

Arca tetragona Poli, 1795<br />

(Figure 299)<br />

Remarks: Common. This species lives on hard<br />

substrates. Bullock, 1995; Ávila et al., 2000.<br />

Depth range: interti<strong>da</strong>l to 900 m (MM&B); low<br />

tide to 120 m (P&G); this study: 30-360 m.<br />

Asperarca nodulosa (O.F. Müller, 1776)<br />

(Figure 300)<br />

Remarks: Rare. Depth range: low tide to 1000 m<br />

(P&G); interti<strong>da</strong>l to 3300 m (MM&B); this<br />

study: 117-234 m.<br />

Family Noetii<strong>da</strong>e Stewart, 1930<br />

Bathyarca philippiana (Nyst, 1848)<br />

(Figures 301-302)<br />

Remarks: Rare. Depth range: around 150 m (P&G);<br />

60-1200 m (MM&B); this study: 117- 360 m.<br />

Family Limopsi<strong>da</strong>e Dall, 1895<br />

Limopsis minuta Philippi, 1836<br />

(Figure 303)<br />

Remarks: Rare. Depth range: 40-1400m


68 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XVIII<br />

299. Arca tetragona Poli, 1795. Loose valves (Sta8)<br />

300. Asperarca nodulosa (O.F. Müller, 1776). Loose valves (Sta37)<br />

301. Bathyarca philippiana (Nyst, 1848) (Sta41)<br />

302. Bathyarca philippiana (Nyst, 1848) (juvenile) (Sta37)<br />

303. Limopsis minuta Philippi, 1836 (Sta1)<br />

304. Gregariella semigranata (Reeve, 1858) (Sta28)<br />

305. Rhomboidella prideauxi (Leach, 1815) (Sta13)<br />

306. Pecten jacobeus (Linnaeus, 1758) (Sta26)<br />

307. Pecten jacobeus (Linnaeus, 1758) (juvenile) (Sta18)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 69


70 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XIX<br />

308. Aequipecten commutatus (Monterosato, 1875) (Sta29)<br />

309. Aequipecten commutatus (Monterosato, 1875) (Sta23)<br />

310. Aequipecten opercularis (Linnaeus, 1758) (Sta8)<br />

311. Aequipecten opercularis (Linnaeus, 1758) (Sta5)<br />

312. Bractechlamys corallinoides (d’Orbigny, 1840) (Sta26)<br />

313. Bractechlamys corallinoides (d’Orbigny, 1840) (Sta5)<br />

314. Bractechlamys corallinoides (d’Orbigny, 1840) (Sta23)<br />

315. Palliolum incomparabile (Risso, 1826) (Sta29)<br />

316. Palliolum incomparabile (Risso, 1826) (Sta29)<br />

317. Palliolum incomparabile (Risso, 1826) (Sta7)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 71


72 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XX<br />

318. Chlamys flexuosa (Poli, 1795) (Sta7)<br />

319. Talochlamys pusio (Linnaeus, 1758) (Sta26)<br />

320. Talochlamys pusio (Linnaeus, 1758) (Sta26)<br />

321. Pododesmus patelliformis (Linnaeus, 1761) (Sta56)<br />

322. Limaria hians (Gmelin, 1791) (Sta56)<br />

323. Neopycnodonte cochlear (Poli, 1795) (Sta55)<br />

324. Myrtea spinifera (Montagu, 1803) (Sta37)<br />

325. Lucinoma borealis (Linnaeus, 1767) (Sta37)<br />

326. Lucinoma borealis (Linnaeus, 1767) (Sta37)<br />

327. Thyasira flexuosa (Montagu, 1803) (Sta7)<br />

328. Diplodonta berghi (Dautzenberg & Fischer, 1897) (Sta32)<br />

329. Diplodonta berghi (Dautzenberg & Fischer, 1897) (Sta40)<br />

330. Diplodonta berghi (Dautzenberg & Fischer, 1897) (Sta46)<br />

331. Diplodonta trigona (Scacchi, 1835) (Sta56)<br />

332. Diplodonta trigona (Scacchi, 1835) (Sta29)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 73


74 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XXI<br />

333. Chama gryphoides (Linnaeus, 1758) (Sta55)<br />

334. Chama gryphoides (Linnaeus, 1758) (Sta37)<br />

335. Kurtiella pelluci<strong>da</strong> (Jeffreys, 1881) (Sta27)<br />

336. Kurtiella pelluci<strong>da</strong> (Jeffreys, 1881) (Sta7)<br />

337. Basterotia clancula von Cosel, 1995. Loose valves (juvenile) (Sta28)<br />

338. Basterotia clancula von Cosel, 1995. Loose valves (Sta12)<br />

339. Cardita calyculata (Linnaeus, 1758) (Sta24)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 75


76 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XXII<br />

340. ?Crassatina sp. (Sta46)<br />

341. Papillicardium papillosum (Poli, 1791) (Sta47)<br />

342. Papillicardium papillosum (Poli, 1791) (Sta57)<br />

343. Papillicardium papillosum (Poli, 1791) (Sta56)<br />

344. Papillicardium papillosum (Poli, 1791) (Sta15)<br />

345. Papillicardium papillosum (Poli, 1791) (Sta5)<br />

346. Papillicardium papillosum (Poli, 1791) (Sta5)<br />

347. Parvicardium vroomi van Aartsen, Menkhorst & Gittenberger, 1984. Loose<br />

valves (Sta27)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 77


78 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XXIII<br />

348. Tellina incarnata Linnaeus, 1758 (Sta57)<br />

349. Tellina pygmaea Lovén, 1846 (Sta48)<br />

350. Tellina pygmaea Lovén, 1846 (Sta12)<br />

351. Tellina pygmaea Lovén, 1846 (Sta57)<br />

352. Tellina pygmaea Lovén, 1846 (Sta5)<br />

353. Tellina pygmaea Lovén, 1846 (Sta57)<br />

354. Arcopagia balaustina (Linnaeus, 1758) (Sta43)<br />

355. Arcopagia balaustina (Linnaeus, 1758) (Sta37)<br />

356. Arcopagia balaustina (Linnaeus, 1758) (Sta7)<br />

357. ?Tellina sp. (Sta28)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 79


80 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XXIV<br />

358. Gari costulata (Turton, 1822) (Sta15)<br />

359. Gari costulata (Turton, 1822) (Sta31)<br />

360. Ervilia castanea (Montagu, 1803) (Sta26)<br />

361. Ervilia castanea (Montagu, 1803) (Sta31)<br />

362. Azorinus chamasolen (<strong>da</strong> Costa, 1778) (juvenile) (Sta44)<br />

363. Azorinus chamasolen (<strong>da</strong> Costa, 1778) (Sta40)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 81


82 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XXV<br />

364. Coralliophaga lithophagella (Lamarck, 1819) (Sta37)<br />

365. Coralliophaga lithophagella (Lamarck, 1819) (Sta37)<br />

366. Coralliophaga lithophagella (Lamarck, 1819) (juvenile) (Sta53)<br />

367. Coralliophaga lithophagella (Lamarck, 1819) (juvenile) (Sta37)<br />

368. Venus casina Linnaeus, 1758 (Sta54)<br />

369. Venus verrucosa Linnaeus, 1758 (Sta1)<br />

370. Venus verrucosa Linnaeus, 1758 (Sta26)<br />

371. Globivenus effossa (Philippi, 1836) (Sta41)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 83


84 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XXVI<br />

372. <strong>Timoclea</strong> <strong>ovata</strong> (Pennant, 1777) (Sta48)<br />

373. <strong>Timoclea</strong> <strong>ovata</strong> (Pennant, 1777) (Sta56)<br />

374. <strong>Timoclea</strong> <strong>ovata</strong> (Pennant, 1777) (Sta15)<br />

375. Gouldia minima (Montagu, 1803) (Sta5)<br />

376. Gouldia minima (Montagu, 1803) (Sta56)<br />

377. Gouldia minima (Montagu, 1803) (Sta15)<br />

378. Gouldia minima (Montagu, 1803) (Sta15)<br />

379. Gouldia minima (Montagu, 1803) (Sta27)<br />

380. Callista chione (Linnaeus, 1758) (Sta40)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 85


86 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

PLATE XXVII<br />

381. Hiatella arctica (Linnaeus, 1767) (Sta32)<br />

382. Hiatella arctica (Linnaeus, 1767) (Sta18)<br />

383. Gastrochaena dubia (Pennant, 1777) (Sta32)<br />

384. Nototeredo norvagica (Spengler, 1792) (Sta12)<br />

385. Teredora malleolus (Turton, 1822) (Sta1)<br />

386. Xyloredo sp. (Sta56)<br />

387. Xyloredo sp. (Sta56)<br />

388. Thracia papyracea (Poli, 1791) (Sta13)<br />

389. Cardiomya costellata (Deshayes, 1835) (Sta23)<br />

390. Cuspi<strong>da</strong>ria atlantica Allen & Morgan, 1981 (Sta38)


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 87


88 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

(MM&B); continental shelves down to 900 m<br />

(P&G); this study: 57 m.<br />

Superfamily MYTILOIDA de Férussac, 1822<br />

Family Mytili<strong>da</strong>e Rafinesque, 1815<br />

Gregariella semigranata (Reeve, 1858)<br />

(Figure 304)<br />

Remarks: Common. Morton, 1995 as Trichomusculus<br />

semigranatus. This species lives on<br />

hard substrata. Depth range, this study: 30-<br />

360m; alive: 66 m.<br />

Rhomboidella prideauxi (Leach, 1815)<br />

(Figure 305)<br />

Remarks: Rare. Depth range, this study: 73-<br />

180 m.<br />

Superfamily PTERIOIDA Newell, 1965<br />

Family Pectini<strong>da</strong>e Rafinesque, 1815<br />

Pecten jacobeus (Linnaeus, 1758)<br />

(Figures 306-307)<br />

Remarks: Uncommon. Depth range: 25-250 m<br />

(P&G); this study: 40-360 m; alive: 72 m.<br />

Aequipecten commutatus (Monterosato, 1875)<br />

(Figures 308-309)<br />

Remarks: Uncommon. Ávila et al., 2000. Depth<br />

range: 30-250 m; this study: 40-360 m; alive:<br />

180 m.<br />

Aequipecten opercularis (Linnaeus, 1758)<br />

(Figures 310-311)<br />

Remarks: Common. Ávila et al., 2000. Depth<br />

range: low tide to 400 m (P&G; MM&B); this<br />

study: 38-360 m; alive: 41-171 m.<br />

Bractechlamys corallinoides (d’Orbigny, 1840<br />

(Figures 312-314)<br />

Remarks: Common. Depth range: 3-100 m<br />

(P&G); this study: 38-360 m.<br />

Palliolum incomparbile (Risso, 1826)<br />

(Figures 315-317)<br />

Remarks: Common. Ávila et al., 2000. Depth<br />

range: 10-250 m (P&G); infralittoral to 2000 m<br />

(MM&B); this study: 30-360 m.<br />

Chlamys flexuosa (Poli, 1795)<br />

(Figure 318)<br />

Remarks: Very rare. Ávila et al., 2000. Depth<br />

range: 30-250 m (P&G); this study: 45-189 m.<br />

Talochlamys pusio (Linnaeus, 1758)<br />

(Figures 319-320)<br />

Remarks: Common. Ávila et al., 2000 as<br />

Crassadoma pusio. Depth range: from a few<br />

meters to 150 m (P&G, as Hinnites distortus<br />

(<strong>da</strong> Costa, 1778)); 100-2300 (MM&B, as Chlamys<br />

distorta (<strong>da</strong> Costa, 1778)); this study: 30-<br />

360 m. Collected alive at IVFC (Martins,<br />

2004).<br />

Family Anomii<strong>da</strong>e Rafinesque, 1815<br />

Pododesmus patelliformis (Linnaeus, 1761)<br />

(Figure 321)<br />

Remarks: Common. Depth range: interti<strong>da</strong>l to<br />

50 m (P&G); interti<strong>da</strong>l to 450 m (MM&B); this<br />

study: 14-360 m.<br />

Family Limi<strong>da</strong>e Rafinesque, 1815<br />

Limaria hians (Gmelin, 1791)<br />

(Figure 322)<br />

Remarks: Common. Ávila et al., 2000. Depth<br />

range: low tide to 100 m (P&G); low tide to 450<br />

m (MM&B); this study: 30-360 m. Collected<br />

alive at IVFC (Martins, 2004).<br />

Superfamily OSTREOIDA de Férussac, 1822<br />

Family Gryphaei<strong>da</strong>e Vyalov, 1936<br />

Neopycnodonte cochlear (Poli, 1795)<br />

(Figure 323)<br />

Remarks: Common. Ávila et al., 2000. Depth<br />

range: 45-250 m (P&G); this study: 41-360 m;<br />

alive: 66-162 m.<br />

Order HETERODONTA Neumayr, 1884<br />

Superfamily VENEROIDA H. & A. A<strong>da</strong>ms,<br />

1857<br />

Family Lucini<strong>da</strong>e Fleming, 1828<br />

Myrtea spinifera (Montagu, 1803)<br />

(Figure 324)<br />

Remarks: Rare. Depth range: 7-250 m (P&G);<br />

this study: 117-234 m.<br />

Lucinoma borealis (Linnaeus, 1767)<br />

(Figures 325-326)<br />

Remarks: Common. Bullock, 1995. Range:<br />

interti<strong>da</strong>l to 500 m (P&G); interti<strong>da</strong>l to 1500 m<br />

(MM&B); this study: 30-360 m; alive: 95-351 m.<br />

This species was collected alive at IVFC about<br />

20 cm deep into the sandy substratum (pers.<br />

obs., AMFM).


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 89<br />

Family Thyasiri<strong>da</strong>e Dall, 1900<br />

Thyasira flexuosa (Montagu, 1803)<br />

(Figure 327)<br />

Remarks: Rare. Depth range: 10-2000 m (P&G);<br />

infralittoral to 2190 m (MM&B); this study:<br />

135-360 m.<br />

Family Ungulini<strong>da</strong>e A<strong>da</strong>ms, H. & A., 1857<br />

Diplodonta berghi (Dautzenberg & Fischer,<br />

1897)<br />

(Figures 328-330)<br />

Remarks: Uncommon. Depth range: 130-1360<br />

m (MM&B); this study: 38-234 m.<br />

Diplodonta trigona (Sacchi, 1835)<br />

(Figures 331-332)<br />

Remarks: Common. Depth range, this study:<br />

30-360 m; alive: 30-198 m.<br />

Family Chami<strong>da</strong>e Lamarck, 1809<br />

Chama gryphoides (Linnaeus, 1758)<br />

(Figures 333-334)<br />

Remarks: Common. Depth range: interti<strong>da</strong>l to<br />

200 m (P&G; MM&B); this study: 41-360 m;<br />

alive: 162-234 m.<br />

Family Montacuti<strong>da</strong>e Clark, 1855<br />

Kurtiella pelluci<strong>da</strong> (Jeffreys, 1881)<br />

(Figures 335-336)<br />

Remarks: Uncommon. Depth range, this study:<br />

40-360 m; alive: 99-207 m.<br />

Family Sportelli<strong>da</strong>e Dall, 1899<br />

Basterotia clancula von Cosel, 1995<br />

(Figures 337-338)<br />

Remarks: Common. Depth range, this study:<br />

18-360 m.<br />

Family Carditi<strong>da</strong>e Fleming, 1828<br />

Cardita calyculata (Linnaeus, 1758)<br />

(Figure 339)<br />

Remarks: Common. Bullock, 1995; Ávila et al.,<br />

2000. Depth range: low tide to 200 m (MM&B;<br />

P&G); this study: 30-360 m; alive: 38-117 m.<br />

Alive at IVFC (Martins, 2004).<br />

Family Crassatelli<strong>da</strong>e Férussac, 1822<br />

?Crassatina sp.<br />

(Figure 340)<br />

Remarks: Rare. One valve, tentatively assigned<br />

to this genus. Depth range, this study:<br />

56 m.<br />

Family Cardii<strong>da</strong>e Lamarck, 1809<br />

Papillicardium papillosum (Poli, 1791)<br />

(Figures 341-346)<br />

Remarks: Very common. Ávila et al., 2000.<br />

Depth range: infralittoral to 60 m (MM&B); this<br />

study: 45-360 m; alive: 45-318 m.<br />

Parvicardium vroomi van Aartsen, Menkhorst &<br />

Gittenberger, 1984<br />

(Figure 347)<br />

Remarks: Common. Ávila et al., 2000. Depth<br />

range, this study: 46-360 m.<br />

Family Tellini<strong>da</strong>e de Blainville, 1814<br />

Tellina incarnata Linnaeus, 1758<br />

(Figure 348)<br />

Remarks: Common. Ávila et al., 2000. Depth<br />

range: interti<strong>da</strong>l to 85 m (MM&B; P&G);<br />

this study: 18-360 m; alive: 18-72 m. This<br />

species was taken alive at IVFC about 20 cm<br />

deep into the sandy substrata (pers. obs.,<br />

AMFM).<br />

Tellina pygmaea Lovén, 1846<br />

(Figures 349-353)<br />

Remarks: Very common. Depth range: interti<strong>da</strong>l<br />

to 150 m; this study: 18-360 m. Collected<br />

alive throughout its range. Authors report T.<br />

donacina Linnaeus, 1758 as living in the Azores<br />

(Ávila et al., 2000); however, all the specimens<br />

herein collected conform to the representation<br />

of T. pygmaea instead.<br />

Arcopagia balaustina Linnaeus, 1758<br />

(Figures 354-355)<br />

Remarks: Common. Depth range: infralittoral<br />

to 750 m (MM&B; P&G); this study: 46-360 m;<br />

alive: 66-360 m.<br />

? Tellina sp.<br />

(Figure 356)<br />

Remarks: Rare; only one valve, tentatively<br />

assigned to this genus. Depth range, this<br />

study: 117-145.<br />

Family Psammobii<strong>da</strong>e Fleming, 1828<br />

Gari costulata (Turton, 1822)<br />

(Figures 357-359)<br />

Remarks: Common. Ávila et al., 2000. Depth<br />

range: infralittoral to 150 m, most abun<strong>da</strong>nt 35-<br />

60 m (MM&B; P&G); this study: 18-360 m;<br />

alive: 18-66 m.


90 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

Family Semeli<strong>da</strong>e Stoliczka, 1870 (1850)<br />

Ervilia castanea (Montagu, 1803)<br />

(Figures 360-361)<br />

Remarks: The commonest bivalve in the Azores<br />

(Morton, 1990). Bullock, 1995; Ávila et al., 2000.<br />

Depth range: 30-100 m (P&G); interti<strong>da</strong>l to<br />

1800 m (MM&B); this study: 18-360 m; collected<br />

alive throughout its range. Alive at IVFC<br />

(Martins, 2004).<br />

Family Solecurti<strong>da</strong>e d’Orbigny, 1846<br />

Azorinus chamasolen (<strong>da</strong> Costa, 1778)<br />

(Figures 362-363)<br />

Remarks: Rare. Depth range, this study: 38-66<br />

m; alive: 66 m.<br />

Family Trapezi<strong>da</strong>e d’Orbigny, 1846<br />

Coralliophaga lithophagella (Lamarck, 1819)<br />

(Figures 364-367)<br />

Remarks: Uncommon. Depth range: 33-200 m<br />

(MM&B; P&G); this study: 57-360 m; alive: 162-<br />

234 m.<br />

Family Veneri<strong>da</strong>e Rafinesque, 1815<br />

Venus casina Linnaeus, 1758<br />

(Figure 368)<br />

Remarks: Common. Ávila et al., 2000. Depth<br />

range: 5-200 m (P&G); this study: 32-360 m;<br />

alive: 32-180 m.<br />

Venus verrucosa Linnaeus, 1758<br />

(Figures 369-370)<br />

Remarks: Uncommon. Depth range: interti<strong>da</strong>l<br />

to 100 m (MM&B; P&G); this study: 46-360;<br />

alive: 32-66 m.<br />

Globivenus effossa (Philippi, 1836)<br />

(Figure 371)<br />

Remarks: Rare. Ávila et al., 2000. Depth range:<br />

50-300 m (P&G); this study: 156-360; taken<br />

alive throughout the range.<br />

<strong>Timoclea</strong> <strong>ovata</strong> (Pennant, 1777)<br />

(Figures 372-374)<br />

Remarks: Very common. Ávila et al., 2000.<br />

Depth range: 4-200 m (P&G); this study: 46-360<br />

m; alive: 30-360 m.<br />

Gouldia minima (Montagu, 1803)<br />

(Figures 375-379)<br />

Remarks: Very common. Ávila et al., 2000.<br />

Depth range: interti<strong>da</strong>l to 200 m (MM&B;<br />

P&G); this study: 18-360 m; alive: 38-<br />

360 m.<br />

Callista chione (Linnaeus, 1758)<br />

(Figure 380)<br />

Remarks: Common. Ávila et al., 2000. Depth<br />

range: interti<strong>da</strong>l to 180 m (MM&B; P&G); this<br />

study: 18-360 m; alive: 38-81 m.<br />

Superfamily MYOIDA Stoliczka, 1870<br />

Family Hiatelli<strong>da</strong>e Gray, 1824<br />

Hiatella arctica (Linnaeus, 1767)<br />

(Figures 381-382)<br />

Remarks: Uncommon; possibly young specimens<br />

of this species. Ávila et al., 2000. Depth<br />

range: interti<strong>da</strong>l to 1400 m (MM&B; P&G); this<br />

study: 72-207 m.<br />

Family Gastrochaeni<strong>da</strong>e Gray, 1840<br />

Gastrochaena dubia (Pennant, 1777)<br />

(Figure 383)<br />

Remarks: Rare; one valve tentatively assigned to<br />

this species. Depth range, this study: 180 m.<br />

Family Teredini<strong>da</strong>e Rafinesque, 1815<br />

Nototeredo norvagica (Spengler, 1792)<br />

(Figure 384)<br />

Remarks: Rare. This species lives in drifting<br />

wood.<br />

Teredora malleolus (Turton, 1822)<br />

(Figure 385)<br />

Remarks: Rare. This species lives in drifting<br />

wood.<br />

Family Xylophagi<strong>da</strong>e Purchon, 1941<br />

Xyloredo sp.<br />

(Figures 396-387)<br />

Remarks: Common. This species lives in<br />

sunken wood. Depth range, this study: 32-<br />

360 m.<br />

Order ANOMALODESMATA Dall, 1889<br />

Superfamily PHOLADOMYOIDA Newell,<br />

1965<br />

Family Thracii<strong>da</strong>e Stoliczka, 1870<br />

Thracia papyracea (Poli, 1791)<br />

(Figure 388)<br />

Remarks: Common. Ávila et al., 2000. Depth<br />

range: interti<strong>da</strong>l to 50 m (MM&B; P&G as T.<br />

phaseolina (Lamarck, 1818)); this study: 30-360<br />

m; alive: 32-198 m.


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 91<br />

Family Cuspi<strong>da</strong>rii<strong>da</strong>e Dall, 1886<br />

Cardiomya costellata (Deshayes, 1833)<br />

(Figure 389)<br />

Remarks: Common. Depth range: 18-200 m<br />

(P&G); infralittoral to 1400 m (MM&B); this<br />

study: 40-360 m; alive: 46-198 m.<br />

Cuspi<strong>da</strong>ria atlantica Allen & Morgan, 1981<br />

(Figure 390)<br />

Remarks: Rare. Depth range, this study: 129-<br />

207 m.<br />

Class CEPHALOPODA Schneider, 1784<br />

Subclass COLOIDEA Bather, 1788<br />

Order OCTOPODA Leach, 1818<br />

Suborder INCIRRATA Grimpe, 1916<br />

Family Octopodi<strong>da</strong>e d’Orbigny, 1840<br />

Octopus vulgaris Cuvier, 1797<br />

(Figure 391)<br />

Remarks: One very young specimen collected<br />

alive on a crevice of a dredged rock. Depth<br />

range, this study: 150 m.<br />

ACKNOWLEDGEMENTS<br />

We thank Serge Gofas, Henk Dijsktra,<br />

Emílio Rolán and Marco Oliverio for their<br />

kind contributions to the identities of many<br />

species. Sérgio P. Ávila was supported by<br />

grant SFRH/BPD/22913/2005 (FCT –<br />

Fun<strong>da</strong>ção para a Ciência e Tecnologia) of the<br />

Portuguese government. IMAR-DOP/UAc<br />

(UI&D #531 and ISR LA#9) is funded by<br />

FCT/MCTES– Lisbon and DRCT/Azores<br />

through pluri-annual and programmatic<br />

funding schemes (part FEDER).<br />

LITERATURE CITED<br />

ADAM, W., & J. KNUDSEN, 1969.<br />

Quelques genres de mollusques<br />

prosobranches marins inconnus ou<br />

peu connus de l’Afrique<br />

Occidentale. Bulletin de l’Institut<br />

royal des Sciences naturelles de<br />

Belgique, 44(27): 1-69.<br />

ÁVILA, S.P., 2000. The shallow-water<br />

Rissoi<strong>da</strong>e (Mollusca, Gastropo<strong>da</strong>)<br />

of the Azores and some aspects of<br />

their ecology. Iberus, 18(2): 51-76.<br />

ÁVILA, S.P., 2003. The littoral molluscs<br />

(Gastropo<strong>da</strong>, Bivalvia and<br />

Polyplacophora) of São Vicente,<br />

Capelas (São Miguel Island,<br />

Azores): ecology and biological<br />

associations to algae. Iberus, 21(1):<br />

11-33.<br />

ÁVILA, S.P., J.M.N. AZEVEDO, J.M.<br />

GONÇALVES, J. FONTES & F.<br />

CARDIGOS, 2000. Checklist of the<br />

shallow-water marine molluscs of<br />

the Azores: 2 - São Miguel island.<br />

Açoreana, 9(2): 139-173.<br />

BOUCHET, P., 1984. Les Triphori<strong>da</strong>e<br />

de Mediterranée et le proche<br />

Atlantique (Mollusca, Gastropo<strong>da</strong>).<br />

Lavori Società Italiana di<br />

Malacologia, 21: 5-58. [not seen]<br />

BOUCHET, P., & H. GUILLEMOT,<br />

1978. The Triphora perversa complex<br />

in Western Europe. Journal of<br />

Molluscan Studies, 44: 344-356.<br />

BULLOCK, R.C., 1995. The distribution<br />

of the molluscan fauna associated<br />

with the interti<strong>da</strong>l coralline<br />

algal turf of a partially submerged<br />

volcanic crater, the Ilhéu de Vila<br />

Franca, São Miguel, Azores. In:<br />

MARTINS, A.M.F. (ed.), The marine<br />

fauna and flora of the Azores.<br />

Proceedings of the Second International<br />

Workshop of Malacology and<br />

Marine Biology, Vila Franca do<br />

Campo, São Miguel, Azores.<br />

Açoreana, Supplement [4]: 9-55.<br />

BULLOCK, R.C., TURNER, R.D. &<br />

R.A. FRALICK, 1990. Species richness<br />

and diversity of algal - associated<br />

micromolluscan communities<br />

from São Miguel, <strong>Açores</strong>. In:<br />

MARTINS, A.M.F. (ed.), The marine<br />

fauna and flora of the Azores.<br />

Proceedings of the First International<br />

Workshop of Malacology São Miguel,<br />

Azores. Açoreana, Supplement [2]:<br />

39-58.


92 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

CONTRERAS, J.A., 1992. Una nuova<br />

Gibberula <strong>da</strong>lle Isole Azzorre<br />

(Gastropo<strong>da</strong>, Marginelli<strong>da</strong>e). La<br />

Conchiglia, 262: 44-45.<br />

GOFAS, S., 1990. The littoral<br />

Rissoi<strong>da</strong>e and Anabathri<strong>da</strong>e of São<br />

Miguel, Azores. In: MARTINS,<br />

A.M.F. (ed.), The marine fauna and<br />

flora of the Azores. Proceedings of the<br />

First International Workshop of<br />

Malacology São Miguel, Azores.<br />

Açoreana, Supplement [2]: 97-134.<br />

HOUBRICK, J., 1990. Anatomy,<br />

reproductive biology and systematic<br />

position of Fossarus ambiguous<br />

(Linné) (Fossarinae: Planaxi<strong>da</strong>e:<br />

Prosobranchia). In: MARTINS,<br />

A.M.F. (ed.), The marine fauna and<br />

flora of the Azores. Proceedings of the<br />

First International Workshop of<br />

Malacology São Miguel, Azores.<br />

Açoreana, Supplement [2]: 59-73.<br />

KNUDSEN, J., 1995. Observations on<br />

reproductive strategy and zoogeography<br />

of some marine<br />

Prosobranch Gastropods (Mollusca)<br />

from the Azores. In:<br />

MARTINS, A.M.F. (ed.), The marine<br />

fauna and flora of the Azores.<br />

Proceedings of the Second International<br />

Workshop of Malacology and<br />

Marine Biology, Vila Franca do<br />

Campo, São Miguel, Azores.<br />

Açoreana, Supplement [4]: 135-158.<br />

MACEDO, M.C.C., M.I.C. MACEDO<br />

& J.P. BORGES, 1999. Conchas<br />

Marinhas de Portugal, 516 pp.<br />

Editorial Verbo, Lisboa.<br />

MARTINS, A.M.F., 2004. The Princess’<br />

Ring, 99 pp. Intermezzo-Audiovisuais,<br />

L<strong>da</strong>., Lisboa.<br />

MIKKELSEN, P.M., 1995. Cephalaspids<br />

of the Azores. In:<br />

MARTINS, A.M.F. (ed.), The marine<br />

fauna and flora of the Azores.<br />

Proceedings of the Second<br />

International Workshop of Malacology<br />

and Marine Biology, Vila Franca do<br />

Campo, São Miguel, Azores.<br />

Açoreana, Supplement [4]: 193-215.<br />

MORTON, B., 1990. The biology and<br />

functional morphology of Ervilia<br />

castanea (Bivalvia: Tellinacea) from<br />

the Azores. In: MARTINS, A.M.F.<br />

(ed.), The marine fauna and flora<br />

of the Azores. Proceedings of the<br />

First International Workshop of<br />

Malacology São Miguel, Azores.<br />

Açoreana, Supplement [2]: 75-96.<br />

MORTON, B, 1995. The biology and<br />

functional morphology of Trichomusculus<br />

semigranatus (Bivalvia:<br />

Mytiloidea) from the Azores. In:<br />

MARTINS, A.M.F. (ed.), The marine<br />

fauna and flora of the Azores.<br />

Proceedings of the Second International<br />

Workshop of Malacology and<br />

Marine Biology, Vila Franca do<br />

Campo, São Miguel, Azores.<br />

Açoreana, Supplement [4]: 279-295.<br />

POPPE, G.T., & Y. GOTO, 1991-1993.<br />

European Seashells, vol. 1 [1991]<br />

(Polyplacophora, Caudofoveata,<br />

Solenogastra, Gastropo<strong>da</strong>), 352 pp;<br />

vol. 2 [1993] (Scaphopo<strong>da</strong>,<br />

Bivalvia, Cephalopo<strong>da</strong>), 221 pp.<br />

Verlag Christa Hemmen,<br />

Wiesbaden.<br />

ROLÁN, E., 2005. Malacological Fauna<br />

from the Cape Verde Archipelago, 455<br />

pp. ConchBooks, Hackenheim.


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 93<br />

FIGURE 391. Octopus vulgaris Cuvier, 1797 (Sta42)


94 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

TABLE 1. Distribution of the species dredged during the workshop. See text for station descrip-<br />

TAXA<br />

STATIONS<br />

3<br />

9<br />

2<br />

5<br />

3<br />

4<br />

1<br />

6<br />

3<br />

5<br />

1<br />

9<br />

POLYPLACOPHORA<br />

Lepidochiton cimicoides<br />

Acanthochitona fascicularis v v v v v<br />

4<br />

5<br />

5<br />

7<br />

5<br />

8<br />

3<br />

6<br />

4<br />

0<br />

0<br />

6<br />

0<br />

5<br />

1<br />

4<br />

1<br />

5<br />

2<br />

0<br />

3<br />

1<br />

4<br />

6<br />

0<br />

1<br />

5<br />

6<br />

3<br />

0<br />

4<br />

8<br />

GASTROPODA<br />

Patella candei v v v v v v<br />

Patella ulyssiponensis v v v v v v v<br />

Tectura virginea v v v v v v v v v v v v<br />

Propilidium exiguum<br />

Emarginula sp.<br />

Sinezona cingulata<br />

Haliotis coccinea v v f f v<br />

? Haliotis sp.<br />

Lepetella laterocompressa<br />

Addisonia excentrica<br />

Clelandella azorica<br />

v<br />

Clelandella sp.<br />

Jujubinus pseudogravinae v v v v v v v v v v v v v v<br />

Gibbula delgadensis v v v v<br />

Gibbula magus v + v v + + + + + + v + v v + v<br />

Margarites sp.<br />

Solariella azorensis + f f +<br />

Calliostoma lividum v f v f f<br />

Calliostoma hirondellei<br />

Cirsonella gaudryi<br />

Tricolia pullus azorica f v v v v f v v v v<br />

Bittium cf. latreillii v v v v v + v v v v v v v v v<br />

Bittium latreillii<br />

Fossarus ambiguus v f<br />

Cheirodonta pallescens v v v v v v<br />

Similiphora similior v v v v v v v v v<br />

Marshallora adversa v v v v v v<br />

Marshallora cf. adversa<br />

v<br />

Monophorus sp. v v v<br />

Monophorus erythrosoma v v v v v<br />

Monophorus thiriotae v v v v v<br />

Pogonodon pseudocanaricus<br />

f<br />

Strobiligera.brychia<br />

Metaxia cf. abrupta<br />

Cerithiopsis tubercularis v v v v<br />

Cerithiopsis tiara<br />

Cerithiopsis jeffreysi<br />

Cerithiopsis scalaris<br />

v<br />

Cerithiopsis minima v v v<br />

Cerithiopsis cf. minima<br />

v<br />

Cerithiopsis fayalensis<br />

Krachia cf. guernei<br />

Gyroscala lamellosa<br />

f<br />

Epitonium turtonis<br />

Epitonium clathrus<br />

Epitonium pulchellum<br />

v<br />

Epitonium celesti v v<br />

Punctiscala cerigottana


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 95<br />

tion. f, fragment; v, rolled shell or single valve; +, with live animal or both valves.<br />

4<br />

4<br />

5<br />

0<br />

5<br />

4<br />

1<br />

8<br />

4<br />

7<br />

4<br />

9<br />

1<br />

3<br />

2<br />

7<br />

2<br />

3<br />

2<br />

4<br />

2<br />

1<br />

1<br />

2<br />

0<br />

2<br />

2<br />

8<br />

4<br />

2<br />

2<br />

6<br />

0<br />

8<br />

3<br />

2<br />

0<br />

7<br />

2<br />

9<br />

3<br />

8<br />

3<br />

3<br />

3<br />

7<br />

4<br />

3<br />

5<br />

2<br />

5<br />

3<br />

5<br />

1<br />

4<br />

1<br />

5<br />

5<br />

v v f v v v<br />

+<br />

f v v v v v f f f<br />

f v v v v f v v v v v<br />

v v v v v v v v v v v v v v v v v v<br />

v<br />

v<br />

v<br />

v v f v v v v f v v<br />

v<br />

v v v v v<br />

v<br />

v v v v v + v v f v v<br />

f<br />

v<br />

v v v v v v f f f v v v v f v v v v v<br />

v v v v v v v v<br />

v v + v v v v v v v v v v v f f v v v f v v +<br />

v v v<br />

f v + v v v + f + + f v<br />

v v f v f v f f v v v<br />

v v v<br />

v<br />

f v f v v v v v v v v v v v<br />

v v v v v v v v v v v v v v v v v v v v v<br />

v<br />

v v v v v<br />

v v v v v<br />

v v v v v v v v v v v v<br />

v v v v v v v v v v v v v<br />

v<br />

v<br />

v<br />

v v v v v<br />

v v v v<br />

v<br />

v<br />

v v v<br />

v<br />

v<br />

v<br />

v v v v<br />

v v v<br />

v<br />

v v v v<br />

v v<br />

v<br />

v<br />

v<br />

v v v v<br />

v v v v v<br />

v


96 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

TABLE 1. Distribution of the species dredged during the workshop. See text for station descrip-<br />

STATIONS<br />

TAXA<br />

Acirsa subdecussata<br />

Opalia hellenica<br />

3<br />

9<br />

2<br />

5<br />

3<br />

4<br />

1<br />

6<br />

3<br />

5<br />

1<br />

9<br />

4<br />

5<br />

5<br />

7<br />

Opalia sp. 1<br />

Opalia sp. 2<br />

Melanella bosci<br />

Melanella cf. crosseana<br />

Melanella cf. trunca v v<br />

Parvioris microstoma<br />

Parvioris sp.<br />

Crinophteiros collinsi<br />

Sticteulima jeffreysiana<br />

Vitreolina sp.<br />

Vitreolina curva<br />

v<br />

Pelseneeria minor<br />

Littorina striata v f v<br />

Melarhaphe neritoides<br />

v<br />

Skeneopsis planorbis v v<br />

Rissoa guernei v v v<br />

Rissoa sp. 1<br />

Rissoa sp. 2<br />

Setia subvaricosa<br />

Setia cf. quisquiliarum<br />

Crisilla postrema v v v<br />

Crisilla cf. postrema<br />

Pseu<strong>dos</strong>etia azorica<br />

Cingula trifasciata v f<br />

Manzonia unifasciata v v v v<br />

Onoba moreleti<br />

Alvania angioyi v v<br />

Alvania poucheti v v<br />

Alvania mediolittoralis v v v<br />

Alvania punctura<br />

Alvania sp. (?tarsodes)<br />

v<br />

Alvania sleursi v v v v v v<br />

Alvania cancellata v v v v v v v v v v v<br />

Alvania platycephala<br />

Alvania cimicoides<br />

Alvania cf. cimicoides<br />

Caecum wayae<br />

v<br />

Talassia cf. tenuisculpta<br />

Capulus ungaricus<br />

Lamellaria perspicua<br />

v<br />

Trivia pulex v v v v v v v v f<br />

Trivia candidula v v v v v v v v v<br />

Erato sp.<br />

Aperiovula juanjosensii<br />

Notocochlis dillwynii<br />

Natica prietoi v + v + + + v v + + v v v f v<br />

Natica cf. prietoi<br />

v<br />

Phalium undulatum f f<br />

Atlanta peronii<br />

Protatlanta souleyeti<br />

Ocenebra erinaceus v v<br />

5<br />

8<br />

3<br />

6<br />

4<br />

0<br />

0<br />

6<br />

0<br />

5<br />

1<br />

4<br />

1<br />

5<br />

2<br />

0<br />

3<br />

1<br />

4<br />

6<br />

0<br />

1<br />

v<br />

5<br />

6<br />

3<br />

0<br />

4<br />

8<br />

v


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 97<br />

tion. f, fragment; v, rolled shell or single valve; +, with live animal or both valves. (cont.)<br />

4<br />

4<br />

5<br />

0<br />

5<br />

4<br />

1<br />

8<br />

4<br />

7<br />

4<br />

9<br />

1<br />

3<br />

2<br />

7<br />

2<br />

3<br />

2<br />

4<br />

2<br />

1<br />

1<br />

2<br />

0<br />

2<br />

2<br />

8<br />

4<br />

2<br />

2<br />

6<br />

0<br />

8<br />

3<br />

2<br />

0<br />

7<br />

2<br />

9<br />

3<br />

8<br />

3<br />

3<br />

3<br />

7<br />

4<br />

3<br />

5<br />

2<br />

5<br />

3<br />

5<br />

1<br />

4<br />

1<br />

5<br />

5<br />

+ + + v v v<br />

v<br />

v<br />

v v v<br />

v v v<br />

v<br />

v<br />

v<br />

v<br />

v<br />

v<br />

v v<br />

v<br />

f<br />

f<br />

v v v<br />

v v v v v v v v v v<br />

v<br />

v v v v<br />

v v<br />

v v<br />

v v v v v v<br />

v v v<br />

v<br />

v<br />

v v<br />

v v v v v v v v<br />

v v f v v<br />

v v v v v v v v v<br />

v v v v v v v<br />

v v v v v v<br />

v<br />

v v v v v v v v v<br />

v v v v v v v v v v v v v v v v<br />

v v v<br />

v v + v<br />

v<br />

v v v v v<br />

v<br />

v<br />

v v<br />

v v v<br />

v v v v v f f f f<br />

v v v v v v v v v v v f<br />

v<br />

v<br />

f<br />

+<br />

+ v v v + v + v v v f f f f + v v<br />

f f f<br />

v<br />

v<br />

v v v


98 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

TABLE 1. Distribution of the species dredged during the workshop. See text for station descrip-<br />

STATIONS<br />

TAXA<br />

Ocinebrina cf. aciculata<br />

3<br />

9<br />

2<br />

5<br />

3<br />

4<br />

1<br />

6<br />

3<br />

5<br />

1<br />

9<br />

4<br />

5<br />

5<br />

7<br />

?Ocinebrina cf. aciculata v v v v<br />

?Ocinebrina sp.<br />

v<br />

Orania fusulus + + v v +<br />

Trophonopsis barvicensis v v v v v v v<br />

Trophonopsis cf. muricatus<br />

v<br />

Coralliophila cf. meyendorffi v v v v<br />

Carolliophila panormitana<br />

Stramonita haemastoma v v v v v<br />

Gibberula vignali<br />

Gibberula cf. lazaroi<br />

Mitra cornea v v v v v<br />

Pollia dorbignyi<br />

f<br />

Nassarius incrassatus f v v v v f v v v v v v<br />

Nassarius cf. cuvierii<br />

Nassarius recidivus<br />

Columbella a<strong>da</strong>nsoni v v v v f f f v v f<br />

Mitrella pallaryi<br />

Anachis avaroides v v v v v v<br />

Brocchinia clenchi v v v v v v +<br />

Mitromorpha azorensis v v v v v v<br />

Bela nebula v v v + v v v v v v + + v<br />

Mangelia cf. costata v v v v<br />

Raphitoma purpurea v v v v<br />

Raphitoma linearis v v<br />

Raphitoma cf. aequalis v v v v v v + v v v + v f<br />

Raphitoma sp. v v v<br />

Pleurotomella gibbera<br />

Pleurotomella cf. gibbera<br />

Teretia teres<br />

Crassopleura maravignae v v v v v v v v v + v<br />

Haedropleura septangularis v v v v v v v v<br />

Philippia krebsi<br />

v<br />

Pseudotorinia architae<br />

Pseudomalaxis zanclaeus<br />

Mathil<strong>da</strong> cochlaeformis<br />

Mathil<strong>da</strong> retusa<br />

?Rissoella sp. 1<br />

?Rissoella sp. 2<br />

Omalogyra atomus<br />

O<strong>dos</strong>tomella doliolum<br />

Chrysalli<strong>da</strong> cf. flexuosa<br />

O<strong>dos</strong>tomia bernardi v v v v v<br />

O<strong>dos</strong>tomia cf. verhoeveni v v v<br />

O<strong>dos</strong>tomia duureni<br />

v<br />

O<strong>dos</strong>tomia cf. striolata<br />

Eulimella sp.<br />

Turbonilla rufa<br />

v<br />

Turbonilla lactea v v f v v<br />

Turbonilla sp. 1<br />

Turbonilla sp. 2<br />

Turbonilla sp. 3<br />

Turbonilla sp. 4<br />

5<br />

8<br />

3<br />

6<br />

4<br />

0<br />

v<br />

0<br />

6<br />

0<br />

5<br />

1<br />

4<br />

1<br />

5<br />

2<br />

0<br />

3<br />

1<br />

4<br />

6<br />

0<br />

1<br />

5<br />

6<br />

3<br />

0<br />

4<br />

8


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 99<br />

tion. f, fragment; v, rolled shell or single valve; +, with live animal or both valves. (cont.)<br />

4<br />

4<br />

5<br />

0<br />

5<br />

4<br />

1<br />

8<br />

4<br />

7<br />

4<br />

9<br />

1<br />

3<br />

2<br />

7<br />

2<br />

3<br />

2<br />

4<br />

2<br />

1<br />

1<br />

2<br />

0<br />

2<br />

2<br />

8<br />

4<br />

2<br />

2<br />

6<br />

0<br />

8<br />

3<br />

2<br />

0<br />

7<br />

2<br />

9<br />

3<br />

8<br />

3<br />

3<br />

3<br />

7<br />

4<br />

3<br />

5<br />

2<br />

5<br />

3<br />

5<br />

1<br />

4<br />

1<br />

5<br />

5<br />

v v v<br />

v v v v v<br />

f v v v v v f f v<br />

v v v v v v v v v v<br />

v<br />

v v v<br />

v<br />

v<br />

v v v v v f v f<br />

v<br />

v<br />

v v v v v<br />

v f v v f v f v v v v f v f<br />

v<br />

f f v f v<br />

v f v v v v v v v f v v f<br />

f v f<br />

v v v v v v v v v v v v v v<br />

v + v + v v v v v v v v v<br />

v v v v<br />

+ + v + + v v v + f + v v + v v v v v v<br />

+ v v v v + v v v v v<br />

v f f v<br />

v v v v v v v v f v v v v<br />

v v v v v v v v v v v v v v v v v<br />

v v v v v v v v<br />

v v v v v v<br />

v<br />

v v v<br />

v + v + v v v v v v f v v v v v v + v v v<br />

v v v v v v<br />

v<br />

+ v v v<br />

v<br />

f<br />

v<br />

v<br />

v<br />

v<br />

v f v<br />

v<br />

v v v v v v v v v<br />

v v v v v v<br />

v<br />

v v v v<br />

v<br />

v<br />

v<br />

v<br />

v<br />

v<br />

v<br />

v


100 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

TABLE 1. Distribution of the species dredged during the workshop. See text for station descrip-<br />

TAXA<br />

STATIONS<br />

3<br />

9<br />

2<br />

5<br />

3<br />

4<br />

1<br />

6<br />

3<br />

5<br />

1<br />

9<br />

4<br />

5<br />

Retusa truncatula v v<br />

Haminoea cf. orteai v v<br />

Atys macandrewi<br />

v<br />

Atys sp.<br />

v<br />

Philine approximans<br />

Philine sp.<br />

?Chelidonura africana<br />

Cavolinia inflexa v v v v v v v v v v<br />

Cavolinia tridentata<br />

Diacria trispinosa f v f<br />

Cuvierina atlantica<br />

Clio pyrami<strong>da</strong>ta v v<br />

Limacina cf. helicina<br />

Limacina inflata<br />

v<br />

Umbraculum umbraculum<br />

v<br />

Tylodina perversa<br />

Williamia gussonii<br />

v<br />

Ovatella vulcani<br />

Pedipes pedipes<br />

5<br />

7<br />

5<br />

8<br />

3<br />

6<br />

4<br />

0<br />

0<br />

6<br />

0<br />

5<br />

1<br />

4<br />

1<br />

5<br />

2<br />

0<br />

3<br />

1<br />

4<br />

6<br />

0<br />

1<br />

5<br />

6<br />

3<br />

0<br />

4<br />

8<br />

BIVALVIA<br />

Arca tetragona v f v v v v v v v v<br />

Asperarca nodulosa<br />

Bathyarca philippiana<br />

Limopsis minuta<br />

v<br />

Gregariella semigranata v v v v v v v v v v v v<br />

Rhomboidella prideauxi<br />

Pecten jacobaeus f v<br />

Aequipecten commutatus f v v v<br />

Aequipecten opercularis v v + + f + + v v f v<br />

Bractechlamys corallinoides v v v v f v v v<br />

Palliolum incomparabile f v v f<br />

Chlamys flexuosa<br />

v<br />

Talochlamys pusio v v v v v v v v v v v v<br />

Pododesmus patelliformis v v v v v v v v v<br />

Limaria hians v f v v v v v f v<br />

Neopycnodonte cochlear v v v<br />

Myrtea spinifera<br />

Lucinoma borealis v v v v v v<br />

Thyasira flexuosa<br />

Diplodonta berghi v v v<br />

Diplodonta trigona + + + v v v v + v<br />

Chama gryphoides v v<br />

Kurtiella pelluci<strong>da</strong> v v<br />

Basterotia clancula v v v v v v v<br />

Cardita calyculata v + v v v v v v v<br />

?Crassatina sp.<br />

v<br />

Papillicardium papillosum + + + v + + + v + v + + v<br />

Parvicardium vroomi v v v<br />

Tellina incarnata + + + v v v v v v v v v<br />

Tellina pygmaea + + + + + + + + + + + + + + +<br />

Arcopagia balaustina<br />

f<br />

?Tellina sp.


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 101<br />

tion. f, fragment; v, rolled shell or single valve; +, with live animal or both valves. (cont.)<br />

4<br />

4<br />

5<br />

0<br />

5<br />

4<br />

1<br />

8<br />

4<br />

7<br />

4<br />

9<br />

1<br />

3<br />

2<br />

7<br />

2<br />

3<br />

2<br />

4<br />

2<br />

1<br />

1<br />

2<br />

0<br />

2<br />

2<br />

8<br />

v v v v v<br />

v f v<br />

v v f v v v<br />

4<br />

2<br />

2<br />

6<br />

0<br />

8<br />

3<br />

2<br />

0<br />

7<br />

2<br />

9<br />

3<br />

8<br />

3<br />

3<br />

3<br />

7<br />

4<br />

3<br />

5<br />

2<br />

5<br />

3<br />

5<br />

1<br />

4<br />

1<br />

5<br />

5<br />

v v v v<br />

v<br />

v<br />

v v v v v v v v v v v v v v v v v v v v<br />

v f v v<br />

v v v v f f<br />

v v v f v v v<br />

v v v v v v v v v v v v v<br />

v v v<br />

v v v v v v v v<br />

v v v f<br />

v<br />

v v v v<br />

v<br />

v<br />

v v v v v v v v v v v v v v v v v v v v v<br />

v<br />

v v<br />

+ v v v v v v v v v v f v v v v v v<br />

v<br />

v<br />

+ v f f v f v f<br />

v v + v v f v v v v v f v<br />

+ v v + v v v v + v v v + v + v v v v v v v f<br />

v v v v v v v v v v v v v v v v f v v<br />

+ v v v v v v + + v v v v v v<br />

v<br />

v<br />

v v v v v v v v v v v v v v v v v v v v<br />

v v v v v v v v v v v v v v v<br />

v v v v v v v v v v v v f v f v v f v v<br />

+ v f v v v v v v v v v +<br />

v<br />

v v v v v v v + + v + + + v + + + + v<br />

v v v v v<br />

v v v v v v v<br />

+ v v v v v + v + v + + v v v + v v v v<br />

v v v + v v v + v v v +<br />

v + v v v + + v v v v<br />

v v v v v v v v v v v v<br />

v + v v + v + v v v v v v v v v v v<br />

+ + + + + v + + + + + + v v v + v v + v + v v<br />

v v v v v v v v v v v<br />

v v v + v v v v v v v v v v v v<br />

+ + + + + + + + + v + + + v v + v v v + v + v +<br />

+ v v + + + + + + f + + + + + v + v +<br />

v


102 AÇOREANA<br />

2009, Sup. 6: 15-103<br />

TABLE 1. Distribution of the species dredged during the workshop. See text for station descrip-<br />

STATIONS<br />

TAXA<br />

Azorinus chamasolen<br />

Coralliophaga lithophagella<br />

3<br />

9<br />

2<br />

5<br />

3<br />

4<br />

1<br />

6<br />

3<br />

5<br />

1<br />

9<br />

4<br />

5<br />

5<br />

7<br />

Venus casina + v v v v v v + v + v<br />

Venus verrucosa + +<br />

Globivenus effossa<br />

<strong>Timoclea</strong> <strong>ovata</strong> v + + + + + + + + + + + + +<br />

Gouldia minima v + + + + + + + v + + v<br />

Callista chione v v + v v v v v v v + v v<br />

Hiatella arctica<br />

Gastrochaena dubia<br />

Nototeredo norvagica<br />

Teredora malleolus v v<br />

Xyloredo sp. v v v v v v<br />

Thracia papyracea v + v + v v v v v v v v<br />

Cardiomya costellata v v + + + v<br />

Cuspi<strong>da</strong>ria atlantica<br />

5<br />

8<br />

3<br />

6<br />

4<br />

0<br />

v<br />

0<br />

6<br />

0<br />

5<br />

1<br />

4<br />

1<br />

5<br />

2<br />

0<br />

3<br />

1<br />

4<br />

6<br />

0<br />

1<br />

v<br />

5<br />

6<br />

3<br />

0<br />

4<br />

8<br />

CEPHALOPODA<br />

Octopus vulgaris


MARTINS ET AL: INFRALITORAL MOLLUSCS OFF VILA FRANCA DO CAMPO 103<br />

tion. f, fragment; v, rolled shell or single valve; +, with live animal or both valves. (cont.)<br />

4<br />

4<br />

5<br />

0<br />

5<br />

4<br />

1<br />

8<br />

4<br />

7<br />

4<br />

9<br />

1<br />

3<br />

2<br />

7<br />

2<br />

3<br />

2<br />

4<br />

2<br />

1<br />

1<br />

2<br />

0<br />

2<br />

2<br />

8<br />

4<br />

2<br />

+<br />

v v + v + v v v +<br />

v v + v v + v v v v + + v v v + v v v v v<br />

+ v v v v v v v v v<br />

v v f v +<br />

+ + + + + + + + + + + + + v v + + + + + + + v +<br />

v + v + v + + + + v + + + v v + v v + + v + v<br />

v + + v v + v v v v v v v v v v v v v<br />

v v v v v v<br />

v<br />

v v<br />

v<br />

v v v v v v v v v v v v v v v v v v<br />

v v v + v + v v v v v v v v v + v v v v<br />

v v + + v + + + + v + v + + v f v f<br />

v<br />

2<br />

6<br />

0<br />

8<br />

3<br />

2<br />

0<br />

7<br />

2<br />

9<br />

3<br />

8<br />

3<br />

3<br />

3<br />

7<br />

4<br />

3<br />

5<br />

2<br />

5<br />

3<br />

5<br />

1<br />

4<br />

1<br />

5<br />

5<br />

+


AÇOREANA, Suplemento 6, Setembro 2009: 105-119<br />

ASPECTS OF THE BIOLOGY AND FUNCTIONAL MORPHOLOGY OF TIMOCLEA<br />

OVATA (BIVALVIA: VENEROIDEA: VENERINAE) IN THE AÇORES, PORTUGAL,<br />

AND A COMPARISON WITH CHIONE ELEVATA (CHIONINAE)<br />

Brian Morton<br />

Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, U.K.<br />

e-mail: prof_bmorton@hotmail.co.uk<br />

ABSTRACT<br />

<strong>Timoclea</strong> <strong>ovata</strong> occurs in the Açorean offshore seabed down to ~200 metres depth.<br />

Here, however, it only grows to half (10 mm) the shell length of conspecifics in European<br />

continental waters. In the <strong>Açores</strong> also, T. <strong>ovata</strong> is drilled by a naticid pre<strong>da</strong>tor - probably<br />

Natica prietoi. This is the first report of naticid drilling pre<strong>da</strong>tion upon T. <strong>ovata</strong>.<br />

The shell and the organs of the mantle cavity and visceral mass, and their ciliary currents,<br />

are described (for the first time) and compared specifically with representatives of<br />

the Chioninae (within which it was traditionally placed), including the Western Pacific<br />

Bassina calophylla and the Western Atlantic Chione elevata (also illustrated herein).<br />

Anatomically all three species are similar to each other, reflecting the inherent conservatism<br />

of the venerid bauplan. An interesting aspect of the complex surface architectures<br />

of the shells of T. <strong>ovata</strong>, B. calophylla and C. elevata is that they are not successful in protecting<br />

individuals from, in particular, naticid pre<strong>da</strong>tion even though one supposes that<br />

this is what they are for. That is, in the pre<strong>da</strong>tor-prey “arms race”, naticids are clearly winning.<br />

Notwithstanding, the complex shell architecture may also fulfill other functions<br />

such as stabilizing these shallow burrowers in soft sediments.<br />

In other bivalve lineages, “success” has been achieved through reproductive and/or<br />

anatomical specializations. However, the two most widely distributed and, possibly, most<br />

“successful” modern bivalve lineages are the Mytiloidea and heterodont Veneroi<strong>da</strong> that<br />

are generally but not exclusively dominant on rocky and soft marine habitats, respectively.<br />

This success has been achieved by reproductive and anatomical conservatism. Thus,<br />

one can take virtually any mytilid or any venerid and they will be, as this study demonstrates<br />

for <strong>Timoclea</strong> <strong>ovata</strong>, generally similar to other representatives of their respective families.<br />

RESUMO<br />

<strong>Timoclea</strong> <strong>ovata</strong> ocorre nos fun<strong>dos</strong> costeiros <strong>dos</strong> mares <strong>dos</strong> <strong>Açores</strong> até uma<br />

profundi<strong>da</strong>de de ~200 metros. Aqui, porém, cresce apenas até metade (10 mm) do<br />

comprimento de concha <strong>dos</strong> seus conspecíficos em águas continentais Europeias.<br />

Também nos <strong>Açores</strong> T. <strong>ovata</strong> é perfura<strong>da</strong> por um pre<strong>da</strong>dor naticídeo – provavelmente<br />

Natica prietoi. Este é o primeiro registo de pre<strong>da</strong>ção por perfuração de um naticídeo em T.<br />

<strong>ovata</strong>.<br />

Descrevem-se (pela primeira vez) a concha e os órgãos <strong>da</strong> cavi<strong>da</strong>de palial e massa<br />

visceral, e as suas correntes ciliares, e comparam-se especificamente com outros<br />

representantes <strong>dos</strong> Chioninae, incluindo Bassina calophylla do Pacífico Oeste e Chione<br />

elevata do Atlântico Oeste (também ilustra<strong>da</strong> aqui). Anatomicamente as três chioninas são<br />

muito semelhantes entre si, reflectindo o conservantismo inerente do bauplan venerídeo.<br />

Um aspecto interessante <strong>da</strong> complexa arquitectura <strong>da</strong> superfície <strong>da</strong> concha chionina,<br />

incluindo T. <strong>ovata</strong>, é não ser muito bem sucedi<strong>da</strong> em proteger os seus representantes de,<br />

em particular, pre<strong>da</strong>ção por naticídeos embora se pense ser esta a sua função. Isto é, na<br />

“corri<strong>da</strong> às armas” de pre<strong>da</strong>dor-presa, os naticídeos estão claramente a ganhar. Não


106 AÇOREANA<br />

2009, Sup. 6: 105-119<br />

(Figure 5B). Jones (1979) compared the<br />

anatomy of Chione cancellata (Linnaeus,<br />

1767) with those of other chionines.<br />

Morton & Knapp (2004) re-examined<br />

some aspects of the anatomy of the<br />

Atlantic C. elevata and compared it with<br />

the Pacific Bassina calophylla, specifically<br />

with regard to how the shell architecture,<br />

in particular, protects (or rather does not)<br />

the contained animal from drilling pre<strong>da</strong>tors<br />

of the Natici<strong>da</strong>e.<br />

<strong>Timoclea</strong> <strong>ovata</strong> has a wide distribution<br />

from northern Norway and Iceland south<br />

to Angola (West Africa). It is also recorded<br />

from the Canary Islands, the <strong>Açores</strong><br />

and the Mediterranean and Black Sea.<br />

Despite this wide distribution there is, as<br />

noted above, little known about the<br />

anatomy of T. <strong>ovata</strong> and little also about<br />

its basic biology. Labrune et al. (2007)<br />

described changes in the species composition<br />

of the macrofauna of the Bay of<br />

Banyuls-sur-Mer in the Mediterranean<br />

between 1967 and 2003 noting that the<br />

greatest changes were in the T. (as Venus)<br />

<strong>ovata</strong> community between 1967-1968 and<br />

1994. The size frequency distribution of a<br />

population of T. <strong>ovata</strong> from the Pliocene of<br />

Volpedo, Italy, was described by Benigni<br />

& Corselli (1981) and Dauvin (1985)<br />

undertook a study of the population<br />

dynamics of a Recent population of the<br />

same species from the Bay of Moraix in<br />

the Mediterranean noting there to be<br />

pluri-annual variations in recruitment,<br />

growth and production, thereby explainobstante,<br />

a arquitectura <strong>da</strong> concha chionina pode também exercer outras funções tais<br />

como estabilizar estes escavadores superficiais nos sedimentos finos.<br />

Noutras linhagens de bivalves, o “sucesso” foi conseguido mediante especializações<br />

reprodutivas e/ou anatómicas. No entanto, as duas linhagens de bivalves modernos mais<br />

largamente distribuí<strong>da</strong>s e, possivelmente, melhor sucedi<strong>da</strong>s são os Mytiloidea e os<br />

heterodontes Veneroi<strong>da</strong> que são geralmente mas não exclusivamente dominantes em<br />

habitats marinhos rochoso e mole, respectivamente. Tal sucesso foi conseguido mediante<br />

conservantismo reprodutivo e anatómico. Assim, pode tomar-se virtualmente qualquer<br />

mitilídeo ou qualquer venerídeo e eles serão, como este estudo demonstra para os<br />

Chioninae, respectivamente muito semelhantes aos seus outros representantes.<br />

INTRODUCTION<br />

<strong>Timoclea</strong> <strong>ovata</strong> (Pennant, 1777) was classified<br />

by Keen (1969) as a member of<br />

the Chioninae Frizzell, 1936 (Veneroidea,<br />

Veneri<strong>da</strong>e), representatives of which have<br />

been studied anatomically by Ansell<br />

(1961), Jones (1979), Morton (1985) and<br />

Morton & Knapp (2004). Morton (1985)<br />

compared Bassina calophylla (Philippi,<br />

1836) (Chioninae) with Irus irus<br />

(Linnaeus, 1758) (Tapetinae A<strong>da</strong>ms &<br />

A<strong>da</strong>ms, 1852). Subsequently, however,<br />

Coan et al. (1997) synonymized the<br />

Chioninae with the Venerinae<br />

Rafinesque, 1815. Kappner & Bieler<br />

(2006) have, most recently, and on the<br />

basis of a much broader gene sequencing<br />

study, argued, however, that the<br />

Chioninae, with Chione cancellata<br />

(Linnaeus, 1767) as its type species, is a<br />

distinct entity from the Venerinae as proposed<br />

by Canapa et al. (2003). Kappner &<br />

Bieler (2006), however, have also demonstrated<br />

that <strong>Timoclea</strong> Brown, 1827 should<br />

be placed within the Venerinae and not<br />

within the Chioninae.<br />

Ansell (1961) compared the anatomy<br />

of the British species of Veneracea<br />

(Veneroidea) but, surprisingly, had little<br />

to say about <strong>Timoclea</strong> (as Venus) <strong>ovata</strong> noting<br />

only that, in common with Gafrarium<br />

minimum (Montagu, 1803), the inner apertures<br />

of the siphons possessed membranes<br />

that, in the case of the inhalant,<br />

directed the incoming water dorsally


MORTON: TIMOCLEA OVATA IN THE AZORES 107<br />

ing the observations of Labrune et al.<br />

(2007). Anfossi & Brambilla (1981) noted<br />

that T. <strong>ovata</strong> has been a member of the<br />

Mediterranean’s detrital biocenosis since<br />

at least the Pleistocene. In terms of pre<strong>da</strong>tion,<br />

only Mienis (2003) has noted that<br />

the starfish Astropecten aranciacus<br />

(Linnaeus, 1758) preys upon T. <strong>ovata</strong>.<br />

This study was the first to be undertaken<br />

on <strong>Timoclea</strong> <strong>ovata</strong> in the <strong>Açores</strong>, a<br />

species initially recorded from there by<br />

Morton (1967). The study’s aims were<br />

three fold: (i), to obtain support for (or<br />

not) the proposal of Kappner & Bieler<br />

(2006) that T. <strong>ovata</strong> should be placed in the<br />

Venerinae; (ii), to document information<br />

on the biology of this species in the<br />

remote mid-Atlantic <strong>Açores</strong> and (iii), to<br />

provide a picture of its anatomy that<br />

might explain facets of its biology and<br />

give clues to the success of the venerid<br />

bauplan.<br />

MATERIALS AND METHODS<br />

Biology<br />

For ten <strong>da</strong>ys from 17-26 July 2006, the<br />

sea bed off the southern coast of the<br />

island of São Miguel, <strong>Açores</strong>, was<br />

sampled using a benthic box dredge at six<br />

stations to the east and west of Ilhéu de<br />

Vila Franca do Campo. Station details are<br />

described by Martins et al. (2009). Station<br />

depths ranged from –50 to -250 metres<br />

C.D.. All living and empty shells of<br />

<strong>Timoclea</strong> <strong>ovata</strong> (plus any living naticids)<br />

were sorted from the samples. These<br />

were analyzed in the following manner.<br />

Living individuals of <strong>Timoclea</strong> <strong>ovata</strong><br />

were measured along their greatest<br />

lengths using vernier calipers to the nearest<br />

0.5 mm. Empty shell valves were<br />

identified and both left and right ones<br />

were measured in the same manner.<br />

Empty valves were also examined for<br />

drill holes. Where these were encountered,<br />

the following records were made<br />

of: (i), which valve and (ii), the location of<br />

each drill hole was plotted on master<br />

illustrations of the left and right valves.<br />

Statistical analyses<br />

The <strong>da</strong>taset comprising the numbers<br />

of living, empty and drilled shell valves of<br />

<strong>Timoclea</strong> <strong>ovata</strong> among the six stations was<br />

tested for normality and homogeneity of<br />

variances using the Shapiro-Wilk test and<br />

Levene statistic, respectively, both at the<br />

p = 0.05 level of significance before<br />

ANOVA. One-way ANOVA’s were performed<br />

on the <strong>da</strong>taset to test the null<br />

hypothesis that there were no significant<br />

differences in these variables among locations.<br />

Where differences were detected,<br />

Student’s Newman-Keuls (SNK) tests<br />

were carried out to identify where the differences<br />

lay. The shell lengths of living T.<br />

<strong>ovata</strong> and empty and drilled valves were<br />

also compared using a one-way ANOVA<br />

and the Student’s Newman-Keuls (SNK)<br />

test.<br />

Anatomy<br />

Living individuals of <strong>Timoclea</strong> <strong>ovata</strong><br />

were observed alive in aquaria. Other living<br />

animals were dissected and drawings<br />

made of the anatomy, notably the organs<br />

of the mantle cavity. The ciliary currents<br />

in the mantle cavity were detected using a<br />

suspension of carmine in seawater.<br />

Living individuals of Chione elevata from<br />

Flori<strong>da</strong> were also examined in the same<br />

way.<br />

RESULTS<br />

Biology<br />

Living individuals of <strong>Timoclea</strong> <strong>ovata</strong><br />

were collected from all six stations and<br />

there was no significant difference in the<br />

numbers collected between them. Figure<br />

1 illustrates length frequency histograms<br />

for A, living individuals, B and C, empty<br />

left right shell valves, respectively, and D


108 AÇOREANA<br />

2009, Sup. 6: 105-119<br />

and E, drilled left and right shell valves,<br />

again respectively. Living shells ranged<br />

in shell length from 1.5 mm to 9.0 mm, as<br />

did, approximately, the empty and drilled<br />

valves. One empty right valve was 10 mm<br />

in length.<br />

shell length showed that the valves of<br />

empty and drilled individuals, irrespective<br />

of whether they were the right or left<br />

valves, did not significantly differ in<br />

terms of mean shell length (p >0.05)<br />

whereas the valves of living individuals<br />

were significantly smaller than the empty<br />

valves (except for the drilled left valves,<br />

probably due to the small sample size).<br />

Figure 2 shows outline drawings of<br />

the left and right shell valves and the<br />

numbers and the distribution pattern of<br />

naticid drill holes made in them. There<br />

were over twice as many in the right<br />

(n=33) as in the left (n=15) valves and the<br />

pattern of distribution was unusual in<br />

that they were not near the umbones (an<br />

often favoured location for drilling gastropod<br />

pre<strong>da</strong>tors, as will be discussed).<br />

Rather, they seemed to be located mostly<br />

over the position of the pallial line, that is,<br />

where the thick, recessed, mantle edge is<br />

united to the shell internally.<br />

FIGURE 1. <strong>Timoclea</strong> <strong>ovata</strong>. Five histograms<br />

showing the size distributions of A, living individuals;<br />

B, empty left and C, right shell valves;<br />

C, and D, drilled left and right shell valves,<br />

respectively.<br />

The results of the ANOVA show that<br />

there were significant differences<br />

between the collected <strong>Timoclea</strong> <strong>ovata</strong> shells<br />

of the various categories, that is, living,<br />

empty and drilled valves, in term of their<br />

mean shell lengths (F = 6.96, p


MORTON: TIMOCLEA OVATA IN THE AZORES 109<br />

posteriorly, so that the beaks are distinctly<br />

prosogyrate (Figure 3A) and result<br />

from a strong tangential pattern of<br />

growth. This gives the shell its equilateral<br />

shape that increases during ontogeny<br />

so that the juvenile is more oval, the adult<br />

more angular.<br />

FIGURE 3. <strong>Timoclea</strong> <strong>ovata</strong>. Five stylized views<br />

of the shell and illustrated from A, the right<br />

side; B, dorsally; C, ventrally; D, anteriorly and<br />

E, posteriorly. (x—-y is the approximate position<br />

of the greatest width to the shell.) For<br />

other abbreviations see page 119.<br />

In dorsal view (Figure 3B), there is a<br />

small anterior, heart-shaped, lunule (LU)<br />

(as defined by Carter, 1967) each valve<br />

here also interlocking by means of marginal<br />

denticles as in Chione elevata<br />

(Morton & Knapp, 2004). Unlike other<br />

venerids, however, the lunule is not well<br />

defined because it is sculptured like the<br />

remainder of the shell but is defined by a<br />

light indentation and is coloured slightly<br />

differently. The more oval juvenile shell<br />

(JS) is also illustrated. There is no distinct<br />

posterior escutcheon because the ligament<br />

is internal, although it can be seen<br />

as a thin, black, line extending posterior<br />

to the umbones about one quarter of the<br />

way towards the posterior margin. The<br />

ventral shell valve margins (Figure 3C)<br />

are interlocked virtually everywhere<br />

along the extent of the shell margin by the<br />

expanding radial ribs. The shell valves of<br />

T. <strong>ovata</strong> are thus very difficult to separate,<br />

again like those of C. elevata (Morton &<br />

Knapp, 2004). Figures 3B & C also show<br />

the approximate position of the greatest<br />

shell width (x-y). It lies just posterior to<br />

the umbones above the ligament.<br />

The shell is illustrated in anterior view<br />

in Figure 3D and again shows the lunule<br />

(LU) and juvenile shell (JS). The greatest<br />

width to the shell when seen from this<br />

perspective (x-y) is dorsal to the mid<br />

point of the dorso-ventral height of the<br />

shell. A similar situation is seen when the<br />

shell is illustrated from the posterior perspective<br />

(Figure 3E).<br />

The shell of <strong>Timoclea</strong> <strong>ovata</strong> is illustrated<br />

in internal view in Figure 4A. The left<br />

valve (Figure 4A) has a hinge plate with<br />

an elongate posterior cardinal tooth and<br />

two other larger teeth more centrally<br />

placed. These are here interpreted as a<br />

central cardinal and robust anterior (but<br />

more centrally located, unlike the elongate<br />

posterior cardinal tooth) cardinal<br />

tooth, all arising from the umbo (U).<br />

There are no lateral teeth. The ligament<br />

(L) is internal and opisthodetic. Also well<br />

defined are anterior (AA) and a larger<br />

posterior (PA) adductor muscle scars.<br />

These are connected by a thick pallial line<br />

(PL) that has a similarly thick, short, pallial<br />

sinus (PS). Both are deeply inset from<br />

the valve margin and this is characterized<br />

by a scalloped edge internal to which,<br />

extending virtually all the way round are<br />

marginal denticles (MD) that interlock<br />

with those of the other valve. The interi-


110 AÇOREANA<br />

2009, Sup. 6: 105-119<br />

or of the shell is polished and is typically<br />

white although in those individuals with<br />

an external coloration, the interior reflects<br />

this as an orange-lilac stain. The hinge<br />

plate of the right valve similarly also has<br />

three (a central cardinal, elongate posterior<br />

lateral and more central and robust<br />

anterior lateral) teeth (Figure 4B).<br />

FIGURE 4. <strong>Timoclea</strong> <strong>ovata</strong>. A, An interior view<br />

of the left shell valve and B, an interior view of<br />

the right hinge plate. For abbreviations see<br />

page 119.<br />

FIGURE 5. <strong>Timoclea</strong> <strong>ovata</strong>. An individual illustrated<br />

in its life position in the sediment.<br />

The external appearance of the shell is<br />

illustrated from the right side in Figure 5.<br />

Each valve has a stout sculpture of ~50<br />

ribs that radiate from the umbones and<br />

because each valve has strong commarginal<br />

lamellae too, there are nodes on the<br />

ribs giving the shell a rough, file like, feel<br />

to the touch. As noted above the shell is<br />

often uniformly coloured light brown<br />

although those of most individuals are<br />

patterned with streaks and blotches of<br />

pink, red or brown. And some individuals<br />

have two radiating (antero- and postero-ventrally)<br />

bands of pigmentation, as<br />

illustrated in Figure 5.<br />

Tebble (1966) records that <strong>Timoclea</strong><br />

<strong>ovata</strong> has a maximum shell length of 19<br />

mm while Dauvin (1985) identified a figure<br />

of 15.1 mm for this species in the<br />

Mediterranean. As noted above, however,<br />

the largest Açorean individual<br />

collected had a shell length of but 10 mm.<br />

The siphons<br />

living individual of <strong>Timoclea</strong> <strong>ovata</strong> is<br />

illustrated in Figure 5 from the right side.<br />

Anteriorly, there is a large digging foot.<br />

Posteriorly, there is a pair of separated<br />

siphons. The exhalant siphon is conical<br />

and a ring of 12 short tentacles sub-apically<br />

surrounds its transparent coneshaped<br />

aperture. About 12 yellow-brown<br />

stripes arise from between each tentacle<br />

and extend inwards. The inhalant siphon<br />

is much larger in diameter and is fringed<br />

apically by a circlet of ~24 long siphonal<br />

tentacles. As with the exhalant about 24<br />

yellow-brown stripes extend inwards.<br />

Where each stripe unites with the tentacular<br />

rings, there is a <strong>da</strong>rker brown spot.


MORTON: TIMOCLEA OVATA IN THE AZORES 111<br />

Mid-ventrally, the mantle possesses a line<br />

of papillae and pallial fusions, where they<br />

occur, are of the inner folds only, that is,<br />

type A (Yonge, 1982). The siphons are<br />

illustrated in greater detail in Figure 6.<br />

FIGURE 7. <strong>Timoclea</strong> <strong>ovata</strong>. The ciliary currents<br />

of the left mantle lobe after after removal of the<br />

left shell valve and mantle and the body. For<br />

abbreviations see page 119.<br />

FIGURE 6. <strong>Timoclea</strong> <strong>ovata</strong>. A detail of the<br />

siphons.<br />

The ciliary currents of the organs of the mantle<br />

cavity<br />

The ciliary currents of the left mantle<br />

lobe of <strong>Timoclea</strong> <strong>ovata</strong> are illustrated in<br />

Figure 7. The pallial currents sweep particles<br />

of material in a clockwise direction<br />

towards the antero-dorsal regions of the<br />

mantle cavity and then downwards, so<br />

that particles end up in a ventral marginal<br />

rejection tract that transports such<br />

unwanted material towards the base of<br />

the inhalant siphon (IS) where it accumulates<br />

as balls of pseudofaecal matter (PM).<br />

These little balls are periodically ejected<br />

from the mantle cavity, via the inhalant<br />

siphon, by sharp contractions of the<br />

adductor muscles that create the pallial<br />

pressure necessary to do so.<br />

The right ctenidium of <strong>Timoclea</strong> <strong>ovata</strong><br />

is illustrated in Figure 8A. Each ctenidium<br />

is homorhabdic, eulamellibranchiate<br />

and comprises two unequal demibranchs.<br />

The inner demibranch (ID) is large and<br />

extends anteriorly from beneath the posterior<br />

adductor muscle (PA) up into the<br />

sub-umbonal cavity and ends on the postero-ventral<br />

face of the anterior adductor<br />

muscle (AA). The outer demibranch<br />

(OD) is dorso-ventrally short and and, as<br />

with the inner, extends anteriorly from<br />

beneath the posterior adductor muscle to<br />

a position just posterior of the hinge plate,<br />

beneath the ligament (L). This demibranch<br />

is thus foreshortened anteriorly.<br />

The ciliary currents of the right ctenidium<br />

are illustrated in transverse section<br />

in Figure 8B. The ciliary currents are of<br />

Type C (1) (Atkins, 1937), typical of many<br />

eulamellibranchs and, specifically, Venus<br />

fasciata (<strong>da</strong> Costa, 1778), Dosinia lupinus<br />

(Linnaeus, 1758), Venerupis aurea (Gmelin,<br />

1791) and Venerupis rhomboides (Pennant,<br />

1777) (Ansell, 1961). Ctenidia with a ciliation<br />

of type C (1) have oralward acceptance<br />

tracts located in the ctenidial axis<br />

and in the ventral marginal food groove<br />

of the inner demibranch (ID) only. Hence,<br />

particles filtered by the ascending lamella<br />

of the outer demibranch (OD) pass downward<br />

(although some may dorsally be<br />

carried anteriorly) (Figure 8A) and on<br />

reaching the ventral margin of this demi-


112 AÇOREANA<br />

2009, Sup. 6: 105-119<br />

FIGURE 8. <strong>Timoclea</strong> <strong>ovata</strong>. A, The ciliary currents<br />

of the ctenidium as seen from the right<br />

side after removal of the right shell valve<br />

and mantle. B, A diagrammatic transverse<br />

section through the right ctenidium showing<br />

the ciliary currents. For abbreviations see<br />

page 119.<br />

branch, turn, and pass upwards on the<br />

descending lamella towards the ctenidial<br />

axis. In the food groove of the ctenidial<br />

axis they pass anteriorly. Ciliary currents<br />

on the inner demibranch are largely<br />

downward towards the ventral margin<br />

that has an anteriorly directed food<br />

groove. Because the outer demibranch is<br />

anteriorly foreshortened, at its anterior<br />

terminus, particles arriving here in the<br />

ctenidial axis pass on to the descending<br />

lamella of the inner demibranch. Thus,<br />

particles arrive at the ctenidial labial palp<br />

junction in (i), the ventral marginal food<br />

groove of the inner demibranch and (ii),<br />

in the ctenidial axis tract, also of the inner<br />

demibranch.<br />

The ctenidial-labial palp junction is of<br />

Category II (Stasek, 1964) and the palps<br />

(LP) are small, each possessing no more<br />

than five pleats that would, in the typical<br />

bivalve, have a sorting function, either<br />

accepting or rejecting particles of possible<br />

food according to size. Only those particles<br />

passing directly into the oral grooves<br />

of the palps from the acceptance tracts in<br />

the ctenidial axes, an arrangement that<br />

characterizes bivalves with a<br />

ctenidial/labial palp junction of Category<br />

II (Stasek, 1964), are forwarded directly to<br />

the mouth. The reduced size and sorting<br />

ability of the labial palps may be a reflection<br />

of the low numbers and narrow size<br />

limits of particles in the Açorean waters of<br />

the mid-Atlantic. Similarly, small labial<br />

palps have been recorded for Fragum erugatum<br />

(Tate, 1889), an inhabitant of oligotrophic,<br />

high salinity waters in Australia<br />

(Morton, 2000). Throughout its wide geographical<br />

range, however, T. <strong>ovata</strong> may<br />

occur in a variety of sediment types<br />

although it seems to prefer well-sorted<br />

gravels, as in the <strong>Açores</strong>, in which case<br />

the small labial palps are an a<strong>da</strong>ptation to<br />

sediments and overlying waters low in<br />

particulates.<br />

The ciliary currents of the right side of<br />

the visceral mass of <strong>Timoclea</strong> <strong>ovata</strong> are<br />

illustrated in Figure 9. On the surface of<br />

the right side of the visceral mass, the ciliary<br />

currents move material in a clockwise<br />

direction, anteriorly above and posteriorly<br />

below. Eventually, all such<br />

currents become directed downwards<br />

and feed into a rejection tract that passes<br />

accumulated material posteriorly where<br />

it falls off the posterior edge of the visceral<br />

mass onto the mantle. Ciliary currents<br />

on the foot (F) also pass material into this<br />

rejection tract. Particles that fall off the<br />

visceral mass are subjected to the ciliary<br />

currents of the mantle (Figure 7).<br />

Also illustrated in Figure 9 are some<br />

details of the structure of the visceral<br />

mass. Below and just posterior to the<br />

hinge plate, below the ligament (L), there<br />

is a heart (H) and posterior to this the<br />

brown, paired, kidneys (K). Anterior to<br />

the hinge plate is the <strong>da</strong>rk brown digestive<br />

diverticula (DD). The gut has not


MORTON: TIMOCLEA OVATA IN THE AZORES 113<br />

FIGURE 9. <strong>Timoclea</strong> <strong>ovata</strong>. The ciliary currents of the right side of the visceral mass after removal<br />

of the right shell valve, mantle and ctenidium. Also illustrated are some details of the structure of<br />

the visceral mass. For abbreviations see page 119.<br />

been examined in detail, but a conjoined<br />

style sac and mid gut (CSS/MG) leaves<br />

the postero-ventral edge of the stomach<br />

and passes postero-ventrally into the visceral<br />

mass. Eventually, the extremely thin<br />

mid gut (MG) separates from this and<br />

makes a single, simple loop upwards<br />

back towards the stomach but then passes<br />

posteriorly, penetrating the ventricle of<br />

the heart as the rectum (R) which passes<br />

over the posterior adductor muscle (PA)<br />

to terminate on its posterior surface as an<br />

anus.<br />

A final anatomical point is that, surprisingly,<br />

the pe<strong>da</strong>l retractor muscles are<br />

minute. The posterior pe<strong>da</strong>l retractor<br />

muscle (Figure 9, PPR) is located next to<br />

the antero-dorsal edge of the posterior<br />

adductor (PA) while the anterior pe<strong>da</strong>l<br />

retractor muscle (APR) is even smaller<br />

and located on the postero-dorsal edge of<br />

the anterior adductor muscle (AA). I use<br />

the word ‘surprisingly’ above, because,<br />

despite these tiny muscles, the foot is further<br />

surprisingly, very active. Hence, its<br />

movements must be largely related to<br />

hydrostatically induced pressure<br />

changes, as will be discussed.<br />

Comparison with Chione elevata<br />

Aspects of the anatomy and the ciliary<br />

currents of the ctenidium of Chione elevata<br />

are illustrated in Figure 10 and as seen<br />

from the right side after removal of the<br />

right shell valve and mantle. This drawing<br />

should be compared with the corresponding<br />

one for <strong>Timoclea</strong> <strong>ovata</strong> (Figure 8).<br />

In C. elevata, the shell has a lunule (L)<br />

beneath which are located interlocking<br />

denticles. The shell also has interlocking


114 AÇOREANA<br />

2009, Sup. 6: 105-119<br />

valve margins and there are three hinge<br />

teeth in each valve, that is, what is here<br />

interpreted as anterior (ALT) and posterior<br />

lateral (PLT) and a large central cardinal<br />

teeth (CT). Jones (1979) also identifies<br />

three teeth in each valve of Chione cancellata<br />

(Linnaeus, 1767), C. paphia (Linnaeus,<br />

1767) and C. un<strong>da</strong>tella (Sowerby, 1835) but<br />

refers to them as anterior, central and posterior<br />

cardinal teeth, as decribed above<br />

for <strong>Timoclea</strong> <strong>ovata</strong>.<br />

Internally, Chione elevata has anterior<br />

(AA) and posterior (PA) adductor muscles<br />

and anterior (APR) and posterior<br />

(PPR) pe<strong>da</strong>l retractor muscles that are<br />

larger than those of <strong>Timoclea</strong> <strong>ovata</strong>. There<br />

is an extensive pe<strong>da</strong>l gape (PG) as in T.<br />

<strong>ovata</strong>, a large digging foot (F) and a mantle<br />

margin (MM) lined with mantle papillae<br />

(MP), all, again, as in T. <strong>ovata</strong>. The<br />

inhalant (IS) and exhalant (ES) siphons of<br />

C. elevata are very similar in structure to<br />

those of T. <strong>ovata</strong> and both have similarly<br />

organized ctenidia with ciliary currents of<br />

Type C (1) (Atkins, 1937). Both, therefore,<br />

have ctenidial-labial palp junction of<br />

Category II (Stasek, 1964). The labial<br />

palps of C. elevata are relatively larger<br />

than those of T. <strong>ovata</strong>, possibly because it<br />

inhabits shallow coastal waters off<br />

Flori<strong>da</strong>, U.S.A..<br />

In conclusion therefore Chione elevata<br />

and <strong>Timoclea</strong> <strong>ovata</strong> are similar anatomically,<br />

even though gene sequencing places<br />

FIGURE 10. Chione elevata. The ciliary currents of the ctenidium as seen from the right side after<br />

removal of the right shell valve and mantle. For abbreviations see page 119.


MORTON: TIMOCLEA OVATA IN THE AZORES 115<br />

them in two different sub-families, that is,<br />

the Chioninae and Venerinae, respectively<br />

(Kappner & Bieler, 2006). Importantly,<br />

such similarities now suggest convergence<br />

between the two thick-shelled and<br />

surface ornamented genera demonstrating<br />

the success, at least in part, of the veneroidean<br />

body plan as a whole and which<br />

seems to be based around anatomical<br />

conservatism.<br />

DISCUSSION<br />

Poppe & Gotto (1993) record a depth<br />

distribution of between 4 m to 200 m for<br />

<strong>Timoclea</strong> <strong>ovata</strong>, as does Tebble (1966),<br />

approximately. It is thus unsurprising that<br />

no differences in population numbers<br />

were recorded with depth from the<br />

Açorean dredge samples (50-200 m).<br />

Poppe & Gotto (1993) similarly note that T.<br />

<strong>ovata</strong> individuals from the northern part of<br />

the species’ range are larger than southern<br />

conspecifics. This may explain why the T.<br />

<strong>ovata</strong> individuals from Açorean waters are<br />

small (half the length of northern conspecifics),<br />

but it may also be because of the<br />

low levels of nutrients available to this<br />

species in the depauperate waters of the<br />

central Atlantic.<br />

Very little is known about the pre<strong>da</strong>tor-prey<br />

relationships of the Açorean<br />

marine fauna (Morton et al., 1998). In<br />

terms of the pre<strong>da</strong>tory gastropods, on<br />

rocky shores in the <strong>Açores</strong>, Thais haemastoma<br />

(Linnaeus, 1767) drills the interti<strong>da</strong>l<br />

mussel Gregariella semigranata (Reeve,<br />

1858) at the posterior margin (Morton,<br />

1995a). In Europe, Ansell (1960, 1982)<br />

demonstrated that Polinices alderi (Forbes,<br />

1838) drilled the bivalves Venus striatula <strong>da</strong><br />

Costa, 1778 and Tellina tenuis (<strong>da</strong> Costa,<br />

1778) whereas in the <strong>Açores</strong>, P. alderi<br />

attacked the commonest shallow subti<strong>da</strong>l<br />

bivalve, Ervilia castanea (Montagu, 1803),<br />

by drilling in a stereotypical, posterior,<br />

position (Morton, 1990a).<br />

Morton & Harper (2009) have studied<br />

the drill holes made in the tubes of the<br />

serpulid polychaete Ditrupa arietina (O.F.<br />

Müller, 1776) from depths of 50-200<br />

metres in the <strong>Açores</strong> and concluded that<br />

the only pre<strong>da</strong>tor present in the samples<br />

from which the tubes were collected was<br />

Natica prietoi Hi<strong>da</strong>lgo, 1873, formerly<br />

identified as Natica a<strong>da</strong>nsoni de Blainville,<br />

1825. Since the specimens of <strong>Timoclea</strong><br />

<strong>ovata</strong> reported upon here came from the<br />

same dredge samples it seems possible<br />

(likely) that N. prietoi made the holes in<br />

the shell of this species too. Confirmation<br />

of this is, however, required.<br />

Notwithstanding, Kabat (1990) has<br />

reviewed the literature on naticid pre<strong>da</strong>tion<br />

and there are no records of <strong>Timoclea</strong><br />

<strong>ovata</strong> as prey. This is thus the first record<br />

of naticid pre<strong>da</strong>tion, possibly by N. prietoi<br />

on T. <strong>ovata</strong>, although Vermeij (1980)<br />

reports that <strong>Timoclea</strong> marica (Linnaeus,<br />

1758) is drilled (laterally, as with T. <strong>ovata</strong>)<br />

by an unknown gastropod in Guam.<br />

Morton & Knapp (2004) identified an<br />

almost equal distribution of drill holes<br />

(and attempts) between the two valves of<br />

Chione elevata. Most of the drill holes<br />

were distributed around the postero-dorsal<br />

region of the shell and there were few<br />

failed drill holes. Finally, only a very few<br />

of the drill holes were over the shell<br />

lamellae and were at inter-lamellar<br />

spaces. That is, if the lamellae have<br />

evolved as anti-pre<strong>da</strong>tion devices, they<br />

are not very successful, in this case from<br />

the naticid Naticarius canrena (Linnaeus,<br />

1758). This is not the case with the also<br />

heavily sculptured Bassina calophylla<br />

(Chioninae) in the Indo-West Pacific<br />

(Ansell & Morton, 1985; 1987), where the<br />

shell lamellae do protect the bivalve<br />

inhabitant, except from species of edge<br />

drilling naticids, that is, Polinices tumidus<br />

(Swainson, 1844) and Polinices melanostomus<br />

(Gmelin, 1791).<br />

<strong>Timoclea</strong> <strong>ovata</strong> has a shell that, superfi-


116 AÇOREANA<br />

2009, Sup. 6: 105-119<br />

cially, would appear to offer much protection<br />

against drilling pre<strong>da</strong>tors. Protective<br />

characteristics include a relatively stout<br />

shell with tightly fitting valve margins,<br />

ventrally interlocking ribs, similarly interlocking<br />

denticles that occur all around the<br />

valve margins and large hinge teeth.<br />

Each adductor muscle is also large, facilitating<br />

sustained adduction and the pallial<br />

line is deeply inset within the shell margin.<br />

A thick shell characteristically protects<br />

bivalves from drilling pre<strong>da</strong>tors, for<br />

example, Corbula crassa Hinds, 1843 in<br />

Hong Kong (Morton, 1990b), although<br />

Borzone (1988) showed that a species of<br />

Polinices, as demonstrated here for N. prietoi<br />

Hi<strong>da</strong>lgo, 1873 and T. <strong>ovata</strong>, selectively<br />

drilled its prey, Venus antiqua King &<br />

Broderip, 1831, in the thickest region of<br />

the shell, that is, umbonally. Natica catena<br />

(<strong>da</strong> Costa, 1778) similarly bores its prey,<br />

the subti<strong>da</strong>l Donax vittatus (<strong>da</strong> Costa,<br />

1778) around the umbones (Negus, 1975).<br />

The anatomies of various representatives<br />

of the Chioninae have been<br />

described. These include Bassina calophylla<br />

(Morton, 1985) and Chione elevata (formerly<br />

identified as C. cancellata) (Jones,<br />

1979; Morton & Knapp, 2004) while<br />

Ansell (1961) has described the anatomies<br />

of the representatives of the Veneri<strong>da</strong>e<br />

(including a little about <strong>Timoclea</strong> <strong>ovata</strong>)<br />

that occur in British waters. The most<br />

obvious feature of the studied representatives<br />

of the Veneri<strong>da</strong>e is their anatomical<br />

conservatism. Hence, illustrations of the<br />

ctenidia within the mantle cavity of T.<br />

<strong>ovata</strong> (Venerinae), and C. elevata (illustrated<br />

herein: Figs 8 & 10, respectively) and B.<br />

calophylla (Morton, 1985, fig. 10)<br />

(Chioninae) are virtually identical, differing<br />

only in labial palp size. It is well<br />

known that palp size in the Bivalvia is<br />

related to the degree of sorting necessary<br />

for the particle load in the inhalant<br />

stream. Thus, the Hong Kong continental<br />

shelf species B. calophylla has large palps,<br />

the Floridian C. elevata has intermediate<br />

sized palps (Figure 10) while T. <strong>ovata</strong> has<br />

tiny palps (Figure 8). That is, because of<br />

high nutrient loading in continental shelf<br />

waters, B. calophylla needs big palps to<br />

reject a surfeit of unwanted particles<br />

whereas, oppositely, T. <strong>ovata</strong> in mid-<br />

Atlantic waters has little need to reject<br />

anything and has tiny palps. <strong>Timoclea</strong><br />

<strong>ovata</strong> has also, for the same reason, a<br />

short, narrow, mid-gut.<br />

Morton (1995b) pointed out that the<br />

two most widely distributed and, possibly,<br />

most “successful” modern bivalve<br />

lineages are the Mytiloidea and heterodont<br />

Veneroi<strong>da</strong> that are generally but<br />

not exclusively dominant on rocky and<br />

soft marine habitats, respectively. This<br />

has been achieved by reproductive (virtually<br />

all representatives being broadcast<br />

spawners) and anatomical conservatism.<br />

Thus, one can take virtually any mytilid<br />

or any venerid and they will be, as this<br />

study demonstrates for <strong>Timoclea</strong> <strong>ovata</strong>,<br />

similar to the other representatives of<br />

each order. In other bivalve lineages,<br />

more limited “success” has been achieved<br />

through reproductive and/or anatomical<br />

specialisms (Morton, 1995b). But the true<br />

inheritors of the bivalve bauplan are the<br />

modern Mytiloidea and Veneroidea.<br />

One interesting aspect of this “success”,<br />

however, is that, as discussed here,<br />

the complex surface architectures of the<br />

shell of the chionine Chione elevata and the<br />

venerine <strong>Timoclea</strong> <strong>ovata</strong> have not been successful<br />

in protecting representatives from,<br />

in particular, naticid pre<strong>da</strong>tion even<br />

though one instinctively supposes that<br />

that is what it is for. That is, in the pre<strong>da</strong>tor-prey<br />

“arms race”, naticids are clearly<br />

winning but the chionine shell architecture<br />

may also fulfill other functions such<br />

as the stability of the shallow burrowing<br />

<strong>Timoclea</strong> <strong>ovata</strong>, and other chionines, in soft<br />

sediments – a habitat that their shell<br />

architectures suit them ideally to.


MORTON: TIMOCLEA OVATA IN THE AZORES 117<br />

ACKNOWLEDGEMENTS<br />

I am grateful to Prof. A.M. Frias Martins<br />

(University of the <strong>Açores</strong>) for funding this<br />

research and for much practical help and<br />

warm hospitality during my stay on São<br />

Miguel. I also thank a number of University<br />

of the <strong>Açores</strong> students who helped with<br />

sample sorting and Dr. K.F. Leung (Hong<br />

Kong) for statistical advice.<br />

LITERATURE CITED<br />

ANFOSSI, G., & G. BRAMBILLA, 1981.<br />

Pleistocene faunal assemblages from<br />

the San-Colombo-al-Lambro Hill,<br />

Lombardy, Italy. 1. Pelecypods. Atti<br />

dell’Istituto Geologica della Universita di<br />

Pavia, 29: 49-68.<br />

ANSELL, A.D., 1960. Observations on pre<strong>da</strong>tion<br />

of Venus striatula (<strong>da</strong> Costa) by<br />

Natica alderi (Forbes). Proceedings of the<br />

Malacological Society of London, 34: 157-<br />

164.<br />

ANSELL, A.D., 1961. The functional morphology<br />

of the British species of<br />

Veneracea (Eulamellibranchia). Journal<br />

of the Marine Biological Association of the<br />

United Kingdom, 41: 489-517.<br />

ANSELL, A.D., 1982. Experimental studies<br />

of a benthic pre<strong>da</strong>tor-prey relationship.<br />

I. Feeding, growth, and egg collar production<br />

in long-term cultures of the<br />

gastropod drill Polinices alderi (Forbes)<br />

feeding on the bivalve Tellina tenuis <strong>da</strong><br />

Costa. Journal of Experimental Marine<br />

Biology and Ecology, 56: 235-255.<br />

ANSELL, A.D., & B. MORTON, 1985.<br />

Aspects of naticid pre<strong>da</strong>tion in Hong<br />

Kong with special reference to the defensive<br />

a<strong>da</strong>ptations of Bassina (Callanaitis)<br />

calophylla. In: MORTON, B., & D. DUD-<br />

GEON (eds.), Proceedings of the Second<br />

International Workshop on the Malacofauna<br />

of Hong Kong and southern China, Hong<br />

Kong, 1983, pp. 635-660. Hong Kong<br />

University Press, Hong Kong.<br />

ANSELL, A.D., & B. MORTON, 1987.<br />

Alternative pre<strong>da</strong>tion tactics of a tropical<br />

naticid gastropod. Journal of<br />

Experimental Marine Biology and Ecology,<br />

111: 109-119.<br />

ATKINS, D., 1937. On the ciliary mechanisms<br />

and interrelationships of lamellibranchs.<br />

Part 3. Types of lamellibranch<br />

gills and their food currents. Quarterly<br />

Journal of Microscopical Science, 79: 375-<br />

421.<br />

BENIGNI, C., & C. CORSELLI, 1981.<br />

Paleocommunity of benthic mollscs of<br />

the Pliocene of Volpedo, Alexandia,<br />

Italy. Rivista Italiana di Paleontologia e<br />

Stratigrafia, 87: 637-702.<br />

BORZONE, C.A., 1988. Sobre la pre<strong>da</strong>ción<br />

de Venus antiqua King & Broderip, 1835<br />

(Bivalvia, Veneri<strong>da</strong>e) por Polinices sp.<br />

(Gastropo<strong>da</strong>, Natici<strong>da</strong>e). Revista<br />

Atlântica, Brasil, 10: 75-84,<br />

CANAPA, A., S. SCHIAPARELLI, L.<br />

MAROTA & M. BARUCCA, 2003.<br />

Molecular <strong>da</strong>ta from the 16S rRNA<br />

gene for the phylogeny of Veneri<strong>da</strong>e<br />

(Mollusca: Bivalvia). Marine Biology,<br />

142: 1125-1130.<br />

CARTER, R.M., 1967. On the nature and<br />

definition of the lunule, escutcheon and<br />

corcelet in the Bivalvia. Proceedings of<br />

the Malacological Society of London, 37:<br />

243-263.<br />

COAN, E.V., P.V. SCOTT & F.R.<br />

BERNARD, 1997. Bivalve Seashells of<br />

Western North America. Santa Barbara<br />

Museum of Natural History<br />

Monographs 2. pp. i-vii + 764.<br />

DAUVIN, J.-C., 1985. Dynamique et production<br />

d’une population de Venus<br />

<strong>ovata</strong> Pennant (Mollusque-Bivalve) de<br />

la Baie de Moriax (Manche occidentale).<br />

Journal of Experimental Marine<br />

Biology and Ecology, 91: 109-123.<br />

JONES, C.C., 1979. Anatomy of Chione<br />

cancellata and some other chionines<br />

(Bivalvia: Veneri<strong>da</strong>e). Malacologia, 19:<br />

157-199.


118 AÇOREANA<br />

2009, Sup. 6: 105-119<br />

KABAT, A.R., 1990. Pre<strong>da</strong>tory ecology of<br />

naticid gastropods with a review of shell<br />

boring pre<strong>da</strong>tion. Malacologia, 32: 155-<br />

193.<br />

KAPPNER, I., & R. BIELER, 2006.<br />

Phylogeny of venus clams (Bivalvia:<br />

Venerinae) as inferred from nuclear and<br />

mitochondrial gene sequences.<br />

Molecular Phylogenetics and Evolution, 40:<br />

317-331.<br />

KEEN, M., 1969. Superfamily Veneracea<br />

Rafinesque, 1815. In: MOORE. R.C. (ed.),<br />

Treatise on Invertebrate Palaeontology. Part<br />

N. Mollusca 6. Volume 2, pp. N670-<br />

N690. Lawrence, Kansas: Geological<br />

Society of America and University of<br />

Kansas Press.<br />

LABRUNE, C., A. GRÉMAREA, K.<br />

GUIZIENA & J.M. AMAROUX, 2007.<br />

Long-term comparison of soft bottom<br />

macrobenthos in the Bay Banyuls-sur-<br />

Mer (north-western Mediterranean Sea):<br />

a reappraisal. Journal of Sea Research, 58:<br />

125-143.<br />

MARTINS, A.M.F, J.P. BORGES, S.P.<br />

ÁVILA, A.C. COSTA, P. MADEIRA & B.<br />

MORTON, 2009. Illustrated checklist of<br />

the infralittoral molluscs off Vila Franca<br />

do Campo. In: MARTINS, A.M.F. (ed.),<br />

The Marine Fauna and Flora of the Azores<br />

(Proceedings of the Third International<br />

Workshop of Malacology and Marine<br />

Biology, São Miguel 2006). Açoreana,<br />

Supplement 6: 15-103.<br />

MIENIS, H.K., 2003. <strong>Timoclea</strong> <strong>ovata</strong> in de<br />

maag van Astropecten aranciacus. Spirula,<br />

331: 26.<br />

MORTON, B., 1967. Malacological Report.<br />

In: Final Report, Chelsea College Azores<br />

Expedition, 1965. pp. 30-39. University of<br />

London, London<br />

MORTON, B., 1985. Aspects of the biology<br />

and functional morphology of Irus irus<br />

(Bivalvia: Veneri<strong>da</strong>e: Tapetinae) with a<br />

comparison of Bassina calophylla<br />

(Chioninae). In: MORTON, B., & D.<br />

DUDGEON (eds.), Proceedings of the<br />

Second International Workshop on the<br />

Malacofauna of Hong Kong and southern<br />

China, Hong Kong 1983, pp. 321-336.<br />

Hong Kong University Press, Hong<br />

Kong.<br />

MORTON, B., 1990a. The biology and<br />

functional morphology of Ervilia<br />

castanea (Bivalvia: Tellinacea) from the<br />

Azores. In: MARTINS, A.M.F. (ed.),<br />

Proceedings of the First International<br />

Workshop of Malacology, São Miguel,<br />

Azores, 1988. Açoreana, Supplement [2]:<br />

75-96.<br />

MORTON, B., 1990b. The functional morphology<br />

of Corbula crassa (Bivalvia:<br />

Corbuli<strong>da</strong>e) with special reference to<br />

shell structure and formation. In: MOR-<br />

TON, B. (ed.), Proceedings of the Second<br />

International Marine Biological Workshop:<br />

The Marine Flora and Fauna of Hong Kong<br />

and southern China (II), Hong Kong, 1986,<br />

pp. 1055-1073. Hong Kong University<br />

Press, Hong Kong.<br />

MORTON, B., 1995a. The biology and<br />

functional morphology of Trichomusculus<br />

semigranatus (Bivalvia:<br />

Mytiloidea) from the Azores. In:<br />

MARTINS, A.M.F. (ed.), The Marine<br />

Fauna and Flora of the Azores. Proceedings<br />

of the Second International Workshop of<br />

Malacology and Marine Biology, São<br />

Miguel, Azores, 1991. Açoreana,<br />

Supplement [4]: 279-295.<br />

MORTON, B. 1995b. Chapter 29. The evolutionary<br />

history of the Bivalvia. In: TAY-<br />

LOR, J.D (ed.). The Origin and<br />

Evolutionary Radiation of the Mollusca, pp.<br />

337-359. Oxford: Oxford University<br />

Press.<br />

MORTON, B., 2000. The biology and functional<br />

morphology of Fragum erugatum<br />

(Bivalvia: Cardii<strong>da</strong>e) from Shark Bay,<br />

Western Australia: the significance of its<br />

relationship with entrained zooxanthellae.<br />

Journal of Zoology, London, 251: 39-52.<br />

MORTON, B., & E.M. HARPER, 2009.<br />

Drilling pre<strong>da</strong>tion upon Ditrupa arietina


MORTON: TIMOCLEA OVATA IN THE AZORES 119<br />

(Polychaeta: Serpuli<strong>da</strong>e) from the mid-<br />

Atlantic <strong>Açores</strong>, Portugal. In: MARTINS,<br />

A.M. (ed.), The Marine Fauna and Flora of<br />

the Azores. (Proceedings of the Third<br />

International Workshop of Malacology and<br />

Marine Biology, São Miguel, Azores, 2006.<br />

Açoreana, Supplement 6: 157-165.<br />

MORTON, B., & KNAPP, M., 2004.<br />

Pre<strong>da</strong>tor-prey interactions between<br />

Chione elevata (Bivalvia: Chioninae) and<br />

Naticarius canrena (Gastropo<strong>da</strong>:<br />

Natici<strong>da</strong>e) in the Flori<strong>da</strong> Keys, U.S.A.<br />

Malacologia, 46: 295-308.<br />

MORTON, B., J.C. BRITTON, & A.M. de<br />

FRIAS MARTINS, 1998. Coastal Ecology<br />

of the <strong>Açores</strong>, pp. i-x + 249. Ponta<br />

Delga<strong>da</strong>, São Miguel, <strong>Açores</strong>, Portugal:<br />

Socie<strong>da</strong>de Afonso Chaves.<br />

NEGUS, M., 1975. An analysis of boreholes<br />

drilled by Natica catena (Da Costa) in the<br />

valves of Donax vittatus (Da Costa).<br />

Proceedings of the Malacological Society of<br />

London, 41: 353-356.<br />

POPPE, G.T., & Y. GOTO, 1993. European Sea<br />

Shells. Volume II. (Scaphopo<strong>da</strong>, Bivalvia,<br />

Cephalopo<strong>da</strong>), 221 pp. Wiesbaden:<br />

Hemmen.<br />

STASEK, C.R., 1964. Synopsis and discussion<br />

of the association of ctenidia and<br />

labial palps in the bivalved Mollusca.<br />

The Veliger, 6: 91-97.<br />

TEBBLE, N., 1966. British Bivalve Seashells,<br />

212 pp. London: Trustees of the British<br />

Museum (Natural History).<br />

VERMEIJ, G.J., 1980. Drilling pre<strong>da</strong>tion of<br />

bivalves in Guam: some paleoecological<br />

implications. Malacologia, 19: 329-334<br />

YONGE, C.M., 1982. Mantle margins with a<br />

revision of siphonal types in the<br />

Bivalvia. Journal of Molluscan Studies, 48:<br />

102-103.<br />

ABBREVIATIONS USED IN THE<br />

FIGURES<br />

AA Anterior adductor muscle or<br />

scar<br />

ALT Anterior lateral tooth<br />

APR Anterior pe<strong>da</strong>l retractor muscle<br />

AU Auricle (of heart)<br />

CSS/MG Conjoined style sac and mid<br />

gut<br />

CT Cardinal tooth<br />

DD Digestive diverticula<br />

ES Exhalant siphon<br />

F Foot<br />

H Heart<br />

ID Inner demibranch<br />

ILP Inner labial palp<br />

IS Inhalant siphon<br />

JS Juvenile shell<br />

K Kidney<br />

L Ligament<br />

LP Labial palp<br />

LU Lunule<br />

MD Marginal denticles<br />

MG Mid gut<br />

MM Mantle margin<br />

MP Mantle papillae<br />

OD Outer demibranch<br />

OLP Outer labial palp<br />

PA Posterior adductor muscle or<br />

scar<br />

PG Pe<strong>da</strong>l gape<br />

PL Pallial line<br />

PLT Posterior lateral tooth<br />

PM Pseudofaecal mass<br />

PPR Posterior pe<strong>da</strong>l retractor<br />

muscle<br />

PS Pallial sinus<br />

R Rectum<br />

U Umbo<br />

V Ventricle (of heart)


AÇOREANA, Suplemento 6, Setembro 2009: 121-135<br />

ANATOMY AND BIOLOGY OF MITRA CORNEA LAMARCK, 1811 (MOLLUSCA,<br />

CAENOGASTROPODA, MITRIDAE) FROM THE AZORES<br />

M. G. Harasewych<br />

Dept. of Invertebrate Zoology, MRC-163, National Museum of Natural History,<br />

Smithsonian Institution, PO Box 37012, Washington, D.C. 20013-7012. USA.<br />

e-mail: Harasewych@si.edu<br />

ABSTRACT<br />

Mitra cornea Lamarck, 1811, a member of the taxonomically complex group of small<br />

brown miters, is described anatomically, including observations on shell ultrastructure<br />

and diet. Morphological features confirm its taxonomic placement within the genus Mitra,<br />

and indicate a closer relationship with the western African Mitra nigra than with the<br />

Mediterranean Mitra cornicula. Mitra cornea shares the morphological a<strong>da</strong>ptations of the<br />

anterior alimentary system that have evolved in conjunction with a specialized sipunculan<br />

diet, and that appear to be fairly uniform within the Mitrinae. Studies on the composition<br />

and pharmacological effects of the secretions of the salivary glands and hypobranchial<br />

gland are needed to better interpret the origin and evolutionary pathways that gave rise<br />

to the extreme trophic specialization of the Mitri<strong>da</strong>e.<br />

RESUMO<br />

Descreve-se anatomicamente Mitra cornea Lamarck, 1811, um membro do grupo<br />

taxonomicamente complexo de pequenas mitras castanhas, incluindo-se observações<br />

sobre a estrutura <strong>da</strong> concha e sobre a dieta. As características morfológicas confirmam a<br />

sua localização taxonómica no género Mitra e indicam um relacionamento mais chegado<br />

com Mitra nigra, <strong>da</strong> África ocidental, do que com a mediterrânea Mitra cornicula. Mitra<br />

cornea possui as a<strong>da</strong>ptações morfológicas <strong>da</strong> porção anterior do sistema alimentar que<br />

evoluíram juntamente com uma dieta especializa<strong>da</strong> de sipúnculos, e que parece ser<br />

bastante uniforme dentro <strong>dos</strong> Mitrinae. São necessários estu<strong>dos</strong> sobre a composição e<br />

efeitos farmacológicos <strong>da</strong>s secreções <strong>da</strong>s glândulas salivares e <strong>da</strong> glândula hipobranquial<br />

para melhor se interpretar a origem e os percursos evolutivos que fizeram aparecer a<br />

especialização trófica extrema <strong>dos</strong> Mitri<strong>da</strong>e.<br />

INTRODUCTION<br />

The Mitri<strong>da</strong>e comprise a diverse and<br />

cosmopolitan family of pre<strong>da</strong>tory<br />

neogastropods that are common in the<br />

tropics, but are also present in temperate<br />

seas. Mitrids usually occur at interti<strong>da</strong>l<br />

to subti<strong>da</strong>l depths, but extend into the<br />

bathyal zone (Cernohorsky, 1976;<br />

Ponder, 1998). Taylor (1993) noted that<br />

Mitri<strong>da</strong>e are perhaps the most trophically<br />

specialized family of Neogastropo<strong>da</strong>,<br />

as all species studied to <strong>da</strong>te have been<br />

found to feed exclusively on Sipuncula<br />

(e.g., Kohn, 1970; Fukuyama &<br />

Nybakken, 1983; Loch, 1987; Taylor,<br />

1989; 1993).<br />

The mitrid fauna of the Azores is not<br />

diverse, with the family represented by<br />

two Recent species. Mitra zonata Marryat,<br />

1818, is easily distinguished by its large<br />

size and two-toned periostracum that is<br />

lighter in color along the apical portion of<br />

the shell above the suture. Cernohorsky<br />

(1976:367) regarded this Recent taxon to<br />

be a subspecies of the Pliocene Mitra<br />

(Mitra) fusiformis (Brocchi, 1814). He<br />

reported it to be limited to the western<br />

Mediterranean and northwestern Africa,<br />

but it has since been documented to occur


122 AÇOREANA<br />

2009, Sup. 6:121-135<br />

in the Azores by Burnay & Martins (1988).<br />

Martins (2004:94) noted that this species<br />

lives on offshore, sandy bottoms.<br />

A smaller species that inhabits the<br />

interti<strong>da</strong>l and subti<strong>da</strong>l rocky substrates of<br />

the Azores has a long and complicated<br />

taxonomic history. Multiple names have<br />

been applied to various phenotypes of<br />

small, smooth, <strong>da</strong>rk brown mitrids that<br />

inhabit the Mediterranean and eastern<br />

Atlantic. Rolán et al. (1997) reviewed the<br />

systematics of the “<strong>da</strong>rk brown<br />

Mitri<strong>da</strong>e”, concluded that three morphologically<br />

similar species are involved, and<br />

apportioned the multiple available names<br />

among them. According to these authors,<br />

Mitra cornicula (Linnaeus, 1758) is endemic<br />

to the Mediterranean Sea, Mitra<br />

nigra (Gmelin, 1791) ranges from the Cape<br />

Verde Islands to Angola, while the broad<br />

ranging Mitra cornea Lamarck, 1811, overlaps<br />

the range of the other two, occurring<br />

in the western Mediterranean Sea, the<br />

Macaronesian Archipelagos (Azores,<br />

Canaries, and Cape Verde Islands) and<br />

along the west coast of Africa as far south<br />

as Angola. The Mediterranean M. cornicula<br />

can be easily distinguished by its<br />

smaller shell size (to 25 mm), brown shell<br />

and brown periostracum, larger protoconch<br />

(320 µm) with fewer whorls ( 1¼),<br />

an animal that is entirely white, and a distinctive<br />

radula with lateral teeth that<br />

retain prominent dentition along their<br />

entire width (Rolan et al., 1997:fig. 16D).<br />

Mitra nigra and M. cornea are more similar<br />

in protoconch size, radular morphology,<br />

and periostracal color. Mitra nigra reaches<br />

a larger shell size (to 70 mm, compared<br />

to 40 mm for M. cornea) and has a black<br />

shell and brown to reddish-violet animal,<br />

while M. cornea has a light brown to pale<br />

grey shell and a distinctive white animal<br />

with yellow stripes along the tentacles<br />

and lateral margins of the foot (see<br />

Martins, 2004:65, fig. M). It should be<br />

noted, however, that this distinctive coloration<br />

is evident in living animals, but<br />

alcohol preserved specimens are brownish,<br />

becoming stained as the hypobranchial<br />

gland exu<strong>da</strong>te oxidizes to a<br />

purplish brown.<br />

Thus, the small brown mitrids of the<br />

Azores are Mitra cornea Lamarck, 1811.<br />

Earlier literature (e.g. Dautzenberg, 1889)<br />

may refer to this species as Mitra fusca<br />

Reeve, 1844, which, however, is a junior<br />

synonym of M. cornea and is preoccupied<br />

by Mitra fusca Swainson, 1831, an Indo-<br />

Pacific species. Cernohorsky (1969:972,<br />

fig. 28) designated as lectotype for Mitra<br />

cornea Lamarck, 1811, a specimen from<br />

the west coast of Africa, thus fixing its<br />

type locality. He regarded this taxon to be<br />

a synonym of M. cornicula, a species that<br />

is endemic to the Mediterranean and<br />

readily distinguished from M. cornea on<br />

the basis of shell and radular morphology.<br />

Mitra aquitanica Locard, 1892, is an<br />

unnecessary replacement name for Mitra<br />

fusca Reeve, 1844 non Swainson, 1831.<br />

Azorean records of Mitra cornea were,<br />

until recently, reported as Mitra nigra<br />

(e.g., Cernohorsky, 1976:371; Knudsen,<br />

1995:152; Morton et al., 1998:57, 65, 76).<br />

The present study documents the<br />

anatomy, shell morphology and biology<br />

of Mitra cornea from São Miguel, Azores,<br />

in order to provide a basis for more comprehensive<br />

studies of the systematics and<br />

relationships of the three small, smooth<br />

mitrids of the eastern Atlantic and<br />

Mediterranean Sea.<br />

MATERIALS AND METHODS<br />

Numerous specimens were collected<br />

from algae covered interti<strong>da</strong>l rocks along<br />

the SW wall of the fishing pier in Vila<br />

Franca do Campo, São Miguel, Azores<br />

[N37° 42’ 49.75”, W25 25’ 52.10”] (USNM<br />

1114338). Additional specimens were collected<br />

on shallow (< 1 m) subti<strong>da</strong>l rocky<br />

ledges along the southern rim of the


HARASEWYCH: ANATOMY AND BIOLOGY OF MITRA CORNEA 123<br />

crater of Ilhéu de Vila Franca, São Miguel,<br />

Azores [N37° 42’ 18.75”, W25° 26’ 35.33”]<br />

(USNM 1114340).<br />

Specimens were maintained and<br />

observed in seawater. The shells of a subset<br />

of specimens were cracked in a vice,<br />

and the animals irritated with forceps until<br />

they everted their proboscis. These animals<br />

were then preserved in 70% ethanol<br />

and transferred to 95% ethanol for storage.<br />

Animals were dissected, portions critical<br />

point dried and examined with a scanning<br />

electron microscope.<br />

SYSTEMATICS<br />

Class GASTROPODA<br />

Order Neogastropo<strong>da</strong> Wenz, 1943<br />

Family Mitri<strong>da</strong>e Swainson, 1831<br />

Genus Mitra Lamarck, 1798<br />

Mitra cornea Lamarck, 1811<br />

Synonymy<br />

Mitra cornea Lamarck, 1811<br />

Mitra fusca Reeve, 1844 non Mitra<br />

fusca Swainson, 1831<br />

Mitra aquitanica Locard, 1892<br />

Description<br />

Shell morphology: Shell (Figures 1, 2) small<br />

for genus (to 34 mm), thick, biconic,<br />

fusiform, with elongate aperture and 4<br />

heavy columellar folds. Protoconch<br />

increasing from ≈ 110 µm to ≈ 1.2 mm in 4<br />

¼ evenly rounded, conical whorls, badly<br />

eroded or missing on most specimens.<br />

Transition to teleoconch indistinct, marked<br />

by change in surface from glossy to matte,<br />

and onset of spiral sculpture consisting of<br />

narrow, pitted furrows separating adjacent<br />

broad, low, spiral cords. Teleoconch of up<br />

to 7+ smooth, evenly convex whorls.<br />

Suture adpressed, irregular, showing evidence<br />

of axial lamellae. Spiral sculpture of<br />

low, abutting spiral cords separated by a<br />

series of closely spaced pits in early<br />

whorls, that become sharply incised furrows<br />

in later whorls, and largely obscure<br />

except along the anterior third of the final<br />

whorl. Axial sculpture consists of low,<br />

nearly obscure lamellae that are most evident<br />

at the suture of smaller specimens<br />

(Figure 2) from which the periostracum<br />

has been removed. Pitting, periostracum,<br />

and repaired breaks (Figure 2, rb) obscure<br />

the sculpture of larger specimens.<br />

Aperture elongated, tapering posteriorly<br />

beneath suture to form anal sulcus. Outer<br />

lip smooth, thickened, nearly straight<br />

along middle portion, rounded and dorsally<br />

reflected anteriorly to form siphonal<br />

notch. Inner lip with narrow, glazed<br />

inductura, four broad columellar folds<br />

(Figure 3, cf), decreasing in prominence<br />

from posterior to anterior, and a siphonal<br />

fold (Figure 3, sf). Siphonal notch broad,<br />

siphonal fasciole usually absent, but may<br />

be weak and short in larger specimens.<br />

External shell color ranges from <strong>da</strong>rk<br />

chestnut brown to purplish gray and may<br />

be solid or banded. Aperture is white,<br />

especially the columellar folds, but brown<br />

color is visible through the white glaze<br />

near the anterior and posterior margins of<br />

the aperture. Periostracum thin, chestnut<br />

brown. Operculum absent.<br />

Shell ultrastructure: (Figure 4) Shell composed<br />

of four distinct crystal layers. The<br />

innermost layer (Figure 4, in) (≈ 90 µm)<br />

comprising the glaze is whitish, while the<br />

remaining layers are golden brown. The<br />

crystal faces of the next layer (Figure 4,<br />

per) (≈ 275 µm) are crossed-lamellar, and<br />

oriented perpendicular to the growing<br />

edge of the shell. They are also perpendicular<br />

to the crystal faces of the adjacent<br />

crossed lamellar layer (Figure 4, par) (≈ 435<br />

µm), which are parallel to the growing<br />

edge. A prismatic layer (Figure 4, ou)<br />

(≈ 120 µm) is outermost.<br />

External anatomy: (Figure 5) The soft tissues<br />

comprise 2½ whorls, of which the


124 AÇOREANA<br />

2009, Sup. 6:121-135<br />

FIGURES 1-4. Mitra cornea Lamarck, 1811. 1. USNM 1114338, interti<strong>da</strong>l rocks along the SW wall of the<br />

fishing pier in Vila Franca do Campo , São Miguel, Azores. 2. USNM 1114340, subti<strong>da</strong>l (< 1 m) rocky<br />

ledges along the southern rim of the crater of Ilhéu de Vila Franca, São Miguel, Azores. 3. Shell fractured<br />

to reveal columella. 4. shell ultrastructure. Surface parallel to growing edge of shell, ¼ whorl behind<br />

the lip. cf, columellar fold; in, innermost shell layer; ou, outer, prismatic shell layer; par, crossed-lamellar<br />

aragonite, crystal faces parallel to growing edge; per, crossed-lamellar aragonite, crystal faces perpendicular<br />

to crowing edge; rb, repaired break; sf, siphonal fold.


HARASEWYCH: ANATOMY AND BIOLOGY OF MITRA CORNEA 125<br />

FIGURES 5-10. Anatomical features of Mitra cornea Lamarck, 1811. 5. Male specimen, lateral view. 6.<br />

Roof of mantle cavity. 7. Alimentary system, semi-diagramatic. 8. Lateral view of anterior proboscis,<br />

opened from right side. 9. Female reproductive system. 10. Male reproductive system. a, anus; ag, albumen<br />

gland; ae, anterior esophagus; bc, bursa copulatrix; cg, capsule gland; cm, columellar muscle; ct,<br />

ctenidium; dg, digestive gland; dsg, duct of salivary gland; ep, epiproboscis; fo, female opening; hg,<br />

hypobranchial gland; ig, ingesting gland; k, kidney; m, mouth; me, mantle edge; ng, nephridial gland;<br />

nr, nerve ring; os, osphradium; p, penis; pb, proboscis; pc, pericardium; pp, peristomal papillae; pro,<br />

prostate gland; r, rectum; rg, rectal gland; rmc, rear of mantle cavity; rr, radular ribbon; s, siphon; sg, salivary<br />

gland; sto, stomach; sv, seminal vesicle; t, testis; td, testicular duct; vd, vas deferens; vor, ventral<br />

odontophoral retractor muscle.


126 AÇOREANA<br />

2009, Sup. 6:121-135<br />

mantle cavity spans ¾ whorl, the kidney<br />

¼ whorl, and the digestive gland and<br />

gonad 1½ whorls. The columellar muscle<br />

is long, narrow, attaching to the shell 1 ¼<br />

whorl behind the mantle edge. The foot is<br />

long, narrow, rectangular (L/W ≈ 2.0),<br />

with a deep propodial groove along the<br />

anterior edge. In living specimens, the<br />

foot is bright white with a narrow, bright<br />

yellow band along the lateral edges of the<br />

foot and outer edges of the tentacles as far<br />

as the eyes. The color is rapidly lost in<br />

alcohol preserved specimens, which<br />

become progressively <strong>da</strong>rker brown over<br />

time. The siphon is long and muscular.<br />

Mantle cavity: (Figure 6) The arrangement<br />

of mantle cavity organs is similar to that<br />

of most neogastropods. The mantle edge<br />

is thin and smooth, somewhat thickened<br />

at the right margin. The osphradium<br />

(Figure 6, os) is bipectinate, large, brownish,<br />

with 64-73 filaments above the ganglion<br />

and 52-60 below. The ctenidium<br />

(Figure 6, ct) is twice a broad and twice as<br />

long as the osphradium. A large renal<br />

organ (Figure 5, k), in which the primary<br />

and secon<strong>da</strong>ry lamellae do not interdgitate<br />

[termed Meronephridiens by Perrier<br />

(1889)] forms the right, rear wall of mantle<br />

cavity. The short, broad pericardium<br />

(Figure 5, pc), with a narrow nephridial<br />

gland (Figure 5, ng) lies to the left of the<br />

kidney. The hypobranchial gland (Figure<br />

6, hg) is broad and thick, occupying much<br />

of the dorsal roof of the mantle cavity<br />

between the osphradium and gonoduct.<br />

It produces a copious viscous secretion<br />

that is clear at first, but becomes yellowish<br />

then purple, and finally <strong>da</strong>rk brown.<br />

The color is alcohol soluble and stains the<br />

tissues of preserved specimens.<br />

Alimentary system: (Figure 7) The pleurombolic<br />

proboscis (Figures 5, 7 pb) is<br />

moderately long (extends to ≈ 1.5 x Shell<br />

length), broad, especially distally, enclosing<br />

a large, compact buccal mass and<br />

epiproboscis (Figures 5, 7, 8, 13-22, ep), an<br />

extensible muscular introvert unique to<br />

mitrids. When retracted, the proboscis is<br />

slightly folded within proboscis sheath<br />

and fills nearly the entire cephalic hemocoel.<br />

The buccal mass is broad, with a<br />

short, muscular, peristomal rim lined<br />

with evertable papillae surrounding the<br />

mouth. The odontophore and radular<br />

ribbon are large, with strong protractor<br />

and retractor muscles.<br />

The radular ribbon (Figures 11, 12) is<br />

short and broad (L/W ≈ 3.8; L = 1.9 mm, W<br />

= 500 µm), consisting of 45-57 rows of<br />

teeth, and may be slightly asymmetrical,<br />

with left lateral teeth 5-14% wider than<br />

right in some specimens. The rachidian<br />

teeth (Figure 11, rt) have five strong,<br />

curved cusps emerging from a weakly<br />

trapezoi<strong>da</strong>l basal plate that is broader at<br />

the posterior end. Each of the five cusps<br />

has a broad, thick dorsal surface continuous<br />

with the anterior end of the basal<br />

plate, and a sharply tapering, knife-like<br />

posterior-ventral edge that descends to<br />

the posterior end of the basal plate. The<br />

central cusp is longest, lateral cusps are<br />

shortest. The lateral teeth (Figure 11, lat)<br />

have a complex, semi-recurved basal<br />

plate that it broad, thin and flat along its<br />

outer edge, becoming narrower, thicker,<br />

with its anterior edge raised by up to 35º<br />

along the inner 1/3 of its length. Each<br />

tooth has 14-18 cusps. The 2 nd → 4 th from<br />

the inner edge are strongest, with the<br />

same knife-like structure as the cusps on<br />

the rachidian teeth. The remaining teeth<br />

become more conical and diminish in<br />

length and size toward the lateral edge,<br />

with the outermost 0.18 of the basal plate<br />

lacking discernible cusps.<br />

The epiproboscis is a long, anteriorly<br />

tapering, muscular rod, consisting of a<br />

central core of longitudinal muscles, surrounded<br />

by circular muscles and encased<br />

in an inner and outer sheath. From its


HARASEWYCH: ANATOMY AND BIOLOGY OF MITRA CORNEA 127<br />

FIGURES 11-12. Radula of Mitra cornea Lamarck, 1811. 11. Dorsal view of half row of radular<br />

teeth. 12. Oblique view of radular teeth. lat, lateral tooth; rt, rachidian tooth.<br />

opening just below the mouth (Figures 8,<br />

22, m), the epiproboscis runs mid-ventrally<br />

beneath the buccal mass, recurving<br />

dorsally to form a U-shaped bend behind<br />

the buccal mass to become attached to the<br />

odontophore by a short, broad retractor<br />

muscle. The large, ascinous salivary<br />

glands (Figure 7, sg) are situated above<br />

the nerve ring (Figure 7, nr) in the anterior<br />

portion of the cephalic hemocoel,<br />

generally to the right of the retracted proboscis.<br />

The ducts from these glands run<br />

anteriorly alongside the esophagus, joining<br />

the epiproboscis at the bend, running<br />

at first ventrally, then medially within the<br />

epiproboscis, merging into a single opening<br />

at its tip (Figures 13, 22, sd).<br />

The anterior esophagus is broad, and<br />

flat above the buccal mass (Figure 19, ae),<br />

with low longitudinal ridges, but<br />

becomes narrower and more circular posterior<br />

(Figure 21, ae) to the bend in the<br />

epiproboscis. The esophagus passes<br />

through the nerve ring without forming a<br />

distinctive valve of Leiblein, broadens to<br />

form a crop-like structure, and runs posteriorly<br />

to join a broad, muscular stomach.<br />

Neither a gland of Leiblein nor<br />

accessory salivary glands are present.<br />

The stomach (Figure 7, sto) has a muscular<br />

gizzard between the esophagus and<br />

the closely spaced ducts of the digestive<br />

glands. The intestinal region has low longitudinal<br />

ridges that lead to the long<br />

intestine, which runs along the kidney<br />

and pericardium before entering the rear<br />

of the mantle cavity. The rectum (Figure<br />

7, r) runs alongside the pallial gonoduct,<br />

forming the anus (Figures 7, 9, a) anterior<br />

to the gonoduct, but some distance from<br />

the mantle edge. A long, narrow rectal<br />

gland (Figure 7, rg) runs along the roof of<br />

the mantle cavity nearly its entire length,<br />

before joining the rectum near its anterior<br />

margin.<br />

Of the 20 specimens of Mitra cornea<br />

dissected, 7 were found to have essentially<br />

intact sipunculans (Golfingia sp. = G.<br />

margaritaceum fide Morton et al. 1998:76)<br />

within their gut, usually in the crop or<br />

stomach. No other recognizable prey was<br />

found within any of the specimens.<br />

Male reproductive system: The testis<br />

(Figure 10, t) is yellowish, lining the<br />

right ventral side of the digestive gland.<br />

A duct leading anteriorly expands to<br />

form the broad, highly convoluted seminal<br />

vesicle (Figure 10, sv) near the anterior<br />

margin of the digestive gland. From


128 AÇOREANA<br />

2009, Sup. 6:121-135<br />

FIGURES 13-16. Proboscis tip of Mitra cornea Lamarck, 1811, showing extension of the epiproboscis.<br />

13. Lateral and 14. frontal views of proboscis tip in early stage of extension of epiproboscis.<br />

15. lateral and 16. frontal views of proboscis tip with epiproboscis extended. Arrows in figure 15<br />

indicate planes of section for figures 17-21. ep, epiproboscis; m, mouth; pb, proboscis; pp, peristomal<br />

papillae; s, siphon; sd, salivary duct opening; t, cephalic tentacle.<br />

there, the renal vas deferens runs along<br />

the surface of the nephridium without<br />

giving rise to a gonopericardial duct,<br />

entering the pallial cavity where it<br />

expands to form the prostate gland<br />

(Figure 10, pro). The prostate gland is<br />

open to the pallial cavity along its broad<br />

posterior portion, but forms a closed<br />

duct anteriorly that descends to the floor<br />

of the mantle cavity (Figure 10, vd) and<br />

runs to the base of the penis (Figures 5,<br />

10, p), situated behind the right cephalic<br />

tentacle. The penis is broad basally,<br />

strongly recurved, with a flagellate<br />

pseudo-papilla, with the duct opening<br />

at its tip.


HARASEWYCH: ANATOMY AND BIOLOGY OF MITRA CORNEA 129<br />

FIGURES 17-22. Proboscis tip of Mitra cornea Lamarck, 1811. 17-21. Transverse sections through proboscis<br />

tip shown in figure 15. 22. Saggital section through proboscis tip in figure 13. ae, anterior esophagus;<br />

bv, blood vessel; dop, dorsal odontophoral protractor muscle; ep, epiproboscis; eps, epiproboscis<br />

sheath; es, epiproboscis sheath; lm, longitudinal muscle; m, mouth; odc, odontophoral cartilage; pp,<br />

peristomal papillae; pr, peristomal rim; rs, radular sac; rt, radular teeth; sd, salivary duct; vor, ventral<br />

odontophoral retractor muscle.


130 AÇOREANA<br />

2009, Sup. 6:121-135<br />

Female reproductive system: The ovary lies<br />

along the right side of the digestive gland<br />

and dominates the uppermost visceral<br />

whorls. The oviduct runs anteriorly from<br />

the ovary, along the kidney and pericardium<br />

without giving rise to a gonopericardial<br />

duct, before entering the rear of the<br />

mantle cavity. The pallial gonoduct<br />

(Figure 9) consists of an albumen gland,<br />

ingesting gland, capsule gland and bursa<br />

copulatrix. The albumen gland (Figure<br />

9, ag) is tall, narrow, and glandular, with<br />

ventral channel. The ingesting gland<br />

(Figure 9, ig) is situated between the<br />

albumen gland and long capsule gland<br />

(Figure 9, cg). The large, muscular bursa<br />

copulatrix (Figure 9, bc) is situated above<br />

the female opening (Figure 9, fo) and<br />

above and anterior to the capsule gland.<br />

A prominent ventral pe<strong>da</strong>l gland is situated<br />

along the ventral mid-line of the<br />

foot, just anterior to the bursa copulatrix.<br />

Reproductive Biology: Knudsen (1995:153,<br />

fig. 13) illustrated the egg capsule and<br />

pre-hatching larva of this species [as<br />

Mitra nigra], noting that development<br />

was pelagic in this species. It was not<br />

known whether the larva develops into a<br />

sinusigera larva during the pelagic<br />

phase.<br />

DISCUSSION<br />

As the number of mitrids species that<br />

have been studied anatomically increases,<br />

all have been found to have a highly<br />

specialized anterior alimentary system<br />

with a broad, extensible, muscular proboscis<br />

and a uniquely evolved muscular<br />

epiproboscis that is extended through<br />

the mouth (Figures 13, 14, pp), and<br />

through which pass the ducts of the salivary<br />

glands, joining into a single duct<br />

before emptying at its tip (Figures 13, 14,<br />

sd). In mitrids, the accessory salivary<br />

glands and gland of Leiblein are absent<br />

and the valve of Leiblein is greatly<br />

reduced or absent. These anatomical<br />

structures are a<strong>da</strong>ptations to a specialized<br />

diet consisting nearly exclusively of<br />

sipunculans (see Taylor, 1993 and references<br />

therein). The diet of more than 30<br />

species of mitrids has been studied, yet<br />

there is but a single report of one individual<br />

of one species, feeding on a<br />

nemertean (Fukuyuma and Nybakken,<br />

1983).<br />

The earliest fossil record for family<br />

Mitri<strong>da</strong>e <strong>da</strong>tes to the basal Late<br />

Cretaceous [Cenomanian / Turonian]<br />

(Tracey et al. 1993:152), with most modern<br />

genera diverging during the Miocene<br />

(Cernohorsky, 1970:fig. 180). Yet all surviving<br />

lineages have a well developed<br />

epiproboscis, and lack accessory salivary<br />

glands and a gland of Leiblein, suggesting<br />

an early common origin of this specialized<br />

body plan, a<strong>da</strong>pted for preying<br />

on sipunculans. Relatively few neogastropods<br />

prey occasionally on sipunculans<br />

[eg., Vasum, Drupa, Bursa] and, other<br />

than Mitri<strong>da</strong>e, only a few species of<br />

Drupina feed exclusively on them (Taylor<br />

1989:271).<br />

Sipuncula is a small phylum with<br />

only about 150 species worldwide<br />

(Cutler, 1994:3). Sipunculans live in a<br />

variety of habitats, burrowing in rock,<br />

sand or rubble bottoms at all depths.<br />

The diversity of Mitri<strong>da</strong>e is somewhat<br />

greater, at 377 living species<br />

(Cernohorsky, 1970:Table 1).<br />

In the tropics, mitrid diversity is high<br />

and species partition their habitat by<br />

substrate type (e.g., Taylor, 1989:fig. 7),<br />

although multiple species can co-occur<br />

in the same general habitat (e.g. thick<br />

sand). In the Azores, the two mitrid<br />

species appear to partition their habitat,<br />

with M. cornea inhabiting interti<strong>da</strong>l to<br />

subti<strong>da</strong>l reef platforms and boulder rubble,<br />

while M. zonata occurs in offshore<br />

sandy substrates. Sipunculan diversity


HARASEWYCH: ANATOMY AND BIOLOGY OF MITRA CORNEA 131<br />

in the Azores somewhat exceeds mitrid<br />

diversity.<br />

Interpretation of the function of the<br />

epiproboscis has varied over the years.<br />

Several authors have proposed that the<br />

epiproboscis serves as a venomous organ<br />

(Vayssiere, 1901; Cernohorsky, 1970), is<br />

used for both offense and defense<br />

(Vayssiere, 1901), or applies the products<br />

of the salivary glands to the sipunculan<br />

prey (Risbec, 1928; Ponder, 1972, 1998).<br />

There has also been some question as to<br />

whether the salivary gland secretion<br />

weakens the prey integument, serves as<br />

a relaxant to prevent prey contraction, or<br />

acts as an adhesive substance to facilitate<br />

the removal of sipunculans from their<br />

burrows (West, 1990:774).<br />

Several authors have reported on the<br />

feeding behavior of mitrids with varying<br />

levels of detail. Loch (1987) reported that<br />

the epiproboscis is extended during<br />

feeding and inserted into its prey, and is<br />

thought to deliver salivary secretions.<br />

Taylor (1989:262) suggested that the peristomal<br />

papillae [“circum-oral, brush like<br />

structure”] can be everted during feeding<br />

and may function to grip prey, noting<br />

that, while mitrids have a large radula<br />

with long, multicuspate lateral teeth,<br />

these teeth may be used to assist with<br />

swallowing the prey, as the sipunculans<br />

and not shredded.<br />

The most detailed observations of<br />

feeding behavior were those of West<br />

(1990), who reported that Mitra i<strong>da</strong>e<br />

located its prey with its siphon, first<br />

touching it with the siphon edge and<br />

cephalic tentacles before extending its<br />

proboscis. The peristomal rim then<br />

grasps the prey in a series of rapid eversions<br />

and contractions and the snail<br />

retracts its proboscis in attempts to pull<br />

the sipunculan from the substratum. If<br />

the prey cannot be extracted and swallowed<br />

whole, secretions from the salivary<br />

gland are applied and the radula<br />

used to rasp a hole in the integument.<br />

The epiproboscis is then inserted into the<br />

hole, entangling the sipunculan viscera<br />

and pulling them into the mitrid buccal<br />

mass. This alternating extension and<br />

retraction of the epiproboscis is repeated<br />

multiple times. The proboscis periodically<br />

further envelopes the sipunculan<br />

and eventually frees the sipunculan from<br />

the substratum, by grasping the integument<br />

with the radula and retracting the<br />

odontophore. This behavior is characteristic<br />

of members of the subfamily<br />

Mitrinae, which includes Mitra cornea.<br />

Later, West (1991:710) reported on<br />

the feeding in Mitra catalinae, a member<br />

of the subfamily Cylindromitrinae. As in<br />

Mitrinae, the proboscis was extended,<br />

the peristome flared to grasp the prey<br />

and the radula was used to rasp a small<br />

hole in the integument through which<br />

the epiproboscis was inserted. However,<br />

in this species, the epiproboscis was<br />

“rhythmically passed in and out of the<br />

hole” pumping sipunculan coelomic fluids<br />

and eggs into the buccal cavity and<br />

down the esophagus of the mitrid, without<br />

ingesting either viscera or the entire<br />

sipunculan. West (1991:710) noted that<br />

the sipunculans “survived the feeding<br />

session,” suggesting parasitism rather<br />

than pre<strong>da</strong>tion in this mitrid species.<br />

Ponder (1972:335) raised the question<br />

of how the epiproboscis might have<br />

evolved. He suggested that the ducts of<br />

the salivary glands migrated ventrally,<br />

and that their openings moved from lateral<br />

positions on the buccal mass to a<br />

ventral anterior position at the edge of<br />

the mouth. The next hypothesized stage<br />

was their placement on a papilla that<br />

eventually became invaginated and elongated.<br />

Ponder noted that the salivary<br />

glands of mitrids have a second type of<br />

secretory cell not present in related families,<br />

and that these cells may produce a<br />

toxin. It is interesting to note, that


132 AÇOREANA<br />

2009, Sup. 6:121-135<br />

although the salivary glands are ascinous<br />

and typical of salivary glands of other<br />

neogastropods, the position of the ducts,<br />

including their becoming fused into a single<br />

duct before emerging medially at the<br />

ventral anterior edge of the buccal mass is<br />

typical of the ducts of accessory salivary<br />

glands, which are absent in Mitri<strong>da</strong>e.<br />

West (1991) noted that the epiproboscis<br />

shows structural and functional affinities<br />

with other molluscan subradular organs,<br />

and hypothesized that it developed from<br />

the musculature of the buccal mass, while<br />

the sheaths were derived from the walls<br />

of the buccal cavity. According to the<br />

Ponder model, the primary function of<br />

the epiproboscis is the targeted application<br />

of salivary gland secretions. The<br />

West model is based on a primarily<br />

mechanical function of the epiproboscis.<br />

West (1991:716) commented that the ventral<br />

migration of the salivary gland ducts<br />

“to connect with the formative epiproboscis”<br />

might have changed, or enhanced<br />

its function, but that it is difficult to assess<br />

the evolutionary importance of this event<br />

without knowledge of the function of salivary<br />

gland secretions”.<br />

While the morphological a<strong>da</strong>ptations<br />

of the anterior alimentary system that<br />

have evolved in conjunction with a specialized<br />

sipunculan diet are now well<br />

documented within the Mitri<strong>da</strong>e, nothing<br />

is known of the chemical a<strong>da</strong>ptations,<br />

including the composition and physiological<br />

effects of the secretions of the salivary<br />

glands, which are delivered to the prey<br />

through the epiproboscis. The salivary<br />

glands of related gastropods have been<br />

shown to produce neurotoxins with<br />

acetylcholine-like effects that are used to<br />

overcome prey with a paralytic secretion<br />

(West et al., 1998). Still others contain proteinaceous<br />

toxins that are hemolytic and<br />

lethal (Shiomi et al., 2002). Given that the<br />

Mitri<strong>da</strong>e represent an a<strong>da</strong>ptive radiation<br />

following an early [Upper Cretaceous]<br />

a<strong>da</strong>ptation to a highly specialized diet,<br />

the structure, specificity and toxicology of<br />

salivary gland secretions represent a fertile<br />

area for the study of chemical evolution<br />

within Mollusca, and interactions of<br />

pre<strong>da</strong>tor and prey.<br />

Similarly, the hypobranchial gland of<br />

mitrids is voluminous, and noted for producing<br />

substantial quantities of a<br />

secretion that oxidizes to form a purple<br />

pigment. Numerous authors since<br />

Dubois (1909) have documented that, in<br />

addition to chromogens, hypobranchial<br />

gland secretions from various<br />

neogastropods contain numerous toxic<br />

and paralytic compounds, including<br />

choline esters, serotonin and various<br />

biogenic amines (eg., Shiomi et al., 1998).<br />

The hypobranchial gland of the neogastropod<br />

Thais haemastoma (which co-occurs<br />

with Mitra cornea) contains multiple<br />

active components, including one that<br />

produces a stimulatory effect on blood<br />

pressure, and another that acts as a neuromuscular<br />

blocking agent of the depolarizing<br />

type (Hyang & Mir, 1971). Some<br />

muricids have been observed to use<br />

hypobranchial gland secretions to<br />

immobilize prey (Naegel & Alvarez,<br />

2005:426). Other taxa, including trochids<br />

(Kelley et al., 2003) and pleurotomariids<br />

(Harasewych, 2002) have been shown to<br />

use hypobranchial gland secretions to<br />

repel pre<strong>da</strong>tors.<br />

Despite the exceptionally thick shells,<br />

periostracum and overgrowth of calcified<br />

encrusting organisms, cleaned shells of<br />

many Mitra cornea show evidence of multiple<br />

repaired breaks (Figure 2, rb). This<br />

high incidence of unsuccessful pre<strong>da</strong>tion<br />

(measured as frequency of shell repair) is<br />

an indication of high exposure to crushing<br />

pre<strong>da</strong>tion as well as of the ability to<br />

survive such attacks by pre<strong>da</strong>tors.<br />

Among shallow water gastropods,<br />

Vermeij (1989) reported that the incidence<br />

of unsuccessful pre<strong>da</strong>tion was greatest in


HARASEWYCH: ANATOMY AND BIOLOGY OF MITRA CORNEA 133<br />

the Indo-West Pacific and lowest in the<br />

Atlantic. Frequencies of unsuccessful<br />

pre<strong>da</strong>tion of 0.5 breaks per individual<br />

were uncommon, and never averaged<br />

more than 1 break per individual for the<br />

most prey-resistent taxa. Repaired breaks<br />

on just the last whorl of the shell of Mitra<br />

cornea range from 0-5 [mean = 1.95, n =<br />

20], suggesting both an exceptionally<br />

high rate of attack, and ability to survive<br />

attack. While this points to the possible<br />

use of hypobranchial gland secretions as<br />

a chemical defense against pre<strong>da</strong>tors, it<br />

does not preclude the presence of other<br />

compounds or other uses for the secretory<br />

products of the hypobranchial gland.<br />

ACKNOWLEDGEMENTS<br />

I am grateful to Prof. António Frias<br />

Martins and to his staff and students for<br />

organizing the Third International<br />

Workshop of Malacology in Vila Franca<br />

do Campo, São Miguel, Azores. This<br />

Workshop was a joint organization of<br />

Socie<strong>da</strong>de Afonso Chaves and the<br />

Department of Biology of the University<br />

of the Azores. Support from FLAD<br />

(Portuguese-American Foun<strong>da</strong>tion for<br />

Development) is gratefully acknowledged.<br />

Thanks to Marilyn Schotte for<br />

assistance with histology and to Yolan<strong>da</strong><br />

Villacampa for Scanning Electron<br />

Micrographs.<br />

REFERENCES<br />

BURNAY, L.P., & A.F. MARTINS, 1988.<br />

Acerca <strong>da</strong> presença de Mitra zonata<br />

Marryat, 1818 (Gastropo<strong>da</strong>: Mitri<strong>da</strong>e)<br />

na costa Algarve (Portugal) e nos<br />

<strong>Açores</strong>. Publicações Ocasionais <strong>da</strong><br />

Socie<strong>da</strong>de Portuguesa de Malacologia, 10:<br />

23-26.<br />

CERNOHORSKY, W.O., 1969. The types<br />

of the Lamarck collection in the<br />

Museum d’Histoire Naturelle in<br />

Geneva. Recent Mollusca of the genera<br />

Mitra, Columbella (in part) and<br />

Cancellaria (in part). Revue Suisse de<br />

Zoologie, 76(49): 953-994, 9 pls.<br />

CERNOHORSKY, W.O., 1970.<br />

Systematics of the Families Mitri<strong>da</strong>e<br />

and Volutomitri<strong>da</strong>e (Mollusca:<br />

Gastropo<strong>da</strong>). Bulletin of the Auckland<br />

Institute and Museum, Auckland,<br />

iv+190 pp.<br />

CERNOHORSKY, W.O., 1976. The<br />

Mitri<strong>da</strong>e of the World. Part I. The subfamily<br />

Mitrinae. Indo-Pacific Mollusca,<br />

3(17): 273-528.<br />

CUTLER, E.B., 1994. The Sipuncula, Their<br />

Systematics, Biology and Evolution, 453<br />

pp. Cornell University Press, Ithaca,<br />

NY.<br />

DAUTZENBERG, P., 1889. Contribution à<br />

la fauna malacologique des îles <strong>Açores</strong>.<br />

Résultats des Campagnes Scientifique du<br />

Prince de Monaco, 1:1-112.<br />

DUBOIS, R., 1909. Recherches sur la<br />

pourpre et sur quelques autres pigments<br />

animaux. Archives de Zoologie<br />

Expérimentale et Générale, 5(2):471–590.<br />

FUKUYAMA, A., & J. NYBAKKEN, 1983.<br />

Specialized feeding in mitrid<br />

gastropods: evidence from a<br />

temperate species Mitra i<strong>da</strong>e Melvill.<br />

The Veliger, 26: 96-100.<br />

HARASEWYCH, M.G., 2002. Pleurotomarioidean<br />

Gastropods. Advances<br />

in Marine Biology, 42: 235-292, color<br />

plates 5, 6.<br />

HUANG, C.L., & G.N. MIR, 1971.<br />

Pharmacological properties of hypobranchial<br />

gland of Thais haemastoma<br />

(Clench). Journal of Pharmaceutical<br />

Sciences, 60(12): 1842-1846.<br />

KELLEY, W.P., A.M. WOLTERS, J.T.<br />

SACK, R.A. JOCKUSCH, J.C.<br />

JURCHEN, E.R. WILLIAMS, J.V.<br />

SWEEDLER & W.F. GILLY, 2003.<br />

Characterization of a novel gastropod<br />

toxin (6-bromo-2-mercaptotryptamine)<br />

that inhibits shaker K channel


134 AÇOREANA<br />

2009, Sup. 6:121-135<br />

activity. The Journal of Biological<br />

Chemistry, 278(37): 34934-34942.<br />

KNUDSEN, J., 1995. Observations on<br />

reproductive strategy and zoogeography<br />

of some marine<br />

prosobranch gastropods (Mollusca)<br />

from the Azores. In: MARTINS,<br />

A.M.F. (ed.), The Marine Fauna and<br />

Flora of the Azores. Proceedings of the<br />

Second International Workshop of<br />

Malacology and Marine Biology, São<br />

Miguel, Azores, 1991. Açoreana,<br />

Supplement [4]: 135-158.<br />

KOHN, A.J., 1970. Food habits of the gastropod<br />

Mitra litterata Lamarck: relation<br />

to trophic structure of interti<strong>da</strong>l<br />

marine bench community in Hawaii.<br />

Pacific Science, 24: 483-486.<br />

LOCH, I., 1987. Peanuts for breakfast.<br />

Australian Shell News, 58: 6-8.<br />

MARTINS, A.M.F., 2004. O Anel <strong>da</strong><br />

Princesa, 99 pp. Intermezzo-Audiovisuais,<br />

Lisbon.<br />

MORTON, B., J.C. BRITTON & A.M.F.<br />

MARTINS, 1998. Costal Ecology of the<br />

<strong>Açores</strong>, 249 pp. Socie<strong>da</strong>de Afonso<br />

Chaves, Ponta Delga<strong>da</strong>.<br />

NAEGEL, L.C.A., & J.I.M. ALVAREZ,<br />

2005. Biological and chemical properties<br />

of the secretion from the hypobranchial<br />

gland of the purple snail<br />

Plicopurpura pansa (Gould, 1853).<br />

Journal of Shellfish Research, 24(2):<br />

421–428.<br />

PERRIER, R., 1889. Recherches sur l’anatomie<br />

et l’histologie du rein des gastéropodes<br />

Prosobranches. Annales des<br />

Sciences Naturelles (Zool.), 7,8: 61-315.<br />

PONDER, W.F., 1972. The morphology of<br />

some mitriform gastropods with special<br />

reference to their alimentary and<br />

reproductive systems (Neogastropo<strong>da</strong>).<br />

Malacologia, 11: 295-342.<br />

PONDER, W.F., 1998. Family Mitri<strong>da</strong>e.<br />

In: BEESLEY, P.L., G.J.B. ROSS & A.<br />

WELLS (eds.), Mollusca: The Southern<br />

Synthesis. Fauna of Australia, Vol. 5.,<br />

pp. 841-842. CSIRO Publishing:<br />

Melbourne.<br />

RISBEC, J., 1928. Contribution à l’étude<br />

anatomique de quelques espèces de<br />

Mitres de la presqu’île de Nouméa.<br />

Bulletin du Muséum national d’Histoire<br />

naturelle, Paris, 34: 105-112, 173-180,<br />

225-227.<br />

ROLÁN, E., L. DANTART & F. FERNAN-<br />

DES, 1997. On some <strong>da</strong>rk species<br />

of Mitra from the Mediterranean and<br />

the Atlantic. La Conchiglia, 29(285):<br />

11-23.<br />

SHIOMI K., M. ISHII, K. SHIMAKURA,<br />

Y. NAGASHIMA & M. CHINO, 1998.<br />

Tigloylcholine: a new choline ester<br />

toxin from the hypobranchial gland of<br />

two species of muricid gastropods<br />

(Thais Clavigera and Thais Bronni).<br />

Toxicon, 36(5): 795-798.<br />

SHIOMI, K., Y. KAWASHIMA, M.<br />

MIZUKAMI & Y. NAGASHIMA,<br />

2002. Properties of proteinaceous toxins<br />

in the salivary gland of the marine<br />

gastropod (Monoplex echo). Toxicon,<br />

40(5): 563-571.<br />

TAYLOR, J.D., 1989. The diet of coral-reef<br />

Mitri<strong>da</strong>e (Gastropo<strong>da</strong>) from Guam;<br />

with a review of other species of the<br />

family. Journal of Natural History, 23:<br />

261-278.<br />

TAYLOR, J.D., 1993. Dietary and<br />

anatomical specialization of mitrid<br />

gastropods (Mitri<strong>da</strong>e) at Rottnest<br />

Island, Western Australia. In: WELLS,<br />

F.E., D.I. WALKER, H. KIRKMAN &<br />

R. LETHBRIDGE (eds.), Proceedings of<br />

the Fifth International Marine Biological<br />

Workshop: The Marine Flora and Fauna<br />

of Rottnest Island, Western Australia pp.<br />

583-599. Western Australian<br />

Museum, Perth.<br />

TRACEY, S., J.A. TODD & D.H. ERWIN,<br />

1993. Mollusca: Gastropo<strong>da</strong>. In:<br />

BENTON, M.J. (ed.), The Fossil Record<br />

2, pp. 137-167. Chapman and Hall,<br />

London.


HARASEWYCH: ANATOMY AND BIOLOGY OF MITRA CORNEA 135<br />

VAYSSIÈRE, A., 1901. Étude zoologique<br />

et anatomique de la Mitra zonata,<br />

Marryatt. Journal de Conchyliologie, 49:<br />

77-95.<br />

WEST, D., E.B. ANDREWS, A.R.<br />

McVEAN, M.C. THORNDYKE & J.D.<br />

TAYLOR, 1998. Presence of a toxin in<br />

the salivary glands of the marine snail<br />

Cymatium intermedius that targets<br />

nicotinic acetylcholine receptors.<br />

Toxicon, 36(1): 25-29.<br />

WEST, T.L., 1990. Feeding behaviour and<br />

functional morphology of the epiproboscis<br />

of Mitra i<strong>da</strong>e (Mollusca:<br />

Gastropo<strong>da</strong>: Mitri<strong>da</strong>e). Bulletin of<br />

Marine Science, 46: 761-779.<br />

WEST, T.L., 1991. Functional morphology<br />

of the proboscis of Mitra catalinae Dall,<br />

1920 (Mollusca: Gastropo<strong>da</strong>:<br />

Mitri<strong>da</strong>e) and the evolution of the<br />

mitrid proboscis. Bulletin of Marine<br />

Science, 48: 702-718.


AÇOREANA, Suplemento 6, Setembro 2009: 137-143<br />

COMPARATIVE STUDY OF CHEMICAL DEFENCES FROM TWO ALLOPATRIC<br />

NORTH ATLANTIC SUBSPECIES OF HYPSELODORIS PICTA (MOLLUSCA:<br />

OPISTHOBRANCHIA)<br />

Helena Gaspar 1 , Ana Isabel Rodrigues 1 & Gonçalo Calado 2<br />

1 Instituto Nacional de Engenharia, Tecnologia e Inovação, I.P. (INETI), Est. Paço do Lumiar, Ef. F, 1649-038<br />

Lisboa, Portugal. e-mail helena.gaspar@ineti.pt<br />

2 Facul<strong>da</strong>de de Engenharias e Ciências Naturais, Universi<strong>da</strong>de Lusófona de Humani<strong>da</strong>des e Tecnologias.<br />

Av. do Campo Grande, 376 1749 - 024 Lisboa PORTUGAL<br />

ABSTRACT<br />

Different mixtures of furanosesquiterpenes characterized the defensive metabolites of<br />

the two populations of the nudibranchs Hypselodoris picta azorica and Hypselodoris picta<br />

webbi from the NW Atlantic, studied here for the first time. The known furonosesquiterpenes<br />

tavacfuran and longifolin were found in both subspecies, whereas micorcionin-1<br />

was only present in Hypselodoris picta azorica.<br />

RESUMO<br />

O estudo de duas populações de nudibrânquios Hypselodoris picta azorica e Hypselodoris<br />

picta webbi do Atlântico NW, descrito pela primeira vez neste artigo, mostrou que os seus<br />

metabolitos de defesa são misturas diferentes de furanosesquiterpenos. Em ambas as<br />

populações foram encontra<strong>dos</strong> os metabolitos tavacfurano e longifolina, tendo a<br />

microcionina-1 sido identifica<strong>da</strong> apenas na subespécie Hypselodoris picta azorica.<br />

INTRODUCTION<br />

Nudibranchs are shell-less opisthobranch<br />

molluscs that, in the course<br />

of evolution have developed several<br />

defensive strategies which include the<br />

use of secon<strong>da</strong>ry metabolites to avoid<br />

pre<strong>da</strong>tion (Wägele, 2006). These compounds<br />

can be accumulated from<br />

dietary sources, biosynthesised de novo<br />

or bio-transformed from dietary<br />

metabolites in order to provide the<br />

nudibranchs with more effective defensive<br />

allomones or non toxic compounds<br />

(Cimino, 1993, 1999). Most species of<br />

the genus Hypselodoris (Family<br />

Chromodori<strong>da</strong>e) store their allomones<br />

in high levels of concentrations, on special<br />

mantle glands denominated MDFs<br />

(Mantle Dermal Formations). These<br />

glands are strategically located near the<br />

vital organs, gills and rhinophores, or<br />

even ventrally along the mantle margin.<br />

They are regarded as the development<br />

of a chemical defensive mechanism in<br />

the course of opisthobranchs’ evolution<br />

(Wägele, 2006; García-Gómez, 1990;<br />

Fontana, 1993).<br />

Previous chemo-ecological studies of<br />

Hypselodoris picta (previously known as<br />

H. webbi or Glossodoris valenciennesi)<br />

showed that this species, like other<br />

Hypselodoris, accumulates in the mantle<br />

(especially in MDFs) furanosesquiterpenes,<br />

longifolin (1) being usually the<br />

main metabolite (Figure 1; Table 1). This<br />

compound, initially isolated from the<br />

terrestrial Japanese plant Actino<strong>da</strong>phne<br />

longifolia (Hayashi, 1972 fide Guella,<br />

1985), was the major metabolite found in<br />

a Mediterranean population of the<br />

marine sponge Dysidea fragilis (Avila,<br />

1991) and has antifee<strong>da</strong>nt and ichthyodeterrent<br />

activities (Fontana, 1993).<br />

Ecological experiments performed with<br />

Mediterranean populations of H. picta<br />

showed the transference of sponge<br />

metabolites into the MDFs and supported<br />

the dietary origin of Hypselodoris’<br />

allomones (Fontana, 1994b).


138 AÇOREANA<br />

2009, Sup. 6: 137-143<br />

FIGURE 1. Chemical structures of furanosesquiterpenes present in different populations of<br />

Hypselodoris picta.<br />

TABLE 1 – Furanosesquiterpenes present in different Mediterranean populations of Hypselodoris picta.


GASPAR ET AL: CHEMICAL DEFENCES OF HYPSELODORIS PICTA 139<br />

Hypselodoris picta (Schultz, 1836)<br />

seems to be widespread in the Atlantic<br />

Ocean. So far, five geographic subspecies<br />

are assigned, H. picta azorica being<br />

restricted to the Azorean Archipelago,<br />

whereas H. picta webbi spreads from the<br />

Caribbean to the Canary Islands and the<br />

Iberian Peninsula (Ortea et al., 1996). The<br />

colour pattern varies consistently (Figure<br />

2), but their internal anatomy is still very<br />

similar (Alejandrino & Valdés, 2006). No<br />

genetic <strong>da</strong>ta are available to <strong>da</strong>te. In this<br />

paper, we report a comparative study of<br />

chemical defences of these two allopatric<br />

subspecies of Hypselodoris picta from the<br />

North Atlantic, H. picta webbi from the<br />

Algarve (SW coast of Europe) and H. picta<br />

azorica from Azores, with the aim to clarify:<br />

(1) what are the defensive metabolites<br />

of H. picta azorica; (2) and if the two subspecies<br />

have the same chemical profile.<br />

MATERIALS AND METHODS<br />

Biological material. The molluscs were collected<br />

by SCUBA in two stations:<br />

Hypselodoris picta azorica (6 specimens July<br />

2006, 2 specimens September 2008) at<br />

Ilhéu de Vila Franca do Campo, S. Miguel<br />

Island, Azores, Portugal, and Hypselodoris<br />

picta webbi (2 specimens July 2006, 2 specimens<br />

August 2008) at Portimão, Algarve,<br />

Portugal. The taxonomic identification of<br />

H. picta was made by one of us (G.C.).<br />

Voucher specimens (preserved in<br />

absolute ethanol) are deposited at<br />

“Instituto Português de Malacologia”,<br />

Portugal, reference numbers IPM.MO.005<br />

and IPM.MO.006, respectively.<br />

Chemical analysis. Silica-gel chromatography<br />

was performed using precoated<br />

Merck F 254<br />

plates and Silica gel Merck<br />

Kieselgel 60. 1 H NMR spectra were<br />

acquired in CDCl 3<br />

or C 6<br />

D 6<br />

on a Bruker<br />

AMX-300 operating at 300 MHz.<br />

Two frozen nudibranchs of each subspecies,<br />

collected in 2006, were dissected<br />

and differentiated in mantle dermal formations<br />

(MDFs), the remaining of mantle<br />

and digestive glands. All the dissected<br />

sections were separately extracted three<br />

times with acetone by sonication. The<br />

concentrated extracts were partitioned<br />

between diethyl ether and water. The<br />

resulting diethyl ether extracts were compared<br />

by TLC (Thin Layer Chromatography).<br />

The Erlich positive metabolite,<br />

with R f<br />

= 0.2 in n-hexane, present in<br />

both subspecies, was isolated from the<br />

mantle extract (4 mg) of one specimen of<br />

H. picta webbi (fresh weight 8.3 g). The<br />

mantle extract was chromatographed<br />

on a silica-gel column packed with<br />

n-hexane and eluted with a gradient of<br />

n-hexane/diethyl ether. Fractions eluted<br />

with n-hexane were concentrated to give<br />

2 mg of compound 1 (Figure 1).<br />

FIGURE 2. Live specimens of the Hypselodoris picta studied herein: A - H. p. azorica (photo Peter<br />

Wirtz); B - H p. webbi (photo Rita Coelho).


140 AÇOREANA<br />

2009, Sup. 6: 137-143<br />

We were unable to isolate the main<br />

furanosesquiterpene presented in H. picta<br />

azorica collected in 2006 because, due to<br />

its high instability, it had suffered degra<strong>da</strong>tion<br />

during the isolation procedure.<br />

Each frozen mollusc (4 specimens)<br />

collected in 2008 was separately<br />

immersed in acetone and extracted by<br />

sonication (3 times, 2 min). The concentrated<br />

extracts were partitioned between<br />

diethyl ether and water. The resulting<br />

mantle extracts were compared by TLC<br />

and 1 H NMR analysis.<br />

RESULTS<br />

We have chemically investigated for<br />

the first time the nudibranch Hypselodoris<br />

picta azorica and a population of the nudibranch<br />

Hypselodoris picta webbi from the<br />

NW Atlantic. The TLC analysis of diethyl<br />

ether extracts revealed the presence of at<br />

least two Erlich positive compounds in<br />

both subspecies. H. picta webbi showed<br />

two main Erlich positive metabolites (R f<br />

=<br />

0.2 and 0.3 in n-hexane) and H. picta azorica<br />

additionally showed the presence of<br />

one or two less polar compounds (R f<br />

= 0.7<br />

and 0.8 in n-hexane). Each analysed specimen<br />

showed the same metabolite pattern<br />

in the extracts obtained from the different<br />

anatomic parts. The less polar metabolite<br />

was identified as microcionin-1 (7) by<br />

TLC comparison with an authentic sample<br />

(Figure 1). We were unable to isolate<br />

the furanosesquiterpene with R f<br />

= 0.7, the<br />

main metabolite of H. picta azorica collected<br />

in 2006, due to its instability. The component<br />

with R f<br />

= 0.2, isolated from one<br />

specimen of H. picta webbi collected in<br />

2008, was identified as longifolin (1). The<br />

1<br />

H NMR signals (either in CDCl 3<br />

or C 6<br />

D 6<br />

)<br />

of this metabolite were identical to those<br />

reported in the literature (Guella, 1985).<br />

Longifolin was also identified by NMR as<br />

the main furanosesquiterpene in the mantle<br />

extract obtained from H. picta azorica<br />

collected in 2008 (Figure 3a). The analysis<br />

of 1 H NMR spectrum (Figure 3b) of the<br />

mantle extract from H. picta webbi, collected<br />

in 2008, allowed the identification of<br />

tavacfuran (11), the compound with R f<br />

=<br />

0.3, as the main furanosesquiterpene<br />

(Figure 1). The 1 H NMR signals attributed<br />

to both compounds in the NMR<br />

spectra of mantle extracts (Figure 3) are<br />

similar to those previous reported <strong>da</strong>ta<br />

(Guella, 1985). The results concerning the<br />

furanosesquiterpenes are summarized in<br />

Table 2.<br />

TABLE 2 – Furanosesquiterpenes found in Hypselodoris picta in this study.


GASPAR ET AL: CHEMICAL DEFENCES OF HYPSELODORIS PICTA 141<br />

FIGURE 3. 1 H NMR (300MHz, CDCl 3<br />

) from diethyl ether extracts of Hypselodoris mantle: a)<br />

Hypselodoris picta azorica; b) Hypselodoris picta webbi.<br />

DISCUSSION<br />

In the mantle of Hypselodoris picta azorica<br />

and Hypselodoris picta webbi the<br />

furosesquiterpenes longifolin (1) and<br />

tavacfuran (11) were identified by 1 H<br />

NMR (Figure 3). TLC comparison of the<br />

mantle extracts showed that these typical<br />

sponge metabolites were found in all<br />

analysed specimens but in different relative<br />

proportions (Table 2). Longifolin (1)<br />

has usually been found as the main<br />

metabolite of H. picta from Mediterranean<br />

(Table 1). Tavacfuran (11), a compound<br />

first reported on a mixture of<br />

Mediterranean sponges (Guella, 1985)


142 AÇOREANA<br />

2009, Sup. 6: 137-143<br />

and already isolated from other<br />

Hypselodoris species (Fontana, 1993), was<br />

now found for the first time in H. picta.<br />

The TLC analysis allowed the identification<br />

of microcionin-1 (7) in all the specimens<br />

of H. picta azorica. It is worth noting<br />

that a Mediterranean population of<br />

H. picta is able to transfer microcionin-1<br />

(7) and other sponge metabolites into<br />

MDFs (Fontana, 1994b).<br />

The high concentration of furanosesquiterpenes,<br />

such as longifolin (1)<br />

and tavacpallescencin (11) in the mantle<br />

(including MDFs), suggests that, as in<br />

other Hypselodoris, they play an important<br />

role as defensive metabolites. This<br />

study showed that the chemical profiles<br />

of H. picta azorica and H. picta webbi are<br />

different, as expected, since previous<br />

studies support the idea that most of<br />

these furanosesquiterpene compounds<br />

are accumulated from dietary sources<br />

(Avila, 1991; Fontana, 1994b). However,<br />

the presence of longifolin (1) in H. picta<br />

subspecies living at distant geographical<br />

areas could suggest two different scenaria:<br />

(a) the ability to biosynthesized de<br />

novo this allomone or (b) the ability to<br />

select sponges rich in longifolin (1)<br />

(Avila, 1991; Cimino 1993). Therefore,<br />

the origin of longifolin in H. picta still<br />

remains to be clarified.<br />

ACKNOWLEDGEMENTS<br />

We thank Professor António Frias<br />

Martins for the invitation to participate<br />

in the 3 rd Workshop of Marine Biology,<br />

held in Vila Franca do Campo, where<br />

some of the specimens were collected.<br />

We thank Rita Coelho (IPM) and Lucas<br />

Cervera (University of Cadiz) for collecting<br />

the other specimens. We are<br />

deeply grateful to FCT (VERMEJJ –<br />

PTDC/MAR/65854/2006) for financial<br />

support.<br />

LITERATURE CITED<br />

ALEJANDRINO, A., & Á. VALDÉS, 2006.<br />

Phylogeny and biogeography of the<br />

Atlantic and Eastern Pacific Hypselodoris<br />

Stimpson, 1855 (Nudibranchia,<br />

Chromodoridi<strong>da</strong>e) with the description<br />

of a new species from the<br />

Caribbean Sea. Journal of Molluscan<br />

Studies, 72: 189-198.<br />

AVILA, C., G. CIMINO, A. FONTANA,<br />

M. GAVAGNIN, J. ORTEA & E.<br />

TRIVELLONE, 1991. Defensive Strategy<br />

of two Hypselodoris Nudibranchs<br />

from Italian and Spanish Coasts.<br />

Journal of Chemistry Ecology, 17: 625-<br />

636.<br />

CIMINO, G., S. DE ROSA, S. DE<br />

STEFANO & G. SODANO, 1982. The<br />

Chemical Defense of Four Mediterranean<br />

Nudibranchs. Comparative<br />

Biochemistry and Physiology, 73B: 471-<br />

474.<br />

CIMINO, G., & G. SODANO, 1993.<br />

Biosynthesis of Secon<strong>da</strong>ry Metabolites<br />

in Marine Molluscs. In:<br />

SCHEUER P.J. (ed.), Marine natural<br />

products – diversity and biosynthesis.<br />

Topics in current chemistry vol. 167: 78-<br />

115. Spring-Verlag; Berlin.<br />

CIMINO, G., & M.T. GHISELIN, 1999.<br />

Chemical defense and evolutionary<br />

trends in biosynthetic capacity among<br />

dorid nudibranchs (Mollusca: Gastropo<strong>da</strong>:<br />

Opistobranchia). Chemoecology,<br />

9: 187-307.<br />

FONTANA, A., A. AVILA, E. MARTI-<br />

NEZ, J. ORTEA, E. TRIVELLONE &<br />

G. CIMINO, 1993. Defensive<br />

allomones in three species of<br />

Hypselodoris (Gastropo<strong>da</strong>: Nudibranchia)<br />

from the Cantabrian Sea.<br />

Journal of Chemistry and Ecology, 19:<br />

339-356.<br />

FONTANA, A., E. TRIVELLONE, E.<br />

MOLLO, C. CIMINO, C. AVILA, E.<br />

MARTINEZ & J. ORTEGA, 1994a.


GASPAR ET AL: CHEMICAL DEFENCES OF HYPSELODORIS PICTA 143<br />

Further chemical Studies of Mediterranean<br />

and Atlantic Hypselodoris<br />

nudibranchs: A new furnosesquiterpenoid<br />

from Hypselodoris webbi.<br />

Journal of Naural Products, 57(4): 510-<br />

513.<br />

FONTANA, A., F. GIMÉNEZ, A. MARIN,<br />

E. MOLLO & G. CIMINO, 1994b.<br />

Transfer of secon<strong>da</strong>ry metabolites<br />

from the sponges Dysidea fragilis and<br />

Pleraplysilla spinifera to the mantle dermal<br />

formations (MDFs) of the nudibranch<br />

Hypselodoris webbi. Experientia,<br />

50: 510-516.<br />

GARCÍA-GÓMEZ, J.C., G. CIMINO & A.<br />

MEDINA, 1990. Studies on the defensive<br />

behaviour of Hypselodoris species<br />

(Gastropo<strong>da</strong>: Nudibranchia): ultrastructure<br />

and chemical analysis of<br />

mantle dermal formations (MDFs).<br />

Marine Biology, 106: 245-250.<br />

GUELLA, G., I. MANCINI, A. GUER-<br />

RIERO & F. PIETRA, 1985. New<br />

Furano-sesquiterpenoids from<br />

Meditterranean Sponges. Helv. Chem.<br />

Acta, 68, 1276-1282.<br />

ORTEA, J., A. VALDÉS & J.C. GARCÍA-<br />

GÓMEZ, 1996. Revisión de las<br />

especies atlánticas de la familia<br />

Chromodoridi<strong>da</strong>e (Mollusca: Nudibranchia)<br />

de grupo cromático azul<br />

[Review of the Atlantic species<br />

of the family Chromodoridi<strong>da</strong>e<br />

(Mollusca: Nudibranchia) of the blue<br />

chromatic group]. Avicennia Suppl. 1:<br />

1-165.<br />

WÄGELE, H., M. BALLESTEROS & C.<br />

AVILA, 2006. Defensive Gandular<br />

Structure in opisthobranchs Molluscs<br />

– from histology to ecology. Oceanography<br />

and Marine Biology: An Annual<br />

Review, 44: 197-276.


AÇOREANA, Suplemento 6, Setembro 2009: 145-156<br />

THE BIOLOGY OF THE ZONING SUBTIDAL POLYCHAETE DITRUPA ARIETINA<br />

(SERPULIDAE) IN THE AÇORES, PORTUGAL, WITH A DESCRIPTION OF THE<br />

LIFE HISTORY OF ITS TUBE<br />

Brian Morton & Andreia Salvador<br />

Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, U.K.<br />

e-mail addresses: prof_bmorton@hotmail.co.uk; a.salvador@nhm.ac.uk<br />

ABSTRACT<br />

In the <strong>Açores</strong>, Portugal, the steeply descending continental shelf is characterized at different<br />

depths by two endobenthic suspension feeding species: the shallower-living (0-~100<br />

metres) bivalve Ervilia castanea and the deeper-residing serpulid (~100–250 metres) Ditrupa<br />

arietina. As a dominant member of the continental shelf fauna, D. arietina provides a habitat<br />

for a number of epibiont species that attach to its tubes anteriorly. These include the<br />

cemented, introduced, serpulid Hydroides elegans, three species of foraminiferans and a<br />

number of species of, mostly unidentifiable, bryozoans. Tubes of D. arietina are also drilled<br />

and, hence, pre<strong>da</strong>ted by a prosobranch naticid gastropod, possibly Natica prietoi. Ditrupa<br />

arietina lives for ~2 years with most growth occurring during the first year and with sexual<br />

maturity also occurring in the first year of life so that, post reproduction and death, its<br />

tube becomes available for secon<strong>da</strong>ry colonization by Aspi<strong>dos</strong>iphon muelleri (Sipuncula). At<br />

this time, anterior epibionts die, because the sipunculan orientates the tube anterior end<br />

down, but further epibionts can now colonize the posterior end of the tube. With time and<br />

wear, the tube slowly degenerates. Throughout its life history, therefore, the tube of D. arietina<br />

functions as an inhabitable substratum and is thus a locally important Açorean habitat<br />

for a suite of other epibenthic species.<br />

Ditrupa arietina is herein recognized as a significant component of the continental shelf<br />

endobenthos at depths of ~200 metres, mirroring the significance of the bivalve Ervilia castanea<br />

at generally shallower depths. The ecological importance of these two species is<br />

hence in urgent need of further detailed study, especially with regard to the productivity<br />

of the Açorean seabed.<br />

RESUMO<br />

Nos <strong>Açores</strong>, a plataforma continental que desce abruptamente caracteriza-se, a<br />

diferentes profundi<strong>da</strong>des, por duas espécies endobênticas filtradoras de matérias em<br />

suspensão: o bivalve de pouca profundi<strong>da</strong>de (0-~100 metros) Ervilia castanea e o serpulídeo<br />

de maiores profundi<strong>da</strong>des (~100-250 metros) Ditrupa arietina. Elemento dominante <strong>da</strong><br />

fauna <strong>da</strong> plataforma continental, D. arietina proporciona habitat para uma quanti<strong>da</strong>de de<br />

espécies epibiontes que se fixam ao seu tubo anteriormente. Incluem-se nestes o<br />

serpulídeo fixo Hydroides elegans, três espécies de foraminíferos e uma série de briozoários<br />

na maioria não identificáveis. Os tubos de D. arietina são também perfura<strong>dos</strong> e, por isso,<br />

pre<strong>da</strong><strong>dos</strong> por um gastrópode prosobrânquio naticídeo, provavelmente Natica prietoi.<br />

Ditrupa arietina vive por ~2 anos ocorrendo a maior parte do crescimento durante o<br />

primeiro ano e a maturi<strong>da</strong>de sexual ocorrendo o primeiro ano de vi<strong>da</strong> pelo eu, após a<br />

reprodução e a morte, o seu tubo fica acessível para colonização secundária por<br />

Aspi<strong>dos</strong>iphon muelleri (Sipuncula). Por essa altura, os epibiontes anteriores morrem porque<br />

o sipúnculo orienta para baixo a extremi<strong>da</strong>de anterior do tubo, mas outros epibiontes<br />

podem agora colonizar a extremi<strong>da</strong>de posterior do tubo. Com o tempo e uso, o tubo<br />

degenera lentamente. Durante a sua história de via, assim, o tubo de D. arietina funciona<br />

como substrato habitável e é, por isso, um habitat Açoriano localmente importante para<br />

uma série de outras espécies.


146 AÇOREANA<br />

2009, Sup. 6: 145-156<br />

Como componente significativo do endobentos <strong>da</strong> plataforma continental a<br />

profundi<strong>da</strong>des abaixo de ~200 metros, espelhando o significado do bivalve Ervilia castanea<br />

em profundi<strong>da</strong>des geralmente menores, a importância ecológica destas duas espécies<br />

necessita estudo ulterior pormenorizado, especialmente no que respeita a produtivi<strong>da</strong>de<br />

do fundo marinho Açoriano.<br />

INTRODUCTION<br />

Morton & Britton (1995, table 1)<br />

showed that offshore from Vila<br />

Franca do Campo, São Miguel, <strong>Açores</strong>,<br />

the abun<strong>da</strong>nces of members of the<br />

benthic community were consistent, save<br />

for Ditrupa arietina (O.F. Müller, 1776)<br />

whose numbers differed significantly<br />

between stations. These authors also<br />

noted that empty tubes of D. arietina were<br />

occupied by the sipunculan Aspi<strong>dos</strong>iphon<br />

muelleri Diesing, 1851, but not by the<br />

hermit crab Anapagurus laevis (Bell, 1845).<br />

It is known that many species of tubebuilding<br />

polychaetes form dense aggregations<br />

or “patches” within marine softbottom<br />

habitats (Bolam & Fernandes,<br />

2002) although in the Bay of Blanes<br />

(northwest Mediterranean), Ditrupa arietina<br />

showed seasonal peaks of abun<strong>da</strong>nce<br />

in May and June of 1993, 1994 and 1995<br />

(Sardá et al., 1999). Similarly, since the<br />

late 1980’s, D. arietina has increased in<br />

abun<strong>da</strong>nce all along the northwest coast<br />

of the Mediterranean, numbers reaching<br />

up to 3,000 individuals·m² and adversely<br />

affecting the functioning of the coastal<br />

benthic ecosystem in the region (Gremare<br />

et al., 1998a, b).<br />

The strictly dioecious serpulid Ditrupa<br />

arietina has a reproductive period lasting<br />

from November to May in the bay of<br />

Banyuls-sur-Mer in the northwestern<br />

Mediterranean, with recruitment beginning<br />

as early as January and ending in<br />

July but with a peak in April-May<br />

(Charles et al., 2003) explaining the observation<br />

by Sardá et al. (1999) of a peak in<br />

seasonal abun<strong>da</strong>nce between May-June in<br />

the same region. The planktonic life is ~3<br />

weeks long with metamorphosis being<br />

completed quickly post-settlement<br />

(Charles et al., 2003). Ditrupa arietina lives<br />

for ~2 years, with most growth and sexual<br />

maturity being achieved during the<br />

first year (Medernach et al., 2000).<br />

Hence, although much is known<br />

about the biology of Ditrupa arietina in the<br />

Mediterranean, there is nothing known<br />

about it in the <strong>Açores</strong>, Portugal, save for<br />

the paper by Morton & Britton (1995)<br />

mentioned above. Morton & Britton<br />

(2000) also showed that the marine flora<br />

and fauna of the <strong>Açores</strong> have the<br />

strongest biogeographic links with the<br />

Mediterranean. The aim of the present<br />

paper was thus to determine if, as in the<br />

Mediterranean, D. arietina occupied a particular<br />

and similar depth zone. We also<br />

wished to investigate if there were any<br />

depth distributions in the <strong>Açores</strong> between<br />

living individuals of D. arietina and the<br />

empty tubes occupied by Aspi<strong>dos</strong>iphon<br />

muelleri. Finally, it is known that in the<br />

Mediterranean, tubes of D. arietina, both<br />

occupied and unoccupied, are colonized<br />

by an encrusting fauna the major components<br />

of which are bryozoans (Gambi &<br />

Jerace, 1997). We wanted to see if this<br />

associated fauna was replicated in the<br />

<strong>Açores</strong>, or would it be, as with other taxa,<br />

much reduced (Morton & Britton, 2000).<br />

Finally, we wanted to determine if the<br />

tube of D. arietina had a life history, once<br />

the animal that had secreted it died. That<br />

is, it is known that the tube becomes occupied<br />

by Aspi<strong>dos</strong>iphon muelleri (Morton &<br />

Britton, 2000), but what is the complete<br />

life history of the tube?


MORTON & SALVADOR: THE BIOLOGY OF DITRUPA ARIETINA 147<br />

TAXONOMIC NOTE<br />

Most authors, for example, Nelson-<br />

Smith & Gee (1966), follow Fauvel (1953)<br />

and recognize a single, worldwide,<br />

species of Ditrupa, that is, D. arietina (O.F.<br />

Müller, 1776). ten Hove & Smith (1990),<br />

however, justified the recognition of a<br />

separate species, D. gracillima Grube,<br />

1878, from the Indo-Pacific and deep<br />

water ecophenotypes of which had previously<br />

been identified as D. arietina var.<br />

monilifera.<br />

MATERIALS AND METHODS<br />

For eleven <strong>da</strong>ys from 17 - 28 July 2006,<br />

the sea bed on the southern coast of the<br />

island of São Miguel, <strong>Açores</strong>, was sampled<br />

using a benthic box dredge at six stations<br />

to the east and west of the islet of<br />

Ilhéu de Vila Franca do Campo. The stations<br />

were designated E1, E2, E3 and W1,<br />

W2 and W3 and located at approximate<br />

depths of 100 (E1 and W1), 200 (E2 and<br />

W2) and 250 metres (E3 and W3) (Figure<br />

1). The reader is referred to Martins et al.<br />

FIGURE 1. A map of the southern coast of São Miguel Island, showing the six sampling sites to<br />

the east (E1- E3) and west (W1 - W3) of Ilhéu de Vila Franca do Campo.


148 AÇOREANA<br />

2009, Sup. 6: 145-156<br />

(2009) for a full description of the stations<br />

and their accurate locations. Dredges<br />

were towed at a stan<strong>da</strong>rd speed (5 knots)<br />

for ten minutes and on reaching the surface<br />

sieved using seawater through a 1<br />

mm mesh sieve.<br />

Two 500 ml sub-samples of sediment<br />

were removed from each dredge sample<br />

and sorted using dissecting binocular<br />

microscopes. All living individuals of<br />

Ditrupa arietina were collected from the<br />

first sample and the lengths of their tubes<br />

measured to the nearest 1 mm using a dissecting<br />

microscope (x10) with a 1 mm<br />

graduated scale. From these <strong>da</strong>ta, it has<br />

been possible to construct histograms of<br />

the population structure of D. arietina at<br />

the six sampling locations (Figure 2). The<br />

living individuals were also used in simple<br />

studies of burrowing behaviour.<br />

All empty tubes and fragments of<br />

Ditrupa arietina were removed from the<br />

second sample and measured along their<br />

greatest lengths to the nearest 1 mm using<br />

a dissecting microscope (x10) with a graduated<br />

scale. Each tube and fragment was<br />

then examined and divided into categories.<br />

These were: (i), those individuals<br />

occupied by Aspi<strong>dos</strong>iphon muelleri; (ii),<br />

those with either anterior or posterior<br />

encrustations of attached biota and (iii),<br />

those with a drill hole. Some D. arietina<br />

tubes that had drill holes were also occupied<br />

by A. muelleri and had epibiont<br />

encrustations. Such individuals were<br />

placed in their own sub-categories.<br />

Data analysis<br />

One-factor analysis of variance<br />

(ANOVA) on untransformed <strong>da</strong>ta with a<br />

statistical significance criterion set at p =<br />

0.05 was conducted as the statistical technique<br />

used to examine for any differences<br />

in the <strong>da</strong>tasets between the six sampling<br />

stations and hence depth. Any significant<br />

results obtained by the ANOVA were dif-<br />

FIGURE 2. Histograms showing the length frequency distribution of living Ditrupa arietina individuals<br />

at the six stations to the east (E1 - E3) and west (W1 - W3) of Ilhéu de Vila Franca do<br />

Campo, São Miguel, <strong>Açores</strong>.


MORTON & SALVADOR: THE BIOLOGY OF DITRUPA ARIETINA 149<br />

ferentiated using a post-hoc Student’s<br />

Newman-Kuels (SNK) test to identify<br />

where the detected differences lay (Zar,<br />

1984). The <strong>da</strong>ta were analyzed using SAS<br />

(Version 9.1.3).<br />

RESULTS<br />

Statistical analyses<br />

Figure 2 are histograms showing the<br />

length frequency distribution of living<br />

Ditrupa arietina individuals at the six stations<br />

to the east (E1 - E3) and west (W1 -<br />

W3) of Ilhéu de Vila Franca do Campo,<br />

São Miguel, <strong>Açores</strong>. The results of a oneway<br />

ANOVA on these living individuals<br />

of D. arietina collected from the three sampling<br />

depths were significantly different<br />

(F=68.55; p=0.0031). The results of a posthoc<br />

Student’s Newman-Keuls test further<br />

indicated that the numbers of living individuals<br />

were significantly higher (p>0.05)<br />

at both the east (E2) and west (W2) ~200<br />

metre depth stations.<br />

Figure 3 are histograms showing the<br />

length frequency distributions of all tubes<br />

no longer occupied by Ditrupa arietina<br />

and, at the six stations to the east (E1 - E3)<br />

and west (W1 - W3) of Ilhéu de Vila<br />

Franca do Campo, São Miguel, <strong>Açores</strong>.<br />

The results of a second one-way ANOVA<br />

on the <strong>da</strong>taset indicated that there was no<br />

significant difference in the total numbers<br />

of Ditrupa arietina tubes collected at the<br />

sample depths of ~100, ~200 and ~250<br />

metres (F=0.36; p=0.7250). Similarly, there<br />

were no significant differences between<br />

stations and depths in the incidences of<br />

tubes that (i), were occupied by<br />

Aspi<strong>dos</strong>iphon muelleri; (ii), possessed<br />

encrusting bryozoans and other attached<br />

organisms either anteriorly or posteriorly,<br />

nor (iii), in the incidences of pre<strong>da</strong>ted,<br />

that is, drilled tubes. A more detailed<br />

study of the drill holes in the tubes D.<br />

arietina is reported upon by Morton &<br />

Harper (2009).<br />

Behaviour<br />

When living individuals of Ditrupa<br />

arietina and tubes occupied by<br />

Aspi<strong>dos</strong>iphon muelleri were placed on the<br />

surface of samples of natural sediment<br />

obtained in the dredges, they both<br />

FIGURE 3. Histograms showing the length frequency distributions of all Ditrupa arietina tubes<br />

either empty or occupied by Aspi<strong>dos</strong>iphon muelleri (plus tube fragments) at the six stations to the<br />

east (E1 - E3) and west (W1 - W3) of Ilhéu de Vila Franca do Campo, São Miguel, <strong>Açores</strong>.


150 AÇOREANA<br />

2009, Sup. 6: 145-156<br />

attempted to re-burrow. Ditrupa arietina<br />

burrowed with the posterior end of the<br />

tube down, so that the serpulid’s crown of<br />

tentacles projected above the sediment<br />

surface. Conversely, A. muelleri burrowed<br />

anterior end down so that its head was<br />

within the sediment.<br />

Epibionts<br />

Table 1 gives a list of the epibionts collected<br />

and identified from the tubes of<br />

Ditrupa arietina. The most obvious<br />

epibiont was the cemented serpulid<br />

Hydroides elegans (Haswell, 1883) that has<br />

probably been introduced into Açorean<br />

waters in historical times, possibly<br />

attached to boats or in ballast waters<br />

(Morton & Britton, 2000). Other epibionts<br />

included three species of foraminiferans,<br />

that is, the bright red Miniacina miniacea<br />

Pallas, 1776, Cassidulina obtusa<br />

Williamson, 1858 and Elphidium crispum<br />

(Linnaeus, 1767), and a number of<br />

species, mostly unidentifiable, of bryozoans.<br />

Also present were the egg capsules<br />

of gastropods (all unidentifiable).<br />

All the species identified in Table 1 have a<br />

north-eastern Atlantic/Mediterranean distribution,<br />

except for M. miniacea which<br />

occurs in the warmer central Atlantic<br />

from the Mediterranean to the Caribbean.<br />

Life history of the Ditrupa arietina tube<br />

The suggested life history of the tube<br />

of Ditrupa arietina is illustrated in Figure<br />

4. A living individual of D. arietina is<br />

illustrated in Figure 4A. The tube is cylindrical,<br />

slightly curved and resembles an<br />

elephant’s tusk or, more appropriately, a<br />

scaphopod, and anteriorly swollen<br />

although the mouth typically narrows<br />

again at its anterior extremity. There are<br />

numerous constrictions, or flanges, to the<br />

shell that is also variably patterned with<br />

circlets of orange-brown pigmentation.<br />

Because the contained worm is bright red,<br />

the tubes of living individuals are also<br />

redder than their empty counterparts.<br />

The 19 branchial filaments are also bright<br />

red (sometimes red banded) and the operculum<br />

is a membranous cup or funnel<br />

closed distally by a flat, brownish, chiti-<br />

TABLE 1. A list of encrusting species herein recorded as attached to the tubes of Ditrupa arietina<br />

from the six stations to the east (E1 - E3) and west (W1 - W3) of Ilhéu de Vila Franca do Campo.<br />

São Miguel, <strong>Açores</strong>.<br />

Phylum Species Notes<br />

Foraminifera Miniacina miniacea Pallas, 1776 Mediterranean, Caribbean (down to 2000 metres)<br />

Cassidulina obtusa Williamson, Northern Europe, Mediterranean, Canaries<br />

1858<br />

Elphidium crispum (Linnaeus, Mediterranean, Gulf of Cadiz, West Africa<br />

1767)<br />

Gymnolaemata: Celleporina hassalli (Johnston, British Isles<br />

Cheilostomata 1847)<br />

Cheilostoma 1<br />

Cheilostoma 2<br />

Stenolaemata: Crisia cf. eburnea (Linnaeus, Northern Europe, British Isles<br />

Cyclostomata 1758)<br />

Tervia irregularis (Meneghini, Northern Europe, Mediterranean<br />

1844)<br />

Disporella spp.<br />

Cyclostome 1<br />

Cyclostome 2<br />

Cyclostome 3<br />

Polychaeta: Hydroides elegans (Haswell, Near cosmopolitan; unintentionally introduced (Morton<br />

Serpuli<strong>da</strong>e 1883)<br />

& Britton, 2000)


MORTON & SALVADOR: THE BIOLOGY OF DITRUPA ARIETINA 151<br />

FIGURE 4. Ditrupa arietina. A, A living individual in its tube and (A¹) in its life position in the sediment;<br />

B, the anterior end of a tube with encrusting organisms; C, a drill hole (probably) made by<br />

the naticid Natica prietoi; D, an empty, drilled and anteriorly encrusted, tube occupied by<br />

Aspi<strong>dos</strong>iphon muelleri and (D¹) in its life position in the sediment; E, an anteriorly encrusted tube<br />

occupied by A. muelleri; F, a fragment of unoccupied tube colonized by encrusting organisms and<br />

F, a fragment of tube.


152 AÇOREANA<br />

2009, Sup. 6: 145-156<br />

nous plate thickened in the centre to form<br />

a boss. Living individuals of D. arietina<br />

(Figure 4, A¹) live in the sediment, posterior<br />

end down and with the swollen anterior<br />

end situated above the surface. The<br />

anterior end of the tube is often encrusted<br />

with epibionts (Figure 4, B). Figure 4C<br />

illustrates a drill hole probably made by<br />

the naticid Natica prietoi Hi<strong>da</strong>lgo, 1873<br />

(see Morton & Harper, 2009). Following<br />

death, the tube of D. arietina is occupied<br />

by Aspi<strong>dos</strong>iphon muelleri (Figure 4D) at<br />

which time the anterior epibionts also die<br />

because the sipunculan lives head down<br />

in the sediment (illustrated in Figure 4<br />

[D¹]). With the posterior end of the tube<br />

now projecting above the sediment surface,<br />

it becomes encrusted by epibionts<br />

(Figure 4E), such that the tube becomes<br />

more eroded with age (Figure 4F) until<br />

only fragments remain (Figure 4G). As<br />

noted above we could obtain no statistically<br />

different station and hence depth<br />

distributions in the various categories of<br />

D. arietina tubes either occupied by A<br />

muelleri or encrusted either anteriorly or<br />

posteriorly. It thus seems that upon the<br />

death of D. arietina, its tube becomes<br />

widely distributed throughout the<br />

Açorean offshore seabed, probably by<br />

water movements acting upon it.<br />

DISCUSSION<br />

Labrune et al. (2007) analyzed the softbottom<br />

polychaete assemblages of the<br />

Gulf of Lions in the northwest<br />

Mediterranean and showed that at virtually<br />

stations associated with “littoral” fine<br />

muds and with depths of between 10–20<br />

metres the fauna was characterized by<br />

high abun<strong>da</strong>nces and high biomasses due<br />

to the presence of large numbers of<br />

Ditrupa arietina. Similarly, Cosentino &<br />

Giacobbe (2006) showed that, also in the<br />

Mediterranean, maximum mollusc/polychaete<br />

diversities (H’) occurred at depths<br />

of between 10–20 metres but that this<br />

decreased beyond this corresponding to<br />

the peak in the core population of D. arietina<br />

at depths of between 30-40 metres<br />

and abun<strong>da</strong>nces of >500 individuals·250·cm².<br />

Sardá et al. (2000) demonstrated<br />

that following sand extraction at<br />

depths of between 10–30 metres in the<br />

Tordera River, Bay of Blanes in the northwest<br />

Mediterranean, numbers of D. arietina<br />

initially remained stable, but numbers<br />

rose sharply during the following spring<br />

and autumn possibly due to re-colonization<br />

of the dredged sea bed.<br />

In May, that is, spring, coinciding with<br />

the periods of greatest abun<strong>da</strong>nces,<br />

growth and reproductive period in<br />

Ditrupa arietina, individuals spent only<br />

25% of the time feeding compared with<br />

50% of the time during the rest of the year<br />

(Jor<strong>da</strong>na et al., 2000). The size spectrum<br />

of particles filtered by D. arietina was<br />

rather large and ranged between 1µm-<br />

50µm with planktonic and benthic<br />

diatoms, haptophytes, bacteria and<br />

cyanobacteria being collected and<br />

absorbed at efficiencies of 84.7, 70.9, 72.3<br />

and 63.7%, respectively (Jor<strong>da</strong>na et al.,<br />

2001a). Ditrupa arietina selectively filters<br />

picoplankton this accounting for, on a<br />

yearly basis, 15% of ingested chlorophylla<br />

with 95% of this figure being accounted<br />

for by picoeukaryotes (Jor<strong>da</strong>na et al.,<br />

2001b). The maximum weight specific<br />

clearance rate for D. arietina was 15.7<br />

ml.hour¯¹·mg·¯¹, about seven times less<br />

than for the polychaete Euchone papillosa<br />

(M. Sars, 1851), because of the latter’s relatively<br />

larger tentacle crown (Riisgård et<br />

al. 2002).<br />

From the above research in the<br />

Mediterranean, two important facts<br />

emerge that have relevance to Ditrupa arietina<br />

in the <strong>Açores</strong>. First, that D. arietina<br />

occurs at a relatively shallow depth of<br />

between 10-30 metres and, second, being<br />

a benthic suspension feeder it assists in


MORTON & SALVADOR: THE BIOLOGY OF DITRUPA ARIETINA 153<br />

the clarification of the water column especially<br />

when the species occurs in large<br />

numbers. This study demonstrates that<br />

in the <strong>Açores</strong>, D. arietina occurs at a depth<br />

of ~ 200 metres. This distinctive difference<br />

in depths may be related to light,<br />

that is, in the <strong>Açores</strong>, oceanic waters allow<br />

colonization to a greater depth than in the<br />

(recently) more turbid Mediterranean.<br />

Or, such a difference may be related to<br />

food availability in the form of picoplankton<br />

that D. arietina feeds on, since this is<br />

likely to be less abun<strong>da</strong>nt in the <strong>Açores</strong>,<br />

thereby, somehow, influencing depth<br />

preference. It is also possible that the two<br />

factors may be acting synergistically in<br />

the <strong>Açores</strong> and/or in concert with other<br />

factors such as sediment grain size and<br />

disturbance.<br />

Morton (1990) studied the bivalve<br />

Ervilia castanea (Montagu, 1803) collected<br />

offshore from Vila Franca do Campo, São<br />

Miguel, and recorded it from depths of<br />

between 0-40 metres although the species<br />

is known to occur from ~800-1800 metres<br />

in the <strong>Açores</strong> and 130 metres in the<br />

Canary Islands (Smith, 1885), but possibly<br />

only as empty shells. This study of<br />

Ditrupa arietina collected few living E. castanea<br />

from the depths sampled, but many<br />

empty valves. Hence, in the <strong>Açores</strong>, the<br />

deeply shelving continental shelf (Figure<br />

1), appears to be characterized at two<br />

depths by two endobenthic suspension<br />

feeding species: the shallower living (0-<br />

~100 metres) bivalve Ervilia castanea and<br />

the deeper residing serpulid (~100 –250<br />

metres) D. arietina.<br />

Gambi et al. (1996) analyzed polychaete<br />

community structure at 32 stations<br />

distributed from 2–105 metres depth in<br />

the southern Tyrrhenian Sea (Italy) and<br />

showed that Ditrupa arietina was dominant<br />

at depths of between 26-30 metres<br />

and enhanced the spatial complexity,<br />

species composition and diversity and<br />

community structure of the habitat by<br />

virtue of the range of diversity of<br />

epibionts attached to its tube. Gambi &<br />

Jerace (1997) analyzed the epibionts on D.<br />

arietina tubes from three bays in the<br />

southern Tyrrhenian Sea and identified a<br />

wide range of species, including<br />

foraminiferans, sponges, hydroids, bryozoans<br />

and tubiculous polychaetes.<br />

Epibiosis percentages varied from site to<br />

site and between years. This study of the<br />

epibionts attached to the tubes of D. arietina<br />

identified a number of species<br />

including, most dominantly, the cemented<br />

serpulid Hydroides elegans (Haswell,<br />

1883). Other epibionts included three<br />

species of foraminiferans and a number of<br />

species of bryozoans.<br />

The only pre<strong>da</strong>ted tubes of Ditrupa<br />

arietina that could be identified in this<br />

study appeared to have been drilled by<br />

the prosobranch naticid gastropod Natica<br />

prietoi (see Morton & Harper, 2009).<br />

Ditrupa arietina lives for ~2 years<br />

(Medernach et al., 2000), with most<br />

growth occurring during the first year.<br />

As Morton & Harper (2009) show, tubes<br />

of many sizes are attacked by the naticid<br />

although, generally, larger ones were<br />

favoured. Such a generalization is probably<br />

related to the relationship between<br />

pre<strong>da</strong>tor and prey sizes, but if it is true<br />

that larger individuals are generally preferred<br />

by N. prietoi, then clearly, these are<br />

adults, sexual maturity also occurring in<br />

the first year of life (Medernach et al.,<br />

2000), so that post reproduction the tube<br />

becomes available for colonization by<br />

Aspi<strong>dos</strong>iphon muelleri, anterior epibionts<br />

then die, but further epibiotic organisms<br />

can now colonize the posterior end of the<br />

tube and slowly the tube degenerates.<br />

Subsequent to the death of the original<br />

inhabitant, the tube of Ditrupa arietina<br />

provides secon<strong>da</strong>ry accommo<strong>da</strong>tion for<br />

Aspi<strong>dos</strong>iphon muelleri and throughout its<br />

life history it functions as an inhabitable<br />

substratum and hence a locally important


154 AÇOREANA<br />

2009, Sup. 6: 145-156<br />

Açorean habitat for a suite of epibionts. It<br />

is also apparent that D. arietina is an overwhelmingly<br />

dominant and therefore highly<br />

significant component of the Açorean<br />

endobenthos at depths of ~200 metres,<br />

mirroring the significance of the bivalve<br />

Ervilia castanea at generally shallower<br />

depths (Morton, 1990). It is finally clear, as<br />

this study now suggests, that the ecological<br />

significance of these two species is in<br />

urgent need of further, much more<br />

detailed study, especially with regard to<br />

their role in the productivity of the inshore<br />

Açorean continental shelf seabed.<br />

ACKNOWLEDGEMENTS<br />

The authors are grateful to Prof. A.M.<br />

Frias Martins (University of the <strong>Açores</strong>) for<br />

funding this research and for much practical<br />

help and warm hospitality during their<br />

stay on São Miguel. We are also grateful to<br />

a number of University of the <strong>Açores</strong> students<br />

who helped with sample sorting and<br />

to Dr. K.F. Leung (Environmental<br />

Protection Department, Hong Kong SAR<br />

Government, China) for statistical advice<br />

and help. Mary Spencer Jones (Natural<br />

History Museum, London) is thanked for<br />

identifying the bryozoans.<br />

LITERATURE CITED<br />

BOLAM, S.G., & T.F. FERNANDES, 2002.<br />

Dense aggregations of tube-building<br />

polychaetes: response to small-scale<br />

disturbances. Journal of Experimental<br />

Marine Biology and Ecology, 269: 197-<br />

222.<br />

CHARLES, F., E. JORDANA, J-M. AMOU-<br />

ROUX, A. GRÉMARE, M DESMALA-<br />

DES & L. ZUDAIRE, 2003.<br />

Reproduction, recruitment and larval<br />

metamorphosis in the serpulid polychaete<br />

Ditrupa arietina (O.F. Müller).<br />

Estuarine, Coastal and Shelf Science, 57:<br />

435-443.<br />

COSENTINO, A., & S. GIACOBBE, 2006.<br />

A case study of mollusc and polychaete<br />

soft-bottom assemblages submitted<br />

to sedimentary instability in<br />

the Mediterranean Sea. Marine<br />

Ecology, 27: 170-183.<br />

FAUVEL, P. 1953. Anneli<strong>da</strong> Polychaeta.<br />

Fauna of India, Pakistan, Ceylon,<br />

Burma and Malaya. 507 pp, 250 figs, 1<br />

map.<br />

GAMBI, M.C., & S. JERACE, 1997.<br />

Epibiosis on the tubes of the polychaete<br />

Ditrupa arietina (Serpuli<strong>da</strong>e) in<br />

some populations of the soft bottoms<br />

off the southern Tyrrhenian Sea. Biol.<br />

Mar. Mediterranean, 4: 380-383.<br />

GAMBI, M.C., A. GIANGRANDE & S.<br />

FRASCHETTI, 1996. Polychaetes of<br />

the soft bottoms off the Gulf of<br />

Policastro (Southern Tyrrhenian Sea):<br />

distribution and role of some species.<br />

In: VIRZO de SANTO, A., A. ALFANI,<br />

G.C. CARRADA & F.A. RUTIGLIA-<br />

NO (eds.), Atti del VII Congresso<br />

Nazionale della Società Italiana di<br />

Ecologia (S. It. E.), Napoli, September<br />

1996, 17: 349-353.<br />

GRÉMARE, A., J.-M. AMOUROUX & G.<br />

VÉTION, 1984a. Long term comparison<br />

of macrobenthos within the soft<br />

bottoms of the bay of Banyuls-sur-<br />

Mer (North-west Mediterranean Sea).<br />

Netherlands Journal of Sea Research, 40:<br />

281-302.<br />

GRÉMARE, A., R. SARDÁ, L. MEDER-<br />

NACH, E. JORDANA, S. PINEDO, J.-<br />

M. AMOUROUX, D. MARTIN, C.<br />

NOZAIS & F. CHARLES, 1984b. On<br />

the dramatic increase of Ditrupa arietina<br />

(O.F. Müller) (Anneli<strong>da</strong>: Polychaeta)<br />

along both the French and<br />

Spanish Catalan coasts. Estuarine,<br />

Coastal and Shelf Science, 47: 447-457.<br />

JORDANA, E., J-C. DUCHÊNE & F.<br />

CHARLES, 2000. Experimental study<br />

of suspension-feeding activity in the<br />

serpulid polychaete Ditrupa arietina


MORTON & SALVADOR: THE BIOLOGY OF DITRUPA ARIETINA 155<br />

(O.F. Müller). Journal of Experimental<br />

Marine Biology and Ecology, 252: 57-74.<br />

JORDANA, E., F. CHARLES, A.<br />

GRÉMARE, J.-M. AMOUROUX & M-J.<br />

CHRÉTIENNOT-DINET, 2001a. Food<br />

sources, ingestion and absorption in<br />

the suspension-feeding polychaete,<br />

Ditrupa arietina (O.F. Müller). Journal of<br />

Experimental Marine Biology and<br />

Ecology, 266: 219-236.<br />

JORDANA, E., A. GRÉMARE, F. LANTOI-<br />

NE, C. COURTIES, F. CHARLES, J. M.<br />

AMOUROUX & G. VÉTION, 2001b.<br />

Seasonal changes in the grazing of<br />

coastal picoplankton by the suspension-feeding<br />

polychaete Ditrupa arietina<br />

(O. F. Müller). Journal of Sea<br />

Research, 46: 245-259.<br />

LABRUNE, C., A. GRÉMARE, J-M.<br />

AMOUROUX, R. SARDÁ, J. GIL & S.<br />

TABOADA, 2007. Assessment of softbottom<br />

polychaete assemblages in the<br />

Gulf of Lions (NW Mediterranean)<br />

based on a mesoscale survey. Estuarine,<br />

Coastal and Shelf Science 71: 133-147.<br />

MEDERNACH, L., E. JORDANA, A.<br />

GRÉMARE, C. NOZAIS, F. CHARLES<br />

& J.M. AMOUROUX, 2000. Population<br />

dynamics, secon<strong>da</strong>ry production and<br />

calcification in a Mediterranean population<br />

of Ditrupa arietina (Anneli<strong>da</strong>:<br />

Polychaeta). Marine Ecology Progress<br />

Series, 199: 171-184.<br />

MARTINS, A.M.F, J.P. BORGES, S.P.<br />

ÁVILA, A.C. COSTA, P. MADEIRA &<br />

B. MORTON, 2009. Illustrated checklist<br />

of the infralittoral molluscs off Vila<br />

Franca do Campo. In: MARTINS,<br />

A.M.F. (ed.), The Marine Fauna and Flora<br />

of the Azores (Proceedings of the Third<br />

International Workshop of Malacology and<br />

Marine Biology, São Miguel, Azores,<br />

2006). Açoreana, Supplement 6: 15-103.<br />

MORTON, B., 1990. The biology and<br />

functional morphology of Ervilia<br />

castanea (Bivalvia: Tellinacea) from the<br />

Azores. In: MARTINS, A.M.F. (ed.),<br />

Proceedings of the First International<br />

Workshop of Malacology, São Miguel,<br />

Azores, 1988. Açoreana, Supplement [2]:<br />

75- 96.<br />

MORTON, B., & J.C. BRITTON, 1995.<br />

Partitioning of shell resources by<br />

Aspi<strong>dos</strong>iphon muelleri (Sipuncula) and<br />

Anapagurus laevis (Crustacea) in the<br />

Azores. In: MARTINS, A.M.F. (ed.),<br />

The Marine Flora and Fauna of the Azores.<br />

(Proceedings of the Second International<br />

Workshop of Malacology and<br />

Marine Biology, São Miguel, Azores,<br />

1991). Açoreana, Supplement [4]: 66-67.<br />

MORTON, B., & J.C. BRITTON, 2000.<br />

Origins of the Azorean interti<strong>da</strong>l biota:<br />

the significance of introduced species,<br />

survivors of chance events. Arquipelago<br />

(Life and Marine Science). Supplement<br />

2 (Part A): 29-51.<br />

MORTON, B., & J.C. BRITTON, 2000. The<br />

origins of the coastal and marine flora<br />

and fauna of the Azores. Oceanography<br />

and Marine Biology: an Annual Review.<br />

38: 13-84.<br />

MORTON, B., & E.M. HARPER, 2009.<br />

First record of pre<strong>da</strong>tion by a naticid<br />

gastropod upon Ditrupa arietina<br />

(Polychaeta: Serpuli<strong>da</strong>e) from the mid-<br />

Atlantic <strong>Açores</strong>, Portugal. In: MAR-<br />

TINS, A.M.F. (ed.), The Marine Fauna<br />

and Flora of the Azores (Proceedings of the<br />

Third International Workshop of<br />

Malacology and Marine Biology, São<br />

Miguel, Azores, 2006). Açoreana,<br />

Supplement 6: 157-165.<br />

NELSON-SMITH, A., & J.M. GEE, 1966.<br />

Serpulid tubeworms (Polychaeta Serpuli<strong>da</strong>e)<br />

around Dale, Pembrokeshire.<br />

Field Studies, 2(3): 331-357.<br />

RIISGÅRD, H.U., A. GRÉMARE, J.M.<br />

AMOUROUX, F. CHARLES, G.<br />

VÉTION, R. ROSENBERG & C.<br />

NIELSEN, 2002. Comparative study<br />

of water-processing in two ciliary filter-feeding<br />

polychaetes (Ditrupa arietina<br />

and Euchone papillosa) from two dif-


156 AÇOREANA<br />

2009, Sup. 6: 145-156<br />

ferent habitats. Marine Ecology<br />

Progress Series, 229: 113-126.<br />

SARDÁ, R., S. PINEDO & D. MARTIN,<br />

1999. Seasonal dynamics of macroinfaunal<br />

key species inhabiting shallow<br />

soft-bottoms in the Bay of Blanes (NW<br />

Mediterranean). Acta Oecologica, 20:<br />

315-326.<br />

SARDÁ, R., S. PINEDO, A. GREMARE, &<br />

S. TABOADA, 2000. Changes in the<br />

dynamics of shallow sandy-bottom<br />

assemblages due to sand extraction in<br />

the Catalan Western Mediterranean<br />

Sea. ICES Journal of Marine Science, 57:<br />

1446-1453.<br />

SMITH, E.A., 1885. Report on the<br />

Lamellibranchia collected by HMS<br />

Challenger during the years 1873-76.<br />

Report on the Scientific Results of H.M.S<br />

Challenger. Zoology XIII, 341 pp., 25<br />

plates.<br />

ten HOVE, H.A., & R.S. SMITH, 1990. A<br />

re-description of Ditrupa gracillima<br />

Grube, 1878 (Polychaeta, Serpuli<strong>da</strong>e)<br />

from the Indo-Pacific, with a discussion<br />

of the genus. Records of the<br />

Australian Museum, 42: 101-118.<br />

ZAR, J.H., 1984. Biostatistical Analysis.<br />

Prentice Hall, London.


AÇOREANA, Suplemento 6, Setembro 2009: 157-165<br />

DRILLING PREDATION UPON DITRUPA ARIETINA (POLYCHAETA:<br />

SERPULIDAE) FROM THE MID-ATLANTIC AÇORES, PORTUGAL<br />

Brian Morton & E.M. Harper<br />

Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK. E-mail:<br />

prof_bmorton@hotmail.co.uk<br />

Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK. E-mail:<br />

emh21@cam.ac.uk<br />

ABSTRACT<br />

A small, but significant proportion of the empty tubes of the free-living serpulid<br />

Ditrupa arietina dredged from the seabed off São Miguel, <strong>Açores</strong>, were punctured by small<br />

round holes. Analysis of these holes shows that they are typically single, made from the<br />

outside of the tube and located preferentially, suggesting that they represent the work of<br />

a pre<strong>da</strong>tor. The likely identity of the pre<strong>da</strong>tor is discussed but based on the co-occurrence<br />

in the dredges and the fact that most of the holes have a distinctive countersunk morphology,<br />

it is suggested that they were made by the small naticid Natica prietoi. If so, this<br />

study is the first record of such a pre<strong>da</strong>tor/prey relationship.<br />

RESUMO<br />

Uma pequena mas significativa porção de tubos do serpulídeo livre Ditrupa arietina<br />

draga<strong>dos</strong> do fundo marinho ao largo de São Miguel, <strong>Açores</strong>, estavam perfura<strong>dos</strong> por<br />

pequenos orifícios redon<strong>dos</strong>. Análise desses orifícios mostra que eles são tipicamente<br />

singulares, feito a partir do exterior do tubo e localiza<strong>dos</strong> preferencialmente, sugerindo<br />

que representam o trabalho de um pre<strong>da</strong>dor. Discute-se a identi<strong>da</strong>de provável do<br />

pre<strong>da</strong>dor mas, com base na co-ocorrência nas dragagens e no facto de que a maioria <strong>dos</strong><br />

orifícios possui uma distinta morfologia chanfra<strong>da</strong>, sugere-se que foram feitos pelo<br />

pequeno naticídeo Natica prietoi. Assim sendo, este estudo é o primeiro registo de tal<br />

relação pre<strong>da</strong>dor/presa.<br />

INTRODUCTION<br />

Although polychaete worms are a<br />

major source of food for a number of<br />

pre<strong>da</strong>tory taxa including fish, gastropods<br />

and birds, most of our knowledge is<br />

focused on pre<strong>da</strong>tion of the larger errant<br />

taxa. For example, amongst the pre<strong>da</strong>tory<br />

gastropods, representatives of the<br />

Murici<strong>da</strong>e, Columbelli<strong>da</strong>e, Fasciolarii<strong>da</strong>e,<br />

Vasi<strong>da</strong>e and Buccini<strong>da</strong>e as well as many<br />

conoideans are specialist worm pre<strong>da</strong>tors<br />

(Pearce & Thorson, 1967; Taylor, 1978a, b,<br />

1980; Taylor et al., 1980; Shimek, 1984;<br />

Taylor & Lewis, 1995). Similarly, many<br />

wading birds are specialist pre<strong>da</strong>tors<br />

upon interti<strong>da</strong>l endobenthic polychaetes<br />

(Goss-Custard, 1975).<br />

In contrast, little appears to be known<br />

about pre<strong>da</strong>tory activities upon the tubedwelling<br />

Serpuli<strong>da</strong>e (Polychaeta) despite<br />

their cosmopolitan occurrence and frequently<br />

high abun<strong>da</strong>nce. There is, however,<br />

observational evidence that gastropods<br />

(Taylor & Morton, 1996; Tan &<br />

Morton, 1998), fish (Bosence, 1979;<br />

Witman & Cooper, 1983) and crustaceans<br />

(Bosence, 1979) feed on serpulids and, in<br />

the case of the buccinid gastropod Engina<br />

armillata (Reeve, 1846) in Hong Kong,<br />

they are its prey of choice (Tan & Morton,<br />

1998). Additionally, the development of<br />

calcareous tubes, a well-developed<br />

“fright response” (Poloczanska et al.,<br />

2004) and, in the case of encrusting<br />

species, an often cryptic habit suggest


158 AÇOREANA<br />

2009, Sup. 6: 157-165<br />

that the evolution of the Serpuli<strong>da</strong>e may<br />

have been influenced by pre<strong>da</strong>tion pressure.<br />

Part of the problem in recognising<br />

pre<strong>da</strong>tory activity on serpulid worms<br />

undoubtedly results from their typically<br />

cryptic lifestyles that make direct observations<br />

difficult. Indirect methods to<br />

detect pre<strong>da</strong>tory activity on serpulids<br />

must rely on analyses of the pre<strong>da</strong>tor’s<br />

gut contents to recognise setae (Taylor &<br />

Morton, 1996) or the identification of any<br />

characteristic <strong>da</strong>mage to the tube caused<br />

by a pre<strong>da</strong>tor, although for many pre<strong>da</strong>tors,<br />

for example E. armillata, which was<br />

recorded feeding via the prey’s aperture<br />

(Tan & Morton, 1998), no such characteristic<br />

<strong>da</strong>mage results.<br />

In this paper we describe drill holes<br />

made in the tube of the endobenthic serpulid<br />

Ditrupa arietina (Müller, 1776) from<br />

the subti<strong>da</strong>l seabed off the island of São<br />

Miguel in the <strong>Açores</strong> (Portugal). We present<br />

evidence that these are the result of<br />

pre<strong>da</strong>tion and further discuss evidence<br />

as to the likely culprit(s).<br />

Ditrupa arietina (Müller, 1776)<br />

Ditrupa arietina is a widespread<br />

endobenthic serpulid worm, common in<br />

the Mediterranean where it achieves<br />

high densities and there is evidence in<br />

some areas that its abun<strong>da</strong>nce is increasing<br />

(Gremare et al., 1998a, b; Bolam &<br />

Fernandes, 2002; Labrune et al., 2007).<br />

The worm secretes a curved, tuskshaped,<br />

calcareous tube up to 23 mm<br />

long and about 3 mm across at its widest<br />

point. It lives within the sediment, the<br />

narrowest posterior end down, with an<br />

anterior bulge (about 10% of the tube)<br />

exposed above the substratum. This<br />

anterior bulge houses the circlet of twenty<br />

feeding tentacles when they are<br />

retracted and the anterior aperture is<br />

sealed by a further tentacle bearing an<br />

operculum. Morton & Salvador (2009,<br />

figure 4) illustrate a living D. arietina in<br />

its life position in the sediment.<br />

The species has been recorded as a<br />

dominant member of soft-bottom communities<br />

at depths of 100–250 metres in<br />

the <strong>Açores</strong> where the tubes of dead individuals<br />

also provide domiciles for the<br />

sipunculan worm Aspidopsiphon muelleri<br />

Diesing, 1851 (Morton & Britton, 1995;<br />

Morton & Salvador, 2009).<br />

MATERIALS AND METHODS<br />

During July 2006, large numbers of<br />

the serpulid polychaete Ditrupa arietina<br />

were collected from depths of between<br />

50-200 metres off Vila Franca do Campo,<br />

São Miguel, <strong>Açores</strong>. The samples were<br />

collected and processed as reported in<br />

Morton & Salvador (2009). Following initial<br />

observations that some tubes were<br />

perforated by drill holes, the tubes of<br />

dead individuals were separated and<br />

inspected for evidence of such drilling.<br />

For each holed tube, the following <strong>da</strong>ta<br />

were collected: tube length to the nearest<br />

1 mm using vernier callipers, number of<br />

drillholes per tube and the morphology of<br />

the drillhole. Further observations were<br />

made on the morphology of the drillholes<br />

of a small number of specimens by scanning<br />

electron microscopy (SEM). These<br />

specimens were prepared by cleaning in<br />

an ultrasonic bath prior to mounting<br />

them, coated in gold, for SEM (JEOL 820 –<br />

University of Cambridge).<br />

Finally, the mean tube lengths plus<br />

stan<strong>da</strong>rd deviations of intact living individuals<br />

of Ditrupa arientina and those<br />

with drill holes were compared using a<br />

t-test.<br />

RESULTS<br />

Holed individuals of Ditrupa arietina<br />

were identified from each of the six sampling<br />

stations, described by Martins et al.


MORTON & HARPER: DRILLING PREDATION UPON DITRUPA ARIETINA 159<br />

(2009), but no significant differences in<br />

numbers were obtained between them<br />

with regard to the incidence of drilled<br />

tubes (see Morton & Salvador, 2009 for<br />

details). In total 5,453 tubes of D. arietina<br />

were retrieved and examined and from<br />

which we identified 104 fragments and<br />

intact empty tubes with holes in them,<br />

that is, approximately 1.9% of all empty<br />

tubes examined. The vast majority of the<br />

tubes were perforated by a single drillhole<br />

but a few had two or even three complete<br />

holes. No incomplete holes were<br />

observed nor any that showed signs of<br />

repair or healing by the occupant. All<br />

were drilled perpendicular to the surface<br />

of the tube and were clearly produced<br />

from the outside, as evidenced by a wider<br />

outer diameter.<br />

All holes in the tubes of Ditrupa arietina<br />

were small, with an outer diameter of<br />

less than 700 µm. In outline, the perforations<br />

were mostly circular (Figure 1A, B)<br />

but a few were more elliptical (Figure 1C).<br />

The outer edges of the drillholes were<br />

clearly defined, and SEM observations of<br />

the surface of the tube adjacent to the hole<br />

show no obvious signs of either dissolution<br />

or rasping. The inner perforations<br />

were rather more ragged and smaller<br />

than the outer diameter. Most of the holes<br />

we have examined had curved walls leading<br />

to a countersunk morphology,<br />

although some (Figure 1D) were more<br />

straight-sided.<br />

The positions of drill holes in the<br />

tubes of Ditrupa arietina are shown in<br />

Figure 2. It is clear that most are located<br />

in the mid portion of the tube, below the<br />

anterior bulge. Although they occur all<br />

around the circumference of the tube, the<br />

distribution of the holes is not uniform,<br />

there being a clear preference for the concave<br />

aspect.<br />

The length distributions of a sub-sample<br />

(n = 376) of living Ditrupa arietina<br />

recorded by Morton & Salvador (2009) are<br />

FIGURE 1. Scanning electron micrographs of a<br />

variety of drill holes in the tubes of Ditrupa arietina<br />

collected from the seabed offshore from<br />

Vila Franca do Campo, São Miguel, <strong>Açores</strong>, in<br />

2006. Scale bars represent 100 µm for A and B<br />

and 200 µm C and D.<br />

FIGURE 2. Histograms showing the size distributions<br />

(tube lengths) of living (white) and<br />

drilled (black) individuals of Ditrupa arietina<br />

collected from the seabed offshore from Vila<br />

Franca do Campo, São Miguel, <strong>Açores</strong>, in 2006.<br />

plotted together with the same <strong>da</strong>ta for<br />

drilled individuals in Figure 3. Although<br />

virtually all sizes of D. arietina tubes were<br />

drilled (from 5-21 mm tube lengths), the<br />

mean length of the drilled D. arietina


160 AÇOREANA<br />

2009, Sup. 6: 157-165<br />

tubes (n = 102) was 12.7 (S.D. 4.3) whereas<br />

that of the tubes occupied by living D.<br />

arietina (n = 378) was 14.9 (S.D. 2.8). The<br />

result of the t-test showed that the means<br />

of the two samples were significantly different<br />

(p =


MORTON & HARPER: DRILLING PREDATION UPON DITRUPA ARIETINA 161<br />

support of this contention, no marginellids<br />

are reported from the Açorean fauna<br />

and the trawls in which the drilled D. arietina<br />

were collected contained a number<br />

of individuals of Natica prietoi Hi<strong>da</strong>lgo,<br />

1873, formerly identified as Natica a<strong>da</strong>nsoni<br />

de Blainville, 1825 (see Gubbioli &<br />

Nofroni, 1998), and no nudibranchs of<br />

any species. Further evidence to support<br />

a naticid origin for the drill holes is the<br />

preferred position in an area of the tube<br />

that would be embedded in the sediment<br />

and hence accessible only to an endobenthic<br />

pre<strong>da</strong>tor. Naticids are, moreover,<br />

known to be highly specific with regard<br />

to the position on the prey’s exoskeleton<br />

chosen for attack (Thomas, 1976; Kabat,<br />

1990).<br />

Martins et al. (2009), although recording<br />

one living specimen of Natica dilwinii<br />

Payraudeau, 1826, dredged at 300 m<br />

depth off Vila Franca do Campo, consider<br />

that Natica prietoi is definitively the most<br />

common naticid recorded alive from the<br />

<strong>Açores</strong>, as described in this study.<br />

Notwithstanding, Morton (1990) recorded<br />

living Natica intricata (Donovan, 1804)<br />

from Ilhéu de Vila Franca, São Miguel,<br />

and was reported by this author to feed,<br />

by drilling, on the tellinoidean bivalve<br />

Ervilia castanea Montagu, 1803. Other<br />

naticids have also been reported to occur<br />

in the <strong>Açores</strong> (Table 1), but these are generally<br />

records of empty shells. Euspira<br />

pulchella (Risso, 1826) has been recorded<br />

from the seabed at 2,000 metres depth in<br />

the <strong>Açores</strong> by Ávila et al. (1998). Natica<br />

variabilis Recluz in Reeve, 1855 was<br />

recorded from the offshore sea-bed of São<br />

Miguel by Morton & Britton (1995) and<br />

by Ávila et al. (1998). Natica alderi Forbes,<br />

1838 was recorded from São Jorge by<br />

Morton (1967) and, finally, Ávila et al.<br />

(1998) records Polinices lacteus (Guilding,<br />

1834).<br />

One further point which may have<br />

some bearing on these disparate records<br />

(except for Natica prietoi that, as this study<br />

shows, is numerous on the offshore seabed<br />

at ~ 200 metres depth), is that the<br />

Caribbean species Natica canrena<br />

(Linnaeus, 1758) has been recorded from<br />

the <strong>Açores</strong> by Morton & Britton (1998),<br />

Morton et al. (1998) and Ávila et al. (1998),<br />

an occurrence explained by the former<br />

authors as a chance event resulting from<br />

this species having a teleplanic larva<br />

(Laursen, 1981). The same argument has<br />

been presented for the occasional recorded<br />

occurrence of the North African<br />

Polinices lacteus in the <strong>Açores</strong> (Laursen,<br />

1981; Ávila et al., 1998; Morton et al.,<br />

1998).<br />

Natica prietoi is a small species (~ 10<br />

mm in shell diameter) and was the only<br />

naticid collected along with the samples,<br />

in the same trawls, of Ditrupa arietina<br />

reported upon by Morton & Salvador<br />

(2009) and herein. It seems, therefore,<br />

that Natica prietoi is a plausible candi<strong>da</strong>te<br />

TABLE 1. A species list of Natici<strong>da</strong>e recorded from the <strong>Açores</strong><br />

Species Location References<br />

Natica prietoi Hi<strong>da</strong>lgo, 1873 São Miguel Martins et al., 2009; this study.<br />

Natica dillwinii Payraudeau, 1826 São Miguel Martins et al., 2009.<br />

Natica a<strong>da</strong>nsoni de Blainville, 1825 São Miguel Ávila et al., 1998.<br />

Natica intricata (Donovan, 1804) São Miguel Morton, 1990; Ávila et al., 1998.<br />

Euspira pulchella (Risso, 1826) 2,000 metres Ávila et al., 1998<br />

Natica variabilis Recluz in Reeve, 1855 São Miguel Morton & Britton, 1995; Ávila et al., 1998.<br />

Natica alderi (Forbes, 1838) São Jorge Morton, 1967.<br />

Natica canrena (Linnaeus 1758)<br />

Natica canrena (Linnaeus 1758)<br />

Laursen, 1981; Morton et al., 1998; Ávila et<br />

Polinices lacteus (Guilding, 1834)<br />

Polinices lacteus (Guilding, 1834)<br />

al., 1998; Morton & Britton, 2000.<br />

Laursen, 1981; Ávila et al., 1998; Morton et<br />

al., 1998.


162 AÇOREANA<br />

2009, Sup. 6: 157-165<br />

for the identity of the pre<strong>da</strong>tor responsible<br />

for the holes in D. arietina.<br />

If the above conclusion is correct, this<br />

is the first record of a naticid attacking a<br />

serpulid polychaete. We are aware of<br />

only one other report, by Paine (1963),<br />

who observed a single individual of<br />

Neverita duplicata (Say, 1822) attacking the<br />

sabellid Owenia fusiformis delle Chiaje,<br />

1841.<br />

The incidence of multiple, complete,<br />

drillholes in a small number of tubes is<br />

curious (Fig. 1D). Simultaneous drilling<br />

by multiple individuals, although reported<br />

upon for muricids (Brown &<br />

Alexander, 1994; Taylor & Morton, 1996),<br />

is unlikely in naticids because of the manner<br />

in which such pre<strong>da</strong>tors handle their<br />

prey that is (albeit in other species)<br />

enveloped by the foot of the attacker<br />

which would preclude access by another<br />

would-be pre<strong>da</strong>tor. It is possible, however,<br />

that they represent sequential attacks,<br />

the first two of which were failures<br />

although they were evidently complete,<br />

in the sense that they perforate the full<br />

thickness of the tube, they may have been<br />

non-functional (Kitchell et al., 1986).<br />

Another possibility is that they were<br />

caused by another pre<strong>da</strong>tory taxon and<br />

we do note that the multiple holes illustrated<br />

in Figure 1D are more straightsided<br />

than are most of the others and thus<br />

more like muricid drill holes (Carriker,<br />

1981). Moreover, muricids are known to<br />

feed in clusters of conspecifics and sympatric<br />

species (Abe, 1980; Tong, 1986;<br />

Taylor & Morton, 1996). This raises the<br />

possibility of there being a muricid pre<strong>da</strong>tor<br />

on the offshore seabed that also feeds<br />

on Ditrupa arietina.<br />

Notwithstanding, this study appears<br />

to be the first to record significant drilling<br />

pre<strong>da</strong>tion upon Ditrupa arietina although<br />

Tan & Morton (1998) record the buccinid<br />

Engina armillata aperturally (but never<br />

drilling) attacking cemented serpulids in<br />

Hong Kong. In the <strong>Açores</strong>, the only significant<br />

pre<strong>da</strong>tor captured in the dredges<br />

with D. arietina was the naticid Natica<br />

a<strong>da</strong>nsoni. However, we conclude, in the<br />

light of this study, that further research is<br />

needed to establish the pre<strong>da</strong>tor-prey<br />

relationship(s) on and in the Açorean offshore<br />

seabed.<br />

ACKNOWLEDGEMENTS<br />

The authors are grateful to Prof. A.M.<br />

de Frias Martins, University of the<br />

<strong>Açores</strong>, for organising the workshop at<br />

which this research was undertaken and<br />

for providing the boat facilities allowing<br />

collection of the samples herein reported<br />

upon. Ms. Andreia Salvador (The<br />

Natural History Museum, London) is<br />

thanked for assistance with the sorting of<br />

the samples.<br />

LITERATURE CITED<br />

ABE, N., 1980. Food and feeding habit of<br />

some carnivorous gastropods (preliminary<br />

report). Benthos Research, 19/20:<br />

39-47.<br />

ÁVILA, S.P., J.M.N. AZEVEDO, J.M.<br />

GONÇALVES, J. FONTES & F<br />

CARDIGOS, 1998. Checklist of the<br />

shallow-water marine molluscs of the<br />

Azores: 1 – Pico, Faial, Flores and<br />

Corvo islands. Açoreana, 8(4): 487-523.<br />

BAUMILLER, T.K., 1990. Non-pre<strong>da</strong>tory<br />

drilling of Mississippian crinoids by<br />

platyceratid<br />

gastropods.<br />

Palaeontology, 33: 743-748.<br />

BOLAM, S.G., & T.F. FERNANDES, 2002.<br />

Dense aggregations of tube-building<br />

polychaetes: response to small-scale<br />

disturbances. Journal of Experimental<br />

Marine Biology and Ecology, 269: 197-<br />

222.<br />

BOSENCE, D.W.J., 1979. The factors leading<br />

to aggregation and reef formation<br />

in Serpula vermicularis L. In: LAR-


MORTON & HARPER: DRILLING PREDATION UPON DITRUPA ARIETINA 163<br />

WOOD, G., & B.R. ROSEN (eds.),<br />

Biology and Systematics of Colonial<br />

Organisms, pp. 299–318. Systematics<br />

Association Special Volume No. 11,<br />

Academic Press, London and New<br />

York.<br />

BROMLEY, R.G., 1981. Concepts in ichnotaxonomy<br />

illustrated by small<br />

round holes in shells. Acta Geologica<br />

Hispanica, 16: 55-64.<br />

BROWN, K.M., & J.E. ALEXANDER,<br />

1994. Group foraging in a marine gastropod<br />

pre<strong>da</strong>tor: benefits and costs to<br />

individuals. Marine Ecology Progress<br />

Series, 112: 97-105.<br />

CARRIKER, M.R., 1981. Shell penetration<br />

and feeding by naticacean and muricacean<br />

pre<strong>da</strong>tory gastropods: a synthesis.<br />

Malacologia, 20: 403-422.<br />

GOSS-CUSTARD, J.D., 1975. Beach Feast.<br />

Birds, September/October: 23-26.<br />

GRÉMARE, A., J.-M. AMOUROUX & G.<br />

VÉTION, 1984a. Long term comparison<br />

of macrobenthos within the soft<br />

bottoms of the bay of Banyuls-sur-<br />

Mer (North-west Mediterranean Sea).<br />

Netherlands Journal of Sea Research, 40:<br />

281-302.<br />

GRÉMARE, A., R. SARDÁ, L.<br />

MEDERNACH, E. JORDANA, S.<br />

PINEDO, J.-M. AMOUROUX, D.<br />

MARTIN, C. NOZAIS & F.<br />

CHARLES, 1984b. On the dramatic<br />

increase of Ditrupa arietina (O.F.<br />

Müller) (Anneli<strong>da</strong>: Polychaeta) along<br />

both the French and Spanish Catalan<br />

coasts. Estuarine, Coastal and Shelf<br />

Science, 47: 447-457.<br />

GUBBIOLI, F., & I. NOFRONI, 1998. On<br />

the specific distinction between Natica<br />

a<strong>da</strong>nsoni Blainville, 1825 and Natica<br />

prietoi Hi<strong>da</strong>lgo, 1873 (Discopo<strong>da</strong>:<br />

Natici<strong>da</strong>e). La Conchiglia, Roma,<br />

30(289): 21-22.<br />

HARPER, E.M., 2003. Assessing the<br />

importance of drilling pre<strong>da</strong>tion over<br />

the Palaeozoic and Mesozoic.<br />

Palaeogeography, Palaeoclimatology,<br />

Palaeoecology, 210: 185-198.<br />

KABAT, A.R., 1990. Pre<strong>da</strong>tory ecology of<br />

naticid gastropods with a review of<br />

shell boring. Malacologia, 32: 155-193.<br />

KITCHELL, J.A., C.H. BOGGS, J.A. RICE,<br />

J.F. KITCHELL, A. HOFFMAN & A.<br />

MARTINELL, 1986. Anomalies in<br />

naticid pre<strong>da</strong>tory behavior: a critique<br />

and experimental observations.<br />

Malacologia, 27: 291-298.<br />

KOWALEWSKI, M., 2002. The fossil<br />

record of pre<strong>da</strong>tion: an overview of<br />

analytical methods. In: KOWALEWS-<br />

KI, M. & P.H. KELLEY (eds.), The fossil<br />

record of pre<strong>da</strong>tion. Paleontological Society<br />

Special Papers. Volume 8, pp. 3-42. Yale<br />

Printing Services, New Haven, CT.<br />

LABRUNE, C., A. GRÉMARE, J.-M.<br />

AMOUROUX, R SARDÁ, J. GIL & S.<br />

TABOADA, 2007. Assessment of softbottom<br />

polychaete assemblages in the<br />

Gulf of Lions (NW Mediterranean)<br />

based on a mesoscale survey.<br />

Estuarine, Coastal and Shelf Science, 71:<br />

133-147.<br />

LAURSEN, D., 1981. Taxonomy and distribution<br />

of teleplanic prosobranch larvae<br />

in the North Atlantic. Dana Report,<br />

89: 1-43 + plates I-III.<br />

MARTINS, A.M.F, S.P. ÁVILA, J.P.<br />

BORGES, A.C. COSTA, P. MADEIRA &<br />

B. MORTON, 2008. Illustrated checklist<br />

of the infralittoral molluscs off Vila<br />

Franca do Campo. In: MARTINS,<br />

A.M.F. (ed.), The Marine Fauna and Flora<br />

of the Azores (Proceedings of the Third<br />

International Workshop of Malacology and<br />

Marine Biology, São Miguel, 2006).<br />

Açoreana, Supplement 6: 15-103.<br />

MORTON, B., 1967. Malacological Report.<br />

In: Final Report, Chelsea College Azores<br />

Expedition, 1965, pp. 30-39. Unversity of<br />

London, London<br />

MORTON, B., 1990. The biology and functional<br />

morphology of Ervilia castanea<br />

(Bivalvia: Tellinacea) from the Azores.


164 AÇOREANA<br />

2009, Sup. 6: 157-165<br />

In: MARTINS, A.M.F. (ed.), The Marine<br />

Fauna and Flora of the Azores<br />

(Proceedings of the First International<br />

Workshop of Malacology, São Miguel,<br />

1988). Açoreana, Supplement 1990: 75-<br />

96.<br />

MORTON, B., & J.C. BRITTON, 1995.<br />

Partitioning of shell resources by<br />

Aspi<strong>dos</strong>iphon muelleri (Sipuncula) and<br />

Anapagurus laevis (Crustacea) in the<br />

Azores. In: MARTINS, A.M.F. (ed.),<br />

The Marine Fauna and Flora of the Azores<br />

(Proceedings of the Second International<br />

Workshop of Malacology and Marine<br />

Biology, São Miguel, 1991). Açoreana,<br />

Supplement 1995: 66-67.<br />

MORTON, B., & J.C. BRITTON, 2000.<br />

Origins of the Açorean interti<strong>da</strong>l biota:<br />

the significance of introduced species,<br />

survivors of chance events. Arquipélago<br />

(Life and Marine Science), Supplement<br />

2 (Part A): 29-51.<br />

MORTON, B., & A. SALVADOR, 2008. The<br />

biology of the subtial polychate<br />

Ditrupa arietina (Serpuli<strong>da</strong>e) in the<br />

Azores and a description of the life history<br />

of its tube. In: MARTINS, A.M.F.<br />

(ed.), The Marine Fauna and Flora of the<br />

Azores (Proceedings of the Third<br />

International Workshop of Malacology and<br />

Marine Biology, São Miguel, 2006).<br />

Açoreana, Supplement 6: 145-156.<br />

MORTON, B., J.C. BRITTON & A.M.<br />

FRIAS MARTINS, 1998. Coastal<br />

Ecology of the <strong>Açores</strong>, i-viii + 249 pp.<br />

Socie<strong>da</strong>de Afonso Chaves, Ponta<br />

Delga<strong>da</strong>, São Miguel.<br />

PAINE, R.T., 1963. Trophic relationships of<br />

8 sympatric pre<strong>da</strong>tory gastropods.<br />

Ecology, 49: 63-73.<br />

PEARCE, J.B., & G. THORSON, 1967. The<br />

feeding and reproductive biology of<br />

the red whelk, Neptunea antiqua (L.)<br />

(Gastropo<strong>da</strong>, Prosobranchia). Ophelia,<br />

4: 277-314.<br />

POLOCZANSKA, E.S., D.J. HUGHES &<br />

M.T. BURROWS, 2004. Underwater<br />

television observations of Serpula vermicularis<br />

(L.) reefs and associated<br />

mobile fauna in Loch Creran,<br />

Scotland. Estuarine, Coastal and Shelf<br />

Science, 61: 425-435.<br />

PONDER, W.F., & J.D. TAYLOR, 1992.<br />

Pre<strong>da</strong>tory shell drilling by two species<br />

of Austroginella (Gastropo<strong>da</strong>:<br />

Marginelli<strong>da</strong>e). Journal of Zoology, 228:<br />

317-328.<br />

SHIMEK, R.L., 1984. The diets of Alaskan<br />

Neptunea. Veliger, 26: 274-281.<br />

TAN, K.S., & B. MORTON, 1998. The<br />

ecology of Engina armillata<br />

(Gastropo<strong>da</strong>: Buccini<strong>da</strong>e) in the Cape<br />

d’Aguilar Marine Reserve, Hong<br />

Kong, with particular reference to its<br />

preferred prey (Polychaeta:<br />

Serpuli<strong>da</strong>e). Journal of Zoology,<br />

London, 244: 391-403.<br />

TAYLOR, J.D., 1978a. Habitats and diets<br />

of pre<strong>da</strong>tory gastropods at Addu<br />

Atoll, Maldives. Journal of<br />

Experimental Marine Biology and<br />

Ecology, 31: 83-103.<br />

TAYLOR, J.D., 1978b. The diet of<br />

Buccinum un<strong>da</strong>tum and Neptunea antiqua<br />

(Gastropo<strong>da</strong>: Buccini<strong>da</strong>e). Journal<br />

of Conchology. 29: 309-318.<br />

TAYLOR, J.D., 1980. Diets and habitats of<br />

shallow water pre<strong>da</strong>tory gastropods<br />

around Tolo Channel, Hong Kong. In:<br />

MORTON, B. (Ed.). The Malacofauna of<br />

Hong Kong and Southern China.<br />

Proceedings of the First International<br />

Workshop on the Malacofauna of Hong<br />

Kong and Southern China: Hong Kong<br />

1977, pp. 163-180. Hong Kong<br />

University Press, Hong Kong.<br />

TAYLOR, J.D., & A. LEWIS, 1995. Diet<br />

and radular morphology of Peristernia<br />

and Latirolagena (Gastropo<strong>da</strong>:<br />

Fasciolarii<strong>da</strong>e) from Indo-Pacific coral<br />

reefs. Journal of Natural History, 29:<br />

1143-1154.<br />

TAYLOR, J.D., & B. MORTON, 1996. The<br />

diets of pre<strong>da</strong>tory gastropods in the


MORTON & HARPER: DRILLING PREDATION UPON DITRUPA ARIETINA 165<br />

Cape d’Aguilar Marine Reserve,<br />

Hong Kong. Asian Marine Biology, 13:<br />

141-165.<br />

TAYLOR, J.D., N.J. MORRIS & C.N. TAY-<br />

LOR, 1980. Food specialization and<br />

the evolution of pre<strong>da</strong>tory marine<br />

gastropods. Palaeontology, 23: 375-409.<br />

THOMAS, R.D.K., 1976. Gastropod pre<strong>da</strong>tion<br />

on sympatric Neogene species<br />

of Glycymeris glycymeris (Bivalvia)<br />

from the Eastern United States.<br />

Journal of Paleontology, 50: 488-499.<br />

TONG, L.K.Y., 1986. The feeding ecology<br />

of Thais clavigera and Morula musiva<br />

(Gastropo<strong>da</strong>: Murici<strong>da</strong>e) in Hong<br />

Kong. Asian Marine Biology, 3: 163-<br />

178.<br />

VERSTRAETEN, J., & F. NOLF, 2004.<br />

Natica a<strong>da</strong>nsoni de Blainville, 1825 and<br />

Natica prietoi Hi<strong>da</strong>lgo, 1873: two similar<br />

but yet different species<br />

(Gastropo<strong>da</strong>: Naticoidea: Natici<strong>da</strong>e).<br />

Neptunea, 3: 13-28.<br />

WITMAN, J.D., & R.A. COOPER, 1983.<br />

Disturbance and contrasting patterns<br />

of population structure in the brachiopod<br />

Terebratulina septentrionalis<br />

(Couthouy) from two subti<strong>da</strong>l habitats.<br />

Journal of Experimental Marine<br />

Biology and Ecology, 73: 57-79.<br />

YOUNG, D.K., 1969. Oka<strong>da</strong>ia elegans, a<br />

tube-boring nudibranch mollusc from<br />

the Central and West Pacific.<br />

American Zoologist, 9: 903-907.


AÇOREANA, Suplemento 6, Setembro 2009: 167-182<br />

THE PYCNOGONIDS (ARTHROPODA: PYCNOGONIDA) OF SÃO MIGUEL,<br />

AZORES, WITH DESCRIPTION OF A NEW SPECIES OF ANOPLODACTYLUS<br />

WILSON, 1878 (PHOXICHILIDIIDAE)<br />

Roger N. Bamber 1 & Ana Cristina Costa 2<br />

1<br />

The Natural History Museum, Cromwell Road, London SW7 5BD, U.K.<br />

e-mail: roger.bamber@artoo.co.uk<br />

2<br />

CIBIO-Pólo <strong>Açores</strong>, Department of Biology, University of the Azores, 9501-801 Ponta Delga<strong>da</strong>, São Miguel, Azores, Portugal<br />

ABSTRACT<br />

During the Third International Workshop of Malacology and Marine Biology in São<br />

Miguel, Azores, in July 2006, sampling of algae, and of the littoral and sublittoral benthos<br />

was undertaken in order to characterize the smaller marine arthropod fauna of this region,<br />

including pycnogonids. In the event, 50 specimens of Pycnogoni<strong>da</strong>, representing six<br />

species and including a new species of Anoplo<strong>da</strong>ctylus, were collected. In addition, previous<br />

pycnogonid material collected around São Miguel in 1996 and 1997 was analyzed,<br />

from 112 samples of which a further 3705 pycnogonid specimens were identified, representing<br />

eight species, three additional to the above six. All of this material is described<br />

below. The zoogeography of the fifteen species now recorded from the Azores is analyzed,<br />

and the likely origins of the Azorean pycnogonid fauna are discussed.<br />

RESUMO<br />

Durante o 3º Workshop Internacional de Malacologia e Biologia Marinha em São<br />

Miguel, <strong>Açores</strong>, em Julho de 2006, realizaram-se amostragens de algas e o bentos do litoral<br />

e sublitoral com vista a caracterizar a fauna de artrópodes marinhos de reduzi<strong>da</strong>s<br />

dimensões <strong>da</strong> região, incluindo picnogonídeos. Na ocasião foram recolhi<strong>dos</strong> 50<br />

exemplares de Pycnogoni<strong>da</strong>, representando seis espécies e incluindo uma nova espécie de<br />

Anoplo<strong>da</strong>ctylus. Para além disso, analisou-se material de picnogonídeos, previamente<br />

recolhido em São Miguel em 1996 e 1997, de 112 amostragens <strong>da</strong>s quais mais 3705<br />

espécimes de picnogonídeos foram identifica<strong>dos</strong>, representando oito espécies, três <strong>da</strong>s<br />

quais para além <strong>da</strong>s seis atrás referi<strong>da</strong>s. Todo este material é descrito em segui<strong>da</strong>.<br />

Analisa-se a zoogeografia <strong>da</strong>s quinze espécies agora regista<strong>da</strong>s para os <strong>Açores</strong> e discutese<br />

a provável origem <strong>da</strong> fauna de picnogonídeos Açorianos.<br />

INTRODUCTION<br />

Pycnogonids are a group of the arthropods<br />

with minimal dispersive ability<br />

(Bamber, 1998); the larvae are not planktonic,<br />

and there are only limited examples<br />

of adults swimming, and then not as a<br />

directional migratory movement (Arnaud<br />

& Bamber, 1987). A few genera, such as<br />

the deep-water (Bathypallenopsis) and the<br />

generally shallow-water Anoplo<strong>da</strong>ctylus,<br />

are known to live upon medusae, and<br />

thus obtain passive dispersion in the<br />

plankton (Lebour, 1916; Arnaud &<br />

Bamber, 1987; Bamber, 2002). Some<br />

species are known to have spread in fouling<br />

communities on ship’s hulls (Krapp &<br />

Sconfietti, 1983; Bamber, 1985).<br />

The Azores are a group of islands<br />

somewhat isolated in the north-east<br />

Atlantic, lying adjacent to the Mid-<br />

Atlantic Ridge some 1600 km west of<br />

Portugal and 1730 km southeast of<br />

Newfoundland. The main surface water<br />

currents reaching the archipelago bring<br />

waters from two directions: the Azores<br />

drift, a diffuse southerly arm of the Gulf<br />

Stream breaking off from the North


168 AÇOREANA<br />

2009, Sup. 6: 167-182<br />

Atlantic Drift supplies water from the<br />

Americas, while the somewhat less-significant<br />

western eddies of the Canary<br />

Current bring waters from Spain and<br />

North Africa; below these, the midwater<br />

current brings warm, hyperhaline water<br />

from the Mediterranean outflow (Morton<br />

et al., 1998; Gofas, 1990). For the passively-dispersing<br />

Pycnogoni<strong>da</strong>, therefore, it is<br />

of some interest to determine the suite of<br />

species which has colonized this archipelago,<br />

and their provenance.<br />

The only previous specific study of<br />

the Pycnogoni<strong>da</strong> of the Azores was that<br />

reported by Arnaud (1974), who recorded<br />

ten species from shallow waters, including<br />

the discovery of the currently<br />

Azorean-endemic Achelia anomala, as well<br />

as four species from waters of >500 m<br />

depth. Other previous records of pycnogonids<br />

in the Azores were noted by<br />

Loman (1912), Bouvier (1917), Arnaud<br />

(1978), Stock (1971; 1990) and Bamber<br />

(2002), although a number of these were<br />

from abyssal depths. Munilla & Sanchez<br />

(1988) reported on pycnogonids from the<br />

Canary Islands.<br />

The twelve species recorded previously<br />

in litt. from the Azores, from depths<br />

shallower than 100 m, are:<br />

Family Ammothei<strong>da</strong>e:<br />

Achelia anomala Arnaud, 1974 (currently<br />

endemic);<br />

A. echinata Hodge, 1864;<br />

Tanystylum orbiculare Wilson, 1878.<br />

Family Phoxichilidii<strong>da</strong>e:<br />

Anoplo<strong>da</strong>ctylus angulatus (Dohrn 1881);<br />

A. maritimus Hodgson, 1915;<br />

A. petiolatus (Kroyer, 1844);<br />

A. pygmaeus (Hodge, 1864).<br />

Family Callipalleni<strong>da</strong>e:<br />

Callipallene emaciata (Dohrn, 1881)<br />

Family Endei<strong>da</strong>e:<br />

Endeis spinosa (Montagu, 1808);<br />

E. straughani Clark, 1970 (see Stock,<br />

1990; an Australian species, possibly<br />

a misidentification, or an<br />

immigrant via ships’-hull-fouling,<br />

see Bamber, 1979 [as E. picta])<br />

Family Rhynchothoraci<strong>da</strong>e:<br />

Rhynchothorax philopsammum Hedgpeth,<br />

1951;<br />

R. monnioti Arnaud 1974.<br />

No members of the speciose family<br />

Nymphoni<strong>da</strong>e have yet been recorded.<br />

During the Third International<br />

Workshop of Malacology and Marine<br />

Biology at Vila Franca do Campo, on the<br />

island of São Miguel, Azores, in July 2006,<br />

sampling of the littoral and sublittoral<br />

benthos around São Miguel was undertaken<br />

in order to characterize the smaller<br />

marine arthropod fauna of this region,<br />

including pycnogonids. In the event, 50<br />

specimens representing six species, one<br />

new to science, were collected. In addition,<br />

a previous collection from around<br />

the island was made available, from 112<br />

samples from which a further 3705 pycnogonid<br />

specimens were identified, representing<br />

eight species, three additional<br />

to the above six. All of this material is<br />

described below.<br />

MATERIAL AND METHODS<br />

The present material comes from two<br />

sources. During the Workshop at Vila<br />

Franca do Campo in July 2006, a number<br />

of littoral and infralittoral habitats on the<br />

island of São Miguel were sampled for<br />

pycnogonids, including crevice habitats,<br />

macroalgae and soft sediments. The principal<br />

sampling areas were the littoral sediments,<br />

rocks and algae below the Clube<br />

Naval building (the old Vila Franca do<br />

Campo abattoir); the sediments and algae<br />

within the flooded crater of the Ilhéu de<br />

Vila Franca; and the soft sediments off<br />

Vila Franca do Campo (ca N37° 43’ W<br />

25°25’), from 12 to 200 m depth. Offshore<br />

sediments were sampled using a 0.025 m 2


BAMBER & COSTA: PYCNOGONIDS FROM SÃO MIGUEL 169<br />

van Veen grab and various dredges. All<br />

samples were washed through a 0.5 mm<br />

mesh sieve, and specimens sorted alive.<br />

Some of these specimens were fixed in<br />

absolute ethanol to allow DNA analysis.<br />

Extensive material collected in 1996<br />

and 1997, from infralittoral rocky-substratum<br />

sites around São Miguel, was also<br />

analysed in detail. Replicate samples of<br />

algae (Stypocaulon scoparia, Halopteris filicina<br />

and Zonaria tournefortii) were collected<br />

by SCUBA diving at depths from between<br />

5 and 16 m. Details of the sampling and<br />

protocols are given by Costa & Ávila<br />

(2001). The sampling sites, anti-clockwise<br />

around the Island from the north-west,<br />

were Mosteiros, Ponta <strong>da</strong> Ferraria, Santa<br />

Clara , Pesqueiro, Emissário, Sinaga,<br />

Atalha<strong>da</strong>, Ribeira <strong>da</strong> Praia, Caloura, Porto<br />

de Vila Franca do Campo, Ilhéu de Vila<br />

Franca, Ribeira Quente, Faial <strong>da</strong> Terra,<br />

Nordeste, Porto Formoso, Ladeira de<br />

Velha, Ribeirinha, Lactoaçoreana, Cofaco<br />

and São Vicente. These sites variously<br />

represented exposed and sheltered<br />

shores, undisturbed, naturally disturbed<br />

(near shallow-water vent sites or stream<br />

mouths) and polluted shores.<br />

Voucher and type-material has been<br />

lodged in the collections of The Natural<br />

History Museum, London (NHM). The<br />

higher taxonomy is based on Arnaud &<br />

Bamber (1987). All measurements are<br />

axial, measured dorsally for the trunk<br />

and proboscis (trunk length being from<br />

the anterior margin of the cephalon to the<br />

posterior margin of the fourth lateral<br />

processes), laterally for oviger and legs.<br />

SYSTEMATICS<br />

Family Ammothei<strong>da</strong>e Dohrn, 1881<br />

Achelia echinata Hodge, 1864<br />

Figure 1A<br />

Material: 1 male, 2 females, 1 subadult,<br />

WVF011, northeastern side of Ilhéu de<br />

Vila Franca do Campo, 16 m, scuba dive<br />

collection by Gonçalo Calado, José Pedro<br />

Borges, Joana Xavier, Paola Rachello,<br />

Patrícia Madeira, 20 July 2006. 3 males, 4<br />

females, 2 subadults, WVF040, off Amora,<br />

Ponta Garça, São Miguel, Azores, N37°<br />

42’ 720” W25° 21’ 554”, 37.8 m depth,<br />

small dredge sample, 26 July 2006, coll.<br />

António de Frias Martins & Jerry<br />

Harasewych. 1 female, 1 subadult, littoral<br />

rock scrape, Vila Franca do Campo<br />

marina, 19 July 2006, coll. Kathe Jensen. 1<br />

male with eggs, Isl. 24.5, mid-lagoon<br />

algae, within the flooded crater of the<br />

Ilhéu de Vila Franca, 24 July 2006, coll. A.<br />

Salvador, R. Robbins & R.B.<br />

12 specimens, Mosteiros, 8 November<br />

1996; 139 specimens, Mosteiros, 17 June<br />

1997; 41 specimens, Ponta <strong>da</strong> Ferraria, 17<br />

June 1997; 53 specimens, Santa Clara, 7<br />

November 1996; 201 specimens, Santa<br />

Clara, 12 June 1997; 20 specimens,<br />

Pesqueiro, 7 November 1997; 21<br />

specimens, Emissário, 2 November 1996;<br />

237 specimens, Emissário, 12 June 1997;<br />

37 specimens, Sinaga, 30 May 1997; 1<br />

specimen, Atalha<strong>da</strong>, 25 October 1996; 246<br />

specimens, Atalha<strong>da</strong>, 30 May 1997; 32<br />

specimens, Ribeira <strong>da</strong> Praia, 25 October<br />

1996; 70 specimens, Ribeira <strong>da</strong> Praia, 16<br />

June 1997; 61 specimens, Caloura, 14<br />

October 1996; 119 specimens, Caloura, 26<br />

June 1997; 48 specimens, Porto de Vila<br />

Franca do Campo, 9 May 1997; 8<br />

specimens, Ilhéu de Vila Franca do<br />

Campo, 24 October 1996; 47 specimens,<br />

Ilhéu de Vila Franca do Campo, 16 June<br />

1997; 44 specimens, Ribeira Quente, 18<br />

June 1997; 5 specimens, Faial <strong>da</strong> Terra, 17<br />

October 1996; 59 specimens, Faial <strong>da</strong><br />

Terra, 30 May 1997; 19 specimens,<br />

Nordeste, 21 November 1966; 143<br />

specimens, Nordeste, 2 May 1997; 36<br />

specimens, Porto Formoso, 30 October<br />

1996; 140 specimens, Porto Formoso, 19<br />

June 1997; 13 specimens, Ladeira <strong>da</strong><br />

Velha, 19 June 1997; 16 specimens,<br />

Ribeirinha, 8 October 1996; 140


170 AÇOREANA<br />

2009, Sup. 6: 167-182<br />

specimens, Ribeirinha, 25 June 1997; 10<br />

specimens, Lactoaçoreana, 14 October<br />

1996; 76 specimens, Lactoaçoreana, 25<br />

June 1997; 5 specimens, Cofaco, 25 June<br />

1997; 13 specimens, São Vicente, 7<br />

October 1996; 18 specimens, São Vicente,<br />

6 May 1997; all coll. João Brum & A.C.C.<br />

Remarks: with a total of 2146 specimens<br />

from 110 samples listed above, Achelia<br />

echinata is easily the commonest shallowwater<br />

pycnogonid in the Azores (occurring,<br />

for example, at every sampling site<br />

in 1996 and 1997). In the light of the<br />

potential for cryptic sibling species in this<br />

taxon, specimens collected in alcohol<br />

were analysed for their 16s DNA to compare<br />

with specimens from England which<br />

had already been analysed as part of a<br />

larger project (Bamber et al., in prep.) and<br />

showed 100% agreement. All the<br />

Azorean material was collected in association<br />

with algae, on which, inter alia, this<br />

species is known to feed (Bamber &<br />

Davis, 1982).<br />

Ammothella longipes (Hodge, 1864)<br />

Figure 1B<br />

Ammothoa longipes Hodge, 1864<br />

Achelia longipes sens. auctt.;<br />

Achelia magnirostris (Dohrn, 1881)<br />

Material: 1 specimen, Atalha<strong>da</strong>, 30 May<br />

1997; 1 specimen, Ribeira <strong>da</strong> Praia, 16<br />

June 1997; 16 specimens, Porto de Vila<br />

Franca do Campo, 9 May 1997; 6<br />

specimens, Ribeira Quente, 18 June 1997;<br />

31 specimens, Lactoaçoreana, 25 June<br />

1997; all coll. João Brum & A.C.C.<br />

Remarks: This species has been recorded<br />

from the Atlantic coasts of Europe<br />

(England being the type-locality), the<br />

Mediterranean and North Africa, as well<br />

as the Canaries (Sanchez & Munilla,<br />

1989), but had not been recorded previously<br />

from the Azores. It is readily distinguished<br />

from sympatric Achelia echinata<br />

by the fleshy, glabrous dorsodistal<br />

tubercles on the lateral processes, the lack<br />

of spinose tubercles on the lateral<br />

processes and coxae, and in having nine<br />

palp articles (A. echinata having eight).<br />

Family Phoxichilidii<strong>da</strong>e Sars, 1891<br />

Anoplo<strong>da</strong>ctylus amora sp. nov.<br />

Figure 2.<br />

Material: 1 male, holotype<br />

(NHM.2007.416), 1 male, 1 subadult<br />

female, paratypes (NHM.2007.417-418),<br />

VWF040, off Amora, Ponta Garça, São<br />

Miguel, Azores, N37° 42’ 720” W25° 21’<br />

554”, 37.8 m depth, small dredge sample,<br />

26 July 2006, coll. António de Frias<br />

Martins & Jerry Harasewych; 1 subadult<br />

male, Vila Franca do Campo marina, São<br />

Miguel, Azores, littoral rock scraping, 19<br />

July 2006, coll. Kathe Jensen.<br />

2 males, paratypes (NHM.2007.419-<br />

420), Caloura, 26 June 1997; 1 male,<br />

paratype (NHM.2007.421), Ilhéu de Vila<br />

Franca do Campo, 16 June 1997; 1<br />

subadult male, 1 female, paratypes<br />

(NHM.2007.422-423), Faial <strong>da</strong> Terra, 30<br />

May 1997; all coll. João Brum & A.C.C.<br />

Description of male: habitus typical of the A.<br />

petiolatus form, trunk (Figure 2A, B) almost<br />

glabrous, with segment articulations<br />

between cephalon, trunk segment two and<br />

trunk segment three. Cephalon overhanging<br />

proboscis base to half proboscis length,<br />

lateral anterior margin with slight shoulders<br />

bearing short seta; dome-shaped ocular<br />

tubercle slightly taller than wide, without<br />

distal tubercle, with four pigmented eyes<br />

and laterodistal sensory pit; oviger attachment<br />

on mid-ventral surface of first lateral<br />

process. Lateral processes shorter than segment<br />

width, separated by less than their<br />

own diameter, with simple anterodistal seta<br />

and very small dorsodistal tubercle (little<br />

more than a swelling). Abdomen simple,<br />

sub-clavate, angled upward at about 45º,<br />

exceeding distal edge of coxa 1 of leg 4, sub-


BAMBER & COSTA: PYCNOGONIDS FROM SÃO MIGUEL 171<br />

FIGURE 1. A, Achelia echinata, entire, dorsal (modified after Sars, 1893); B, Ammothoella longipes,<br />

entire, dorsal.


172 AÇOREANA<br />

2009, Sup. 6: 167-182<br />

distally bearing pair of lateroventral spines<br />

and single mid-dorsal spine.<br />

Proboscis stout, parallel-sided, one-third<br />

as long as trunk.<br />

Chelifore (Figure 2C) scape of one article,<br />

slender, with sparse dorsal and distal<br />

setae; chela compact, fingers just shorter<br />

than palm, palm and moveable finger<br />

setose, cutting edges naked. Palp absent.<br />

Oviger (Figure 2D) of six articles, proximal<br />

article short, compact; article 2 (O2)<br />

three times as long as wide, with single dor-<br />

FIGURE 2. Anoplo<strong>da</strong>ctylus amora sp. nov., male holotype, A, lateral and B, dorsal; C, right chelifore; D, left<br />

oviger; E, third left leg; F, detail of distal articles of third leg; G, coxa 2 and femur of male A. petiolatus.<br />

Scale line = 1 mm for A and B, 0.4 mm for C and D, 0.8 mm for E, 0.3 mm for F, 0.5 mm for G.


BAMBER & COSTA: PYCNOGONIDS FROM SÃO MIGUEL 173<br />

sal and ventral setae; O3 longest, 2.3 times<br />

length of O2, slender, with sparse dorsal and<br />

ventral setae; O4 just shorter than O2,<br />

curved, with dorsodistal setae; O5 0.6<br />

times as long as O4, with numerous setae<br />

pointing proximally; O6 compact, acornshaped,<br />

half length of O5, with outer and<br />

ventral setae pointing proximally.<br />

Third leg (Figure 2E) elongate, not<br />

slender. Coxa 1 compact, with sparse distal<br />

setae, without dorsal tubercle; coxa 2<br />

almost three-times as long as coxa 1, 2.5<br />

times as long as wide, with pronounced<br />

ventrodistal genital spur; coxa 3 just more<br />

than half length of coxa 2. Femur stout,<br />

less than four times as long as wide, twice<br />

as long as coxa 2, setose, without conspicuous<br />

dorsodistal spur; cement-gland tube<br />

externally very short, arising at 0.6 the<br />

length of the femur, extending subcutaneously<br />

half way to proximal end of<br />

femur. Tibia 1 shorter than femur (0.9<br />

times femur length), setose as figured;<br />

tibia 2 five times as long as wide, as long<br />

as femur, more densely setose, longest<br />

dorsodistal seta not on a spur. Tarsus<br />

small, triangular, with numerous ventral<br />

and single dorsal setae. Propodus (Figure<br />

2F) with distinct heel, with two large<br />

proximal and five slender distal heel<br />

spines; sole with row of seven simple submarginal<br />

setae in distal two-thirds, seven<br />

short, recurved marginal spines and distal<br />

lamina for 30% of sole length. Main<br />

claw two-thirds as long as propodus, auxiliary<br />

claws small, lateral, slender, 0.15<br />

times length of main claw.<br />

Description of female: generally as male,<br />

but ovigerous legs absent, femur swollen;<br />

no ventral tubercles on proboscis.<br />

Measurements of holotype male (mm). –<br />

Trunk length: 1.91; trunk segment 2<br />

length: 0.29; width across 2nd lateral<br />

processes: 0.99; abdomen length: 0.42;<br />

proboscis length: 0.53.<br />

Lengths of oviger articles 1 to 6<br />

respectively: 0.13; 0.31; 0.73; 0.27; 0.17;<br />

0.09.<br />

Fourth leg, lengths of coxa 1: 0.24;<br />

coxa 2: 0.69; coxa 3: 0.38; femur: 1.40<br />

(width 0.36); tibia 1: 1.23; tibia 2: 1.40<br />

(width 0.28); tarsus: 0.12; propodus: 0.55;<br />

main claw: 0.37; auxiliary claw: 0.06.<br />

Etymology: named after the location on<br />

São Miguel off which the type-locality<br />

lies.<br />

Remarks: there are two previously<br />

described species of Anoplo<strong>da</strong>ctylus which<br />

have a subcutaneous proximal extension<br />

of the cement gland tube, viz. A. erectus<br />

Cole, 1904 from the Pacific (the Americas<br />

from Chile to British Columbia, Hawaii,<br />

Polynesia, Japan, Korea and Hong Kong)<br />

at depths of 0 to 90 m, and A. amoybios<br />

Bamber, 2004 from Atlantic Equatorial<br />

Africa (Gabon and Equatorial Guinea) at<br />

depths of 36 to 63 m (see Stock, 1955;<br />

Müller, 1990; Bamber, 2004). Both of these<br />

species also share the characters of a sixarticled<br />

ovigerous leg, the ocular tubercle<br />

overhanging the proboscis, small auxiliary<br />

claws and a propo<strong>da</strong>l lamina. A.<br />

amoybios, the only other Atlantic species,<br />

is immediately distinct in having dorsodistal<br />

tubercles on coxa 1 of all legs. A.<br />

erectus normally has conspicuous dorsodistal<br />

tubercles on the lateral processes,<br />

unlike the present species. In addition, A.<br />

erectus is conspicuously more slender<br />

than A. amora sp. nov, femur and tibia 2<br />

length:width ratios being 5.3 and 7.7<br />

respectively (3.9 and 5 respectively in A.<br />

amora), and the width across trunk segment<br />

2 is four times the length of the segment<br />

(


174 AÇOREANA<br />

2009, Sup. 6: 167-182<br />

(Krøyer, 1844) from the Azores, at depths<br />

between 1 and 30 m; that species is readily<br />

distinguished from A. amora by its<br />

cement gland configuration (without subcutaneous<br />

extension, see Figure 2G).<br />

Anoplo<strong>da</strong>ctylus angulatus (Dohrn, 1881)<br />

Figure 3A to C<br />

Material: 1 female, WVF011, northeastern<br />

side of Ilhéu de Vila Franca do Campo, 16<br />

m, scuba dive collection by Gonçalo<br />

Calado, José Pedro Borges, Joana Xavier,<br />

Paola Rachello, Patrícia Madeira, 20 July<br />

2006.1 male, 3 females, 1 subadult, Isl.<br />

24.4, attached littoral algae, south wall<br />

within the flooded crater of the Ilhéu de<br />

Vila Franca, 24 July 2006, coll. A.<br />

Salvador, R. Robbins & R.B.; 2 males with<br />

eggs, 1 male, 4 females, 2 subadults, Isl.<br />

24.5, mid-lagoon algae, within the flooded<br />

crater of the Ilhéu de Vila Franca, 24<br />

July 2006, coll. A. Salvador, R. Robbins &<br />

R.B.<br />

1 specimen, Mosteiros, 8 November<br />

1996; 2 specimens, Mosteiros, 17 June<br />

1997; 1 specimen, Santa Clara, 7<br />

November 1996 ; 3 specimens, Santa<br />

Clara, 12 June 1997; 12 specimens,<br />

Pesqueiro, 7 November 1997; 2<br />

specimens, Emissário, 2 November 1996;<br />

24 specimens, Emissário, 12 June 1997; 4<br />

specimens, Sinaga, 30 May 1997; 25<br />

specimens, Atalha<strong>da</strong>, 30 May 1997; 1<br />

specimen, Ribeira <strong>da</strong> Praia, 25 October<br />

1996; 5 specimens, Ribeira <strong>da</strong> Praia, 16<br />

June 1997; 7 specimens, Caloura, 26 June<br />

1997; 6 specimens, Porto de Vila Franca<br />

do Campo, 9 May 1997; 2 specimens,<br />

Ribeira Quente, 18 June 1997; 10<br />

specimens, Nordeste, 2 May 1997; 1<br />

specimen, Porto Formoso, 30 October<br />

1996; 3 specimens, Porto Formoso, 19 June<br />

1997; 4 specimens, Ladeira <strong>da</strong> Velha, 19<br />

June 1997; 10 specimens, Ribeirinha, 25<br />

June 1997; 1 specimen, Cofaco, 25 June<br />

1997;2 specimens, São Vicente, 6 May<br />

1997; all coll. João Brum & A.C.C.<br />

Remarks: the commonest species of<br />

Anoplo<strong>da</strong>ctylus in the Azores, A. angulatus<br />

is also known from the Mediterranean,<br />

the Atlantic coasts of Northern Europe<br />

and North Africa (Morocco), as well as<br />

the Canary Islands. It is an algal-associated<br />

species without a conspicuous overhang<br />

of the anterior of the cephalon, and<br />

distinguished from sympatric specimens<br />

of A. virescens (also occurring in algae) by<br />

the marked angular distal corners of the<br />

proboscis (Figure 3B).<br />

Anoplo<strong>da</strong>ctylus maritimus Hodgson, 1915<br />

Figure 3D<br />

Incl. A. parvus Giltay, 1934; non-A. parvum<br />

(Hilton, 1942) = A. hokkaidoensis (Utinomi,<br />

1954).<br />

Material: 1 specimen, Emissário, 12 June<br />

1997; 2 specimens, Caloura, 26 June 1997;<br />

15 specimens, Porto de Vila Franca do<br />

Campo, 9 May 1997; 1 specimen, Ilhéu de<br />

Vila Franca do Campo, 24 October 1996; 2<br />

specimens, Ilhéu de Vila Franca do<br />

Campo, 16 June 1997; 10 specimens,<br />

Lactoaçoreana, 25 June 1997; all coll. João<br />

Brum & A.C.C.<br />

Remarks: Anoplo<strong>da</strong>ctylus maritimus has<br />

been recorded previously throughout<br />

Macaronesia, other than which it is a<br />

species of the Atlantic coast of the<br />

Americas (see discussion below) but has<br />

not been recorded from the Atlantic<br />

coasts of mainland Europe, North Africa<br />

or the Mediterranean.<br />

Anoplo<strong>da</strong>ctylus pygmaeus (Hodge, 1864)<br />

Figure 3E, F<br />

Material: 1 female, Isl. 24.4, attached lowlittoral<br />

algae, south wall within the flooded<br />

crater of the Ilhéu de Vila Franca;1<br />

female, Isl. 24.5, mid-lagoon algae, within<br />

the flooded crater of the Ilhéu de Vila<br />

Franca; both 24 July 2006, coll. A.<br />

Salvador, R. Robbins & R.B.


BAMBER & COSTA: PYCNOGONIDS FROM SÃO MIGUEL 175<br />

FIGURE 3. A to C, Anoplo<strong>da</strong>ctylus angulatus: A, entire, dorsal; B, proboscis, ventral; C, distal leg articles<br />

(lam = lamina); D, A. maritimus, distal leg articles; E and F, A. pygmaeus: E, body, lateral; F, third<br />

leg, entire; G to H, A. virescens: G, proboscis, ventral; H, distal leg articles.


176 AÇOREANA<br />

2009, Sup. 6: 167-182<br />

1 specimen, Pesqueiro, 7 November<br />

1997; 4 specimens, Porto de Vila Franca<br />

do Campo, 9 May 1997; 1 specimen, Faial<br />

<strong>da</strong> Terra, 30 May 1997; 1 specimen,<br />

Ribeirinha, 25 June 1997; all coll. João<br />

Brum & A.C.C.<br />

Remarks: Anoplo<strong>da</strong>ctylus pygmaeus is a<br />

small species (as its name suggests), similar<br />

to A. petiolatus but with a less-marked<br />

anterior cephalic overhang and with distinct<br />

distal spines on the dorsodistal<br />

tubercles of the lateral processes; auxiliary<br />

claws are absent. It has been recorded<br />

throughout the North Atlantic and<br />

Mediterranean, including the Canaries<br />

and the Azores, in shallow water (the<br />

record from 3850 m depth on the Cape<br />

Verde Slope by Bamber & Thurston, 1993,<br />

is presumed to be a result of samplinggear<br />

contamination from the fouling community<br />

on the ship’s hull).<br />

Anoplo<strong>da</strong>ctylus virescens (Hodge, 1864)<br />

Figure 3G, H<br />

Material: 1 female, WVF040, off Amora,<br />

Ponta Garça, São Miguel, Azores, N37°<br />

42’ 720” W25° 21’ 554”, 37.8 m depth,<br />

small dredge sample, 26 July 2006, coll.<br />

António de Frias Martins & Jerry<br />

Harasewych.<br />

Remarks: while isolated females of this<br />

genus can be difficult to identify to<br />

species, Anoplo<strong>da</strong>ctylus virescens, with its<br />

trunk segmentation only between somites<br />

1, 2 and 3, its presence of small auxiliary<br />

claws, its lack of propo<strong>da</strong>l lamina, of dorsodistal<br />

lateral-process tubercles, of ventral<br />

proboscis tubercles and of chela teeth,<br />

is only confusable with A. robustus<br />

(Dohrn, 1881), but the latter species has<br />

angulate corners to its proboscis, unlike<br />

the present species. A. virescens is known<br />

from the north-east Atlantic from the<br />

United Kingdom to Morocco and<br />

throughout the Mediterranean. This is the<br />

first record of this species for the Azores.<br />

Family Callipalleni<strong>da</strong>e Hilton, 1942<br />

Callipallene emaciata (Dohrn, 1881)<br />

Figure 4A<br />

Material: 1 male, 3 females, 1 juvenile, Isl.<br />

24.4, attached low-littoral algae, south<br />

wall within the flooded crater of the Ilhéu<br />

de Vila Franca; 5 females, 1 male, Isl. 24.5,<br />

mid-lagoon algae, within the flooded<br />

crater of the Ilhéu de Vila Franca; both 24<br />

July 2006, coll. A. Salvador, R. Robbins &<br />

R.B.<br />

4 specimens, Mosteiros, 8 November<br />

1996; 118 specimens, Mosteiros, 17 June<br />

1997; 12 specimens, Ponta <strong>da</strong> Ferraria, 17<br />

June 1997; 24 specimens, Santa Clara, 7<br />

November 1996; 61 specimens, Santa<br />

Clara, 12 June 1997; 17 specimens,<br />

Pesqueiro, 7 November 1997; 27<br />

specimens, Emissario, 2 November 1996;<br />

179 specimens, Emissario, 12 June 1997;<br />

26 specimens, Sinaga, 30 May 1997; 1<br />

specimen, Atalha<strong>da</strong>, 25 October 1996; 222<br />

specimens, Atalha<strong>da</strong>, 30 May 1997; 35<br />

specimens, Ribeira <strong>da</strong> Praia, 25 October<br />

1996; 29 specimens, Ribeira <strong>da</strong> Praia, 16<br />

June 1997; 18 specimens, Caloura, 14<br />

October 1996; 133 specimens, Caloura, 26<br />

June 1997; 24 specimens, Porto de Vila<br />

Franca do Campo, 9 May 1997; 29<br />

specimens, Ilhéu de Vila Franca do<br />

Campo, 16 June 1997; 13 specimens,<br />

Ribeira Quente, 18 June 1997; 4<br />

specimens, Faial <strong>da</strong> Terra, 17 October<br />

1996; 21 specimens, Faial <strong>da</strong> Terra, 30 May<br />

1997; 4 specimens, Nordeste, 21<br />

November 1966; 51 specimens, Nordeste,<br />

2 May 1997; 25 specimens, Porto Formoso,<br />

30 October 1996; 69 specimens, Porto<br />

Formoso, 19 June 1997; 5 specimens,<br />

Ladeira <strong>da</strong> Velha, 19 June 1997; 29<br />

specimens, Ribeirinha, 8 October 1996; 67<br />

specimens, Ribeirinha, 25 June 1997; 14<br />

specimens, Lactoaçoreana, 14 October<br />

1996; 26 specimens, Lactoaçoreana, 25<br />

June 1997; 4 specimens, Cofaco, 25 June


BAMBER & COSTA: PYCNOGONIDS FROM SÃO MIGUEL 177<br />

1997; 17 specimens, São Vicente, 7<br />

October 1996; 1 specimen, São Vicente, 6<br />

May 1997; all coll. João Brum & A.C.C.<br />

Remarks: the European shallow-water<br />

species of the genus Callipallene are small,<br />

cryptic species normally associated with<br />

epizoan turfs of bryozoans and hydroids.<br />

The distinction of these taxa was analysed<br />

by Stock (1952), since when his subspecies<br />

have been raised to full specific rank (C.<br />

brevirostris (Johnston, 1837), C. emaciata, C.<br />

FIGURE 4. A to B, Callipallene emaciata: A, entire, dorsal; B, distal; leg articles; C, Endeis spinosa,<br />

entire, dorsal (after Bamber, 1983).


178 AÇOREANA<br />

2009, Sup. 6: 167-182<br />

tiberi (Dohrn, 1881), C. phantoma (Dohrn,<br />

1881)). While C. brevirostris is the commonest<br />

species on the Atlantic coasts of<br />

North Europe, the present species is the<br />

only Callipallene recorded from the shallow<br />

waters of the Azores (the deeperwater<br />

C. producta Sars, 1888 has been<br />

recorded off the Azores (Bouvier, 1917;<br />

Arnaud, 1974) at depths >800 m), and is<br />

more commonly associated with algae<br />

than are the other species listed above.<br />

All the Azorean specimens were collected<br />

from algae, the species being the second<br />

commonest recorded (occurring, for<br />

example, at every sampling site in 1996<br />

and 1997).<br />

Family Endei<strong>da</strong>e Norman, 1908<br />

Endeis spinosa (Montagu, 1808)<br />

Figure 4B<br />

Material: 3 specimens, Mosteiros, 8<br />

November 1996; 3 specimens, Santa<br />

Clara, 12 June 1997; 1 specimen, Sinaga,<br />

30 May 1997; 5 specimens, Atalha<strong>da</strong>, 30<br />

May 1997; 9 specimens, Ribeira <strong>da</strong> Praia,<br />

16 June 1997; 1 specimen, Caloura, 14<br />

October 1996; 4 specimens, Caloura, 26<br />

June 1997; 1 specimen, Porto de Vila<br />

Franca do Campo, 9 May 1997; 2<br />

specimens, Ilhéu de Vila Franca do<br />

Campo, 16 June 1997; 1 specimen, Ribeira<br />

Quente, 18 June 1997; 2 specimens, Faial<br />

<strong>da</strong> Terra, 30 May 1997; 1 specimen,<br />

Nordeste, 2 May 1997; 2 specimens, Porto<br />

Formoso, 19 June 1997; 1 specimen,<br />

Lactoaçoreana, 14 October 1996; 1<br />

specimen, Lactoaçoreana, 25 June 1997; 1<br />

specimen, São Vicente, 6 May 1997; all<br />

coll. João Brum & A.C.C.<br />

Remarks: a widespread North Atlantic<br />

species, where its only native congener is<br />

Endeis charyb<strong>da</strong>ea (Dohrn, 1881) on<br />

European coasts. Stock’s (1990) record of<br />

E. meridionalis (Böhm, 1879) from Cape<br />

Verde is highly suspect. E. mollis<br />

(Carpenter, 1904) may be a Lessepsian<br />

immigrant to the Mediterranean. While<br />

the larval biology of this species is<br />

unknown, there is evidence of its waterborne<br />

transport, perhaps by association<br />

with hydromedusae.<br />

DISCUSSION<br />

There are now fifteen species of shallow-water<br />

pycnogonids recorded from<br />

the Azores: Ammothoella longipes,<br />

Anoplo<strong>da</strong>ctylus virescens and A. amora sp.<br />

nov. are newly recorded for the islands<br />

from the present study. Achelia echinata,<br />

Anoplo<strong>da</strong>ctylus angulatus and Callipallene<br />

emaciata are common.<br />

Analysis of the provenance of these<br />

species is somewhat challenged by the<br />

presence of species which have in the past<br />

been misidentified, early records worldwide<br />

depending on what was at the time<br />

a limited literature, and a limited understanding<br />

of specific characters.<br />

For example, Achelia echinata, a species<br />

with a type locality in the United<br />

Kingdom, has been recorded in the literature<br />

not only throughout the north-east<br />

Atlantic and Mediterranean (an accepted<br />

distribution), but also from China and<br />

Japan (as subspecies), from California<br />

and Alaska. Recent molecular work<br />

(Bamber et al. in prep.) has shown not<br />

only that the material from the Azores is<br />

fully conspecific with material from the<br />

United Kingdom, but also that the<br />

Chinese-Japanese “subspecies” is in fact a<br />

distinct species. The North- and East-<br />

Pacific material is highly suspect, and is<br />

not accepted herein.<br />

Rhynchothorax anophtalmus Arnaud,<br />

1972, recorded as such from the Azores by<br />

Arnaud (1974), was synonymized with R.<br />

philopsammum Hedgpeth, 1951 by Arnaud<br />

& Krapp (1990), when comparing specimens<br />

from the Mediterranean and from<br />

California: R. philopsammum is a<br />

Californian species, also recorded from


BAMBER & COSTA: PYCNOGONIDS FROM SÃO MIGUEL 179<br />

the Subantarctic, Pacific Mexico,<br />

Magellanic Chile, a number of Pacific<br />

Islands and Belize. Other than the Pacific<br />

material , the species is recorded (as R.<br />

anophtalmus) from Azores and the<br />

Mediterranean. Rhynchothorax is an interstitial<br />

genus which would not be expected<br />

to be transported by ships’-hull fouling or<br />

by floating weed. With this disparity in<br />

zoogeography, closer examination may<br />

yet show these two taxa to be distinct.<br />

Records of R. monnioti (type-locality the<br />

Azores) from Brazil and Trini<strong>da</strong>d<br />

(Arnaud & Krapp, 1990; Child, 1988) are<br />

dubious, and not accepted herein.<br />

In the light of the above, the species<br />

currently known from the Azores show a<br />

number of zoogeographies:<br />

- two currently endemic species – Achelia<br />

anomala (not recorded since the original<br />

discovery and description:<br />

Arnaud, 1974), and Anoplo<strong>da</strong>ctylus<br />

amora (recorded herein for the first<br />

time); Morton & Britton (2000) point<br />

out that endemism is low in these<br />

islands owing to their “youthfulness”<br />

(earliest emergence about 8 My ago),<br />

and such species are likely to be found<br />

elsewhere in the future;<br />

- two species from Macaronesia and the<br />

Mediterranean - Rhynchothorax anophtalmus<br />

from the Mediterranean; R.<br />

monnioti from the Mediterranean and<br />

the Canary Islands;<br />

- three species from the North-east<br />

Atlantic, the Mediterranean and<br />

North Africa (Morocco) – Ammothoella<br />

longipes, Anoplo<strong>da</strong>ctylus angulatus,<br />

Anoplo<strong>da</strong>ctylus virescens (the first two<br />

also recorded elsewhere in the<br />

Macaronesian system);<br />

- five species found in the Mediterranean<br />

and throughout the<br />

North Atlantic, including the<br />

Americas – Achelia echinata,<br />

Anoplo<strong>da</strong>ctylus petiolatus, Anoplo<strong>da</strong>ctylus<br />

pygmaeus, Callipallene emaciata and<br />

Endeis spinosa: closer study may yet<br />

distinguish cryptic species within<br />

these <strong>da</strong>ta;<br />

- a species found throughout the southern<br />

North Atlantic – Tanystylum orbiculare<br />

(distribution as the previous group 4,<br />

but not including the European<br />

Atlantic coasts);<br />

- a species from Macaronesia and the<br />

West Atlantic only – Anoplo<strong>da</strong>ctylus<br />

maritimus, recorded from Madeira,<br />

Cape Verde Islands, the Canaries and<br />

the Americas from Chesapeake Bay<br />

through the Gulf of Mexico and the<br />

Caribbean to Brazil;<br />

- an immigrant species – Endeis straughani<br />

(if a valid record), a species native<br />

to Australia but since recorded in<br />

ship’s-hull-fouling from Ghana<br />

(Bamber, 1979, as E. picta; Staples,<br />

1982).<br />

Apart from the presently endemic<br />

species and the anthropogenic immigrant,<br />

all but one of these species are also<br />

found in the Mediterranean, and of these<br />

all but the two Rhynchothorax species are<br />

recorded from Morocco. Five of these<br />

twelve species have not been found in the<br />

Western Atlantic. These <strong>da</strong>ta give a<br />

strong indication that the pycnogonid<br />

fauna of the Azores is largely of an easterly<br />

origin, from the Mediterranean, North<br />

Africa or Atlantic Europe.<br />

The notable exception is<br />

Anoplo<strong>da</strong>ctylus maritimus, recorded from<br />

the Azores, the Canary Islands, Cape<br />

Verde and Madeira (see Fage & Stock,<br />

1966; Stock, 1990; Child, 1992), and found<br />

in nine of the samples from 1996 and<br />

1997. This species is also found in the<br />

Americas (see above), including in the<br />

Sargasso Sea, and is commonly recorded<br />

amongst floating Sargassum (Bourdouillon,<br />

1955; Stock, 1954; Stock,<br />

1957; McCloskey, 1973; Stock,1992; Child,<br />

1992); indeed, Hodgson (1915) found it in<br />

floating Sargassum south of the Azores. In


180 AÇOREANA<br />

2009, Sup. 6: 167-182<br />

addition, Stock (1994) recorded “>500<br />

specimens” of A. maritimus associated<br />

with surface-floating hydroids in the<br />

mid-Atlantic, at 24.75°N 44 to 53°W.<br />

Drift dispersal in algae as a viable<br />

means of passive migration by pycnogonids<br />

was analyzed by Bamber (1998).<br />

Perhaps significantly, other species<br />

recorded amongst Sargassum are Endeis<br />

spinosa, Anoplo<strong>da</strong>ctylus petiolatus and<br />

Tanystylum orbiculare (see Timmermann,<br />

1932; Hedgpeth, 1948), and the first two<br />

of these have been recorded on Sargassum<br />

in the vicinity of the Azores (Hedgpeth,<br />

1948: Figure 7).<br />

Finally, it is notable that the most<br />

diverse genus recorded, Anoplo<strong>da</strong>ctylus,<br />

includes species which are known to live<br />

upon medusae, and thus obtain passive<br />

dispersion in the plankton (see<br />

Introduction, above); the comparatively<br />

widespread distribution of Anoplo<strong>da</strong>ctylus<br />

species is commonly attributed to this<br />

process (see Bamber, 1998 for discussion).<br />

Thus, the proximity and known distributions<br />

of most species would favour colonization<br />

by species from the east<br />

(Mediterranean, North Africa, Atlantic<br />

Southern Europe), and as far as we know<br />

this can be the only source of five of the<br />

species discussed above; Morton &<br />

Britton (2000) found that most components<br />

of the Azorean marine fauna show<br />

affiliation with the Mediterranean and<br />

southern Europe. However, the incidence<br />

of species recorded in the Americas in<br />

floating algae gives a mechanism for<br />

transport, which would argue for colonization<br />

from the west. In reality, pycnogonid<br />

colonization of the shallow water<br />

habitats of the Azores may be attributed<br />

to both processes. However, the mechanism<br />

of immigration from the east<br />

remains purely speculative.<br />

For the species occurring in the 1996<br />

and 1997 <strong>da</strong>ta in sufficient numbers for<br />

interpretation, no trends were detected in<br />

relation to disturbance or exposure,<br />

although Anoplo<strong>da</strong>ctylus amora only<br />

occurred at non-polluted sites.<br />

ACKNOWLEDGEMENTS<br />

We are indebted to Roni Robbins for<br />

assistance in the field collecting and sample<br />

analysis in 2006, to Andreia Salvador<br />

for sampling assistance in Ilhéu de Vila<br />

Franca, to João Brum for assistance in the<br />

diver-collections in 1996 and 1997, to<br />

Brian Morton for discussions on the origins<br />

of the Azorean fauna, particularly to<br />

António de Frias Martins for the organisation<br />

of, and inviting us to the<br />

Workshop, and to the other participants<br />

at the workshop for samples and for<br />

entertainment.<br />

LITERATURE CITED<br />

ARNAUD, F., 1974. Pycnogonides<br />

récoltés aux <strong>Açores</strong> par les campagnes<br />

1969 et Biaçores 1971. Bulletin<br />

Zoologisch Museum, Universiteit van<br />

Amster<strong>da</strong>m, 3(21): 169-187.<br />

ARNAUD, F., 1978. A new species of<br />

Ascorhynchus (Pycnogoni<strong>da</strong>) found<br />

parasitic on an opisthobranchiate<br />

mollusc. In Sea Spiders<br />

(Pycnogoni<strong>da</strong>). Zoological Journal of<br />

the Linnean Society of London, 63(1+2):<br />

99-104.<br />

ARNAUD, F., & R.N. BAMBER, 1987.<br />

The Biology of Pycnogoni<strong>da</strong>.<br />

Advances in Marine Biology, 24: 1-96.<br />

ARNAUD, F., & F. KRAPP, 1990. The<br />

genus Rhynchothorax (Pycnogoni<strong>da</strong>) in<br />

the Mediterranean Sea. Beaufortia,<br />

41(1): 1-7.<br />

BAMBER, R.N., 1979. A new species of<br />

Endeis (Pycnogoni<strong>da</strong>) from West<br />

Africa. Zoological Journal of the Linnean<br />

Society of London, 65: 251-254.<br />

BAMBER, R.N., 1983. The Marine Fauna<br />

of the Cullercoats District, No. 12:


BAMBER & COSTA: PYCNOGONIDS FROM SÃO MIGUEL 181<br />

Pycnogoni<strong>da</strong>. Reports of the Dove<br />

Marine Laboratory, 3rd series, 25: 1-24.<br />

BAMBER, R.N., 1985. The intinerant [sic]<br />

sea-spider Ammothea hilgendorfi<br />

(Böhm) in British Waters. Proceedings<br />

of the Hampshire Field Club and<br />

Archaeological Society, 41: 269-270.<br />

BAMBER, R.N., 1998. Zoogeographic<br />

trends in some Hong Kong arthropods.<br />

In: MORTON, B. (ed.), The<br />

Marine Biology of the South China Sea.<br />

(Proceedings of the Third International<br />

Conference on the Marine Biology of the<br />

South China Sea. Hong Kong, 28 October<br />

- 1 November 1996), pp. 91-112. Hong<br />

Kong University Press, Hong Kong.<br />

BAMBER, R.N., 2002. Bathypelagic pycnogonids<br />

(Arthropo<strong>da</strong>, Pycnogoni<strong>da</strong>)<br />

from the Discovery deep-sea cruises.<br />

Journal of Natural History, 36: 715-727.<br />

BAMBER, R.N., 2004. Two new pycnogonids<br />

(Arthropo<strong>da</strong>: Pycnogoni<strong>da</strong>) from<br />

Atlantic Equatorial Africa. Species<br />

Diversity, 9: 125-133.<br />

BAMBER, R.N., & M.H. DAVIS, 1982.<br />

Feeding of Achelia echinata Hodge<br />

(Pycnogoni<strong>da</strong>) on marine algae.<br />

Journal of Experimental Marine Biology<br />

and Ecology, 60: 181-187.<br />

BAMBER R.N., & M.H. THURSTON,<br />

1993. Deep water pycnogonids of the<br />

Cape Verde Slope. Journal of the<br />

Marine Biological Association of the<br />

United Kingdom, 73: 837-861.<br />

BOURDILLON, A., 1955. Les<br />

Pycnogonides de la croisière 1951 du<br />

Président Theodore Tissier. Revue des<br />

Travaux de l’Institute des Pêches<br />

Maritimes, 19(4): 581-609, plates I-III.<br />

BOUVIER, E.L., 1917. Pycnogonides provenant<br />

des campagnes scientifiques<br />

de S.A.S. le Prince de Monaco (1885-<br />

1913). Résultats des Campagnes<br />

Scientifiques accomplies sur son Yacht par<br />

Albert I er Prince Souverain de Monaco,<br />

51: 1-56; Plates I-IV.<br />

CHILD, C.A., 1988. Pycnogoni<strong>da</strong> from<br />

Al<strong>da</strong>bra Atoll. Bulletin of the the<br />

Biological Society of Washington, 8: 45-<br />

78, 9 figures.<br />

CHILD, C.A., 1992. Shallow-water<br />

Pycnogoni<strong>da</strong> of the Gulf of Mexico.<br />

Memoirs of the Hourglass Cruises, 9(1):<br />

1-86.<br />

COSTA A.C. & S.P. ÁVILA, 2001.<br />

Macrobenthic mollusc fauna<br />

inhabiting Halopteris spp. subti<strong>da</strong>l<br />

fronds in São Miguel, Azores. Scientia<br />

Marina, 63: 117-126.<br />

FAGE, L., & J.H. STOCK, 1966.<br />

Pycnogonides. Résultats Scientifiques<br />

du Campagne de la Calypso aux îles de<br />

Cap Vert (1959). 7. Annales de I’Institut<br />

Océanographique de Monaco, 44: 315-<br />

327; 1-4.<br />

GOFAS, S., 1990. The littoral Rissoi<strong>da</strong>e<br />

and Anabathri<strong>da</strong>e of São Miguel,<br />

Azores. . In: MARTINS, A.M.F. (ed.),<br />

Proceedings of the First International<br />

Workshop of Malacology, São Miguel,<br />

Azores, 1988. Açoreana, Supplement<br />

[2]: 97-134.<br />

HEDGPETH, J.W., 1948. The<br />

Pycnogoni<strong>da</strong> of the western North<br />

Atlantic and the Caribbean.<br />

Proceedings of the United States National<br />

Museum, 97(3216): 157-342; 3 charts.<br />

HODGSON, T.V., 1915. The Pycnogoni<strong>da</strong><br />

collected by the Gauss in the Antarctic<br />

regions, 1901-3; preliminary report.<br />

Annals and Magazine of Natural History,<br />

(8), 15(85): 141-149.<br />

KRAPP, F., & R. SCONFIETTI, 1983.<br />

Ammothea hilgendorfi (Böhm, 1879), an<br />

adventitious pycnogonid new for the<br />

Mediterranean Sea. Marine Ecology,<br />

4(2): 123-132.<br />

LEBOUR, M.V., 1916. Notes on the life<br />

history of Anaphia petiolata (Kröyer).<br />

Journal of the Marine Biological<br />

Association of the United Kingdom,<br />

11(1): 51-56.<br />

LOMAN, J.C.C., 1912. Note préliminaire<br />

sur les “Po<strong>dos</strong>omata” (Pycnogonides)


182 AÇOREANA<br />

2009, Sup. 6: 167-182<br />

du Musée Océanographique de<br />

Monaco. Bulletin de l’Institut<br />

Océanographique, Monaco, 238: 14 pp.;<br />

Plates A-K.<br />

McCLOSKEY, L.R., 1973. Pycnogoni<strong>da</strong>.<br />

Marine flora and fauna of the northeastern<br />

United States. United States<br />

Department of Commerce, NOAA<br />

Technical Reports NWFS CIRC-386: 1-<br />

12; 25 figs.<br />

MORTON, B., & J.C. BRITTON, 2000.<br />

The origins of the coastal and marine<br />

flora and fauna of the Azores.<br />

Oceanography and Marine Biology: an<br />

Annual Review, 38: 13-84.<br />

MORTON, B., J.C. BRITTON & A.M.F.<br />

MARTINS 1998. Coastal Ecology of the<br />

<strong>Açores</strong>, 249 pp. Socie<strong>da</strong>de Afonso<br />

Chaves, Ponta Delga<strong>da</strong>.<br />

MÜLLER, H.-G., 1990. Flachwasser-<br />

Pantopoden von Bora-Bora,<br />

Gesellschaftsinseln, S-Pazifik, mit<br />

zwei<br />

Neubeschreibungen.<br />

Senckenbergiana marit., 70: 185-201.<br />

MUNILLA, T, & E. SANCHEZ, 1988.<br />

Ecologia de los primeros<br />

Picnogóni<strong>dos</strong> litorales Canarios. VI<br />

Simposio Iberico de Estudio del Bentos<br />

Marino, Palma de Mallorca, 9-22 Sep.<br />

1988. 1988: p. 61.<br />

SANCHEZ E,. & T. MUNILLA, 1989.<br />

Estudio ecologico de los primeros picnogoni<strong>dos</strong><br />

litorales de las islas<br />

Canarias. Cahiers de Biologie Marine,<br />

30: 49-67.<br />

SARS, G.O., 1891. Pycnogonidea.<br />

Norwegian North-Atlantic Expedition,<br />

1876-1878, 6(Zool. 20): 1-163; Plates I-<br />

XV.<br />

STAPLES, D.A., 1982. Pycnogoni<strong>da</strong> of the<br />

Calliope River and Auckland Creek,<br />

Queensland. Memoirs of the<br />

Queensland Museum, 20(3): 455-471.<br />

STOCK, J.H., 1952. Revision of the<br />

European representatives of the genus<br />

Callipallene Flynn. Beaufortia, 1(13): 1-<br />

15.<br />

STOCK, J.H., 1954. Four new Tanystylum<br />

species, and other Pycnogoni<strong>da</strong> from<br />

the West Indies. Studies on the Fauna of<br />

Curaçao, 5(24): 115-129.<br />

STOCK, J.H., 1955b. Pycnogoni<strong>da</strong> from<br />

the West Indies, Central America and<br />

the Pacific Coast of North America.<br />

Papers from Dr Th. Mortensen’s<br />

Pacific Expedition 1914-1916.<br />

Videnskabelige Meddelelser fra Dansk<br />

Naturhistorisk Forening i Kjøbenhavn,<br />

117: 209-266.<br />

STOCK, J.H., 1957. Pantopoden aus dem<br />

Zoologischen Museum Hamburg. 2 (=<br />

IV-VI). Mitteilungen aus dem<br />

Zoologischen Museum in Hamburg, 55:<br />

81-106.<br />

STOCK, J.H., 1971. Pycnogonides<br />

récoltés durant la campagne<br />

Noratlante en Atlantique Nord.<br />

Bulletin Zoölogisch Museum,<br />

Universiteit van Amster<strong>da</strong>m, 2(4): 25-28.<br />

STOCK, J.H., 1990. Macaronesian<br />

Pycnogoni<strong>da</strong>. CANCAP Project.<br />

Contribution No. 78. Zoologische<br />

Mededelingen, 63: 205-233.<br />

STOCK, J.H., 1992. Pycnogoni<strong>da</strong> from<br />

southern Haiti. Tijdschrift voor<br />

Entomologie, 135: 113-139.<br />

STOCK, J.H., 1994. Indo-West Pacific<br />

Pycnogoni<strong>da</strong> collected by some major<br />

oceanographic expeditions.<br />

Beaufortia, 44(3): 17-77.<br />

TIMMERMANN, G., 1932.<br />

Biogeographische Untersuchungen<br />

über die Lebensgemeinschaft des treibenden<br />

Golfkrautes. Zeitschrift für<br />

Morphologie und Oekologie des Tieres,<br />

25: 288-355.


AÇOREANA, Suplemento 6, Setembro 2009: 183-200<br />

THE TANAIDACEANS (ARTHROPODA: PERACARIDA: TANAIDACEA) OF SÃO<br />

MIGUEL, AZORES, WITH DESCRIPTION OF TWO NEW SPECIES, AND A NEW<br />

RECORD FROM TENERIFE<br />

Roger N. Bamber 1 & Ana Cristina Costa 2<br />

1<br />

The Natural History Museum, Cromwell Road, London SW7 5BD, U.K. e-mail: r.bamber@artoo.co.uk<br />

2<br />

CIBIO-Pólo <strong>Açores</strong>, Department of Biology, University of the Azores, 9501-801 Ponta Delga<strong>da</strong>, São Miguel,<br />

Azores, Portugal<br />

ABSTRACT<br />

During the Third International Workshop of Malacology and Marine Biology in São<br />

Miguel, Azores, in July 2006, sampling of the littoral and sublittoral benthos was undertaken<br />

in order to characterize the smaller marine arthropod fauna of this region, including<br />

tanai<strong>da</strong>ceans. In the event, 338 tanai<strong>da</strong>cean specimens representing three species were<br />

collected; two of these species, Leptochelia caldera and Paratanais martinsi, are new to science.<br />

In addition, previous tanai<strong>da</strong>cean material collected around São Miguel in 1996 and<br />

1997 was analyzed, from which a further 272 specimens (three species, one not found in<br />

2006) were identified. No apseudomorph tanai<strong>da</strong>ceans were found. All of the material is<br />

described, and an attempt is made to investigate the provenance of the Azorean<br />

tanai<strong>da</strong>cean fauna, although the general lack of <strong>da</strong>ta from the North-east Atlantic precludes<br />

any reasonable interpretation other than some possible links with the<br />

Mediterranean. However, recent material of Zeuxo exsargasso collected from Tenerife, in<br />

the Canary Islands, does suggest Macaronesian links with the West Atlantic.<br />

RESUMO<br />

Durante o 3º Workshop Internacional de Malacologia e Biologia Marinha em São<br />

Miguel, <strong>Açores</strong>, em Julho de 2006, fizeram-se amostragens do bentos litoral e sublitoral de<br />

modo a caracterizar a fauna de pequenos artrópodes marinhos dessa região, incluindo os<br />

tanaidáceos. Assim, recolheream-se 338 espécimens de tanaidáceos representando três<br />

espécies; duas dessas espécies, Leptochelia caldera e Paratanais martinsi, são novas para a<br />

ciência. Para além disso, analisou-se material recolhido previamente à volta de São Miguel<br />

em 1996 e 1997, do qual foram identifica<strong>dos</strong> 272 especimens ( três espécies, uma <strong>da</strong>s quais<br />

não encontra<strong>da</strong> em 2006). Não se encontraram tanaidáceos apseudomorfos. Todo o<br />

material foi descrito, e abordou-se a questão <strong>da</strong> proveniência <strong>da</strong> fauna tanaidácea<br />

Açoreana, embora a ausência generaliza<strong>da</strong> de <strong>da</strong><strong>dos</strong> do Nordeste Atlântico impeça<br />

qualquer interpretação razoável para além de algumas possíveis ligações com o<br />

Mediterrâneo. No entanto, material recente de Zeuxo exsargasso recolhido em Tenerife,<br />

Ilhas Canárias, sugere ligações Macaronésicas com o Atlântico Oeste.<br />

INTRODUCTION<br />

The Azores are a group of islands<br />

somewhat isolated in the north-east<br />

Atlantic, lying adjacent to the Mid-<br />

Atlantic Ridge some 1300 km west of<br />

Portugal and 1730 km southeast of<br />

Newfoundland. The main surface water<br />

currents reaching the archipelago bring<br />

waters from two directions: the Azores<br />

Drift, a diffuse southerly arm of the Gulf<br />

Stream breaking off from the North<br />

Atlantic Drift supplies water from the<br />

Americas, while the somewhat less-significant<br />

western eddies of the Canary<br />

Current bring waters from Spain and<br />

North Africa; below these, the midwater<br />

current brings warm, hyperhaline water


184 AÇOREANA<br />

2009, Sup. 6: 183-200<br />

from the Mediterranean outflow (Gofas,<br />

1990; Morton et al., 1998). This hydrography<br />

clearly has implications for the colonization<br />

of the islands by benthic marine<br />

species.<br />

Tanai<strong>da</strong>ceans are a group of the<br />

arthropods with minimal dispersive ability;<br />

the larvae are not planktonic, and<br />

there are only limited examples of adults<br />

swimming (Bamber, 1998). Some species<br />

are known to have spread in fouling communities<br />

on ship’s hulls (Bamber, 1977),<br />

and others are known to live in floating<br />

algae (Sieg, 1980) or ectoparasitically on<br />

turtle tests and on manatees (see Morales-<br />

Vela et al., 2008). It is therefore of some<br />

interest to determine the suite of species<br />

which has colonized the Azores archipelago,<br />

and their provenance.<br />

Previous records of tanai<strong>da</strong>ceans from<br />

the Azores are very sparse, and largely<br />

incidental, although Dollfus (1897)<br />

reported on the tanai<strong>da</strong>cean material collected<br />

around the Azores during the<br />

cruise of the Hirondelle in 1887 and 1888.<br />

All but two of the species recorded in litt.<br />

are from deep-water (>100 m; mostly<br />

>500 m). Dollfus (1897) reported<br />

Leptochelia savignyi Krøyer, 1842 from<br />

Horta; despite the controversy regarding<br />

earlier records of sibling species of this<br />

taxon, Dollfus’ records appear to be substantiated<br />

(see below); L. savignyi was<br />

described originally from Madeira, so its<br />

occurrence in the Azores is not surprising.<br />

Dollfus (1897) also recorded Tanais<br />

dulongii (Audouin, 1826) (as Tanais<br />

cavolinii Milne-Edwards, 1828) from Baïe<br />

de Fayal, and described as new<br />

T. grimaldii from Horta, distinguishing the<br />

two on the shape of the cephalon (his new<br />

species having a shorter cephalon) and<br />

the number of uropod articles; there is<br />

doubt whether his T. dulongii specimens<br />

were in fact of that species (see below);<br />

Morton et al. (1998) mention the occurrence<br />

of Tanais in littoral algal mats.<br />

Finally, the record of “Paratanais atlanticus”<br />

of Dollfus (1897) is incertae sedis, but<br />

not attributable to Paratanais (see below).<br />

The nine confirmed species recorded<br />

from around the Azores are:<br />

Suborder Apseudomorpha<br />

Leviapseudes lepto<strong>da</strong>ctylus (Bed<strong>da</strong>rd,<br />

1886), Azores 1830 m.<br />

Suborder Tanaidomorpha<br />

Superfamily Tanaoidea<br />

Tanais grimaldii Dollfus, 1897, Azores,<br />

littoral, 5-6 m.<br />

Superfamily Paratanaoidea<br />

Siphonolabrum mirabile Lang, 1872,<br />

Azores 3500-4165 m.<br />

Agathotanais hanseni Lang, 1971, E.<br />

Pacific & Azores, 2861-4165 m<br />

Leptognathia abyssorum (Dollfus, 1897),<br />

Azores, 1287 m.<br />

Paratyphlotanais richardi (Dollfus, 1897),<br />

W Ireland, Azores, 699-1287 m.<br />

Typhlotanais spiniventris Dollfus, 1897,<br />

Azores, 130-1287 m.<br />

Mesotanais dubius Dollfus, 1897,<br />

Azores, 1287 m.<br />

Leptochelia savignyi Krøyer, 1842,<br />

Azores, 5 to 6 m.<br />

During the Third International<br />

Workshop of Malacology and Marine<br />

Biology at Vila Franca do Campo, São<br />

Miguel, in July 2006, sampling of the littoral<br />

and sublittoral benthos was undertaken<br />

in order to characterize the smaller<br />

marine arthropod fauna of this region,<br />

including tanai<strong>da</strong>ceans. In the event, 338<br />

specimens representing three species<br />

were collected; two of these species are<br />

new to science. In addition, a previous<br />

collection from around the island was<br />

made available, from which a further 272<br />

specimens (three species, one additional<br />

to the above three) were identified. No<br />

apseudomorph tanai<strong>da</strong>ceans were found.


BAMBER & COSTA: TANAIDACEANS FROM SÃO MIGUEL 185<br />

In addition, recently collected material<br />

from Tenerife, in the Canary Islands,<br />

kindly supplied to us by Brian Morton,<br />

revealed a new record of a tanai<strong>da</strong>cean,<br />

relevant to the origins of the<br />

Macaronesian fauna. All of the material is<br />

described below.<br />

MATERIAL AND METHODS<br />

The present Azores material comes<br />

from two sources. During the Workshop<br />

at Vila Franca do Campo in July 2006, a<br />

number of littoral and infralittoral habitats<br />

on the island of São Miguel were sampled<br />

for tanai<strong>da</strong>ceans, including crevice<br />

habitats, macroalgae and soft sediments.<br />

The principal sampling areas were the littoral<br />

sediments, rocks and algae below<br />

the Clube Naval building (the old Vila<br />

Franca do Campo abattoir); the sediments<br />

and algae within the caldera of the Ilhéu<br />

de Vila Franca; and the soft sediments off<br />

Vila Franca do Campo (ca N37º 43’ W25º<br />

25’), from 12 to 200 m depth. Offshore<br />

sediments were sampled using a 0.025 m 2<br />

van Veen grab and various dredges. All<br />

samples were washed through a 0.5 mm<br />

mesh sieve, and specimens sorted alive.<br />

Some of these specimens were fixed in<br />

absolute ethanol to allow DNA analysis.<br />

Extensive material collected in 1996<br />

and 1997, from 11 (1996) and 20 (1997)<br />

infralittoral rocky-substratum sites<br />

around São Miguel, was also analysed in<br />

detail. Samples of algae (Stypocaulon scoparia,<br />

Halopteris filicina and Zonaria tournefortii)<br />

were collected by SCUBA diving at<br />

depths from between 5 and 16 m. Details<br />

of the sampling and protocols are given<br />

by Costa & Ávila (2001). The sampling<br />

sites, anti-clockwise around the Island<br />

from the north-west, were Mosteiros,<br />

Ponta <strong>da</strong> Ferraria, Santa Clara, Pesqueiro,<br />

Emissário, Sinaga, Atalha<strong>da</strong>, Ribeira <strong>da</strong><br />

Praia, Caloura, Porto de Vila Franca do<br />

Campo, Ilhéu de Vila Franca, Ribeira<br />

Quente, Faial <strong>da</strong> Terra, Nordeste, Porto<br />

Formoso, Ladeira de Velha, Ribeirinha,<br />

Lactoaçoreana, Cofaco and São Vicente.<br />

These sites variously represented exposed<br />

and sheltered shores, undisturbed, naturally<br />

disturbed (near shallow-water vent<br />

sites or stream mouths) and polluted<br />

shores.<br />

Finally, a collection of littoral algal<br />

turf was made from a rocky interti<strong>da</strong>l<br />

platform at Playa de Fanabe, Costa Adeje,<br />

Tenerife, Canary Islands, in June 2007,<br />

from which a further species not found in<br />

the São Miguel material was extracted.<br />

Terminology used herein recognizes<br />

the first pair of antennae as antennules,<br />

the second pair as the antennae. The first<br />

maxilla is termed the maxillule. The first<br />

pair of pereopods (of six) is the pair<br />

immediately posterior to the chelipeds.<br />

Serially repetitive body-parts, such as the<br />

pereonites and subdivisions of antennal<br />

flagella are segments, others (such as the<br />

parts of the limb) are articles. Total length<br />

is measured axially from the tip of the<br />

rostrum to the posterior edge of the pleotelson;<br />

measurements were made dorsally<br />

on the body and antennules, and laterally<br />

on the pereopods and antennae. The<br />

term ‘spines’ is used in the traditional<br />

sense to distinguish between rigid ‘thornlike’<br />

structures and the more flexible<br />

‘hair-like’ setae (in keeping with their etymology<br />

and all historic literature); nonarticulating<br />

spine-shaped extensions of<br />

the cuticle are considered to be apophyses;<br />

comb–rows of fine setules, occasionally<br />

present on maxillae and pereopod<br />

articles, inter alia, are referred to as<br />

microtrichia.<br />

Voucher and type-material has been<br />

lodged in the collections of The Natural<br />

History Museum, London (NHM). The<br />

higher taxonomy is based on Guţu & Sieg<br />

(1999).


186 AÇOREANA<br />

2009, Sup. 6: 183-200<br />

SYSTEMATICS<br />

SÃO MIGUEL MATERIAL<br />

Suborder TANAIDOMORPHA Sieg, 1980<br />

Superfamily Tanaoidea Dana, 1849<br />

Family Tanai<strong>da</strong>e Dana, 1849<br />

Subfamily Tanainae Dana, 1849<br />

Genus Tanais Latreille, 1831<br />

Tanais grimaldii Dollfus, 1897<br />

Figure 1A, B<br />

Sieg, 1980, pp. 84-91; Figure 31, 22.<br />

Material: 1 female with oostegites, 1<br />

female with empty brood pouch, 2<br />

subadult females, 2 neuters, 1 manca<br />

(Registration N os NHM.2007.764-771), Isl.<br />

24.2, drift algae within the flooded crater<br />

of the Ilhéu de Vila Franca, 24 July 2006,<br />

coll. A. Salvador, R. Robbins & R.B.; 12<br />

females with oostegites, 4 brooding<br />

females, 6 males, 148 neuters, 24 mancae<br />

(NHM.2007.772-781), Isl. 24.4, attached<br />

low-littoral algae, south wall of the flooded<br />

crater of the Ilhéu de Vila Franca, 24<br />

July 2006, coll. A. Salvador, R. Robbins &<br />

R.B.; 4 females with oostegites, 1 brooding<br />

female, 4 males, 31 subadult females,<br />

42 neuters, 28 mancae, Isl. 24.5, midlagoon<br />

algae, within the flooded crater of<br />

the Ilhéu de Vila Franca, 24 July 2006, coll.<br />

A. Salvador, R. Robbins & R.B.; 2 neuters,<br />

2 mancae (NHM.2007.782-785), WVF011,<br />

northeastern side of Ilhéu de Vila Franca<br />

do Campo, 16 m, scuba dive collection by<br />

Gonçalo Calado, José Pedro Borges, Joana<br />

Xavier, Paola Rachello, Patrícia Madeira,<br />

20 July 2006.<br />

1 brooding female, 1 neuter, 1 manca<br />

II, Mosteiros, 17 June 1997; 1 neuter, 1<br />

manca II, Ponta <strong>da</strong> Ferraria, 17 June 1997;<br />

3 females (1 brooding), 2 males, 1 manca,<br />

Emissário, 2 November 1996; 1 manca,<br />

Atalha<strong>da</strong>, 30 May 1997; 1 female, 4<br />

neuters, 15 mancae, Caloura, 26 June<br />

1997; 5 neuters, 1 manca, Ribeira Quente,<br />

November 1996; 1 manca, Ribiera Quente,<br />

18 June 1997; 1 manca, Nordeste, 21<br />

November 1996; 1 male, 1 brooding<br />

female, 1 neuter, 2 mancae. Nordeste, 2<br />

May 1997; 1 female, Porto Formoso, 30<br />

October 1996; 4 males, 1 female with oostegites,<br />

3 neuters, 2 mancae, Porto<br />

Formoso, 19 June 1997; 2 males, 3 mancae,<br />

Ladeira <strong>da</strong> Velha, 19 June 1997; 4 females<br />

(1 brooding, 2 with oostegites), 1 male,<br />

4neuters, 1 manca, Ribeirinha, 8 October<br />

1996; 2 females with oostegites, 7 neuters,<br />

5 mancae, Ribeirinha, 25 June 1997; 4<br />

females (1 brooding), 8 neuters, 9 mancae,<br />

Lactoaçoreana, 25 June 1997; 1 male, 1<br />

female, Cofaco, 7 October 1996; 4 females<br />

(1brooding), 7 males, 6 neuters, 1 manca,<br />

São Vicente, 7 October 1996; 3 females, 3<br />

neuters, 6 mancae, São Vicente, 6 May<br />

1997. All coll. A.C.C. & João Brum.<br />

Remarks: Tanais grimaldii is one of the only<br />

two littoral tanai<strong>da</strong>cean species recorded<br />

previously from the Azores: the typelocality<br />

is Horta (Faial), at 5 to 6 m depth<br />

(Dollfus, 1897). T. grimaldii is distinguished<br />

from its only northeast Atlantic<br />

congener, T. dulongii (Audouin, 1826) by<br />

the conformation of the laciniae mobili of<br />

the mandibles (see Sieg, 1980, Figure 31),<br />

but also adults of the present species have<br />

one more article in the uropod (basis plus<br />

three-segmented endopod: Figure 1B)<br />

than does T. dulongii (basis plus two-segmented<br />

endopod). Dollfus (1897) also<br />

recorded Tanais dulongii (Audouin, 1826)<br />

(as Tanais cavolinii Milne-Edwards, 1828)<br />

from Baie de Fayal, distinguishing it and<br />

T. grimaldii on the shape of the cephalon<br />

(his new species having a shorter<br />

cephalon) and the number of uropod articles;<br />

it is unclear whether his specimens<br />

of putative T. dulongii were fully mature,<br />

as only adult T. grimaldii have four segments<br />

to the uropod endopod (T. dulongii<br />

can be distinguished from immature<br />

T. grimaldii with three-segmented


BAMBER & COSTA: TANAIDACEANS FROM SÃO MIGUEL 187<br />

FIGURE 1. A, B, Tanais grimaldii Dollfus, 1897: A, dorsal; B, uropod; C to E, Leptognathia breviremis<br />

(Lilljeborg, 1864): C, dorsal; D, uropod; E, cheliped. (A redrawn after Sars, 1886; B, Azores specimen;<br />

C to E modified from Sars, 1899).<br />

endopods, as the penultimate segment is<br />

twice as long as the ultimate segment in<br />

the former, only slightly longer in the latter).<br />

Dollfus did not examine the<br />

mandibular structure, and indeed would<br />

have been unaware of its significance.<br />

It is likely that all previous records of<br />

Tanais dulongii from the Azores in fact<br />

refer to T. grimaldii. The present species is<br />

also recorded from the Italian<br />

Mediterranean (Gulf of Naples, Ischia<br />

and Linosa); there are unconfirmed<br />

records from the western Mediterranean<br />

and Casablanca (Sieg, 1980).<br />

All the material reported above was<br />

collected from algae at less than 17 m<br />

depth. Brooding females and mancae<br />

were present in all the months sampled<br />

(May, June, July, October and November).<br />

Superfamily Paratanaoidea Lang, 1949<br />

Family Anarthruri<strong>da</strong>e Lang, 1971<br />

Subfamily Leptognathiinae Sieg, 1976<br />

Genus Leptognathia Sars, 1882


188 AÇOREANA<br />

2009, Sup. 6: 183-200<br />

cf. Leptognathia breviremis (Lilljeborg,<br />

1864)<br />

Figure 1C to E<br />

Material: 1 headless specimen, Ponta <strong>da</strong><br />

Ferraria, 17 June 1997, coll. A.C.C. & João<br />

Brum.<br />

This <strong>da</strong>maged specimen is almost<br />

unidentifiable; the cheliped and uropods are<br />

appropriate to L. breviremis. This species is<br />

known from the eastern North Atlantic, but<br />

has been recorded (dubiously) from the<br />

North Pacific. A figure of L. breviremis (modified<br />

from Sars, 1899) is given to aid possible<br />

recognition of this taxon in the Azores in<br />

future (Figure 1, C to E).<br />

Family Leptochelii<strong>da</strong>e Lang, 1973<br />

Genus Leptochelia Dana, 1849<br />

Leptochelia caldera sp. nov.<br />

Figures 2, 3<br />

Material: 1 female with oostegites, holotype<br />

(NHM.2007.424), 1 male, allotype<br />

(NHM.2007.425), 13 females, paratypes<br />

(NHM.2007.426-435), Isl. 24.4, attached<br />

low-littoral algae, south wall of the flooded<br />

crater of the Ilhéu de Vila Franca, 24<br />

July 2006, coll. A. Salvador, R. Robbins &<br />

R.B.; 2 females, paratypes<br />

(NHM.2007.436-437), Isl. 24.5, midlagoon<br />

algae, within the flooded crater of<br />

the Ilhéu de Vila Franca, 24 July 2006, coll.<br />

A. Salvador, R. Robbins & R.B..<br />

2 females, Pesqueiro, 7 November<br />

1997; 3 males, 32 females (3 brooding), 5<br />

neuters, Emissário, 2 November 1996; 3<br />

females, 1 male, Emissário, 12 June 1997; 1<br />

manca, Sinaga, 30 May 1997; 4 males, 40<br />

females (2 brooding), 9 neuters, 2 mancae,<br />

Atalha<strong>da</strong>, 25 October 1996; 1 male, 14<br />

females, 7 neuters, Atalha<strong>da</strong>, 30 May<br />

1997; 1 female, Caloura, 26 June 1997; 1<br />

neuter, Faial <strong>da</strong> Terra, 12 June 1997; 1<br />

female, 1 neuter, Nordeste, 12 May 1997; 1<br />

male, 1 neuter, Ribeirinha, 8 October 1996;<br />

all coll. A.C.C. & João Brum.<br />

Description of female: body (Figure 2A)<br />

slender, holotype 3.6 mm long, 7.3 times<br />

as long as wide. Cephalothorax subrectangular,<br />

1.6 times as long as wide, as<br />

long as pereonites 2 and 3 together, with<br />

slight rostrum, eyelobes rounded, eyes<br />

present and black, single setae at posterior<br />

of eyelobes and posterolaterally. Six<br />

free pereonites; pereonite 1 shortest, pereonites<br />

2 and 3 subequal, 1.3 times as long<br />

as pereonite 1; pereonites 4 and 5 subequal<br />

(pereonite 4 longest) and 1.25 times<br />

as long as pereonite 2; pereonite 6 just<br />

longer than pereonite 1 (all pereonites<br />

respectively 1.9, 1.4, 1.3, 1.1, 1.0 and 1.4<br />

times as wide as long). Pleon of five free<br />

subequal pleonites bearing pleopods;<br />

each pleonite about 3.5 times as wide as<br />

long, with paired lateral setae. Pleotelson<br />

(Figure 2M) semicircular, 0.16 times as<br />

long as pleon, 2.8 times as wide as long,<br />

with paired lateral setae, paired posterolateral<br />

setae on each side and two distal<br />

setae.<br />

Antennule (Figure 2D) of four tapering<br />

articles, proximal article 3.6 times as<br />

long as wide, 1.5 times as long as distal<br />

three articles together, with two long<br />

outer and single short dorsal and inner<br />

setae; second article twice as long as wide,<br />

distal outer seta shorter than article; third<br />

article 1.3 times as long as second and<br />

with one aesthetasc; fourth article minute,<br />

eccentric, with five distal setae.<br />

Antenna (Figure 2G) of six articles,<br />

proximal article compact, naked; second<br />

article as long as wide, with single ventrodistal<br />

and dorsodistal slender spines;<br />

third article 1.3 times as long as wide,<br />

with dorsodistal slender spine; fourth<br />

article longest, three times as long as<br />

wide; fifth article half as long as fourth;<br />

sixth article minute.<br />

Labrum (Figure 2H) rounded, setose,<br />

typical of genus. Left mandible (Figure<br />

2I) with crenulate lacinia mobilis wider<br />

than pars incisiva, proximal crenulation


BAMBER & COSTA: TANAIDACEANS FROM SÃO MIGUEL 189<br />

FIGURE 2. Leptochelia caldera sp. nov., A, holotype female, dorsal; B, allotype male, dorsal; C, allotype<br />

male, lateral; D, female antennule; E, male antennule; F, male antenna; G, female antenna; H,<br />

labrum, lateral; I, left mandible; J, maxillule and maxilla; K, maxilliped; L, epignath; M, pleotelson<br />

and left uropod. Scale line = 1 mm for A, B and C, 0.2 mm for D to G and M, 0.1 mm for H to L.


190 AÇOREANA<br />

2009, Sup. 6: 183-200<br />

on pars incisiva, pars molaris with strong<br />

rugosity; right mandible similar but without<br />

lacinia mobilis. Labium typical of<br />

genus, distally finely setose, without<br />

palp. Maxillule (Figure 2J) with seven<br />

long and two short distal spines and<br />

setose margins; palp of two articles with<br />

two distal setae; maxilla simple, ovoid.<br />

Maxilliped (Figure 2K) palp first article<br />

naked, second article with one outer and<br />

three inner setae, and distal seta exceeding<br />

distal margin of third palp article;<br />

third and fourth articles with filtering<br />

rows of six and seven setae respectively,<br />

third article with two further inner distal<br />

setae, fourth article with submarginal<br />

outer seta; basis with three long setae<br />

extending to third palp article; endites<br />

distally with single outer seta and one<br />

inner rounded and two robust spatulate<br />

spines. Epignath (Figure 2L) elongate,<br />

arcuate, with setose margin distally and<br />

proximally.<br />

Cheliped (Figure 3A) with rounded,<br />

compact basis 1.9 times as long as wide,<br />

with inner distal seta; merus subtriangular<br />

with three ventral setae; carpus 1.9<br />

times as long as wide, with three midventral<br />

setae; propodus typical for the genus,<br />

fixed finger with three ventral and three<br />

inner setae, cutting edge crenulate, setal<br />

row at base of <strong>da</strong>ctylus of three setae;<br />

<strong>da</strong>ctylus with proximal seta.<br />

Pereopod 1 (Figure 3C) longer than<br />

other pereopods, coxa with seta and<br />

rounded apophyses; basis slender, 4.1<br />

times as long as wide, with dorsoproximal<br />

seta; ischium compact with one seta;<br />

merus just shorter than carpus; carpus<br />

with three distal setae, longest of which is<br />

0.4 times length of propodus; propodus<br />

as long as carpus and merus together,<br />

with three <strong>dos</strong>rodistal setae on slight<br />

mound, one ventrodistal seta; <strong>da</strong>ctylus<br />

slender, extending into shorter slender<br />

unguis, the two together as long as propodus.<br />

Pereopod 2 (Figure 3D) more compact<br />

than pereopod 1; basis 3 times as<br />

long as wide; ischium with 2 setae, longer<br />

seta longer than ischium width; merus<br />

longer than carpus, merus with strong<br />

ventrodistal spine, carpus with shorter<br />

ventrodistal spine; propodus with paired<br />

dorsodistal setae and ventrodistal spine;<br />

merus, carpus and propodus with ventral<br />

microtrichia; <strong>da</strong>ctylus and short unguis<br />

together 0.6 times as long as propodus;<br />

<strong>da</strong>ctylus (Figure 3E) with collar of fine<br />

setules at half length and dorsodistal<br />

setule. Pereopod 3 (Figure 3F) similar to<br />

pereopod 2, including longer seta on<br />

ischium and <strong>da</strong>ctylus setulation, but carpus<br />

longer than merus and with short<br />

outer distal seta.<br />

Pereopod 4 (Figure 3G) basis stout, 2.4<br />

times as long as wide; ischium with two<br />

short setae; merus shorter than carpus,<br />

merus with two short, ventrodistal<br />

spines, carpus with outer, ventral and<br />

inner curved distal spines; propodus<br />

longer than carpus, with two ventrodistal<br />

short spines, four dorsodistal setae, one<br />

as long as <strong>da</strong>ctylus; <strong>da</strong>ctylus and unguis<br />

partially fused into a claw, curved.<br />

Pereopods 5 (Figure 3H) and 6 as pereopod<br />

4, but with pereopod 5 propodus<br />

with fewer distal setae.<br />

Pleopods all alike, typical for the<br />

genus, with single dorsal plumose seta on<br />

basis.<br />

Uropod (Figure 2M) biramous, basis<br />

naked; exopod of one segment, 0.7 times<br />

as long as proximal endopod segment,<br />

outer distal seta longer than inner distal<br />

seta; endopod of six segments, distal segments<br />

slender.<br />

Description of male: typical primary male,<br />

half length of female (allotype length<br />

1.7 mm), body (Figure 2B, C) more compact,<br />

cephalon just longer than pereonites<br />

1 to 3 together, with large eyelobes bearing<br />

conspicuous black eyes; pereonite 1<br />

shortest, pereonites 2 to 6 progressively


BAMBER & COSTA: TANAIDACEANS FROM SÃO MIGUEL 191<br />

FIGURE 3. Leptochelia caldera sp. nov., A, female cheliped; B, male cheliped; C, pereopod 1; D, pereopod<br />

2; E, detail of distal articles of pereopod 2; F to H, pereopods 3, 4 and 5 respectively. Scale<br />

line = 0.2 mm for A to D and F to H, 0.1 mm for E.


192 AÇOREANA<br />

2009, Sup. 6: 183-200<br />

longer, pereonite 4 1.7 times as long as<br />

pereonite 1. Five free pleonites, subequal<br />

in length, pleotelson just longer than<br />

pleonite 5. Sexual dimorphism as follows.<br />

Antennule (Figure 2E) elongate, first<br />

peduncle article arcuate, 4 times as long<br />

as wide; second article 0.6 times as long as<br />

first with ventrodistal penicillate setae<br />

and 2 midventral simple setae; third article<br />

0.6 times as long as second, with dorsodistal<br />

seta; flagellum of 7 segments,<br />

first with 4 proximal and 5 distal aesthetascs,<br />

segments 2 to 5 with 4, 4, 3 and 3<br />

distal aesthetascs respectively; segments 6<br />

and 7 more slender than others. Antenna<br />

(Figure 2F) similar to that of female but<br />

more compact. Mouthparts atrophied.<br />

Cheliped (Figure 3B) larger than that<br />

of female; carpus slender, 3.6 times as<br />

long as wide, with ventrodistal invagination<br />

to accommo<strong>da</strong>te propodus on reflexion;<br />

propodus fixed finger shorter than<br />

palm, with two inner tooth-like apophyses<br />

on cutting edge; moveable finger with<br />

spinules along cutting edge.<br />

Pleopods more setose than those of<br />

female.<br />

Etymology: caldera (from the Spanish<br />

cauldron) is a volcanic crater, the 2006<br />

type-material of this species having been<br />

collected from the sea-water-flooded<br />

crater of Ilhéu de Vila Franca.<br />

Remarks: there are four recorded species<br />

of Leptochelia with only 3 maxilliped<br />

basis setae, none of them occurring in the<br />

North Atlantic or Mediterranean, viz.<br />

L. itoi Ishimaru, 1982 (from Japan),<br />

L. lusei Bamber & Bird, 1997 (from Hong<br />

Kong), L. nobbi Bamber, 2005 (from<br />

Western Australia) and a species from<br />

Queensland, Australia (Bamber, in<br />

press). Of these four, only L. nobbi has a<br />

proximal antennule article more than 3<br />

times as long as wide, but that species<br />

has a compact basis to pereopod 1 (only<br />

three times as long as wide) and a uropod<br />

exopod only half as long as the<br />

proximal endopod segment length.<br />

Despite its much more compact proximal<br />

antennule peduncle article (2.5 times<br />

as long as wide), L. itoi shows most similarity<br />

to L. caldera sp. nov., but the cheliped<br />

basis of the Japanese species is<br />

more compact (1.5 times as long as<br />

wide), the distal seta of antennule<br />

peduncle article 2 is as long as the article<br />

(shorter in L. caldera), and the <strong>da</strong>ctylus<br />

plus claw of the first pereopod is much<br />

longer than the propodus (1.33 times as<br />

long, compared with subequal in length<br />

in L. caldera).<br />

The number of maxilliped basis setae<br />

in L. neapolitana Sars, 1882 is not known,<br />

but that species again differs from<br />

L. caldera in that the proximal antennule<br />

peduncle article is shorter (three times as<br />

long as wide), the uropod exopod is less<br />

than half the length of the proximal<br />

endopod segment, the <strong>da</strong>ctylus plus<br />

claw of the first pereopod is much longer<br />

than the propodus (1.36 times as long)<br />

and the cheliped basis more compact<br />

(1.35 times as long as wide).<br />

The male of the present species is<br />

generally very similar to the male of<br />

L. dubia sensu Sars, 1886 (non Krøyer,<br />

1842), but that species has longer anterior<br />

pereonites, and is without the degree<br />

of ventrodistal invagination on the cheliped<br />

carpus shown by L. caldera (and the<br />

female of Sars’ species has five maxilliped<br />

basis setae). The male of L. neapolitana<br />

has a similar cheliped to the present<br />

species, but has fewer antennule flagellum<br />

segments and more attenuate pereonites.<br />

None of the species described previously<br />

has the peculiar collar of setules at<br />

half length on the <strong>da</strong>ctylus of pereopods<br />

two and three shown by Leptochelia<br />

caldera.


BAMBER & COSTA: TANAIDACEANS FROM SÃO MIGUEL 193<br />

Dollfus (1897) recorded a male and a<br />

female of Leptochelia savignyi Krøyer,<br />

1842 from Horta at 5 to 6 m depth. This<br />

taxon has been the subject of some confusion<br />

over the last 150 years (including<br />

erroneous synonymy with L. dubia<br />

Krøyer, 1842), and it is now apparent<br />

that numerous species of Leptochelia<br />

await distinction based on morphological<br />

features of both genders which were<br />

not examined in any detail before<br />

Ishimaru (1985) (see Bamber, 2005 for<br />

discussion). From his subsequent report<br />

on Mediterranean and Atlantic species<br />

(Dollfus, 1898), it is apparent that<br />

Dollfus distinguished L. savignyi correctly<br />

on the basis of four longer articles in<br />

the antennule of the female (inter alia).<br />

There is debate whether the extra antennular<br />

article is an intermediate feature of<br />

a female changing into a male in a genus<br />

known to show progynous hermaphroditism<br />

(e.g. Smith, 1906); while this trend<br />

has been observed in some taxa of<br />

Leptochelia (R. Heard, pers. comm.), the<br />

male of L. savignyi sensu Sars, 1886 is a<br />

primary male, while Larsen & Rayment<br />

(2002) found this antennular structure a<br />

consistent feature of females of their new<br />

species L. elongata, including an ovigerous<br />

paratype. Dollfus (1898) reported a<br />

number of collections including females<br />

attributed to L. savignyi from the<br />

Mediterranean and the eastern Atlantic,<br />

implying a frequency of this antennular<br />

morphology unlikely to be shown only<br />

by transitional hermaphrodite specimens.<br />

His records from the Azores are<br />

thus accepted as valid, and L. savignyi<br />

sensu Sars, 1886 (see Figure 6A, B) is<br />

accepted as the same as L. savignyi<br />

Krøyer, 1842.<br />

Krøyer (1842) named a third species<br />

of Leptochelia, “Tanais” edwardsii, also<br />

from Madeira, but based only on the<br />

male. While it is possible that this taxon<br />

may never be confirmed (it is assumed to<br />

be the male of L. savignyi), from his figure<br />

(Krøyer, 1842: pl.2: Figures 13-19) it<br />

does not have the same antennular or<br />

pleotelson proportions as L. caldera.<br />

Family Paratanai<strong>da</strong>e Lang, 1949<br />

Sufamily Paratanaidinae Lang, 1949<br />

Genus Paratanais Dana, 1852<br />

Paratanais martinsi sp. nov.<br />

Figures 4, 5<br />

?Paratanais euelpis Monod, 1925, non<br />

Paratanais euelpis Barnard, 1920.<br />

Non- Paratanais atlanticus Dollfus,<br />

1897 (incertae sedis)<br />

Material: 1 female with brood pouch (in<br />

tube), holotype (NHM.2007.438), 1 female<br />

dissected, 2 females, 1 manca, 1 headless<br />

female, paratypes,(NHM.2007.439-440),<br />

WVF040, off Amora, Ponta Garça, São<br />

Miguel, Azores, 37º42’720”N<br />

25º21’554”W, 37.8 m depth, small dredge<br />

sample, 26 July 2006, coll. António de<br />

Frias Martins & Jerry Harasewych.<br />

Description of female: body (Figure 4A)<br />

elongate, slender, 4.2 mm long, eight<br />

times as long as wide, colour translucent<br />

white, eyes black. Cephalothorax subrectangular,<br />

1.2 times as long as wide, with<br />

slight rounded rostrum, single mid-lateral<br />

setae; eyes present, pigmented. Six free<br />

cylindrical pereonites; pereonite 1 shortest,<br />

with single anterolateral setae; pereonites<br />

2 and 3 subequal, twice as long as<br />

pereonite 1, also with single anterolateral<br />

setae; pereonites 4 and 5 subequal (pereonite<br />

4 longest), 1.2 times as long as pereonite<br />

2, pereonite 6 just shorter than pereonite<br />

2 (all pereonites respectively 2, 1.1,<br />

1.0, 0.9, 0.9 and 1.2 times as wide as long).<br />

Pleon of five free subequal pleonites bearing<br />

pleopods; pleonites 4.5 times as wide<br />

as long; pleonites 1 to 4 with one<br />

plumose, articulating lateral seta on each<br />

side, pleonite 5 with simple lateral seta.


194 AÇOREANA<br />

2009, Sup. 6: 183-200<br />

Pleotelson semicircular, short, 1.9 times as<br />

wide as long, distally with paired dorsal<br />

and paired terminal setae.<br />

Antennule (Figure 4B) of four articles,<br />

proximal article 2,3 times as long as wide,<br />

second article 1.3 times as long as wide,<br />

about one-third length of first, with dorsal<br />

seta longer than article length; third<br />

article nearly two-thirds length of second;<br />

distal article slender, longer than second<br />

and third articles together, with five distal<br />

setae and single aesthetasc.<br />

Antenna (Figure 4C) of six articles,<br />

proximal article compact, naked; second<br />

article with long ventrodistal and short<br />

dorsodistal apophyses each bearing seta;<br />

third article as long as wide, naked, with<br />

dorsodistal spine; fourth article just<br />

longer than second, with two distal simple<br />

setae; fifth article half as long as<br />

fourth with two distal setae; sixth article<br />

minute with five longer and one shorter<br />

distal setae.<br />

Labrum (Figure 4D) apically rounded,<br />

setose. Left mandible (Figure 4E)<br />

with crenulate pars incisiva and wide,<br />

crenulate lacinia mobilis; pars molaris<br />

robust with elaborate marginal “teeth”.<br />

Right mandible (Figure 4F) without<br />

lacinia mobilis, pars molaris less elaborate.<br />

Labium (Figure 4G) simple, finely<br />

setose, with fine outer marginal spinule,<br />

without palp. Maxillule (Figure 4H)<br />

with seven longer and two shorter distal<br />

spines, palp slender with two long distal<br />

setae; maxilla ovoid, naked. Maxilliped<br />

(Figure 4I) endites characteristic of<br />

genus, wide with denticulate outer margin,<br />

two inner distal ovate tubercles and<br />

single inner seta; palp first article naked,<br />

second article inner margin with two<br />

simple setae and shorter distal spine,<br />

outer margin with distal seta; third article<br />

with three inner bidenticulate spines,<br />

adjacent shorter simple spine; fourth<br />

article with four inner bidenticulate<br />

spines, single inner submarginal and<br />

outer simple setae; single inner spine on<br />

basis exceeding distal margin of endites.<br />

Epignath (Figure 4J) ribbon-like,<br />

glabrous but with two fine distal setae.<br />

Cheliped (Figure 5A) compact, carpus<br />

1.2 times as long as wide; propodus<br />

wider than long, fixed finger short with<br />

lamellate apophyses on cutting edge, terminal<br />

spine indistinct; <strong>da</strong>ctylus with<br />

dorsoproximal simple seta.<br />

Pereopod 1 (figue 5B) longer than<br />

others, coxa simple with seta; basis slender,<br />

arcuate, five times as long as wide;<br />

ischium compact with single seta; merus<br />

1.5 times as long as carpus; propodus 1.2<br />

times as long as merus, with one ventral<br />

and three dorsal distal setae; <strong>da</strong>ctylus<br />

with distinct, slender claw, both together<br />

as long as propodus. Pereopod 2 (Figure<br />

5C) similar to pereopod 1, but more compact,<br />

basis 3.1 times as long as wide,<br />

ischium with tow setae, merus shorter<br />

than carpus with ventral microtrichia<br />

and ventrodistal spine, carpus with ventral<br />

microtrichia, two ventrodistal and<br />

one larger inner distal spines. Pereopod<br />

3 (Figure 5D) similar to pereopod 2.<br />

Pereopod 4 (Figure 5E) basis robust, 2.2<br />

times as long as wide; merus 0.8 times as<br />

long as carpus, each with spination as<br />

pereopod 3; propodus longer than carpus<br />

with mid-dorsal penicillate seta,<br />

dorsodistal slender spine and ventrodistal<br />

stout spine; <strong>da</strong>ctylus and claw forming<br />

unguis, curved, two-thirds as long as<br />

propodus. Pereopod 5 (Figure 5F) as<br />

pereopod 4. Pereopod 6 (Figure 5G) as<br />

pereopod 4, but propodus more compact<br />

with two ventrodistal spines and three<br />

dorsodistal setae adjacent to slender<br />

spine.<br />

Pleopods (Figure 4K) all alike, with<br />

naked basis, endopod with single inner<br />

plumose seta; exopod without setae on<br />

inner margin.<br />

Uropod (Figure 5H) basis naked,<br />

endopod of two segments, exopod of one


BAMBER & COSTA: TANAIDACEANS FROM SÃO MIGUEL 195<br />

FIGURE 4. Paratanais martinsi sp. nov., A, holotype, dorsal; B, antennule; C, antenna; D, labrum;<br />

E, left mandible; F, right mandible; G, labium; H, maxillule and maxilla; I, maxilliped; J, epignath:<br />

K, pleopod (plumose nature of all setae not shown). Scale line = 1 mm for A, 0.2 mm for B and C,<br />

0.1 for D to J.


196 AÇOREANA<br />

2009, Sup. 6: 183-200<br />

segment, shorter than proximal segment<br />

of endopod.<br />

Male unknown.<br />

Etymology: named after António de Frias<br />

Martins, in gratitude for his assistance in<br />

attending the workshop, and exemplary<br />

hospitality.<br />

Remarks: the genus Paratanais has been<br />

capably diagnosed by Lang (1973). The<br />

only species from the North Atlantic<br />

attributed previously to Paratanais are all<br />

incertae sedis. Bate & Westwood (1868)<br />

described “Paratanais” rigidus from one<br />

specimen collected from Laminaria holdfasts<br />

off Glasgow, western Scotland: while<br />

their four-articled antennule is appropriate,<br />

they carefully describe the uropod<br />

rami as both being of one segment, and an<br />

elongate, slender chela; their species is<br />

not a member of the genus Paratanais, but<br />

with the inadequate description and figures<br />

must remain incertae sedis. P. limicola<br />

FIGURE 5. Paratanais martinsi sp. nov., A, cheliped; B to G, pereopods 1 to 6 respectively; H, uropod.<br />

Scale line = 0.2 mm for A to G, 0.15 mm for H.


BAMBER & COSTA: TANAIDACEANS FROM SÃO MIGUEL 197<br />

Harger, 1878 (see Harger, 1880, for<br />

description and figures) has a three-articled<br />

antennule, and the uropod has two<br />

segments in the exopod and five in the<br />

endopod: Harger himself (1880) moved<br />

this species, apparently correctly, to<br />

Leptochelia. Dollfus (1897) described<br />

“Paratanais” atlanticus from 130 m depth<br />

off the Azores, based on a male and two<br />

females; although the description is<br />

somewhat cursory, and the figures inadequate,<br />

his species clearly had a three-articled<br />

antennule in the female, and the uropod<br />

had a two-segmented exopod and a<br />

three-segmented endopod; Dollfus’<br />

species thus cannot be a member of the<br />

genus Paratanais. Finally, Monod (1925)<br />

suspected a specimen from 110 m depth<br />

off Morocco to be P. euelpis Barnard, 1920<br />

(a species adequately refigured by Lang,<br />

1973), but without full confidence (and<br />

without description or figure). It is possible<br />

that his specimen, if indeed of this<br />

genus, was of the present species.<br />

In having the setose apophyses on the<br />

second article of the antenna, more characteristic<br />

of species of Leptochelia,<br />

Paratanais martinsi sp. nov. is similar only<br />

to P. gaspodei Bamber, 2005, with which it<br />

also shares the elongate, slender uropod<br />

segments, and the short chela. The present<br />

species differs from P. gaspodei in a<br />

number of characters, including being<br />

generally more slender (pleonites 3, 4 and<br />

5 as long as or longer than wide, all wider<br />

than long in P. gaspodei), with more slender<br />

articles in the antennule and antenna<br />

(proximal peduncle article of antennule<br />

less than twice as long as wide in<br />

P. gaspodei), in the inner spines on the<br />

maxilliped basis exceeding the distal margin<br />

of the endites (not reaching the margin<br />

in P. gaspodei), and with the merus of<br />

pereopod 1 being 1.5 times as long as the<br />

carpus (subequal in length in P. gaspodei).<br />

With regard to the possible Moroccan<br />

record of Monod (1925), P. euelpis also has<br />

a shorter merus to pereopod 1, and is<br />

without the apophyses on the second article<br />

of the antenna, as well as differences<br />

in mouthpart setation.<br />

TENERIFE MATERIAL<br />

Superfamily Tanaoidea Dana, 1849<br />

Family Tanai<strong>da</strong>e Dana, 1849<br />

Subfamily Pancolinae Sieg, 1980<br />

Genus Zeuxo Templeton, 1840<br />

Zeuxo (Parazeuxo) exsargasso Sieg, 1980<br />

Figure 6 C, D<br />

Zeuxo (Parazeuxo) exsargasso<br />

1980, 217-221, figure 61.<br />

Sieg,<br />

Material: 3 males, 3 females with<br />

oostegites, 1 brooding female<br />

(NHM.2007.757-763), 1 female with<br />

oostegites (dissected), rocky interti<strong>da</strong>l<br />

platform covered in algal turf, Playa de<br />

Fanabe, Costa Adeje, Tenerife, 27 June<br />

2007. Coll. B Morton.<br />

Remarks: Zeuxo exsargasso was only<br />

known from the type collection from<br />

floating Sargassum natans, 20 miles southeast<br />

of Bermu<strong>da</strong> (Sieg, 1980). Its presence<br />

in the Canary Islands implies the possibility<br />

of transport by drift from America via<br />

the Gulf Stream and the Azores and<br />

Canary Currents. The only other recorded<br />

species of Zeuxo in north-eastern<br />

Atlantic waters is the only-distantly-related<br />

Zeuxo (Zeuxo) holdichi Bamber, 1990,<br />

known from the Atlantic shores of France<br />

and Portugal and the English Channel<br />

(Bamber, 1990; & unpubl. <strong>da</strong>ta). Zeuxo<br />

species are distinguished from Tanais<br />

species in their having five dorsallydemarcated<br />

pleonites (Tanais has only<br />

four), and no dorsal rows of plumose<br />

setae on the pleon (Tanais has conspicuous<br />

rows on pleonites 1 and 2); the uropod<br />

of Z. exsargasso has five segments<br />

(Figure 6D).


198 AÇOREANA<br />

2009, Sup. 6: 183-200<br />

DISCUSSION<br />

There are now five species of shallowwater<br />

tanai<strong>da</strong>cean recorded from the<br />

Azores, Tanais grimaldii, Leptochelia savignyi<br />

sensu stricto, Leptochelia caldera,<br />

Paratanais martinsi and the unconfirmed<br />

Leptognathia from Ponta <strong>da</strong> Ferraria.<br />

The present <strong>da</strong>ta demonstrate that<br />

Azorean tanai<strong>da</strong>cean fauna inhabits littoral<br />

to infralittoral algae, is generally<br />

sparse, but may show a relatively high<br />

degree of endemism. For the only species<br />

occurring in the 1996 and 1997 <strong>da</strong>ta in sufficient<br />

numbers for interpretation, Tanais<br />

grimaldii, no trends were detected in relation<br />

to disturbance or exposure.<br />

Unfortunately, these taxa give little<br />

information on the origins of the Azorean<br />

fauna. The Leptognathia specimen tells<br />

nothing. The two species described as<br />

new above are as yet unknown from elsewhere:<br />

Leptochelia is a worldwide genus,<br />

while Paratanais is predominantly southern<br />

hemisphere in distribution (Australia,<br />

Subantarctica, South Africa) but also<br />

found in the Indo-West Pacific, the Kurile<br />

Islands and California.<br />

T. grimaldii has been recorded from<br />

the Mediterranean (Adriatic) by Sars<br />

(1886, as T. cavolinii), his figure clearly<br />

showing the appropriate uropod structure.<br />

Sieg (1980) attributes the record of<br />

T. chevreuxi from the Moroccan coast by<br />

Monod (1925) to T. grimaldii, but regards<br />

it as doubtful, as he did the record from<br />

the Bay of Naples by Smith (1906); neither<br />

author gives a description or figure, and<br />

the decision of Sieg (loc. cit.) is based on<br />

their attributing the authority for their<br />

name to Sars, 1886. Both of these records<br />

are surely incertae sedis. There are no pub-<br />

FIGURE 6. A and B, Leptochelia savignyi: A, dorsal; B, antennule (redrawn after Sars, 1886). C and<br />

D, Zeuxo (Parazeuxo) exsargasso (Tenerife specimen): A, dorsal; B, pleotelson and uropods, dorsal.


BAMBER & COSTA: TANAIDACEANS FROM SÃO MIGUEL 199<br />

lished records of Tanais species from the<br />

Canary Islands or from Madeira.<br />

While there has been confusion over<br />

the years regarding Leptochelia savignyi<br />

(see above), the type locality is Madeira,<br />

and the only other valid records (other<br />

than those of Dollfus, 1897; 1898) are<br />

those of Sars (1886) from the<br />

Mediterranean, from the Ligurian Sea<br />

and off Sicily.<br />

Thus there are a few indications that<br />

the Azorean tanai<strong>da</strong>cean fauna may have<br />

links with the Mediterranean, but not<br />

elsewhere. Morton & Britton (2000)<br />

found that most components of the<br />

Azorean marine fauna show affiliation<br />

with the Mediterranean and southern<br />

Europe. However, the discovery of Zeuxo<br />

exsargasso in Tenerife strongly implies colonization<br />

from the western Atlantic to<br />

Macaronesia via the Gulf Stream, the<br />

Azores Current and the Canary Current<br />

(see Timmermann, 1932, for a discussion<br />

on faunistic transport in Sargassum).<br />

It is undoubtedly the case that the<br />

tanai<strong>da</strong>cean fauna of Macaronesia is very<br />

understudied, and that of the<br />

Mediterranean and Atlantic coasts of<br />

Europe and North Africa is little better<br />

known, still relying heavily on 19th century<br />

information. At the same time the<br />

speciation of such taxa as Leptochelia<br />

around the North-east Atlantic and<br />

Mediterranean needs proper study.<br />

ACKNOWLEDGEMENTS<br />

We are indebted to Roni Robbins for<br />

assistance in the field collecting and sample<br />

analysis in 2006, to Andreia Salvador<br />

for sampling assistance in Ilhéu de Vila<br />

Franca, to João Brum for assistance in the<br />

diver collections in 1996 and 1997, to<br />

Brian Morton for collecting the Tenerife<br />

material, to António de Frias Martins for<br />

the organisation of, and inviting us to, the<br />

2006 Workshop, and to the other participants<br />

at the workshop for samples and<br />

for entertainment.<br />

LITERARURE CITED<br />

BAMBER, R.N., 1977. On mobile littoral<br />

environments. Porcupine Newsletter,<br />

1(4): 62-63.<br />

BAMBER, R.N., 1990. A new species of<br />

Zeuxo (Crustacea: Tanai<strong>da</strong>cea) from<br />

the French Atlantic coast. Journal of<br />

Natural History, 24: 1587-1596.<br />

BAMBER, R.N., 1998. Zoogeographic<br />

trends in some Hong Kong arthropods.<br />

In: MORTON, B. (ed.), The<br />

Marine Biology of the South China Sea.<br />

Proceedings of the Third International<br />

Conference on the Marine Biology of the<br />

South China Sea. Hong Kong, 28 October<br />

- 1 November 1996. pp. 91-112. Hong<br />

Kong: Hong Kong University Press.<br />

BAMBER, R.N., 2005. The Tanai<strong>da</strong>ceans<br />

(Arthropo<strong>da</strong>: Crustacea: Peracari<strong>da</strong>:<br />

Tanai<strong>da</strong>cea) of Esperance, Western<br />

Australia, Australia. In: WELLS, F.E.,<br />

D.J. WALKER & G.A. KENDRICK<br />

(eds), Proceedings of the Twelfth International<br />

Marine Biological Workshop:<br />

The Marine Flora and Fauna of<br />

Esperance, Western Australia, pp. 613-<br />

728. Western Australia Museum,<br />

Perth.<br />

BATE, C.S., & J.O. WESTWOOD, 1868. A<br />

History of the British Sessile-Eyed<br />

Crustacea, 2: 117-154. John Van Voorst,<br />

London.<br />

COSTA, A.C., & S.P. ÁVILA, 2001.<br />

Macrobenthic mollusc fauna<br />

inhabiting Halopteris spp. subti<strong>da</strong>l<br />

fronds in São Miguel, Azores. Scientia<br />

Marina, 63: 117-126.<br />

DOLLFUS, A., 1897. Note préliminaire<br />

sur les Tanaidæ recueillis aux <strong>Açores</strong><br />

pen<strong>da</strong>nt les campagnes de l’Hirondelle<br />

(1887-1888). Bulletin de la Société<br />

Zoologique, France, 21: 207-215.<br />

DOLLFUS, A., 1898. Campagnes de la


200 AÇOREANA<br />

2009, Sup. 6: 183-200<br />

Melita. Tanai<strong>da</strong>e récoltes par M. Ed.<br />

Chevreux <strong>da</strong>ns l’Atlantique et <strong>da</strong>ns la<br />

Méditerranée. Memoires de la Société<br />

Zoologique, France, 11: 33-47.<br />

GOFAS, S., 1990. The littoral Rissoi<strong>da</strong>e<br />

and Anabathri<strong>da</strong>e of São Miguel,<br />

Azores. In: MARTINS, A.M.F. (ed),<br />

The Marine Fauna and Flora of the<br />

Azores (Proceedings of the First<br />

International Workshop of Malacology,<br />

São Miguel, 1988). Açoreana, 1990<br />

Supplement: 97-134.<br />

GUTU, M., & J. SIEG, 1999. Ordre<br />

Tanaï<strong>da</strong>cés (Tanai<strong>da</strong>cea Hansen,<br />

1895). Mémoires de l’Institute<br />

Océanographique, Monaco, 19: 353-389.<br />

HARGER, O., 1880. Appendix E. The<br />

Natural History of Marine Animals,<br />

XIV. Report on the marine Isopo<strong>da</strong> of<br />

New England and adjacent waters.<br />

Report of the United States Commission<br />

of Fish and Fisheries, 6: Report of the<br />

Commissioner for 1878, pp. 295-449,<br />

plates 1-13.<br />

ISHIMARU, S-i., 1985. A new species of<br />

Leptochelia (Crustacea, Tanai<strong>da</strong>cea)<br />

from Japan, with a redescription of L.<br />

savignyi (Kroyer, 1842). Publications of<br />

the Seto Marine Biological Laboratory,<br />

30(4/6): 241-267.<br />

KRØYER, H., 1842. Nye Arter af Slægten<br />

Tanais. Naturhistorishe Tiddskrift, 4:<br />

167-188.<br />

LANG, K., 1973. Taxonomische und phylogenetische<br />

Untersuchungen über<br />

die Tanai<strong>da</strong>ceen (Crustacea). 8. Die<br />

Gattung Leptochelia Dana, Paratanais<br />

Dana, Heterotanais G.O. Sars und<br />

Nototanais Richardson. Dazu einige<br />

Bemerkungen über die Monokonophora<br />

und ein Nachtrag.<br />

Zoologica Scripta, 2: 197-229.<br />

LARSEN, K., & H. RAYMENT, 2002. New<br />

species of Leptochelia (Crustacea:<br />

Tanai<strong>da</strong>cea) from the An<strong>da</strong>man Sea,<br />

north-eastern Indian Ocean. Phuket<br />

Marine Biological Center Special<br />

Publication, 32(1): 17-31.<br />

MONOD, T., 1925. Tanai<strong>da</strong>cés et isopodes<br />

aquatiques de l’Afrique occidentale<br />

et septentrionale. 1 er partie:<br />

Tanai<strong>da</strong>cea, Anthuri<strong>da</strong>e, Valvifera.<br />

Bulletin de la Société des Sciences<br />

Naturelles du Maroc, 5(3): 61-85.<br />

MORALES-VELA, B., E. SUAREZ-<br />

MORALES, J. PADILLA-SALDIVAR<br />

& R.W. HEARD, 2008. The tanaid<br />

Hexapleomera robusta (Crustacea:<br />

Peracari<strong>da</strong>) from the Caribbean manatee,<br />

with comments on other crustacean<br />

epibionts. Journal of the Marine<br />

Biological Association of the United<br />

Kingdom, 88: 591-596.<br />

MORTON, B., & J.C. BRITTON, 2000.<br />

The origins of the coastal and marine<br />

flora and fauna of the Azores.<br />

Oceanography and Marine Biology: an<br />

Annual Review, 38: 13-84.<br />

MORTON, B., J.C. BRITTON & A.M.F.<br />

MARTINS, 1998. Coastal Ecology of the<br />

<strong>Açores</strong>, 249 pp. Socie<strong>da</strong>de Afonso<br />

Chaves, Ponta Delga<strong>da</strong>.<br />

SARS, G.O., 1886. Nye bidrag til kundskaben<br />

om Middelhavets invertebratfauna.<br />

III. Middelhavets saxisopoder<br />

(Isopo<strong>da</strong> chelifera). Archiv for<br />

Mathematik og Naturvidenskab, 11: 263-<br />

368.<br />

SARS, G.O., 1899. An account of the<br />

Crustacea of Norway with short descriptions<br />

and figures of all the species. II.<br />

Isopo<strong>da</strong>, 265 pp. + pls. 1-18. Bergen<br />

Museum, Christiania.<br />

SIEG, J., 1980. Taxonomische Monographie<br />

der Tanai<strong>da</strong>e Dana 1849<br />

(Crustacea: Tanai<strong>da</strong>cea). Abhandlungen<br />

der Senckenbergischen Naturforschenden<br />

Gesellschaft, 537: 1-267.<br />

SMITH, G., 1906. High and low dimorphism,<br />

with an account of certain<br />

Tanai<strong>da</strong>e of the Bay of Naples.<br />

Mitteilungen aus der Zoologischen<br />

Station zu Neapel, 17: 312-340.<br />

TIMMERMANN, G., 1932. Biogeographische<br />

Untersuchungen über die<br />

Lebensgemeinschaft des treibenden<br />

Golfkrautes. Zeitschrift für Morphologie<br />

und Oekologie des Tieres, 25: 288-355.


AÇOREANA, Suplemento 6, Setembro 2009: 201-210<br />

THE SOFT-SEDIMENT INFAUNA OFF SÃO MIGUEL, AZORES, AND A<br />

COMPARISON WITH OTHER AZOREAN INVERTEBRATE HABITATS<br />

Roger N. Bamber & Roni Robbins<br />

The Natural History Museum, Cromwell Road, London SW7 5BD, U.K. e-mail: roger.bamber@artoo.co.uk<br />

ABSTRACT<br />

During the Third International Workshop of Malacology and Marine Biology in the<br />

Azores in July 2006, sampling of the littoral and sublittoral soft-sediment benthos around<br />

Vila Franca do Campo, São Miguel, was undertaken in order to characterize the benthic<br />

infaunal communities, and to compare the faunal density and diversity with the communities<br />

associated with algae.<br />

The sedimentary infauna was particularly sparse, with the average number of species<br />

and individuals per sample being 4.4 and 25 respectively. Although density and diversity<br />

were greatest between 20 and 40 m depth, there was no community trend with depth<br />

down to 250 m. The dominant taxa were actively mobile species. By contrast, the fauna<br />

of algal habitats was far denser and more species rich: these samples had an average of 17<br />

species and 360 individuals per sample.<br />

These results indicate an unstructured, impoverished sedimentary infauna, dominated<br />

by errant taxa which can tolerate unstable sediments, and not well-characterized as a<br />

community. The impoverishment of sedimentary benthos of this part of the Azores is<br />

attributed to sediment instability.<br />

SUMÁRIO<br />

Durante o 3º Workshop Internacional de Malacologia e Biologia Marinha nos <strong>Açores</strong><br />

em Julho de 2006, foram feitas amostragens do bentos do sedimento móvel do litoral e<br />

sublitoral perto de Vila Franca do Campo, São Miguel, com vista a caracterizar as<br />

comuni<strong>da</strong>des bentónicas <strong>da</strong> infauna e comparar a densi<strong>da</strong>de e diversi<strong>da</strong>de <strong>da</strong> infauna com<br />

as comuni<strong>da</strong>des associa<strong>da</strong>s às algas.<br />

A infauna sedimentar era particularmente esparsa, sendo o número médio de espécies<br />

e indivíduos por amostragem 4,4 e 25, respectivamente. Embora a densi<strong>da</strong>de e a<br />

diversi<strong>da</strong>de fossem as mais eleva<strong>da</strong>s entre os 20 e os 40 m de profundi<strong>da</strong>de, não se notou<br />

tendência na comuni<strong>da</strong>de com a profundi<strong>da</strong>de até aos 250 m. Os taxa dominantes eram<br />

espécies activamente móveis. Em contraste, a fauna <strong>dos</strong> habitats algais era de longe mais<br />

densa e mais rica em espécies: ali se registou a média de 17 espécies e 360 indivíduos por<br />

amostra.<br />

Estes resulta<strong>dos</strong> indicam uma infauna sedimentar não estrutura<strong>da</strong>, empobreci<strong>da</strong>,<br />

domina<strong>da</strong> por taxa errantes que podem tolerar sedimentos instáveis, e não bem<br />

caracteriza<strong>da</strong> coo comuni<strong>da</strong>de. O empobrecimento do bentos sedimentar desta parte <strong>dos</strong><br />

<strong>Açores</strong> atribui-se à instabili<strong>da</strong>de do sedimento.<br />

INTRODUCTION<br />

The Azores are a group of islands<br />

somewhat isolated in the north-east<br />

Atlantic, lying adjacent to the Mid-<br />

Atlantic Ridge some 1300 km west of<br />

Portugal and 1730 km southeast of<br />

Newfoundland. The main surface water<br />

currents reaching the archipelago bring<br />

waters from two directions: the Azores<br />

Drift, a diffuse southerly arm of the Gulf<br />

Stream breaking off from the North<br />

Atlantic Drift supplies water from the<br />

Americas, while the somewhat less-sig-


202 AÇOREANA<br />

2009, Sup. 6: 201-210<br />

nificant western eddies of the Canary<br />

Current bring waters from Spain and<br />

North Africa; below these, the midwater<br />

current brings warm, hyperhaline water<br />

from the Mediterranean outflow (Gofas,<br />

1990; Morton et al., 1998; Morton &<br />

Britton, 2000). This hydrography clearly<br />

has implications for the colonization of<br />

the islands by benthic marine species.<br />

While there have been a number of<br />

previous studies on the fauna associated<br />

with the rocky shores, or with littoral and<br />

infralittoral algae (e.g. Hawkins et al.,<br />

1990; Bullock et al., 1990; Bullock, 1995;<br />

taxa reviewed by Morton & Britton, 2000),<br />

and which have normally been taxon specific<br />

(see papers by Chapman et auctt. in<br />

Morton, 1990), there have been few published<br />

studies of the soft-sediment communities,<br />

largely owing to their recognized<br />

sparseness. Morton (1990) points<br />

out that there was at that time no information<br />

on the soft shores of the Azores, as<br />

virtually all are high energy beaches,<br />

“superficially devoid of significant life”<br />

(see also Morton et al., 1998). Two surveys<br />

had been conducted of the soft-sediment<br />

fauna of the sheltered habitat within the<br />

flooded crater of Ilhéu de Vila Franca, one<br />

in 1988 and one in 1995 (Morton, 1990;<br />

Wells, 1995 respectively).<br />

During the Third International<br />

Workshop of Malacology and Marine<br />

Biology in the Azores in July 2006, sampling<br />

of the littoral and sublittoral softsediment<br />

benthos off Vila Franca do<br />

Campo was undertaken in order to gain<br />

some insight into the communities present.<br />

Some sites were sampled within the<br />

flooded crater of the Ilhéu de Vila Franca<br />

to compare with the findings of the 1988<br />

and 1991 studies. Comparisons were<br />

made between the invertebrate fauna of<br />

quantitative (grab plus shore collected)<br />

and qualitative (dredge) benthic samples,<br />

as well as the fauna associated with<br />

infralittoral algae.<br />

METHODS<br />

Quantitative samples were collected<br />

using a 0.025 m 2 Peterson grab, taking<br />

two replicates per sampling station.<br />

Littoral and infralittoral sands were sampled<br />

quantitatively using a plastic scoop,<br />

also to 0.05 m 2 . The samples were sieved<br />

across a 0.5 mm mesh and sorted live.<br />

Qualitative samples were collected<br />

using a variety of dredges, towed at 1 to 2<br />

knots for between 6 and 10 minutes.<br />

Crustaceans, pycnogonids, polychaetes,<br />

sipunculans, phoronids and echinoderms<br />

from these samples were retained<br />

serendipitously.<br />

The depths of the grab and dredge<br />

samples ranged between 12 and 250 m.<br />

Position fixing was by GPS.<br />

Qualitative algal samples were collected<br />

either from littoral rocks (sample<br />

Island 24.10), or from sublittoral sites in<br />

the crater of Ilhéu de Vila Franca.<br />

Material as collected from the dredge<br />

samples was also analyzed from one<br />

SCUBA collection on algae, sponges, etc.,<br />

at 16 m depth.<br />

All taxa were identified to species<br />

where possible. Nomenclature and<br />

authorities are as in Costello et al. (2001).<br />

Sample numbers are prefixed “Island” for<br />

those collected within the Ilhéu de Vila<br />

Franca, otherwise “WVF”.<br />

RESULTS<br />

The sampling sites analyzed are listed<br />

in Table 1, with depths, sampling gear<br />

and univariate community statistics.<br />

Quantitative samples<br />

The twelve grab and shore-collected<br />

quantitative samples were analyzed<br />

together. The complete faunal <strong>da</strong>ta from<br />

these samples is given in Appendix 1. It<br />

is immediately apparent that the benthic<br />

infauna is indeed sparse: only one of the


BAMBER & ROBBINS: THE SOFT-SEDIMENT INFAUNA OFF SÃO MIGUEL 203<br />

TABLE 1. List of samples, with depth, sampling gear and univariate ‘community’ statistics.<br />

Sample Date depth,<br />

m<br />

sampling<br />

gear<br />

species individuals species<br />

richness<br />

Shannon-<br />

Weiner H'<br />

Evenness<br />

WVF005 19/7/06 42 dredge 7 15 2.216 2.28 0.8121<br />

WVF006 19/7/06 40 dredge 10 12 3.622 3.252 0.9788<br />

WVF007 19/7/06 178 dredge 10 26 2.762 2.887 0.8689<br />

WVF008 19/7/06 148 dredge 4 6 1.674 1.792 0.8962<br />

WVF011 20/7/06 16 scuba 26 196 4.574 3.861 0.8315<br />

WVF015 21/7/06 46 dredge 11 17 3.53 3.293 0.9518<br />

WVF016 21/7/06 19 dredge 8 24 2.203 2.772 0.924<br />

WVF019 21/7/06 23 grab 16 91 3.325 3.033 0.7581<br />

WVF020 21/7/06 50 grab 7 14 2.274 2.407 0.8573<br />

WVF021 21/7/06 118 grab 2 2<br />

Island24.1 24/7/06 0 scoop 1 17<br />

Island24.2 24/7/06 drift weed 16 129 3.087 2.845 0.7113<br />

Island24.3 24/7/06 0.5 scoop 0<br />

Island24.4 24/7/06 0.3 weed 25 719 3.505 3.328 0.7259<br />

Island24.5 24/7/06 0.5 weed 27 606 3.913 3.456 0.7352<br />

Island24.6 24/7/06 0.3 scoop 0<br />

Island24.7 24/7/06 0.5 scoop 0<br />

Island24.9 24/7/06 0.3 scoop 0<br />

Island24.10 24/7/06 0 weed scrape 3 7<br />

WVF034 25/7/06 16.7 grab 5 12 1.61 1.781 0.7669<br />

WVF035 25/7/06 23 grab 8 46 1.828 2.519 0.8398<br />

WVF036 25/7/06 36 grab 8 105 1.504 1.668 0.556<br />

WVF039 25/7/06 12 grab 1 1<br />

WVF040 26/7/06 38 dredge 5 20 1.335 1.882 0.8106<br />

WVF041 25/7/06 250 dredge 6 12 2.012 2.355 0.9112<br />

littoral/infralittoral samples contained<br />

any macrofauna, that on the sand bar in<br />

Ilhéu de Vila Franca (Island24.1) containing<br />

17 individuals of the errant isopod<br />

Eurydice affinis. Similarly, the grab samples<br />

at 12 m (WVF039) contained only a<br />

single specimen of the bivalve Ervilia castanea.<br />

Figure 1 shows the distribution<br />

with depth of faunal density (numbers<br />

per 0.05 m2), number of species and<br />

Shannon-Weiner diversity. The greatest<br />

faunal density and number of species<br />

occur between 20 and 40 m depth, but values<br />

are consistently low, with the average<br />

number of species and individuals per<br />

sample being 4.4 and 25 respectively.<br />

The community diversity is generally<br />

low, Shannon-Weiner index values ranging<br />

between 1 and 3, and also peaks at<br />

around 20 to 40 m depth, although, owing<br />

to the proportionately higher number of<br />

species (7) in a sparse fauna (n=14) at station<br />

WVF020, diversity remains in the<br />

upper range to 50 m.<br />

Dominant taxa were actively mobile<br />

species, the mysid Gastrosaccus normani,<br />

the amphipods Microdeutopus versiculatus<br />

and Harpinia laevis, the polychaete<br />

Armandia polyophthalma and the pre<strong>da</strong>tory<br />

polychaete Glycera capitata. The most<br />

numerous sessile species was the tubicolous<br />

polychaete Myriochele oculata,


204 AÇOREANA<br />

2009, Sup. 6: 201-210<br />

FIGURE 1. Univariate community parameters by depth for the sedimentary infauna, quantitative<br />

samples only.<br />

although that species was constrained to<br />

two stations. Indeed, of the 28 species<br />

recorded, 21 are actively mobile species<br />

less reliant on sedimentary-habitat stability.<br />

Qualitative samples<br />

The complete faunal <strong>da</strong>ta from the<br />

dredge samples is given in Appendix 2.<br />

These samples are not directly comparable<br />

as no molluscs were analyzed (they<br />

having been removed for other studies),<br />

and the univariate community statistics<br />

are only indicative, as the samples were<br />

not quantitative (although the Shannon-<br />

Weiner diversity index is relatively sample-size-independent).<br />

The fauna was again found to be<br />

sparse and inconsistent, 29 of the 42<br />

species recorded occurring in only one<br />

sample. Although no dredges shallower<br />

than 19 m were analyzed, there was an<br />

indication that the numbers of species<br />

and individuals were highest around 19<br />

to 50 m depth, similar to the results from<br />

the grab sample results, but the sample at<br />

178 m (WVF007) had high density and<br />

species number. Average numbers of<br />

species and individuals were 7.5 and 16.5<br />

respectively.<br />

The dominant taxa were again actively<br />

mobile species, including amphipods,<br />

decapods, errant polychaetes, while the<br />

only obligately sessile taxa were tubicolous<br />

species, the tanai<strong>da</strong>cean Paratanais<br />

martinsi, the spionid polychaete Spio<br />

armata and the phoronid Phoronis muelleri,<br />

each occurring only once.<br />

Overall, although extra species were<br />

found from the dredge samples (which<br />

had taken a larger volume per sample),<br />

the fauna was relatively similar to that<br />

found in the grab samples.<br />

Algal and other samples<br />

The non-sedimentary samples were<br />

analyzed in order to compare faunal densities<br />

and species complements of the<br />

non-infaunal community.<br />

Appendix 3 lists the complete faunal<br />

<strong>da</strong>ta from these samples, which comprise<br />

a scuba-collection (WVF011), floating<br />

(Island 24.2), submerged (Island 24.4,<br />

island 24.5) or littorally attached


BAMBER & ROBBINS: THE SOFT-SEDIMENT INFAUNA OFF SÃO MIGUEL 205<br />

(Island 24.10) algae in the Ilhéu de Vila<br />

Franca lagoon.<br />

It is immediately apparent that the<br />

fauna of these habitats was far denser and<br />

more species rich. Even though the littoral<br />

rock-pool algal sample was impoverished,<br />

the algal samples had an average of 17<br />

species and 360 individuals per sample.<br />

The dominant species were the crevicial<br />

or algal-associated polychaete<br />

Platynereis dumerilii, and peracarid crustaceans,<br />

notably algal-associated<br />

amphipods (Hyale spp., Erichthonius spp.,<br />

Microdeutopus versiculatus, Corophium acutum,<br />

Caprella acanthifera), isopods<br />

(Dynamene bidentata, Cymodoce truncata,<br />

Paranthura costana) and tanai<strong>da</strong>ceans<br />

(Tanais grimaldii), together with algalassociated<br />

pycnogonids (Anoplo<strong>da</strong>ctylus<br />

pygmaeus, A. angulatus) and the only<br />

cumacean recorded during the 2006 surveys,<br />

Cumella limicola. However, other<br />

dominant species (the polychaete Fabricia<br />

stellata, the amphipod Dexamine spinosa)<br />

are taxa which commonly occur in sediments,<br />

but which were not recorded away<br />

from the algae.<br />

Most of the species recorded from the<br />

scuba sample, collected from 16 m depth<br />

to the north-east off Ilhéu de Vila Franca,<br />

were the same as those dominant taxa<br />

from the algal samples, confirming this<br />

dense and diverse community is not<br />

restricted to the sheltered waters of the<br />

crater lagoon.<br />

DISCUSSION<br />

The <strong>da</strong>ta from both sets of sedimentary<br />

infaunal samples were subjected to<br />

multivariate analysis simply on presence<br />

or absence of species, owing to the qualitative<br />

nature of the dredge samples. The<br />

<strong>da</strong>ta set was reduced to those 30 taxa<br />

occurring as more than one individual in<br />

the survey, and to those samples with<br />

some fauna.<br />

The dendrogram of sample similarity<br />

(Figure 2) shows relatively poor clustering<br />

owing to the sparse and patchy nature<br />

of the fauna. Sample WVF040 is quite distinct,<br />

the three species recorded there<br />

(two pycnogonids and a tanai<strong>da</strong>cean) not<br />

being found elsewhere; this sample was<br />

not analyzed further. Similar reasons<br />

account for the isolation of samples<br />

WVF007, WVF008 and Island24.1. The<br />

remaining six grab samples and five<br />

dredge samples show that there is, in fact,<br />

no particular trend with depth in the<br />

community, dredge sample WVF041,<br />

taken at 250 m, falling comfortably within<br />

the subcluster of four grab samples taken<br />

at depths between 16.7 and 36 m. This<br />

lack of a trend is confirmed by the nonparametric<br />

ordination by multidimensional<br />

scaling (MDS) (Figure 3).<br />

Although the stations WVF007 and<br />

WVF008, both deeper than 140 m, are isolated,<br />

the species which distinguish them,<br />

Onuphis eremita and Ebalia tuberosa, are<br />

not species confined to deeper water.<br />

These results indicate an unstructured,<br />

impoverished sedimentary infauna,<br />

dominated by errant taxa which can<br />

tolerate unstable sediments, and not wellcharacterized<br />

as a community, thus not<br />

showing any particular community<br />

trends with depth. This fauna is most<br />

impoverished in shallow depths (


206 AÇOREANA<br />

2009, Sup. 6: 201-210<br />

FIGURE 2. Dendrogram by Bray-Curtis similarity (%) for sedimentary benthic infaunal samples<br />

(presence-absence <strong>da</strong>ta).<br />

which would most readily recruit. It was<br />

notable that the densest algal-associated<br />

communities occurred sublittorally, most<br />

littoral algae of the adjacent São Miguel<br />

shoreline supporting little of no fauna.<br />

ACKNOWLEDGEMENTS<br />

We are indebted to Andreia Salvador<br />

for sampling assistance in Ilhéu de Vila<br />

Franca, to António de Frias Martins for<br />

FIGURE 3. MDS ordination based on the similarity<br />

<strong>da</strong>ta from figure 2, with circles of diameter<br />

proportional to sample depth.<br />

the organisation of, and inviting us to the<br />

Workshop, and to the other participants<br />

at the workshop for samples, assistance<br />

with the boat-work, discussion and entertainment.<br />

LITERATURE CITED<br />

BULLOCK, R.C., 1995. The distribution<br />

of the molluscan fauna associated<br />

with the interti<strong>da</strong>l coralline algal turf<br />

of a partially submerged volcanic<br />

crater, the Ilhéu de Vila Franca, São<br />

Miguel, Azores. In: MARTINS, A.M.F.<br />

(ed.), The Marine Fauna and Flora of the<br />

Azores (Proceedings of the Second<br />

International Workshop of Malacology<br />

and Marine Biology, São Miguel, 1991).<br />

Açoreana, Supplement [4]: 9-55.<br />

BULLOCK, R.C., R.D. TURNER & R.A.<br />

FRALICK, 1990. Species richness and<br />

diversity of algal-associated micromolluscan<br />

communities from São<br />

Miguel, Azores. In: MARTINS, A.M.F.<br />

(ed.), The Marine Fauna and Flora of the<br />

Azores (Proceedings of the First<br />

International Workshop of Malacology,


BAMBER & ROBBINS: THE SOFT-SEDIMENT INFAUNA OFF SÃO MIGUEL 207<br />

São Miguel, 1988). Açoreana,<br />

Supplement [2]: 39-58.<br />

COSTELLO, M.J., C. EMBLOW & R.<br />

WHITE (eds.), 2001. European<br />

Register of marine Species. A checklist<br />

of the marine species in Europe<br />

and a bibliography of guides to their<br />

identification. Patrimoines Naturels,<br />

50: 463 pp.<br />

GOFAS, S., 1990. The littoral Rissoi<strong>da</strong>e<br />

and Anabathri<strong>da</strong>e of São Miguel,<br />

Azores. In: MARTINS, A.M.F. (ed.),<br />

The Marine Fauna and Flora of the<br />

Azores (Proceedings of the First<br />

International Workshop of Malacology,<br />

São Miguel, 1988). Açoreana,<br />

Supplement [2]: 97-134.<br />

HAWKINS, S.J., L.P. BURNAY, A. NETO,<br />

R. TRISTÃO <strong>da</strong> CUNHA & A.M. de<br />

FRIAS MARTINS, 1990. A description<br />

of the zonation patterns of molluscs<br />

and other biota on the south coast of<br />

São Miguel, Azores. In: MARTINS,<br />

A.M.F. (ed.), The Marine Fauna and<br />

Flora of the Azores (Proceedings of the<br />

First International Workshop of<br />

Malacology, São Miguel, 1988).<br />

Açoreana, Supplement [2]: 21-38.<br />

MORTON, B., 1990. The interti<strong>da</strong>l ecology<br />

of Ilhéu de Vila Franca – a<br />

drowned volcanic crater in the<br />

Azores. In: MARTINS, A.M.F. (ed.),<br />

The Marine Fauna and Flora of the<br />

Azores (Proceedings of the First<br />

International Workshop of Malacology,<br />

São Miguel, 1988). Açoreana,<br />

Supplement [2]: 3-20.<br />

MORTON, B. & J.C. BRITTON, 2000. The<br />

origins of the coastal and marine flora<br />

and fauna of the Azores.<br />

Oceanography and Marine Biology: an<br />

Annual Review, 38: 13-84.<br />

MORTON, B., J.C. BRITTON & A.M.F.<br />

MARTINS, 1998. Coastal Ecology of the<br />

<strong>Açores</strong>, 249pp. Socie<strong>da</strong>de Afonso<br />

Chaves, Ponta Delga<strong>da</strong>.<br />

WELLS, F.E., 1995. An investigation of<br />

marine invertebrate communities in<br />

the sediments of Ilhéu de Vila Franca<br />

off the island of São Miguel, Azores.<br />

In: MARTINS, A.M.F. (ed.), The Marine<br />

Fauna and Flora of the Azores<br />

(Proceedings of the Second International<br />

Workshop of Malacology and Marine<br />

Biology, São Miguel, 1991). Açoreana,<br />

Supplement [4]: 57-65.


208 AÇOREANA<br />

2009, Sup. 6: 201-210<br />

APPENDIX 1. Complete benthic faunal <strong>da</strong>ta from quantitative sedimentary samples<br />

WVF WVF WVF Island Island Island Island Island WVF WVF WVF WVF<br />

Sample 019 020 021 24.1 24.3 24.6 24.7 24.9 034 035 036 039 TOTAL<br />

SIPUNCULA<br />

Golfingia minuta 2 2<br />

ANNELIDA<br />

Glycera capitata 9 1 6 6 22<br />

Glycera tesselata 3 3<br />

Glycinde nordmanni 1 1<br />

Eumi<strong>da</strong> cf. bahusiensis 1 1<br />

Scoloplos armiger 1 1<br />

Spio armata 2 2<br />

Armandia polyophthalma 24 7 7 4 42<br />

Myriochele oculata 4 70 74<br />

Ditrupa arietina 1 3 4<br />

ARTHROPODA<br />

Crustacea<br />

Mysi<strong>da</strong>cea<br />

Gastrosaccus normani 22 1 1 18 8 50<br />

Anchialina agilis 1 1 2<br />

Amphipo<strong>da</strong><br />

Harpinia laevis 14 5 14 33<br />

Synchelidium haplocheles<br />

5 5<br />

Erichthonius punctatus 1 1<br />

Microdeutopus versiculatus 6 1 2 5 1 15<br />

Ampithoe rubricata 1 1<br />

Caprella penantis 1 1<br />

Isopo<strong>da</strong><br />

Eurydice affinis 1 1 17 19<br />

Decapo<strong>da</strong><br />

Atyaephyra desmaresti 1 1<br />

Processa edulis 1 1<br />

Crangon trispinosus 2 2<br />

Parthenope expansa 1 1<br />

MOLLUSCA<br />

Bivalvia<br />

Ervilia castanea 1 1 2<br />

Moerella donacina 1 1<br />

Solemya sp. 1 1<br />

ECHINODERMATA<br />

Echinocardium flavescens<br />

4 3 7<br />

Echinocyamus pusillus 1 3 1 5<br />

No. of Species 16 7 2 1 0 0 0 0 6 10 10 1 28<br />

No. of Individuals 91 14 2 17 0 0 0 0 13 53 109 1 300


BAMBER & ROBBINS: THE SOFT-SEDIMENT INFAUNA OFF SÃO MIGUEL 209<br />

APPENDIX 2. Faunal <strong>da</strong>ta from qualitative dredge samples (Mollusca not included)<br />

Sample WVF005 WVF006 WVF007 WVF008 WVF015 WVF016 WVF040 WVF041 TOTAL<br />

SIPUNCULA<br />

Golfingia margaritacea 1 1<br />

Golfingia minuta 1 1<br />

ANNELIDA<br />

Harmothoe spp. 4 3 7<br />

Glycera capitata 1 2 4 7<br />

Glycera tesselata 1 3 4<br />

Glycinde nordmanni 1 1<br />

Nereis pelagica 3 3<br />

Nereis diversicolor 2 2<br />

Eulalia cf. expusilla 1 1<br />

Spio armata 1 1<br />

Armandia polyophthalma 1 1<br />

Pisione remota 1 1<br />

Onuphis eremita 6 1 7<br />

Hyalinoecia tubicola 1 1 2<br />

ARTHROPODA<br />

Pycnogoni<strong>da</strong><br />

Achelia echinata 9 9<br />

Anoplo<strong>da</strong>ctylus virescens 1 1<br />

Anoplo<strong>da</strong>ctylus amora 3 3<br />

Crustacea<br />

Mysi<strong>da</strong>cea<br />

Gastrosaccus normani 1 1 4 2 8<br />

Amphipo<strong>da</strong><br />

Ampelisca spinipes 1 1<br />

Erichthonius punctatus 1 1<br />

Erichthonius difformis 7 1 4 12<br />

Microdeutopus versiculatus<br />

2 2<br />

Melita gladiosa 2 2<br />

Lembos websteri 1 1<br />

Isopo<strong>da</strong><br />

Eurydice affinis 1 1 3 5<br />

Tanai<strong>da</strong>cea<br />

Paratanais martinsi 6 6<br />

Decapo<strong>da</strong><br />

Processa edulis 1 2 3<br />

Crangon trispinosus 6 6<br />

Anapagurus laevis 1 1<br />

Paguri<strong>da</strong>e indet. 1 2 3<br />

Galathea intermedia 1 3 4<br />

Scyllarus arctus 1 1<br />

Ebalia tuberosa 7 3 10<br />

Liocarcinus arcuatus 1 1<br />

Liocarcinus marmoreus 4 4<br />

Liocarcinus pusillus 1 1<br />

Pilumnoides inglei 1 1<br />

Parthenope expansa 1 1 2<br />

Macropodia rostrata 1 1<br />

PHORONIDA<br />

Phoronis muelleri 1 1<br />

ECHINODERMATA<br />

Echinocardium flavescens 2 2<br />

Echinocyamus pusillus 1 1<br />

No. of Species 7 10 10 4 10 8 5 6 42<br />

No. of Individuals 15 12 26 6 17 24 20 12 132


210 AÇOREANA<br />

2009, Sup. 6: 201-210<br />

APPENDIX 3. Faunal <strong>da</strong>ta from algal samples<br />

Sample WVF011 Island 24.2 Island 24.4 Island 24.5 Island 24.10 TOTAL<br />

SIPUNCULA<br />

Golfingia margaritacea 1 1<br />

ANNELIDA<br />

Harmothoe spp. 4 2 1 7<br />

Nereis pelagica 2 2<br />

Platynereis dumerilii 13 47 162 129 351<br />

Nainereis cf. laevigata 2 2<br />

Euphrosyne armadillo 1 1<br />

Polyophthalmus pictus 4 2 5 1 12<br />

Eupolymnia nebulosa 1 1<br />

Fabricia stellata 4 12 13 29<br />

ARTHROPODA<br />

Pycnogoni<strong>da</strong><br />

Achelia echinata 4 1 5<br />

Callipallene emaciata 6 6 12<br />

Anoplo<strong>da</strong>ctylus amora 0<br />

Anoplo<strong>da</strong>ctylus pygmaeus<br />

1 1 2<br />

Anoplo<strong>da</strong>ctylus angulatus 1 5 9 15<br />

Crustacea<br />

Amphipo<strong>da</strong><br />

Ampelisca aequicornis A 3 3<br />

Ampelisca aequicornis B 3 3<br />

Erichthonius punctatus 12 1 8 3 24<br />

Erichthonius difformis 42 4 43 51 140<br />

Microdeutopus versiculatus 26 1 51 37 115<br />

Melita gladiosa 3 1 4<br />

Lembos websteri 13 13<br />

Ampithoe rubricata 3 1 13 7 1 25<br />

Dexamine cf. spinosa 12 27 31 25 95<br />

Hyale nilssoni 8 9 82 85 184<br />

Hyale perieri 4 4<br />

Corophium acutum 2 55 57<br />

Caprella penantis 2 4 2 8<br />

Caprella acanthifera 18 17 21 56<br />

Isopo<strong>da</strong><br />

Paranthura costana 1 1 11 9 22<br />

Eurydice affinis 18 18<br />

Dynamene bidentata 3 22 13 38<br />

Cymodoce truncata 3 7 5 15<br />

Janira maculosa 1 7 8<br />

Tanai<strong>da</strong>cea<br />

Tanais grimaldii 4 7 194 110 315<br />

Leptochelia caldera 15 2 17<br />

Cumacea<br />

Cumella limicola 6 11 11 28<br />

Decapo<strong>da</strong><br />

Thoralus cranchi 1 1<br />

Clibanarius erythropus 4 4<br />

Paguri<strong>da</strong>e indet. 5 5<br />

Pilumnus hirtellus 2 2<br />

MOLLUSCA<br />

Gastropo<strong>da</strong><br />

Setia subvaricosa 1 5 6 12<br />

Rissoa guernei 1 1<br />

No. of Species 26 16 25 27 3 41<br />

No. of Individuals 196 129 719 606 7 1657


AÇOREANA, Suplemento 6, Setembro 2009: 211-216<br />

SHELL OCCUPANCY BY THE HERMIT CRAB CLIBANARIUS ERYTHROPUS<br />

(CRUSTACEA) ON THE SOUTH COAST OF SÃO MIGUEL, AÇORES<br />

Pedro Rodrigues 1 & Roshan K. Rodrigo 2<br />

1<br />

CIBIO-Pólo <strong>Açores</strong>, Department of Biology, University of the Azores, 9501-801 Ponta Delga<strong>da</strong>, São Miguel,<br />

Azores, Portugal. e-mail: pedrorodrigues@uac.pt<br />

2<br />

Faculty of Science, Department of Zoology, University of Colombo, Colombo 7, Sri Lanka<br />

ABSTRACT<br />

The importance of gastropod shells to hermit crabs is well known. The strong association<br />

between hermit crabs and their adopted shells influences almost all aspects of their<br />

biology and there is a strong correlation between the sizes of the shell and the crustacean.<br />

The hermit crab Clibanarius erythropus is abun<strong>da</strong>nt on the rocky shores of the <strong>Açores</strong>.<br />

However, there are few references to the ecology of this species. The aim of the present<br />

study was thus to evaluate the occupancy of mollusc shell species by C. erythropus on the<br />

south coast of the island of São Miguel. Shells of Columbella a<strong>da</strong>nsoni had the highest occupancy<br />

rate followed by Mitra cornea and Stramonita haemostoma. The significant differences<br />

in the estimated shell volumes available for C. erythropus suggests that juveniles choose<br />

Nassarius incrassatus, medium sized hermits prefer Pollia dorbignyi, C. a<strong>da</strong>nsoni and M.<br />

cornea, and the largest adults opt for S. haemastoma shells.<br />

RESUMO<br />

A importância <strong>da</strong>s conchas de gastrópodes para os berna<strong>dos</strong>-eremitas é bem<br />

conheci<strong>da</strong>. A forte associação entre os bernar<strong>dos</strong>-eremita e as suas adopta<strong>da</strong>s conchas<br />

influencia grandemente quase to<strong>dos</strong> os aspectos <strong>da</strong> sua biologia, existindo uma forte<br />

correlação entre o tamanho <strong>da</strong> concha e o tamanho do crustáceo. O bernado-eremita<br />

Clibanarius erythopus é uma espécie muito abun<strong>da</strong>nte nas costas rochosas. To<strong>da</strong>via, são<br />

raras as referências à ecologia e à biologia desta espécie. O presente estudo teve como<br />

objectivo avaliar a ocupação de conchas de espécies de moluscos por C. erythropus na costa<br />

sul de São Miguel. Conchas de Columbella a<strong>da</strong>nsoni obtiveram a maior taxa de ocupação,<br />

segui<strong>da</strong>s de Mitra cornea e de Stramonita haemastoma. As diferenças significativas no<br />

volume de concha estimado acessível a C. erythropus sugerem que os juvenis escolhem<br />

conchas de Nassarius incrassatus, os de tamanho médio preferem conchas de Pollia<br />

dorbignyi, C. a<strong>da</strong>nsoni e M. cornea, e os adultos maiores optam por conchas de S.<br />

haemastoma.<br />

INTRODUCTION<br />

The importance of gastropod shells to<br />

hermit crabs is well known; such<br />

shells particularly supplying protection<br />

against pre<strong>da</strong>tors (Vance, 1972) and physical<br />

stresses (Reese, 1969) due to the fact<br />

that the crabs have a soft, vulnerable<br />

abdomen. Shells can be found either<br />

empty, obtained by confrontations<br />

between individual crabs, or by removal<br />

of the gastropod (Elwood & Neil, 1992).<br />

The availability of shells is the main factor<br />

limiting populations of hermit crabs<br />

(Kellog, 1976) and they usually partition<br />

shell resources according to size<br />

(Bertness, 1981; Scully, 1983; Neil, 1985)<br />

and/or their own body size (Mitchell,<br />

1975), shell shape, weight and volume<br />

(Reese, 1963; Kuris & Brody, 1976;<br />

Conover, 1978). Interspecific competition<br />

among hermit crabs for shell resources<br />

may also be avoided by partitioning habitats.<br />

Partitioning also occurs between


212 AÇOREANA<br />

2009, Sup. 6: 211-216<br />

hermit crabs and other species such as<br />

sipunculans (Morton & Britton, 1995).<br />

Hermit crabs that occupy large shells<br />

can better resist to desiccation, thermal<br />

stress and pre<strong>da</strong>tion (Rittschof et al.,<br />

1995). However, heavy shells may limit<br />

reproduction and growth because of the<br />

high-energy cost of locomotion (Bertness,<br />

1981). For another hand, small shells render<br />

the crabs more vulnerable to pre<strong>da</strong>tion<br />

and may reduce their growth rate<br />

(Hazlett, 1981; Angel, 2000). The strong<br />

association between hermit crabs and<br />

their adopted shells influences greatly<br />

almost all aspects of their biology<br />

(Hazlett, 1981) and there is a strong correlation<br />

between shell and crab sizes<br />

(Abrams et al., 1986; Botelho & Costa,<br />

2000; Sant’Anna et al., 2006).<br />

The hermit crab Clibanarius erythropus<br />

(Latreille, 1818) is a common species<br />

along the Mediterranean shores and<br />

Atlantic coasts from United Kingdom to<br />

the <strong>Açores</strong> (Ingle, 1993). In the Açorean<br />

archipelago, C. erythropus is abun<strong>da</strong>nt on<br />

rocky shores, including tide pools<br />

(Morton et al., 1998). However, references<br />

to the general ecology and biology of this<br />

species are few (Gherardi, 1991).<br />

The aim of the present study was to<br />

evaluate the occupancy of mollusc shell<br />

species by Clibanarius erythropus in the<br />

south coast of São Miguel island.<br />

MATERIAL AND METHODS<br />

FIGURE 1. Location of the sampling sites on<br />

São Miguel. A. Ilhéu de Vila Franca do Campo;<br />

B. Vila Franca do Campo Harbour; C. Roí<strong>da</strong> <strong>da</strong><br />

Praia; D. Ponta <strong>da</strong> Galera; E. Baía do Cruzeiro.<br />

The study was carried out on the<br />

south coast of São Miguel during July<br />

2006 as part of the 3 rd International<br />

Workshop on the Malacology and Marine<br />

Biology of the <strong>Açores</strong> covered in Vila<br />

Franca do Campo, São Miguel, <strong>Açores</strong>.<br />

Five populations of Clibanarius erythropus<br />

were studied for shell occupancy<br />

(Figure 1).<br />

The hermit crabs were hand-sampled<br />

by snorkelling for ten minutes to stan<strong>da</strong>rdize<br />

capture effort and brought alive<br />

to the laboratory where individuals and<br />

shells were identified according to Wirtz<br />

(1995) and Morton et al. (1998). The occupied<br />

shells were measured (total shell<br />

length and shell width) using vernier callipers<br />

to the nearest 0.01 mm. The volume<br />

of each shell was estimated according to<br />

Morton & Britton (1995) by squaring the<br />

shortest linear measurement (width) and<br />

multiplying this value by the longest linear<br />

measurement (length).<br />

A Chi-square test was applied to the<br />

five most common occupied shell species.<br />

The relationship between those and the<br />

estimated volume was also subjected to<br />

analysis of variance (ANOVA) against the<br />

null hypothesis that different shell species<br />

have the same volume available for<br />

Clibanarius erythropus.<br />

RESULTS<br />

Eleven species of gastropod shells<br />

occupied by Clibanarius erythropus were<br />

collected and frequency of occupation at<br />

each site is identified in Table 1.<br />

Columbella a<strong>da</strong>nsoni Menke, 1853, Mitra<br />

cornea (Lamarck, 1811) and Stramonita<br />

haemastoma (Linnaeus, 1766) were the<br />

most commonly occupied shells, followed<br />

by Pollia dorbignyi (Payraudeau,<br />

1826) and Nassarius incrassatus (Ström,<br />

1768).


RODRIGUES & RODRIGO: SHELL OCCUPANCY BY CLIBANARIUS ERYTHROPUS 213<br />

TABLE 1. The frequency of mollusc shells occupied by Clibanarius erythropus from the different<br />

sampling sites on São Miguel.<br />

Mollusc shell Site A Site B Site C Site D Site E TOTAL<br />

Pollia dorbignyi (Payraudeau, 1826) 6 1 0 34 0 41<br />

Columbella a<strong>da</strong>nsoni Menke, 1853 54 41 51 67 31 244<br />

Stramonita haemastoma (Linnaeus, 1766) 6 15 81 25 15 142<br />

Mitra cornea (Lamarck, 1811) 1 46 0 27 84 158<br />

Nassarius incrassatus (Ström, 1768) 10 4 5 4 0 23<br />

Calliostoma lividum Dautzenberg, 1927 1 0 0 0 0 1<br />

Coralliophila meyendorffii (Calcara, 1845) 0 4 0 0 0 4<br />

Melarphe neritoides (Linnaeus, 1756) 0 0 0 1 0 1<br />

Littorina striata King & Broderip, 1832 0 0 0 0 5 5<br />

Jujubinus sp. 0 0 0 0 1 1<br />

Bittium cf. latreillii (Payraudeau, 1826) 0 0 0 0 2 2<br />

TOTAL: 78 111 137 158 138 622<br />

The Chi-square test, comparing the<br />

total number of the five commonest occupied<br />

shells from the different sampling<br />

sites, indicated a significantly different<br />

proportion of species occupied by<br />

Clibanarius erythropus (χ 2 = 386.1, p


214 AÇOREANA<br />

2009, Sup. 6: 211-216<br />

ability of certain gastropods influences<br />

their pattern of shell utilization in the natural<br />

habitat as the crabs tend to be opportunistic<br />

with regards to the shells they<br />

inhabit (Botelho & Costa, 2000). The significant<br />

differences in the estimated shell<br />

volume available for Clibanarius erythropus,<br />

the presence of empty shells (personal<br />

observations), and that the crab<br />

requires different shell sizes atdifferent<br />

stages of their growth (Morton & Britton,<br />

1995), suggests that juvenile C. erythropus<br />

individuals choose Nassarius incrassatus<br />

shells, middle size individuals prefer<br />

Pollia dorbignyi, Columbella a<strong>da</strong>nsoni and<br />

Mitra cornea shells, and larger adults opt<br />

for Stramonita haemastoma shells. This is<br />

in accor<strong>da</strong>nce with the study of Botelho &<br />

Costa (2000) where it was reported that<br />

hermit crabs of < 8.6 mm occupied all<br />

shell species, whereas those > 8.6 mm<br />

were found only in S. haemastoma shells.<br />

Smaller crabs occupied Littorina striata<br />

and N. incrassatus shells.<br />

ACKNOWLEDGMENTS<br />

We are grateful to Professor António<br />

M. de Frias Martins for the opportunity to<br />

undertake this research, and Professor<br />

Brian Morton for the review of this paper.<br />

This project was supported by the Third<br />

International Workshop on Malacology<br />

and Marine Biology, Vila Franca do<br />

Campo, São Miguel, <strong>Açores</strong><br />

The experiments performed for the<br />

present study comply with the laws of the<br />

country in which they were performed.<br />

LITERATURE CITED<br />

ABRAMS, P.A., C. NYBLADE & S.<br />

SHELDON, 1986. Resource partitioning<br />

and competition for shells in a<br />

subti<strong>da</strong>l hermit crab species assemblage.<br />

Oecologia, 69: 429-445.<br />

ANGEL, J.E., 2000. Effects of shell fit in<br />

the biology of the hermit crab Pagurus<br />

longicarpus (Say). Journal of<br />

Experimental Marine Biology and<br />

Ecology, 243(2): 169-184.<br />

BERTNESS, M.D., 1981. The influence of<br />

shell-type on hermit crab growth and<br />

clutch size. Crustaceana, 40(2): 197-<br />

205.<br />

BOTELHO, A., & A.C. COSTA, 2000.<br />

Shell occupancy of the interti<strong>da</strong>l hermit<br />

crab Clibanarius erythropus<br />

(Decapo<strong>da</strong>, Diogeni<strong>da</strong>e) on São<br />

Miguel (Azores). Hydrobiologia, 440:<br />

111-117.<br />

CONOVER, M., 1978. Importance of various<br />

shell characteristics to the shell<br />

selection behavior of the hermit crabs.<br />

Journal of Experimental Marine Biology<br />

and Ecology, 32: 131-142.<br />

ELWOOD, R.W., & S.J. NEIL, 1992.<br />

Assessments and Decisions, 192 pp.<br />

Chapman & Hall, London.<br />

GHERARDI, F., 1991. Relative growth,<br />

population structure and shell-utilization<br />

of the hermit crab Clibanarius erythropus<br />

in the Mediterranean. Oebalia,<br />

17: 181-196.<br />

HAZLETT, B., 1981. The behavioural<br />

ecology of hermit crabs. Annual<br />

Review of Ecology and Systematics, 12: 1-<br />

22.<br />

INGLE, R., 1993. Hermit Crabs of the<br />

Northeastern Atlantic Ocean and the<br />

Mediterranean Sea, 495 pp. Chapman<br />

& Hall, London.<br />

KELLOG, C.W., 1976. Gastropod shells: a<br />

potentially limiting resource for hermit<br />

crabs. Journal of Experimental<br />

Marine Biology and Ecology, 22: 101-<br />

111.<br />

KURIS, A.M., & M.S. BRODY, 1976. Use<br />

of principal components analysis to<br />

describe the snail shell resource for<br />

hermit crabs. Journal of Experimental<br />

Marine Biology and Ecology, 22: 69-77.<br />

MITCHELL, K.A., 1975. An analysis of<br />

shell occupation by two sympatric


RODRIGUES & RODRIGO: SHELL OCCUPANCY BY CLIBANARIUS ERYTHROPUS 215<br />

species of hermit crab. I. Ecological factors.<br />

Biological Bulletin, 149: 205-213.<br />

MORTON, B., & J.C. BRITTON, 1995.<br />

Partitioning of shell resources by<br />

Aspi<strong>dos</strong>iphon muelleri (Sipuncula) and<br />

Anapagurus laevis (Crustacea) in the<br />

Azores. IN: MARTINS, A.M.F. (ed.),<br />

The Marine Fauna and Flora of the<br />

Azores (Proceedings of the Second<br />

International Workshop of Malacology<br />

and Marine Biology, São Miguel, 1991).<br />

Açoreana, Supplement [4]: 67-77.<br />

MORTON, B., J.C. BRITTON & A.M.F.<br />

MARTINS, 1998. Ecologia Costeira <strong>dos</strong><br />

<strong>Açores</strong>, x + 249 pp. Socie<strong>da</strong>de Afonso<br />

Chaves, Ponta Delga<strong>da</strong>.<br />

NEIL, S.J., 1985. Size assessment and<br />

cues: studies of hermit crab contests.<br />

Behaviour, 92: 22-38.<br />

REESE, E.S., 1963. The behavioral mechanisms<br />

underlying shell selection by<br />

hermit crabs. Behaviour, 21: 78-126.<br />

REESE, E.S., 1969. Behavioral a<strong>da</strong>ptations<br />

of interti<strong>da</strong>l hermit crabs.<br />

American Zoologist, 9: 343-355.<br />

RITTSCHOF, D., J. SARRICA & D.<br />

RUBENSTEIN, 1995. Shell dynamics<br />

and microhabitat selection by striped<br />

legged hermit crabs, Clibanarius vittatus<br />

(Bose). Journal of Experimental<br />

Marine Biology and Ecology, 192(2): 157-<br />

172.<br />

SANT’ANNA, B., C.M. ZANGRANDE,<br />

L.D.A. REIGADA & M.A.A.<br />

PINHEIRO, 2006. Shell utilization<br />

pattern of the hermit crab Clibanarius<br />

vittatus (Crustacea, Anomura) in an<br />

estuary at São Vicente, State of São<br />

Paulo, Brazil. Iheringia, Série Zoologia,<br />

96(2): 261-266.<br />

SCULLY, E.P., 1983. The behavioural ecology<br />

of competition and resource utilization<br />

among hermit crabs. In:<br />

REBACH, S., & D. DUNHAM (eds.),<br />

Studies in A<strong>da</strong>ptation: The behavior of<br />

higher Crustacea, pp. 23-55. John<br />

Wiley, New York.<br />

VANCE, R.R., 1972. The role of shell adequancy<br />

in behavioural interactions<br />

involving the hermit crab Pagurus<br />

longicarpus. Marine Biology, 104: 31-39.<br />

WIRTZ, P., 1995. Unterwasserfuhrer<br />

Madeira-Kanaren-Azoren, 247 pp.<br />

Stephanie Naglschmid, Stuttgart.


AÇOREANA, Suplemento 6, Setembro 2009: 217-225<br />

A CONSERVATIONAL APPROACH ON THE SEABIRD POPULATIONS OF ILHÉU<br />

DE VILA FRANCA DO CAMPO, AZORES, PORTUGAL<br />

Pedro Rodrigues 1 , Joana Micael 1 , Roshan K. Rodrigo 2 & Regina T. Cunha 1<br />

1<br />

CIBIO-Pólo <strong>Açores</strong>, Department of Biology, University of the Azores, 9501-801 Ponta Delga<strong>da</strong>, São Miguel,<br />

Azores, Portugal. e-mail: pedrorodrigues@uac.pt<br />

2<br />

Faculty of Science, Department of Zoology, University of Colombo, Colombo 7, Sri Lanka<br />

ABSTRACT<br />

This study was performed to identify the seabird species occurring on Ilhéu de Vila<br />

Franca do Campo (IVFC) off São Miguel island, Azores, giving a special emphasis on the<br />

description of their ecology and threats. Flush counts, ground searches and raft counts<br />

were conducted and two types of natural habitats were identified. The results confirmed<br />

the nesting of two en<strong>da</strong>ngered species and revealed three other possible breeders enhancing<br />

the importance of the islet for the protection and conservation of Azorean seabird populations.<br />

Although playing an important role on the conservation of Cory’s shearwater<br />

and Common tern populations, the islet can be threatened by continuous habitat degra<strong>da</strong>tion<br />

by human disturbance. The implementation of a habitat restoration program is<br />

suggested for the islet in a near future.<br />

RESUMO<br />

Foi feito um levantamento <strong>da</strong>s espécies de aves marinhas que ocorrem no Ilhéu de Vila<br />

Franca do Campo, com especial ênfase para a sua ecologia e ameaças. Foram realiza<strong>da</strong>s<br />

contagens visuais, procura de ninhos e contagem de janga<strong>da</strong>s ao longo de todo o ilhéu e<br />

zonas adjacentes, confirmando a nidificação de duas espécies ameaça<strong>da</strong>s e a possibili<strong>da</strong>de<br />

de nidificação de outras três. A identificação de dois tipos de habitats naturais evidencia<br />

a importância do ilhéu para a protecção e conservação <strong>da</strong>s populações de aves marinhas.<br />

Apesar do importante papel na conservação <strong>da</strong>s populações de cagarros e garajauscomuns,<br />

o ilhéu de Vila Franca do Campo continua a ser ameaçado por uma contínua<br />

degra<strong>da</strong>ção <strong>dos</strong> seus habitats devido à acção humana. Este trabalho sugere, num futuro<br />

próximo, a implementação de medi<strong>da</strong>s proteccionistas e um programa de restauração <strong>dos</strong><br />

habitats naturais deste ilhéu.<br />

INTRODUCTION<br />

The Azorean archipelago, located in the<br />

north Atlantic Ocean, has always been<br />

recognized as an interesting place for<br />

birds, mainly seabirds, not only due to the<br />

coast line with steep scarps but also to its<br />

geographical location (N36-39º, W25-31º)<br />

that represents an ornithological transition<br />

between temperate and tropical<br />

zones (Monteiro et al., 1996a, b).<br />

Thirteen seabird species are known to<br />

occur in the Azores. The regular breeders<br />

are Bulwer’s petrel (Bulweria bulwerii),<br />

Cory’s shearwater (Calonectris diomedia<br />

borealis), Manx shearwater (Puffinus puffinus),<br />

Little shearwater (Puffinus baroli),<br />

Band-rumped storm-petrel (Oceanodroma<br />

castro), Monteiro’s storm petrel<br />

(Oceanodroma monteiroi), Yellow-legged<br />

gull (Larus michaelis atlantis), Common<br />

tern (Sterna hirundo) and Roseate tern (S.<br />

dougallii). There are two occasional<br />

breeders, Red-billed tropicbird (Phaethon<br />

aethereus) and Sooty tern (Onychoprion fuscatus),<br />

a possible breeder, Cape Verde<br />

petrel (Pterodroma feae), and a possible former<br />

breeder, White-faced storm-petrel<br />

(Pelagodroma marina) (Le Grand et al.,<br />

1984; Monteiro et al., 1996a).


218 AÇOREANA<br />

2009, Sup. 6: 217-225<br />

The archipelago accounts for the<br />

largest population of Cory’s shearwater of<br />

the world with more than 180.000 couples<br />

(79% of the European population)<br />

(Rodrigues & Nunes, 2002). Also representative<br />

are the populations of Bandrumped<br />

storm-petrel, 915 to 1240 couples<br />

(around 25% of the European population),<br />

Little shearwater, 800 to 1500 couples<br />

(around 20% of the European population)<br />

(Monteiro et al., 1999), Roseate tern<br />

with more than 1000 couples (60% of the<br />

European population) and Common tern,<br />

around 2000 couples (5% of the European<br />

population) (Rodrigues & Nunes, 2002).<br />

All these seabird species have a vulnerable<br />

status, except Roseate tern which<br />

is in Danger, and the Common tern with a<br />

Favourable Conservation status<br />

(Rodrigues & Nunes, 2002).<br />

Most seabird populations breeding in<br />

Azores have been suffering dramatic historical<br />

declines as a consequence of major<br />

habitat degra<strong>da</strong>tion, mainly by human<br />

activities from the late 15 th century on,<br />

and the introduction of mammalian<br />

FIGURE 1. Ilhéu de Vila Franca do Campo with identified habitats, burrows and nests cavities.<br />

C - Vegetated Sea Cliffs of the Macaronesian Coasts habitat; H - Endemic Macaronesian Heaths<br />

habitat; F - Forests of iron trees; V – vineyards; + Common tern (CT) nests; * Cory’s shearwater (CS)<br />

burrows/nests cavities; CS destroyed nest; CS abandoned nest; CS abandoned egg; CT<br />

destroyed nest; CT abandoned nest; CT abandoned egg; Area of public permitted access.


RODRIGUES ET AL: SEABIRD CONSERVATION AT ILHÉU DE VILA FRANCA 219<br />

pre<strong>da</strong>tors (Monteiro et al., 1996b), so they<br />

tend to breed on isolated islets and sea<br />

cliffs, free of pre<strong>da</strong>tors and human disturbance,<br />

with natural habitats without invasive<br />

alien species (Monteiro et al., 1996b;<br />

Ramos et al., 1997; Groz & Pereira, 2005).<br />

One of these islets is the Ilhéu de Vila<br />

Franca do Campo (IVFC) (Figure 1), 1.2<br />

km south of São Miguel island.<br />

Several studies were published on the<br />

islet’s biota, describing its general topography<br />

and biological characteristics,<br />

mainly about its marine life and coastal<br />

ecology (Martins, 1978, 1995, 2004;<br />

Morton, 1990; Britton, 1995; Backeljau et<br />

al., 1995; Morton et al., 1998) revealing the<br />

ecological and geological importance of<br />

the place.<br />

Some surveys targeting Cory’s shearwater<br />

and terns were made in the Azores<br />

(del Nevo et al., 1993; Bolton, 2001 and<br />

Monteiro et al., unpublished report) but<br />

none of them went to the islet. Monteiro<br />

et al. (1999) estimated 0 to 10 Bandrumped<br />

storm-petrel couples breeding on<br />

the islet.<br />

Due to the unique importance of the<br />

IVFC as an agglomeration of various<br />

micro-ecosystems, the Azorean<br />

Government established it as a Nature<br />

Reserve in 1983, as provided by the<br />

Regional Legislative Decree nº 3/83/A, of<br />

March 3 rd , and some rules were implemented<br />

with the intention to preserve<br />

and protect the islet; the public access was<br />

restricted to the lagoon, the marine area<br />

of the reserve was extended to 30 m deep,<br />

and fishing and any underwater activity<br />

were forbidden. In spite of these protection<br />

measures, the flora and fauna in the<br />

islet and its lagoon have suffered a significant<br />

negative impact caused by the flood<br />

of people mostly during the summer<br />

(Morton et al., 1998). The islet is popular<br />

for recreation and between May and<br />

September a boat brings in about 400 persons<br />

a <strong>da</strong>y.<br />

This study was developed to identify<br />

the breeding species of seabirds on IVFC,<br />

giving special emphasis to habitat characterization<br />

and threats, thus contributing<br />

to the conservation and protection of<br />

the islet’s natural habitats and their<br />

seabird populations.<br />

MATERIAL AND METHODS<br />

The study was carried out on the<br />

IVFC (N37º42.30’, W25º26.52’), during<br />

July 2006, in the course of the 3 rd international<br />

Workshop on Malacology and<br />

Marine Biology in Vila Franca do<br />

Campo, São Miguel, Azores (Figure 1).<br />

The islet is a drowned volcanic crater<br />

with a surface area of 61.640 m 2 , accessed<br />

by a narrow channel, but with several<br />

fissures also connecting the lagoon with<br />

the sea outside. The main length of the<br />

islet is 420 m from east to west, reaches<br />

an altitude of 62 meters, and is divided<br />

into two portions: the Big islet, that constitutes<br />

almost all the islet’s area and the<br />

Small islet on the northeast side. There<br />

are also several rocks of different sizes,<br />

outstanding the Farilhão with 32.5 m,<br />

and Baixa <strong>da</strong> Cozinha with 19.4 m. On<br />

the islet there is an internal lagoon connected<br />

to the open sea trough chaps and<br />

underwater tunnels. Inside the lagoon<br />

there is a small pier where people enter<br />

the islet (Martins, 2004).<br />

The habitat characterisation of the<br />

islet was made in loco following the<br />

Interpretation Manual of European<br />

Union Habitats (European Habitats<br />

Committee, 1991).<br />

Three different methods were conducted<br />

to identify the seabird species of<br />

the islet, and to estimate species abun<strong>da</strong>nce<br />

and number of breeding pairs:<br />

1. Flush counts<br />

Six boat rides, of 15 minutes each,<br />

were undertaken for flush counts of<br />

seabirds and to observe the external


220 AÇOREANA<br />

2009, Sup. 6: 217-225<br />

coast zone of the islet. The method consisted<br />

on counting the number of individuals<br />

visible from the boat (eye view),<br />

at different hours of the <strong>da</strong>y, three rides<br />

in the morning and three on the afternoon.<br />

Species were identified and all the<br />

individuals standing on the islet or flying<br />

over the sea were counted.<br />

2. Ground searches<br />

Two ground searches were made for<br />

occupied nests of terns and<br />

Porcellariiformes (Figure 1). Signs of<br />

occupation included the presence of an<br />

adult, eggs or chicks in a visible nest<br />

chamber. In sites where a nest chamber<br />

was not visible, a burrow was considered<br />

to be occupied if it was of sufficient size<br />

to accommo<strong>da</strong>te a bird or if there was<br />

one or more evidences of occupation<br />

(e.g. faeces; shed breast feathers, excavated<br />

soil or absence of obstructing vegetation<br />

or spider webs in the burrow’s<br />

entrance).<br />

3. Raft counts<br />

During the breeding season, Cory’s<br />

shearwater characteristically form flocks<br />

(called “rafts”) on the sea, with the number<br />

of individuals increasing by the end<br />

of the <strong>da</strong>y, waiting for nightfall to fly up<br />

to the breeding colony (Mallet &<br />

Coghlan, 1964). According to Rich<strong>da</strong>le<br />

(1963) and Skira (1991) over half of the<br />

adult shearwaters at a colony are<br />

expected to be non-breeders.<br />

Raft counts were conducted for<br />

Cory’s shearwater from two places, one<br />

on the top of the south side of the islet,<br />

and another from Ponta de São Pedro<br />

(N37º42.39’, W25º26.41’) on the coast of<br />

São Miguel island and in front of the<br />

islet; raft counts were made by the end of<br />

the <strong>da</strong>y, starting exactly at 08:00 pm, for<br />

45 minutes long, using binoculars (10 X<br />

50).<br />

All the methods applied in this study<br />

involved two replicates from two different<br />

observers.<br />

RESULTS<br />

Habitats<br />

Two types of natural habitats were<br />

identified on the IVFC (Figure 1): i)<br />

Vegetated Sea Cliffs of the Macaronesian<br />

Coasts habitat, dominated by the endemic<br />

fescue (Festuca petraea), with associated<br />

plants such as rush (Juncus acutus),<br />

wild carrot (Daucus carota), seaside goldenrod<br />

(Soli<strong>da</strong>go sempervirens) and rock<br />

samphire (Crithmum maritimum); ii)<br />

Endemic Macaronesian Heaths habitat<br />

dominated by the endemic green heather<br />

(Erica azorica), with associated plants<br />

such as laurel (Laurus azorica), Myrica<br />

faya, Cyrtomium falcatum, Holcus rigidus<br />

and Euphorbia azorica. This last habitat<br />

presents plenty of exotic plants such as<br />

the giant reed (Arundo donax), used in the<br />

past for protective barriers of the vineyards,<br />

tamarisks (Tamarix gallica), brambles<br />

(Rubus ulmifolius) and australian pittosporum<br />

(Pittosporum undulatum).<br />

On the higher southern and western<br />

inner slopes of the Big islet there are two<br />

small “forests” of iron trees (Metrosideros<br />

tomentosa) and vineyards (Vitis labrusca),<br />

although they are no longer cultivated.<br />

Seabirds<br />

There was evidence of two species of<br />

seabirds breading on the islet (Figure 1),<br />

Cory’s shearwater and Common tern,<br />

but three more species were registered,<br />

Little shearwater, Band-rumped stormpetrel<br />

and Roseate tern, although at present<br />

without any breeding evidence.<br />

Table 1 shows avifauna abun<strong>da</strong>nce<br />

determined through the different methods<br />

used.<br />

Cory’s shearwater breeds on Big islet<br />

with Vegetated Sea Cliffs of the<br />

Macaronesian Coasts habitat where 34<br />

burrows and nests cavities were found,<br />

and on slopes of Endemic Macaronesian<br />

Heaths habitat that exhibited 10 burrows


RODRIGUES ET AL: SEABIRD CONSERVATION AT ILHÉU DE VILA FRANCA 221<br />

TABLE 1. Seabird abun<strong>da</strong>nce from flush and raft counts and number of couples from occupied<br />

nests/burrows on the Ilhéu de Vila Franca do Campo. SD = Stan<strong>da</strong>rd Deviation.<br />

Species<br />

Flush counts<br />

(individuals)<br />

Mean ± SD<br />

Ground searches<br />

(couples)<br />

Raft counts<br />

(individuals)<br />

Mean ± SD<br />

Cory’s shearwater 154 ± 22.6 44 395 ± 21.2<br />

Common tern 325 ± 35.4 80 -<br />

Roseate tern 2 - -<br />

Little shearwater 1 - -<br />

Band-rumped storm-petrel 1 - -<br />

and nests cavities. The three nests found<br />

on Small islet were destroyed or abandoned.<br />

Common terns breed on two external<br />

rocks of the islet, Baixa <strong>da</strong> Cozinha (10<br />

nests) and Farilhão (19 nests), and on the<br />

external coast of the Small islet with<br />

Vegetated Sea Cliffs of the Macaronesian<br />

Coasts habitat (41 nests).<br />

Occasional observations on the populations<br />

of Cory’s shearwater and<br />

Common terns allowed identification of<br />

chicks being reared, incubating parents,<br />

destroyed and abandoned nests and<br />

abandoned eggs (Table 2). It was not possible<br />

to identify the exact number of eggs<br />

laid per couple of Common terns.<br />

Evidences of human disturbance were<br />

found near potential seabird nests,<br />

including recreation, wastes, and van<strong>da</strong>lism<br />

such as broken eggs and burrows<br />

destruction. There were an equivalent<br />

percentage of abandoned nests in both<br />

populations (11%) and about 18% of<br />

Cory’s shearwater nests and 5% of<br />

Common tern nests were destroyed.<br />

Nearly 7% of Cory’s shearwater eggs and<br />

1% of Common tern eggs were abandoned<br />

by the progenitors.<br />

DISCUSSION<br />

The Vegetated Sea Cliffs of the<br />

Macaronesian Coasts habitat of the IVFC<br />

are well preserved probably because they<br />

occur on the external rocks of the islet and<br />

on inaccessible cliffs, but also because<br />

they are highly influenced by salt-water<br />

spray where exotic plants cannot grow.<br />

According to Sjögren (1973) the association<br />

Festucetum petreae is characteristic of<br />

Azores coastal habitats, occurring mainly<br />

in the sea cliffs. The characteristic species<br />

of this association is the common endemic<br />

Festuca petraea, which usually develops<br />

coastal prairies. Other species are found<br />

in this association, such as the common<br />

Soli<strong>da</strong>go sempervirens and Crithmum maritimum,<br />

the less common Tolpis succulenta<br />

and even rarest endemic plants like<br />

Azorina vi<strong>da</strong>lii and Myosotis maritima.<br />

The Endemic Macaronesian Heaths<br />

habitat was much degraded with exotic<br />

plants such as Arundo donax, Lantana<br />

TABLE 2. Number of observations on Cory’s shearwater and Common tern nests on Ilhéu de Vila<br />

Franca do Campo.<br />

Species<br />

Used<br />

nests<br />

Destroyed<br />

nests<br />

Abandoned<br />

nests<br />

Abandoned<br />

eggs<br />

Incubating<br />

couples<br />

Rearing<br />

chicks<br />

Cory’s shearwater 44 8 5 3 9 6<br />

Common tern 80 4 9 1 37 11


222 AÇOREANA<br />

2009, Sup. 6: 217-225<br />

camara and Pittosporum undulatum.<br />

According to the Convention on<br />

Biological Diversity, invasive alien species<br />

which introduction and/or spread threatens<br />

biological diversity are now considered<br />

the second cause of biodiversity loss<br />

at a global level, after direct habitat<br />

destruction (Shine et al., 2000; Groz &<br />

Pereira, 2005).<br />

The methods used in this study to<br />

estimate species abun<strong>da</strong>nce and number<br />

of breeding pairs were effective because<br />

they complemented each other giving a<br />

broader view of the colonies. These<br />

results confirmed nesting of two en<strong>da</strong>ngered<br />

species and listed three other possible<br />

breeders revealing the importance of<br />

the IVFC for the protection and conservation<br />

of seabirds.<br />

Cory’s shearwater breeds generally in<br />

the inaccessible sea cliffs of the islet and<br />

less in slopes with Macaronesian vegetation.<br />

The differences between the numbers<br />

of burrows and nests found in the<br />

Vegetated Sea Cliffs of the Macaronesian<br />

Coasts habitat and in the Endemic<br />

Macaronesian Heaths habitat are probably<br />

related to human disturbance and<br />

degra<strong>da</strong>tion of this last habitat with invasive<br />

alien species that are a threat to<br />

seabird populations (Groz & Pereira,<br />

2005). Adults arrive in colonies by late-<br />

February, lay eggs from late-May to early-<br />

June and hatching is relatively synchronous,<br />

most chicks hatching between 18<br />

and 31 July (Granadeiro, 1991). Young<br />

birds fledge from late-October to early-<br />

November (Monteiro et al., 1996b). They<br />

lay only one egg per year and do not<br />

replace it if it is <strong>da</strong>maged or lost soon<br />

after laying, so there is an ecological significance<br />

when a couple looses their egg,<br />

all the dispended energy is lost and it is<br />

one less breading couple.<br />

Common terns breed in inaccessible<br />

rocks with Vegetated Sea Cliffs of the<br />

Macaronesian Coasts habitat, where<br />

human disturbance is almost absent, and<br />

where they can avoid possible pre<strong>da</strong>tors.<br />

Adults arrive in colonies by early-April,<br />

egg laying occurs from early-May to mid-<br />

June and they stay in colonies until late-<br />

September (Monteiro et al., 1996b). A<br />

clutch of 2-4 (usually 3) eggs is laid. One<br />

brood per season is typical but re-nesting<br />

is common when the first nest is<br />

destroyed (Peterson, 1988). This study<br />

indicates that the colony on IVFC represents<br />

at least 18% of the Azorean total population.<br />

Although being a protected species,<br />

populations of these seabirds are becoming<br />

smaller than in the past, they have been<br />

chased and hunted by humans, and suffered<br />

with pre<strong>da</strong>tion from introduced<br />

mammals and from deforestation<br />

(Monteiro et al., 1996b).<br />

The suite of terns and shearwaters is of<br />

major international conservation<br />

importance (Rodrigues & Nunes, 2002).<br />

Their breeding distributions in the Atlantic<br />

Ocean are concentrated in Europe and<br />

most species have small world populations<br />

(Monteiro et al., 1999) being classified as<br />

globally threatened species (Collar et al.,<br />

1994). The Azorean population of Cory’s<br />

shearwater decreased around 50% between<br />

1996 and 2001 (Rodrigues & Nunes, 2002),<br />

and a similar situation was observed for<br />

Common tern populations, estimated<br />

around 4000 breeding couples for 1992 (del<br />

Nevo et al. 1993), against 2000 breeding<br />

couples for year 2000 (Rodrigues & Nunes,<br />

2002), probably due to the impact of continuous<br />

lost of their habitats.<br />

People’s access to nests and burrows<br />

represents an important threat over<br />

seabirds in the islet, and several impacts<br />

from recreation and van<strong>da</strong>lism, are leading<br />

to their distraction from normal activities;<br />

parents spend less time tending young<br />

birds or eggs, flying away from nests, leaving<br />

eggs or chicks vulnerable to pre<strong>da</strong>tors<br />

and amenity, nests are destroyed and


RODRIGUES ET AL: SEABIRD CONSERVATION AT ILHÉU DE VILA FRANCA 223<br />

seabirds entirely abandon the colonies.<br />

These impacts can affect Azorean seabirds,<br />

particularly Common terns, since the<br />

colony of IVFC represents one of the<br />

largest in the Azores.<br />

Due to the importance of the Azores<br />

archipelago for seabirds in Europe, it is<br />

fun<strong>da</strong>mental to protect every natural habitat<br />

and to conserve the few areas where<br />

they breed, usually steep scarps and islets<br />

(Monteiro et al, 1996b, 1999; Ramos et al.,<br />

1997).<br />

In conclusion, results from the present<br />

work indicate that IVFC plays an important<br />

role on the conservation of Cory’s<br />

shearwater and Common tern populations,<br />

since hundreds of couples of these two<br />

species breed on the islet. But this importance<br />

can be threatened by the continuous<br />

degra<strong>da</strong>tion of their habitats.<br />

Seabirds become mature at a late age,<br />

experience low annual fecundity, often<br />

refrain from breeding, and enjoy annual<br />

adult survival rates as high as 98%. This<br />

suite of life history characteristics limits the<br />

capacity for seabird populations to recover<br />

quickly from major perturbations, and presents<br />

important conservation challenges<br />

(Russell, 1999).<br />

An urgent management plan for IVFC<br />

is necessary, in order to conserve the natural<br />

habitats of the islet and protect their<br />

seabird populations.<br />

According to Groz & Pereira (2005),<br />

islets habitats are expected to respond<br />

rapidly to habitat restoration, so it is urgent<br />

to implement an habitat restoration program<br />

and a major efficient islet control to<br />

people access, in order to improve seabirds<br />

breeding conditions on the islet. A welldesigned<br />

legal and institutional framework<br />

is essential to provide a basis for effective<br />

eradication and control measures of alien<br />

plant species (Shine et al., 2000), control of<br />

soil erosion and multiplication and reintroduction<br />

of native flora. A mark-recapture<br />

analysis is useful for tracking demographic<br />

changes in a population over time<br />

(i.e., assessing population size, adult survival,<br />

and juvenile recruitment) (Brichetti et<br />

al., 2000) and could be used to evaluate the<br />

effect of the habitat restoration programme.<br />

Moreover, seabirds are believed to constitute<br />

useful samplers of the marine environmental<br />

since they have been recognized<br />

as potentially useful and economical indicators<br />

of the status of marine environment<br />

and, in particular, the status of commercially<br />

important prey stocks (Furness &<br />

Greenwood, 1993).<br />

ACKNOWLEDGEMENTS<br />

We are grateful to Professor António M.<br />

de Frias Martins for the opportunity to<br />

undertake this research.<br />

This project was supported by the<br />

Third International Workshop of<br />

Malacology and Marine Biology, Vila<br />

Franca do Campo, São Miguel, Azores, July<br />

2006.<br />

The experiments performed for the present<br />

study comply with the laws of the<br />

country in which they were performed.<br />

LITERATURE CITED<br />

BACKELJAU, T., K. BREUGELMANS, C.<br />

BRITO, L. DE BRUYN, H. DE WOLF &<br />

J. TIMMERMANS, 1995. Macrogeographic<br />

genetic homogeneity in<br />

Littorina striata from the Azores<br />

(Mollusca: Prosobranchia). In: MART-<br />

INS, A..F. (ed.), The Marine Fauna and<br />

Flora of the Azores (Proceedings of the<br />

Second International Workshop of<br />

Malacology and Marine Biology, Vila<br />

Franca do Campo, São Miguel, Azores,<br />

1991). Açoreana, Supplement [4]:159-<br />

171.<br />

BOLTON, M., 2001. Population census of<br />

a threatened seabird, Cory’s shearwater<br />

Calonectris diomedea, in the Azores


224 AÇOREANA<br />

2009, Sup. 6: 217-225<br />

archipelago. Fauna & Flora<br />

International.<br />

BRICHETTI, P., U.F. FOSCHI & G.<br />

BOANO, 2000. Does El Ninõ affect<br />

survival rate of Mediterranean populations<br />

of Cory’s shearwater?<br />

Waterbirds, 23: 147-154.<br />

BRITTON, J.C., 1995. The relationship<br />

between position on shore and shell<br />

ornamentation in two size-dependent<br />

morphotypes of Littorina striata with<br />

an estimate of evaporative water loss<br />

in these morphotypes and Melarhaphe<br />

neritoides. In: GRAHAME, J., P.J.<br />

MILL & D.G. REID (eds.),<br />

Developments in Hydrobiology III.<br />

Advances in Littorinid Biology, pp. 129-<br />

142. Kluwer Academic Press,<br />

Dordrecht, The Netherlands.<br />

COLLAR, N., M. CROSBY & A. STAT-<br />

TERSFIELD, 1994. Birds to watch 2.<br />

The world list of threatened birds.<br />

BirdLife International (Birdlife<br />

Conservation Series 4), Cambridge.<br />

EUROPEAN HABITATS COMMITTEE,<br />

1991. CORINE biotopes manual,<br />

Habitats of the European Community.<br />

EUR 12587/3, Office for Official<br />

Publications of the European<br />

Communities, 1991.<br />

FURNESS, R., & J. GREENWOOD, 1993.<br />

Birds as monitors of environmental<br />

change, 325 pp. Chapman & Hall,<br />

London.<br />

GRANADEIRO, J., 1991. The breeding<br />

biology of Cory’s shearwater<br />

Calonectris diomedea borealis on<br />

Berlenga island, Portugal. Seabird, 13:<br />

30-39.<br />

GROZ, M., & J. PEREIRA, 2005. Invasive<br />

alien species as a threat to seabird<br />

populations: an account of habitat<br />

restoration on Ilhéu <strong>da</strong> Praia<br />

(Graciosa, Azores) special protection<br />

area. Airo, 15: 3-9.<br />

LE GRAND, G., K. EMMERSON & A.<br />

MARTIN, 1984. The status and conservation<br />

of seabirds in the Macaronesian<br />

islands. In: CROXALL, J.P., P.G.H.<br />

EVANS & R.W. SCHREIBER (eds.),<br />

Status and conservation of the world’s<br />

seabirds pp. 377-391. ICBP Technical<br />

Publication.<br />

MALLET, G., & L. COGHLAN, 1964.<br />

Cory’s shearwater Procellaria diomedea<br />

breeding in the Azores. Ibis 106: 123-<br />

125.<br />

MARTINS, A.M.F., 1978. Mollusques des<br />

<strong>Açores</strong>. Ilhéu de Vila Franca do Campo, 1.<br />

Basommatophora, 31 pp., 5 plates. Ponta<br />

Delga<strong>da</strong>: Centenary of “Carlos<br />

Machado” Museum Foun<strong>da</strong>tion.<br />

MARTINS, A.M.F., 1995. Terrestrial<br />

molluscs of Ilhéu de Vila Franca do<br />

Campo, São Miguel, Azores – an<br />

illustrated list. In: MARTINS A.M.F.<br />

(ed.), The Marine Fauna and Flora of the<br />

Azores (Proceedings of the Second<br />

International Workshop of Malacology and<br />

Marine Biology, Vila Franca do Campo,<br />

São Miguel, Azores, 1991). Açoreana,<br />

Supplement [4]: 249-259.<br />

MARTINS, A.M.F., 2004. The Princess’<br />

Ring, 99 pp. Intermezzo-Audiovisuais,<br />

L<strong>da</strong>., Lisboa.<br />

MONTEIRO, L., J. RAMOS & R.<br />

FURNESS, 1996a. Past and present status<br />

and conservation of the seabirds<br />

breeding in the Azores archipelago.<br />

Biological Conservation, 78: 319-328.<br />

MONTEIRO, L., J. RAMOS & R. FUR-<br />

NESS, 1996b. Movements, morphology,<br />

breeding, molt, diet and feeding of<br />

seabirds in the Azores. Colonial<br />

Waterbirds, 19(1): 82-97.<br />

MONTEIRO, L., J. RAMOS, J. PEREIRA, P.<br />

MONTEIRO, R. FEIO, D.<br />

THOMPSON, S. BEARHOP, R.<br />

FURNESS, M. LARANJO, G. HILTON,<br />

V. NEVES, M. GROZ & K.<br />

THOMPSON, 1999. Status and distribution<br />

of Fea’s Petrel, Bulwer’s Petrel,<br />

Manx Shearwater, Little Shearwater<br />

and Band-Rumped Storm-Petrel in the


RODRIGUES ET AL: SEABIRD CONSERVATION AT ILHÉU DE VILA FRANCA 225<br />

Azores Archipelago. Waterbirds, 22(3):<br />

358-366.<br />

MONTEIRO, L., R. FEIO, J. PEREIRA, P.<br />

MONTEIRO, J. RAMOS, A. TAVARES,<br />

L. WILSON, L. HEWITSON, V. NEVES<br />

& R. FURNESS, unpublished report.<br />

Population census of Cory’s shearwater<br />

Calonectris diomedea borealis in the<br />

Azores archipelago. University of<br />

Azores, Horta.<br />

MORTON, B., 1990. The interti<strong>da</strong>l ecology<br />

of Ilhéu de Vila Franca – a drowned<br />

volcanic crater in the Azores. In: MAR-<br />

TINS, A.M.F. (ed.), The Marine Fauna<br />

and Flora of the Azores (Proceedings of the<br />

First International Workshop of<br />

Malacology, São Miguel, Azores, 1988).<br />

Açoreana, Supplement [2]: 3-20.<br />

MORTON, B., J.C. BRITTON & A.M.F.<br />

MARTINS, 1998. Coastal Ecology of the<br />

Azores, X + 249 pp. Socie<strong>da</strong>de Afonso<br />

Chaves, Ponta Delga<strong>da</strong>.<br />

del NEVO, A., E. DUNN, F. MEDEIROS,<br />

G. le GRAND, P. AKERS, M. AVERY &<br />

L. MONTEIRO, 1993. The status of<br />

Roseate Terns Sterna dougallii and<br />

Common Terns Sterna hirundo in the<br />

Azores. Seabird, 15: 30-37.<br />

PETERSON, D., 1988. Common tern,<br />

Sterna hirundo. In: ANDRLE, R.F., & J.R.<br />

CARROLL (eds.), The Atlas of Breeding<br />

Birds in New York State, pp 178-179.<br />

Cornell Univ. Press, Ithaca, NY.<br />

RAMOS, J, L. MONTEIRO, E. SOLA & Z.<br />

MONIZ, 1997. Characteristics and<br />

competition for nest cavities in burrowing<br />

procellariiformes. The Condor,<br />

99: 634-641.<br />

RICHDALE, L., 1963. Biology of the sooty<br />

shearwater Puffinus griseus. Proceedings<br />

of Zoology Society of London, 141: 1-117.<br />

RODRIGUES, P., & M. NUNES, 2002.<br />

Characterization of most appropriate territories<br />

for bird population in Azores archipelago,<br />

77 pp. Portuguese Society for<br />

Study of Birds, Lisbon.<br />

SHINE, C., N. WILLIAMS & L. GÜN-<br />

DLING, 2000. A guide to design in legal<br />

and institutional frameworks on invasive<br />

alien species. World Conservation<br />

Union, Gland, Switzerland.<br />

SJÖGREN, E., 1973. Recent changes in the<br />

vascular flora and vegetation of the<br />

Azores islands. Memórias <strong>da</strong><br />

Socie<strong>da</strong>de. Broteriana, 22: 1-515.<br />

SKIRA, I., 1991. The short-tailed shearwater:<br />

a review of its biology. Corella, 15:<br />

45-52.


Remembering<br />

Joseph C. Britton (1942-2006)<br />

with Brian Morton and Fred Wells at his side, at the 2nd International Workshop of Malacology<br />

and Marine Biology, Vila Franca do Campo (1991)<br />

Joseph Cecil Britton passed away on 29 th November 2006. His life intersected the<br />

Azores in 1991, when he attended the 2nd International Workshop of Malacology and<br />

Marine Biology, and stayed linked to these islands from then on. I first met Joe at one<br />

of the Hong Kong workshops in 1989. Always polite and respectful, a true companion<br />

in science, beer and joie de vivre, Joe’s good humour made him a valued member of the<br />

team of scientists he joined here in the mutual search for knowledge. He knew that he<br />

was path finding, but this only increased his determination to help Azorean scientists<br />

and students understand their rich marine cultural heritage. His accumulated wealth of<br />

information about marine ecology flowed easily through his elegant discourse (albeit<br />

with a true Texan twang) and his calm devotion to work fostered in everyone a sense of<br />

duty. One of Joe Britton’s greatest contributions to the Azores, and one in which I was<br />

privileged to be part of, was the book Coastal Ecology of the <strong>Açores</strong>, one of a series of<br />

monographs created by Brian Morton, about the shores of Hong Kong and of Texas.<br />

Other works about the ecology and conservation of the Azores followed and, at the time<br />

of his death, he was compiling a huge list of publications related to the marine biology<br />

of the Azores. The completion of this task would form a lasting memorial to him and<br />

his work. Joe Britton was a member of the Editorial Board of Açoreana. A true friend,<br />

Joe will be missed, but his memory will be with us forever.


AÇOREANA é a revista <strong>da</strong> Socie<strong>da</strong>de Afonso Chaves<br />

- Associação de Estu<strong>dos</strong> Açoreanos e visa publicar<br />

trabalhos devota<strong>dos</strong> principalmente às diversas áreas <strong>da</strong><br />

história natural <strong>dos</strong> <strong>Açores</strong>. AÇOREANA está indexa<strong>da</strong> em<br />

BYOSIS, é envia<strong>da</strong> para Zoological Record e distribuí<strong>da</strong> em<br />

regime de troca por bibliotecas de vários países.<br />

Os manuscritos, em Português, Francês ou Inglês,<br />

incluirão um RESUMO e tradução deste numa <strong>da</strong>quelas<br />

línguas. O formato conformar-se-á com o de números<br />

posteriores a 2000. To<strong>da</strong>s as partes do manuscrito (texto,<br />

referências, tabelas, legen<strong>da</strong>s) serão <strong>da</strong>ctilografa<strong>da</strong>s a dois<br />

espaços. Nomes de géneros e espécies serão sublinha<strong>dos</strong>;<br />

to<strong>da</strong>s as outras indicações serão deixa<strong>da</strong>s ao critério do<br />

editor. As ilustrações deverão ser executa<strong>da</strong>s de forma a<br />

permitir uma utilização eficiente do espaço útil (página,<br />

125x180 mm; coluna, 62x180 mm); letras e números<br />

deverão permanecer perfeitamente legíveis após a redução.<br />

As referências no texto seguirão uma <strong>da</strong>s seguintes formas:<br />

‘Dance (1986) descreveu …‘ ou ‘ … (Morton, 1965) …‘ ou ‘…<br />

(Nobre, 1924, 1930; Martins, 1989a, b; Hawkins et al., 1990;<br />

Martins & Ripken, 1998;).’ A bibliografia é lista<strong>da</strong><br />

alfabeticamente e os nomes <strong>dos</strong> autores repeti<strong>dos</strong> sempre<br />

que necessário; os nomes <strong>da</strong>s revistas são apresenta<strong>dos</strong> por<br />

extenso. A listagem bibliográfica (BIBLIOGRAFIA<br />

CITADA) seguirá o formato <strong>dos</strong> números posteriores a<br />

2000, conforme se exemplifica:<br />

HOUBRICK, R.S., 1990. Anatomy, reproductive biology<br />

and systematic position of Fossarus ambiguus (Linné)<br />

(Fossarinae: Planaxi<strong>da</strong>e; Prosobranchia). In:<br />

MARTINS, A.M.F. (ed.), The Marine Fauna and Flora of<br />

the Azores (Proceedings of the First International Workshop<br />

of Malacology, São Miguel, 1988). Açoreana, Supplement<br />

[2]: 59-73.<br />

LEAL, J.H., & P. BOUCHET, 1991. Distribution patterns and<br />

dispersal of prosobranch gastropods along a seamount<br />

chain in the Atlantic Ocean. Journal of the Marine<br />

Biological Association of the United Kingdom, 71 (1): 11-<br />

25.<br />

MORELET, A., 1860. Notice sur l’Histoire Naturelle des <strong>Açores</strong><br />

suivie d’une description des Mollusques terrestres de cet<br />

Archipel, 216 pp. J.-B. Baillière et Fils, Paris.<br />

Tabelas e ilustrações virão após BIBLIOGRAFIA<br />

CITADA, constando no manuscrito o lugar apropriado para<br />

a sua integração; as ilustrações devem ser numera<strong>da</strong>s em<br />

série única; as legen<strong>da</strong>s <strong>da</strong>s figuras serão apresenta<strong>da</strong>s<br />

separa<strong>da</strong>mente após as ilustrações.<br />

Aceitam-se notas curtas que não deverão exceder três<br />

páginas <strong>da</strong>ctilografa<strong>da</strong>s a dois espaços. Normalmente não<br />

comportarão sumário ou subtítulos.<br />

Para salvaguar<strong>da</strong>r a interpretação na<br />

eventuali<strong>da</strong>de de desformatação do material digital, uma<br />

cópia impressa completa com tabelas, legen<strong>da</strong>s e ilustrações<br />

será submeti<strong>da</strong> ao editor, juntamente com uma cópia em<br />

CD ou via e.mail.<br />

SEPARATAS. O primeiro autor receberá 50 separatas<br />

grátis; cópias adicionais a preço de custo poderão ser<br />

requisita<strong>da</strong>s no acto <strong>da</strong> devolução <strong>da</strong>s provas.<br />

CORRESPONDÊNCIA. Enviar para o editor, Prof.<br />

António M. de Frias Martins, Socie<strong>da</strong>de Afonso Chaves -<br />

Associação de Estu<strong>dos</strong> Açoreanos, Apartado 258, 9501-903<br />

Ponta Delga<strong>da</strong>, São Miguel, <strong>Açores</strong>, Portugal. E.mail:<br />

afonsochaves.sac@gmail.com<br />

AÇOREANA is the journal of the Socie<strong>da</strong>de Afonso<br />

Chaves - Associação de Estu<strong>dos</strong> Açoreanos and aims at the<br />

publication of works devoted mainly to the various areas<br />

of the natural history of the Azores. AÇOREANA is<br />

indexed by BIOSIS, sent to Zoological Record, and distributed<br />

via exchange to libraries throughout the world.<br />

The manuscripts, in Portuguese, French or English,<br />

should include a concise ABSTRACT with a translation of<br />

it in one of those languages. The format of the manuscript<br />

should follow that of the issues after 2000. All<br />

parts of the manuscript (text, references, tables, legends)<br />

should be typed double-spaced. Underline all genus and<br />

species names; leave all other indications to the editor.<br />

The illustrations should be carefully executed to allow<br />

full utilization of space (full page, 125x180 mm; one column,<br />

62x180 mm); letters and numbers should remain<br />

perfectly easy to read after reduction. References in the<br />

text should take one of the following forms: ‘Morelet<br />

(1860) described …‘ or ‘ … (Morelet, 1860) …‘ or ‘…<br />

(Morelet & Drouët, 1857; Morelet, 1860; Nobre, 1924,<br />

1930; Martins, 1989a, b; Hawkins et al., 1990).’<br />

References are listed alphabetically, the authors’ names<br />

repeated; journal titles are cited in full. Bibliographic<br />

listing should follow the format of the issues after 2000,<br />

according to the examples:<br />

HOUBRICK, R.S., 1990. Anatomy, reproductive biology<br />

and systematic position of Fossarus ambiguus (Linné)<br />

(Fossarinae: Planaxi<strong>da</strong>e; Prosobranchia). In:<br />

MARTINS, A.M.F. (ed.), The Marine Fauna and Flora<br />

of the Azores (Proceedings of the First International<br />

Workshop of Malacology, São Miguel, 1988). Açoreana,<br />

Supplement [2]: 59-73.<br />

LEAL, J.H., & P. BOUCHET, 1991. Distribution patterns<br />

and dispersal of prosobranch gastropods along a<br />

seamount chain in the Atlantic Ocean. Journal of the<br />

Marine Biological Association of the United Kingdom, 71<br />

(1): 11-25.<br />

MORELET, A., 1860. Notice sur l’Histoire Naturelle des<br />

<strong>Açores</strong> suivie d’une description des Mollusques terrestres<br />

de cet Archipel, 216 pp. J.-B. Baillière et Fils, Paris.<br />

Tables and illustrations should come after LITERA-<br />

TURE CITED, but there should be in the manuscript an<br />

indication of their insertion; the legends for the illustrations<br />

should be presented separately after the illustrations.<br />

Short notes can also be submitted, not exceeding<br />

three pages typed double-spaced. Normally they should<br />

not include a summary or headings.<br />

To safeguard interpretation of eventually deformatted<br />

digital material, one printed copy complete with<br />

tables, legends and illustrations should be submitted to<br />

the editor, along with a copy in CD or via e.mail.<br />

REPRINTS. The first author receives 50 reprints free<br />

of charge; additional copies, at cost price, can be ordered<br />

when returning the proofs.<br />

CORRESPONDENCE. Manuscripts and<br />

correspondence related to the journal should be<br />

addressed to the editor, Prof. António M. de Frias<br />

Martins, Socie<strong>da</strong>de Afonso Chaves — Associação de<br />

Estu<strong>dos</strong> Açoreanos, Apartado 258, 9501-903 Ponta<br />

Delga<strong>da</strong>, São Miguel, <strong>Açores</strong>, Portugal. E.mail:<br />

afonsochaves.sac@gmail.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!