19.01.2015 Views

Biological Invasions of Cold-Water Coastal Ecosystems - Aquatic ...

Biological Invasions of Cold-Water Coastal Ecosystems - Aquatic ...

Biological Invasions of Cold-Water Coastal Ecosystems - Aquatic ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

page<br />

i<br />

BIOLOGICAL INVASIONS OF COLD-WATER COASTAL ECOSYSTEMS:<br />

BALLAST-MEDIATED INTRODUCTIONS IN<br />

PORT VALDEZ / PRINCE WILLIAM SOUND, ALASKA<br />

PRESENTED TO:<br />

FINAL PROJECT REPORT<br />

15 March 2000<br />

Regional Citizens’ Advisory Council <strong>of</strong> Prince William Sound<br />

P.O. Box 3089, 154 Fairbanks Drive<br />

Valdez, AK 99686<br />

USA<br />

Telephone: 907-835-5957 Fax: 907-835-5926<br />

Email: www.pwsrcac.org<br />

U.S. Fish and Wildlife Service<br />

PO Box 1670, 43655 Kalifornski Beach Road<br />

Soldatna, AK 99669<br />

National Sea Grant Program<br />

Washington, DC<br />

Alaska Sea Grant Program, University <strong>of</strong> Alaska Fairbanks<br />

Oregon Sea Grant Program, Oregon State University<br />

SeaRiver Maritime, Inc.<br />

ARCO Marine, Inc.<br />

British Petroleum, Inc.<br />

American Petroleum Institute<br />

Alyeska Pipeline Company<br />

PRESENTED BY:<br />

Lead Principal Investigators:<br />

• Dr. Anson H. Hines, Ph.D., Marine Ecologist<br />

• Dr. Gregory M. Ruiz, Ph.D., Marine Ecologist<br />

Smithsonian Environmental Research Center<br />

P.O. Box 28, 647 Contees Wharf Road<br />

Edgewater, MD 21037-0028<br />

USA<br />

Telephone: 301-261-4190 ext. 208 (Hines), 227 (Ruiz) Fax: 301-261-7954<br />

Email: hines@serc.si.edu, ruiz@serc.si.edu


page<br />

ii<br />

Co-Investigators:<br />

• Dr. John Chapman, Ph.D., Marine Biologist<br />

• Dr. Gayle I. Hansen, Ph.D., Marine Phycologist<br />

Hatfield Marine Science Center<br />

Oregon State University<br />

Newport, OR 97365-5296<br />

USA<br />

• Dr. James T. Carlton, Ph.D., Director<br />

Maritime Studies Program<br />

Mystic Seaport<br />

Williams College<br />

Mystic, CT 06355-0990<br />

USA<br />

• Ms. Nora Foster, M.S., Curator<br />

University <strong>of</strong> Alaska Museum<br />

University <strong>of</strong> Alaska Fairbanks<br />

Fairbanks, AK 99775<br />

USA<br />

• Dr. Howard M. Feder, Ph.D., Pr<strong>of</strong>essor<br />

Institute <strong>of</strong> Marine Sciences<br />

University <strong>of</strong> Alaska Fairbanks<br />

Fairbanks, AK 99775<br />

USA<br />

Contributing Taxonomic Experts:<br />

• Dr. Jeffrey Cordell. School <strong>of</strong> Fisheries, University <strong>of</strong> Washington<br />

• Dr. Jeffrey Goddard, University <strong>of</strong> California, Santa Barbara<br />

• Dr. Paul W. F<strong>of</strong>on<strong>of</strong>f, Smithsonian Environmental Research Center<br />

• Dr. Jerry Kudenov, University <strong>of</strong> Alaska, Anchorage<br />

• Dr. Gretchen Lambert, Friday Harbor Laboratories, University <strong>of</strong> Washington<br />

• Dr. Claudia Mills, Friday Harbor Laboratories, University <strong>of</strong> Washington<br />

• Ms. Lise Schickel, University <strong>of</strong> California, Santa Barbara<br />

• Dr. Judith Winston, Virginia Museum <strong>of</strong> Natural History<br />

• Ms. Lea Ann Henry, University <strong>of</strong> Toronto<br />

• Ms. Olga Kalata, School <strong>of</strong> Fisheries, University <strong>of</strong> Washington<br />

<strong>Biological</strong> Technicians:<br />

• Melissa Frey, Smithsonian Environmental Research Center<br />

• George Smith, Smithsonian Environmental Research Center<br />

• Max Hoberg, University <strong>of</strong> Alaska Fairbanks<br />

Field Assistants:<br />

• James Wade, Valdez


page iii<br />

• Stephan Benda, Valdez<br />

• Todd Miller, Hatfield Marine Science Center, Oregon State University<br />

Ballast <strong>Water</strong> Exchange Experiments and Plankton Analysis:<br />

• Safra Altman, Smithsonian Environmental Research Center<br />

• Sara Chaves, Smithsonian Environmental Research Center<br />

• Tami Huber, Smithsonian Environmental Research Center<br />

• Dani Lipski, Smithsonian Environmental Research Center<br />

• Kate Murphy, Smithsonian Environmental Research Center<br />

• Kimberly Philips, Smithsonian Environmental Research Center<br />

• Brian Steves, Smithsonian Environmental Research Center


page iv<br />

EXECUTIVE SUMMARY<br />

PROJECT OVERVIEW<br />

This study assesses the risk <strong>of</strong> biological invasion by nonindigenous species (NIS) associated<br />

with oil tanker traffic and ballast water management for Port Valdez / Prince William<br />

Sound (PWS), Alaska. This study included 8 major components:<br />

• Review <strong>of</strong> risk factors for NIS invasions and ship-mediated transfer <strong>of</strong> species relevant to<br />

PWS, a high latitude, cold-water marine ecosystem.<br />

• Analysis <strong>of</strong> ballast water delivery patterns and plankton communities associated with ballast<br />

water on tankers that arrived to PWS.<br />

• Experimental analysis <strong>of</strong> initial survivorship <strong>of</strong> ballast water organisms in temperaturesalinity<br />

combinations typical <strong>of</strong> receiving waters <strong>of</strong> Port Valdez.<br />

• Experimental measurements <strong>of</strong> the effect <strong>of</strong> ballast water exchange and voyage duration on<br />

plankton communities arriving on tankers to PWS.<br />

• Characterization <strong>of</strong> organisms fouling hulls and in sea chests <strong>of</strong> crude oil tankers.<br />

• Characterization <strong>of</strong> organisms in sediments <strong>of</strong> tanker ballast tanks.<br />

• Determination <strong>of</strong> NIS established within Alaska, as detected by field surveys and reviews <strong>of</strong><br />

existing collections and literature conducted by experienced naturalists and taxonomic<br />

experts.<br />

• Analysis <strong>of</strong> the biodiversity <strong>of</strong> PWS.<br />

This study advances our understanding <strong>of</strong> invasion processes in many significant ways.<br />

• Our study provides the most comprehensive analysis worldwide <strong>of</strong> the abundance and<br />

taxonomic composition <strong>of</strong> plankton communities in the segregated ballast water <strong>of</strong> tankers as<br />

well as domestic ballast transfer by any vessel type.<br />

• We have undertaken an ambitious set <strong>of</strong> experimental and quantitative measures to (a)<br />

compare directly, for the first time, the relative efficiency <strong>of</strong> exchange methods (Empty–<br />

Refill and Flow-Through) for any vessel type or taxon, and (b) the effect <strong>of</strong> voyage duration<br />

on plankton survivorship in the ballast water <strong>of</strong> oil tankers.<br />

• We provide the first synthesis <strong>of</strong> NIS known in Alaska, resulting from an extensive literature<br />

review and field-based surveys.<br />

• The large scope <strong>of</strong> this study provides an unusually comprehensive analysis <strong>of</strong> the risks,<br />

mechanisms, and patterns <strong>of</strong> invasion in PWS.<br />

The project represents a cooperative and successful partnership <strong>of</strong> industry, citizen,<br />

agency, and scientific groups. This strong cooperative program addresses critical gaps in our<br />

understanding <strong>of</strong> invasion risks, as well as facilitates information exchange and participation<br />

among a broad spectrum <strong>of</strong> industry, citizen, agency, and scientific groups.<br />

• From a science perspective, this program results in a comprehensive analysis <strong>of</strong> invasion<br />

processes and risks for PWS, representing the first such study in the world for a high-latitude<br />

/ cold-water marine ecosystem.


page<br />

v<br />

• From an industry and management perspective, this program assesses the effectiveness and<br />

trade-<strong>of</strong>fs involved for various management strategies that are now required in Prince<br />

William Sound, and are being promoted on a national and international scale.<br />

• From a public perspective, this program disseminates findings and serves as a key source <strong>of</strong><br />

information, especially through groups like the Smithsonian Environmental Research Center,<br />

the Regional Citizens’ Advisory Council <strong>of</strong> Prince William Sound, U.S. Fish & Wildlife<br />

Service, and NOAA Sea Grant.<br />

RESULTS<br />

Background<br />

<strong>Biological</strong> invasions <strong>of</strong> marine ecosystems in Alaska are a major environmental concern.<br />

• <strong>Biological</strong> invasions <strong>of</strong> coastal bays and estuaries are common throughout the world and are<br />

having significant ecological and economic impacts.<br />

• High-latitude / cold-water regions are also subject to biological invasions by many species<br />

with potential ecological and economic consequences similar to those reported for more<br />

temperate latitudes.<br />

• Transport <strong>of</strong> coastal planktonic organisms in ballast water <strong>of</strong> commercial ships appears to be<br />

the major source <strong>of</strong> new invasions worldwide in recent years.<br />

• Tankers arriving to Port Valdez release the third largest volume <strong>of</strong> ballast water <strong>of</strong> any U.S.<br />

port.<br />

BW Delivery Patterns and <strong>Biological</strong> Characteristics<br />

A large quantity <strong>of</strong> ballast water arrives to PWS in oil tankers.<br />

• For the past decade, tanker arrivals to Port Valdez have averaged 713 ships per year.<br />

• Tankers arriving to PWS in 1998 carried an estimated average <strong>of</strong> 65,775m 3 <strong>of</strong> total ballast<br />

water, including both segregated (non-oily) and nonsegregated (or oily) ballast water.<br />

• Segregated ballast water comprised an average <strong>of</strong> 54.7% <strong>of</strong> the total ballast water arriving to<br />

PWS in tankers.<br />

• Overall, an estimated 17,000,000 m 3 <strong>of</strong> segregated ballast water (an average <strong>of</strong> 32,715 m 3 per<br />

arrival) was discharged into PWS by oil tankers in 1998.<br />

Most ballast water delivered to PWS by crude oil tankers originates from U.S. domestic<br />

ports.<br />

• Tankers arriving directly from western U.S. ports accounted for 95.8% <strong>of</strong> the total tanker<br />

traffic, and 96% <strong>of</strong> the total segregated ballast water delivered by tankers, to PWS in 1998.<br />

• Arrivals from Puget Sound, San Francisco, and Long Beach comprised approximately 82.7%<br />

<strong>of</strong> all tanker traffic, as well as 86% <strong>of</strong> all segregated ballast water delivered by tankers, to<br />

PWS in 1998.<br />

• Most (69.6%) <strong>of</strong> the tankers arriving to Port Valdez from overseas came directly from Korea<br />

in 1998.<br />

• Tankers arriving from domestic ports transfer ballast water directly from that port to PWS,<br />

whereas foreign arrivals have replaced coastal ballast water with open-ocean exchange prior<br />

to their arrival.


page vi<br />

The voyage duration <strong>of</strong> tankers arriving to Port Valdez is relatively short compared to<br />

traffic arriving at other commercial ports, where invasions are common.<br />

• Ballast water spent an average <strong>of</strong> 6.6 days in the ballast tanks <strong>of</strong> oil tankers before arrival to<br />

Port Valdez, ranging between 4.8 to 10.2 days.<br />

A large quantity <strong>of</strong> planktonic organisms is released into PWS with segregated ballast<br />

water from oil tankers.<br />

• An average <strong>of</strong> 12,637 total organisms per m 3 (excluding chain-forming diatoms) was<br />

measured in our ballast water samples from 169 tanker arrivals, including those from both<br />

domestic and foreign source ports.<br />

• Overall, we estimate that roughly 264 billion organisms were delivered to PWS in the<br />

segregated ballast water <strong>of</strong> oil tankers during 1998.<br />

• Importantly, these estimates include only the largest plankton and miss many small<br />

planktonic organisms (e.g., bacteria, viruses, and other microorganisms), that would likely<br />

increase overall densities many fold.<br />

The abundance <strong>of</strong> planktonic organisms was greater in segregated ballast water from<br />

domestic source ports compared to that from foreign source ports.<br />

• Total density (across all taxonomic groups) <strong>of</strong> organisms was greatest on average in<br />

segregated ballast water from domestic arrivals compared to foreign arrivals.<br />

• Average densities <strong>of</strong> most taxonomic groups were 10- to 100-fold greater in segregated<br />

ballast water from domestic versus foreign sources.<br />

• The magnitude <strong>of</strong> density differences between domestic and foreign sources was much less<br />

for copepods and solitary diatoms.<br />

• Din<strong>of</strong>lagellates were a notable exception to the general pattern, as average density was<br />

greatest in ballast water <strong>of</strong> the foreign arrivals.<br />

Significant variation existed in abundance <strong>of</strong> taxonomic groups in the segregated ballast<br />

water arriving from the major source ports.<br />

• Total density <strong>of</strong> organisms was lowest on average in ballast water from foreign arrivals<br />

compared to arrivals from each <strong>of</strong> the three major domestic ports (Puget Sound, San<br />

Francisco, and Long Beach)<br />

• Total density on average declined among the four major ports with increasing voyage<br />

duration.<br />

• In contrast, the greatest average densities for individual taxonomic groups (e.g., protozoans,<br />

brachyuran crabs, and bryozoans) did not always correspond to the shortest voyage duration.<br />

The abundance <strong>of</strong> plankton arriving in segregated ballast water from the major domestic<br />

ports varied both spatially and temporally.<br />

• The greatest densities occurred for all taxonomic groups, individually and combined, during<br />

the spring and summer months.<br />

• However, the timing <strong>of</strong> peak densities differed among taxonomic groups and among source<br />

ports.


page vii<br />

• The magnitude <strong>of</strong> seasonal variation in plankton densities also differed among source ports,<br />

being greatest for Puget Sound and San Francisco Bay compared to Long Beach.<br />

• Furthermore, significant annual variation also existed in the densities <strong>of</strong> plankton arriving to<br />

PWS from each <strong>of</strong> the major domestic source ports.<br />

NIS are present in the segregated ballast water released by oil tankers in PWS.<br />

• We identified 14 different nonindigenous species (13 crustaceans and 1 fish) arriving to Port<br />

Valdez in the ballast water <strong>of</strong> oil tankers.<br />

• To date, all <strong>of</strong> these identified NIS have been in ballast water from San Francisco Bay or<br />

Long Beach.<br />

• Importantly, these numbers are clearly underestimates, since only a subset <strong>of</strong> the plankton<br />

can be identified to species and only the largest fraction <strong>of</strong> planktonic organisms were<br />

included in our analyses.<br />

Organisms discharged in tanker ballast water, including known NIS, have high potential <strong>of</strong><br />

initial survival in the salinity-temperature conditions <strong>of</strong> Port Valdez and PWS.<br />

• Seasonal cycles <strong>of</strong> salinities and temperatures in Port Valdez waters encompass the range <strong>of</strong><br />

salinities and temperatures <strong>of</strong> arriving ballast waster, providing a good match between source<br />

ports and receiving waters.<br />

• Laboratory experiments indicate that a wide range <strong>of</strong> ballast water species (including some<br />

NIS) can survive the salinity and temperature conditions <strong>of</strong> Port Valdez upon initial<br />

discharge from tankers.<br />

Other Mechanisms <strong>of</strong> NIS Transport by Tankers<br />

Tankers also transfer organisms that are not in ballast water and that may become<br />

established in PWS.<br />

• Tanker hulls and sea chests sampled in dry dock sometimes carried a diverse array <strong>of</strong> fouling<br />

and nektonic organisms, including several NIS.<br />

• Sediment taken into ballast tanks during ballasting in shallow ports sometimes carried<br />

diverse and abundant bottom-dwelling organisms, including reproductive adult individuals.<br />

Ballast <strong>Water</strong> Exchange Experiments<br />

Preliminary experimental results suggest that ballast water exchange is as effective for oil<br />

tankers as for other vessel types.<br />

• Initial analyses suggest roughly 80-99% <strong>of</strong> the resident water is replaced per ballast water<br />

exchange event.<br />

• The efficacy <strong>of</strong> exchange appears to differ between exchange method, with Empty–Refill<br />

Exchange replacing the greatest proportion <strong>of</strong> water.<br />

• The efficacy <strong>of</strong> exchange also appears to differ among taxa.<br />

• Importantly, all analyses for the exchange experiments are still underway, and final results /<br />

conclusions are therefore pending project completion (anticipated in June 2000).


page viii<br />

Summary <strong>of</strong> NIS in Prince William Sound and Alaska<br />

A diverse array <strong>of</strong> NIS have been introduced into PWS and Alaska.<br />

• There are 24 species <strong>of</strong> NIS plants and animals in marine and estuarine ecosystems in<br />

Alaska, including 15 species recorded in PWS.<br />

• These NIS are taxonomically diverse and occupy a wide range <strong>of</strong> ecological niches and<br />

habitats, although there appear to be more NIS associated with boat harbors and with<br />

aquaculture activities.<br />

• Our focal taxonomic collections provided the first records <strong>of</strong> 7 NIS in Alaska, including<br />

some species that appear to be very recent introductions.<br />

• Many <strong>of</strong> the Alaskan NIS have larval stages which could be transported in ballast water.<br />

• None <strong>of</strong> the Alaskan NIS is clearly associated with ballast water <strong>of</strong> oil tankers as a primary<br />

mechanism <strong>of</strong> introduction, even though many NIS are frequently found in ballast water<br />

arriving to Port Valdez.<br />

• Instead, the transfer <strong>of</strong> NIS may have resulted from any one <strong>of</strong> multiple transfer mechanisms,<br />

including ballast water, ship fouling communities, and aquaculture.<br />

• Finally, it is important to note that many additional Alaskan marine species are cryptogenic<br />

(possibly introduced), as the historical baseline <strong>of</strong> biogeographic and taxonomic information<br />

is very limited for this biota. For example, we identified at least 29 cryptogenic species in<br />

Alaska (including 24 in PWS), exhibiting either wide global distributions <strong>of</strong>ten associated<br />

with spread by early shipping traffic or a variety <strong>of</strong> characteristics common to NIS.<br />

Biodiversity <strong>of</strong> Prince William Sound<br />

Taxonomy and biogeography <strong>of</strong> species in Alaskan marine ecosystems have received poor<br />

levels <strong>of</strong> study and understanding.<br />

• We discovered 10 new, previously undescribed species, as well as recorded range extensions<br />

for 74 other species from a diverse array <strong>of</strong> taxonomic groups.<br />

• It is now apparent that a large portion <strong>of</strong> many major groups remain undocumented, as well<br />

as cryptogenic in origin, due to limited surveys and historical analysis <strong>of</strong> the Alaskan biota.<br />

We have now initiated a biodiversity data base for marine species in PWS.<br />

• We have established a comprehensive data base for marine invertebrates in PWS.<br />

• The scope <strong>of</strong> this data base will be expanded to include algae, fish, mammals and birds in the<br />

next year.<br />

CONCLUSIONS<br />

Multiple risk factors exist that favor the establishment <strong>of</strong> NIS in PWS.<br />

• Approximately 550 tankers currently arrive per year to PWS and release an estimated<br />

17,000,000 metric tons <strong>of</strong> segregated ballast water.<br />

• Tankers repeatedly deliver ballast water from the same, limited source ports, providing<br />

repeated inoculations <strong>of</strong> the same species.


page ix<br />

• The voyage duration <strong>of</strong> these tankers is usually short (3-7 days), favoring high survivorship<br />

<strong>of</strong> transported plankton and resulting in the dense inoculation <strong>of</strong> competent organisms into<br />

PWS.<br />

• Environmental conditions <strong>of</strong> source ports match those in PWS for some portions <strong>of</strong> the year,<br />

and many organisms arriving in ballast water can tolerate conditions in receiving waters.<br />

• Most (95.6%) <strong>of</strong> arriving tankers do not undergo ballast water exchange, a process which can<br />

limit the transfer rate <strong>of</strong> NIS.<br />

• A large number (tens-to-hundreds) <strong>of</strong> NIS are known from the domestic ports that are the<br />

source <strong>of</strong> unexchanged ballast water arriving to PWS in oil tankers.<br />

• NIS are present in this domestic ballast water arriving to PWS in oil tankers.<br />

Ballast water exchange appears effective at reducing resident plankton on tankers,<br />

although a risk <strong>of</strong> invasion still exists.<br />

• Ballast exchange experiments suggest that tankers arriving to Port Valdez from foreign ports<br />

have reduced resident coastal organisms by > 90% through the current exchange practices.<br />

• Abundance <strong>of</strong> coastal organisms was 10-100 fold lower for oil tankers that were foreign<br />

arrivals (that underwent ballast water exchange) compared to domestic arrivals (that do not<br />

undergo exchange).<br />

• Although roughly equivalent to efficacy <strong>of</strong> exchange estimated for other vessel types, both<br />

data sets suggest that tens to hundreds <strong>of</strong> thousands <strong>of</strong> organisms/ship still arrive with<br />

exchanged ballast water.<br />

Alaskan waters, and those <strong>of</strong> PWS, are susceptible to invasion by NIS.<br />

• It is now evident that a diverse array <strong>of</strong> taxa have become established in Alaska and PWS.<br />

• These NIS occupy a broad range <strong>of</strong> marine and estuarine habitats.<br />

The number <strong>of</strong> marine NIS in Alaska appears to be significantly lower than other marine<br />

ecosystems at lower latitude.<br />

• Our surveys <strong>of</strong> PWS and Alaska were intensive and failed to detect many NIS known from<br />

the domestic source ports <strong>of</strong> oil tankers.<br />

• However, the limited historical record and scope <strong>of</strong> past surveys limits direct comparisons<br />

with low latitude marine ecosystems, for which extensive surveys and knowledge have been<br />

developed over decades to centuries <strong>of</strong> biological research.<br />

In general, the poor resolution <strong>of</strong> taxonomic and biogeographic data in Alaskan marine<br />

ecosystems is a substantial impediment for analysis <strong>of</strong> environmental impacts.<br />

• To date, we have been able to provide only a minimum estimate <strong>of</strong> NIS, as many species<br />

remain undescribed or cryptogenic until further analysis.<br />

• Assessment <strong>of</strong> other environmental impacts, such as oil spills, may also be limited without<br />

adequate baseline data on species composition and abundance.<br />

• We recommend a program <strong>of</strong> standardized surveys across multiple sites in PWS and Alaska<br />

to both improve the existing knowledge <strong>of</strong> NIS and provide a regional baseline <strong>of</strong> data.


page<br />

x<br />

Acknowledgments<br />

Funding for this study was provided by Regional Citizens’ Advisory Council <strong>of</strong> Prince<br />

William Sound (RCAC), US Fish & Wildlife Service (USF&WS), and the NOAA National Sea<br />

Grant Program through Oregon State University (OSU) and University <strong>of</strong> Alaska Fairbanks<br />

(UAF). In-kind support and participation were provided by the Smithsonian Environmental<br />

Research Center (SERC), Maritime Studies Program/Mystic Seaport with Williams College,<br />

Alyeska Pipeline Service Company, and the oil shippers, particularly SeaRiver Maritime, ARCO<br />

Marine and British Petroleum (BP). Additional support for expanded ballast water exchange<br />

experiments was provided by the American Petroleum Institute, SeaRiver and ARCO,<br />

USF&WS, and U.S. Coast Guard.<br />

This project was stimulated and encouraged by the Nonindigenous Species Working<br />

Group <strong>of</strong> RCAC, chaired by Robert Benda (Prince William Sound Community College) and<br />

Gary Sonnevil (USF&WS). We thank Joel Kopp <strong>of</strong> RCAC for his able oversight and friendly<br />

assistance at all stages <strong>of</strong> this project, and Marilyn Leland and Linda Hyce <strong>of</strong> RCAC for their<br />

support. We are grateful to Rex Brown and the managers and staff <strong>of</strong> the Alyeska Pipeline<br />

Service Company and the Valdez Marine Terminal for access and help in sampling. The Masters,<br />

Officers, and crew members <strong>of</strong> the tankers gave willingly <strong>of</strong> their time and help; and we<br />

especially thank those <strong>of</strong> the ships SR Baytown, SR Long Beach, and SR Benicia, ARCO<br />

Independence, and ARCO Spirit for their extensive help on ballast water exchange experiments.<br />

Thanks also to W.P. (Pete) Rupp <strong>of</strong> SeaRiver Maritime and Victor Goldberg <strong>of</strong> ARCO Marine<br />

for their support <strong>of</strong> the exchange experiments. We especially thank the following agents in<br />

Valdez for their logistical assistance, advice and suggestions, and support: Kurt Hallier and<br />

Wayne Brandenburger <strong>of</strong> ARCO Marine; Bill Deppe, Phil Eichenberger, and John Poulos <strong>of</strong><br />

SeaRiver Maritime, and Tom Colby <strong>of</strong> BP. The full cooperation <strong>of</strong> the oil companies operating<br />

these ships is gratefully acknowledged.<br />

Melissa Frey and George Smith <strong>of</strong> SERC provided key technical assistance for sampling<br />

ships, processing samples, conducting experiments, analysis, and many other crucial components<br />

at SERC’s laboratories in Valdez and in Maryland. Exchange experiments were assisted on<br />

board tankers by additional technicians <strong>of</strong> the SERC <strong>Invasions</strong> Biology Program: Linda<br />

McCann, Kim Philips, Safra Altman, Lynn Takata, Cathleen Coss, Kate Murphy, Dani Lipski,<br />

Laura Rodriguez and Brian Steves. Sorting <strong>of</strong> samples was assisted by Melissa Frey, George<br />

Smith, Sara Chaves, Kim Philips, Dani Lipski and Safra Altman. Data management and analysis<br />

were assisted by: Safra Altman, Melissa Frey, Midge Kramer, Kim Philips, George Smith, and<br />

Brian Steves.<br />

For assistance on the NIS cruises in Prince William Sound, special appreciation goes to:<br />

Todd Miller, for his assistance on the trip; Capt. Richard Vodicka who skippered the F/V<br />

Kristina in 1998 and helped in many ways large and small throughout the survey; Milos Falta,<br />

owner <strong>of</strong> the F/V Kristina and skipper during the 1999 surveys; Joel Kopp, RCAC, for loan <strong>of</strong><br />

his zodiac, searching for a charter, and other logistical and support assistance; and the<br />

community <strong>of</strong> Tatitlek for housing the survey team, especially village leader Gary Kompk<strong>of</strong>f and<br />

boat operator/guide Steve Totem<strong>of</strong>f for logistical assistance in the survey <strong>of</strong> Valdez Arm and<br />

Tatitlek areas. Peter Jordan and Bryna Dunaway, high school students in Oregon, assisted in<br />

curating the dried plant collection. Mike Stekoll <strong>of</strong> the University <strong>of</strong> Alaska provided


page xi<br />

microscopes for the study. Lavern Weber, Director <strong>of</strong> the Hatfield Marine Science Center<br />

provided <strong>of</strong>fice and laboratory space for G.I. Hansen. These people all helped make the cruises a<br />

success.<br />

For assistance with the 1998 & 1999 Fouling Plate Surveys, we thank Gary Sonnevil (US<br />

Fish & Wildlife Service), Peter Armato (US Park Service and Alaska SeaLife Center), Chuck<br />

Pratt (Armin F. Koenig Fish Hatchery), Ken Morgan (Valdez Fish Hatchery), Andrea Tesch<br />

(Nuremburg Fish Hatchery), Stan Stephens (Stan Stephens Tours), and the pilots <strong>of</strong> Cordova Air<br />

Service for field assistance in deploying and retrieving plates. We appreciate use <strong>of</strong> facilities and<br />

further assistance from Alyeska Pipeline Service Company, Prince William Sound Science<br />

Center, and Prince William Sound Community College. In addition, we thank Conrad and<br />

Carmen Field for their help at Homer, especially for showing us “an unusual sea star” (Asterias<br />

amurensis).<br />

In addition to participation in the project by taxonomic experts (see cover page), species<br />

identifications were assisted by Klaus Ruetzler for sponges; Frank Ferrari, Olga Kalata and Chad<br />

Walter for copepods; Judy Winston for bryozoans; Lea Ann Henry for hydroids. Charles<br />

Lambert assisted with field collections <strong>of</strong> ascidians during the 1999 field survey.<br />

The cooperative support by all <strong>of</strong> these individuals and organizations made this project<br />

possible.


page xii<br />

Title Page<br />

Executive Summary<br />

Acknowledgements<br />

Table <strong>of</strong> Contents<br />

Table <strong>of</strong> Contents<br />

page<br />

i<br />

iii<br />

ix<br />

xi<br />

1. Introduction 1-1<br />

1A. Project Goals 1-1<br />

1B. Structure & History <strong>of</strong> Project 1-1<br />

1C. Background 1-2<br />

1C1. Invasive Species & Ballast <strong>Water</strong> 1-2<br />

1C2. NIS in High Latitude/<strong>Cold</strong> <strong>Water</strong> <strong>Ecosystems</strong> 1-2<br />

1C3. Risk Factors for Prince William Sound 1-5<br />

2. Ballast <strong>Water</strong> Delivery Patterns 2-1<br />

3. <strong>Biological</strong> Characteristics <strong>of</strong> Ballast <strong>Water</strong> in Oil Tankers 3-1<br />

4. Predicting Initial Survival <strong>of</strong> Ballast <strong>Water</strong> Organisms 4-1<br />

5. Ballast <strong>Water</strong> Exchange Experiments 5-1<br />

6. Organisms in Sediments <strong>of</strong> Tanker Ballast Tanks 6-1<br />

7. Fouling Organisms on Hulls and in Sea Chests <strong>of</strong> Oil Tankers 7-1<br />

8. Summary <strong>of</strong> NIS in Prince William Sound and Alaska 8-1<br />

9. NIS Surveys 9A-1<br />

9A. Overview 9A-1<br />

9B. Rapid Community Assessments 9B-1<br />

9C. Focal Taxonomic Collections 9C1-1<br />

9C1. Marine Plants 9C1-1<br />

9C2. Planktonic Medusae, Ctenophores, and Pelagic Molluscs 9C2-1<br />

9C3. Polychaete Worms 9C3-1<br />

9C4. Peracaridan Crustaceans 9C4-1<br />

9C5. Copepod Crustaceans 9C5-1<br />

9C6. Decapod Crustaceans 9C6-1<br />

9C7. Shelled Molluscs 9C7-1<br />

9C8. Opisthobranch Molluscs 9C8-1


page xiii<br />

9C9. Echinoderms 9C9-1<br />

9C10. Ascidians 9C10-1<br />

9D. Fouling Communities 9D-1<br />

9E. Museum, Voucher and Reference Specimens <strong>of</strong> Existing Collection 9E-1<br />

10. Biodiversity <strong>of</strong> Prince William Sound 10-1


Chapt 1. Introduction, page 1- 1<br />

Chapter 1. Introduction<br />

Anson H. Hines, Smithsonian Environmental Research Center<br />

Gregory M. Ruiz, Smithsonian Environmental Research Center<br />

1A. Project Goals<br />

The overall goal <strong>of</strong> this project was to assess the risk <strong>of</strong> biological invasion by<br />

nonindigenous species (NIS) introduced into Port Valdez / Prince William Sound, Alaska.<br />

Currently, ballast water is the major vector for introductions <strong>of</strong> NIS in coastal ecosystems, where<br />

ballast-mediated biological invasions are causing severe ecological and economic impacts. While<br />

the significance <strong>of</strong> ballast-mediated invasions has focused on temperate zone ports, little<br />

consideration has been given to NIS invasions at high latitudes, despite the volume <strong>of</strong> shipping<br />

and critical importance <strong>of</strong> certain cold-water ports to the world economy and especially US<br />

energy interests. Port Valdez is a high latitude-cold water port receiving the third largest annual<br />

volume <strong>of</strong> ballast water in the USA. Moreover, our recent review <strong>of</strong> NIS invasions at high<br />

latitude (Ruiz & Hines 1997) indicates that such cold water ecosystems have been invaded by a<br />

diverse array <strong>of</strong> marine and estuarine species. The specific objectives <strong>of</strong> the project were:<br />

• To analyze the delivery patterns, biological characteristics, and management practices <strong>of</strong><br />

ballast water and other ships arriving to Port Valdez from coast-wise versus foreign voyages.<br />

• To assess viability <strong>of</strong> selected organisms arriving in tanker ballast water to Port Valdez.<br />

• To conduct experiments on the effectiveness <strong>of</strong> ballast water exchange procedures <strong>of</strong> tankers.<br />

• To evaluate organisms occurring in entrained sediments at the bottom <strong>of</strong> ballast tanks <strong>of</strong><br />

crude oil tankers.<br />

• To evaluate fouling organisms on hulls and in sea chests <strong>of</strong> tankers as potential sources <strong>of</strong><br />

NIS.<br />

• To analyze and search for NIS currently invading or already established in coastal waters <strong>of</strong><br />

south central Alaska, using literature searches, an array <strong>of</strong> field sampling methods (field<br />

collections, fouling plates, and plankton sampling), and examination <strong>of</strong> existing preserved<br />

samples from Prince William Sound.<br />

The purpose <strong>of</strong> this report is to summarize the research conducted during 1997-1999 to<br />

assess the risk <strong>of</strong> biological invasions in Prince William Sound, especially with regard to oil<br />

tankers as a vector for transporting NIS into marine ecosystems. Progress during the project was<br />

reported in Ruiz & Hines, 1997 and Hines et al., 1998. Modified elements <strong>of</strong> the earlier reports<br />

are included in the present report, so as to provide a complete overview <strong>of</strong> the project within one<br />

document. Certain limited elements <strong>of</strong> research will be completed during 2000, including further<br />

analysis <strong>of</strong> existing collections at the University <strong>of</strong> Alaska Museum and Institute <strong>of</strong> Marine<br />

Sciences, and work-up <strong>of</strong> sample from ballast water exchange experiments conducted during<br />

summer 1999. These last elements will be reported separately upon completion.<br />

1B. Structure & History <strong>of</strong> Project<br />

This research project has built upon a Pilot Study conducted in 1997 (see Ruiz & Hines,<br />

1997), and includes an expanded scope <strong>of</strong> work conducted during 1998-1999. The multi-faceted<br />

approach to the research required a team <strong>of</strong> diverse CoPrincipal Investigators and subcontracted<br />

taxonomic experts. Drs. Anson Hines and Gregory Ruiz (SERC) have served as over-all project<br />

leaders, providing over-all administrative and scientific oversight for the team. In addition, Drs.<br />

Ruiz and Hines (SERC) had primary responsibilities for: analysis <strong>of</strong> ballast water delivery


Chapt 1. Introduction, page 1- 2<br />

patterns; biological characteristics <strong>of</strong> ballast water; experimental analysis <strong>of</strong> initial survival <strong>of</strong><br />

ballast water organisms; ballast water exchange experiments; analysis <strong>of</strong> ballast tank sediments<br />

and tanker hull fouling; fouling community analysis, and management <strong>of</strong> most <strong>of</strong> the focal<br />

taxonomic studies; as well many aspects <strong>of</strong> field surveys <strong>of</strong> Prince William Sound. To sample<br />

and analyze ballast water <strong>of</strong> tankers arriving to Port Valez, two <strong>Biological</strong> Technicians (Melissa<br />

Frey and George Smith, <strong>of</strong> SERC) alternately rotated at about four month intervals between<br />

SERC’s temporary laboratory established in Valdez, Alaska and the SERC <strong>Biological</strong> <strong>Invasions</strong><br />

Laboratory in Edgewater, Maryland. Ballast water exchange experiments were conducted with<br />

participation by several technicians and students from the SERC <strong>Biological</strong> <strong>Invasions</strong> Laboratory<br />

(see Acknowledgments). Co-PIs Nora Foster (UAF) and Dr. Howard Feder (UAF) had primary<br />

responsibility for analysis <strong>of</strong> existing samples in museum, reference and voucher collections in<br />

the UA Museum and UAF Institute <strong>of</strong> Marine Science. Nora Foster also participated actively in<br />

rapid community assessment surveys <strong>of</strong> Prince William Sound, and focal taxonomic analysis <strong>of</strong><br />

molluscs. Dr. Howard Feder provided oversight to subcontracted focal taxonomic analysis <strong>of</strong><br />

polychaetes. CoPI Dr. John Chapman (OSU) had primary responsibility to conduct rapid<br />

community assessment surveys <strong>of</strong> invertebrates <strong>of</strong> Prince William Sound, with focal taxonomic<br />

analysis <strong>of</strong> pericaridean crustaceans. CoPI Dr. Gayle Hansen (OSU) had primary responsibility<br />

for focal taxonomic field surveys <strong>of</strong> marine plants (especially macro-algae) <strong>of</strong> Prince William<br />

Sound. Dr. James Carlton (Mystic Seaport, Williams College) had primary responsibility for<br />

surveys <strong>of</strong> fouling communities <strong>of</strong> Prince William Sound. In addition, an array <strong>of</strong> systematic<br />

experts was subcontracted to analyze several focal taxonomic groups (see Chapter 9 below).<br />

Authorship <strong>of</strong> the chapters and subsections <strong>of</strong> this report indicate primary responsibilities for<br />

each major element.<br />

Throughout the 1997 Pilot Study and the 1998-1999 expanded phase, the project received<br />

guidance and comment from the Alaska NIS Working Group, which was organized by the<br />

RCAC <strong>of</strong> Prince William Sound and composed <strong>of</strong> academic scientists, resource managers from<br />

state and federal agencies, representatives <strong>of</strong> the oil and shipping industries, and concerned<br />

citizens <strong>of</strong> Alaska (see also Acknowledgments).<br />

Initial funding for the Pilot Study was provided by PWS RCAC, US Fish & Wildlife<br />

Service, and the US Coast Guard (Ruiz & Hines, 1997). Expanded research for the present<br />

project was extended with a proposal submitted in 1997 to the National Sea Grant Program, with<br />

co-funding from RCAC, USF&WS, Alyeska Pipeline Service Company, and in-kind support<br />

from the oil shipping companies (especially ARCO Marine, BP and SeaRiver Maritime). Funds<br />

awarded from the National Sea Grant Program were distributed to the Oregon Sea Grant<br />

Program for John Chapman at Hatfield Marine Science Center and to Alaska Sea Grant Program<br />

for Nora Foster and Howard Feder at University <strong>of</strong> Alaska Fairbanks and UA Museum.<br />

However, funding from Alaska Sea Grant was delayed for one year, so that funding was actually<br />

available beginning in 1999 and will carry through 2000. In 1998 SERC obtained supplemental<br />

funding from the American Petroleum Institute, supported by ARCO Marine and SeaRiver<br />

Maritime, to conduct ballast water exchange experiments on tankers. SERC also received<br />

further funding from USF&WS for these ballast water exchange experiments during 1999<br />

through a proposal submitted to the National Sea Grant Program. The work plan for the ballast<br />

water exchange experiments specifies that sample processing and analysis continue into 2000.<br />

SERC’s technical staff worked in close coordination with the shipping agents, masters,<br />

<strong>of</strong>ficers and crews <strong>of</strong> the oil tankers, and with Alyeska staff <strong>of</strong> the Valdez Marine Terminal. All


Chapt 1. Introduction, page 1- 3<br />

<strong>of</strong> these industry participants provided in-kind contributions and worked actively and<br />

cooperatively to assist project operations to sample ballast water and to conduct ballast water<br />

exchange experiments (see also Acknowledgments).<br />

Significantly more work than originally proposed was accomplished in nearly all<br />

components <strong>of</strong> the project. Moreover, we have been successful in gaining additional resources to<br />

support expanded elements <strong>of</strong> the project, including contributions in kind, and added external<br />

funds for ballast water exchange experiments. Most importantly, a hallmark <strong>of</strong> the project was<br />

the enthusiastic support <strong>of</strong> the project by the full array <strong>of</strong> private citizens, scientific institutions,<br />

governmental agencies, and industry, which served as cooperative partners.<br />

1C. Background<br />

1C1. Invasive Species & Ballast <strong>Water</strong><br />

<strong>Aquatic</strong> nuisance species have invaded many, perhaps most, freshwater and marine ports<br />

around the world. Ballast water from commercial shipping is increasingly recognized as the<br />

most significant vector currently for those invasions occurring (Carlton and Geller, 1993).<br />

Ballast water consists <strong>of</strong> water pumped into dedicated tanks or cargo holds/tanks for trim and<br />

stability during oceanic voyages, especially when the vessel is empty or only partially full <strong>of</strong><br />

cargo. Ballast water is usually taken from coastal water containing a rich diversity <strong>of</strong> planktonic<br />

organisms. Ballast water is <strong>of</strong>ten discharged into a receiving port prior to loading cargo,<br />

inoculating the ecosystem with exotic species. If any <strong>of</strong> the plankton are viable and become<br />

established, these non-indigenous species (NIS) can cause major ecological and economic<br />

disruption in the coastal ecosystem, with numerous examples in San Francisco Bay (Cohen and<br />

Carlton, 1995), the Great Lakes (Mills et al., 1993), Chesapeake Bay (Ruiz et al.,1999), Hawaii<br />

(Coles et al. 1999), and elsewhere (Ruiz et al., 1997). In San Francisco Bay, the rate <strong>of</strong> invasion<br />

has increased to about one new NIS invasion every 16 weeks, probably as a result <strong>of</strong> increased<br />

ballast water discharge (Cohen and Carlton, 1995). Whether the invasion is Eurasian zebra<br />

mussels in the Great Lakes, Asian clams in San Francisco Bay, or North American ctenophores<br />

in the Black Sea, impacts <strong>of</strong> ballast introductions have been devastating and irreversible. Despite<br />

the pr<strong>of</strong>ound impact <strong>of</strong> ballast-mediated invasions, the biological characteristics <strong>of</strong> ballast water<br />

and the factors that regulate invasion success are little studied and poorly understood. In the<br />

USA, biological characteristics <strong>of</strong> ballast water have only been studied in two port systems: Coos<br />

Bay (Carlton and Geller, 1993) and Chesapeake Bay (Smith et al., 1996; 1999; Ruiz et al.,<br />

unpubl. data); and in other countries the biology <strong>of</strong> ballast water has similarly received little<br />

quantitative analysis (Carlton, 1989; however see Williams et al., 1988; Hallegraeff and Bolsch,<br />

1992).<br />

1C2. NIS in High Latitude/<strong>Cold</strong> <strong>Water</strong> <strong>Ecosystems</strong><br />

Although there has been no significant analysis <strong>of</strong> NIS in polar marine ecosystems, there<br />

have been a limited number <strong>of</strong> NIS surveys in high temperate latitudes between 40 o - 60 o and a<br />

study <strong>of</strong> the Baltic Sea, which includes a major bay that extends substantially above 60 o . These<br />

studies include three regions in the northern hemisphere (Baltic Sea, Wadden Sea, and United<br />

Kingdom)(Reise et al., 1999, Lepapakoski 1984) and one region in the southern hemisphere<br />

(Tasmania/New Zealand)(Hayward 1997, R. Thresher, 1999 pers. comm.). Together, these<br />

studies clearly demonstrate that invasions are not limited to lower latitudes. The number <strong>of</strong><br />

known NIS at these locations ranges between 32 and 80 species. For each region, the species<br />

include a broad range <strong>of</strong> taxonomic groups, and some <strong>of</strong> the invasions have generated serious


Chapt 1. Introduction, page 1- 4<br />

concerns about their ecological and economic impacts. As with most invasions, the actual<br />

impacts remain unmeasured (e.g., Ruiz et al., 1999). Nonetheless, based upon reported<br />

abundances and known ecology, species such as the green crab Carcinus maenas (on the North<br />

American east and west coasts, Tasmania), the seastar Asterias amurensis (in Tasmania), and the<br />

laminarian kelp Undaria sp. appear likely to cause significant and irreversible changes.<br />

Furthermore, the cumulative effects <strong>of</strong> the entire NIS assemblage may cause many changes in<br />

ecosystem function that are not easily identified with any single invasion event (Cohen and<br />

Carlton, 1995).<br />

The numbers <strong>of</strong> NIS at high latitudes may be lower than those for temperate regions,<br />

although it is not clear whether low numbers <strong>of</strong> documented NIS reflect lack <strong>of</strong> invasion in high<br />

latitude ecosystems or lack <strong>of</strong> research focused on the invasion biology <strong>of</strong> these areas. At the<br />

outset <strong>of</strong> this study, the number <strong>of</strong> NIS documented in Alaskan waters appeared to be lower than<br />

other high latitude/cold water ecosystems with more extensive analysis, despite the extensive<br />

environmental studies associated with the Exxon Valdez oil spill in Prince William Sound and<br />

other ecological research throughout the region (Ruiz & Hines, 1997).<br />

We advanced two hypotheses why NIS have not been as evident at high latitude as at<br />

mid-latitudes:<br />

(1) NIS are truly rare at high latitude. High latitude communities may be resistant to invasion<br />

(e.g., severe seasonal stress requires specialized evolutionary adaptations not possessed by<br />

non-native species). Transport patterns may not have been conducive to inoculation.<br />

Shipping/ballast water is major source <strong>of</strong> rapidly escalating invasions in temperate latitudes,<br />

but perhaps neither the relatively recent (20 yrs) surge in tanker traffic to Alaska with very<br />

large ballast capacity, nor the current shift in tanker traffic to foreign ports has had time to<br />

produce invasions. Note, however, that NIS invasions mediated by ballast water have been<br />

common over the past 20 years in some cold temperate ports such as San Francisco Bay<br />

(Cohen and Carlton, 1995).<br />

(2) NIS are actually common at high latitude, but have not yet received concentrated study by<br />

experts <strong>of</strong> invasion biology. For example, Carlton (1979) identified some 160 NIS in San<br />

Francisco Bay and Pacific northwest coast, but as <strong>of</strong> 1995 the number <strong>of</strong> NIS documented in<br />

San Francisco Bay was 212 species (Cohen & Carlton, 1995) and is now nearly 250 species<br />

(J.T. Carlton, personal communication). Three years ago, the number <strong>of</strong> NIS in Chesapeake<br />

Bay was considered to be only about 25 species; yet pursuant to our on-going literature<br />

search <strong>of</strong> the historical records, we have documented >140 NIS, and the list is still growing<br />

with continuing research. Despite extensive biological/ecological assessments <strong>of</strong> coastal<br />

ecosystems associated with oil spills in Alaska, NIS probably remain inadequately studied.<br />

The existing and on-going surveys from oil spill work and other studies in Prince William<br />

Sound are probably not adequate because those surveys were designed for purposes other<br />

than detecting introduced species. Also, they mainly focused on rocky shores rather than on<br />

s<strong>of</strong>t-bottom and fouling communities that are most invaded in other regions (e.g., Cohen &<br />

Carlton, 1995). Most introduced species have been discovered by taxonomic experts<br />

systematically examining specimens previously identified by non-specialists or conducting<br />

field surveys <strong>of</strong> their own.


Chapt 1. Introduction, page 1- 5<br />

1C3. Risk Factors for Prince William Sound<br />

Prince William Sound is a relatively pristine, cold water ecosystem at high latitude.<br />

Approximately 20% <strong>of</strong> US domestic oil production is shipped from Port Valdez at the head <strong>of</strong><br />

the Sound (Fig. 1.1). Tankers arriving to Port Valdez come primarily from domestic source ports<br />

<strong>of</strong> the west coast <strong>of</strong> North America and Hawaii; but in the past three years tankers also have been<br />

traveling from foreign ports, especially in eastern Asia and rarely other locations (Fig. 1.2).<br />

Tankers arriving to Prince William Sound discharge two types <strong>of</strong> ballast water: (1) Segregated<br />

ballast water from tanks dedicated solely to ballast water and (2) non-segregated ballast water<br />

from tanks which are used to carry petroleum products. Approximately 20 million metric tons <strong>of</strong><br />

segregated ballast water are discharged annually by tankers into the port and sound, a quantity <strong>of</strong><br />

domestic ballast water that greatly exceeds the volumes <strong>of</strong> foreign ballast water released in other<br />

U.S. West Coast ports and is the third largest volume for all U.S. ports (behind port systems <strong>of</strong><br />

New Orleans and Chesapeake Bay). All non-segregated, oily water (about 50% <strong>of</strong> total)<br />

discharged by tankers in Port Valdez must pass through the Ballast <strong>Water</strong> Treatment Facility<br />

located on shore at the Valdez Marine Terminal. Effects <strong>of</strong> the treatment plant on NIS were<br />

unknown prior to our Pilot Study (Ruiz & Hines, 1997). The Pilot Study showed that nonsegregated<br />

ballast water contained few live planktonic organisms upon leaving tankers and<br />

entering the treatment plant, and that there is little risk <strong>of</strong> NIS in the discharge <strong>of</strong> water from the<br />

treatment plant (Hines et. al., in press). Accordingly, all <strong>of</strong> our analyses in subsequent research<br />

presented in this report focus on segregated ballast water.<br />

Figure 1.1.Map <strong>of</strong> Prince William Sound, Alaska, showing location <strong>of</strong> Valdez Marine Terminal.<br />

Segregated ballast water from tankers is discharged directly into the Sound/Port without<br />

treatment. This volume is many orders <strong>of</strong> magnitude greater than the ballast water released by<br />

other types <strong>of</strong> ships traveling to Prince William Sound. Release <strong>of</strong> ballast water into Prince<br />

William Sound increased markedly with the opening <strong>of</strong> the trans-Alaska Pipeline in 1977.<br />

Tankers have made more than 15,000 voyages through Prince William Sound to Port Valdez<br />

since the startup <strong>of</strong> the terminal in 1977. From 1987-1994, tanker arrivals to Valdez averaged


Chapt 1. Introduction, page 1- 6<br />

799 per year but have declined to less than 600 per year currently. Since 1996, oil shipping<br />

patterns authorized by the US Congress have changed to allow sale <strong>of</strong> crude oil on foreign as<br />

well as domestic markets. Tankers from foreign ports are required to conduct mid-ocean<br />

exchange <strong>of</strong> their coastal ballast water, which is expected to reduce numbers <strong>of</strong> organisms<br />

transported from foreign coastal ecosystems to Alaskan waters. However, the effectiveness <strong>of</strong><br />

mid-ocean exchange is poorly measured. Moreover, the greatest volume <strong>of</strong> ballast water coming<br />

to Alaska derives from domestic ports <strong>of</strong> the west coast <strong>of</strong> North America, which themselves are<br />

highly invaded by NIS. Tankers on these domestic, relatively short coast-wise voyages are not<br />

required to exchange ballast water.<br />

To determine whether the known NIS in Alaska provide an accurate indicator <strong>of</strong> the<br />

probability for biological invasions, we considered 6 factors which contribute elements <strong>of</strong> risk<br />

for invasions <strong>of</strong> Prince William Sound:<br />

1. Huge volume <strong>of</strong> ballast water. The greatest quantities <strong>of</strong> ballast water are transported by<br />

bulk cargo carriers and tankers (Carlton et al., 1995; Smith et al., 1996). Chesapeake Bay<br />

receives 10-fold more ballast water than other ports on the east and west coasts <strong>of</strong> the U.S.<br />

because <strong>of</strong> the high volume <strong>of</strong> bulkers arriving to the ports <strong>of</strong> Baltimore and Norfolk. The<br />

tanker traffic to Port Valdez releases the third largest volume <strong>of</strong> ballast water into a US port.<br />

Other things being equal, larger ballast volumes mean larger inoculations <strong>of</strong> NIS.<br />

2. Short voyage time. Our analysis <strong>of</strong> biological characteristics <strong>of</strong> ballast water arriving to<br />

Chesapeake Bay shows a marked inverse relationship between densities <strong>of</strong> organisms and<br />

length <strong>of</strong> voyage, such that ballast water after voyages <strong>of</strong> 14-24 days had more than 10-fold<br />

fewer organisms than voyages <strong>of</strong> 5-13 days (Smith et al., 1996; 1999). However, these<br />

effects may be confounded by differences in the source <strong>of</strong> ballast, which co-varies with the<br />

length <strong>of</strong> voyage (Smith et al., 1996; 1999). Voyages <strong>of</strong> tankers delivering ballast water to<br />

Prince William Sound average only 3-6 days, quite short compared to most trans-oceanic<br />

voyages that average 12-22 days. Short voyages mean that many larvae and other organisms<br />

are likely to be in good health when they are discharged (see Chapt 2 and 3 below).<br />

3. Pattern <strong>of</strong> repeated delivery from same donor locations. Although Chesapeake Bay receives<br />

about 10-fold more ballast water than does San Francisco Bay, San Francisco Bay appears to<br />

be invaded by many more ballast-mediated NIS. This greater risk could be due to San<br />

Francisco Bay receiving repeated ballast inoculations delivered from relatively fewer ports<br />

than does Chesapeake Bay. Similarly, Prince William Sound could be at increased risk not<br />

only by the large volume <strong>of</strong> ballast water, but also by the repeated inoculation <strong>of</strong> ballast from<br />

a small set <strong>of</strong> west coast ports (Fig. 1.2, Chapt 2 below).<br />

4. The match <strong>of</strong> environmental conditions <strong>of</strong> source and receiving ports. Environmental<br />

conditions in Alaska are <strong>of</strong>ten perceived as being harsh and inhospitable to most potential<br />

invaders from temperate latitudes where moderate conditions prevail. Obviously,<br />

temperature, light and other conditions during winter are indeed more extreme than those in<br />

temperate regions <strong>of</strong> North America and Asia. However, temperature-salinity conditions in<br />

Prince William Sound during spring and summer <strong>of</strong>ten approximate conditions in source<br />

ports <strong>of</strong> northwest North America, especially during productive periods <strong>of</strong> cold water<br />

up-welling. In fact, many <strong>of</strong> the native marine/estuarine species in Alaska have geographic<br />

ranges which extend to British Columbia, Washington, Oregon, and Northern California.<br />

Temperature-salinity conditions in segregated ballast water <strong>of</strong> tankers arriving from several<br />

west coast source ports is shown to be similar to the waters <strong>of</strong> Port Valdez (see Chapt 4<br />

below). In the fjords <strong>of</strong> Prince William Sound, such as Port Valdez, heavy loads <strong>of</strong>


Chapt 1. Introduction, page 1- 7<br />

suspended sediment during summer snow/glacial melt also may be a major stress on marine<br />

organisms in surface waters.<br />

Figure 1.2. Major tanker routes to Port Valdez, Alaska.<br />

5. Lack <strong>of</strong> mid-ocean exchange <strong>of</strong> ballast water delivered to Prince William Sound. Mid-ocean<br />

exchange <strong>of</strong> ballast water reduces concentrations <strong>of</strong> larvae and plankton by 50-90% (Smith et<br />

al., 1996). Exchange presumably limits the risk <strong>of</strong> invasion, as mid-ocean species are<br />

generally thought to be incapable <strong>of</strong> invading near-shore habitats. Delivery <strong>of</strong> ballast from<br />

coastal ports <strong>of</strong> the U.S. West Coast without oceanic exchange before release into Prince<br />

William Sound poses an elevated risk. Further experimental assessment <strong>of</strong> this role <strong>of</strong><br />

mid-ocean exchange in reducing plankton abundance and diversity in ballast water is<br />

presented below in “Ballast <strong>Water</strong> Exchange Experiments”. While ballast water exchange is<br />

required for tankers from foreign ports, the National Invasive Species Act <strong>of</strong> 1996 considers<br />

tankers from U.S. west coast ports to be domestic, coast-wise traffic that does not require<br />

exchange.<br />

6. High frequency <strong>of</strong> known NIS - especially those transported by ballast water - in source<br />

regions <strong>of</strong> ballast coming to Prince William Sound. Some workers consider that there may<br />

be "hotspots" <strong>of</strong> invasion or donation <strong>of</strong> NIS. If such hotspots exist, certainly San Francisco<br />

Bay and other ports <strong>of</strong> the U.S. west coast qualify as having among the highest prevalences<br />

<strong>of</strong> documented ballast-mediated invasions. These, in turn, form the sources donating much<br />

<strong>of</strong> the ballast water delivered to Prince William Sound. The 310+ known NIS <strong>of</strong> the west<br />

coast <strong>of</strong> North America vary considerably in abundance among 6 latitudinally separate<br />

regions (southern California, San Francisco Bay, northern California, Coos Bay Oregon,<br />

northwest region from the Columbia River estuary to British Columbia, and Alaska) (Ruiz &<br />

Hines, 1997). The number <strong>of</strong> known NIS varies from about 80+ species in southern<br />

California to about 40+ species in the northwest region <strong>of</strong> Washington and British Columbia,<br />

with the largest number <strong>of</strong> nearly 250 species occurring in San Francisco Bay. At each<br />

location along the west coast, NIS are common in a diverse array <strong>of</strong> taxonomic groups, with<br />

arthropods, mollusks, and annelids comprising major fractions <strong>of</strong> NIS at most locations. In<br />

several locations (San Francisco Bay, Northern California, Oregon), vascular plants and<br />

chordates also comprise major portions <strong>of</strong> the NIS. Much <strong>of</strong> the variation in number <strong>of</strong> NIS


Chapt 1. Introduction, page 1- 8<br />

probably reflects the level <strong>of</strong> study and state <strong>of</strong> knowledge for each location, especially since<br />

the highest numbers occur at two locations (San Francisco Bay and Coos Bay) where J.T.<br />

Carlton has focused his past research. Many NIS occur in several locations along the west<br />

coast, indicating that invasions by the same species have occurred widely across latitudinally<br />

separate sites. The similarity <strong>of</strong> NIS at less studied sites may be expressed as a percent<br />

overlap with NIS in well-studied San Francisco Bay. The overlap <strong>of</strong> NIS at west coast<br />

source ports with those in San Francisco Bay is high, ranging from about 60-75%. For the<br />

limited sample known for Alaska, the overlap <strong>of</strong> NIS with San Francisco Bay is substantially<br />

lower at about 25%. However, it is not clear whether this lower overlap reflects reduced<br />

compatibility with the Alaskan region or the small sample size, or both.<br />

7. History <strong>of</strong> other vectors for NIS in Prince William Sound. Although ballast water from<br />

tankers is currently a major vector for introductions <strong>of</strong> NIS in Prince William Sound, several<br />

other vectors have been, and continue to be, active in Alaska for long periods <strong>of</strong> time and in<br />

the present. These transport mechanisms include:<br />

• Ballast water from other types <strong>of</strong> ships, especially bulk carriers <strong>of</strong> such products as wood<br />

(logs, wood chips), ore, and coal, which come from foreign or domestic ports to Alaska<br />

in ballast to load. These may provide inoculations in ports nearby Prince William Sound<br />

(e.g., Homer, Seward), that may be spread by coast-wise traffic.<br />

• Fouling <strong>of</strong> ship hulls, which was especially important historically in wooden ships and<br />

before anti-fouling paints. However, fouling continues to be common, and may be<br />

especially important in coast-wise transport to and within Alaskan waters. This vector<br />

may include all types <strong>of</strong> private, recreational and commercial vessels.<br />

• Intentional and accidental release from aquaculture activities. Both species that are<br />

cultured and species that may be coincident with the aquaculture (including disease<br />

organisms) may be released. Oyster culture, salmon culture, and cultured herring roe on<br />

kelp are especially common and potential sources <strong>of</strong> NIS in Prince William Sound.<br />

Mussel culture may be initiated in the area.<br />

• Fishery release has occurred commonly in the past through efforts <strong>of</strong> state and federal<br />

agencies to improve stocks.<br />

• Aquarium and pet trades have resulted in NIS invasions at many places around the world.<br />

• Large-scale changes in current patterns may transport NIS into Alaskan waters. During<br />

1998 the very strong El Niño along the eastern Pacific may have brought warm-water<br />

species much further north than their typical distribution. These shifts may also allow<br />

species transported by human activities to become established.<br />

In many ecosystems, NIS invade over time as a series <strong>of</strong> vectors shift in importance, and this<br />

accumulation <strong>of</strong> NIS can result in major changes in the diversity and function <strong>of</strong> coastal<br />

ecosystems (Cohen & Carlton 1995).<br />

1D. References<br />

Carlton, J.T. 1979. History, biogeography, and ecology <strong>of</strong> the introduced marine and estuarine<br />

invertebrates <strong>of</strong> the Pacific coast <strong>of</strong> North America. Ph.D. Thesis, Univ. Calif., Davis. 904 pp.<br />

Carlton, J.T. 1989. Man's role in changing the face <strong>of</strong> the ocean: biological invasions and the<br />

implications for conservation <strong>of</strong> near-shore environments. Conserv. Biol. 3(3): 265-273.


Chapt 1. Introduction, page 1- 9<br />

Carlton, J.T. and J. B. Geller. 1993. Ecological roulette: the global transport <strong>of</strong> nonindigenous<br />

marine organisms. Science 261: 78-82.<br />

Carlton, J.T., D. Reid and H. van Leeuwen. 1995. The role <strong>of</strong> shipping in the introduction <strong>of</strong><br />

nonindigenous aquatic organisms to the coastal waters <strong>of</strong> the United States (other than the Great<br />

Lakes) and an analysis <strong>of</strong> control options. Report to U.S. Coast Guard, Marine Environment<br />

Protection Division, Washington, DC. 215 pp.<br />

Cohen, A.N. and J.T. Carlton. 1995. Nonindigenous aquatic species in a United States estuary: a<br />

case study <strong>of</strong> the biological invasion <strong>of</strong> San Francisco Bay and delta. Report to U.S. Fish &<br />

Wildlife Service, Washington, DC and National Sea Grant College Program, Connecticut Sea<br />

Grant. 246 pp.<br />

Coles, S. L., R.C. DeFelice, L.G. Eldredge and J.T. Carlton. 1999. Historical and recent<br />

introductions <strong>of</strong> non-indigenous marine species into Pearl Harbor, Oahu, Hawaiian Islands. Mar.<br />

Biol. 135(1): 147-158.<br />

Hallegraeff, G.M. and C.J. Bolch. 1992. Transport <strong>of</strong> diatom and din<strong>of</strong>lagellate resting spores in<br />

ships’ ballast water: implications for plankton biogeography and aquaculture. J. Plankton Res.<br />

14: 1067-1084.<br />

Hayward, B.W. 1997. Introduced marine organisms in New Zealand and their impact in the<br />

Waitemata Harbour, Auckland. Tane 36:197-223.<br />

Hines, A.H., G.M. Ruiz, J. Chapman, J. Carlton and N. Foster. 1998. <strong>Biological</strong> invasions in<br />

cold-water coastal ecosystems: Ballast-mediated introductions in Port Valdez/Prince William<br />

Sound, Alaska. Progress Report to the Regional Citizens' Advisory Council <strong>of</strong> Prince William<br />

Sound.<br />

Leppakoski, E. 1984. Introduced species in the Baltic Sea and its coastal ecosystems. Ophelia,<br />

suppl 3: 123-135.<br />

Mills, E.L., J.H. Leach, J.T. Carlton and C.L. Secor. 1993. Exotic species in the Great Lakes: A<br />

history <strong>of</strong> biotic crises and anthropogenic introductions. J. Gt. Lakes Res. 19(1): 1-54.<br />

Reise, K., S. Gollasch and W.J. Wolff. 1999. Introduced marine species <strong>of</strong> the North Sea coasts.<br />

Helgol. Meeresunters. 52: 219-234.<br />

Ruiz, G.M., J.T. Carlton, A. H. Hines and E.D. Grosholz. 1997(a). Global invasions <strong>of</strong> marine<br />

and estuarine habitats by non-indigenous species: Mechanisms, extent, and consequences. Am.<br />

Zool. 37: 621-632<br />

Ruiz, G.M. and A.H. Hines. 1997. Patterns <strong>of</strong> nonindigenous species transfer and invasion in<br />

Prince William Sound, Alaska: Pilot Study. Report Submitted to the Prince William Sound<br />

Citizens’ Advisory Council. 80pp.


Chapt 1. Introduction, page 1- 10<br />

Ruiz, G.M., P. F<strong>of</strong>on<strong>of</strong>f and A.H. Hines. 1999. Non-indigenous species as stressors in estuarine<br />

and marine communities: Assessing invasion impacts and interactions. Limnol. Oceanogr. 44(3,<br />

part 2): 950-972<br />

Smith, L.D., M.J. Wonham, L.D. MCann, D.M. Reid, G.M. Ruiz and J.T. Carlton. 1996.<br />

<strong>Biological</strong> invasions by nonindigenous species in United States waters: Quantifying the role <strong>of</strong><br />

ballast water and sediments. Parts I and II. Final Report to the U.S. Coast Guard and the U.S.<br />

Department <strong>of</strong> Transportation. 246 pp.<br />

Smith, L.D., M.J. Wonham, L.D. McCann, G.M. Ruiz, A.H. Hines and J.T. Carlton. 1999.<br />

Invasion pressure to a ballast-flooded estuary and an assessment <strong>of</strong> inoculant survival. Biol.<br />

<strong>Invasions</strong> 1: 67-87.<br />

Williams, R.J., F.B. Griffiths, E.J. Van der Wal and J. Kelly. 1988. Cargo vessel ballast water as<br />

a vector for the transport <strong>of</strong> non-indigenous marine species. Est. Coast. Shelf Sci. 26: 409-420.


Chapt 2. Ballast <strong>Water</strong> Delivery Patterns, page 2- 1<br />

Chapter 2. Ballast <strong>Water</strong> Delivery Patterns<br />

Gregory M. Ruiz, Smithsonian Environmental Research Center<br />

Anson H. Hines, Smithsonian Environmental Research Center<br />

George Smith, Smithsonian Environmental Research Center<br />

Melissa A. Frey, Smithsonian Environmental Research Center<br />

2A. Purpose<br />

The primary goal <strong>of</strong> this portion <strong>of</strong> the study was to characterize the traffic patterns and<br />

volumes <strong>of</strong> ballast water discharged into Port Valdez and Prince William Sound (PWS) by oil<br />

tankers. Since ballast water is a major mechanism for the transfer <strong>of</strong> NIS, we wished to describe<br />

the delivery patterns <strong>of</strong> the ballast water to the region by season, source region, voyage duration.<br />

Analysis <strong>of</strong> the biota associated with the tankers’ ballast water is discussed in the next chapter.<br />

2B. Methods<br />

We obtained data on ship arrivals and ballast water histories in two ways. First, we<br />

obtained information about the long-term (10-year) pattern <strong>of</strong> arrivals to Port Valdez from<br />

Alyeska and RCAC. Second, to characterize current patterns, we collected detailed data from<br />

vessels arriving to Port Valdez over the one-year period <strong>of</strong> 1998. Our goal in this latter approach<br />

was to collect comprehensive information on the origin (i.e., last port <strong>of</strong> call), date <strong>of</strong> arrival, and<br />

ballast water histories for as many arriving vessels as possible. Most <strong>of</strong> these data were collected<br />

by SERC staff, during interviews aboard vessels (see below). Additional data were sent to us by<br />

the ships’ personnel and shipping agents.<br />

Beginning December 1997, we implemented a sampling scheme to estimate the amount<br />

<strong>of</strong> segregated ballast water delivered to Prince William Sound and Port Valdez by source port<br />

and season. For tankers arriving to Port Valdez from each <strong>of</strong> the three primary domestic source<br />

port systems (Los Angeles, San Francisco Bay, Puget Sound), we boarded approximately 3<br />

tankers per month (i.e., 10 per quarter x 3 source ports = 30 per quarter). In addition, we<br />

attempted to board most tankers arriving to Port Valdez from foreign ports.<br />

Upon boarding, we conducted an interview <strong>of</strong> the ships’ personnel to collect information<br />

on the quantity, age, source region, and management <strong>of</strong> all ballast water. Following the<br />

interview, we proceeded to sample the segregated ballast water to characterize temperature,<br />

salinity, and resident biota (see Chapter 3).<br />

We excluded non-segregated ballast water from most <strong>of</strong> our current analyses. Although<br />

this can account for roughly 50% <strong>of</strong> the total ballast water aboard tankers arriving to Prince<br />

William Sound (see below), previous analyses indicated that very few viable organisms were<br />

present in this ballast water, which <strong>of</strong>ten includes some residual oil. Furthermore, the<br />

nonsegregated ballast water is pumped to an on-shore treatment facility at the Alyeska terminal.<br />

For review <strong>of</strong> previous results, as well as description <strong>of</strong> the treatment process, see Ruiz and<br />

Hines 1997.<br />

Since vessels with double bottoms are difficult to sample for biota, we focused our sampling<br />

effort primarily on vessels without double bottoms. Thus, to characterize the entire fleet (i.e., all


Chapt 2. Ballast <strong>Water</strong> Delivery Patterns, page 2- 2<br />

arrivals), we obtained additional data on ballast water histories <strong>of</strong> nearly all oil tankers arriving<br />

to Port Valdez in 1998. Ships’ personnel and shipping agents generously provided these data.<br />

2C. Results<br />

2C1. Number and Source <strong>of</strong> Tanker Arrivals to PWS<br />

Over the past decade (1989-98), tanker arrivals to Port Valdez have averaged 713<br />

(se=37.2) ships per year, ranging from 870 to 549 (Fig. 2.1). There has been a noticeable decline<br />

in arrivals since 1991, with each year having fewer arrivals than the previous one.<br />

Figure 2.1. Annual number <strong>of</strong> oil tankers arriving to Port Valdez, 1989-1998. Data as provided by Alyeska.<br />

1000<br />

NUMBER OF ARRIVALS<br />

800<br />

600<br />

400<br />

200<br />

0<br />

89 90 91 92 93 94 95 96 97 98<br />

YEAR<br />

Using 1998 to examine spatial and temporal patterns, tanker arrivals to Port Valdez were<br />

both distributed evenly among seasons and dominated by arrivals from U.S. domestic ports (Fig.<br />

2.2). An average <strong>of</strong> 137.3 (s.e.=2.98) vessels arrived each quarter, and 95.8% (s.e. = 0.82 %) <strong>of</strong><br />

all arrivals came directly from a U.S. port. Of all tanker arrivals, 82.7% came from one <strong>of</strong> three<br />

domestic ports (Fig. 2.3): Puget Sound, Washington (43.0%); San Francisco Bay, California<br />

(28.8.%); and Long Beach, California (10.9%). The residual came from Oregon, Hawaii,<br />

Alaska, or foreign ports. Among arrivals from foreign ports, most (69.6%) came directly from<br />

Korea (Fig. 2.4).<br />

Figure 2.2. Number <strong>of</strong> oil tankers arriving to Port Valdez from foreign and domestic source ports by season<br />

in 1998. Seasons include: Winter (January-March), Spring (April-June), Summer (July-September), and Fall<br />

(October-December). Data based upon boarding interviews and reports from ships’ personnel (see text).<br />

160<br />

SOURCE PORT<br />

Foreign<br />

Domestic<br />

# VESSELS<br />

120<br />

80<br />

40<br />

0<br />

WINTER SPRING SUMMER FALL<br />

SEASON


Chapt 2. Ballast <strong>Water</strong> Delivery Patterns, page 2- 3<br />

Figure 2.3 Number <strong>of</strong> oil tankers arriving to Port Valdez from each domestic source port by season in 1998.<br />

Source ports include: Puget Sound, WA (PS); San Francisco Bay, CA (SF); Long Beach, CA (LB); Columbia River,<br />

Oregon (OR); Cook Inlet, Alaska (AK); and Barbers Point, Hawaii (HI). Seasons include: Winter (January-March),<br />

Spring (April-June), Summer (July-September), and Fall (October-December). Data based upon boarding<br />

interviews and reports from ships’ personnel (see text).<br />

SOURCE PORT<br />

# VESSELS<br />

80<br />

60<br />

40<br />

20<br />

PS<br />

SF<br />

LB<br />

OR<br />

AK<br />

HI<br />

0<br />

WINTER SPRING SUMMER FALL<br />

SEASON<br />

Figure 2.4. Number <strong>of</strong> oil tankers arriving to Port Valdez from each foreign source port by season in 1998.<br />

Seasons Include: Winter (January-March), Spring (April-June), Summer (July-September), and Fall (October-<br />

December). Data based upon boarding interviews and reports from ships’ personnel (see text).<br />

# VESSELS<br />

6<br />

4<br />

2<br />

SOURCE PORT<br />

Korea<br />

China<br />

Taiwan<br />

Japan<br />

Singapore<br />

0<br />

WINTER SPRING SUMMER FALL<br />

SEASON<br />

2C2. Volume <strong>of</strong> Ballast <strong>Water</strong> delivered to PWS<br />

During 1998, oil tankers arriving to PWS carried an estimated average <strong>of</strong> 65,775m 3<br />

(s.e.=1,252; n=472) <strong>of</strong> total ballast water, the combination <strong>of</strong> segregated and nonsegregated<br />

ballast water. Segregated ballast water comprised an average <strong>of</strong> 54.7% (s.e.=2.1%; n=472) <strong>of</strong><br />

the total among tankers.<br />

Across all vessels, tankers discharged an average <strong>of</strong> 32,715 m 3 (s.e.= 645; n=472) <strong>of</strong><br />

segregated ballast water upon arrival to PWS (Table 2.1). Although there were no seasonal<br />

differences in the average amount <strong>of</strong> ballast water per tanker, there was a significant difference<br />

by source port (Fig. 2.5; 2-way ANOVA, F (3 (seasons), 5 (port source), 517 obs) =3.52, P = 0.004).<br />

Specifically, the mean volume was significantly greater for arrivals from foreign ports compared<br />

to arrivals from all other ports, and the mean volume was significantly lower for tankers from<br />

Hawaii relative to all other sources.


Chapt 2. Ballast <strong>Water</strong> Delivery Patterns, page 2- 4<br />

Table 2.1. Estimated volume <strong>of</strong> ballast water delivered by oil tankers to Port Valdez and PWS in 1998.<br />

Shown by source port and season are: (1) the estimated mean volume <strong>of</strong> ballast water arriving per tanker, including<br />

the standard error and sample size (n=number <strong>of</strong> vessels for which we have volume estimates), (2) the total number<br />

<strong>of</strong> tanker arrivals which is shown as N, (3) the total estimated volume <strong>of</strong> ballast water (calculated as mean volume X<br />

total arrivals). The bottom row (Overall) estimates the total ballast water volume and number <strong>of</strong> arrivals for all<br />

ships combined. Source ports include: Puget Sound, WA (PS); San Francisco Bay, CA (SF); Long Beach, CA (LB);<br />

Foreign port with open-ocean exchange (EX); Columbia River, Oregon (OR); and Barbers Point, Hawaii (HI).<br />

Seasons include: Winter (January-March), Spring (April-May), Summer (July-September), and Fall (October-<br />

December). Source <strong>of</strong> data on volumes and arrivals as described in text.<br />

BW vol. (m³)<br />

Port/Source Season Mean(se) n N Total<br />

Winter 28163(1734) 56 64 1,802,432<br />

Spring 31421(2095) 51 60 1,885,260<br />

PS Summer 34448(1901) 53 59 2,032,432<br />

Fall 33894(2199) 46 53 1,796,382<br />

Grand total 206 236 7,516,506<br />

Winter 31841(2798) 31 34 1,082,594<br />

Spring 32809(2984) 40 41 1,345,169<br />

SF Summer 35765(2361) 40 44 1,573,660<br />

Fall 34371(2372) 37 39 1,340,469<br />

Grand total 148 158 5,341,892<br />

Winter 32526(3237) 18 18 585,468<br />

Spring 30399(2902) 12 13 395,187<br />

LB Summer 36045(3633) 14 14 504,630<br />

Fall 28850(1346) 15 15 390,180<br />

Grand total 59 60 1,875,465<br />

Winter 42153(4093) 9 9 379,377<br />

Spring 44294(3775) 6 6 265,764<br />

EX Summer 29856(3689) 5 5 149,280<br />

Fall 47056(5199) 3 3 141,168<br />

Grand total 23 23 935,589<br />

Winter 29182(6929) 4 9 262,638<br />

Spring 28250(2169) 4 4 113,000<br />

OR Summer 32429(1631) 2 3 97,287<br />

Fall 39138(5740) 6 7 273,966<br />

Grand total 16 23 746,891<br />

Winter 27142(2279) 6 7 189,994<br />

Spring 22229(1651) 4 5 111,145<br />

HI Summer 23766(4197) 6 6 142,596<br />

Fall 21729(1544) 4 5 108,370<br />

Grand Total 20 23 552,105<br />

Overall 32,715 472 523 16,968,448<br />

Note: Not included in the table are arrivals from Nikiski, AK (19) which provided no data, and other arrivals (7) for<br />

which port data are unavailable.


Chapt 2. Ballast <strong>Water</strong> Delivery Patterns, page 2- 5<br />

Figure 2.5. Mean volume <strong>of</strong> segregated ballast water per tanker arriving to Port Valdez and PWS by source<br />

port and season, 1998. The mean volumes are estimated for: (A) Each source port across all seasons; (B) Each<br />

season across all source ports. Standard error and sample size is shown above each bar; see Table 2.1 for further<br />

information. Source ports include: Puget Sound, WA (PS); San Francisco Bay, CA (SF); Long Beach, CA (LB);<br />

Foreign port with open-ocean exchange (EX); Columbia River, Oregon (OR); and Barbers Point, Hawaii (HI).<br />

Seasons include: Winter (January-March), Spring (April-June), Summer (July-September), and Fall (October-<br />

December). Data based upon boarding interviews and reports from ships’ personnel (see text).<br />

23<br />

40<br />

206<br />

148<br />

59<br />

16<br />

30<br />

20<br />

CUBIC METERS (thousands)<br />

20<br />

10<br />

0<br />

40<br />

30<br />

PS SF LB EX OR HI<br />

PORT<br />

119 113<br />

117<br />

123<br />

20<br />

10<br />

0<br />

WINTER SPRING SUMMER FALL<br />

SEASON<br />

We estimated the total amount <strong>of</strong> segregated ballast water discharged into Prince William<br />

Sound during 1998 was approximately 17,000,000 m 3 (no. arrivals x average ballast water<br />

volume) for source port by season (see Table 2.1). The relative contribution <strong>of</strong> different source<br />

ports to the total varied greatly, reflecting variation in the number <strong>of</strong> arrivals (Fig. 2.6; Table<br />

2.1). As a result, Puget Sound contributed approximately 44% <strong>of</strong> the total, followed by San<br />

Francisco 31% and Long Beach 11%.


Chapt 2. Ballast <strong>Water</strong> Delivery Patterns, page 2- 6<br />

Figure 2.6. Cumulative volume <strong>of</strong> ballast water arriving to Port Valdez and PWS by source port and season,<br />

1998. The cumulative volumes are estimated for season by source port (see Table 2.1 for further detail). Source<br />

ports include: Puget Sound, WA (PS); San Francisco Bay, CA (SF); Long Beach, CA (LB); Foreign port with openocean<br />

exchange (EX); Columbia River, Oregon (OR); and Barbers Point, Hawaii (HI). Seasons include: Winter<br />

(January-March), Spring (April-June), Summer (July-September), and Fall (October-December). Data based upon<br />

boarding interviews and reports from ships’ personnel (see text).<br />

CUBIC METERS (millions)<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

WINTER SPRING SUMMER FALL<br />

SEASON<br />

SOURCE PORT<br />

PS<br />

SF<br />

LB<br />

EX<br />

OR<br />

HI<br />

2C3. Age and Management <strong>of</strong> Ballast <strong>Water</strong> delivered to PWS<br />

The average age <strong>of</strong> ballast water arriving in tankers varied among source ports, ranging<br />

between 4.8 to 10.2 days (Fig. 2.7). The mean age among all arrivals was 6.6 days (s.e.= 0.2).<br />

For domestic source ports, the age <strong>of</strong> water was correlated with distance from Port Valdez to the<br />

source port, as ballast water came directly from the last port <strong>of</strong> call (the exception was for<br />

experiments conducted at our request, as described in Chapter 4). In contrast, all foreign arrivals<br />

exchanged their ballast water at sea, so the age <strong>of</strong> water was less than the voyage duration. Thus,<br />

for foreign arrivals, the actual source was considered open ocean exchange (EX) instead <strong>of</strong> the<br />

last port <strong>of</strong> call.<br />

Figure 2.7. Mean age (voyage duration) for ballast water arriving to Port Valdez by source port. The mean<br />

age is estimated for each source port based upon all boarding data (December 1997-July 1999). Standard error and<br />

sample size is shown above each bar. Source ports include: Puget Sound, WA (PS); San Francisco Bay, CA (SF);<br />

Long Beach, CA (LB); Foreign port with open-ocean exchange (EX); Columbia River, Oregon (OR); and Barbers<br />

Point, Hawaii (HI).<br />

BALLAST WATER AGE (Days)<br />

12<br />

8<br />

4<br />

0<br />

48<br />

50<br />

46<br />

PS SF LB EX OR HI<br />

SOURCE PORT<br />

2D. Discussion<br />

Over the past decade, Prince William Sound and Port Valdez together have received<br />

approximately 23.3 million m 3 (= 713 arrivals/yr x 32,610 m 3 /arrival) <strong>of</strong> segregated ballast water<br />

19<br />

2<br />

4


Chapt 2. Ballast <strong>Water</strong> Delivery Patterns, page 2- 7<br />

each year from oil tankers arriving to the Alyeska terminal. Although most <strong>of</strong> this water is<br />

released in Port Valdez, ships will sometimes begin discharging upon entering Prince William<br />

Sound en route for the Port. Thus, organisms released with this ballast water may experience a<br />

broader range <strong>of</strong> conditions outside <strong>of</strong> Port Valdez than we had originally considered.<br />

The total volume <strong>of</strong> ballast water delivered to Prince William Sound by tankers greatly<br />

exceeds the estimated quantity <strong>of</strong> ballast water arriving to other western U.S. ports (Carlton et al.<br />

1995). However, it is important to recognize that existing estimates for the other ports have<br />

included only the ballast water from foreign sources. In contrast, our estimates for Prince<br />

William Sound included both foreign and domestic sources, but were dominated by the latter.<br />

The amount <strong>of</strong> domestic ballast water released in other U.S. ports is only now being estimated.<br />

Nonetheless, even when we can include data on domestic sources for all ports, it appears likely<br />

that the total volume <strong>of</strong> ballast water released to PWS will still exceed that for the other western<br />

ports, due to the absence <strong>of</strong> extensive domestic tanker and bulker traffic (i.e., those vessels that<br />

discharge the greatest quantities <strong>of</strong> ballast water) at the other ports. Instead, the domestic traffic<br />

for other western U.S. ports is dominated by container ships, which release relatively small<br />

amounts <strong>of</strong> ballast water (Carlton et al. 1995; National Ballast <strong>Water</strong> Information Clearinghouse,<br />

unpubl. data).<br />

The total amount <strong>of</strong> ballast water arriving to Prince William Sound in tankers is also<br />

relatively large on a global scale. Within the U.S., PWS is third only to Chesapeake Bay and<br />

New Orleans in estimated ballast water discharge for 1991 (Carlton et al. 1995, Smith et al.<br />

1999). In a similar estimate <strong>of</strong> ballast water discharged to 46 Australian ports in 1991, only that<br />

for the port <strong>of</strong> Dampier exceeded the volume for PWS (Kerr 1994). As above, estimates for the<br />

both the U.S. and Australian ports were restricted to arrivals from foreign ports. Although these<br />

totals would clearly increase when including domestic arrivals, the overall patterns provide a<br />

useful context, suggesting PWS is on the extreme end <strong>of</strong> the spectrum for amount <strong>of</strong> ballast<br />

water discharge.<br />

It is also important to recognize the present level <strong>of</strong> tanker activity, and the magnitude <strong>of</strong><br />

ballast water delivery, as a recent development in Port Valdez. The terminal began transporting<br />

oil via tankers in 1977. Based upon the arrivals rate and discharge volumes observed in this<br />

decade, we estimate over 700 million m 3 <strong>of</strong> segregated ballast water have been delivered over the<br />

past 3 decades <strong>of</strong> operation. This large cumulative volume underscores the potential importance<br />

<strong>of</strong> ballast water as a vector for the transfer <strong>of</strong> species. Unlike many other commercial ports,<br />

however, the volume <strong>of</strong> ballast water prior to oil exportation was virtually absent, as very few<br />

other vessels currently deliver ballast water to the Port (Ruiz et al., unpubl. data).<br />

Furthermore, the foreign export <strong>of</strong> oil from Port Valdez has only occurred since 1996,<br />

following authorization by U.S. Congress. Prior to this time, all oil export was only to domestic<br />

U.S. ports, which were therefore the source <strong>of</strong> ballast water delivery to PWS and Port Valdez.<br />

Although tankers now export oil to foreign ports from PWS, the delivery <strong>of</strong> ballast water from<br />

foreign traffic remains a small fraction (


Chapt 2. Ballast <strong>Water</strong> Delivery Patterns, page 2- 8<br />

2E. References<br />

Carlton, J.T., D. Reid and H. van Leeuwen. 1995. The role <strong>of</strong> shipping in the introduction <strong>of</strong><br />

nonindigenous aquatic organisms to the coastal waters <strong>of</strong> the United States (other than the Great<br />

Lakes) and an analysis <strong>of</strong> control options. Report to U.S. Coast Guard, Marine Environment<br />

Protection Division, Washington, DC. 215 pp.<br />

Kerr, S. 1994. Ballast water ports and shipping study. Australian Quarantine and Inspection<br />

Service, Report No. 5, Canberra.<br />

Ruiz, G.M. and A.H. Hines. 1997. Patterns <strong>of</strong> nonindigenous species transfer and invasion in<br />

Prince William Sound, Alaska: Pilot Study. Report Submitted to the Prince William Sound<br />

Citizens’ Advisory Council. 80pp.<br />

Smith, L.D., M.J. Wonham, L.D. MCann, D.M. Reid, G.M. Ruiz and J.T. Carlton. 1996.<br />

<strong>Biological</strong> invasions by nonindigenous species in United States waters: Quantifying the role <strong>of</strong><br />

ballast water and sediments. Parts I and II. Final Report to the U.S. Coast Guard and the U.S.<br />

Department <strong>of</strong> Transportation. 246 pp.<br />

Smith, L.D., M.J. Wonham, L.D. McCann, G.M. Ruiz, A.H. Hines and J.T. Carlton. 1999.<br />

Invasion pressure to a ballast-flooded estuary and an assessment <strong>of</strong> inoculant survival. Biol.<br />

<strong>Invasions</strong> 1: 67-87.


Chapt 3. <strong>Biological</strong> Characteristics <strong>of</strong> Ballast <strong>Water</strong>, page 3- 1<br />

Chapter 3. <strong>Biological</strong> Characteristics <strong>of</strong> Ballast <strong>Water</strong> in Oil Tankers<br />

Gregory M. Ruiz, Smithsonian Environmental Research Center<br />

Anson H. Hines, Smithsonian Environmental Research Center<br />

George Smith, Smithsonian Environmental Research Center<br />

Melissa A. Frey, Smithsonian Environmental Research Center<br />

3A. Purpose<br />

The overall goal <strong>of</strong> this research component was to characterize the biota associated with<br />

segregated ballast water <strong>of</strong> tankers arriving to Port Valdez. For this analysis, we designed a<br />

sampling program to measure temporal (seasonal, annual) and spatial (source port) variation in<br />

the biota associated with the ballast water.<br />

We focused primarily on the mid-large (>80 micron) zooplankton resident in the water<br />

column <strong>of</strong> ballast tanks, and present the results <strong>of</strong> this analysis here. We have included some<br />

information on the phytoplankton concentrations present in our samples, but the sampling<br />

methods (below) were not designed to characterize these organisms and many <strong>of</strong> the other taxa<br />

(e.g., bacteria, viruses, and other microorganisms) that are small in size. This choice does not<br />

imply that small organisms are not significant from an invasion standpoint, as the potential<br />

effects <strong>of</strong> toxic din<strong>of</strong>lagellate blooms are very evident (see Introduction). Instead, we simply did<br />

not have the resources to include all taxonomic groups in our analyses.<br />

We chose to focus on the mid-large zooplankton for multiple reasons. First, the<br />

taxonomic resolution is relatively good compared to many <strong>of</strong> the other (smaller) organisms.<br />

Second, most known NIS that are established at the source ports <strong>of</strong> oil tankers, such as San<br />

Francisco Bay, occur (for some portion <strong>of</strong> their life history) in this zooplankton community.<br />

Third, we could readily gain access to the plankton community (as opposed to the bottom<br />

sediments). Finally, the sample analysis for larger zooplankton is not as technically difficult or<br />

time consuming as that necessary for the smaller organisms, allowing us to analyze samples from<br />

a large number <strong>of</strong> ships for statistical comparisons.<br />

The analysis <strong>of</strong> zooplankton presented here is one <strong>of</strong> the most comprehensive and<br />

quantitative studies <strong>of</strong> ballast water in the world. Additional data on the biota associated with<br />

ballast water also appear in other chapters. Our analysis <strong>of</strong> ballast water exchange (Chapter 5)<br />

includes survivorship <strong>of</strong> plankton during 8 separate voyages, effects <strong>of</strong> exchange on<br />

zooplankton, and some information on bacteria and ciliate protozoans. Biota associated with the<br />

bottom sediments <strong>of</strong> ballast tanks, as well as the hulls and seachests, are also examined (Chapters<br />

6 and 7, respectively).<br />

3B. Methods<br />

3B1. Source and Number <strong>of</strong> Sampled Ships<br />

For a 13-month period (December 1997 – December 1998, hereafter 1998), we conducted<br />

an intensive sampling program <strong>of</strong> ballast water on tankers that was stratified by source port and<br />

season. Most tankers and ballast water arriving to Port Valdez came from three U.S. domestic


Chapt 3. <strong>Biological</strong> Characteristics <strong>of</strong> Ballast <strong>Water</strong>, page 3- 2<br />

port systems: Puget Sound, San Francisco Bay, and Long Beach (see Chapter 2). To characterize<br />

biota for these ports by seasons, we sampled a minimum <strong>of</strong> 3 tanker arrivals per month from<br />

each <strong>of</strong> the three domestic source port systems (i.e., 10 per quarter x 3 source ports = 30 per<br />

quarter). Although relatively few (23) tankers arrived from foreign ports in Port Valdez during<br />

this year, we sampled as many as possible (n=19) to compare the biota arriving from foreign<br />

versus domestic sources. We also sampled a limited number <strong>of</strong> arrivals from the other two<br />

domestic ports: Oregon and Hawaii (which comprised < 10% all arrivals; see Chapter 2).<br />

In June <strong>of</strong> three consecutive years (1997, 1998, 1999), we collected samples from<br />

approximately 10 tankers arriving to Port Valdez from the domestic ports <strong>of</strong> Puget Sound, San<br />

Francisco Bay, and Long Beach. Samples from 1997 were collected as part <strong>of</strong> a Pilot Study that<br />

we conducted for RCAC (Ruiz and Hines 1997), and the samples for 1998-1999 were collected<br />

in the present study. Together, these samples were used to characterize annual variation in the<br />

ballast water biota arriving to Alaska.<br />

3B2. Sample Collection and Analysis<br />

We boarded and sampled tankers immediately upon their arrival to Port Valdez. As<br />

described above, we sampled approximately 2-3 vessels per week over the 13-month period.<br />

Although we attempted to collect ballast water from every tanker boarded, vessels with double<br />

bottoms could not be sampled easily without disruption <strong>of</strong> ship operations and modification <strong>of</strong><br />

our standard sampling protocol. In the present analysis, we therefore have included primarily<br />

(but not exclusively) vessels without double bottoms.<br />

We applied our established methods for qualitative and quantitative analysis <strong>of</strong> biota<br />

transported in ballast water, which evolved from methods developed by J.T. Carlton (e.g.,<br />

Carlton and Geller, 1993; LaVoie et al.1999; Smith et al., 1999). Our protocol consisted <strong>of</strong><br />

collecting the following information and samples:<br />

• Ship and ballast management information: Last port <strong>of</strong> call, number <strong>of</strong> tanks by type,<br />

capacity <strong>of</strong> tanks, amount <strong>of</strong> segregated and non-segregated ballast water on board, source(s)<br />

<strong>of</strong> ballast water, age <strong>of</strong> ballast water, date <strong>of</strong> arrival, ballast management practices;<br />

• Physical variables <strong>of</strong> ballast water: <strong>Water</strong> temperature and salinity were measured (surface<br />

and 10m depth) for each tank sampled (as below), collecting ballast water with a Niskin<br />

bottle through the Butterworth hatches; oxygen (O 2 ) concentration was not measured<br />

because previous extensive analysis <strong>of</strong> ballast water tanks in other cargo ships indicated that<br />

O 2 concentrations rarely varied and were not appreciably lower than saturation (Smith et al.,<br />

1996).<br />

• <strong>Biological</strong> samples <strong>of</strong> ballast water: Plankton samples were collected by towing a standard<br />

plankton net (80 micron mesh, 30 cm diameter) vertically through the entire height <strong>of</strong> the<br />

water column in each ballast tank; access to ballast tanks was obtained through the<br />

Butterworth hatches. A single tank was sampled for each ship, when ballast water was<br />

present and accessible, and two plankton tows were collected for each tank; the height <strong>of</strong><br />

each plankton tow was measured to the nearest 10 cm.<br />

• Additional observations and opportunistic samples: Upon initiating sampling <strong>of</strong> ballast<br />

tanks, we routinely examined the surface waters to look for large, mobile biota (e.g., fish)<br />

and organisms attached to the sides <strong>of</strong> tanks; we <strong>of</strong>ten took opportunities to collect any such


Chapt 3. <strong>Biological</strong> Characteristics <strong>of</strong> Ballast <strong>Water</strong>, page 3- 3<br />

organisms observed, as well as bottom sediments, since these are usually missed in our<br />

plankton tows.<br />

• Physical variables <strong>of</strong> port water: Shipside water temperature and salinity were measured<br />

(surface and 10m depth) usually within an hour <strong>of</strong> sampling ballast water <strong>of</strong> most vessels; the<br />

samples were collected from the berth platform (within 50m <strong>of</strong> the ship), using a Niskin<br />

bottle.<br />

Most plankton samples were returned to the laboratory at Valdez and examined initially<br />

within an hour <strong>of</strong> collection to assess condition <strong>of</strong> organisms present. More specifically, we<br />

examined each plankton sample with our dissecting microscopes (10-40x), to provide a<br />

qualitative assessment <strong>of</strong> plankton viability. Each sample was washed carefully into a finger<br />

bowl for examination, and the presence <strong>of</strong> each morphologically distinct taxonomic group was<br />

noted. For each taxon identified, the percent <strong>of</strong> individuals alive was estimated by evaluating<br />

their morphological integrity, movement, and activity; although status <strong>of</strong> some organisms (e.g.,<br />

diatoms or eggs) was difficult to discern with confidence during a brief screening. After initial<br />

microscopic examination, the plankton samples were preserved in 5% buffered formalin for later<br />

identification and enumeration <strong>of</strong> organisms (as below).<br />

We used two different methods to characterize the plankton samples, as follows:<br />

• Coarse Analysis. All samples were characterized by Coarse Analysis, consisting <strong>of</strong> a direct<br />

count <strong>of</strong> individuals according to general taxonomic groups, usually phyla (e.g., molluscs,<br />

crustaceans, echinoderms). The minimum <strong>of</strong> number <strong>of</strong> distinctly different taxa were also<br />

estimated in Coarse Analysis <strong>of</strong> each sample.<br />

• Fine Analysis. For a subset <strong>of</strong> samples (roughly 1/3 <strong>of</strong> the ships from domestic ports), Fine<br />

Analysis was used to enumerate all morphologically distinct taxa at the lowest taxonomic<br />

level possible. For many groups that included larval invertebrates (e.g., bivalves,<br />

gastropods), identification could not progress beyond gross taxonomic groups; further<br />

identification can only be accomplished with intensive culture <strong>of</strong> larvae to adult stages, upon<br />

which taxonomy is based, or the use <strong>of</strong> molecular probes. For other groups that include<br />

adult stages (e.g., copepods), we sought species-level identifications.<br />

The two methods were selected to provide different types <strong>of</strong> information. The Coarse<br />

Analysis allowed us to test for patterns in the biota across all ships, increasing the statistical<br />

power <strong>of</strong> the analysis. Since many species were not present on each ship, such an approach was<br />

not feasible with finer taxonomic resolution. In contrast, the Fine Analysis allowed us to<br />

quantify the densities <strong>of</strong> particular taxa, usually crustacean groups with adult forms (see results),<br />

and test for the presence <strong>of</strong> nonindigenous species known from the source ports. These data also<br />

allow us to characterize the frequency and density <strong>of</strong> particular nonindigenous species in the<br />

ballast water.<br />

For both analyses, samples were concentrated on an 80 micron sieve and washed into a<br />

finger bowl for identification and enumeration. Each whole sample was examined using a stereo<br />

microscope, and all morphologically distinct taxa were identified to the desired taxonomic level<br />

(as above). For abundant taxa (> 100 individuals/sample), samples were split using a Folsom<br />

plankton splitter to achieve counts between 10-100 individuals per subsample (usually splits <strong>of</strong><br />

1/8 to 1/32). For organisms in split samples, two subsamples were counted.


Chapt 3. <strong>Biological</strong> Characteristics <strong>of</strong> Ballast <strong>Water</strong>, page 3- 4<br />

Taxonomic identification <strong>of</strong> plankton followed a standard protocol. For those groups <strong>of</strong><br />

organisms that can be identified using the life stages present in ballast water samples (as<br />

discussed above), we made an initial identification based upon our current knowledge and<br />

literature that was immediately available to us at SERC. For many copepods, we were able to<br />

discern genera without much difficulty. Enumeration proceeded based upon the lowest<br />

discernible taxonomic units, and representative specimens were vouchered (in Fine Analysis) for<br />

taxonomic verification and, wherever possible, species-level identification. These voucher<br />

specimens were sent to taxonomists at the Smithsonian Institution’s National Museum <strong>of</strong> Natural<br />

History and elsewhere for verification and identification.<br />

3B3 Data Analysis<br />

Throughout our analyses, we use “ship” as the level <strong>of</strong> replication within a class variable<br />

(e.g., source port, season, year), because multiple samples from the same ship are not<br />

independent <strong>of</strong> each other. Although our replicate plankton samples per ship provide some<br />

important information on variation within ships, these are not statistically independent (since the<br />

ballast water originates from the same source and time) and mainly provide greater confidence in<br />

estimating plankton communities per ship. Thus, we estimated density per ship as the mean <strong>of</strong><br />

replicate tows.<br />

We derive most <strong>of</strong> the results reported from the Coarse Analysis. All enumeration is also<br />

completed for the Fine Analysis, but identification <strong>of</strong> only a portion <strong>of</strong> the voucher specimens<br />

has been finished to date. Although we cannot yet discuss the frequency and density <strong>of</strong><br />

individual taxa (as described above), we confirm the presence <strong>of</strong> numerous nonindigenous<br />

species in the Fine Analysis, and these are reported here. We will include full results <strong>of</strong> the Fine<br />

Analysis, when completed, in a future publication and provide a copy to RCAC.<br />

Virtually all organisms collected in the ballast water samples were alive and appeared to<br />

be in good condition. Indeed, many <strong>of</strong> the organisms collected from these samples performed<br />

well in laboratory culture and experiments, as described in Chapter 4. Thus, we considered all<br />

organisms counted in fixed samples to be alive at the time <strong>of</strong> sampling.<br />

In most <strong>of</strong> the analyses, we have excluded the chain-forming diatoms. Although we<br />

enumerated these organisms to the full extent possible, quantitative counts are particularly<br />

problematic and unreliable, because the chains break apart during sample collection and<br />

processing. We have therefore included information on their prevalence and the counts made but<br />

excluded these data from most estimates <strong>of</strong> organism densities.<br />

Finally, the presentation <strong>of</strong> water temperature and salinity, for both the ballast water <strong>of</strong><br />

oil tankers and Port Valdez, are presented in Chapter 4.<br />

3C Results<br />

Source and Number <strong>of</strong> Sampled Ships<br />

During this study, we sampled the ballast water <strong>of</strong> 169 tankers arriving to Port Valdez<br />

(Table 3.1). Our samples included 8-15 arrivals per quarter for each <strong>of</strong> the three major domestic


Chapt 3. <strong>Biological</strong> Characteristics <strong>of</strong> Ballast <strong>Water</strong>, page 3- 5<br />

ports (Puget Sound, San Francisco Bay, and Long Beach) and 3-7 arrivals per quarter from<br />

foreign ports (primarily Korea; see Chapter 2).<br />

Table 3.1. Prevalence and densities <strong>of</strong> taxa in the ballast water arriving to Port Valdez for each source port.<br />

Shown for each taxon and source port are the prevalence, density among all ships, and density for ships only when<br />

taxon was present. Standard errors are shown in parentheses with each density measure. Source ports include: Puget<br />

Sound, WA (PS); San Francisco Bay, CA (SF); Long Beach, CA (LB); Foreign port with open-ocean exchange<br />

(EX); Columbia River, Oregon (OR); and Barbers Point, Hawaii (HI). The data include all sample dates. Sample<br />

sizes for each source port as follows: PS (n=48), SF (n=50), LB (n=46), EX (n=19), OR (n=2), HI (n=4).<br />

(%) (density/m³)<br />

Phylum Taxa source n Prevalence mean(se) all ships mean(se) when present<br />

DINOFLAGELLATA<br />

PS 48 88 775(223) 902(245)<br />

SF 50 54 66(21) 114(34)<br />

LB 46 65 71(30) 107(45)<br />

EX 19 84 729(658) 886(780)<br />

OR 2 0 0(0.0) 0(0.0)<br />

HI 4 100 3.0(1.0) 3.0(1.0)<br />

DIATOMACEA<br />

PROTOZOA<br />

CNIDARIA<br />

CTENOPHORA<br />

PS 48 100 13866(3270) 13866(3270)<br />

SF 50 100 11683(4384) 11683(4384)<br />

LB 46 100 1170(241) 1170(241)<br />

EX 19 100 5346(2184) 5346(2184)<br />

OR 2 100 9409(6120) 9409(6120)<br />

HI 4 100 277(107) 277(107)<br />

PS 48 83 316(122) 361(139)<br />

SF 50 90 5506(3638) 6120(4037)<br />

LB 46 93 210(57) 220(59)<br />

EX 19 74 82(58) 110(78)<br />

OR 2 100 31(13) 31(13)<br />

HI 4 100 4.0(1.3) 4.0(1.3)<br />

PS 48 63 19.5(11.9) 55(32)<br />

SF 50 22 1.8(0.7) 8.3(2.3)<br />

LB 46 87 45(18) 53(21)<br />

EX 19 5 0.3(0.3) 5.7(0)<br />

OR 2 0 0(0.0) 0(0.0)<br />

HI 4 0 0(0.0) 0(0.0)<br />

PS 48 17 0.2(0.1) 1.2(0.3)<br />

SF 50 4 0.01(0.008) 0.5(0.0)<br />

LB 46 37 1.6(0.6) 4.0(1.5)<br />

EX 19 0 0(0.0) 0(0.0)<br />

OR 2 0 0(0.0) 0(0.0)<br />

HI 4 0 0(0.0) 0(0.0)


Chapt 3. <strong>Biological</strong> Characteristics <strong>of</strong> Ballast <strong>Water</strong>, page 3- 6<br />

Table 3.1 continued<br />

Phylum Taxa source n Prevalence (%) mean(se) all ships mean(se) when present<br />

PLATYHELMINTHES<br />

PS 48 27 3.4(1.4) 13(4.3)<br />

SF 50 28 10.5(4.6) 37(14)<br />

LB 46 80 11(2.2) 13(2.4)<br />

EX 19 16 0.1(0.07) 0.9(0.1)<br />

OR 2 0 0(0.0) 0(0.0)<br />

HI 4 0 0(0.0) 0(0.0)<br />

NEMATODA<br />

ROTIFERA<br />

SIPUNCULA<br />

NEMERTEA<br />

PS 48 6 0.2(0.1) 2.5(0.9)<br />

SF 50 8 0.5(0.3) 6.5(2.4)<br />

LB 46 4 0.1(0.07) 2.5(0.5)<br />

EX 19 5 0.1(0.1) 1.4(0.0)<br />

OR 2 100 4.4(3.0) 4.4(3.0)<br />

HI 4 0 0(0.0) 0(0.0)<br />

PS 48 2 0.3(0.3) 12.5(0)<br />

SF 50 2 0.7(0.7) 33(4.5)<br />

LB 46 2 0.6(0.6) 27(0.0)<br />

EX 19 5 0.3(0.3) 5.6(0.0)<br />

OR 2 50 0.2(0.2) 0.4(0.0)<br />

HI 4 0 0(0.0) 0(0.0)<br />

PS 48 0 0(0.0) 0(0.0)<br />

SF 50 4 0.8(0.7) 19.8(11)<br />

LB 46 4 0.7(0.6) 15(4.1)<br />

EX 19 0 0(0.0) 0(0.0)<br />

OR 2 0 0(0.0) 0(0.0)<br />

HI 4 0 0(0.0) 0(0.0)<br />

PS 48 8 1.0(0.6) 12.4(5.3)<br />

SF 50 8 41(27) 516(275)<br />

LB 46 15 23(12) 150(66)<br />

EX 19 0 0(0.0) 0(0.0)<br />

OR 2 0 0(0.0) 0(0.0)<br />

HI 4 0 0(0.0) 0(0.0)<br />

ANNELIDA PS 48 90 370(136) 404(148)<br />

SF 50 80 199(55) 251(68)<br />

LB 46 100 33(6.5) 33(6.5)<br />

EX 19 2 2.1(1.3) 6.3(3.6<br />

OR 2 0 0(0.0) 0(0.0)<br />

HI 4 25 0.31(0.31) 1.2(0.0)<br />

MOLLUSCA<br />

Bivalvia PS 48 90 371(100) 396(106)<br />

SF 50 82 319(79) 389(93)<br />

LB 46 98 240(72) 246(74)<br />

EX 19 53 8.0(3.5) 15.2(5.5)<br />

OR 2 50 0.5(0.5) 1.0(0.0)<br />

HI 4 75 1.3(0.7) 2.0(0.5)


Chapt 3. <strong>Biological</strong> Characteristics <strong>of</strong> Ballast <strong>Water</strong>, page 3- 7<br />

Table 3.1 continued<br />

Phylum Taxa source n Prevalence (%) mean(se) all ships mean(se) when present<br />

Gastropoda PS 48 71 139(39) 191(44)<br />

SF 50 54 34(18) 58(38)<br />

LB 46 91 35(7.6) 37(6.8)<br />

EX 19 37 26.6(17.6) 72(38)<br />

OR 2 50 0.2(0.2) 0.4(0.0)<br />

HI 4 0 0(0.0) 0(0.0)<br />

Other Mollusca PS 48 8 8.0(7.7) 105(83)<br />

SF 50 6 0.6(0.5) 10(7.6)<br />

LB 46 2 0.2(0.2) 9.0(0.0)<br />

EX 19 0 0(0.0) 0(0.0)<br />

OR 2 0 0(0.0) 0(0.0)<br />

HI 4 0 0(0.0) 0(0.0)<br />

ARTHROPODA/CRUSTACEA<br />

Amphipoda PS 48 29 1.9(1.3) 6.1(3.8)<br />

SF 50 30 0.61(0.16) 1.9(0.3)<br />

LB 46 48 0.7(0.2) 1.4(0.3)<br />

EX 19 19 0.07(0.05) 0.7(0.2)<br />

OR 2 0 0(0.0) 0(0.0)<br />

HI 4 0 0(0.0) 0(0.0)<br />

Anomura PS 48 29 0.91(0.64) 3.7(2.2)<br />

SF 50 24 0.2(0.08) 0.9(0.3)<br />

LB 46 63 3.8(1.4) 5.9(2.1)<br />

EX 19 0 0(0.0) 0(0.0)<br />

OR 2 0 0(0.0) 0(0.0)<br />

HI 4 0 0(0.0) 0(0.0)<br />

Brachyura PS 48 44 3.5(1.3) 9.2(2.8)<br />

SF 50 14 0.13(0.07) 1.1(0.5)<br />

LB 46 76 23.6(13.9) 30.2(18.6)<br />

EX 19 0 0(0.0) 0(0.0)<br />

OR 2 0 0(0.0) 0(0.0)<br />

HI 4 0 0(0.0) 0(0.0)<br />

Caridea PS 48 15 0.2(0.10) 1.3(1.2)<br />

SF 50 2 0.02(0.01) 0.2(0.0)<br />

LB 46 22 1.2(0.60) 3.8(1.5)<br />

EX 19 0 0(0.0) 0(0.0)<br />

OR 2 0 0(0.0) 0(0.0)<br />

HI 4 0 0(0.0) 0(0.0)


Chapt 3. <strong>Biological</strong> Characteristics <strong>of</strong> Ballast <strong>Water</strong>, page 3- 8<br />

Table 3.1 continued<br />

Phylum Taxa source n Prevalence (%) mean(se) all ships mean(se) when present<br />

Cirripedia PS 48 85 832(559) 951(637)<br />

SF 50 66 96(34) 108(47)<br />

LB 46 63 18(5.4) 37(7.2)<br />

EX 19 16 0.8(0.5) 6.9(1.7)<br />

OR 2 0 0(0.0) 0(0.0)<br />

HI 4 50 3.1(1.9) 4.8(4.3)<br />

Cladocera PS 48 15 2.7(1.2) 21.7(5.1)<br />

SF 50 16 1.9(0.8) 11.7(3.7)<br />

LB 46 7 0.04(0.02) 0.6(0.1)<br />

EX 19 5 0.3(0.3) 5.7(0.0)<br />

OR 2 100 3.5(1.9) 3.5(1.9)<br />

HI 4 0 0(0.0) 0(0.0)<br />

Copepoda PS 48 100 2395(664) 2395(664)<br />

SF 50 100 9416(2060) 9416(2060)<br />

LB 46 100 5116(685) 5116(685)<br />

EX 19 100 2345(645) 2345(645)<br />

OR 2 100 43(6.0) 43(6.0)<br />

HI 4 100 8.2(4.4) 8.2(4.4)<br />

Cumacea PS 48 10 0.05(0.03) 0.6(0.2)<br />

SF 50 30 0.70(0.2) 2.1(0.5)<br />

LB 46 22 0.13(0.05) 0.6(0.2)<br />

EX 19 0 0(0.0) 0(0.0)<br />

OR 2 0 0(0.0) 0(0.0)<br />

HI 4 0 0(0.0) 0(0.0)<br />

Decapoda (misc.) PS 48 4 0.05(0.04) 1.3(0.7)<br />

SF 50 8 0.02(0.02) 0.5(0.2)<br />

LB 46 4 0.05(0.02) 2.5(0.0)<br />

EX 19 0 0(0.0) 0(0.0)<br />

OR 2 0 0(0.0) 0(0.0)<br />

HI 4 0 0(0.0) 0(0.0)<br />

Isopoda PS 48 25 0.70(0.40) 2.1(1.3)<br />

SF 50 18 0.34(0.26) 2.1(1.5)<br />

LB 46 9 0.06(0.03) 0.7(0.1)<br />

EX 19 0 0(0.0) 0(0.0)<br />

OR 2 0 0(0.0) 0(0.0)<br />

HI 4 0 0(0.0) 0(0.0)<br />

Mysidacea PS 48 2 0.007(0.007) 0.3(0)<br />

SF 50 54 2.48(0.6) 4.6(0.9)<br />

LB 46 78 3.52(0.8) 4.4(0.9)<br />

EX 19 0 0(0.0) 0(0.0)<br />

OR 2 0 0(0.0) 0(0.0)<br />

HI 4 25 0.15(0.15) 0.6(0.1)


Chapt 3. <strong>Biological</strong> Characteristics <strong>of</strong> Ballast <strong>Water</strong>, page 3- 9<br />

Table 3.1 continued<br />

Phylum Taxa source n Prevalence (%) mean(se) all ships mean(se) when present<br />

Ostracoda PS 48 25 0.35(0.16) 1.5(0.6)<br />

SF 50 8 0.40(0.20) 3.9(2.0)<br />

LB 46 17 0.28(0.14) 1.6(0.7)<br />

EX 19 16 0.93(0.54) 5.9(1.4)<br />

OR 2 50 0.6(0.6) 1.2(0.0)<br />

HI 4 0 0(0.0) 0(0.0)<br />

Tanaidacea PS 48 2 0.006(0.006) 0.3(0)<br />

SF 50 0 0(0.0) 0(0.0)<br />

LB 46 2 0.006(0.006) 0.3(0)<br />

EX 19 0 0(0.0) 0(0.0)<br />

OR 2 0 0(0.0) 0(0.0)<br />

HI 4 0 0(0.0) 0(0.0)<br />

BRYOZOA<br />

PHORONIDA<br />

CHAETOGNATHA<br />

ECHINODERMATA<br />

PS 48 35 16.1(5.4) 40.7(11.5)<br />

SF 50 40 59(33) 147(80)<br />

LB 46 22 1.5(0.5) 6.7(1.7)<br />

EX 19 0 0(0.0) 0(0.0)<br />

OR 2 0 0(0.0) 0(0.0)<br />

HI 4 0 0(0.0) 0(0.0)<br />

PS 48 2 0.01(0.01) 0.5(0.0)<br />

SF 50 2 0.01(0.01) 0.7(0.0)<br />

LB 46 15 0.5(0.4) 4.2(2.7)<br />

EX 19 0 0(0.0) 0(0.0)<br />

OR 2 0 0(0.0) 0(0.0)<br />

HI 4 0 0(0.0) 0(0.0)<br />

PS 48 33 0.7(0.4) 2.3(1.1)<br />

SF 50 12 0.5(0.3) 4.1(2.5)<br />

LB 46 72 5.8(2.2) 7.9(3.0)<br />

EX 19 21 0.2(0.1) 1.5(0.3)<br />

OR 2 0 0(0.0) 0(0.0)<br />

HI 4 0 0(0.0) 0(0.0)<br />

PS 48 33 32(15) 94(43)<br />

SF 50 12 6.3(4.8) 53(37)<br />

LB 46 26 5.8(3.5) 22(12)<br />

EX 19 5 0.3(0.3) 6.0(0)<br />

OR 2 0 0(0.0) 0(0.0)<br />

HI 4 0 0(0.0) 0(0.0)<br />

CHORDATA<br />

Cephalochordata PS 48 0 0(0.0) 0(0.0)<br />

SF 50 0 0(0.0) 0(0.0)<br />

LB 46 9 0.1(0.01) 2.8(2.5)<br />

EX 19 0 0(0.0) 0(0.0)<br />

OR 2 0 0(0.0) 0(0.0)<br />

HI 4 0 0(0.0) 0(0.0)


Chapt 3. <strong>Biological</strong> Characteristics <strong>of</strong> Ballast <strong>Water</strong>, page 3- 10<br />

Table 3.1 continued<br />

Phylum Taxa source n Prevalence (%) mean(se) all ships mean(se) when present<br />

Fish PS 48 10 0.05(0.02) 0.3(0.1<br />

SF 50 6 0.02(0.01) 0.5(0.1<br />

LB 46 7 0.04(0.02) 0.5(0.1)<br />

EX 19 0 0(0.0) 0(0.0)<br />

OR 2 0 0(0.0) 0(0.0)<br />

HI 4 0 0(0.0) 0(0.0)<br />

Other Chordata PS 48 21 4.9(2.2) 23.8(8.4)<br />

(incl. larvacea) SF 50 8 5.2(3.5) 85(41)<br />

LB 46 63 59.1(30.6) 107(55)<br />

EX 19 5 0.06(0.06) 1.2(0.0)<br />

OR 2 0 0(0.0) 0(0.0)<br />

HI 4 0 0(0.0) 0(0.0)<br />

OTHER<br />

Eggs PS 48 73 87(39) 113(50)<br />

SF 50 66 39(16) 56(22)<br />

LB 46 61 141(41) 232(148)<br />

EX 19 21 6.3(4.1) 15(9.2)<br />

OR 2 100 12(11) 12(11)<br />

HI 4 20 7.3(2.4) 7.3(2.4)<br />

Trochophore<br />

PS 48 33 20(8.2) 65(23)<br />

SF 50 16 16(10) 115(65)<br />

LB 46 30 11(4.6) 36(13)<br />

EX 19 0 0(0.0) 0(0.0)<br />

OR 2 0 0(0.0) 0(0.0)<br />

HI 4 0 0(0.0) 0(0.0)<br />

Unidentified larvae PS 48 0 0(0.0) 0(0.0)<br />

SF 50 4 95(93) 2376(1388)<br />

LB 46 9 0.02(0.02) 0.4(0)<br />

EX 19 11 27(26) 253(178)<br />

OR 2 0 0(0.0) 0(0.0)<br />

HI 4 0 0(0.0) 0(0.0)<br />

For June <strong>of</strong> 1997-1999, we sampled the ballast water <strong>of</strong> 31 tankers arriving to Port<br />

Valdez from the domestic ports <strong>of</strong> Puget Sound (n=14), San Francisco Bay (n=9), and Long<br />

Beach (n=9). The data for 1998 and 1999 are included in the total 169 vessels sampled during<br />

this study, and the data for 1997 are derived from our previous work (as above).<br />

Figure 3.1. Number <strong>of</strong> oil tankers sampled upon arrival to Port Valdez. Shown are the number <strong>of</strong> ships from<br />

which ballast water samples were collected by source port (i.e., last port <strong>of</strong> call) and season. Source ports include:<br />

Puget Sound, WA (PS); San Francisco Bay, CA (SF); Long Beach, CA (LB); Foreign port with open-ocean<br />

exchange (EX); Columbia River, Oregon (OR); and Barbers Point, Hawaii (HI). Seasons include: Winter (January-<br />

March), Spring (April-June), Summer (July-September), and Fall (October-December). Data were collected<br />

primarily from December 1997 – December 1998, and some additional data were collected in May-June 1999.<br />

# VESSELS SAMPLED<br />

15<br />

10<br />

5<br />

0<br />

PORT SOURCE<br />

PS<br />

SF<br />

LB<br />

EX<br />

OR<br />

HI<br />

WINTER SPRING SUMMER FALL<br />

SEASON


Chapt 3. <strong>Biological</strong> Characteristics <strong>of</strong> Ballast <strong>Water</strong>, page 3- 11<br />

3C2. Abundance <strong>of</strong> Organisms in Ballast <strong>Water</strong><br />

(a) Total Density by Source<br />

We measured an average <strong>of</strong> 12,637 (s.e. = 5,533) total organisms per m 3 in the ballast<br />

water for all 169 vessels from domestic and foreign source ports. This estimate excludes the<br />

chain-forming diatoms, which were detected in the samples from 16 domestic tankers. Although<br />

the chain-forming diatoms are difficult to quantify (as above), we estimated average densities in<br />

excess <strong>of</strong> one million organisms/m 3 , approximately 100 fold higher than the densities <strong>of</strong> solitary<br />

diatoms and all other taxa measured for either domestic or foreign tankers (Fig. 3.2). We have<br />

excluded the chain-forming diatoms from the subsequent analyses and discussion <strong>of</strong> total density<br />

or abundance (i.e., abundance <strong>of</strong> all organisms) below.<br />

Figure 3.2. Densities <strong>of</strong> organisms in ballast water arriving to Port Valdez from foreign and domestic source<br />

ports. The estimated mean densities (#/m³ and standard errors) are shown separately for chain-forming diatoms,<br />

solitary diatoms, and all other taxa in ballast water <strong>of</strong> ships arriving from each domestic ports and foreign ports.<br />

Chain-forming diatoms were only detected on domestic ships (n=16), whereas the other groups were present on all<br />

domestic (n=150) and foreign (n=19) arrivals that were sampled. The data include all sample dates. Since arrivals<br />

from foreign ports all underwent ballast water exchange in open ocean, the source is indicated as exchange.<br />

DENSITY (#m³)<br />

1.E+07 16<br />

1.E+06 10 6<br />

1.E+05<br />

10 4<br />

1.E+04<br />

1.E+03<br />

10 2<br />

1.E+02<br />

150<br />

150<br />

CHAIN DIATOMS<br />

SOLITARY DIATOMS<br />

OTHER TAXA<br />

19<br />

19<br />

1.E+01<br />

0<br />

1.E+00 10<br />

DOMESTIC EXCHANGE<br />

SOURCE<br />

The average total density was significantly greater in ballast water from domestic sources<br />

compared to that for foreign sources (Fig. 3.2; 1-way ANOVA, F (1,168) = 3.63, P = 0.048). The<br />

chain-forming diatoms were only evident in the ballast water <strong>of</strong> domestic arrivals, increasing the<br />

magnitude <strong>of</strong> density differences between foreign and domestic traffic.<br />

The total abundance <strong>of</strong> organisms in ballast water differed among domestic sources. Of<br />

the three major domestic ports, arrivals from Puget Sound and San Francisco Bay had<br />

significantly greater densities than those from Long Beach and foreign sources, whereas the<br />

latter two were not different (Fig. 3.3; ANOVA, F (2,143) = 3.71, P = 0.027). We excluded both<br />

Oregon and Hawaii from this comparison, due to the limited sample size and absence <strong>of</strong> data for<br />

some seasons. Although average density from Oregon arrivals was similar to that for Long<br />

Beach and foreign arrivals, density for Hawaii arrivals was over 10-fold lower than all others.


Chapt 3. <strong>Biological</strong> Characteristics <strong>of</strong> Ballast <strong>Water</strong>, page 3- 12<br />

Figure 3.3. Densities <strong>of</strong> organisms in ballast water arriving to Port Valdez for each source port. The<br />

estimated mean densities (#/m³ and standard errors) are shown for all organisms by source port. The data include all<br />

sample dates (sample size indicated above bars) but exclude chain-forming diatoms. Source ports include: Puget<br />

Sound, WA (PS); San Francisco Bay, CA (SF); Long Beach, CA (LB); Foreign port with open-ocean exchange<br />

(EX); Columbia River, Oregon (OR); and Barbers Point, Hawaii (HI).<br />

DENSITY (#m³)<br />

1.E+05<br />

1.E+04<br />

1.E+03<br />

1.E+02<br />

1.E+01<br />

48<br />

50<br />

46 19 2<br />

4<br />

1.E+00<br />

PS SF LB EX OR HI<br />

SOURCE<br />

The average total densities among domestic source ports corresponded to voyage<br />

duration, with densities decreasing with voyage duration (see Fig. 2.7 <strong>of</strong> Chapt 2). Arrivals from<br />

Puget Sound and San Francisco Bay had the shortest voyage duration (average <strong>of</strong> 4.3 and 6.0<br />

days, respectively) and highest densities. Tankers arriving from Hawaii had the longest voyage<br />

duration (average <strong>of</strong> 10.2 days) and lowest densities, whereas arrivals from Oregon and Long<br />

Beach were intermediate to the other domestic ports in both respects.<br />

(b) Density by Taxonomic Group and Source<br />

All ballast water samples contained living organisms, but the prevalence and density<br />

varied among taxonomic groups (Table 3.1). Copepods and diatoms were detected in ballast<br />

water from 100% <strong>of</strong> the ships sampled, and protozoans (primarily tintinnids) were found in<br />

nearly all samples. These three groups also exhibited the highest densities, dominating the<br />

plankton community in ballast water (see below).<br />

As with the total density measures, most taxonomic groups also occurred at greater<br />

average densities in ballast water from domestic sources, when pooled, compared to that from<br />

foreign sources (Table 3.1 and Fig 3.4). For most groups, this difference was 10- to 100-fold.<br />

The magnitude <strong>of</strong> density differences between domestic and foreign sources were much less for<br />

crustaceans, primarily due to the presence <strong>of</strong> copepods (see Table 3.1) and solitary diatoms.<br />

Din<strong>of</strong>lagellates were a notable exception to the general pattern, as average density was greatest<br />

in ballast water <strong>of</strong> the foreign arrivals.


Chapt 3. <strong>Biological</strong> Characteristics <strong>of</strong> Ballast <strong>Water</strong>, page 3- 13<br />

Figure 3.4. Densities <strong>of</strong> major taxonomic groups in ballast water arriving to Port Valdez from foreign and<br />

domestic source ports. The estimated mean densities (#/m³ and standard errors) are shown separately for 10<br />

different major groups <strong>of</strong> organisms in ballast water <strong>of</strong> ships arriving from each domestic ports (n=150) and foreign<br />

ports (n=19). Eight groups are distinct phyla that were most abundant in the ballast water, and two are composed <strong>of</strong><br />

multiple phyla, including eggs and trochophores (which were abundant but could not be classified by phylum) and<br />

all other invertebrates. The data include all sample dates. Since arrivals from foreign ports all underwent ballast<br />

water exchange in open ocean, the source is indicated as exchange.<br />

Echinodermata<br />

Chordata<br />

Other Inverts<br />

SOURCE<br />

Exchange<br />

Domestic<br />

Eggs & Trochophores<br />

TAXA<br />

Annelida<br />

Mollusca<br />

Din<strong>of</strong>lagellata<br />

Protozoa<br />

Crustacea<br />

Diatomacea<br />

0 10 2 10 4<br />

1 10 100 1000 10000 10000<br />

DENSITY (#/m³)<br />

On a finer scale, significant variation existed in the abundance <strong>of</strong> taxonomic groups<br />

among specific source port systems (Fig. 3.5 and Table 3.1). More specifically, differences were<br />

present when comparing mean densities for each taxonomic group among Puget Sound, San<br />

Francisco Bay, Long Beach, and foreign arrivals (ANOVA, see Fig. 3.5 for statistically<br />

significant differences). Among these four ports, the densities <strong>of</strong> most taxa were relatively low<br />

for foreign arrivals, with the exception <strong>of</strong> diatoms and din<strong>of</strong>lagellates. This pattern resulted from<br />

both the prevalence and densities <strong>of</strong> taxa among vessels. For example, the prevalence <strong>of</strong> most<br />

taxa was low in the ballast water <strong>of</strong> foreign arrivals, although the densities may not been<br />

particularly low for the few ships where a taxon was detected (Table 3.1). Across all arrivals,<br />

mean densities <strong>of</strong> the various taxa were generally lowest for both Oregon and Hawaii, although<br />

the limited sample size precludes any formal analysis.<br />

In contrast to total organism density, the greatest average densities for taxonomic groups<br />

did not always correspond to the shortest voyage duration (Fig. 3.5 and Table 3.1). For example,<br />

the highest average densities <strong>of</strong> protozoans, crustaceans, and bryozoans were measured for San<br />

Francisco Bay arrivals, and the brachyuran crabs were most abundant in samples from Long<br />

Beach.<br />

(c) Seasonal Variation in Density<br />

Significant differences among months were present in the total densities <strong>of</strong> organisms<br />

present in domestic ballast water (Fig. 3.6; ANOVA, F (11,168) = 1.98, P = 0.033). This resulted<br />

primarily from a relative increase during the spring and summer months.


Chapt 3. <strong>Biological</strong> Characteristics <strong>of</strong> Ballast <strong>Water</strong>, page 3- 14<br />

Figure 3.5. Densites <strong>of</strong> major taxonomic groups in ballast water arriving to Port Valdez for each source port.<br />

The estimated mean densities (#/m³ and standard errors) are shown separately for 10 different major groups <strong>of</strong><br />

organisms in ballast water <strong>of</strong> ships by source port. Eight groups are distinct phyla that were most abundant in the<br />

ballast water, and two are composed <strong>of</strong> multiple phyla, including eggs and trochophores (which were abundant but<br />

could not be classified by phylum) and all other invertebrates. Source ports include: Puget Sound, WA (PS); San<br />

Francisco Bay, CA (SF); Long Beach, CA (LB); Foreign port with open-ocean exchange (EX); Columbia River,<br />

Oregon (OR); and Barbers Point, Hawaii (HI). The data include all sample dates. Sample sizes for each source port<br />

as shown in Figure 3.3. Indicated by * are those taxa where mean density among ports, excluding HI and OR, is<br />

significantly different by ANOVA with confidence >95%.<br />

100000<br />

DINOFLAGELLATA*<br />

100000<br />

10000<br />

10000<br />

1000<br />

1000<br />

10100<br />

2<br />

10 100<br />

10<br />

10<br />

0 1<br />

01<br />

PS SF LB EX OR HI<br />

DIATOMACEA*<br />

PS SF LB EX OR HI<br />

100000<br />

10000<br />

1000<br />

10100<br />

2<br />

10<br />

0 1<br />

10 4 0<br />

PROTOZOA*<br />

PS SF LB EX OR HI<br />

100000<br />

10000<br />

4<br />

1000<br />

10100<br />

2<br />

10<br />

01<br />

ANNELIDA*<br />

PS SF LB EX OR HI<br />

DENSITY (#/m³)<br />

100000<br />

MOLLUSCA<br />

10000<br />

1000<br />

10100<br />

2<br />

10<br />

1<br />

PS SF LB EX OR HI<br />

100000<br />

10000<br />

10 4<br />

10 4 0<br />

1000<br />

10 2<br />

100<br />

10<br />

1<br />

CRUSTACEA*<br />

PS SF LB EX OR HI<br />

100000<br />

10000<br />

ECHINODERMATA*<br />

100000<br />

10000<br />

10 4<br />

1000<br />

1000<br />

10100<br />

2<br />

100<br />

10 2<br />

10<br />

10<br />

01<br />

0 1<br />

PS SF LB EX OR HI<br />

OTHER INVERTS*<br />

PS SF LB EX OR HI<br />

100000<br />

100000<br />

CHORDATA*<br />

10000<br />

10 10000<br />

1000<br />

1000<br />

10100<br />

2<br />

10100<br />

2<br />

10<br />

10<br />

0 1<br />

0 1<br />

PS SF LB EX OR HI<br />

SOURCE<br />

EGGS AND TROCHOPHORES<br />

PS SF LB EX OR HI


Chapt 3. <strong>Biological</strong> Characteristics <strong>of</strong> Ballast <strong>Water</strong>, page 3- 15<br />

Figure 3.6. Monthly densities <strong>of</strong> organisms in ballast water arriving to Port Valdez from domestic source<br />

ports. The estimated mean densities (#/m³ and standard errors) are shown for all organisms, except chain-forming<br />

diatoms, by month. The data for all domestic source ports are included in each month (sample size shown above<br />

bars).<br />

DENSITY (thousands/m³)<br />

80<br />

60<br />

40<br />

20<br />

0<br />

11<br />

10<br />

17 15 11 11<br />

10<br />

10 11 11 13 20<br />

Jan Mar May Jul Sep Nov<br />

SEASON<br />

The seasonal pattern in total density varied among arrivals from the 3 major domestic<br />

ports (Fig. 3.7). Arrivals from San Francisco Bay exhibited a strong spring peak in total<br />

plankton density, whereas the peak appeared later in arrivals from Puget Sound. In contrast, the<br />

density <strong>of</strong> organisms arriving from Long Beach was relatively stable throughout the year.<br />

Figure 3.7. Monthly densities <strong>of</strong> organisms in ballast water arriving to Port Valdez by domestic source ports.<br />

For each <strong>of</strong> the three major domestic source ports, the estimated mean densities (#/m³ and standard errors) are<br />

shown for all organisms, except chain-forming diatoms, by month. Sample size for each source port as follows,<br />

from left to right: Long Beach – 3,4,4,4,5,4,2,2,3,4,6,5; San Francisco –2,3,3,5,6,5,2,4,4,4,5,7; Puget Sound –<br />

5,3,3,2,5,6,5,4,4,3,2,6.<br />

DENSITY<br />

(thousands/m³)<br />

60<br />

40<br />

20<br />

0<br />

LONG BEACH<br />

Jan Mar May Jul Sep Nov<br />

DENSITY<br />

(thousands/m³)<br />

60<br />

40<br />

20<br />

0<br />

98.9<br />

SAN FRANCISCO<br />

Jan Mar May Jul Sep Nov<br />

DENSITY<br />

(thousands/m³)<br />

60<br />

40<br />

20<br />

0<br />

PUGET SOUND<br />

Jan Mar May Jul Sep Nov<br />

SEASON


Chapt 3. <strong>Biological</strong> Characteristics <strong>of</strong> Ballast <strong>Water</strong>, page 3- 16<br />

For the individual taxonomic groups, densities varied both by source port and month (Fig.<br />

3.8). In general, peak densities occurred between spring and summer months for all taxonomic<br />

groups, but the timing <strong>of</strong> these peaks differed among groups. Summed across the three major<br />

domestic ports (Puget Sound, San Francisco Bay, and Long Beach; Fig. 3.8a):<br />

• Din<strong>of</strong>lagellates, echinoderm larvae, chordates, and the combined eggs and trochophores<br />

exhibited peak mean densities in late summer;<br />

• Protozoans and diatoms exhibited a spring to early summer peak in mean density.<br />

• Molluscs and crustaceans for these combined ports were relatively high from spring through<br />

summer, exhibiting a bimodal distribution with spring and later summer peaks;<br />

• Annelids exhibited peaks in density during the summer months <strong>of</strong> June and August;<br />

• All other invertebrates, when combined, had relatively high densities from early spring<br />

through fall compared to the remainder <strong>of</strong> the year.<br />

The relative contributions <strong>of</strong> the three port systems to the overall temporal patterns varied<br />

significantly (Fig 3.8b-d). The general seasonal patterns (i.e., spring-summer peaks) in density<br />

were similar among ports, but clear differences existed in the magnitude and month <strong>of</strong> peak<br />

densities among ports. As noted previously for total density across the entire year (Fig. 3.5), the<br />

magnitude <strong>of</strong> peaks for the taxonomic groups did not correspond consistently to voyage duration.<br />

(d) Annual Variation in Density<br />

There were significant differences among years in the total density <strong>of</strong> plankton arriving<br />

from the three major ports for June 1997-1999 (Fig. 3.9). A 2-way ANOVA revealed differences<br />

among years (F (2,32) = 3.28, P = 0.055) but not ports (P>0.05), and the interaction was not<br />

significant (P>0.05).<br />

The magnitude <strong>of</strong> variation among years was more pronounced for the individual<br />

taxonomic groups in each <strong>of</strong> these ports (Fig. 3.10). Over half <strong>of</strong> the taxonomic groups exhibited<br />

significant differences among years, when analyzed individually for each port source (1-way<br />

ANOVA, see Fig 3.10 for statistically significant differences). As discussed above, some groups<br />

(e.g., echinoderm larvae and chordates) could not be compared statistically, due to low<br />

prevalence among ships.<br />

Interestingly, the changes among years were not consistent among port sources. For<br />

example, din<strong>of</strong>lagellates increased in successive years for Puget Sound and Long Beach arrivals,<br />

but was greatest in 1998 and virtually absent in the other two years for San Francisco arrivals.<br />

While peak years in protozoan and crustacean densities were similar among the port sources, the<br />

peak years for all other taxa were highly divergent among the port sources.


Chapt 3. <strong>Biological</strong> Characteristics <strong>of</strong> Ballast <strong>Water</strong>, page 3- 17<br />

Figure 3.8. Monthly densities <strong>of</strong> major taxonomic groups in ballast water arriving to Port Valdez from domestic source ports. The estimated monthly<br />

mean densities (#/m³ and standard errors) are shown separately for 10 different major groups <strong>of</strong> organisms in ballast water <strong>of</strong> ships arriving from domestic ports.<br />

Eight groups are distinct phyla that were most abundant in the ballast water, and two are composed <strong>of</strong> multiple phyla, including eggs and trochophores (which<br />

were abundant but could not be classified by phylum) and all other invertebrates. For each taxonomic group, the monthly mean densities are shown for: (a) Puget<br />

Sound; (b) San Francisco; (c) Long Beach; and (d) the three major ports combined. Sample size for each port as indicated in Figure 3.7.


Chapt 3. <strong>Biological</strong> Characteristics <strong>of</strong> Ballast <strong>Water</strong>, page 3- 18


Chapt 3. <strong>Biological</strong> Characteristics <strong>of</strong> Ballast <strong>Water</strong>, page 3- 19


Chapt 3. <strong>Biological</strong> Characteristics <strong>of</strong> Ballast <strong>Water</strong>, page 3- 20<br />

Figure 3.9. Densities <strong>of</strong> organisms in the ballast water arriving to Port Valdez from domestic ports in June <strong>of</strong><br />

three consecutive years, 1997-1999. The estimated mean densities (#/m³ and standard errors) are shown for all<br />

organisms, excluding chain-forming diatoms, by source port in each year (sample size indicated above bars). Source<br />

ports include: Puget Sound, WA (PS); San Francisco Bay, CA (SF); Long Beach, CA (LB). Densities are also<br />

shown by year for all three source ports combined (Overall).<br />

3<br />

5<br />

3<br />

10<br />

1.E+04<br />

2<br />

3<br />

4<br />

3<br />

4<br />

6<br />

12<br />

11<br />

1997<br />

1998<br />

1999<br />

Density (#/m³)<br />

1.E+02<br />

1.E+00<br />

LB SF PS Overall<br />

SOURCE<br />

Figure 3.10. Densities <strong>of</strong> major taxonomic groups in the ballast water arriving to Port Valdez from domestic<br />

source ports in June <strong>of</strong> three consecutive years, 1997-1999. The estimated mean densities (#/m³ and standard<br />

errors) are shown for 10 different major groups <strong>of</strong> organisms in ballast water <strong>of</strong> ships arriving by year from three<br />

different source ports. Eight groups are distinct phyla that were most abundant in the ballast water, and two are<br />

composed <strong>of</strong> multiple phyla, including eggs and trochophores (which were abundant but could not be classified by<br />

phylum) and all other invertebrates. Sample size for each source port and year as indicated in Figure 3.9. Indicated<br />

by * are instances where ANOVA showed significant differences in density among years (above bars) and among<br />

ports (below taxa labels) with confidence >95%.<br />

100000<br />

10000<br />

1000<br />

100<br />

LB (JUNE)<br />

1997<br />

1998<br />

*<br />

1999<br />

* * *<br />

DENSITY (#/m³)<br />

10<br />

1<br />

100000<br />

Din<strong>of</strong>lagellata<br />

10000<br />

1000<br />

100<br />

10<br />

Diatomacea<br />

* *<br />

Protozoa<br />

Annelida<br />

SF (JUNE)<br />

Mollusca<br />

Crustacea<br />

Echinodermata<br />

Other Inverts<br />

Chordata<br />

1997<br />

1998<br />

1999<br />

Eggs & Trocophores<br />

*<br />

*<br />

1<br />

100000<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

*<br />

*<br />

*<br />

PS (JUNE)<br />

1997<br />

1998<br />

1999<br />

Din<strong>of</strong>lagellata<br />

Diatomacea<br />

Protozoa<br />

Annelida<br />

Mollusca<br />

Crustacea<br />

Din<strong>of</strong>lagellata<br />

Echinodermata<br />

*Diatomacea<br />

Other Inverts<br />

*Protozoa<br />

Chordata<br />

Annelida<br />

Eggs & Trocophores<br />

Mollusca<br />

Crustacea<br />

Echinodermata<br />

Other Inverts<br />

Chordata<br />

*Eggs & Trochophores


Chapt 3. <strong>Biological</strong> Characteristics <strong>of</strong> Ballast <strong>Water</strong>, page 3- 21<br />

3C3. Diversity <strong>of</strong> Organisms in Ballast <strong>Water</strong><br />

In a preliminary analysis <strong>of</strong> our Fine Analysis data (see Methods), there was a significant<br />

difference in the minimum number <strong>of</strong> taxa, and/or species richness, detected among arrivals from<br />

the three main domestic ports (Fig. 3.11). The average species richness was greatest for Long<br />

Beach arrivals and lowest for San Francisco Bay arrivals, and it does not correspond to voyage<br />

duration.<br />

Figure 3.11. Minimum number <strong>of</strong> taxa detected in the ballast water arriving to Port Valdez by domestic<br />

source ports. Shown are the mean number (including standard errors and sample size, above bars) <strong>of</strong> distinctly<br />

different taxa observed in plankton samples <strong>of</strong> ships from each source port. Source ports include: Puget Sound, WA<br />

(PS); San Francisco Bay, CA (SF); Long Beach, CA (LB). All sample dates included.<br />

The season <strong>of</strong> peak species richness differed among port sources (Fig. 3.12). Arrivals<br />

from Puget Sound and San Francisco Bay exhibited peaks in mean species richness in the spring<br />

and summer, whereas those from Long Beach had their highest species richness in the fall and<br />

spring. Subsequent analyses indicated differences among source ports for each season, as well as<br />

differences among seasons for each source port (1-way ANOVA, Fig. 3.12 indicates statistically<br />

significant differences).<br />

To date, we have identified 14 different nonindigenous species arriving to Port Valdez in<br />

the ballast water <strong>of</strong> oil tankers (Table 3.2). One is a fish species and all the other species are<br />

crustaceans (copepods and amphipods, which have successfully invaded the respective source<br />

ports <strong>of</strong> arriving tankers. To date, all <strong>of</strong> these identified NIS have been in ballast water from San<br />

Francisco and Long Beach.<br />

We expect the cumulative list will increase, as final identifications are still underway for<br />

the Fine Analysis data. Upon completion, we will report the frequency and density <strong>of</strong> these NIS<br />

in ballast water arriving from the respective source ports.


Chapt 3. <strong>Biological</strong> Characteristics <strong>of</strong> Ballast <strong>Water</strong>, page 3- 22<br />

Figure 3.12. Minimum number <strong>of</strong> taxa detected in the ballast water arriving to Port Valdez among domestic<br />

source ports and seasons. Shown are the mean number (including standard error above bars) <strong>of</strong> distinctly different<br />

taxa observed in plankton samples <strong>of</strong> ships from each source port and season. Source ports include: Puget Sound,<br />

WA (PS); San Francisco Bay, CA (SF); Long Beach, CA (LB). Seasons include: Winter, (December – February);<br />

Spring (March – May); Summer (June – August); and Fall (September – November). Indicated by * are significant<br />

differences (ANOVA with confidence >95%) in diversity among seasons within port (see legend) and among ports<br />

within season (see x-axis labels).<br />

Minimum Number <strong>of</strong> Taxa<br />

40 LB<br />

PS<br />

SF*<br />

30<br />

20<br />

10<br />

0<br />

*Fall<br />

*Spring *Summer *Winter<br />

Season<br />

Table 3.2. Nonindigenous species identified in ballast water arriving to Port Valdez. The source <strong>of</strong> ballast<br />

water is indicated in which each species was detected; when two sources are indicated, the species was found in<br />

ballast water from each source port. Source ports are: San Francisco Bay, CA (SF); Long Beach, CA (LB).<br />

Broad Taxa Species Ballast Source<br />

Amphipoda Ampelisca abdita SF and LB<br />

Monocorophium acherusicum<br />

SF<br />

Sinocorophium heteroceratum<br />

LB<br />

Gammarus daiberi<br />

SF and LB<br />

Grandidierella japonica<br />

SF<br />

Copepoda Limnoithona tetraspina SF<br />

Oithona davisae<br />

LB<br />

Acartiella sinensis<br />

SF<br />

Pseudodiaptimus marinus<br />

SF<br />

Pseudodiaptimus forbesi<br />

SF<br />

Sinocalanus doerrii<br />

SF<br />

Tortanus dextrilobatus<br />

SF<br />

Mysidacea Acanthomysis bowmani SF<br />

Chordata Acanthogobius flavimanus SF<br />

3D. Discussion<br />

Our analysis indicates that significantly greater numbers <strong>of</strong> organisms are discharged into<br />

Port Valdez and PWS in oil tankers arriving from domestic ports compared to those from foreign<br />

ports. This results from the number <strong>of</strong> arrivals and the density <strong>of</strong> organisms in their ballast<br />

water, as both are greatest for the domestic arrivals. Accounting for number <strong>of</strong> arrivals and<br />

density (by source port and season), Table 3.3 estimates the total supply <strong>of</strong> plankton that we


Chapt 3. <strong>Biological</strong> Characteristics <strong>of</strong> Ballast <strong>Water</strong>, page 3- 23<br />

sampled to be roughly 264 billion organisms in 1998. Of this, approximately 3% arrived from<br />

foreign traffic.<br />

The differences observed in total density, as well as taxon-specific density, among arrivals<br />

from different source ports may result from a combination <strong>of</strong> multiple factors, including (a)<br />

differences in initial densities, (b) differences in survivorship, and (c) effects <strong>of</strong> ballast water<br />

exchange (conducted for foreign but not domestic arrivals).<br />

Table 3.3. Estimated number <strong>of</strong> large, planktonic organisms delivered in tankers’ ballast water to PWS and<br />

Port Valdez in 1998. Shown by source port and season are (1) the estimated total ballast water volumes, (2) mean<br />

densities <strong>of</strong> planktonic organisms, including standard errors and sample size, and (3) total number <strong>of</strong> planktonic<br />

organisms arriving in the ballast water <strong>of</strong> oil tankers. Total Volumes are derived from Table 2.1. Mean densities<br />

were estimated from analysis <strong>of</strong> plankton samples, which were collected by 80micron net, and exclude chainforming<br />

diatoms (see text for description). Where no samples were available for a season (e.g., Hawaii and Oregon),<br />

the grand mean across all samples <strong>of</strong> that source port was used. The bottom row (Overall) estimates the total ballast<br />

water volumes and total organisms delivered as a sum. Source ports include: Puget Sound, WA (PS); San Francisco<br />

Bay, CA (SF); Long Beach, CA (LB); Foreign port with open-ocean exchange (EX); Columbia River, Oregon (OR);<br />

and Barbers Point, Hawaii (HI). Seasons include: Winter (January-March), Spring (April-June), Summer (July-<br />

September), and Fall (October-November).<br />

Density organisms (#/m³)<br />

Phyto.+Zoopl. Zoopl. Phyto.+Zoopl. Delivered Zoopl. Delivered<br />

Port/Source Season Total BW (m³) Mean(se) Mean(se) n Billions Billions<br />

Winter 1,802,432 5963(1432) 879(343) 11 10.75 1.58<br />

Spring 1,885,260 17602(9543) 3427(1423) 11 33.18 6.46<br />

PS Summer 2,032,432 24116(8198) 8539(3062) 12 49.01 17.35<br />

Fall 1,796,382 8546(2636) 1269(384) 8 15.35 2.28<br />

Grand total 7,516,506 42 108.30 27.68<br />

Winter 1,082,594 24686(13263) 13435(9497) 8 26.72 14.54<br />

Spring 1,345,169 48504(23134) 29876(14848) 13 65.25 40.19<br />

SF Summer 1,573,660 14572(2914) 10696(1959) 10 22.93 16.83<br />

Fall 1,340,469 8840(1961) 7162(1488) 12 11.85 9.60<br />

Grand total 5,341,892 43 126.75 81.17<br />

Winter 585,468 4298(1094) 3426(954) 11 2.52 2.01<br />

Spring 395,187 4848(667) 3734(490) 10 1.92 1.48<br />

LB Summer 504,630 15951(3274) 15145(3175) 6 8.05 7.64<br />

Fall 390,180 6574(1613) 5508(1639) 12 2.57 2.15<br />

Grand total 1,875,465 39 15.05 13.27<br />

Winter 379,377 8791(3127) 1852(423) 7 3.34 0.70<br />

Spring 265,764 3466(2144) 1634(775) 3 0.92 0.43<br />

EX Summer 149,280 18447(14784) 3393(3141) 5 2.75 0.51<br />

Fall 141,168 3571(1398) 3179(1100) 2 0.50 0.45<br />

Grand total 935,589 17 7.51 2.09<br />

Winter 262,638 - - 0 2.49 0.02<br />

Spring 113,000 - - 0 1.07 0.01<br />

OR Summer 97,287 - - 0 0.92 0.01<br />

Fall 273,966 9474(6138) 65(13) 2 2.60 0.02<br />

Grand total 746,891 7.08 0.05<br />

Winter 189,994 772 17 1 0.15 0.00<br />

Spring 111,145 - - 0 0.05 0.00<br />

HI Summer 142,596 102(72) 14(2) 2 0.01 0.00<br />

Fall 108,370 - - 0 0.05 0.00<br />

Grand Total 552,105 3 0.26 0.01<br />

Overall 16,968,448 145 264.94 124.26


Chapt 3. <strong>Biological</strong> Characteristics <strong>of</strong> Ballast <strong>Water</strong>, page 3- 24<br />

Among the domestic arrivals, many <strong>of</strong> the observed differences in prevalence and density<br />

probably result from initial differences at the locations where ballast tanks are filled. For<br />

example, this may explain the especially strong differences observed in densities <strong>of</strong> some<br />

organisms, such as din<strong>of</strong>lagellates and protozoans (Fig. 3.8), among source ports. Although we<br />

have very limited data on the initial densities within ballast tanks at the start <strong>of</strong> the tankers’<br />

voyages (see Chapter 5), the published literature indicates that significant variation in the density<br />

and diversity <strong>of</strong> plankton communities among these and other source ports should be expected.<br />

In this context, it is perhaps important to recognize some conspicuous differences that existed<br />

among the domestic source ports. Certainly there are many differences in the habitat<br />

characteristics (e.g., composition, extent, quality, proximity to ports, etc), which may influence<br />

what is initially entrained in the tankers’ ballast tanks. However, there are also two<br />

physical/chemical characteristics that are widely recognized to influence the composition and<br />

dynamics <strong>of</strong> biotic communities: temperature and salinity. Temperature clearly differed among<br />

domestic port systems, increasing from north to south. Among the major domestic ports, salinity<br />

was extremely low for San Francisco Bay compared to Puget Sound and Long Beach in 1998, in<br />

which rainfall was relatively high (due to El Nino Southern Oscillation) and had a<br />

disproportionately large effect on salinity in San Francisco Bay.<br />

Despite any initial differences in plankton communities, it is evident that survivorship<br />

during transit can contribute strongly to the observed differences in biota arriving from various<br />

source ports. A variety <strong>of</strong> studies have now shown a significant decline in the density <strong>of</strong><br />

planktonic organisms in ballast tanks during voyages, and the magnitude <strong>of</strong> decline is timedependent,<br />

increasing significantly with voyage duration (Wonham et al. 1996, LaVoie et al<br />

1999, Smith et al. 1999; however see below for possible exceptions). We have obtained similar<br />

results aboard oil tankers arriving to Port Valdez (Chapter 5). For most taxa, the decline has been<br />

attributed to mortality. However, for a few groups included in our analysis, such as diatoms and<br />

din<strong>of</strong>lagellates, it is possible for the organisms to develop dormant stages that can accumulate on<br />

the bottom <strong>of</strong> ballast tanks.<br />

Ballast water exchange undoubtedly had a significant effect on the plankton community<br />

associated with foreign arrivals, contributing to the major differences in biota between foreign<br />

and domestic arrivals. Exchange can significantly reduce the concentration <strong>of</strong> many organisms<br />

within ballast tanks, and it can also entrain additional organisms from the oceanic site <strong>of</strong><br />

exchange (Ruiz et al. 1997, 1999; see also Chapter 5). In our study, the combination <strong>of</strong> ballast<br />

water exchange and voyage duration (which was relatively high for foreign ports) would both<br />

operate reduce initial densities <strong>of</strong> coastal plankton and contribute to the lower abundance <strong>of</strong><br />

many taxonomic groups in ballast water <strong>of</strong> foreign arrivals compared to that from domestic<br />

arrivals. In contrast, the domestic arrivals did not undergo ballast water exchange and arrived to<br />

Port Valdez with the initial coastal water, following a relatively short voyage.<br />

We hypothesize that the combined effects <strong>of</strong> ballast water exchange and voyage duration,<br />

instead <strong>of</strong> initial densities, were responsible for observed differences in abundance <strong>of</strong> coastal<br />

organisms between domestic and foreign arrivals. More specifically, we suggest that these<br />

forces reduced the densities <strong>of</strong> predominantly coastal organisms such as cnidarians, flatworms,<br />

annelids, molluscs, chordates, echinoderms, bryozoans, barnacles, and many other crustacean<br />

groups (see Chapter 5 for further discussion).


Chapt 3. <strong>Biological</strong> Characteristics <strong>of</strong> Ballast <strong>Water</strong>, page 3- 25<br />

The effects <strong>of</strong> ballast water exchange for some taxonomic groups, and its contribution to<br />

observed differences in their abundance between foreign and domestic arrivals, is not so well<br />

resolved. Unlike the low abundance <strong>of</strong> coastal organisms, foreign arrivals had relatively high<br />

densities <strong>of</strong> din<strong>of</strong>lagellates, copepods, and solitary diatoms in their ballast water. Most <strong>of</strong> these<br />

organisms were probably oceanic in origin and were entrained during the exchange process.<br />

This is certainly the case for the copepods, for which the species were recognized as oceanic and<br />

the generation time is in excess <strong>of</strong> the voyage duration. However, there is some suggestion that<br />

an increase <strong>of</strong> phytoplankton can result from ballast water exchange, as generation times are<br />

relatively short and the organisms may respond rapidly to changes in water quality following<br />

exchange (Gollasch et al.1998, LaVoie et al. 1999). The extent to which populations <strong>of</strong> these<br />

taxa, either <strong>of</strong> coastal or oceanic origin, may have increased following exchange is uncertain.<br />

The temporal variation observed in plankton densities was largely expected. In general,<br />

the seasonal peaks in density corresponded to seasonal production and density variation<br />

measured for plankton in north temperate estuaries. The magnitude <strong>of</strong> variation observed among<br />

years also is evident in field studies, including especially an El Niño event such as that for 1998.<br />

The heavy rainfall in that year was associated with especially high densities <strong>of</strong> protozoans,<br />

solitary diatoms, and copepods in the arrivals from San Francisco Bay.<br />

Although we have identified 14 nonindigenous species in the ballast water arriving to Port<br />

Valdez, and have provided some comparative data on species richness, these results must be<br />

viewed with caution. Clearly these numbers are minimum estimates. Although both estimates<br />

will increase upon completion <strong>of</strong> the voucher identification (see results), the measures can only<br />

be applied to a subset <strong>of</strong> the taxa and will always represent a minimum value. More specifically,<br />

most <strong>of</strong> the larval invertebrates (e.g., molluscs, barnacles) include many different species, which<br />

cannot be readily distinguished as larvae. All bivalve larvae are therefore treated as one species<br />

in our analysis, masking the diversity that most certainly exists. Thus, this approach is useful<br />

primarily in describing minimum diversity <strong>of</strong> native and exotic species arriving in ballast water,<br />

and does not necessarily reflect actual diversity patterns in space or time.<br />

It is also important to recognize that our conclusions about patterns <strong>of</strong> abundance and<br />

diversity are focused on the large (>80 micron) segment <strong>of</strong> the plankton community within<br />

ballast tanks. We have provided some additional qualitative information about the macr<strong>of</strong>auna<br />

found on the bottom <strong>of</strong> tankers’ ballast tanks (Chapt 6, this report). Thus, our data do not<br />

address density or diversity <strong>of</strong> microorganisms and taxa missed by an 80 micron mesh. The<br />

dynamics <strong>of</strong> these groups are very much in debate, as few good data exist to discern the potential<br />

for population changes (either declines or increases), due especially to mortality, dormancy and<br />

cyst formation, or ballast water exchange.<br />

Beyond the variation in plankton delivery by time and source port, our data underscore<br />

that both the concentration and cumulative amount <strong>of</strong> plankton arriving in tankers’ ballast water<br />

to Port Valdez and PWS is relatively high compared to that estimated for other ports (e.g.,<br />

Carlton and Geller 1993, Smith et al. 1999). This results from both the volume <strong>of</strong> water<br />

delivered (Chapter 2) and the concentration <strong>of</strong> plankton, as both values are relatively high. We<br />

hypothesize that the abundant plankton results from the short voyage duration for domestic<br />

traffic, accounting for approximately 97% <strong>of</strong> the total tanker arrivals at present. In contrast,


Chapt 3. <strong>Biological</strong> Characteristics <strong>of</strong> Ballast <strong>Water</strong>, page 3- 26<br />

although Chesapeake Bay receives more total ballast water per year than PWS, most <strong>of</strong> the<br />

ballast water comes from Europe, arriving in 10-14 days with an average concentration <strong>of</strong> 200<br />

organisms / m 3 (Smith et. al. 1999; Ruiz et al., unpubl. data). Furthermore, it appears that<br />

ballast water arriving to the Chesapeake from domestic ports also has a lower density than that<br />

arriving to PWS from domestic ports.<br />

Finally, from an invasion perspective, there are three unusual features <strong>of</strong> our analysis that<br />

deserve explicit mention:<br />

• This is the most comprehensive analysis <strong>of</strong> domestic, coastwise ballast transfer. Most<br />

organisms that arrive in ballast water to PWS come from domestic source ports, which are<br />

themselves highly invaded. Thus, our study examines the opportunity for sequential<br />

invasions, which can “leapfrog” up the coast following initial colonization <strong>of</strong> North America.<br />

• The delivery <strong>of</strong> ballast water by tankers to Port Valdez is a relatively recent development,<br />

beginning in 1977. Although many features may influence the risk <strong>of</strong> invasion, it is <strong>of</strong>ten<br />

considered to increase with the frequency, density, and duration <strong>of</strong> inoculation. Our results<br />

indicate that the risk associated with the first two <strong>of</strong> these is relatively high. However, the<br />

operation <strong>of</strong> this transfer mechanism has only existed for three decades. Even at the current<br />

rates <strong>of</strong> organism delivery (see above), invasion success may be influenced strongly by<br />

duration. In contrast, many other ports have been receiving ballast water and ballast<br />

materials for a century or more.<br />

• Delivery <strong>of</strong> ballast water from foreign sources by tankers is even a more recent development,<br />

beginning in 1996. Although this accounted for only 3% <strong>of</strong> the total volume <strong>of</strong> ballast water<br />

delivered in 1998, all <strong>of</strong> the ballast water delivered by foreign arrivals had undergone<br />

exchange. Some coastal organisms remained in the exchanged tanks (see Chapter 5);<br />

however, the total supply <strong>of</strong> organisms from foreign ports is both relatively small and<br />

extremely recent compared to other port systems.<br />

3E. References<br />

Carlton, J.T. and J. B. Geller. 1993. Ecological roulette: the global transport <strong>of</strong> nonindigenous<br />

marine organisms. Science 261: 78-82.<br />

Gollasch, S., M. Dammer, J. Lenz and H.G. Andres. 1998. Non-indigenous organisms introduced<br />

via ships into German waters. Pp. 50-64 in Carlton, J.T. (ed.), Ballast <strong>Water</strong>: Ecological and<br />

Fisheries Implications. International Council for the Exploration <strong>of</strong> the Sea (ICES), Denmark.<br />

Lavoie, D. M., L.D. Smith and G.M. Ruiz. 1999. The potential for intracoastal transfer <strong>of</strong> nonindigenous<br />

species in the ballast water <strong>of</strong> ships. Est. Coast. Shelf Sci. 48: 551-564.<br />

Ruiz, G.M. and A.H. Hines. 1997. Patterns <strong>of</strong> nonindigenous species transfer and invasion in<br />

Prince William Sound, Alaska: Pilot Study. Report, Prince William Sound Regional Citizens’<br />

Advisory Council. 80pp.<br />

Ruiz, G.M., J.T. Carlton, A. H. Hines and E.D. Grosholz. 1997. Global invasions <strong>of</strong> marine and<br />

estuarine habitats by non-indigenous species: Mechanisms, extent, and consequences. Am. Zool.<br />

37: 621-632.


Chapt 3. <strong>Biological</strong> Characteristics <strong>of</strong> Ballast <strong>Water</strong>, page 3- 27<br />

Ruiz, G.M., P. F<strong>of</strong>on<strong>of</strong>f and A.H. Hines. 1999. Non-indigenous species as stressors in estuarine<br />

and marine communities: Assessing invasion impacts and interactions. Limnol. Oceanogr. 44:<br />

950-972.<br />

Smith, L.D., M.J. Wonham, L.D. MCann, D.M. Reid, G.M. Ruiz and J.T. Carlton. 1996.<br />

<strong>Biological</strong> invasions by nonindigenous species in United States waters: Quantifying the role <strong>of</strong><br />

ballast water and sediments. Parts I and II. Final Report to the U.S. Coast Guard and the U.S.<br />

Department <strong>of</strong> Transportation. 246 pp.<br />

Smith, L.D., M.J. Wonham, L.D. McCann, G.M. Ruiz, A.H. Hines and J.T. Carlton. 1999.<br />

Invasion pressure to a ballast-flooded estuary and an assessment <strong>of</strong> inoculant survival. Biol.<br />

<strong>Invasions</strong> 1: 67-87.<br />

Wonham. M.J., W.C. Walton, A.M. Frese and G.M. Ruiz. 1996. Transoceanic transport <strong>of</strong><br />

ballast water: <strong>Biological</strong> and physical dynamics <strong>of</strong> ballasted communities and the effectiveness<br />

<strong>of</strong> mid-ocean exchange. Final Report to the U.S. Fish and Wildlife Service and the Compton<br />

Foundation.


Chapt 4. Predicting Initial Survival <strong>of</strong> Ballast <strong>Water</strong> Organisms, page 4- 1<br />

Chapter 4. Predicting Initial Survival <strong>of</strong> Ballast <strong>Water</strong> Organisms<br />

Anson H. Hines, Smithsonian Environmental Research Center<br />

Gregory M. Ruiz, Smithsonian Environmental Research Center<br />

George Smith, Smithsonian Environmental Research Center<br />

Melissa Frey, Smithsonian Environmental Research Center<br />

4A. Purpose<br />

When ballast water is discharged into the receiving waters, the associated plankton<br />

encounters new conditions without time to acclimate. Survival may depend on short-term<br />

tolerances to accute variation in salinity-temperature combinations. If temperature-salinity<br />

conditions <strong>of</strong> ballast water closely match those <strong>of</strong> the receiving waters, then initial survival is<br />

predicted to be higher than when the conditions do not match closely. To determine if NIS<br />

arriving in ballast water can survive the initial exposure to temperature-salinity conditions in<br />

Prince William Sound, we tested the match <strong>of</strong> conditions between ballast water and ship-side<br />

water, and the short-term survival <strong>of</strong> ballast organisms in representative combinations.<br />

4B. Temperature & Salinity: Match <strong>of</strong> Source and Receiving Ports<br />

4B1. Methods<br />

Samples <strong>of</strong> ballast water were collected from segregated ballast tanks and from ambient<br />

waters adjacent to each ship sampled for ballast water plankton. A small niskin bottle lowered<br />

through hatch covers into the ballast tanks and lowered <strong>of</strong>f the end <strong>of</strong> the ship’s berth to collect<br />

samples from the water surface and 10 m depth, which was determined to be below a potential<br />

thermocline or pycnocline. Salinity was determined to the nearest ppt with a refractometer and<br />

temperature to the nearest 0.5 o C with a hand-held thermometer.<br />

4B2. Results<br />

Temperature and salinity <strong>of</strong> the receiving waters <strong>of</strong> Port Valdez exhibit a distinct<br />

seasonal pattern (Fig. 4.1a, b). <strong>Water</strong> temperatures <strong>of</strong> Port Valdez at 10 m depth cycle<br />

seasonally from a low <strong>of</strong> 4 o C in February to a high <strong>of</strong> 13 o C in July. Surface water temperatures<br />

are more variable and 1-5 o C warmer than deep water in the spring. Salinity during December to<br />

April was about 31 ppt and the water column was well mixed. <strong>Water</strong> in Port Valdez was sharply<br />

stratified by depth as snow melted from late April to September, with salinities <strong>of</strong> surface waters<br />

dropping to 4-15 ppt while salinities at 10m depth declined only to about 25 ppt.<br />

<strong>Water</strong> in the segregated ballast tanks rarely exhibited much depth stratification.<br />

Temperatures <strong>of</strong> segregated ballast water varied seasonally with a winter mean low <strong>of</strong> about 7.5<br />

o C (+-3 o C) and a summer high <strong>of</strong> about 16 o C (+-3 o C) (Fig. 4.1c). Salinities <strong>of</strong> ballast water did<br />

not exhibit a seasonal pattern, but salinities fell into two distinct ranges, depending on the source<br />

port <strong>of</strong> the tanker (Fig. 4.1d). Most tankers delivered high salinity ballast water (ca. 30 ppt,<br />

range 20-36 ppt). In contrast, about 20% <strong>of</strong> the tankers throughout the year released ballast water<br />

<strong>of</strong> low salinity (ca. 4 ppt, range 0-14 ppt, mainly from Benicia in San Francisco Bay, especially<br />

during the heavy El Niño rains in 1998).


Chapt 4. Predicting Initial Survival <strong>of</strong> Ballast <strong>Water</strong> Organisms, page 4- 2<br />

Figure 4.1 Seasonal Cycles <strong>of</strong> Temperatures and Salinities <strong>of</strong> Receiving and Ballast <strong>Water</strong>. Shown above are<br />

temperatures (A) and salinities <strong>of</strong> Port Valdez, Alaska at 0m and 10m depth. Shown below are average<br />

temperatures (C) and salinities (D) <strong>of</strong> ballast water discharged into Port Valdez by tankers. Averages are for two<br />

tank depths (0m and 10m depth) combined.<br />

A. Port Valdez<br />

C. Ballast <strong>Water</strong><br />

Temperature (ºC)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Dec Feb Apr Jun Aug Oct Dec<br />

0 m<br />

10 m<br />

Temperature (ºC)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Dec Feb Apr Jun Aug Oct Dec<br />

B. Port Valdez<br />

40<br />

D. Ballast <strong>Water</strong><br />

40<br />

Salinity (‰)<br />

30<br />

20<br />

10<br />

0 m<br />

10 m<br />

Salinity (‰)<br />

0<br />

Dec Feb Apr Jun Aug Oct<br />

SEASON<br />

Dec<br />

30<br />

20<br />

10<br />

0<br />

Dec Feb Apr Jun Aug Oct Dec<br />

SEASON<br />

Annual variation in temperature and salinity among source ports and receiving waters <strong>of</strong><br />

Port Valdez was compared in June <strong>of</strong> 1997, 1998, and 1999 (Fig. 4.2). Temperature <strong>of</strong> ballast<br />

water from Long Beach (13-14 o C) and San Francisco(13-14 o C) was about a degree warmer than<br />

from Puget Sound (11-12 o C), but temperature <strong>of</strong> ballast water from Puget Sound was similar to<br />

the surface water <strong>of</strong> Port Valdez (11-12 o C), which was 1-3 o C warmer than water at 10 m depth<br />

(7-9 o C). However, there were no significant differences in temperatures among years. Salinity <strong>of</strong><br />

ballast water from Long Beach (33ppt) was highest <strong>of</strong> the source ports, while that from San<br />

Francisco (10-14 ppt) was the lowest, and Puget Sound was intermediate (29-30 ppt). Surface<br />

salinity at the surface <strong>of</strong> Port Valdez (10-21ppt) was similar to ballast water from San Francisco<br />

Bay, while salinity at 10 m depth in Port Valdez (29-30 ppt) was similar to ballast water from<br />

Puget Sound. Salinity <strong>of</strong> ballast water from Long Beach and Puget Sound, as well as deep water<br />

at Port Valdez, did not differ among years. However, salinity <strong>of</strong> ballast water from San<br />

Francisco Bay and at the surface in Port Valdez was lowest in 1998, highest in 1997 and<br />

intermediate in 1999.<br />

Thus, there was <strong>of</strong>ten a good correspondence <strong>of</strong> physical characteristics between ballast<br />

water and receiving water, depending on the source port, time <strong>of</strong> year and water depth in Port<br />

Valdez. Temperatures <strong>of</strong> ballast water were a bit higher than <strong>of</strong> receiving waters, but the<br />

differences were not great, and there was considerable overlap between ballast and receiving<br />

water throughout the year. Higher salinities <strong>of</strong> ballast water from most source ports were similar<br />

to deeper water <strong>of</strong> Port Valdez throughout the year and similar to surface water during winter<br />

and early spring. During summer the vertical stratification in Port Valdez resulted in ballast<br />

water from both high and low salinities having good correspondence in major areas <strong>of</strong> the<br />

receiving waters. Based on these physical characteristics <strong>of</strong> ballast and receiving water,<br />

temperatures <strong>of</strong> Port Valdez would not appear to prevent survival <strong>of</strong> organisms from most source<br />

ports. Nonindigenous species from nearly fresh water, estuarine and full-strength sea water may<br />

also find corresponding salinities in Port Valdez.


Chapt 4. Predicting Initial Survival <strong>of</strong> Ballast <strong>Water</strong> Organisms, page 4- 3<br />

Figure 4.2 Annual Variation in Temperature and Salinity <strong>of</strong> Ballast and Receiving <strong>Water</strong>. Shown are<br />

temperatures (top) and salinities (bottom) <strong>of</strong> ballast water arriving to Port Valdez in tankers from west-coast source<br />

ports (PS = Puget Sound, WA; SF = San Francisco, CA; LB = Long Beach, CA), and <strong>of</strong> recieving waters <strong>of</strong> Port<br />

Valdez at surface (V-0) and 10m depth (V-10). Bars indicate means and S.E. for June 1997, 1998, 1999.<br />

15.0<br />

June’97<br />

June’98<br />

June’99<br />

DEGREES (ºC)<br />

10.0<br />

5.0<br />

0.0<br />

PS SF LB V-0 V-10<br />

30.0<br />

SALINITY (‰)<br />

20.0<br />

10.0<br />

0.0<br />

PS SF LB V-0 V-10<br />

SOURCE<br />

4C. Temperature-Salinity Tolerance Experiments <strong>of</strong> Ballast <strong>Water</strong> Plankton<br />

4C1. Methods<br />

We conducted experiments at the SERC laboratory in Valdez to test for temperature x<br />

salinity tolerance <strong>of</strong> selected planktonic organisms arriving in segregated ballast water. Based on<br />

the two salinity categories <strong>of</strong> segregated ballast water released into Port Valdez (see above, Fig.<br />

4.1a, b), we grouped the experimental organisms into "freshwater taxa" and "seawater taxa" (Fig.<br />

4.3).<br />

Figure 4.3. Survivorship <strong>of</strong> Ballast <strong>Water</strong> Organisms in Salinity x Temperture Experiments. Survivorship <strong>of</strong><br />

ballast water organisms at 96 hour exposure to 9 combinations <strong>of</strong> salinity and temperature in laboratory experiments.<br />

Three salinities (10, 20, 30 ppt) and three temperatures (3, 9, 15ºC) were tested to represent the range <strong>of</strong> seasonal<br />

variation in Port Valdez. (A) Trials with organisms from ballast water with fresh water sources (n = 9). (B) Trials<br />

with organisms from ballast water with seawater sources (n = 15).<br />

A<br />

B<br />

Mean Survivorship<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

1.0<br />

0.8<br />

"Freshwater" Taxa<br />

3 C<br />

9 C<br />

15 C<br />

10 20 30<br />

"Seawater" Taxa<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

10 20 30<br />

Salinity (ppt)


Chapt 4. Predicting Initial Survival <strong>of</strong> Ballast <strong>Water</strong> Organisms, page 4- 4<br />

Nine combinations <strong>of</strong> three temperatures (3, 9, and 15 o C) and three salinities (10, 20, and<br />

30 ppt) were selected to represent the seasonal range <strong>of</strong> conditions for Port Valdez. Organisms<br />

used in the experiments are collected from the common species <strong>of</strong> plankton arriving in tanker<br />

ballast water. For each experiment, 10 individuals were placed in each <strong>of</strong> 3 replicate culture<br />

dishes at each <strong>of</strong> the 9 treatment combinations. Thus, there were 27 trials in each experiment (9<br />

treatments x 3 replicates). The test organisms were sorted in the lab and transferred directly to<br />

culture dishes maintained in incubators for 96 hrs, simulating release <strong>of</strong> ballast water into<br />

conditions <strong>of</strong> the Sound. Phytoplankton or brine shrimp nauplii were supplied as food to the<br />

cultures during the test period.<br />

Experiments (n = 24) were completed with organisms from the following taxonomic<br />

categories:<br />

Tintinnid protistan<br />

Nemertean worm larvae<br />

Spionid polychaete worm larvae<br />

Gastropod veliger larvae<br />

Copepods<br />

calanoid<br />

harpacticoid<br />

cyclopoid (Oithona spp.)<br />

Barnacle nauplii<br />

Crab zoea<br />

Mysid shrimp<br />

1 experiment<br />

2 experiments<br />

3 experiments<br />

1 experiment<br />

4 experiments<br />

1 experiment<br />

6 experiments<br />

3 experiments<br />

1 experiment<br />

2 experiments<br />

Nine <strong>of</strong> these were "freshwater taxa" and 15 were "seawater taxa". We intentionally selected<br />

copepods especially Oithona spp., for many <strong>of</strong> our experiments, because we recognized these as<br />

NIS arriving in apparently good condition from San Francisco Bay.<br />

4C2. Results<br />

Short-term survivorship <strong>of</strong> these ballast water organisms was high (>50%) for fresh water<br />

taxa at 10 ppt, and for seawater taxa at 20-30 ppt. These short-term experiments also showed that<br />

the ballast organisms had distinct, but quite broad tolerances that clearly overlap conditions <strong>of</strong><br />

temperature and salinities in Port Valdez. For example, although there was considerable<br />

variation in survivorship among individual experiments, mean survivorship <strong>of</strong> calanoid copepods<br />

varied from about 20-80% for each test salinity, but survivorship <strong>of</strong> calanoids in most<br />

experiments increased with salinity (Fig. 4.3). Oithona spp. (which include known NIS<br />

copepods) were able to tolerate salinity-temperature conditions they would encounter in the<br />

receiving waters <strong>of</strong> Port Valdez.<br />

The freshwater and seawater taxa differed substantially in their patterns<br />

<strong>of</strong> temperature x salinity tolerance (Fig. 4.3). The survivorship <strong>of</strong> seawater taxa at any <strong>of</strong> the 3<br />

test temperatures generally increased with increasing salinity, and there were not great<br />

differences in survivorship among temperatures. However, survivorship <strong>of</strong> freshwater taxa at all<br />

temperatures generally declined sharply with increasing salinity, and survivorship at 3 o C was<br />

markedly lower than at 9 or 15 o C.


Chapt 4. Predicting Initial Survival <strong>of</strong> Ballast <strong>Water</strong> Organisms, page 4- 5<br />

4D. Conclusions<br />

Planktonic species arriving to Port Valdez in ballast water have high potential <strong>of</strong><br />

surviving the salinity-temperature conditions that they encounter during initial discharge from<br />

the ship. Although some taxa will not tolerate some salinity layers in the seasonally stratified<br />

conditions in the Port, the overlap <strong>of</strong> ballast water with Port conditions at some strata is high.<br />

Plankton in the ballast water, including known NIS such as Oithona spp., should be able to<br />

tolerate these conditions. Conditions other than initial salinity-temperature combinations<br />

probably determine whether or not these organisms survive to become established within Prince<br />

William Sound.


Chapt 5 Ballast <strong>Water</strong> Exchange Experiments, page 5- 1<br />

Chapter 5. Ballast <strong>Water</strong> Exchange Experiments on Tankers<br />

Gregory M. Ruiz, Smithsonian Environmental Research Center<br />

Anson H. Hines, Smithsonian Environmental Research Center<br />

George Smith, Smithsonian Environmental Research Center<br />

Melissa Frey, Smithsonian Environmental Research Center<br />

Safra Altman, Smithsonian Environmental Research Center<br />

Kimberly Philips, Smithsonian Environmental Research Center<br />

Tami Huber, Smithsonian Environmental Research Center<br />

Sara Chaves, Smithsonian Environmental Research Center<br />

5A. Purpose<br />

The primary objective <strong>of</strong> this research component is to measure the efficacy <strong>of</strong> ballast<br />

water exchange in removing various types <strong>of</strong> taxa from ballast tanks <strong>of</strong> oil tankers. There are very<br />

few quantitative studies that have measured the effects <strong>of</strong> exchange, and these are restricted to<br />

just a few vessel types and measure the effect on a small subset <strong>of</strong> entrained taxa. It is likely,<br />

however, that the efficacy <strong>of</strong> exchange varies by vessel type, tank design, and organism type. To<br />

date, there have been no measures <strong>of</strong> ballast water exchange for oil tankers.<br />

Ballast water exchange is the most widely used national and international management<br />

strategy to limit new invasions associated with ships’ ballast water (Hallegraeff 1998, Zhang &<br />

Dickman 1999, Dickman and Zhang 1999,. Moreover, exchange is currently the only treatment<br />

method available for commercial ships to reduce the quantities <strong>of</strong> non-indigenous coastal plankton<br />

in ballast water (National Research Council 1996). This practice is recommended by the<br />

International Maritime Organization (IMO) to reduce the risk <strong>of</strong> invasion by shipping.<br />

Furthermore, the U.S. Congress passed the National Invasive Species Act <strong>of</strong> 1996 (NISA) to<br />

encourage ballast water exchange. Specifically, NISA requests that vessels arriving from outside<br />

<strong>of</strong> the Exclusive Economic Zone (EEZ) voluntarily conduct open-ocean exchange <strong>of</strong> ballast tanks<br />

to be discharged in U.S. ports<br />

Commercial ships practice two basic types <strong>of</strong> ballast water exchange to replace coastal with<br />

oceanic water. Flow-Through (FT) Exchange is conducted by pumping oceanic sea water<br />

continuously through a ballast tank to flush out the ballast water originating from a coastal source<br />

port. Empty-Refill (ER) Exchange is performed by emptying a ballast tank <strong>of</strong> its coastal water and<br />

refilling it with oceanic water.<br />

Each exchange method may vary in efficacy due to the amount and circulation <strong>of</strong> water<br />

being removed, independent <strong>of</strong> any tank- or vessel-specific effects on efficacy. For example, FT<br />

Exchange initially has the effect <strong>of</strong> dilution but not complete replacement <strong>of</strong> ballast water.<br />

Alternatively, organisms may differ in their distribution or response to water turbulence. Some<br />

taxa may swim against currents or always reside near the bottom <strong>of</strong> tanks, which could greatly<br />

influence the effect <strong>of</strong> ballast water exchange on removal.<br />

To maximize the degree <strong>of</strong> exchange, multiple exchanges are <strong>of</strong>ten recommended. The<br />

current IMO standard recommendation is 300% exchange for Flow-Through, while 100-200%


Chapt 5 Ballast <strong>Water</strong> Exchange Experiments, page 5- 2<br />

exchange is common for Empty-Refill. These recommended standards provide a theoretical level<br />

<strong>of</strong> at least 90% replacement <strong>of</strong> coastal water by oceanic water, but this is largely untested among<br />

the broad range <strong>of</strong> vessel types and tank configurations. Specifically, there are almost no<br />

experimental analyses which quantify the efficacy <strong>of</strong> alternative exchange methods and multiple<br />

tank exchanges, even though (a) this is the present national and international management strategy<br />

being implemented and (b) the cost <strong>of</strong> such exchanges is substantial in ship fuel and operations<br />

time.<br />

We initiated a rigorous quantitative comparison <strong>of</strong> ballast water exchange methods on oil<br />

tankers arriving to PWS. Across two years, we conducted replicated exchange experiments,<br />

allowing us to measure the effects <strong>of</strong> both exchange methods on reduction <strong>of</strong> entrained organisms<br />

and standard physical and biological tracers.<br />

We hypothesize that (1) Empty-Refill exchange will have the highest efficiency, (2)<br />

relatively little reduction in density occurs after the first exchange event, and (3) a significant<br />

difference exists among taxa on the effect <strong>of</strong> ballast water exchange. Our experiments were<br />

designed to directly test these hypotheses and provide needed quantitative data on this management<br />

practice.<br />

This work was initiated in two phases, extending the duration <strong>of</strong> the analyses and<br />

allowing us to increase the replication (and therefore strengthen the statistical power and value <strong>of</strong><br />

this analysis). The first phase was initiated in summer <strong>of</strong> 1998. Through the cooperation and<br />

financial support from the American Petroleum Institute, SeaRiver and ARCO, we conducted the<br />

ballast water exchange experiments on four separate voyages <strong>of</strong> tankers to Alaska in June/July <strong>of</strong><br />

that year. The second phase was initiated in spring <strong>of</strong> 1999, when we received additional<br />

funding from U.S. Fish and Wildlife Service to conduct similar experiments (with increased<br />

measurements) on another four voyages in summer. In addition to analysis <strong>of</strong> these experiments,<br />

we agreed (with additional funding from phase two) to provide a review <strong>of</strong> existing data on the<br />

efficacy <strong>of</strong> ballast water exchange, allowing us to examine our results from oil tankers to those<br />

reported for other vessel types.<br />

All <strong>of</strong> the experiments have been completed, but we have not yet completed the full<br />

analysis <strong>of</strong> all samples. We report here on the experiments conducted, including the status <strong>of</strong><br />

sample analysis and initial results. We will provide a comprehensive report <strong>of</strong> the results across<br />

both phases upon completion <strong>of</strong> our analyses. We anticipate that these results will be available<br />

by June 2000.<br />

5B. Methods<br />

Although the overall goal <strong>of</strong> this research was to measure the efficacy <strong>of</strong> ER and FT<br />

methods <strong>of</strong> ballast water exchange in removing coastal plankton from ballast water, our<br />

experimental design allowed us to address three specific objectives:<br />

• Compare the efficacy <strong>of</strong> ER and FT exchange methods in removing a range <strong>of</strong> different<br />

materials (biotic and abiotic);<br />

• Measure the effect <strong>of</strong> repeated exchanges: comparing 100, 200, and 300% exchange <strong>of</strong> the<br />

tanks.


Chapt 5 Ballast <strong>Water</strong> Exchange Experiments, page 5- 3<br />

• Measure the survivorship <strong>of</strong> organisms in ballast water over the course <strong>of</strong> routine voyages.<br />

Since the density <strong>of</strong> organisms can change during a voyage (see Chapter 3 for discussion), it<br />

was important to control for such changes in experimental tanks that were independent <strong>of</strong> the<br />

exchange treatment. For this purpose, we included identical measures for an unexchanged<br />

control tank on every vessel. Although key to the experimental analysis, this also provided<br />

an opportunity to address this third objective.<br />

All experiments were conducted aboard oil tankers during regular operations, en route to<br />

Port Valdez. Each tanker served as an experimental platform. Each ship was boarded by a pair <strong>of</strong><br />

SERC staff at a domestic source port (San Francisco, Puget Sound, or Long Beach), where ballast<br />

water used to fill the segregated ballast tanks just in advance <strong>of</strong> departure for Port Valdez. The<br />

tanks underwent various treatments and were sampled repeatedly during the voyage (below).<br />

Experimental Design<br />

The experiment consisted <strong>of</strong> a replicated, factorial, and paired design. On each ship, we<br />

sought to use 3 different ballast tanks that were each subjected to a different treatment: No<br />

exchange (=Control), ER Exchange, and FT Exchange. Each Treatment tank was sampled as<br />

many as 5 time points, coinciding with: initial ballast loading, 100% exchange, 200% exchange,<br />

300% exchange, and final at arrival to PWS.<br />

Ballast water was loaded in accordance with standard operating procedures at dockside. All<br />

exchanges occurred in open, oceanic conditions well outside the influence <strong>of</strong> coastal waters (>75<br />

miles <strong>of</strong>fshore). Exchanges <strong>of</strong> tanks were managed by ships’ crews in coordination with the desired<br />

sampling schedule. For FT Exchange, sea water was pumped into the ballast tanks, causing ballast<br />

water to overflow through the top <strong>of</strong> the tanks and onto the deck. After a volume <strong>of</strong> water equal to<br />

the volume <strong>of</strong> the tank was pumped, the exchange was interrupted and samples were collected. For<br />

ER Exchange, ballast tanks were drained initially by gravity and then by pumping before refilling<br />

with sea water. The process required approximately 12 hours for each multiple <strong>of</strong> exchange.<br />

The specific details <strong>of</strong> implementation and sampling are described below in various<br />

sections.<br />

Biotic and Abiotic Tracers.<br />

In addition to quantifying the effect <strong>of</strong> ballast water exchange on entrained plankton<br />

communities in the ballast tanks, we used four different types <strong>of</strong> tracers for parallel measures <strong>of</strong><br />

efficacy. One <strong>of</strong> these (salinity <strong>of</strong> the resident water) simply involved collecting and measuring<br />

attributes <strong>of</strong> the resident water. The other three involved materials that we added directly to the<br />

ballast tanks, including: Rhodamine dye to trace the fate <strong>of</strong> the initial water; 1 um Fluorescent<br />

Microspheres that simulate passive particles such as cysts; and newly hatched Artemia (brine<br />

shrimp) nauplii, native to San Francisco Bay, as a living particle.<br />

Each tracer can provide information about different components <strong>of</strong> the ballast tank<br />

environment during exchange (as indicated above). Moreover, we were interested in developing<br />

some standardized measures for comparisons across ships. Since the resident community within<br />

each ship’s ballast tanks may differ considerably (see Chapter 3), the tracers could provide a


Chapt 5 Ballast <strong>Water</strong> Exchange Experiments, page 5- 4<br />

common currency for comparing exchange performance among many ships in a way that is simply<br />

not possible for the entrained plankton communities.<br />

Tracers were added to ballast tanks in a standardized way, following approval for use in<br />

these experiments by the U.S. Environmental Protection Agency. The quantity <strong>of</strong> tracer was<br />

chosen to produce desired concentrations for the specific volumes <strong>of</strong> each tank, such that<br />

anticipated dilution during exchanges would allow us to detect at least a 100-fold reduction in<br />

measurable concentrations <strong>of</strong> each tracer.<br />

Tracers were added to at least two locations in each tank during early stages <strong>of</strong> ballast tank<br />

filling (i.e., before the tank was 25-50% full), so as to increase the opportunity for mixing<br />

throughout each tank. Rhodamie and microspheres were added directly to all tanks. In contrast,<br />

Artemia were initially cultured (i.e., the cysts were added to salt water and hatched in buckets in<br />

advance <strong>of</strong> boarding the ship), and the resulting organisms were used to inoculate ballast tanks.<br />

Sample Collection.<br />

Replicate samples were collected at 2 –3 different locations (i.e., tank access points) from<br />

each tank, for up to 5 different sampling periods (as above). Sampling procedures for the plankton<br />

community followed our established protocol for characterization <strong>of</strong> ballast water (see Chapter 3<br />

for description); Artemia abundance was measured as a component <strong>of</strong> the plankton (see below).<br />

Replicate whole water samples were collected from two depths (0m and 10m), using a Niskin<br />

bottle. Whole water samples were used to measure salinity, temperature, and concentrations <strong>of</strong> dye<br />

and microspheres.<br />

For each sampling location and period, we collected 2 replicate samples for all measures.<br />

Thus, for each tank and sampling period, we obtained at least: 4 plankton samples (2 locations x 2<br />

samples); 8 rhodamine samples (2 locations x 2 depths x 2 samples); 8 mircosphere samples (2<br />

locations x 2 depths x 2 samples). Temperature and salinity measures were made immediately<br />

upon all replication Niskin samples (at least 8 per tank and sampling period, as above).<br />

Although we followed the same general sampling protocol for all voyages (in both years),<br />

we collected additional whole water samples during the 1999 experiments to measure changes in<br />

the abundance <strong>of</strong> total bacteria and ciliate protozoans. For both measures, we collected at least 8<br />

samples per tank and sampling period (2 locations x 2 depths x 2 samples). Samples were<br />

collected from all experiments in 1999 to measure total bacteria. However, we only included<br />

samples from one vessel for the protozoans, due to the time-intensive nature <strong>of</strong> analysis for this<br />

group.<br />

Sample processing.<br />

<strong>Water</strong> temperature and salinity were measured immediately, using a hand-held<br />

thermometer and refractometer, respectively. Plankton/Artemia samples were examined aboard<br />

ship initially to assess general condition (live/dead, active, lethargic) soon after collection, using<br />

dissecting microscopes; these samples were then preserved in 5% buffered formalin. The preserved<br />

plankton samples were sorted and enumerated in the laboratory as described in Chapter 3 for Fine


Chapt 5 Ballast <strong>Water</strong> Exchange Experiments, page 5- 5<br />

Analysis. Thus, densities were estimated for each taxon, and voucher samples were sent to experts<br />

to verify the taxonomic identity.<br />

The tracers in whole water samples are being quantified in the laboratory at SERC (dye<br />

concentration with a fluorometer, micro-spheres with direct counts under a fluorescent compound<br />

microscope). Total bacteria are also being estimated by direct count with a compound microscope,<br />

using standard techniques. The protozoan have been sent to a colleague (Dr. Richard Pierce,<br />

expert in ciliate protozoa) for direct counts by taxon.<br />

5C. Results<br />

The experiments were conducted on 8 different voyages, which were divided evenly<br />

between the two years (Table 5.1). All experiments were conducted from June to mid July, to<br />

control for seasonal variation and to occur during a period <strong>of</strong> high plankton abundance (see<br />

Chapter 3). Six <strong>of</strong> the 8 ships included all three treatments: ER exchange, FT exchange, and<br />

control. These were SeaRiver ships, departing from the ports <strong>of</strong> San Francisco Bay and Puget<br />

Sound. However, the large ARCO tankers were not able to perform ER exchange; experiments<br />

aboard these remaining 2 ships included only FT exchange and control tanks.<br />

Table 5.1. Overview and status <strong>of</strong> ballast water exchange experiments conducted aboard oil tankers arriving to<br />

Port Valdez, 1998-1999. For each <strong>of</strong> 8 replicate experiments: (A) The upper table indicates the vessel, start date,<br />

source port, exchange methods, and number collected samples (physical/chemical and biological); (B) The lower table<br />

indicates the status <strong>of</strong> the respective samples. Physical/chemical tracers include salinity, rhodamine, and flourescent<br />

microspheres (shown in lower table). <strong>Biological</strong> tracers include resident zooplankton and brine shrimp (Artemia) in<br />

both years, as well as total bacteria in1999 only. . Source ports: Puget Sound, WA (PS); San Francisco Bay, CA (SF);<br />

Long Beach, CA (LB). Exchange types: Empty-Refill (ER) and Flow-Through (FT). See text for experimental<br />

design.<br />

A.<br />

# <strong>of</strong> samples # <strong>of</strong> samples<br />

Ship Date Port Source Exchange type(s) Physical tracers Biol. Tracers<br />

S/R Baytown 27-Jun-98 SF ER+FT 120 60<br />

S/R Benicia 01-Jul-98 SF ER+FT 120 60<br />

S/R Long Beach 08-Jul-98 SF ER+FT 120 60<br />

ARCO Independence 18-Jul-98 LB FT 80 40<br />

S/R Baytown 11-Jun-99 PS ER+FT 60 144<br />

ARCO Spirit 12-Jun-99 LB FT 64 164<br />

S/R Baytown 08-Jul-99 PS ER+FT 60 144<br />

S/R Long Beach 19-Jul-99 SF ER+FT 120 252<br />

B.<br />

status <strong>of</strong> proccessing (ip=in progress)<br />

Ship Date Salinity Rhodamine Microspheres Zooplankton/Artemia Bacteria<br />

S/R Baytown 27-Jun-98 done done ip done -<br />

S/R Benicia 01-Jul-98 done done done done -<br />

S/R Long Beach 08-Jul-98 done done done done -<br />

ARCO Independence 18-Jul-98 done done done done -<br />

S/R Baytown 11-Jun-99 ip done done done ip<br />

ARCO Spirit 12-Jun-99 ip done done done ip<br />

S/R Baytown 08-Jul-99 ip done done ip ip<br />

S/R Long Beach 19-Jul-99 ip done done ip ip


Chapt 5 Ballast <strong>Water</strong> Exchange Experiments, page 5- 6<br />

We distributed our experiments among the three source ports to maximize the range <strong>of</strong><br />

conditions (e.g., taxonomic groups, voyage duration, vessel types, and salinity), allowing us to test<br />

for general patterns among oil tankers. For example, diversity (and salinity) was generally greatest<br />

for ships from Long Beach and Puget Sound, and voyage duration differed among source ports<br />

(see Chapters 2 and 3). However, the traffic from each source port presented some unique<br />

constraints to the overall design:<br />

(1) Ships from Long Beach could not perform ER Exchange;<br />

(2) Ships from San Francisco contained low salinity waters, especially during the 1998 El Nino<br />

year, creating a possible physiological stress for organisms when exposed to exchange (not<br />

present at the other ports);<br />

(3) Ships from Puget Sound were not able to complete as many exchanges during the short voyage<br />

duration, limiting the total exchange volume to 100% or 200% (instead <strong>of</strong> the 300% possible<br />

for the longer voyages from other source ports).<br />

For all experiments on all 8 vessels, we have measured the effect <strong>of</strong> at least one full (100%)<br />

exchange for the exchange methods and tracers indicated in Table 5.1. In addition, for the majority<br />

<strong>of</strong> vessels we have also measured the effect <strong>of</strong> multiple exchange events.<br />

Table 5.1 also indicates the number <strong>of</strong> samples taken for each voyage and the status <strong>of</strong><br />

these samples. The analysis for physical tracers is actually twice the number shown, as the same<br />

sample is used for analysis <strong>of</strong> rhodamine and microspheres.<br />

Although the samples are now at various stages <strong>of</strong> analysis (Table 5.1), our initial<br />

analyses suggest a significant difference between ER and FT exchange in the reduction <strong>of</strong><br />

rhodamine dye. For example, Figure 5.1 shows the average change in concentration <strong>of</strong><br />

rhodamine for the respective treatments across multiple exchange events in 1998. The<br />

concentration <strong>of</strong> dye was reduced by 80 and 99% (for FT and ER exchange, respectively)<br />

compared to the initial concentrations. Interestingly, the concentration <strong>of</strong> dye in the control tank<br />

increased between the first and second measures, and this change is attributed to inadequate<br />

mixing at time T o for some ships (as evidenced by vertical stratification that was present in our<br />

raw data). Similar patterns exist for the rhodamine data collected in 1999.<br />

Despite the rhodamine results, demonstrating relatively high levels <strong>of</strong> exchange, it is<br />

premature to draw conclusions about the efficacy <strong>of</strong> exchange to remove organisms. We are<br />

now analyzing the samples to measure removal rates for both biological and physical tracers<br />

(i.e., microspheres), and we expect to complete these analyses by June 2000. At present, it is<br />

evident that some taxa declined in abundance (following exchange) to the same extent as<br />

rhodamine dye. Figure 5.2 shows a decline in the abundance <strong>of</strong> Limnoithona sp. for both ER and<br />

FT exchange on one vessel. The density actually increased in the control tank, and this was due<br />

most likely to growth <strong>of</strong> copepodite stages instead <strong>of</strong> mixing. Changes in the abundance <strong>of</strong> other<br />

taxa appear to be much less striking, although analysis <strong>of</strong> the overall pattern (including variation<br />

among taxa) must await completion <strong>of</strong> all quantitative counts and taxonomic verification.


Chapt 5 Ballast <strong>Water</strong> Exchange Experiments, page 5- 7<br />

Figure 5.1. Effect <strong>of</strong> ballast water exchange on rhodamine dye concentrations. Data are from exchange<br />

experiments conducted in the ballast tanks <strong>of</strong> oil tankers arriving to Port Valdez. Shown for 1998 voyages (n=4<br />

vessels) is the mean percent change in rhodamine dye concentration (compared to the initial time measure) at each<br />

<strong>of</strong> four successive time points for 3 different treatments: Control – ballast tanks that did not undergo exchange; ER<br />

Exchange – ballast tanks that underwent Empty-Refill Exchange; FT Exchange – ballast tanks that underwent Flow-<br />

Through Exchange. See text for experimental design.<br />

200%<br />

CONTROL<br />

ER EXCHANGE<br />

FT EXCHANGE<br />

DYE REMAINING<br />

150%<br />

100%<br />

50%<br />

0%<br />

T0 T1 T2 T3 Tf<br />

TIME POINT<br />

Figure 5.2. Effect <strong>of</strong> ballast water exchange on Limnoithona sp.density. Data are from exchange experiments<br />

conducted in the ballast tanks <strong>of</strong> an oil tanker arriving to Port Valdez. Shown for one voyage is the mean density <strong>of</strong><br />

the copepod SPECIES at each <strong>of</strong> five successive time points for 3 different treatments: Control – ballast tanks that<br />

did not undergo exchange; ER Exchange – ballast tanks that underwent Empty-Refill Exchange; FT Exchange –<br />

ballast tanks that underwent Flow-Through Exchange. See text for experimental design.<br />

DENSITY (#m³)<br />

4000<br />

3000<br />

2000<br />

1000<br />

TREATMENT<br />

CONTROL<br />

ER EXCHANGE<br />

FT EXCHANGE<br />

0<br />

T0 T1 T2 T3 Tf<br />

TIME POINT<br />

Changes in the density <strong>of</strong> entrained biota within the control tanks <strong>of</strong> each vessel will<br />

measure survivorship over time (i.e., during transit). This will allow us to test our hypothesis<br />

(above) about the effect <strong>of</strong> voyage duration on survivorship, and whether differences among port<br />

sources are due to such time-dependent survivorship.<br />

5D. Discussion<br />

This is the first study to compare the relative efficiency <strong>of</strong> exchange methods (ER and FT<br />

exchange) for any vessel type or taxon.


Chapt 5 Ballast <strong>Water</strong> Exchange Experiments, page 5- 8<br />

Quantitative and experimental analyses <strong>of</strong> ballast water exchange have been very limited to<br />

date, and these can be classified into 3 general types:<br />

1. Comparison <strong>of</strong> ballast water in ships that have or have not exchanged ballast water.<br />

These data indicate that, compared to ships that have not conducted mid-ocean ballast water<br />

exchange, ships with exchanged ballast water have reduced abundance <strong>of</strong> plankton. However,<br />

with this approach, it is not possible to (a) compare directly methods <strong>of</strong> exchange (FT vs. ER) ,<br />

(b) control for initial plankton densities or the percentage <strong>of</strong> water exchanged (as below). Thus,<br />

the data are highly variable and interpretation is limited (e.g., Smith et al. 1996).<br />

2. Comparison <strong>of</strong> ballast water in tanks <strong>of</strong> the same ship that have not exchanged ballast<br />

water, with measurements made only after exchange is complete and upon arrival to port.<br />

These data suggest a reduction <strong>of</strong> roughly 90% occurred, but interpretation is also limited with<br />

this design (Ruiz and Hines 1997; see below). Initial variation among tanks can be<br />

considerable, depending upon the timing (e.g., day vs. night) and sequence <strong>of</strong> ballasting, which<br />

creates potentially large differences among tanks independent <strong>of</strong> exchange treatment.<br />

Furthermore, it is not possible to compare efficiency between methods <strong>of</strong> exchange, or for<br />

multiples <strong>of</strong> exchange, because ships usually only perform one method and volume <strong>of</strong><br />

exchange.<br />

3. Comparison <strong>of</strong> ballast water in tanks <strong>of</strong> the same ship before and after exchange <strong>of</strong> ballast<br />

water, with measurements made on board ship at various stages <strong>of</strong> the exchange process.<br />

These data provide a clear measure <strong>of</strong> efficiency within a single tank, and we have conducted<br />

this analysis on approximately 5 military vessels and 1 commercial bulk carrier (Ruiz et al.<br />

1999, Wohnam et al. 1996). However, the sample size is small (and taxa included in ships to<br />

date are limited), and comparison between exchange methods or multiples <strong>of</strong> exchange (on the<br />

same ship) has not been included or possible to date.<br />

The 1997 Pilot Study provided initial data comparing the end result <strong>of</strong> FT Exchange (300%<br />

and 100%) on plankton abundance. These data suggested that approximately 70- 90% <strong>of</strong> coastal<br />

plankton was removed by FT exchange, compared to control tanks from the same source.<br />

Interestingly, it was not clear that an increased level <strong>of</strong> exchange (100 vs. 300 %) produced a<br />

parallel reduction in key taxonomic groups.<br />

In both the Pilot Study and the current study (Chapter 3), it was evident that abundance <strong>of</strong><br />

coastal organisms was 10-100 fold lower in tankers from foreign ports (that underwent ballast<br />

water exchange) compared to domestic arrivals (that do not undergo exchange). Although this<br />

difference may result from the exchange, it is confounded by differences in the initial<br />

concentrations (i.e., source ports) and voyage duration that can also have a strong influence.<br />

The results <strong>of</strong> this study – the most comprehensive and rigorous to date - will<br />

significantly advance our understanding <strong>of</strong> the strengths and limitations <strong>of</strong> ballast water<br />

exchange, providing multiple quantitative measures for the two exchange methods, both for oil<br />

tankers specifically but for commercial ships more generally.


Chapt 5 Ballast <strong>Water</strong> Exchange Experiments, page 5- 9<br />

Importantly, when completed, our study will also provide a set <strong>of</strong> standards for<br />

evaluating ballast water management in two ways. First, we have developed and tested a<br />

standard set <strong>of</strong> assays to measure exchange efficiency across vessel types, vessel tanks, and<br />

under various conditions. This will be useful in comparing efficiency among studies. Second,<br />

the results obtained by this and future studies will provide a benchmark against which to assess<br />

the efficacy <strong>of</strong> emerging technologies.<br />

5E. References<br />

Carlton, J.T. and J.B. Geller. 1993. Ecological roulette: The global transport <strong>of</strong> nonindigenous<br />

marine organisms. Science 261: 78-82.<br />

Dickman, M. and F. Zhang. 1999. Mid-ocean exchange <strong>of</strong> container vessel ballast water. 2:<br />

Effects <strong>of</strong> vessel type in the transport <strong>of</strong> diatoms and din<strong>of</strong>lagellates from Manzanillo, Mexico,<br />

to Hong Kong, China. Mar. Ecol. Prog. Ser. 176: 253-262.<br />

Hallegraeff, G.M. 1998. Transport <strong>of</strong> toxic din<strong>of</strong>lagellates via ships’ ballast water: bioeconomic<br />

risk assessment and efficacy <strong>of</strong> possible ballast water management strategies. Mar. Ecol. Prog.<br />

Ser. 168:297-309.<br />

National Research Council. 1996. Stemming the Tide: Controlling Introductions <strong>of</strong><br />

Nonindigenous Species by Ships’ Ballast <strong>Water</strong>. National Academy Press, Washington, D.C.<br />

Ruiz, G.M. and A.H. Hines. 1997. Patterns <strong>of</strong> nonindigenous species transfer and invasion in<br />

Prince William Sound, Alaska: Pilot Study. Report Submitted to the Prince William Sound<br />

Citizens’ Advisory Council. 80pp.<br />

Ruiz, G.M., L. S. Godwin, J. T<strong>of</strong>t, L.D. Smith, A.H. Hines and J.T. Carlton. 1999. Ballast water<br />

transfer and management by U.S. Navy vessels. Final Report to the U.S. Dept. <strong>of</strong> Defense. 24pp.<br />

Smith, L.D., M.J. Wonham, L.D. McCann, D.M. Reid, G.M. Ruiz and J.T. Carlton. 1996.<br />

<strong>Biological</strong> invasions by nonindigenous species in United States waters: Quantifying the role <strong>of</strong><br />

ballast water and sediments. Parts I and II. Final report to the U.S. Coast Guard and the U.S.<br />

Department <strong>of</strong> Transportation.<br />

Wonham, M.J., W.C. Walton, A.M. Frese and G.M. Ruiz. 1996. Transoceanic transport <strong>of</strong><br />

ballast water: <strong>Biological</strong> and physical dynamics <strong>of</strong> ballasted communities and the effectiveness<br />

<strong>of</strong> mid-ocean exchange. Final Report to the U.S. Fish & Wildlife Service and the Compton<br />

Foundation.<br />

Zhang, F. and M. Dickman. 1999. Mid-ocean exchange <strong>of</strong> container vessel ballast water. 1:<br />

Seasonal factors affecting the transport <strong>of</strong> harmful diatoms and din<strong>of</strong>lagellates. Mar. Ecol. Prog.<br />

Ser. 176: 243-251.


Chapt 6. Organisms in Sediments <strong>of</strong> Tanker Ballast Tanks, page 6- 1<br />

Chapter 6. Organisms in Sediments <strong>of</strong> Tanker Ballast Tanks<br />

Anson H. Hines, Smithsonian Environmental Research Center<br />

Gregory M. Ruiz, Smithsonian Environmental Research Center<br />

6A. Purpose<br />

At certain times and source ports, appreciable quantities <strong>of</strong> bottom sediment are taken up<br />

by tankers during ballasting. The entrained sediment potentially includes bottom dwelling<br />

organisms, which may be discharged and introduced into a receiving port (Smith et al. 1996).<br />

Few studies <strong>of</strong> such entrained sediment exist, but our samples <strong>of</strong> bulk carriers in Chesapeake Bay<br />

revealed that the bottoms <strong>of</strong> ballast tanks <strong>of</strong>ten hold a wide variety <strong>of</strong> large crabs, fish, shrimp, as<br />

well as many small organisms. To determine whether tankers arriving to Prince William Sound<br />

transported organisms associated with sediment in the bottoms <strong>of</strong> segregated ballast water tanks,<br />

we sampled a subset <strong>of</strong> ships traveling between Port Valdez and west coast ports, and between<br />

west coast ports and Asian ports.<br />

6B. Methods<br />

During 1998-99 we supplied 13 ships with “sediment sampling kits”, which we<br />

developed in cooperation with the shipping agents. The ships’ mates collected core samples and<br />

evident organisms in the sediment during routine cleaning operations, which usually occurred on<br />

voyages from Valdez to west coast ports, when ballast tanks were empty and open for<br />

maintenance, and in Asian ports, when ships were in dry-dock. The samples were preserved in<br />

10% formaldehyde sea water, labeled and returned to Valdez. Samples were then sent to the<br />

SERC lab in Maryland for processing and identification. Subsamples <strong>of</strong> whole sediment were<br />

sent to Mary McGann in USGS, Menlo Park for identification <strong>of</strong> foramenifera. Remaining<br />

sediment was washed through a 0.5 mm mesh sieve and identified under a dissecting<br />

microscope.<br />

6C. Results<br />

Sediment samples <strong>of</strong> the 13 tankers contained a diverse array <strong>of</strong> taxa, including fish,<br />

polychaete worms, mollusks, adult crabs and other crustaceans, cnidarians, and other<br />

invertebrates (Fig. 6.1,Tables 6.1, 6.2). The ships averaged 2.8 taxa per ship, ranging from 0-6<br />

taxa, with annelid worms occurring in about 90% <strong>of</strong> the ships. The number <strong>of</strong> individuals per<br />

sample varied widely from 1-147 individuals, with a mean <strong>of</strong> 47 individuals. Small crustaceans<br />

(particularly cumaceans) were the most abundant taxa, however polychaete worms were the most<br />

prevalent. The sediments also contained several species <strong>of</strong> Foraminfera, including Trochammina<br />

hadai, an NIS that has invaded many west coast ports and is very common in San Francisco Bay<br />

(McGann, pers. comm.), and which is reported from Prince William Sound in samples collected<br />

from deep sediments following the ExxonValdez oil spill. Organisms were abundant in<br />

sediments taken up in both San Francisco Bay (Benicia) and in Long Beach, where the ship<br />

intakes are near the port bottom. Ships sampled in dry dock in Asia tended to have few<br />

organisms, perhaps as a result <strong>of</strong> longer voyage time across the Pacific. However, the diversity<br />

<strong>of</strong> higher taxonomic groups present in sediments <strong>of</strong> ballast tanks did not show any obvious<br />

pattern by source port.


Chapt 6. Organisms in Sediments <strong>of</strong> Tanker Ballast Tanks, page 6- 2<br />

Table 6.1. Taxa Recovered From Ballast Tank Sediments <strong>of</strong> 12 Tankers.<br />

Foraminifera Annelida Mollusca Crustacea Chordata Other inverts.<br />

Ammonia hadai Capitellidae Mytilidae Alpheidae Engraulidae Bryozoa<br />

Bulimina sp. Nereis sp. Nudibranchia Amphipoda Sciaenidae Sipuncula<br />

Elphidium sp. Oligochaeta Balanus balanoides Turbellaria<br />

Globigerina sp. Spionidae Calanus<br />

Haglophragmoides sp. Syllidae Canuellidae<br />

Jadammina macrescens Caridea<br />

Lagena sp. Cirripedia<br />

Rosalina globularis Crangonidae<br />

Trochammina hadai Cumacea<br />

Trochammina inflata Grapsidae<br />

Trochammina pacifica Harpacticoida<br />

Hyperiidae<br />

Majidae<br />

Ostracoda<br />

Tanaidacea<br />

Table 6.2. Presence/Absence <strong>of</strong> Taxa in Ballast Tank Sediment Samples Presented by Source Region(s).<br />

Source(s) Diatomacea Foraminifera Annelida Mollusca Crustacea Chordata Other Inverts n<br />

Korea P P P A A A A 1<br />

LB & Korea P P P P P P P 2<br />

PS A A A P P A P 1<br />

PS & SF P P P P P P P 1<br />

SF A P P P P P P 6<br />

SF&China A A P A P A A 1


Chapt 6. Organisms in Sediments <strong>of</strong> Tanker Ballast Tanks, page 6- 3<br />

Figure 6.1. Prevalence (A) and numbers (B) <strong>of</strong> organisms recovered from sediments <strong>of</strong> tanker ballast tanks.<br />

Bars indicate means for 12 tankers.<br />

A<br />

Cnidaria<br />

Chordata<br />

Diatomacea<br />

Other Inverts<br />

Foraminifera<br />

Mollusca<br />

Crustacea<br />

Annelida<br />

0 20 40 60 80<br />

PERCENT SHIPS<br />

n=12<br />

B<br />

Cnidaria<br />

Chordata<br />

Diatomacea<br />

Other Inverts<br />

Foraminifera<br />

Mollusca<br />

Annelida<br />

Crustacea<br />

NA<br />

NA<br />

0 20 40 60 80<br />

# OF ORGANISMS RECOVERED/SHIP<br />

6D. Conclusions<br />

Sediment that accumulated in the bottom <strong>of</strong> ballast tanks <strong>of</strong>ten contained organisms from<br />

a diverse array <strong>of</strong> taxa. Many <strong>of</strong> these were adults in full reproductive condition. At least one<br />

NIS (the foraminiferan Trochammina hadai) found in these samples appears to be established in<br />

Prince William Sound, although the current status <strong>of</strong> this invasion is not known (McGann, pers.<br />

comm. 1999).<br />

In future work, it would be valuable to sample sediment in ballast tanks that have<br />

undergone mid-ocean exchange. It is not clear if bottom-dwelling organisms will be affected by<br />

exchange in the same ways as planktonic organisms in the water column.<br />

6E. References<br />

McGann, M. 1999. Personal communication.<br />

Smith, L.D., M.J. Wonham, L.D. McCann, D.M. Reid, G.M. Ruiz and J.T. Carlton. 1996.<br />

<strong>Biological</strong> invasions by nonindigenous species in United States waters: Quantifying the role <strong>of</strong><br />

ballast water and sediments. Parts I and II. Final report to the U.S. Coast Guard and the U.S.<br />

Department <strong>of</strong> Transportation.


Chapt 7. Organisms Fouling Hulls and Sea Chests, page 7- 1<br />

Chapter 7. Organisms Fouling Hulls and Sea Chests <strong>of</strong> Tankers<br />

Anson H. Hines, Smithsonian Environmental Research Center<br />

Gregory M. Ruiz, Smithsonian Environmental Research Center<br />

7A. Purpose<br />

Historically, fouling organisms on ships have been a major source <strong>of</strong> introduced species<br />

(Carlton 1979a, 1979b, 1987, 1989). Modern anti-fouling paints and high ship speeds greatly<br />

reduce the amount <strong>of</strong> fouling today. However, fouling is <strong>of</strong>ten common in sea chests and at<br />

certain points on the bottom. We sampled tankers during routine maintenance in dry dock,<br />

selected to estimate the potential range <strong>of</strong> fouling and diversity <strong>of</strong> fouling organisms.<br />

7B. Methods<br />

We sampled the fouling communities <strong>of</strong> two ships in dry dock: the S/R Baytown (in San<br />

Francisco Bay), which had not been cleaned in dry dock for approximately 2 years; and the S/R<br />

Benicia (in Portland), which had been cleaned in dry dock within about 6 months. The S/R<br />

Baytown had remained within San Francisco Bay for several months without making an ocean<br />

voyage prior to haul out, providing time for further accumulation <strong>of</strong> fouling organisms.<br />

Representative patches <strong>of</strong> fouling communities were scraped from the bottoms <strong>of</strong> the ships<br />

within 6 hours <strong>of</strong> haul out and before any cleaning had commenced. The sea chests and strainers<br />

<strong>of</strong> the ambient water intakes were also sampled. All samples were preserved in 10%<br />

formaldehyde and returned to the laboratory for sorting and identification using a dissecting<br />

microscope.<br />

7C. Results<br />

The two ships exhibited divergent extremes in the quantity and diversity <strong>of</strong> organisms<br />

(Table 7.1). The ship that had not been in dry dock for approximately 2 years exhibited<br />

extensive fouling communities, with abundant mussels and associated worms, crustaceans, and<br />

sediments. At least one NIS for the west coast (the mussel Musculista senhousia) was identified<br />

specifically on this ship. In contrast, the ship that had been hauled recently had a relatively<br />

sparse number <strong>of</strong> organisms, with most <strong>of</strong> the hull completely clean <strong>of</strong> fouling communities, and<br />

only organisms present in the sea chest. However, even this ship had organisms that are NIS for<br />

the west coast (e.g., the striped bass Morone saxatilis) in its water intake strainers.<br />

7D. Conclusions<br />

We hypothesize that these two vessels represent the extremes in fouling communities,<br />

corresponding to the length <strong>of</strong> time since the last entry into dry dock for bottom cleaning.<br />

However, there are two other features that may contribute to these overall patterns. First, the S/R<br />

Baytown had been resident in San Francisco Bay for over 6 months, and may have developed an<br />

unusually rich fouling community. Second, the other vessel entered relatively fresh water <strong>of</strong> the<br />

Columbia River that may have had an adverse effect on the resident community <strong>of</strong> fouling<br />

organisms. To distinguish the effect <strong>of</strong> dry dock schedule on fouling community structure (from<br />

these other confounding variables), it would be valuable to sample more ships which differ in<br />

time since last haul out, but preferably sampled at the same dry dock to control for potential<br />

effects <strong>of</strong> different salinity. Nevertheless, both ships carried NIS, which indicates that this is an<br />

active mechanism <strong>of</strong> transport and introduction.


Chapt 7. Organisms Fouling Hulls and Sea Chests, page 7- 2<br />

Table 7.1. Organisms from hulls and sea chests <strong>of</strong> two oil tankers in dry dock (*=NIS).<br />

S/R Baytown<br />

S/R Benicia<br />

Algae<br />

Cnidaria<br />

Ulva sp . Garveia franciscana *<br />

Diatomacea<br />

Mollusca, Bivalvia<br />

Protozoa Mytlilus sp.<br />

Folliculina sp.<br />

Crustacea, Cirripedia<br />

Cnidaria Balanus sp.<br />

Cordylophora caspia *<br />

Crustacea, Amphipoda<br />

Garveia franciscana * Corophium sp.<br />

Nematoda<br />

Pisces<br />

Unidentified sp. Morone saxatlis *<br />

Nemertea Sardinopsis sagax<br />

Unidentified sp.<br />

Polychaeta<br />

Neries sp .<br />

Ophelidae, unidentified sp.<br />

Polydora sp.<br />

Mollusca, Bivalvia<br />

Musculista senhousia *<br />

Mytilus sp .<br />

Crustacea/Copepoda<br />

Cyclopoida, unidentified sp.<br />

Harpacticoida, unidentified sp.<br />

Crustacea/Amphipoda<br />

Corophium sp.<br />

Gammaridae, unidentified sp.<br />

Crustacea/Isopoda<br />

Unidentified sp.<br />

Crustacea/Brachyura<br />

Unidentified sp.<br />

Bryozoa<br />

Bowerbankia<br />

Membrenipora<br />

Victorella sp.<br />

7E. References<br />

Carlton, J.T. 1979a. History, biogeography, and ecology <strong>of</strong> the introduced marine and estuarine<br />

invertebrates <strong>of</strong> the Pacific coast <strong>of</strong> North America. Ph.D. Thesis, Univ. Calif., Davis. 904 pp.<br />

---. 1979b. Introduced invertebrates <strong>of</strong> San Francisco Bay. Pp. 427-444 in Conomos, T. J. (ed.),<br />

San Francisco Bay: The Urbanized Estuary. California Academy <strong>of</strong> Sciences, San Francisco.<br />

---. 1987. Patterns <strong>of</strong> transoceanic marine biological invasions in the Pacific Ocean. Bull. Mar.<br />

Sci. 41(2): 452-465.<br />

---. 1989. Man’s role in changing the face <strong>of</strong> the ocean: biological invasions and the implications<br />

for conservation <strong>of</strong> near-shore environments. Conserv. Biol. 3(3): 265-273.


Chapt 7. Organisms Fouling Hulls and Sea Chests, page 7- 3<br />

Table 7.1. Organisms from hulls and sea chests <strong>of</strong> two oil tankers in dry dock (* = NIS).<br />

S/R Baytown<br />

S/R Benicia<br />

Diatomacea<br />

Cnidaria<br />

Protozoa Garveia franciscana *<br />

Folliculina sp.<br />

Crustacea, Cirripedia<br />

Cnidaria<br />

Balanus sp.<br />

Garveia franciscana *<br />

Crustacea, Amphipoda<br />

Cordylophora caspia *<br />

Corophium sp.<br />

Hydroid – unident sp.<br />

Mollusca, Bivalvia<br />

Bryozoa<br />

Mytilus sp.<br />

Bowerbankia sp.<br />

Pisces<br />

Canopeum sp. Morone saxatilis *<br />

Victorella sp.<br />

Sardinopsis sagax<br />

Nemertea<br />

Unidentified sp.<br />

Nematoda<br />

Unidentified spp.<br />

Polychaeta<br />

Ophellidae, unidentified sp.<br />

Polydora sp.<br />

Nereis sp<br />

Crustacea/Copepoda<br />

Harpacticoida, unidentified sp.<br />

Cyclopoida, unidentified sp.<br />

Crustacea/Amphipoda<br />

Gammaridae, unidentified sp.<br />

Corophium sp.<br />

Crustacea/Isopoda<br />

Unidentified sp.<br />

Crustacea/Brachyura<br />

Unidentified sp.<br />

Mollusca, Bivalvia<br />

Musculista senhousia *<br />

Mytilus sp.<br />

Algae<br />

Ulva sp.


Chapt. 8. Summary <strong>of</strong> NIS, page 8- 1<br />

Chapter 8. Summary <strong>of</strong> NIS in Prince William Sound and Alaska<br />

Anson H. Hines, Smithsonian Environmental Research Center<br />

Gregory M. Ruiz, Smithsonian Environmental Research Center<br />

Paul W. F<strong>of</strong>on<strong>of</strong>f, Smithsonian Environmental Research Center<br />

8A. Purpose<br />

To summarize our knowledge <strong>of</strong> marine NIS in Prince William Sound specifically and<br />

Alaska generally, we extracted information obtained from the literature, our field surveys, focal<br />

taxonomic research by systematists, and analysis <strong>of</strong> existing specimens in museum and reference<br />

collections (see detailed reports in Chapt 9). Because prior ecological and systematic work in<br />

Alaska has not focused on NIS, we also wish to establish a baseline for the status <strong>of</strong> NIS in<br />

Alaskan waters, against which future introductions may be measured. We partitioned the species<br />

records into 5 categories:<br />

(1) Definite & probable NIS, along with particularly suspicious cryptogenic species;<br />

(2) Cryptogenic species;<br />

(3) New, undescribed species discovered by this study.<br />

(4) Species with range extensions into south central Alaska discovered by this study; and<br />

(5) Species that were reported/suspected as NIS, but which we dismissed upon further analysis.<br />

The sudden appearance <strong>of</strong> apparently new or undescribed species in an ecosystem is<br />

<strong>of</strong>ten a good indicator <strong>of</strong> a biological invasion. Similarly, analysis <strong>of</strong> species’ range extensions<br />

is an important tool in detecting NIS, which may be introduced from distant biogeographic<br />

provinces or from adjoining provinces. However, where the native biota is as poorly studied as<br />

in Alaska, it may be difficult to distinguish NIS from native species that are new to science, or<br />

from new records <strong>of</strong> species within their normal range. Discovery <strong>of</strong> undescribed species and<br />

range extensions needs to be evaluated in the context <strong>of</strong> other indicators <strong>of</strong> biological invasions,<br />

such as association with sites <strong>of</strong> human activities and particular transport mechanisms. Thus,<br />

designating species as native or NIS requires a series <strong>of</strong> graded criteria (see Methods below), but<br />

the origin <strong>of</strong> many species may remain unknown, i.e., “cryptogenic”. These cryptogenic species<br />

may be further categorized into species that have particular, suspicious attributes in some<br />

criteria, or species that have not received adequate research to evaluate their origin. In other<br />

cases, species initially may be designated or suspected as NIS, but further consideration by<br />

experts may refute the initial concern.<br />

8B. Methods<br />

The graded criteria (derived from J.T. Carlton, e.g., Carlton 1979a, Chapman & Carlton<br />

1991) used to determine whether each species in our database is introduced, native, or<br />

cryptogenic are described below. "Cryptogenic species" cannot be identified clearly as native or<br />

introduced, and thus have unknown origin (Carlton 1996). In Alaska, the marine biota in many<br />

groups have received little systematic and biogeographic analysis, and a large portion <strong>of</strong> species<br />

in these groups may be cryptogenic in origin due to lack <strong>of</strong> study without particular suspicions <strong>of</strong><br />

invasive characteristics. Further discussion <strong>of</strong> criteria for identifying species as introductions are<br />

given in Chapman (1988), Chapman and Carlton (1991) and Eno (1996). Often a single criterion<br />

is not sufficient to designate a species as being introduced, but combinations <strong>of</strong> several factors


Chapt. 8. Summary <strong>of</strong> NIS, page 8- 2<br />

increase the probability <strong>of</strong> an accurate reconstruction <strong>of</strong> introductions and invasions. In several<br />

cases, we have indicated cryptogenic species that have some suspicious characteristics <strong>of</strong> NIS.<br />

• Paleontological - NIS are absent from fossil record even though they are present in other<br />

locations; native species are found locally as recent fossils; cryptogentic species are not in the<br />

local fossil record, but they are not reliably fossilized generally.<br />

• Archeological - NIS are absent from shell middens and other archeological deposits; native<br />

species are in local deposits; cryptogenic species would not be expected to be found in<br />

archeological deposits.<br />

• Historical - NIS are not recorded by direct observation at early periods, especially by trained<br />

naturalists, but suddenly appear where trained observers did not find them previously; native<br />

species are recorded in the earliest observations <strong>of</strong> trained observers; cryptogenic species are<br />

species that were not studied by early trained observers.<br />

• Biogeographic - NIS exhibit grossly disjunct patterns <strong>of</strong> distribution (we took care to<br />

evaluate artifacts <strong>of</strong> the distribution <strong>of</strong> biologists/taxonomists); native species have<br />

continuous geographic ranges which include Alaska/Prince William Sound or other high<br />

latitudes; cryptogenic species have poorly known distributions or "cosmopolitan"<br />

distributions.<br />

• Ecological - NIS have habitats in close association with other NIS (co-evolved species;<br />

specialized predator-prey, commensal or host-parasite relations); native species are closely<br />

associated with other native species; cryptogenic species are more generalized, lacking close,<br />

specialized association with other species.<br />

• Dispersal Mechanisms - NIS presence cannot be plausibly explained by natural dispersal<br />

mechanisms and have documented human-mediated mechanisms which could effect their<br />

distributions; native species have natural dispersal mechanisms and lack known<br />

human-mediated mechanisms <strong>of</strong> introduction; cryptogenic species have both natural and<br />

human-mediated mechanisms <strong>of</strong> dispersal that could account for their distribution.<br />

• Evolutionary/Genetic - NIS have isozyme or DNA frequencies which match distant proposed<br />

source populations and are significantly different from adjacent natural populations; native<br />

species have population genetics which blend with adjacent natural populations; cryptogenic<br />

species have not been studied with molecular techniques.<br />

We also researched all published and anecdotal reports <strong>of</strong> NIS or range extensions <strong>of</strong> species that<br />

we were able to find in the scientific and informed popular literature for the region. We use<br />

these reports interactively with our field and museum work, both to direct our field surveys and<br />

re-examination <strong>of</strong> existing collections, and to determine the history <strong>of</strong> suspicious species that we<br />

collected in the field.<br />

8C. Results<br />

A diverse array <strong>of</strong> 24 species <strong>of</strong> plants and animals has been introduced into Alaskan<br />

waters, with 15 <strong>of</strong> these species being recorded in Prince William Sound (Table 8.1; see also<br />

Species Notes below). Of these definite/probableNIS, we collected 12 species in our Focal<br />

Taxonomic Analyses (Chapt 9), including 5 species <strong>of</strong> algae (Ceramium sinicola, Croodactylon<br />

ramosum, Fucus cottoni, Macrocystis integrifolia, Codium fragile tomentosoides), 1 species <strong>of</strong><br />

sponge (Cliona thosina), 1 hydroid at Homer (Garveia franciscana),1 polychaete worm<br />

(Heteromastus filiformis), 2 molluscs (Mya arenaria, Crassostrea gigas), 1 bryozoan<br />

(Schizoporella unicornis), and 1 tunicate (Botrylloides violaceus). Our findings include 7 “first


Chapt. 8. Summary <strong>of</strong> NIS, page 8- 3<br />

TABLE 8.1 Definite/Probable NIS for Alaska<br />

* Found by this project<br />

Species Common Name Probable AK Regions Date 1st Invasion Population Ecological References<br />

Region <strong>of</strong> Origin Record Status Status Impacts<br />

Rhodophyta<br />

* Ceramium sinicola a red alga NE Pacific (CA) Prince William Sound 1998 Probable Established Fouling Hansen 1998<br />

* Chroodactylon ramosum a red alga NW Pacific Prince William Sound 1998 Probable Established Fouling Hansen 1998<br />

Phaeophyta<br />

* Fucus cottoni (=muscoides)<br />

Probable Established Unknown Hansen 1998; South and<br />

a rockweed NE Atlantic Prince William Sound;<br />

Kenai Peninsula<br />

Tittley 1986<br />

* Macrocystis integrifolia a kelp NE Pacific (SE AK) Prince William Sound 1979 Definite<br />

Not<br />

reproducing NIS vector Hansen 1998<br />

* Microspongium globosum a brown alga NW Pacific Prince William Sound 1998 Probable Established Fouling Hansen 1998<br />

Sargassum muticum<br />

Chlorophyta<br />

Japanese brown<br />

alga<br />

NW Pacific SE Alaska


Chapt. 8. Summary <strong>of</strong> NIS, page 8- 4<br />

TABLE 8.1 continued<br />

Species Common Name Probable AK Regions Date 1st Invasion Population Ecological References<br />

Region <strong>of</strong> Origin Record Status Status Impacts<br />

Chordata- Ascidiacea<br />

* Botrylloides violaceus (=Botrylus<br />

aurantius )<br />

a tunicate NW Pacific Prince William Sound 1999 Definite Established Fouling G.Lambert 1999pers.comm.<br />

Chordata-Osteichthyes<br />

Alosa sapidissima American Shad NW Atlantic N to Cook Inlet; Kodiak I. 1896 Definite Migrant Predator on Chapman 1942; McPhail<br />

salmonid<br />

fry<br />

and Lindsey 1986; USGS<br />

1999<br />

Dallia pectoralis (FW) Alaska Blackfish Arctic Slope (FW) Anchorage area (FW) 1950s Definite Established Predator on Morrow 1980; USGS 1999<br />

salmonid<br />

fry<br />

Esox lucius (FW) Northern Pike Northern N.<br />

America (FW)<br />

Salmo salar Atlantic Salmon N Atlantic<br />

(Anadromous)<br />

Salvelinus fontinalis (FW) Brook Trout Eastern N. America<br />

(FW)<br />

Anchorage area (FW) 1970s Definite Established Predator on<br />

salmonid<br />

fry<br />

SE Alaska-Prince William<br />

Sound<br />

1990 Definite Unknown Predator/<br />

competitor<br />

<strong>of</strong> salmonids<br />

SE Alaska 1920 Definite Established Predator on<br />

salmonid<br />

fry<br />

Morrow 1980; USGS 1999<br />

Wing et al. 1992; Freeman<br />

1998 pers. comm.; USGS<br />

1999<br />

Morrow 1980; Alaska<br />

Department <strong>of</strong> Fish and<br />

Game 1994; USGS 1999


Chapt. 8. Summary <strong>of</strong> NIS, page 8- 5<br />

records” for NIS in the region. Our Rapid Community Assessment (Chapt 9) found 1 NIS<br />

species (the s<strong>of</strong>t-shelled clam Mya arenaria ) to be widely distributed in intertidal sediments<br />

throughout Prince William Sound and the Kenai Peninsula. Two species (the oyster Crassostrea<br />

gigas, and the kelp Macrocystis integrifolia) are not established as self-sustaining, reproducing<br />

populations within the Sound; but these aquaculture introductions are being sustained by ongoing<br />

inputs that serve as a potentially important mechanism <strong>of</strong> transport for many other<br />

associated species. Further notes on each <strong>of</strong> these NIS are provided below.<br />

The literature reports 11 other NIS species, including 1 algal species (Sargassum<br />

muticum), 1 marsh plant (Cotula coronopifolia), 1 foraminiferan (Trochammina hadai), an<br />

amphipod crustacean (Jassa marmorata), 1 bryozoan (Cryptosula pallasiana), 1 brittle star<br />

(Ophiothrix koreana), and 5 species <strong>of</strong> fish (Alosa sapidissima, Dallia pectoralis, Esox lucius,<br />

Salmo salar, Salvelinus fontinalis). Several <strong>of</strong> these fish species were intentionally introduced in<br />

fresh water to augment fisheries, and we have included them here because they potentially have<br />

important impacts on native salmonid species in the region. Further notes on each <strong>of</strong> these NIS<br />

are provided below.<br />

In addition, we consider two cryptogenic species to be particularly suspicious as NIS,<br />

because <strong>of</strong> their new appearance at harbor areas (i.e., Homer, Cordova)(Table 8.2). These<br />

species include a sea star (Asterias amurensis) that is native to Alaska in the Bering Sea, but<br />

which has a history <strong>of</strong> invading other regions (probably via ballast water transport), and which<br />

appears to have suddenly extended its range to Homer in south central Alaska. Despite surveys<br />

<strong>of</strong> the area by good naturalists, this large animal has not been recorded at Homer/Katchemak Bay<br />

until now. We also discovered a new, undescribed species <strong>of</strong> ascidian (Dispalia sp. nov.) in the<br />

fouling communities <strong>of</strong> Homer and Cordova, but it was not present at other locations with rich<br />

fouling communities but lacking intense boat/ship traffic. Further notes on each <strong>of</strong> these<br />

suspicious species are provided below.<br />

A large portion <strong>of</strong> Alaskan marine species is cryptogenic in origin due to inadequate<br />

biogeographic and taxonomic study. However, many cryptogenic species also either exhibit wide<br />

distributions that may reflect global spread by early shipping traffic (Carlton 1996) or have other<br />

suspcicious traits <strong>of</strong> NIS (Table 8.3). During this project we collected at least 24 such species in<br />

Prince William Sound, and identified at least 5 others found elsewhere in Alaska.<br />

During our study we discovered several apparently new/undescribed species (Table 8.4)<br />

and documented range extensions for many other species. (Table 8.5), which also highlights the<br />

need for more analysis <strong>of</strong> Alaskan marine biodiversity. We found specimens <strong>of</strong> 10 apparently<br />

new/undescribed species in Prince William Sound, including 1 brown alga, 6 polychaete worms,<br />

2 molluscs, and 1 tunicate (Table 8.4). Formal species description <strong>of</strong> the tunicate species<br />

(Distaplia sp. nov.) is proceeding. We documented range extensions or first records for Prince<br />

William Sound or Cook Inlet (although some are known in the Bering Sea and further north) for<br />

74 species (4 algae, 11 hydrozoan cnidarians, 2 ctenophores, 24 polychaete worms, 20 molluscs,<br />

7 crustaceans, 2 bryozoans, 1 echinoderm, 2 tunicates, and 1 fish) (Table 8.5).


Chapt. 8. Summary <strong>of</strong> NIS, page 8- 6<br />

TABLE 8.2 Highly Suspicious Cryptogenic Species<br />

* Found by this project<br />

Species Common Name Probable AK Regions Date 1st Invasion Population Ecological References<br />

Region <strong>of</strong> Origin Record Status Status Impacts<br />

Echinodermata - Asteroidea<br />

* Asterias amurensis<br />

Asian Sea Star<br />

NW Pacific; Bering<br />

Sea<br />

Homer Spit 1999 Suspicious<br />

Range<br />

extension<br />

Established<br />

Predator on Baranova 1976; Ward and<br />

molluscs & Andrew 1995; Foster et al.<br />

other inverts 1999 (Chapt 9, this report)<br />

Chordata - Ascidiacea<br />

* Distaplia sp. nov.<br />

a tunicate unknown Homer, Prince William<br />

Sound (Cordova)<br />

1998 Suspicious<br />

New<br />

Established Fouling G.Lambert 1999 pers. comm.


Chapt. 8. Summary <strong>of</strong> NIS, page 8- 7<br />

TABLE 8.3 Examples <strong>of</strong> Cryptogenic Species<br />

Species Common Name Probable AK Regions Date 1st Invasion Population Ecological References<br />

Region <strong>of</strong> Origin Record Status Status Impacts<br />

Rhodophyta<br />

Porphyra miniata a red alga Prince William Sound 1998 Cryptogenic Established Unknown Hansen 1998<br />

Phaeophyta<br />

Demaraeaea attenuata a brown alga NW Pacific Prince William Sound 1998 Cryptogenic Established Unknown Hansen 1998<br />

Punctaria latifolia NE Pacific Prince William Sound 1998 Range<br />

Hansen 1998<br />

extension<br />

Punctaria plantaginea a brown alga Prince William Sound 1998 Cryptogenic Established Unknown Hansen 1998<br />

Heterokontophyta-Xanthophycaeae<br />

Vaucheria longicaulis a golden-brown alga NE Pacific Prince William Sound 1998 Range<br />

Hansen 1998<br />

extension,<br />

overlooked<br />

Chlorophyta<br />

Blidingia marginata a green alga NE Pacific Prince William Sound 1998 Cryptogenic Established Unknown Hansen 1998<br />

Caposiphon fulvescens a green alga NE Pacific Prince William Sound 1998 Cryptogenic Established Unknown Hansen 1998<br />

Halochlorococcum moorei a green alga NE Pacific Prince William Sound 1998 Cryptogenic Established Unknown Hansen 1998<br />

Kornmannia leptoderma non zostericola a green alga NE Pacific Prince William Sound 1998 Cryptogenic Established Unknown Hansen 1998<br />

Angiospermophyta<br />

Atriplex patula (=A. p. var. littoralis) Orach; Spearscale Eurasia SE Alaska 1883 Cryptogenic Established Unknown Meehan 1884; Hulten 1968<br />

Atriplex prostrata (=A. patula var. Halberd-Leaved Orach Eurasia SE Alaska Cryptogenic Established Unknown Hulten 1968<br />

hastata)<br />

Cnidaria<br />

Protohydra sp. a worm-like hydroid Cosmopolitan<br />

(CA-BC )<br />

Prince William Sound Cryptogenic Established Unknown Kozl<strong>of</strong>f 1987; Foster 1999 pers.<br />

comm.; UAF collections<br />

Annelida- Polychaeta<br />

Barantolla (americana species complex) a capitellid polychaete Circumboreal Prince William Sound 1988 Cryptogenic Established Unknown Kozl<strong>of</strong>f 1987; Kudenov 1998,<br />

pers. comm.<br />

Amphitrite (cirrata species complex) a terebellid polychaete Circumboreal Prince William Sound 1998 Cryptogenic Established Unknown Kozl<strong>of</strong>f 1987; Kudenov 1998,<br />

pers. comm.<br />

Capitella (capitata species complex) a capitellid polychaete Cosmopolitan Prince William Sound 1980 Cryptogenic Established Unknown Jewett 1998; Cohen and Carlton<br />

1995; Kudenov 1998, pers.<br />

comm.<br />

Decamastus sp. a capitellid polychaete Cosmopolitan<br />

(WA-BC)<br />

Prince William Sound 1998 Cryptogenic Established Unknown Jewett 1998; Kozl<strong>of</strong>f 1987; Cohen<br />

and Carlton 1995<br />

Eteone (longa species complex) a phyllodocid polychaete Circumboreal Prince William Sound 1980 Cryptogenic Established Unknown Pettibone 1963; Kozl<strong>of</strong>f 1987;<br />

Kudenov 1998, pers. comm.<br />

Eumida (sanguinea species complex) a phyllodocid polychaete Circumboreal Prince William Sound 1998 Cryptogenic Established Unknown Kozl<strong>of</strong>f 1987; Kudenov 1998,<br />

pers. comm.<br />

Harmathoe (imbricata species complex) a polynoid polychaete Circumboreal Prince William Sound 1980 Cryptogenic Established Unknown Kozl<strong>of</strong>f 1987; Cohen and Carlton<br />

1995; Kudenov 1998, pers.<br />

comm.<br />

Mediomastus sp. a capitellid polychaete Cosmopolitan Prince William Sound 1988 Cryptogenic Established Unknown [Jewett 1998]; Cohen and Carlton<br />

1995<br />

Pholoe (minuta species complex) a sigalionid polychaete Circumboreal Prince William Sound 1979 Cryptogenic Established Unknown Jewett 1998; Cohen and Carlton<br />

1995; Kudenov 1998, pers.<br />

comm.<br />

Polydora quadrilobata a spionid polychaete NE Pacific<br />

(British<br />

Columbia)<br />

Prince William Sound Cryptogenic Established Unknown Kozl<strong>of</strong>f 1987; Foster 1999 pers.<br />

comm.; UAF collections


Chapt. 8. Summary <strong>of</strong> NIS, page 8- 8<br />

TABLE 8.3 continued<br />

Species Common Name Probable AK Regions Date 1st Invasion Population Ecological References<br />

Region <strong>of</strong> Origin Record Status Status Impacts<br />

Crustacea- Copepoda<br />

Leimia vaga a harpactacoid copepod NW Atlantic Prince William Sound 1999 Cryptogenic Established Unknown Cordell 1999 pers. comm.<br />

Mollusca- Bivalvia<br />

Macoma balthica Baltic Clam Northern<br />

oceans, NW<br />

Atlantic cryptic<br />

Bryozoa<br />

Alcyonidium "polynoum" or "mytili" a bryozoan Unknown<br />

(Pacific, NW<br />

Atlantic)<br />

Alaska Pacific coast<br />

before<br />

1924<br />

Cryptogenic Established Likely Carlton 1979; Meehan et al. 1989;<br />

Cohen & Carlton 1995<br />

Kachemak Bay Cryptogenic Established Unknown Carlton 1979; Cohen & Carlton<br />

1995; Winston 1999 pers. comm.<br />

Callopora lineata a bryozoan Unknown Prince William Sound Cryptogenic Established Unknown Foster 1999 pers. comm.;<br />

Winston 1999 pers. comm.<br />

Celleporella hyalina a bryozoan Unknown Resurrection Bay Cryptogenic Established Unknown Foster 1999 pers. comm.;<br />

Winston 1999 pers. comm.<br />

Cellepora craticula a bryozoan Unknown Prince William Sound Cryptogenic Established Unknown Foster 1999 pers. comm.;<br />

Winston 1999 pers. comm.<br />

Cribilina corbicula a bryozoan Unknown Prince William Sound Cryptogenic Established Unknown Foster 1999 pers. comm.;<br />

Winston 1999 pers. comm.<br />

Parasmittina trispinosa a bryozoan Unknown Prince William Sound Cryptogenic Established Unknown Foster 1999 pers. comm.;<br />

Winston 1999 pers. comm.<br />

TABLE 8.4 New or Undescribed Species<br />

Species Common Name Probable AK Regions Date 1st Invasion References<br />

Region <strong>of</strong> Origin Record Status<br />

Phaeophyta<br />

Coilodesme n. sp. a brown alga NE Pacific Prince William Sound 1998 New species Hansen 1998<br />

Annelida- Polychaeta<br />

Eumida sp. a phyllodocid polychaete Unknown Prince William Sound 1998 undescribed species Kuden<strong>of</strong>f 1998 pers. comm.<br />

Exogone sp. a syllid polychaete Unknown Prince William Sound 1998 undescribed species Kuden<strong>of</strong>f 1998 pers. comm.<br />

Glycera sp. a glycerid polychaete Unknown Prince William Sound 1998 undescribed species Kuden<strong>of</strong>f 1998 pers. comm.<br />

Nephtys sp. a nephtyid polychaete Unknown Prince William Sound 1998 undescribed species Kuden<strong>of</strong>f 1998 pers. comm.<br />

Polygordius sp. an archiannelid polychaete Unknown Prince William Sound 1998 undescribed species Foster 1999 pers. comm.;<br />

UAF collections<br />

Scolopos sp. an orbiniid polychaete Unknown Prince William Sound 1998 undescribed species Kuden<strong>of</strong>f 1998 pers. comm.<br />

Mollusca -<br />

Gastropoda<br />

*Adalaria sp 1. a nudibranch, Adalaria sp. 1 Unknown Prince William Sound 1999 undescribed species Goddard 1999 pers. comm.<br />

<strong>of</strong> Behrens (1991)<br />

Adalaria sp. 2 a nudibranch Unknown Prince William Sound 1999 Unidentified species Goddard 1999 pers. comm.<br />

Chordata - Asciiacea<br />

*Diastaplia n. sp. a tunicate Unknown Homer, Prince William<br />

Sound (Cordova)<br />

1998 New species G. Lambert 1999 pers. comm.<br />

* This species has been known from West coast <strong>of</strong> US for several years, but is not yet described (Goddard, 1999 pers. comm.)


Chapt. 8. Summary <strong>of</strong> NIS, page 8- 9<br />

TABLE 8.5 Species Range Extensions or First Records for Cook Inlet / Prince Wiliam Sound (sc AK)<br />

Species Common Name Probable AK Regions Date 1st Invasion References<br />

Region <strong>of</strong> Origin Record Status<br />

Rhodophyta<br />

Polysiphonia senticulosa a red alga NE Pacific Prince William Sound 1998 Range extension Hansen 1998<br />

Phaeophyta<br />

Ectocarpus acutus a brown alga NE Pacific Prince William Sound 1998 Range extension Hansen 1998<br />

Ectocarpus dimorphus a brown alga NE Pacific Prince William Sound 1998 Range extension Hansen 1998<br />

Chlorophyta<br />

Codium fragile spp. fragile a green alga NE Pacific Prince William Sound 1998 Range extension Hansen 1998<br />

Cnidaria-Hydrozoa<br />

Aequorea aequorea a hydromedusa NE Pacific (SE AK) Prince William Sound,<br />

Bering Sea north<br />

1999 First Record sc AK Mills, Chapt 9C2, this report<br />

Aequorea victoria a hydromedusa NE Pacific (SE AK) Prince William Sound 1999 First Record sc AK Mills, Chapt 9C2, this report<br />

Clytia gregaria (=Phialidium a hydromedusa NE Pacific (SE AK) Prince William Sound, 1999 First Record sc AK Mills, Chapt 9C2, this report<br />

gregarium)<br />

Bering Sea north<br />

Eperetmus typus a hydromedusa NE Pacific (SE AK) Prince William Sound,<br />

Bering Sea north<br />

1999 First Record sc AK Mills, Chapt 9C2, this report<br />

Euphysa sp. a hydromedusa NE Pacific (SE AK) Prince William Sound,<br />

Bering Sea north<br />

Gonionemus vertens a hydromedusa NE Pacific (SE AK) Prince William Sound,<br />

Bering Sea north<br />

Halitholus sp. a hydromedusa NE Pacific (SE AK) Prince William Sound,<br />

Bering Sea north<br />

Melicertum octocostatum a hydromedusa NE Pacific (SE AK) Prince William Sound,<br />

Bering Sea north<br />

Proboscidactyla flavicirrata a hydromedusa NE Pacific (SE AK) Prince William Sound,<br />

Bering Sea north<br />

Sarsia spp. a hydromedusa NE Pacific (SE AK) Prince William Sound,<br />

Bering Sea north<br />

Tiaropsis multicirrata a hydromedusa NE Pacific (SE AK) Prince William Sound,<br />

Bering Sea north<br />

Ctenophora:<br />

Bolinopsis infundibulum a ctenophore NE Pacific (SE AK) Prince William Sound,<br />

Bering Sea north<br />

1999 First Record sc AK Mills, Chapt 9C2, this report<br />

1999 First Record sc AK Mills, Chapt 9C2, this report<br />

1999 First Record sc AK Mills, Chapt 9C2, this report<br />

1999 First Record sc AK Mills, Chapt 9C2, this report<br />

1999 First Record sc AK Mills, Chapt 9C2, this report<br />

1999 First Record sc AK Mills, Chapt 9C2, this report<br />

1998 First Record sc AK Mills, Chapt 9C2, this report<br />

1999 First Record sc AK Mills, Chapt 9C2, this report<br />

Pleurobrachia bachei () a ctenophore NE Pacific (SE AK) Prince William Sound, 1999 Range extension N Mills, Chapt 9C2, this report<br />

Dutch Harbor<br />

Annelida- Polychaeta<br />

Chaetozone senticosa a cirratulid polychaete NE Pacifc Prince William Sound 1980 Range extension N Kudenov 1998, pers. comm.<br />

Cirratulus cirratulus a cirratulid polychaete NE Pacific (BC Canada) Prince William Sound Range extension N Kozl<strong>of</strong>f 1987; Foster 1999 pers. comm.;<br />

Dodecaria sp. a spionid polychaete NE Pacific (BC Canada) Prince William Sound Range extension N Kozl<strong>of</strong>f 1987; Foster 1999 pers. comm.;<br />

Drilonereis falcata minor a lumbrinereid polychaete NE Pacific (BC Canada) Prince William Sound 1980 Range extension N Kozl<strong>of</strong>f 1987; Foster 1999 pers. comm.;<br />

Drilonereis minor () a lumbrinereid polychaete NE Pacific (BC Canada) Prince William Sound Range extension N Kozl<strong>of</strong>f 1987; Foster 1999 pers. comm.;<br />

Flabelligera mastigophora a lumbrinereid polychaete NW Pacific (Chukchi Sea) Prince William Sound 1980 Range extension S Foster 1999 pers. comm.; UAF<br />

Hesperonoe complanata a polynoid polychaete NE Pacific Prince William Sound 1980 Range extension S Kozl<strong>of</strong>f 1987; Foster 1999 pers. comm.;<br />

Lumbrineris limicola a lumbrinereid polychaete NE Pacific Prince William Sound Range extension Kozl<strong>of</strong>f 1987; Foster 1999 pers. comm.;<br />

Lumbrineris luti a lumbrinereid polychaete NE Pacific (BC Canada) Prince William Sound 1988 Range extension N Kozl<strong>of</strong>f 1987; Kudenov 1998 pers. comm.<br />

Magelona berkleyi a magelonid polychaete NE Pacific (BC Canada) Prince William Sound Range extension N Kozl<strong>of</strong>f 1987; Foster 1999 pers. comm.;<br />

Magelona hobsoni a magelonid polychaete NE Pacific (BC Canada) Prince William Sound 1988 Range extension N Kozl<strong>of</strong>f 1987; Foster 1999 pers. comm.;<br />

Magelona sacculata a magelonid polychaete NE Pacific (BC Canada) Prince William Sound Range extension N Kozl<strong>of</strong>f 1987; Foster 1999 pers. comm.;<br />

Mesochaetopterus taylori a chaetopterid polychaete NE Pacific (BC Canada) Prince William Sound Range extension N Kozl<strong>of</strong>f 1987; Foster 1999 pers. comm.;<br />

Microphthalmus sczelkowi a hesionid polychaete NE Pacific (CA) Prince William Sound 1980 Range extension N Foster 1999 pers. comm.; UAF<br />

Mysta barbata a hesionid polychaete NW Pacific (Chukchi Sea) Prince William Sound Range extension S Foster 1999 pers. comm.; UAF<br />

Onuphis (=Nothria, an onuphid polychaete NE Pacific Prince William Sound Range extension N Kozl<strong>of</strong>f 1987; Foster 1999 pers. comm.;<br />

Oriopsis sp. a sabellid polychaete NE Pacific (BC Canada) Prince William Sound Range extension N Kozl<strong>of</strong>f 1987; Foster 1999 pers. comm.;


Chapt. 8. Summary <strong>of</strong> NIS, page 8- 10<br />

TABLE 8.5 continued<br />

Species Common Name Probable AK Regions Date 1st Invasion References<br />

Region <strong>of</strong> Origin Record Status<br />

Nemidia sp. a polynoid polychaete Bering Sea Prince William Sound Range extension S Foster 1999 pers. comm.; UAF<br />

Nemidia tamarae a polynoid polychaete Bering Sea Prince William Sound Range extension S Foster 1999 pers. comm.; UAF<br />

Phyllodoce medipalpa a phyllodocid polychaete NE Pacific Prince William Sound Range extension N Kozl<strong>of</strong>f 1987; Kuden<strong>of</strong>f 1998 pers. comm.<br />

Rhynchospio gluteae a spionid polychaete Unknown Prince William Sound Range extension Kudenov 1998 pers. comm.<br />

Syllis (Typosyllis) harti a syllid polychaete NE Pacific (BC Canada) Prince William Sound Range extension N Foster 1999 pers. comm.; UAF<br />

Syllis (Typosyllis) harti a syllid polychaete NE Pacific (BC Canada) Prince William Sound Range extension N Foster 1999 pers. comm.; UAF<br />

Tharyx secundus a cirratulid polychaete NE Pacific (BC Canada) Prince William Sound 1980 Range extension N Kozl<strong>of</strong>f 1987; Foster 1999 pers. comm.;<br />

UAF collections<br />

Mollusca- Gastropoda- Prosobranchia<br />

Barleeia acuta Acute Barleysnail NE Pacific (BC Canada) Prince William Sound Range extension N Kozl<strong>of</strong>f 1987; Turgeon et al. 1988; Foster<br />

1999 pers. comm.; UAF collections<br />

Mollusca- Gastropoda- Opisthobranchia<br />

Acanthodoris nanaimoensis Wine-Plumed Spiny Doris NE Pacific (BC Canada) Prince William Sound 1999 Range extension N Kozl<strong>of</strong>f 1987; Turgeon et al. 1988; Foster<br />

1999 pers. comm.; UAF collections;<br />

Goddard 1999 pers. comm.<br />

Adalaria jannae Janna’s Adalaria NE Pacific (BC Canada) Prince William Sound 1999 Range extension N Kozl<strong>of</strong>f 1987; Goddard 1999 pers. comm<br />

Adalaria sp.1 <strong>of</strong> Behrens (1991) Armed Adalaria NE Pacific (SE AK) Prince William Sound 1999 Range extension N Goddard 1999 pers. comm<br />

Alderia modesta Modest Alderia NE Pacific (BC Canada) Prince William Sound 1999 Range extension N Kozl<strong>of</strong>f 1987; Turgeon et al. 1988;<br />

Goddard 1999 pers. comm<br />

Ancula pacifica Pacific Ancula NE Pacific (SE AK) Prince William Sound 1999 Range extension N Kozl<strong>of</strong>f 1987; Turgeon et al. 1988;<br />

Goddard 1999 pers. comm<br />

Cuthona albocrusta White-Crust Cuthona NE Pacific (BC Canada) Prince William Sound 1999 Range extension N Kozl<strong>of</strong>f 1987; Turgeon et al. 1988;<br />

Goddard 1999 pers. comm<br />

Cuthona pustulata NE Pacific (BC Canada) Homer 1999 Range extension N Kozl<strong>of</strong>f 1987; Turgeon et al. 1988;<br />

Goddard 1999 pers. comm<br />

Eubranchus olivaceus Green Balloon Aeolis NE Pacific (BC Canada) Prince William Sound<br />

and Cook Inlet<br />

Range extension N<br />

Kozl<strong>of</strong>f 1987; Turgeon et al. 1988; Foster<br />

1999 pers. comm.; UAF collections;<br />

Goddard 1999 pers. comm<br />

Geitodoris heathi Heath’s Dorid NE Pacific (SE AK) Prince William Sound 1999 Range extension N Goddard 1999 pers. comm<br />

Janolus fuscus NE Pacific (SE AK) Cook Inlet 1999 Range extension N Foster 1999 pers. comm.; Goddard 1999<br />

pers. comm<br />

Albatross Aglaja NE Pacific (SE AK) Prince William Sound 1980 Range extension N Kozl<strong>of</strong>f 1987; Turgeon et al. 1988; Foster<br />

1999 pers. comm.; UAF collections<br />

Melanochlamys diomedeum NE Pacific (SE AK) Prince William Sound 1998 Range extension N Kozl<strong>of</strong>f 1987; Foster 1999 pers. comm.;<br />

Melanochlamys ocelliger Arctic Odostome Bering Sea Prince William<br />

Sound,Shumagin Is.,<br />

Range extension S Berh 1894; Lee & Foster 1985; Foster<br />

1999 pers. comm.; UAF collections<br />

Kodiak Is.<br />

Odostomia arctica Hansine Seaslug NE Pacific (BC Canada) Prince William Sound Range extension N Kozl<strong>of</strong>f 1987; Turgeon et al. 1988;<br />

Goddard 1999 pers. comm<br />

Olea hansineensis Banded Polycera NE Pacific (N to Hawkins<br />

Island, Prince William<br />

Sound)<br />

Prince William Sound<br />

Range extension W Foster 1999 pers. comm.; Goddard, pers.<br />

comm., 1999<br />

Palio zosterae Arctic Barrel-Bubble Bering Sea Prince William Sound Range extension S Turgeon et al. 1988; Foster 1999 pers.<br />

comm.; UAF collections<br />

Retusa obtusa<br />

Mollusca- Bivalvia Glacial Mussel Bering Sea Prince William Sound Range extension S Foster 1999 pers. comm.; UAF<br />

collections<br />

Musculus glacialis<br />

Crustacea- Copepoda Unidentified copepod NE Pacific (subtropical) Prince William Sound Range extension S Ted Cooney 1998 pers. comm.<br />

Unidentified Calanoid<br />

Crustacea- Leptostraca<br />

Nebalia sp. a nebaliacean NE Pacific (BC Canada) Prince William Sound Range extension N Kozl<strong>of</strong>f 1987; Foster 1999 pers. comm.;<br />

UAF collections<br />

Crustacea- Isopoda<br />

Gnathia tridens an isopod NE Pacific (CA) Prince William Sound Range extension N Foster 1999 pers. comm.; UAF<br />

collections


Chapt. 8. Summary <strong>of</strong> NIS, page 8- 11<br />

TABLE 8.5 continued<br />

Species Common Name Probable AK Regions Date 1st Invasion References<br />

Region <strong>of</strong> Origin Record Status<br />

Munna chromocephala an isopod NE Pacific (WA) Prince William Sound Range extension N Kozl<strong>of</strong>f 1987; Foster 1999 pers. comm.;<br />

UAF collections<br />

Munna ubiquita an isopod NE Pacific (WA) Prince William Sound Range extension N Kozl<strong>of</strong>f 1987; Foster 1999 pers. comm.;<br />

UAF collections<br />

Pleurogonium sp. an isopod NE Pacific (WA) Prince William Sound Range extension N Kozl<strong>of</strong>f 1987; Foster 1999 pers. comm.;<br />

UAF collections<br />

Synodidotea ritteri an isopod NE Pacific (CA) Prince William Sound Range extension N Smith and Carlton 1975; Foster 1999<br />

pers. comm.; UAF collections<br />

Brachiopoda<br />

Terebratalia crossei a brachiopod NW, NE Pacific Prince William Sound Range extension N, Foster 1999 pers. comm.; UAF<br />

NE<br />

collections<br />

Bryozoa<br />

Cribilina annulata a bryozoan Bering Sea Prince William Sound Range extension S Kozl<strong>of</strong>f 1987; Foster 1999 pers. comm.;<br />

UAF collections<br />

Filicrisia smithi a bryozoan Bering Sea Prince William Sound Range extension S Foster 1999 pers. comm.; UAF<br />

collections<br />

Echinodermata-Asteroida<br />

Asterias amurensis Asian Sea Star NW Pacific; Bering Sea Homer Spit 1999 Range extension REFS<br />

Chordata- Ascidiacea<br />

Chelysoma columbianum a tunicate NE Pacific (BC Canada) Prince William Sound Range extension N Kozl<strong>of</strong>f 1987; Foster 1999 pers. comm.;<br />

UAF collections<br />

Halocynthia hilgendorfi igaboja a tunicate NE Pacific (BC Canada) Prince William Sound Range extension Kozl<strong>of</strong>f 1987; Foster 1999 pers. comm.;<br />

UAF collections<br />

Chordata- Osteichthyes<br />

Sphyraena argentea Pacific Barracuda NE Pacific (BC Canada) Prince William Sound 1998 Range extension Valdez Vanguard newspaper, 1998


Chapt. 8. Summary <strong>of</strong> NIS, page 8- 12<br />

We also considered several reports and specimens that were initially considered as<br />

possible NIS, but which we reject primarily as misidentifications <strong>of</strong> similar native species (Table<br />

8.6).<br />

TABLE 8.6 Species/Specimens Misidentified as NIS<br />

Putative Species Common Name Probable AK Regions Date 1st Invasion References<br />

Region <strong>of</strong> Origin<br />

Record Status<br />

Rhodophyta<br />

Porphyra redidiva a red alga NE Pacific Prince William Sound 1998 Misidentified earlier Hansen 1998<br />

Chlorophyta<br />

Monostroma fractum a green alga NE Pacific Prince William Sound 1998 Misidentification, overlooked Hansen 1998<br />

Angiospermophyta<br />

Myriophyllum spicatumEurasian <strong>Water</strong>milfoil Eurasia SE Alaska (FW) Probable misidentification USGS 1998<br />

Cnidaria-Hydrozoa<br />

Halitholus sp. a hydromedusa NE Pacific Prince William Sound 1998 Not identifiable to species Mills, Chap9C2,this rept<br />

Leuckartiara sp. a hydromedusa NE Pacific Prince William Sound 1998 Not identifiable to species Mills, Chap9C2,this rept<br />

Annelida- Polychaeta<br />

Anaspio boreas a spionid polychaete Gulf <strong>of</strong> Alaska Prince William Sound Uncertain identification Foster 1999 pers.<br />

comm.; UAF<br />

collections<br />

Polydora cf. P.<br />

brachycephalata<br />

a spionid polychaete<br />

NE Pacific<br />

(Oregon)<br />

Prince William Sound Misidentification Kozl<strong>of</strong>f 1987; Foster<br />

1999 pers. comm.;<br />

UAF collections<br />

There are few over-arching ecological traits that characterize marine NIS in Alaska. NIS<br />

were variable in their local distributions in the region, with distributions <strong>of</strong> most species<br />

apparently limited to particular sites, but with many sites having some NIS. Although NIS were<br />

frequently associated with harbor areas and aquaculture sites, some species (e.g., Mya arenaria)<br />

occurred widely wherever the appropriate habitat was present. NIS occurred in a wide range <strong>of</strong><br />

habitats from coastal marshes (Cotula coronopifolia) and the high intertidal zone (Fucus<br />

cottonii) to deep subtidal waters (Trochammina hadai), and from variable and low salinity areas<br />

(Mya arenaria, Heteromastus filiformis) to stenohaline high salinities (Botryloides violaceus).<br />

NIS included species inhabiting hard and s<strong>of</strong>t substrates. NIS also include species from a wide<br />

range <strong>of</strong> motility, from migratory fish to sessile plants and invertebrates; and they included a full<br />

range <strong>of</strong> trophic modes from autotrophs (algae) to suspension feeders to predators. While many<br />

<strong>of</strong> the NIS have life cycles with a dispersal stage (especially echinoderms and bivalves with<br />

long-lived planktonic larvae), others had little motility (e.g., sessile tunicates with short-lived<br />

planktonic larval stages). Thus, although NIS were most common in habitats most impacted by<br />

human activities, there were few sites or habitats within the region and few ecological niches that<br />

were immune from invasion.<br />

Although oil tankers transport great quantities <strong>of</strong> abundant and diverse plankton<br />

(including known NIS) into Prince William Sound, we have not identified any established NIS<br />

that is clearly attributable to introduction via tanker ballast water. However, analysis <strong>of</strong> probable<br />

transport mechanisms for species introductions is difficult in most regions where multiple<br />

transfer agents have been active. In south central Alaska, NIS were commonly found at harbor<br />

areas (e.g., Homer), where ballast water and hull fouling associated with cargo ships and the full<br />

range <strong>of</strong> fishing and other vessels are potential vectors. Bulk carriers like wood chip and log<br />

ships arriving in ballast to Homer, as well as tankers arriving to Port Valdez, are sources <strong>of</strong> the<br />

largest volumes <strong>of</strong> ballast water (Smith et al., 1999). Fishing and recreational vessels <strong>of</strong>ten have<br />

extensive fouling communities which may be transported coastwise within the region. NIS were<br />

also found at sites <strong>of</strong> associated with aquaculture (e.g., Tatitlek) and with fishery introductions


Chapt. 8. Summary <strong>of</strong> NIS, page 8- 13<br />

(e.g., Atlantic salmon). Oyster (Crassostrea gigas) culture imports spat from Washington and<br />

Oregon hatcheries as “clean” seed for grow-up in the field. However, associated parasitic,<br />

commensal and fouling organisms frequently could be transported unintentionally with the spat<br />

(Carlton, 1992). Similarly, transfer <strong>of</strong> kelp (Macrocystis integrifolia), however “clean” in<br />

appearance, from Oregon and Washington (in the past) and southeast Alaska (in the present)<br />

could also serve as a vector for many fouling species, epiphytes, or organisms hiding in<br />

holdfasts. Several species <strong>of</strong> fish have been introduced intentionally into Alaskan freshwaters,<br />

where they may impact salmonids at key stages <strong>of</strong> their migratory life cycle. Also, escapes <strong>of</strong><br />

Atlantic salmon from pen culture have resulted in established populations <strong>of</strong> Salmo salar in<br />

British Columbia, as well as in increasingly frequent instances <strong>of</strong> this NIS fish being caught in<br />

Prince William Sound and throughout south central to southeast Alaska.<br />

The number <strong>of</strong> marine NIS in Alaska appears to be significantly lower than other marine<br />

ecosystems along the west coast <strong>of</strong> North America, where numbers <strong>of</strong> NIS range from about 50<br />

species in Puget Sound (Cohen et al., 1998) to 250 species in San Francisco Bay (Cohen &<br />

Carlton, 1995; Carlton, pers. comm.).<br />

Species Notes:<br />

RHODOPHYTA<br />

Ceramium sinicola- This red alga was found as an epiphyte <strong>of</strong> Codium fragile (tomentosoides)<br />

near Green Island. It has not been found previously north <strong>of</strong> southern California, and is strongly<br />

suspected <strong>of</strong> being an introduction (Hansen 1998).<br />

Chroodactylon ramosum- This microscopic, primitive, red alga was found growing on oyster<br />

floats at Tatilek. This species is previously known from Japan, Australia, and southern California<br />

(and the Great Lakes, where it was introduced, Mills et al. 1993) but has not been found in the<br />

well-studied waters <strong>of</strong> British Columbia and Washington. It may have been introduced with<br />

oysters (Hansen 1998).<br />

PHAEOPHYTA<br />

Fucus cottoni (=muscoides)- This brown seaweed is known from European coasts from northern<br />

Spain to Scandinavia (South and Tittley 1986). In the northeast Pacific, it was first found by G.<br />

I. Hansen on Vancouver Island in 1981, and subsequently found to be abundant in high marsh<br />

and mudflat areas along Prince William Sound (Hansen, 1998; Chapt 9 Hansen). Its status as a<br />

separate species has been questioned by Fletcher (1987), who considers this species to be an<br />

ecotype <strong>of</strong> F. vesiculosus adapted to marsh and mudflat habitats. Specimens from Prince<br />

William Sound have been sent to Esther Serrao, Portugal, who is studying the phylogenetic<br />

relationships <strong>of</strong> Fucus using molecular techniques. The widespread distribution <strong>of</strong> this plant in<br />

British Columbia and Alaska, suggests that it is not a recent introduction (Hansen 1998; Chapt. 9<br />

Hansen).<br />

Macrocystis integrifolia- This giant kelp is found from California to southeast Alaska. Since<br />

1979, this kelp had been transported by plane from southeast Alaska to Prince William Sound to<br />

be used as substrate for the Herring-Roe-on-Kelp fishery. Blades <strong>of</strong> kelp are placed in<br />

impoundment nets with gravid herring, which deposit their eggs on the kelp. The egg-laden


Chapt. 8. Summary <strong>of</strong> NIS, page 8- 14<br />

blades are then harvested and shipped to Japan, as a delicacy. Blades and holdfasts <strong>of</strong> kelp are<br />

commonly found in Prince William Sound, but attached plants have not been found, indicating<br />

that this kelp has not become established. While “clean” kelp blades are selected for the fishery,<br />

the practice represents a potential vector for transport <strong>of</strong> microscopic developing stages <strong>of</strong> algae<br />

and invertebrates into Prince William Sound (Jay Johnson, Alaska Fish and Game, pers. comm.<br />

to G. I. Hansen ; Hansen 1998). Our examination <strong>of</strong> several large plants including blades, stipes<br />

and holdfasts at Knight Island in the Sound during June 1998 showed that a variety <strong>of</strong><br />

gastropods, ophiuroids, amphipods and bryozoans were present. It was not clear whether these<br />

associated organisms colonized the plants or were present at the time <strong>of</strong> release into the Sound.<br />

Microspongium globosum- This tiny brown alga is known previously from the North Atlantic<br />

and Japan, but it has not been found in the waters <strong>of</strong> British Columbia and Washington. It grows<br />

epiphytically on the cryptogenic brown alga Demaraeaea attenuata, attached to oyster floats at<br />

Tatilek (Hansen 1998).<br />

Sargassum muticum- This Japanese seaweed was first observed on the U.S. west coast in 1947,<br />

in Coos Bay, Oregon. By 1986, it was well established from southern California to southeast<br />

Alaska. It was probably transported across the Pacific on the shells <strong>of</strong> Pacific Oysters from<br />

Japan, and then transported along the coast by currents, shipping, and oyster transplants (Scagel<br />

1956; Scagel et al. 1986; Cohen and Carlton 1995; US Fish & Wildlife Service, Nonindigenous<br />

<strong>Aquatic</strong> Species Database 1999).<br />

CHLOROPHYTA<br />

Codium fragile (ssp. tomentosoides), Dead Man’s Fingers- The green algal species Codium<br />

fragile occurs on the West Coast as a species complex consisting <strong>of</strong> several unnamed subspecies,<br />

presumably native (Cynthia Trowbridge, pers. comm. to G. I. Hansen), as well as the introduced<br />

C. f. tomentosoides. The latter is native to the Northwest Pacific, and now widely introduced in<br />

temperate waters (Farnham 1980; Carlton and Scanlon 1985; Trowbridge 1995). On the West<br />

Coast, this seaweed has previously been known only from San Francisco Bay, where it was first<br />

collected in 1977, and probably was introduced on ship fouling (Cohen and Carlton 1995). A<br />

form <strong>of</strong> Codium nearly identical to C. f. tomentosoides was found in 1998, at Green Island, in<br />

Prince William Sound, together with a more typically native Codium. According to experts on<br />

the genus consulted by Hansen, both forms lie within the morphological range <strong>of</strong> the native<br />

populations, but molecular studies will be needed to determine their identity and relationships.<br />

In any event, the occurrence <strong>of</strong> Codium in Prince William Sound represents a range extension<br />

from southeastern Alaskan waters, and a possible introduction.<br />

ANGIOSPERMOPHYTA<br />

Cotula coronopifolia, Brass Buttons- This attractive flowering plant <strong>of</strong> the aster family is native<br />

to South Africa. It was first reported on the Pacific Coast in 1878, along San Francisco Bay and<br />

now occurs in coastal marshes from southern California to southeast Alaska (Hultén 1968;<br />

Cohen and Carlton 1995). Brass Buttons was probably transported in the dry ballast <strong>of</strong> ships to<br />

San Francisco Bay and other Pacific ports, as well as to scattered sites on the Atlantic coast <strong>of</strong><br />

North America and Europe (Hultén 1968). Seeds <strong>of</strong> this plant (Cohen and Carlton 1995) are a<br />

favorite food <strong>of</strong> waterfowl, which may be how this species reached Alaska.


Chapt. 8. Summary <strong>of</strong> NIS, page 8- 15<br />

Additional flowering plants, identified by Hultén (1968) as “introduced weeds” <strong>of</strong> “waste<br />

places” and roadsides, probably occur at the edges <strong>of</strong> seashores and salt-to-fresh tidal marshes on<br />

the Pacific coast <strong>of</strong> Alaska, based on their habits and distribution elsewhere in North America.<br />

The following species are likely to occur in tidal marsh and shore habitats, especially disturbed<br />

ones: Agrostis gigantea (Redtop); Polypogon monspeliensis (Beard Grass); Puccinellia distans<br />

(Alkali Grass); Rumex crispus (Curly Dock); Rumex obtusifolius (Round-Leaved Dock)); Rumex<br />

maritimus (Golden Dock); Polygonum prolificum (Prolific Knotweed); Spergularia rubra (Sand<br />

Spurrey); Plantago major (English Plantain) (e.g. Fernald 1950; Gleason and Cronquist 1991;<br />

Cohen and Carlton 1995). Polygonum prolificum is native to eastern North America; the other<br />

species are <strong>of</strong> Eurasian origin (Hultén 1968). Many <strong>of</strong> these species were present on the coast <strong>of</strong><br />

southeast Alaska by 1883 (Meehan 1884), and may have been introduced in ship’s ballast.<br />

PROTOZOA- FORAMINIFERA<br />

Trochammina hadai- This foraminiferan is native to Japan, and was first found in North America<br />

in San Francisco Bay in 1990-1993 (Cohen and Carlton 1995; McGann and Sloan 1996). It was<br />

subsequently found in many Pacific Coast estuaries, from San Diego Bay to Puget Sound (Cohen<br />

et al. 1998; McGann 1998 pers. comm.). In San Francisco Bay it forms very dense populations<br />

and it processes large amounts <strong>of</strong> carbon in the benthic communities throughout the estuary. T.<br />

hadai was also found in EVOS samples taken from deep (300 ft) water <strong>of</strong> Prince William Sound<br />

(McGann 1998 pers. comm.). This benthic protozoan inhabits the sediments (preferably muddy)<br />

<strong>of</strong> brackish-marine estuaries (Matsushita and Kitazato 1990, Kitazato and Matsuchita 1996). It<br />

probably has been introduced in ballast water, and was common in sediments in the ballast tanks<br />

<strong>of</strong> oil tankers travelling between west coast ports and Port Valdez (McGann and Sloan 1996;<br />

McGann 1998 pers. comm.). However, sediment samples collected from low intertidal to<br />

shallow subtidal zones throughout Prince William Sound during 1998-1999 did not contain T.<br />

hadai, so the extent <strong>of</strong> this population in the Sound remains unclear (Hines & McGann, pers.<br />

comm.).<br />

PORIFERA<br />

Cliona thosina- This boring sponge was originally described in 1888 using specimens on oyster<br />

shells from an unknown locality (possibly France or Mexico). C thosina was found boring in<br />

field cultured oysters (Crassostrea gigas) in Prince William Sound in 1998 (Hines, 1998;<br />

Ruetzler pers. comm. 1998). Its boring activities weaken oyster shells and can cause shell<br />

deformation, breakage and increase vulnerability to predators (such as crabs). The larval stages<br />

<strong>of</strong> C. thosina are short lived (1-2 days), limiting its ability to be transported in ballast water.<br />

Oysters cultured in the Sound arrive as “clean” spat derived from laboratory cultures in Oregon<br />

and Washington. However, oyster spat is not always as “clean” as the suppliers claim, and many<br />

associated species may be found in these types <strong>of</strong> aquaculture sources (Carlton, 1992). Cliona is<br />

common in oysters <strong>of</strong> the lower west coast, so it is possibly derived from these populations.<br />

CNIDARIA- HYDROZOA<br />

Garveia franciscana (Rope Grass Hydroid)- This hydroid has been found in many estuaries<br />

around the world, but its origin is uncertain. The Indo-Pacific and the Black--Caspian Sea basin<br />

have been suggested as possible native regions (Cohen and Carlton 1995; Calder 1997 pers.<br />

comm.) It was first described from San Francisco Bay in 1902, which was its only known<br />

location on the west coast <strong>of</strong> North America (Cohen and Carlton 1995), until we found it near


Chapt. 8. Summary <strong>of</strong> NIS, page 8- 16<br />

Homer in 1999 (Lee-Anne Henry pers. comm. 1999; Chapt 9 Fouling Communities). In other<br />

regions <strong>of</strong> the world, this hydroid has been an economically important fouling organism,<br />

adversely affecting ships, power plants and fishing gear (Simkina 1963; Andrews 1973; McLean<br />

1972).<br />

ANNELIDA- POLYCHAETA<br />

Heteromastus (filiformis)- This sediment-dwelling, free-burrowing polychaete, <strong>of</strong> the family<br />

Capitellidae, was first described from Europe, but it is now widely distributed in coastal waters<br />

around the world. On the west coast <strong>of</strong> North America, H. filiformis was first reported in 1936,<br />

from San Francisco Bay, and subsequently has been found north to British Columbia and Prince<br />

William Sound. Its introduction to the Pacific Coast could have occurred with Atlantic or Pacific<br />

oysters, or in the ballast water <strong>of</strong> ships (Carlton 1979; Cohen and Carlton 1995). Heteromastus<br />

“filiformis”, as with some other capitellid species, may constitute a complex <strong>of</strong> several<br />

morphologically similar species (Cohen and Carlton 1995). H. filiformis was collected<br />

commonly in Port Valdez in 1971-1972, 7 years after the 1964 earthquake that disrupted the<br />

benthic system, indicating that it was established well before initiation <strong>of</strong> tanker traffic to the<br />

Port (Feder et al. 1973).<br />

Lumbrineris heteropoda- This infaunal and polychaete is known from the Sahkalin and Japan,<br />

and from two Alaskan specimens, one from Resurrection Bay, and another from Glacier Bay.<br />

The wide gap between the known range and the Alaska records is suggestive <strong>of</strong> an introduction<br />

(Nora Foster, 1999 pers. comm.).<br />

MOLLUSCA- BIVALVIA<br />

Crassostrea gigas (Pacific Oyster; Japanese Oyster)- The Pacific Oyster was first planted in<br />

North American waters in 1902, in Puget Sound. By 1939, it was cultivated in Ketchikan,<br />

Alaska, and it is now reared in Prince William Sound, Katchemak Bay and other locations.<br />

Alaskan waters are too cold for natural reproduction <strong>of</strong> C. gigas, so spat must be transferred from<br />

southern waters (Quayle 1969; Carlton 1979;R. Piorkowski 1999 pers. comm.).<br />

Mya arenaria (S<strong>of</strong>tshell Clam)- The S<strong>of</strong>tshell Clam has a complex biogeographical history. This<br />

species evolved in the Pacific, in the Miocene Period, and subsequently invaded the Atlantic, but<br />

became extinct in the Eastern Pacific (Strasser 1999). Living populations <strong>of</strong> Mya arenaria<br />

remain in the Bering Sea, but on the Eastern Pacific Coast, shells <strong>of</strong> s<strong>of</strong>tshell clams are absent<br />

from subfossil deposits and shell middens, including those recently examined for M. arenaria<br />

(Foster, Chapt 9C7, this report). Mya arenaria was re-introduced to the Pacific Coast in San<br />

Francisco Bay in 1874, probably with plantings <strong>of</strong> Eastern Oysters (Crassostrea virginica). It<br />

was soon widely transplanted along the coast, reaching Alaska by the 1960s-1970s (Carlton<br />

1979). The clam has been widely established for decades in Prince William Sound and Port<br />

Valdez (Feder et al. 1973, Feder and Paul 1973), and was heavily impacted by benthos upheaval<br />

in the 1964 earthquake (Baxter 1971).<br />

CRUSTACEA-AMPHIPODA<br />

Jassa sp.; Jassa marmorata- A tube-dwelling amphipod <strong>of</strong> the genus Jassa from Prince William<br />

Sound was found in University <strong>of</strong> Alaska collections (Nora Foster pers. comm.). Specimens are<br />

being examined by John Chapman, but are not yet identified to species. Jassa marmorata, native


Chapt. 8. Summary <strong>of</strong> NIS, page 8- 17<br />

to the northwest Atlantic, has been widely introduced in the world’s oceans, and has been<br />

collected from Alaska waters (Point Slocum, Conlan 1989; Cohen and Carlton 1995; Chapman<br />

1998 pers. comm.). Amphipods <strong>of</strong> this genus build tubes on hard surfaces, including ship hulls,<br />

but also have been collected from ballast water (Cohen and Carlton 1995).<br />

BRYOZOA<br />

Cryptosula pallasiana- This bryozoan is apparently native to the Atlantic Ocean, but is now<br />

widely distributed in the Pacific. An early (1925) record <strong>of</strong> C. pallasiana from Homer, Alaska<br />

was a misidentified specimen <strong>of</strong> C. okadai, but in 1944-46 it was found in Sitka (U. S. Navy<br />

1951; Carlton, pers. comm.), as well as San Francisco Bay, and Newport Harbor, California. It<br />

was probably transported in ship fouling (Cohen and Carlton 1995).<br />

Schizoporella (unicornis)- This northwest Pacific bryozoan was first collected in the Eastern<br />

Pacific in 1927, in Puget Sound (Carlton 1979; Cohen and Carlton 1995). Its first Alaska<br />

collection was made between 1944 and 1949, in Kodiak (U. S. Navy 1951; Powell 1970; Dick<br />

and Ross 1988; Carlton, pers. comm.). Schizoporella unicornis may have been introduced in ship<br />

fouling or with plantings <strong>of</strong> Pacific Oysters (Cohen and Carlton 1995). In 1999, it was found in<br />

Tatitlek. (This form, while definitely introduced to the Pacific coast, may actually be a complex<br />

<strong>of</strong> several species (Winston 1999 pers. comm.).<br />

ECHINODERMATA- OPHIUROIDEA<br />

Ophiothrix koreana- A single brittlestar from Southeast Alaska (Juneau) has been tentatively<br />

identified as O. koreana (Kyte 1998, pers. comm.). If this identification is correct, this collection<br />

would be the first record <strong>of</strong> this northwest Pacific ophiuroid from the eastern Pacific. Since only<br />

a single specimen has been collected, the existence <strong>of</strong> established populations is unknown. Most<br />

brittlestars have long-lived planktonic larvae, so ballast-water transport is likeliest, but transport<br />

with oysters or ship fouling can not be ruled out.<br />

CHORDATA- ASCIDIACEA<br />

Botrylloides violaceus (=Botryllus aurantius)- This colonial tunicate is native to the northwest<br />

Pacific (Japan), and may have been first found on the West Coast in 1973, in San Francisco Bay<br />

(Cohen and Carlton 1995). It is now widespread, from southern California to British Columbia<br />

(Cohen et al. 1998; Lambert and Lambert 1998). Botrylloides violaceus was abundant on fouling<br />

plates in Prince William Sound in 1999 (G. Lambert 1999 pers. comm.).<br />

CHORDATA-OSTEICHTHYES<br />

Alosa sapidissima (American Shad)- This anadromous fish, native to the Atlantic coast <strong>of</strong> North<br />

America, was introduced in 1871, to the Sacramento River. It rapidly spread along the Pacific<br />

coast, and was first collected in Alaska in the Stikine River in 1896. Shad spawn in freshwater<br />

rivers from San Francisco Bay, north to the Columbia River, but feeding adult and juvenile fish<br />

wander as far north as Cook Inlet and the Kamchatka Peninusla (Chapman 1942; Cohen and<br />

Carlton 1995). A specimen <strong>of</strong> this species from Port Moller, Alaska Peninsula resides in the<br />

University <strong>of</strong> Alaska Museum collections (Foster 2000, pers. comm.). American Shad have been<br />

captured by seines and gill nets in Southeast Alaska during strong El Niño years, e.g., 1969 and<br />

1983 (J. Karinen, 2000 pers. comm.)


Chapt. 8. Summary <strong>of</strong> NIS, page 8- 18<br />

Dallia pectoralis (Alaska Blackfish)- This small freshwater fish is native to the North slope and<br />

Yukon-Kuskakwim Delta <strong>of</strong> Alaska and eastern Siberia, but it was introduced in 1950 to Hood<br />

and Spenard Lakes in Anchorage, in the Susitna River drainage, and has spread to other lakes in<br />

the vicinity (Morrow 1980). We are unaware <strong>of</strong> records <strong>of</strong> this fish in brackish or tidal waters,<br />

but we are including it here because <strong>of</strong> concerns <strong>of</strong> adverse impacts on Rainbow Trout<br />

(Oncorhynchus mykiss) and other salmonid populations in the Anchorage area (Morrow 1980).<br />

Esox lucius (Northern Pike)- This large predatory, freshwater gamefish is native to most <strong>of</strong> the<br />

glaciated regions <strong>of</strong> North America and Eurasia (Scott and Crossman 1973). In Alaska, the<br />

native range includes the Bering Sea drainage, and North Slope, but not Pacific watersheds.<br />

Northern Pike were illegally introduced to the Susitna River valley in the 1970s (Morrow 1980).<br />

This species is known to enter brackish waters (Scott and Crossman 1973), though we are<br />

unaware <strong>of</strong> estuarine occurrences in Alaska. Pike have a reputation as predators <strong>of</strong> salmonids, so<br />

their introduction has long been discouraged on the West Coast (Lampman 1946; Dill and<br />

Cordone 1997).<br />

Salmo salar (Atlantic Salmon)- Atlantic Salmon are native to both sides <strong>of</strong> the North Atlantic,<br />

and spawn in rivers <strong>of</strong> Europe and eastern North America. Many unsuccessful attempts were<br />

made to stock this species on the West Coast, beginning in the Sacramento River in 1874 (Dill<br />

and Cordone 1997), but the extensive use <strong>of</strong> S. salar in net-pen aquaculture has again raised the<br />

possibility <strong>of</strong> its establishment in Pacific waters. Rearing <strong>of</strong> Atlantic Salmon is illegal in<br />

Alaskan waters, but occurs in British Columbia and Washington (USGS, Nonindigenous <strong>Aquatic</strong><br />

Species Database 1999). In Alaska, the Atlantic Salmon was first caught <strong>of</strong>f Cape Cross, in<br />

southeastern waters, in 1990 (Wing et al. 1992). Since then, many S. salar have been caught in<br />

the state’s marine waters, and in 1998, the first one was caught in Alaska freshwater (Freeman<br />

1998 pers. comm.; USGS, Nonindigenous <strong>Aquatic</strong> Species Database 1999), and some have been<br />

caught in Prince William Sound with landings reported at Port Valdez and Cordova (Benda 1997<br />

pers. comm., Freeman 1998 pers. comm.). Many escaped cultured fishes are in poor condition<br />

(USGS, Nonindigenous <strong>Aquatic</strong> Species Database 1999), but successful reproduction has been<br />

documented on Vancouver Island (Volpe 1999), and could well occur in Alaska waters.<br />

Salvelinus fontinalis (Brook Trout)- This eastern North American fish was introduced into<br />

southeast Alaska in the 1920s, and continued to be stocked into the 1950s. In its native range,<br />

the Brook Trout has anadromous populations in coastal regions, from Massachusetts to Labrador<br />

(Morrow 1980). We have not found documentation <strong>of</strong> sea-running fish in Alaskan waters, but<br />

estuarine occurrences <strong>of</strong> this trout are possible. However, few populations occur in coastal lakes,<br />

and none are known from streams or rivers (Alaska Department <strong>of</strong> Fish and Game 1994) The<br />

Brook Trout may hybridize with the native Dolly Varden, but the impact <strong>of</strong> this crossing on<br />

native populations is unknown (Morrow 1980).<br />

Suspicious Species<br />

ECHINODERMATA- ASTEROIDEA<br />

Asterias amurensis (Common Asian Sea Star)- This sea star is native to the Northwest Pacifc,<br />

including the coasts <strong>of</strong> Japan and Russia north to the Tatarskii Inlet and the southern Kuril<br />

Islands, and to the Bering Sea Coasts <strong>of</strong> Russia and Alaska (Baranova 1976; Ward and Andrew


Chapt. 8. Summary <strong>of</strong> NIS, page 8- 19<br />

1995, Jewett and Feder 1981). Its recent appearance at Homer in Cook Inlet could represent a<br />

natural range extension. However, this species has long-lived planktonic larvae and could also<br />

be carried in ship ballast water. Asterias amurensis has successfully invaded the coast <strong>of</strong><br />

Tasmania, where it poses a threat to shellfisheries (Ward and Andrew, 1995). Shipping traffic<br />

into Homer by bulk carriers <strong>of</strong> logs and wood chips increased markedly recently as spruce trees<br />

killed by a beetle outbreak have been forested. These ships probably bring large quantities <strong>of</strong><br />

ballast water to Homer from Asian ports within the established <strong>of</strong> range A. amurensis. The<br />

recent appearance <strong>of</strong> A. amurensis in the low intertidal zone at the tip <strong>of</strong> Homer Spit was noted<br />

as a sudden arrival by experienced naturalists (C. & C. Field, 1999 pers. comm.), who have been<br />

studying the area for several years. This large conspicuous sea star would not be overlooked<br />

easily and was not recorded previously in the many benthic trawl surveys <strong>of</strong> the Gulf Alaska (N.<br />

Foster, UA Museum 1999 pers. comm.). Specimens <strong>of</strong> A. amurenis are not represented in the<br />

University <strong>of</strong> Alaska Museum’s collections for trawl surveys in either the Gulf <strong>of</strong> Alaska (Foster,<br />

1999 pers. comm.) or Cook Inlet (Feder and Paul 1981, Feder et al. 1981). The survey <strong>of</strong> Cook<br />

Inlet also included scuba surveys. It would have been very unusual for such collections to miss<br />

a large conspicuous sea star (30 cm from ray tip to ray tip). We consider this species to be<br />

cryptogenic in Cook Inlet, with characteristics that are very suspicious <strong>of</strong> an NIS. Because it is a<br />

voracious predator, it could have a major impact on benthic communities.<br />

ASCIDIACEA<br />

Distaplia n. sp.- This tunicate is a new, undescribed species (G. Lambert, 2000, Chapt 9C10, this<br />

report), which is very abundant in fouling communities on floats and man-made substrates in<br />

marinas at Homer and Cordova. It was first collected in 1998 in Homer and was found in both<br />

Homer and Cordova in 1999. It was not found at other sites within Prince William Sound where<br />

other, native species <strong>of</strong> tunicates were common in fouling communities but lack similar<br />

shipping/boating traffic (e.g., Tatitlek, Chenega, Port Chalmers). These sites were sampled by<br />

the same expert taxonomists and systematists who found the species at Homer and Cordova.<br />

Also, sites with and without the new species were sampled at the same times with an equivalent<br />

sampling effort (fouling plates, Chapt 9D, this report). Its appearance is also suspicious, because<br />

it was not identified in 1901 when tunicates were collected in the region at nearby sites (Ritter<br />

1903), but this ascidian taxonomist tended to “lump” species <strong>of</strong> Distaplia (G. Lambert, 1999<br />

pers. comm.). This tunicate could be a formerly rare native species that has taken advantage <strong>of</strong><br />

the newly created marina habitat (G. Lambert 1999 pers. comm.), or a recent introduction.<br />

CRYPTOGENIC SPECIES<br />

PHAEOPHYTA<br />

Demaraeaea attenuata- This is a possible introduction from the Northwest Pacific, but G.<br />

Hansen treated this alga as cryptogenic, although she considered its epiphyte Ceramium sinicola<br />

to be a more likely introduction (Chapt 9C1, this report).<br />

ANGIOSPERMOPHYTA<br />

Atriplex patula & A. prostrata- These flowering plants commonly occur on marshes and<br />

beaches, but Hultén (1968) refers to them (lumped as A. patula) as an “introduced weed”.<br />

Botanists are divided on their status in North America, and on the East Coast they can be traced<br />

back to the early 1700’s. Here, we designate them “cryptogenic”.


Chapt. 8. Summary <strong>of</strong> NIS, page 8- 20<br />

ANNELIDA-POLYCHAETA<br />

Capitella capitata and other polychaete species complexes- Many cosmopolitan polychaete<br />

“species” are believed to represent groups <strong>of</strong> sibling species, with little morphological<br />

differentiation, but possibly with differing life histories and environmental adaptations. This has<br />

been shown for the pollution-tolerant worm Captitella capitata (Grassle and Grassle 1976), and<br />

is suspected for many others. Cryptic invasions by foreign sibling species could be common for<br />

species with planktonic larvae, especially in newly polluted harbors, where less-tolerant natives<br />

could be replaced by better adapted invaders. Such invasions could only be detected by genetic<br />

methods, or by very exacting morphological studies.<br />

Polydora quadrilobata- This spionid polychaete has a wide distribution, including both sides <strong>of</strong><br />

the North Atlantic, the Northwest Pacific, and the Northeast Pacific coast from California to<br />

Puget Sound (Blake 1971; Kozl<strong>of</strong>f 1987). At least 7 species <strong>of</strong> spionids have been introduced to<br />

the Northeast Pacific (Cohen and Carlton 1995; Cohen et al. 1998). Foster (N. Foster, UA<br />

Museum, 1999 pers. comm.) considers P. quadrilobata’s wide distribution to be suspicious, in<br />

view <strong>of</strong> the numerous introductions <strong>of</strong> this group: “The suspicious designation results from my<br />

perception that Spionidae do seem to make up a large proportion <strong>of</strong> the NIS listed by the Puget<br />

Sound expedition.”<br />

BRYOZOA<br />

Alcyonidium (polyoum) Native and introduced cryptic species are presumed to exist on the<br />

Pacific Coast. However, Alaska animals may be more likely to represent native forms, while<br />

San Francisco Bay bryozoans are more likely to be introduced (Cohen and Carlton 1995).<br />

MOLLUSCA- BIVALVIA<br />

Macoma balthica- Native and introduced cryptic species are presumed to exist on the Pacific<br />

Coast. However, Alaska animals may be more likely to represent the native forms (Meehan et<br />

al. 1989; Cohen and Carlton 1995).<br />

CRUSTACEA-COPEPODA<br />

Leimia vaga- This benthic harpacticoid copepod was first described from Nova Scotia, but has a<br />

limited distribution in the North Atlantic and is found in several Oregon and Washington<br />

estuaries (Chapt 9C5; Jeff Cordell 1999 pers. comm.). In 1999, our surveys found it in Prince<br />

William Sound (Chapt 9C5, this report). Its disjunct distribution is suggestive <strong>of</strong> transport<br />

between coasts, but the origin <strong>of</strong> this species is unknown.<br />

8D. Conclusions<br />

We have identified 24 species <strong>of</strong> plants and animals comprising the NIS <strong>of</strong> marine related<br />

ecosystems in Alaska, including 15 species recorded from Prince William Sound. In addition, 2<br />

cryptogenic species have highly suspicious characteristics <strong>of</strong> NIS. These species represent a<br />

diverse array <strong>of</strong> taxa that occupy a wide range <strong>of</strong> ecological niches and habitats, although there<br />

appear to be more NIS associated with boat harbors and with aquaculture activities. Several <strong>of</strong><br />

these NIS are first records for Alaska. We also recorded several new, previously undescribed<br />

species as well as numerous range extensions for species, which probably reflect the poor level<br />

<strong>of</strong> study and understanding <strong>of</strong> taxonomy and biogeography in Alaskan marine ecosystems. Many<br />

<strong>of</strong> the Alaskan NIS have larval stages which could be transported in ballast water; however,


Chapt. 8. Summary <strong>of</strong> NIS, page 8- 21<br />

other vectors (including intentional and incidental release for fisheries and aquaculture) are<br />

obvious possibilities. None are clearly associated with ballast water <strong>of</strong> oil tankers as a primary<br />

mechanism, even though many NIS are frequently found in ballast water arriving to Port Valdez<br />

(see Chapt 3, this report). The number <strong>of</strong> marine NIS in Alaska appears to be significantly lower<br />

than other marine ecosystems along the west coast <strong>of</strong> North America, where numbers <strong>of</strong> known<br />

NIS range from about 50 to 250 species. The complexities and uncertainties <strong>of</strong> the native biota<br />

and the history <strong>of</strong> vectors in the south-central Alaskan region will inevitably result in an evolving<br />

analysis, typically revealing previously hidden importance and impacts <strong>of</strong> NIS.<br />

8E. References<br />

Alaska Department <strong>of</strong> Fish and Game. 1994. Wildlife Notebook Series. Web Address:<br />

http://www.state.ak.us/local/akpages/FISH.GAME/notebook/fish/b^trout.htm<br />

Andrews, J. D. 1973. Effect <strong>of</strong> tropical storm Agnes on epifaunal invertebrates in Virginia<br />

estuaries. Chesapeake Sci. 14(4): 223-234.<br />

Baranova, Z. I. 1976. Phylum Echinodermata. Pp. 114-120 in Golikov, A. N., A.V. Zhimunski,<br />

E.V. Krasnol, O.G. Kusakin, A.F. Makienko, E.V. Markivskaya, O.A. Skarlato and A.A. Strekov<br />

(ed.), Animals and Plants <strong>of</strong> Peter the Great Bay. Nauka, Leningrad. (In Russian).<br />

Baxter, R. 1971. Earthquake effects on clams <strong>of</strong> Prince William Sound. In The Great Alaska<br />

Earth Quake <strong>of</strong> 1964. Biology. National Academy <strong>of</strong> Sciences, Washington, DC. 287 p.<br />

Benda, R. 1997. Biology Dept, Prince William Sound Community College, Valdez, AK.<br />

Personal communication.<br />

Blake, J. A. 1971. Revision <strong>of</strong> the genus Polydora from the East Coast <strong>of</strong> North America<br />

Polychaeta: Spionidae). Smithson. Contrib. Zool. 75: 1-32.<br />

Calder, D. 1997. Personal communication.<br />

Carlton, J.T. 1979. History, biogeography, and ecology <strong>of</strong> the introduced marine and estuarine<br />

invertebrates <strong>of</strong> the Pacific Coast <strong>of</strong> North America. PhD. Thesis, Univ. Calif., Davis. 904 pp.<br />

Carlton, J.T.. 1992. The dispersal <strong>of</strong> living organisms into aquatic ecosystems as mediated by<br />

aquaculture and fisheries activities. Pp. 13-45 in Rosenfield, A. and R. Mann (ed.), Dispersal <strong>of</strong><br />

Living Organisms into <strong>Aquatic</strong> <strong>Ecosystems</strong>. Maryland Sea Grant Publications, College Park,<br />

Maryland.<br />

Carlton, J.T.. 1996. <strong>Biological</strong> invasions and cryptogenic species. Ecology 77(6): 1653-1655.<br />

Carlton, J. T. and J.A. Scanlon. 1985. Progression and dispersal <strong>of</strong> an introduced alga: Codium<br />

fragile ssp. tomentosoides (Chlorophyta) on the Atlantic Coast <strong>of</strong> North America. Bot. Mar. 28:<br />

155-165.


Chapt. 8. Summary <strong>of</strong> NIS, page 8- 22<br />

Chapman J.W. 1988. <strong>Invasions</strong> <strong>of</strong> the northeast Pacific by Asian and Atlantic Gammaridean<br />

amphipod crustaceans, including a new species <strong>of</strong> Corophium. J. Crustac. Biol. 8(3): 362-382.<br />

Chapman, J.W. and J.T. Carlton. 1991. A test <strong>of</strong> criteria for introduced species: the global<br />

invasion by the isopod Synidotea laevidorsalis (Miers, 1881). J. Crustac. Biol. 11(3): 386-499.<br />

Chapman, W.M. 1942. Alien fishes in the waters <strong>of</strong> the Pacific Northwest. Calif. Fish Game 28:<br />

9-15.<br />

Cohen, A.N. and J.T. Carlton. 1995. Nonindigenous aquatic species in a United States estuary: a<br />

case study <strong>of</strong> the biological invasion <strong>of</strong> San Francisco Bay and delta. Report to U.S. Fish &<br />

Wildlife Service, Washington, DC and National Sea Grant College Program, Connecticut Sea<br />

Grant. 246 pp.<br />

Cohen, A., C. Mills, H. Berry, M. Wonham, B. Bingham, B. Bookheim, J. Carlton, J. Chapman,<br />

J. Cordell, L. Harris, T. Klinger, A. Kohn, C. Lambert, G. Lambert, K. Li, D. Secord and J. T<strong>of</strong>t.<br />

1998. Puget Sound expedition: A rapid assessment survey <strong>of</strong> non-indigenous species in the<br />

shallow waters <strong>of</strong> Puget Sound. Washington State Department <strong>of</strong> Natural Resources. Olympia,<br />

Washington.<br />

Conlan, K. E. 1989. Revision <strong>of</strong> the crustacean amphipod genus Jassa (Corophioidea:<br />

Ischyroceridae). Can. J. Zool. 68: 2031-2075.<br />

Cooney, T. 1998. Personal communication.<br />

Dick, M.H. and J.R.P. Ross. 1988. Intertidal Bryozoa (Cheilostomata) <strong>of</strong> the Kodiak vicinity,<br />

Alaska. Center for Pacific Northwest Studies, Western Washington University, Occasional<br />

Paper No. 23.<br />

Dill, W.A. and A.J. Cordone. 1997. History and status <strong>of</strong> introduced fishes in California, 1871-<br />

1996. Calif. Dep. Fish Game Fish Bull. 178: 1-414.<br />

Eno, N.C. 1996. Non-native marine species in British waters: effects and controls. Aquat.<br />

Conserv. Mar. Freshw. Ecosyst. 6: 215-228.<br />

Farnham, W. F. 1980. Studies on aliens in the marine flora <strong>of</strong> southern England. Pp. 875-914 in<br />

Price, J. H., D.E.G. Irvine and W.F. Farnham (ed.), The Shore Environment. Academic Press,<br />

London.<br />

Feder, H.M., G.J. Mueller, H.H. Dick and D. B. Hawkins. 1973. Preliminary benthos survey. Pp.<br />

305-391 in Hood, D.W., E. Shiels and E.J. Kelley (ed.), Environmental Studies <strong>of</strong> Port Valdez.<br />

Inst. Mar. Science Occas. Publ. No. 3. University <strong>of</strong> Alaska, Fairbanks.<br />

Feder, H.M. and A.J. Paul. 1973. Age, growth and size-weight relationships <strong>of</strong> the s<strong>of</strong>t-shell<br />

clam, Mya arenaria, in Prince William Sound, Alaska. Proc. National Shellfish. Assoc. 64:45-<br />

52.


Chapt. 8. Summary <strong>of</strong> NIS, page 8- 23<br />

Feder, H. M. and A.J. Paul. 1980. Seasonal trends in mei<strong>of</strong>aunal abundance on two beaches in<br />

Port Valdez, Alaska. Syesis 13: 27-36.<br />

Feder. H.M. and A.J. Paul. 1981. Distribution and abundance <strong>of</strong> some epibenthic invertebrates<br />

<strong>of</strong> Cook Inlet, Alaska. Univ. Alaska Fairbanks, Institute <strong>of</strong> Marine Science Tech. Rept. R80-3,<br />

154 p.<br />

Feder, H.M., A.J. Paul, M. Hoberg, and S. Jewett. 1981. Distribution, abundance, community<br />

structure and trophic relationships <strong>of</strong> the nearshore benthos <strong>of</strong> Cook Inlet. In: Environmental<br />

Assessment <strong>of</strong> the Alaskan Continental Shelf. Final Reports, <strong>Biological</strong> Studies 14:45-676.<br />

Fernald, M. L. 1950. Gray’s Manual <strong>of</strong> Botany. Van Nostrand, New York.<br />

Fields, C. and C. Fields. 1999. Personal communication.<br />

Fletcher, R.L. 1987. Seaweeds <strong>of</strong> the British Isles. Vol. 3. Fucophyceae (Phaeophyceae). Part 1.<br />

British Museum (Natural History), London. 359 pp.<br />

Freeman, G. 1998. Alaska. Personal Communication.<br />

Gleason, H. A. and A. Cronquist. 1991. A Manual <strong>of</strong> Vascular Plants <strong>of</strong> Northeastern United<br />

States and Adjacent Canada, Second Edition. New York Botanical Garden, Bronx, New York.<br />

Grassle, J.P. and J.F. Grassle. 1976. Sibling species in the marine pollution indicator Capitella<br />

(Polychaeta). Science 192: 567-569.<br />

Hansen, G.I. 1998. Field survey <strong>of</strong> marine plants in Prince William Sound, Alaska. Pp. 21-31 in<br />

Hines, A.H., G.M. Ruiz, J. Chapman, J. Carlton and N. Foster. <strong>Biological</strong> invasions in coldwater<br />

coastal ecosystems: Ballast-mediated introductions in Port Valdez/Prince William Sound,<br />

Alaska. Progress Report to the Regional Citizens’ Advisory Council <strong>of</strong> Prince William Sound.<br />

Henry, L.-A. 1999. Personal communication.<br />

Hines, A.H., G.M. Ruiz, J. Chapman, J. Carlton and N. Foster. 1998. <strong>Biological</strong> invasions in<br />

cold-water coastal ecosystems: Ballast-mediated introductions in Port Valdez/Prince William<br />

Sound, Alaska. Progress Report to the Regional Citizens’ Advisory Council <strong>of</strong> Prince William<br />

Sound.<br />

Hultén, E. 1968. Flora <strong>of</strong> Alaska and Neighboring Territories: A Manual <strong>of</strong> the Vascular Plants.<br />

Stanford University Press. Stanford, California.<br />

Jewett, S.C. 1998. Personal communication.<br />

Jewett, S.C. and H. M Feder. 1981. Epifaunal invertebrates <strong>of</strong> the continental shelf <strong>of</strong> the Bering<br />

and Chukchi Seas. Pp. 1131-1153 in Hood, D.W. and J. Clader (ed.), The Eastern Bering Sea


Chapt. 8. Summary <strong>of</strong> NIS, page 8- 24<br />

Shelf: Oceanography and Resources. Vol. II, U.S. Dept <strong>of</strong> Commerce. Distributed by the<br />

University <strong>of</strong> Washington Press, Seattle. 1339 pp.<br />

Johnson, J., Alaska Department <strong>of</strong> Fish and Game. 1998. Personal communication to G. I.<br />

Hansen.<br />

Karinen, J., NOAA. 2000. Personal communication.<br />

Kitazato, H. and S. Matsushita. 1996. Laboratory observations <strong>of</strong> sexual and asexual<br />

reproduction <strong>of</strong> Trochammina hadai Uchio. Trans. Proc. Paleontol. Soc. Japan. N.S. No. 182:<br />

454-466.<br />

Kozl<strong>of</strong>f, E.N. 1987. Marine invertebrates <strong>of</strong> the Pacific Northwest. University <strong>of</strong> Washington<br />

Press, Seattle.<br />

Kyte. 1998. Personal communication.<br />

Lambert, C. C. and G. Lambert. 1998. Non-indigenous ascidians in southern California harbors<br />

and marinas. Mar. Biol. 130: 675-688.<br />

Lampman, B. H. 1946. The Coming <strong>of</strong> the Pond Fishes. Binfords & Mort, Portland, Oregon.<br />

Lambert, G. 1999. Personal communication.<br />

Matsushita, S. and H. Kitazato. 1990. Seasonality in the benthic foraminiferal community and<br />

the life history <strong>of</strong> Trochammina hadai Uchio in Hamana Lake, Japan. Pp. 695-715 in Hemleben,<br />

C. et. al. (ed.), Paleoecology, biostratigraphy, paleoceanography and taxonomy <strong>of</strong> agglutinated<br />

foraminifera. Kluwer Academic Publishers, Netherlands.<br />

McGann, M. 1998. Personal communication.<br />

McGann, M. and D. Sloan. 1996. Recent introduction <strong>of</strong> the foraminifer Trochammina hadai<br />

Uchio into San Francisco Bay, California, USA. Mar. Micropaleontol. 28: 1-3.<br />

McLean, R.I. 1972. Chlorine tolerance <strong>of</strong> the colonial hydroid Bimeria franciscana. Chesapeake<br />

Sci. 13: 229-230.<br />

McPhail, J. D. and C.C. Lindsey. 1986. Zoogeography <strong>of</strong> the freshwater fishes <strong>of</strong> Cascadia (the<br />

Columbia system and rivers north to the Stikine). Pp. 615-637 in Hocutt, C.H. and E.O. Wiley<br />

(ed.), Introduction to the Zoogeography <strong>of</strong> North American Fishes. John Wiley & Sons, New<br />

York.<br />

Meehan, B.W., J.T. Carlton and R. Wenne. 1989. Genetic affinities <strong>of</strong> the bivalve Macoma<br />

balthica from the Pacific coast <strong>of</strong> North America: evidence for recent introduction and historical<br />

distribution. Mar. Biol. 102(2): 235-241.


Chapt. 8. Summary <strong>of</strong> NIS, page 8- 25<br />

Meehan, T. 1884. Catalogue <strong>of</strong> plants collected in July, 1883, during an excursion along the<br />

Pacific Coast in southeastern Alaska. Proc. Acad. Nat. Sci. Phila. 36: 76-96.<br />

Mills, E.L., J. H. Leach, J.T. Carlton and C.L. Secor. 1993. Exotic species in the Great Lakes: a<br />

history <strong>of</strong> biotic crises and anthropogenic introductions. J. Gt. Lakes Res. 19 (1): 1-54.<br />

Morrow, J.E. 1980. The Freshwater Fishes <strong>of</strong> Alaska. Alaska Northwest Publishing Company.<br />

Anchorage.<br />

Pettibone , M.H. 1963. Marine polychaete worms <strong>of</strong> the New England region. 1. Aphroditidae<br />

through Trochochaetidae. Bull. U.S. Natl. Mus. 227(Part 1): 1-356.<br />

Piorkowski, R., Alaska Department <strong>of</strong> Fish and Game. 1999. Personal communication.<br />

Powell, N.A. 1970. Schizoporella unicornis – an alien bryozoan introduced into the Strait <strong>of</strong><br />

Georgia. J. Fish. Res. Bd. Canada 27:1847-1853.<br />

Quayle, D. B. 1969. Pacific oyster culture in British Columbia. Can. Fish. Res. Board Bull. 169:<br />

1-192<br />

Ruetzler, K. 1998. Personal communication.<br />

Scagel, R.F. 1956. Introduction <strong>of</strong> a Japanese alga, Sargassum muticum, into the Northeast<br />

Pacific. Wash. Dep. Fish., Fish. Res. Pap. 1(4): 49-58.<br />

Scagel, R.F., D.J. Garbary, L. Golden and M.W. Hawkes. 1986. A synopsis <strong>of</strong> the benthic<br />

marine algae <strong>of</strong> British Columbia, northern Washington and southeast Alaska. Phycological<br />

Contribution No. 1. Department <strong>of</strong> Botany, The University <strong>of</strong> British Columbia, Vancouver.<br />

Scott, W. B. and E.J. Crossman. 1973. Freshwater Fishes <strong>of</strong> Canada. Fisheries Research Board <strong>of</strong><br />

Canada, Ottawa.<br />

Simkina, R. G. 1963. On the ecology <strong>of</strong> the hydroid polyp Perigonimus megas Kinne- a new<br />

species in the fauna <strong>of</strong> the USSR. [In Russian]. Akad. Nauk SSSR Tr. Inst. Okeanol. 70: 216-<br />

224.<br />

Smith, R.I. and J.T. Carlton (ed.). 1975. Light's Manual: Intertidal Invertebrates <strong>of</strong> the Central<br />

California Coast, Third Edition. University <strong>of</strong> California Press, Berkeley. 716 pp.<br />

Smith, L.D., M.J. Wonham, L.D. McCann, G.M. Ruiz, A.H. Hines and J.T. Carlton. 1999.<br />

Invasion pressure to a ballast-flooded estuary and an assessment <strong>of</strong> inoculant survival. Biol.<br />

<strong>Invasions</strong> 1: 67-87.


Chapt. 8. Summary <strong>of</strong> NIS, page 8- 26<br />

South, G. R., and I. Tittley. 1986. A checklist and distributional index <strong>of</strong> the benthic marine<br />

algae <strong>of</strong> the North Atlantic Ocean. Huntsman Marine Laboratory and British Museum (Natural<br />

History). St. Andrews, New Brunswick, and London.<br />

Strasser, M. 1999. Mya arenaria- an ancient invader <strong>of</strong> the North Sea Coast. Helgol.<br />

Meeresunters. 52: 309-324.<br />

Trowbridge, C. 1998. Personal communication to G. I. Hansen.<br />

Trowbridge, C. D. 1995. Establishment <strong>of</strong> the green alga Codium fragile ssp. tomentosoides on<br />

New Zealand rocky shores: current distribution and invertebrate grazers. J. Ecol. 83: 949-965.<br />

Turgeon, D.D., A.E. Bogan, E.V. Coan, W.K. Emerson, W.G. Lyons, W.L. Pratt, E.F.E. Roper,<br />

A. Scheltema, F.G. Thompson and J.D. Williams. 1988. Common and Scientific Names <strong>of</strong><br />

<strong>Aquatic</strong> Invertebrates from the United States and Canada: Mollusks. American Fisheries Society,<br />

Bethesda, Maryland. 227 pp.<br />

USGS, Nonindigenous <strong>Aquatic</strong> Species Database 1998. Sargassum muticum. Florida Caribbean<br />

Science Center, U.S. Geological Survey, <strong>Biological</strong> Resources Division. Gainesville FL.<br />

Web Address: http://nas.er.usgs.gov/nas/algae/sa_mutic.html<br />

U. S. Navy 1951. Report on marine borers and fouling organisms in 56 important harbors and<br />

tabular summaries <strong>of</strong> marine borer data from 160 widespread locations. U. S. Bureau <strong>of</strong> Yards<br />

and Docks, Department <strong>of</strong> the Navy, Washington (NAVDOCKS TP-Re1). 327 pp.<br />

Volpe, J. P. 1999. Atlantic salmon (Salmo salar) in British Columbia and the biology <strong>of</strong><br />

invasion. 1 st National Conference on Marine Bioinvasions (January 24-27), Abstracts.<br />

Massachusetts Institute <strong>of</strong> Technology, Cambridge Massachusetts. Unpaged.<br />

Ward, R. D. and Andrew, J. 1995. Population genetics <strong>of</strong> the northern Pacific seastar Asterias<br />

amurensis (Echinodermata: Asteriidae): allozyme differentiation among Japanese, Russian, and<br />

recently introduced Tasmanian populations. Mar. Biol. 124(1): 99-109.<br />

Wing, B. L., C.M. Guthrie and A. Gharrett. 1992. Atlantic salmon in marine waters <strong>of</strong><br />

southeastern Alaska. Trans. Am. Fish. Soc. 121: 814-818.<br />

Winston, J. 1999. Personal communication.


Chapt 9A. Overview <strong>of</strong> NIS Surveys, page 9A- 1<br />

Chapter 9A. Overview <strong>of</strong> NIS Surveys<br />

Anson H. Hines, Smithsonian Environmental Research Center<br />

Gregory M. Ruiz, Smithsonian Environmental Research Center<br />

9A1. Purpose<br />

A central goal <strong>of</strong> this project was to determine whether NIS have been, or are becoming,<br />

established within Prince William Sound. Because <strong>of</strong> the diversity <strong>of</strong> potential vectors and<br />

changing patterns <strong>of</strong> transport mechanisms, our purpose was to provide as broad and<br />

comprehensive a search for NIS as possible with our resources. Since previous ecological and<br />

systematic work in Alaska has not focused on NIS, we also wished to provide a baseline for the<br />

status <strong>of</strong> NIS in Alaskan waters, against which future introductions could be measured. Recent<br />

and on-going work on NIS along the temperate west coast <strong>of</strong> North America indicates that many<br />

invasive species appear to be spreading northward from a peak <strong>of</strong> NIS diversity in San Francisco<br />

Bay, as well as other highly invaded source ports for ballast water arriving to Prince William<br />

Sound. Some <strong>of</strong> these NIS (e.g., Carcinus maenas) have moved rapidly from central California<br />

to Washington and British Columbia, and may be expected to reach Alaskan waters in coming<br />

years. We focused on Prince William Sound for our field surveys and analysis <strong>of</strong> existing<br />

samples; but because NIS <strong>of</strong>ten spread coast-wise, we also sampled ports on the adjacent Kenai<br />

Peninsula, and we considered scientific reports broadly from Alaskan waters.<br />

9A2. Approach<br />

To detect recent or well-established NIS in Port Valdez / Prince William Sound and<br />

adjoining areas <strong>of</strong> risk for invasion, we used several methods, including:<br />

• Rapid assessment field surveys <strong>of</strong> estuarine and marine invertebrates and plants for Port<br />

Valdez, Prince William Sound, Seward and Homer. The objective was for experienced<br />

general ecologists to survey major habitats and communities, especially for large NIS plants<br />

and animals detectable in the field by experienced naturalists.<br />

• Focal taxonomic field collections in Prince William Sound, Seward and Homer. The<br />

objective was for taxonomic experts to sample and analyze key taxonomic groups that have<br />

known NIS but which are difficult for generalists to identify, providing definitive<br />

identification and careful, authoritative assessments <strong>of</strong> the native, invasive and cryptogenic<br />

status. Whenever possible, we also wished the taxonomic experts to have the opportunity to<br />

sample the sites using their specialized methods and knowledge for collecting the focal<br />

taxon.<br />

• Fouling plate surveys in Prince William Sound, Seward and Homer. The objective was to<br />

provide a replicated standard sampling method <strong>of</strong> assay for NIS in a community that is prone<br />

to invasions, but which has received little prior ecological analysis in Alaska.<br />

• Re-examination <strong>of</strong> museum and reference collections for Prince William Sound. The<br />

objective was to re-examine extensive collections already available in the University <strong>of</strong><br />

Alaska Museum and vouchers samples from Exxon Valdez Oil Spill (EVOS) and other<br />

ecological studies, developing a screening method <strong>of</strong> screening for potential NIS.<br />

Our approach <strong>of</strong> utilizing this array <strong>of</strong> methods served to maximize spatial, temporal, taxonomic,<br />

and habitat coverage, while still focusing our limited resources upon elements known to be <strong>of</strong><br />

highest risk <strong>of</strong> invasion. The field surveys provided broad coverage <strong>of</strong> Prince William Sound, as


Chapt 9A. Overview <strong>of</strong> NIS Surveys, page 9A- 2<br />

will as Anchorage, Homer and Seward as important ports in neighboring Cook Inlet and the<br />

Kenai Peninsula (Fig. 9.A.1).


Chapt 9A. Overview <strong>of</strong> NIS Surveys, page 9A- 3<br />

In any ecosystem, the ability to detect established NIS varies in space and time, because<br />

most aspects <strong>of</strong> species distribution and abundance are probabilistic. Like any population, NIS<br />

populations are typically patchily distributed across the full range <strong>of</strong> habitats, and may undergo<br />

marked seasonal and annual fluctuations. In high latitude ecosystems like Prince William<br />

Sound, this variation is extremely pronounced, due to rapid changes in photoperiod and<br />

fluctuations in surface salinities resulting from warm season run<strong>of</strong>f. By using an array <strong>of</strong><br />

sampling at several times throughout the growing season, we increased the probability <strong>of</strong><br />

detecting NIS.<br />

In addition to the stochastic aspect <strong>of</strong> detecting NIS, detection <strong>of</strong> NIS in Prince William<br />

Sound is difficult because the biota is not well described by taxonomists and biogeographers.<br />

Despite the extensive sampling in Prince William Sound for EVOS and other ecological<br />

programs, there are no comprehensive keys or field guides to the biota <strong>of</strong> the region (a notable<br />

exception is the guide to Alaskan molluscs; Foster 1991). In our Pilot Study (Ruiz & Hines<br />

1997) <strong>of</strong> Port Valdez alone, we found a surprisingly high percentage <strong>of</strong> new species records, and<br />

our literature analysis showed that 20-50% <strong>of</strong> the species are cryptogenic in origin.<br />

It was necessary to sample several habitats <strong>of</strong> Prince William Sound that have received<br />

little scientific study. For example, there are almost no publications on the fouling community <strong>of</strong><br />

floats and pilings, yet NIS are very common in this habitat in west coast source ports, where<br />

some <strong>of</strong> these NIS have been very destructive. S<strong>of</strong>t-bottom habitats <strong>of</strong> Prince William Sound<br />

have received less study than rocky substrates.<br />

Also, in much <strong>of</strong> the previous work associated with the Exxon Valdez Oil Spill,<br />

taxonomic identifications were not carried out to species but were reported at relatively high<br />

taxonomic levels (e.g., Family, Order). Without careful identification to species by expert<br />

taxonomists, NIS are <strong>of</strong>ten confused with similar native species. Therefore, we brought<br />

systematic experts for several focal taxonomic groups to Alaska for field collections or<br />

contracted them to identify selected subsets <strong>of</strong> samples.<br />

9A3. Site selection and sampling design<br />

In addition to a survey <strong>of</strong> Port Valdez and Sawmill Bay during our Pilot Study in<br />

June 1997, we conducted two broad expeditions to survey Prince William Sound for NIS during<br />

low tide series <strong>of</strong> 20-28 June 1998 and 8-16 August 1999. Fouling Plate Surveys were<br />

conducted during 7-17 September 1998 and in 8-16 August 1999.<br />

The surveys in September 1998 and August 1999 included sampling stations at Homer<br />

and Cordova on the Kenai Peninsula adjacent to Prince William Sound. The survey sampling<br />

design focused on invertebrates and plants in a variety <strong>of</strong> habitats <strong>of</strong> shallow water, the intertidal<br />

zone, and accessible man-made surfaces (e.g., floats, pilings, buoys). We selected sampling sites<br />

that were judged to be most susceptible to invasion by NIS:<br />

• areas most likely to be in the path <strong>of</strong> ballast water discharged from tankers (as estimated by<br />

circulation models and the path <strong>of</strong> the Exxon Valdez Oil Spill);<br />

• ports and sites <strong>of</strong> sustained disturbance by human activities (especially Port Valdez, Cordova,<br />

and Whittier, as well as Homer and Seward);<br />

• habitats associated with previously reported NIS and cryptogenic species;


Chapt 9A. Overview <strong>of</strong> NIS Surveys, page 9A- 4<br />

• warmer water areas;<br />

• marinas, floats, buoys, and pilings with accessible fouling communities; and<br />

• sites <strong>of</strong> active aquaculture for the Japanese Oyster Crassostrea gigas.<br />

Together, these habitats comprise a broad area <strong>of</strong> the shallow, nearshore margins and islands <strong>of</strong><br />

Prince William Sound. The survey attempted to gain broad coverage <strong>of</strong> these habitats, including<br />

46 sites in June 1998, 9 sites for fouling plates in September 1998, and 33 sites including a<br />

subset <strong>of</strong> 7sites for fouling plates in August 1999, which were spread throughout the major<br />

regions <strong>of</strong> the Sound and the port sites <strong>of</strong> the Kenai Peninsula (see map Fig. 9A.1, Table 9A.1).<br />

The survey sampled three major habitats: intertidal and shallow rocky substrates; intertidal and<br />

shallow s<strong>of</strong>t sediments; and fouling communities on floats, buoys, pilings and oyster culture<br />

structures. The salinity <strong>of</strong> the array <strong>of</strong> sites ranged from fresh to fully marine areas <strong>of</strong> the Sound.<br />

The rapid assessment survey methods were similar to those employed in NIS surveys <strong>of</strong><br />

San Francisco Bay (Cohen & Carlton 1995) and Puget Sound (Cohen et al. 1998). The approach<br />

utilizes a team <strong>of</strong> experienced naturalists and general ecologists to sample as great a diversity <strong>of</strong><br />

organisms at as broad an array <strong>of</strong> sites as possible within the region <strong>of</strong> concern. The team for the<br />

surveys consisted <strong>of</strong>:<br />

• John Chapman (OSU), general NIS <strong>of</strong> northeast Pacific and peracaridan crustacea;<br />

• Nora Foster (UAF), marine invertebrates <strong>of</strong> Alaska, especially mollusca;<br />

• Anson Hines (SERC), barnacles and decapod crustaceans; and<br />

• Todd Miller (Hatfield Marine Science Center), technical assistance and peracaridan<br />

crustaceans.<br />

The survey teams utilized a variety <strong>of</strong> transportation modes to travel among sites<br />

throughout Prince William Sound, including vans, ferries, float planes, small boats, vessels <strong>of</strong><br />

Stan Stephens Tours, and the Fishing Vessel Kristina. Following collecting, samples were<br />

processed in temporary laboratories provided by USF&WS Refuge in Homer, the Seward<br />

Marine Science Center, University <strong>of</strong> Alaska in Seward, Prince William Science Center in<br />

Cordova, the SERC <strong>Invasions</strong> Biology Laboratory in Valdez, the Prince William Sound<br />

Community College in Valdez, and several hotels. The F/V Kristina also served as laboratory<br />

platform for processing <strong>of</strong> samples while in transit among some <strong>of</strong> the sites. For each sampling<br />

site, the diversity and relative abundance <strong>of</strong> species were recorded. Field notes included GPS<br />

readings, sketches <strong>of</strong> the sites, salinity and temperature readings, and notes on common or<br />

abundant species identified in the field. Samples were collected by hand, by scraper to remove<br />

fouling organisms, and by trowel to collect s<strong>of</strong>t sediment. Samples <strong>of</strong> sediment, algalinvertebrate<br />

turf, and scrapings <strong>of</strong> fouling communities were washed and sieved on 5mm, 1mm<br />

and 0.5 mm mesh. Each sample was “rough sorted” immediately after collection to aid in<br />

identification <strong>of</strong> large or delicate specimens and to preserve voucher specimens for subsequent<br />

work-up in the laboratory. Voucher samples were preserved in either 70% EtOH or 10%<br />

formalin (as appropriate to the type <strong>of</strong> organism). Voucher samples from the survey have been<br />

distributed to appropriate taxonomic experts for definitive identification in the laboratory using<br />

microscopes.


Chapt 9A. Overview <strong>of</strong> NIS Surveys, page 9A- 5<br />

Map<br />

No.<br />

TABLE 9A.1. Collecting Sites for NIS Surveys<br />

(1997,1998,1999).<br />

Site Station 98 Cruise<br />

Station<br />

No.<br />

Latitude Longitude 1997<br />

Pilot<br />

Study<br />

Rapid Community<br />

Assessments<br />

1998<br />

Surveys<br />

1999<br />

Survey<br />

Fouling Plate<br />

Surveys<br />

1998 1999<br />

1 Anchorage Port Anchorage 61º14'N 149º45'W X<br />

Westchester Lagoon 61º13'N 149º50'W X<br />

2 Potter Potter flats 61º05'N 149º40'W X<br />

3 Katchemak Bay Homer small boat harbor X X X<br />

Homer spit X X X<br />

Homer spit mudflat X X X<br />

4 Sadie Cove X<br />

5 Seward Seward small boat harbor X X X<br />

Lowell Point<br />

X<br />

6 Whittier Whittier small boat harbor 60º46'37"N 148º41'24"W X X X<br />

Whittier ferry dock 60º46'25"N 148º40'55"W X X<br />

7 Shotgun Cove Shotgun Cove 60º47'26"N 148º32'30"W X<br />

8 Esther Island Lake Bay buoy 28 60º47'37"N 148º05'01"W X<br />

Lake Bay oysters 30 60º48'00"N 148º05'24"W X<br />

9 Squaw Bay Squaw Bay oysters 36 60º50'00"N 147º49'20"W X<br />

10 Eaglek Bay Eaglek Bay oysters 37 60º51'00"N 147º45'36"W X<br />

11 Fairmont Bay Fairmont Bay oysters X X<br />

12 Growler Island Growler mudflat 38 60º54'15"N 147º07'48"W X X<br />

Growler dock 39 60º54'13"N 147º07'48"W X X<br />

13 Valdez Arm, Sawmill Bay Sawmill Bay shore 9 61º03'15"N 146º47'24"W X X<br />

Sawmill Bay mudflat 10 61º03'23"N 146º47'24"W X X<br />

Navigation buoy 40 61º03'16"N 146º41'39"W X<br />

14 Valdez Arm Potato Point X<br />

15 Port Valdez Anderson Bay X<br />

16 Valdez Duck Flats low intertidal 44 61º07'28"N 146º18'00"W X X<br />

Duck Flats high intertidal 45 61º08''24"N 146º19'30"W X X<br />

Floating cargo dock 43 61º07'25"N 14618'36 "W X X<br />

SERVS dock 61º07'25"N 146º21'15"W X X X<br />

Small boat harbor 46 61º07'25"N 146º21'15"W X X X X X<br />

USCG dock " " X X<br />

Ferry dock " " X<br />

17 Port Valdez, Dayville flats Dayville flats 4 61º04'54"N 146º19'00"W X X<br />

18 Valdez Marine Terminal Alyeska small boat ramp 1 61º05'12N 146º23'30"W X X<br />

Alyeska small boat harbor 2 61º05'10"N 146º22'28"W X X<br />

Alyeska entrance 3 61º05'10"N 146º21'55"W<br />

Terminal floats 42 61º05'20"N 146º24'09"W X X


Chapt 9A. Overview <strong>of</strong> NIS Surveys, page 9A- 6<br />

Map<br />

No.<br />

TABLE 9A.1. (continued) Collecting Sites for NIS<br />

Surveys (1997,1998,1999).<br />

Site Station 98 Cruise<br />

Station<br />

No.<br />

Latitude Longitude 1997<br />

Pilot<br />

Study<br />

Rapid Community<br />

Assessments<br />

1998<br />

Surveys<br />

1999<br />

Survey<br />

Fouling Plate<br />

Surveys<br />

1998 1999<br />

19 Valdez Arm, Rockey Point Rockey Point 11 60º57'36"N 146º45'36"W X<br />

20 Busby Island South reef 5 60º52'55"N 146º46'29"W X<br />

Busby Island 6 60º52'54"N 146º46'24"W X<br />

21 Tatitlek Tatitlek Narrows oysters 8,12 60º52'06"N 146º43'30"W X X X<br />

Village dock 60º52'06"N 146º43'30"W X X X<br />

Ferry dock 60º52'06"N 146º43'28"W X X<br />

22 Bligh Island Cloudman Bay 7 60º50'11"N 146º43'15"W X<br />

23 Sheep Bay Upper Sheep Bay 13 60º52'12"N 146º43'48"W X<br />

Middle Sheep Bay 14 60º40'21"N 145º57'06"W X<br />

24 Cordova Small boat harbor 15,19 60º32'30"N 145º46'28"W X X X<br />

Mudflat S <strong>of</strong> Small Boat Harbor 18 60º32'28"N 145º46'28"W X X X<br />

Marine Science Center 17 60º32'48"N 145º46'27"W X X<br />

Fish Dock & Flats 16 60º32'27"N 145º46'26"W X<br />

Ferry dock 60º32'27"N 145º46'24"W X<br />

25 Hawkins Island Windy Bay 20 60º33'54"N 145º58'38"W X<br />

26 Orca Bay Channel Buoy 21 60º32'22"N 146º55'55"W X<br />

27 Hinchinbrook Island Constantine Harbor X<br />

28 Montague Island Port Chalmers X X<br />

29 Green Island Green Island 22 60º18'19"N 145º58'38"W X<br />

30 Evans Island Sawmill Bay 23 60º03'31"N 147º59'47"W X<br />

Port San Juan 24 60º04'2"N 148º03'36"W X<br />

31 Chenega Island Chenega dock X X<br />

32 Eleanor Island Northwest Bay middle arm 25 60º32'57"N 147º34'48"W X<br />

33 Knight Island Passage Knight Island Passage buoy 26 60º33'52"N 147º49'11W X<br />

34 Main Bay Main Bay 27 60º31'58"N 148º04'41"W X<br />

Main Bay fish hatchery 28 60º31'16"N 148º05'35"W X


Chapt 9A. Overview <strong>of</strong> NIS Surveys, page 9A- 7<br />

The experts for the Focal Taxonomic Collections included:<br />

• Gayle Hansen (Hatfield Marine Science Center, Oregon State University), phycologist with<br />

special expertise in Alaskan macroalgae;<br />

• John Chapman (Hatfield Marine Science Center, Oregon State University), peracarid<br />

crustacea;<br />

• Jeff Cordell (School <strong>of</strong> Fisheries, University <strong>of</strong> Washington), copepod crustaceans;<br />

• Nora Foster (University <strong>of</strong> Alaska Museum), molluscs and other marine invertebrates <strong>of</strong><br />

Alaska;<br />

• Jeffery Goddard (University <strong>of</strong> California, Santa Barbara), opisthobranch molluscs<br />

• Jerry Kudenov (University <strong>of</strong> Alaska, Anchorage), polychaete worms;<br />

• Gretchen Lambert (Friday Harbor Laboratories, University <strong>of</strong> Washington), ascidians;<br />

• Charles Lambert (Friday Harbor Laboratories, University <strong>of</strong> Washington), ascidians;<br />

• Claudia Mills (Friday Harbor Laboratories, University <strong>of</strong> Washington), cnidarian medusae<br />

and ctenophora;<br />

• Lise Schickel (University <strong>of</strong> California, Santa Barbara), decapod crustaceans and parasitic<br />

crustaceans;<br />

• Anson Hines (SERC), barnacles and decapod crustaceans;<br />

• Judith Winston (Virginia Natural History Musem), bryozoans; and<br />

• Lea Ann Henry (University <strong>of</strong> Toronto), hydrozoan cnidarians.<br />

At numerous locations in Port Valdez / Prince William Sound, sediment samples were collected<br />

for identifications <strong>of</strong> foraminiferans, particularly the Asian NIS Trochammina hadai, which is<br />

extensively introduced in San Francisco Bay and other west coast source ports. This NIS was<br />

reported from deep-water samples taken for the Exxon Valdez Oil Spill study. Samples were<br />

processed and sent to Mary McGann <strong>of</strong> US Geological Survey, Menlo Park, CA, for<br />

identification.<br />

Other details <strong>of</strong> the methods are provided below within the individual chapters for each<br />

Focal Taxonomic Collection, the Fouling Community Analysis and the Re-examination <strong>of</strong> the<br />

Museum, Reference and Voucher Collections.<br />

9A4. References<br />

Cohen, A.N. and J.T. Carlton. 1995. Nonindigenous aquatic species in a United States estuary: a<br />

case study <strong>of</strong> the biological invasion <strong>of</strong> San Francisco Bay and delta. Report to U.S. Fish &<br />

Wildlife Service, Washington, DC and National Sea Grant College Program, Connecticut Sea<br />

Grant. 246 pp.<br />

Cohen, A., C. Mills, H. Berry, M. Wonham, B. Bingham, B. Bookheim, J. Carlton, J. Chapman,<br />

J. Cordell, L. Harris, T. Klinger, A. Kohn, C. Lambert, G. Lambert, K. Li, D. Secord, and J. T<strong>of</strong>t.<br />

1998. Puget Sound expedition: A rapid assessment survey <strong>of</strong> non-indigenous species in the<br />

shallow waters <strong>of</strong> Puget Sound. Washington State Department <strong>of</strong> Natural Resources. Olympia,<br />

Washington.<br />

Foster, N.R. 1991. Intertidal Bivalves: A Guide to the Common Marine Bivalves <strong>of</strong> Alaska.<br />

University <strong>of</strong> Alaska Press, Fairbanks. 152 pp.


Chapt 9A. Overview <strong>of</strong> NIS Surveys, page 9A- 8<br />

Ruiz, G.M. and A.H. Hines. 1997. Patterns <strong>of</strong> nonindigenous species transfer and invasion in<br />

Prince William Sound, Alaska: Pilot Study. Report Submitted to the Prince William Sound<br />

Citizens’ Advisory Council. 80pp


Chapt 9B. NIS Surveys: Rapid Community Assessments, page 9B- 1<br />

Chapter 9B. Rapid Community Assessment<br />

John Chapman, Hatfield Marine Science Center, Oregon State University<br />

Collections <strong>of</strong> some taxonomic groups from the 1998 survey were transferred to<br />

systematic experts for focal taxonomic analysis provided in other sections <strong>of</strong> this report- see<br />

sections below for Focal Taxonomic Collections.<br />

Other data and analysis to be provided by John Chapman have not been forthcoming.


Chapt 9C1. Marine Plants, page 9C1- 1<br />

Chapter 9C1. Focal Taxonomic Collections: Marine Plants in Prince William Sound,<br />

Alaska<br />

Gayle I. Hansen, Hatfield Marine Science Center, Oregon State University<br />

Background<br />

Several NIS marine plants with potential for invasion <strong>of</strong> Alaskan waters have been<br />

reported on the west coast <strong>of</strong> North America. For example, the pervasive algae Sargassum<br />

muticum, Lomentaria hakodatensis, and the Japanese eelgrass Zostera japonica are thought to<br />

have been introduced with the aquaculture <strong>of</strong> oysters by the importation <strong>of</strong> spat from Japan. At<br />

least 5 oyster farms occur in Prince William Sound, and all have imported spat. For the herringroe-on-kelp<br />

(HROK) pound fishery, the giant kelp Macrocystis integrifolia is transported to<br />

Prince William Sound via plane from southeast Alaska (the northern limit <strong>of</strong> this species) to be<br />

used as a substrate for herring roe. Although the giant kelp cannot recruit in Prince William<br />

Sound, it seems likely that other species, accidentally co-transported with Macrocystis, could<br />

become established. Our Pilot Study (Ruiz and Hines 1997) also considered several NIS algal<br />

species reported from Alaskan waters, including a report <strong>of</strong> a cosmopolitan species Codium<br />

fragile tomentasoides from Green Island.<br />

Methods<br />

Sample Period. Marine benthic algae, seagrasses, and intertidal lichens were sampled as a part<br />

<strong>of</strong> the cruise aboard the F/V Kristina during 20-28 June 1998, described above for invertebrates.<br />

Site Information. A subset <strong>of</strong> 19 <strong>of</strong> the 46 sites selected for invertebrate sampling were chosen<br />

for the plant study, including 13 intertidal sites (4 within Port Valdez and 9 in Prince William<br />

Sound) and 6 <strong>of</strong>f-shore float sites. Site abbreviations (for tables and figures to follow),<br />

coordinates, temperature, and salinity are given in Table 9C1.1. Please note that the site numbers<br />

in Table 9C1.1 for plants do not correspond to the site numbers on the map (Fig. 9A2) or Table<br />

9A1 for invertebrates. The substratum types, listed for each site, are only those sampled for<br />

algae and seagrasses. For analysis and discussion, the 19 plant sites have been grouped into 5<br />

basic habitat types: harbors, mud bays, rocky headlands and reefs, rocky bays, and floats. These<br />

will be discussed in greater detail in the Results section below.<br />

Surveying Techniques. At each site, intertidal areas accessible by foot within the time period<br />

provided were sampled. Since introduced species could potentially occur in any <strong>of</strong> the marine<br />

plant taxonomic groups, it was important to sample the entire range <strong>of</strong> species present from as<br />

broad an area as possible. Marine algal populations are well-known for being extremely patchy<br />

in distribution, caused primarily by narrow species requirements (and tolerances) for substratum,<br />

tidal height (exposure), salinity, nutrients, and sunlight. Since the species were patchily<br />

distributed, they were encountered and collected sporadically, not uniformly over time. For this<br />

study, abundance was noted only when unusually large patches <strong>of</strong> a particular species were<br />

encountered; it was not documented uniformly for entire sites.<br />

Time Allotment. As shown in Table 9C1.s, sampling times at major sites varied from 10<br />

minutes to 2 hours. At low diversity sites, such as Cloudman Bay, the time provided was<br />

sufficient for complete algal collection; at other sites, such as Green Island, the time was <strong>of</strong>ten


Chapt 9C1. Marine Plants, page 9C1- 2<br />

TABLE 9C1.1. General Site Information, 1998 Collections*<br />

ABBR. DATE LOCATION LAT LON SUBSTR. T SAL<br />

(ºC) (0/00)<br />

Port Valdez (Val)<br />

al-sbr Jun 20 Alyeska, small boat ramp, 61º 05' 12''N 146º 23' 30"W br, co 9 0<br />

Port Valdez<br />

al-pil Jun 20 Alyeska, small boat harbor, 61º 05' 10"N 146º 22' 28"W pi 9 0<br />

Port Valdez<br />

sough Jun 20 Slough, near Alyeska gate, 61º 04' 54"N 146º 19' 00"W mu 11 0<br />

Port Valdez<br />

duckflat Jun 28 Duckflat, Port Valdez 61º 07' 28''N 146º 18' 00''W mf 17-22 0-4<br />

Other Harbors<br />

Cor Jun 23 Cordova, Orca Inlet 60º 32' 28''N 145º 46' 28''W dm, mf 10-16 5-28<br />

Whit Jun 26 Whittier, Passage Canal 60º 46' 25''N 148º 40' 55''W dm, bo, gr, mu 4-10 8-14<br />

Mud/Cobble Bays<br />

CB Jun 21 Cloudman Bay, Bligh I. 60º 50' 11''N 146º 43' 15''W mu, co 10 3<br />

SMB Jun 22 Sawmill Bay, Valdez Arm 61º 03' 15''N 146º 47' 24''W mu, co 8 5<br />

Gro Jun 27 Growler I. 60º 54' 15''N 147º 07' 48''W mu, co 22 11<br />

Rk Headlands and Reefs<br />

RP Jun 22 Rocky Point, Valdez Arm 60º 57' 36''N 146º 45' 36''W br, co 11 15<br />

Bus Jun 21 Busby I., south reef 60º 52' 55''N 146º 46' 29''W br, co 11 23<br />

Green Jun 24 Green I., northwest reef 60º 18' 19''N 147º 23' 47''W bo, br 11 30<br />

Rk Bays<br />

NW Jun 25 Northwest Bay, middle arm, 60º 32' 57"N 147º 34' 48''W gr, co 12 10-27<br />

Eleanor Island<br />

Floats and Buoys<br />

TAT Jun 22 Tatitlek Narrows, Bligh I. 60º 52' 12''N 146º 43' 48''W oy 12 26<br />

WBF Jun 23 Windy Bay, Hawkins I. 60º 33' 54''N 145º 58' 38''W oy 14 28<br />

MBF Jun 25 Main Bay 60º 31' 58''N 148º 04' 41''W bb 14 19-20<br />

EIF Jun 25 Lake Bay, Esther I. 60º 48' 00''N 148º 05' 24''W bb 12 16<br />

SBF Jun 26 Squaw Bay 60º 50' 00''N 147º 49' 20''W oy 14 24<br />

EBF Jun 26 Eaglek Bay 60º 51' 00''N 147º 45' 36''W oy 14 24<br />

Abbreviations:<br />

*= coordinates, temperature, and salinity provided by T. Miller lon=longitude<br />

abbr.=abbreviations<br />

mf=mudflat<br />

bb=barrier buoy<br />

mu=mud<br />

bo=boulders<br />

oy=oysterfloats<br />

br=bedrock<br />

pi=wood pilings<br />

co=cobble<br />

rk=rocky<br />

dm=docks/marina<br />

sal=salinity<br />

gr=gravel<br />

subst=substratum<br />

lat=latitude<br />

t=temperature<br />

seriously inadequate to sample fully the algal diversity present. Differences among sites in<br />

amount <strong>of</strong> time for collecting were not factored out or corrected after sampling was completed;<br />

however, the sites which were judged to be undercollected are designated with an “*” in Table<br />

9C1.2.<br />

TABLE 9C1.2. Collection Efficiency Records<br />

Data Type<br />

Major Collection Sites (without <strong>of</strong>f-shore floats)<br />

Val al-sbr al-pil slough duckflat Cor Whit CB SMB Gro RP Bus Green NW<br />

New Records 5 1 1 1 4 5 2 2 5 4 2 2 6 1<br />

Total Species 47 35 7 7 24 41 56 10 45 63 61 59 71 69<br />

Collection Time 165 40* 10 15 100 120 120 30 45* 105 70* 75* 65* 136<br />

Correlation R R 2 * = undercollected sites<br />

Total Species:Time** 0.896 43% ** = both without Val (Total Valdez) included<br />

New Records:Time** 0.498 7%


Chapt 9C1. Marine Plants, page 9C1- 3<br />

Field Sampling & Processing. All algal sampling was done by hand or with a chisel. Collected<br />

specimens were then placed in plastic bags for transport back to the boat for processing. On<br />

board, the samples were sorted to species and then either pressed in a plant press or preserved in<br />

5% formalin/seawater. Site notes and preliminary species lists were made in the field, and some<br />

final identifications were done on board. However, for most species final determinations were<br />

not made until returning to the Hatfield Marine Science Center in Newport, Oregon, where<br />

compound microscopy was available. The smaller marine algae that require microscopic<br />

examination while still alive for identification were necessarily excluded from this study. After<br />

identification, both liquid and dried specimens were curated, labeled, and deposited in the<br />

herbarium at OSU/HMSC for reference in future Alaskan marine algal studies.<br />

Identifications. Since no marine flora (identification guide) <strong>of</strong> Prince William Sound exists, the<br />

algae collected during this study were identified using a wide variety <strong>of</strong> literature. For common<br />

species, the most important references utilized were Abbott and Hollenberg (1976), Gabrielson et<br />

al. (1993), Perestenko (1994), and Sears (1998). For more obscure species, much <strong>of</strong> the world<br />

taxonomic literature on temperate/arctic marine algae was employed. To confirm the<br />

identification <strong>of</strong> particularly difficult or important species, some specimens were sent out to<br />

colleagues for identification using molecular techniques. These taxa are designated with a "#" in<br />

the species charts. Due to the costs <strong>of</strong> these tests, these results will not be presented here, but<br />

instead will be presented at a later date as part <strong>of</strong> the papers prepared by these experts.<br />

Distributions, Residency Status, and New Records. In determining if species were introduced,<br />

the local and global distributions had to be determined from the literature. Some <strong>of</strong> the<br />

references used for this process were: Scagel et al. (1993), Sears et al.(1998), Selivanova and<br />

Zhigadlova (1997), Lee (1980), Guiry (1998), Rueness (1977), Phillips and Menez (1988),<br />

Yoshida et al. (1995), Adams (1983, 1994), Womersley (1984, 1987, 1994, 1996), Lindstrom<br />

(1977), Hansen et al. (1981), and Hansen (1997). These distributions, summarized in the<br />

abbreviated form explained below, are shown under range (Ra) in the first column <strong>of</strong> the species<br />

site lists (Tables 9C1.3 – 9C1.5). The ranges provided the basis for determining the Residency<br />

Status (St) <strong>of</strong> the species. Residency status rankings include the following 5 categories:<br />

• E (Endemic) = species known only from Alaska<br />

• N (Native) = species native to the North Pacific, including species with ranges limited to the<br />

northeast Pacific (nep) and those that occur in all other areas around the northern Pacific rim<br />

(np).<br />

• C (Cryptogenic) = species with extremely broad distributions that occur circumboreally (cb)<br />

and/or extend to the southern hemisphere (ws).<br />

• I (Introduced) = species that appear to have been introduced to the area.<br />

• F (Failed Introduction) = deliberately introduced species that have failed to colonize the<br />

area


Chapt 9C1. Marine Plants, page 9C1- 4<br />

TABLE 9C1.3. Marine and Estuarine Plants Collected in Port Valdez, Alaska<br />

NIS ANALYSIS<br />

PORT VALDEZ<br />

TAXA<br />

…………..June 1998 Collections……..…. Total<br />

Ra St NR So Val al-sbr al-pil slough duckflat Checklist<br />

RHODOPHYTA, Rhodophyceae<br />

ws C Ahnfeltia fastigiata O<br />

nep N Ahnfeltiopsis gigartinoides O<br />

nep N Antithamnionella pacifica O<br />

ws C Audouinella purpurea O<br />

ws C Bangia atropurpurea X X X<br />

nep N# Ceramium gardneri O<br />

np N Constantinea subulifera O<br />

np N Corallina frondescens O<br />

np N Corallina vancouveriensis O<br />

np N Cryptonemia borealis O<br />

np N Cryptonemia obovata O<br />

nep N Cryptosiphonia woodii X* X* O<br />

cb C Devaleraea ramentacea X X O<br />

cb C Dumontia contorta O<br />

np N Dumontia simplex O<br />

nep N Endocladia muricata O<br />

ws C Erythrotrichia carnea O<br />

np N Glioipeltis furcata X* X* O<br />

np,ar N Halosaccion firmum X X O<br />

np N Halosaccion glandiforme X* X* O<br />

ws C Hildenbrandia rubra O<br />

np N Leachiella pacifica O<br />

np N Lithophyllum dispar O<br />

nep N Mastocarpus papillatus complex X* X* O<br />

np N Mastocarpus cf. pacificus X* X* X<br />

nep N Mazzaella heterocarpa O<br />

np N Mazzaella phyllocarpa X X X<br />

nep N Mazzaella splendens O<br />

nep N Microcladia borealis O<br />

ws C Nemalion helminthoides O<br />

np N Neorhodomela aculeata X X O<br />

np N Neorhodomela larix X X O<br />

np N Neorhodomela oregona X* X* O<br />

nep N Odonthalia floccosa O<br />

np N Odonthalia kamtschatica O<br />

np N Odonthalia setacea (drift) O<br />

nep N Palmaria hecatensis X* X* O<br />

cb C Palmaria mollis/palmata O<br />

np N Phycodrys riggii O<br />

ws C Polysiphonia brodiaei O<br />

nep N Polysiphonia hendryi v. deliquescens X X O<br />

nep N Polysiphonia hendryi v. hendryi O<br />

nep N Polysiphonia hendryi v. luxurians O<br />

nep N Polysiphonia pacifica v. pacifica O<br />

nep N Porphyra cuneiformis O<br />

nep N Porphyra mumfordii O<br />

np N Porphyra perforata O<br />

cb C# NR NAT Porphyra purpureo-violacea O


Chapt 9C1. Marine Plants, page 9C1- 5<br />

Table 9C1.3. continued<br />

nep N NR Wa Porphyra rediviva X* X* X<br />

np N Pterosiphonia bipinnata X* X* O<br />

np N Ptilota filicina O<br />

cb C Ptilota serrata (incl. pectinata ) O<br />

cb C Rhodomela lycopodioides O<br />

cb C Scagelia americana O<br />

np N Tokidadendron kurilensis X X O<br />

nep N Weeksia coccinea X* X* X<br />

HETEROKONTOPHYTA, Phaeophyceae<br />

Val al-sbr al-pil slough duckflat Checklist<br />

cb C Agarum clathratum (cribrosum) O<br />

cb C Chordaria flagelliformis Xun X un O<br />

np N Chordaria gracilis O<br />

cb C Coilodesme bulligera O<br />

np N Costaria costata O<br />

cb C Desmarestia aculeata O<br />

cb C Desmarestia viridis O<br />

cb C Dictyosiphon foeniculaceus X* X* X un O<br />

nep N Ectocarpus parvus O<br />

ws C Ectocarpus siliculosus O<br />

nep N Elachista lubrica X* X* O<br />

cb I NR NAT Fucus cottonii X* X* X<br />

cb C Fucus gardneri/distichus/evanescens X* X* X* un X* O<br />

cb C Fucus spiralis X X X X<br />

np, a N Laminaria "groenlandica"/bongardiana X* X* O<br />

cb C Laminaria saccharina X* X* X O<br />

np N Laminaria yezoensis X* X* O<br />

ws C Leathesia difformis O<br />

cb C Melanosiphon intestinalis X X O<br />

ws C Petalonia fascia O<br />

ws C Pilayella littoralis/washingtonensis X* X* X X* O<br />

ws C Scytosiphon simplicissimus X* X* X un O<br />

np N Soranthera ulvoidea X* X* O<br />

ws C Sphacelaria rigidula O<br />

cb C Spongonema tomentosum O<br />

HETEROKONTOPHYTA, Xanthophyceae<br />

Val al-sbr al-pil slough duckflat Checklist<br />

ws C NR BC Vaucheria longicaulis () mats X* X* X<br />

CHLOROPHYTA, Chlorophyceae<br />

Val al-sbr al-pil slough duckflat Checklist<br />

cb C Acrosiphonia arcta X* X* X* O<br />

nep N Acrosiphonia coalita O<br />

np N Acrosiphonia saxatilis O<br />

cb C Blidingia chadefaudii O<br />

ws C NR BC Blidingia marginata X* X* X* X<br />

ws C Blidingia minima X* X* X* O<br />

cb C Blidingia subsalsa X* X* X* X* O<br />

cb C Chaetomorpha capillaris/cannabina O<br />

nep N NR Wa Chaetomorpha recurva O<br />

ws C Cladophora albida O<br />

ws C Cladophora sericea O<br />

ws C Enteromorpha clathrata O<br />

ws C Enteromorpha in compressa O<br />

ws C Enteromorpha intestinalis X* X* X* O<br />

ws C Enteromorpha linza O<br />

ws C Enteromorpha prolifera/torta X* X* X* X* X


Chapt 9C1. Marine Plants, page 9C1- 6<br />

Table 9C1.3. continued<br />

cb C Gayralia oxyspermum X* X* X<br />

cb C NR BC Halochlorococcum moorei X* X* X* X<br />

cb C Kornmannia zostericola (epiphytic) O<br />

cb C Monostroma grevillei/arcticum O<br />

ws C Rhizoclonium implexum X* X* X* X* O<br />

ws C Rhizoclonium riparium X* X* X* X* O<br />

ws C Rhizoclonium tortuosum O<br />

ws C Ulothrix implexa (non flacca ) X* X* X* X X* O<br />

np C# Ulva fenestrata /expansa/lactuca X* X* X* O<br />

cb C Ulvaria obscura X* X* X* O<br />

ws C Urospora penicilliformis X* X* X<br />

SEAGRASSES<br />

Val al-sbr al-pil slough duckflat Checklist<br />

cb C Zostera marina X* X* O<br />

LICHENS<br />

Val al-sbr al-pil slough duckflat Checklist<br />

cb C Verrucaria maura O<br />

cb C Verrucaria mucosa O<br />

Ra St NR So Val al-sbr al-pil slough duckflat Checklist<br />

TOTALS:<br />

Species 47 35 7 7 24 112<br />

New Records 5 1 1 1 4 7<br />

Abbreviations:<br />

! = abundant or common<br />

# = currently being examined with molecular techniques<br />

= uncertainty <strong>of</strong> identification<br />

al-sbr=Alyeska boat ramp and vicinity<br />

al-pil=Alyeska small boat harbor pilings<br />

BC=British Columbia<br />

C=cryptogenic<br />

cb=circumboreal<br />

Checklist=total records for Port Valdez including literature and the present study<br />

duckflat=Mudflat east <strong>of</strong> the town <strong>of</strong> Valdez<br />

N=native to North Pacific<br />

NAT=North Atlantic<br />

nep= northeast Pacific<br />

np= North Pacific<br />

NR = new record to Alaska<br />

nr = northward range extension within Alaska<br />

O= records from the literature and pilot study<br />

slough=Slough about 1 mile from Alyeska gate<br />

So=Closest source to PWS<br />

Stat=NIS Status (native, cryptogenic, introduced, etc)<br />

un= living unattached<br />

Val=Total records for Port Valdez for the present study<br />

Wa=Washington<br />

ws= widespread, occurring in North Pacific, North Atlantic, and Australia or New Zealand<br />

X*= current record noted with specimen<br />

X= current record noted in the field


Chapt 9C1. Marine Plants, page 9C1- 7<br />

TABLE 9C1.4. Marine and Estuarine Plants Collected at Shore***<br />

Sites in Prince William Sound<br />

NIS ANALYSIS<br />

HARBORS MUD BAYS HEADLANDS RK<br />

TAXA<br />

AND REEFS BAYS<br />

Ra St NR So Val Cor Whit CB SMB Gro RP Bus Green NW<br />

RHODOPHYTA, Rhodophyceae<br />

ws C Ahnfeltia fastigiata X* X*!<br />

nep N Antithamnionella pacifica X* X* X*<br />

ws C Antithamnionella spirographidis X X<br />

ws C Audouinella purpurea X* X*<br />

ws C Bangia atropurpurea X X* X* X*<br />

np N Bossiella cretacea X* X*<br />

nep N Bossiella plumosa X*<br />

nep N Callithamnion acutum X*<br />

nep N Callithamnion pikeanum v. laxum X*<br />

nep N Callithamnion pikeanum v. pikeanum X*<br />

cb C# Ceramium cimbricum X* X*<br />

nep I# NR Cal Ceramium sinicola (on Codium ) X*<br />

nep N# Ceramium gardneri X*<br />

nep N# Ceramium pacificum/washingtonensis X* X* X* X* X* X*!<br />

ws C# Ceramium rubrum/kondoi X* X*<br />

np N Constantinea subulifera X* X X* X*! X*!<br />

np N Corallina frondescens X* X* X* X<br />

np,ch N Corallina <strong>of</strong>ficinalis v. chilensis X* X* X*!<br />

nep N Cryptosiphonia woodii X* X* X* X* X* X* X*! X*<br />

nep N Delesseria decipiens X<br />

cb C Devaleraea ramentacea X X* X*<br />

cb C Dumontia contorta X* X* X* X* X X*<br />

np N Dumontia simplex X<br />

nep N Endocladia muricata X* X*<br />

ws C Erythrotrichia carnea X* X* X* X*<br />

np N Glioipeltis furcata X* X X* X* X* X* X*! X*!<br />

np,ar N Halosaccion firmum X X* X X X<br />

np N Halosaccion glandiforme X* X X* X X* X X*<br />

np N Leachiella pacifica X* X* X* X*<br />

nep N Mastocarpus papillatus complex X* X*<br />

np N Mastocarpus cf. pacificus X* X X* X* X X*<br />

np N Mazzaella phyllocarpa X X* X* X*! X* X*! X!<br />

nep N Mazzaella splendens X<br />

nep N Microcladia borealis X<br />

np N Neorhodomela aculeata X X X* X* X* X*! X*! X!<br />

np N Neorhodomela larix X X* X* X*<br />

np N Neorhodomela oregona X* X*! X X* X* X X*! X*! X*!<br />

np N Neoptilota asplenioides X* X X* X! X<br />

nep N Odonthalia floccosa X! X X*! X* X*! X*!<br />

np N Odonthalia setacea (drift) X*<br />

nep N Opuntiella californica X*<br />

np N Palmaria calophylloides/stenogona X X X X** X*!<br />

nep N Palmaria hecatensis X* X*! X* X* X<br />

cb C Palmaria mollis/palmata X* X! X* X X* X* X!<br />

np N Phycodrys riggii X X* X* X*


Chapt 9C1. Marine Plants, page 9C1- 8<br />

Table 9C1.4. continued<br />

nep N Platythamnion pectinatum X X X*<br />

np N Pleonosporium cf vancouverianum X*<br />

nep N Polysiphonia eastwoodae X*<br />

ws C Polysiphonia brodiaei X<br />

nep N Polysiphonia hendryi v. deliquescens X X<br />

nep N Polysiphonia hendryi v. hendryi X* X*<br />

nep N Polysiphonia pacifica v. determinata X*<br />

nep N Polysiphonia pacifica v. pacifica X* X* X* X*<br />

np,nz N nr SeA Polysiphonia senticulosa X* X* X* X* X* X*<br />

cb C Polysiphonia stricta (urceolata) X* X* X*<br />

nep N Porphyra cuneiformis X* X* X<br />

cb C NR Com Porphyra miniata X*<br />

nep N Porphyra nereocystis X*<br />

nep N NR Wa Porphyra rediviva X*<br />

np N Porphyra torta/abbottae X*<br />

np N Pterosiphonia bipinnata X* X* X* X* X* X* X* X*!<br />

cb C Ptilota serrata (incl. pectinata ) X* X* X* X*<br />

np,ar N Rhodymenia pertusa X X* X X* X!<br />

cb C Scagelia americana X* X* X* X* X* X*<br />

nep N Smithora naiadum X*<br />

np N Tokidadendron kurilensis X X* X*! X*!<br />

nep N Weeksia coccinea X* X X*<br />

HETEROKONTOPHYTA, Phaeophyceae<br />

Val Cor Whit CB SMB Gro RP Bus Green NW<br />

np N# Alaria taeniata/angusta/crispa X* X X<br />

np N# Alaria tenuifolia/pylaii//membranacea X*<br />

np N# Alaria praelonga/marginata X X* X* X*!<br />

cb C Agarum clathratum (cribrosum) X X* X*<br />

np N Analipus japonicus X X* X* X* X* X<br />

cb C Chorda filum X* X* X* X<br />

cb C Chordaria flagelliformis Xun X*! X* X* X* X* X* X*<br />

cb C Coilodesme bulligera X*<br />

ak E NR Coilodesme n. sp. X*<br />

np,nz N Colpomenia bullosa X*<br />

ws C Colpomenia peregrina X* X* X* X*<br />

np N Costaria costata X* X*<br />

np N Cymanthera triplicata X*<br />

np N Cystoseira geminata X*<br />

cb C NR Com Delamarea attenuata X* X*<br />

cb C Desmarestia aculeata X X X X X* X<br />

cb C Desmarestia viridis X X X*<br />

cb C Dictyosiphon foeniculaceus X* X*! X*! X* X* X* X* X* X* X<br />

ws C Ectocarpus siliculosus X<br />

cb C Elachista fucicola X* X X X*<br />

nep N Elachista lubrica X* X* X*<br />

cb C Eudesme virescens X* X* X* X*<br />

cb I NR NAT Fucus cottonii X* X* X* X*<br />

cb C Fucus gardneri/distichus/evanescens X* X*! X*! X X X* un X* X X*! X*<br />

cb C Fucus spiralis X X* X X X X! X!<br />

np,ar N Laminaria "groenlandica"/bongardiana X* X* X* X* X* X* X* X*!<br />

cb C Laminaria saccharina X* X X*! X* X!<br />

np N Laminaria yezoensis X* X*! X*


Chapt 9C1. Marine Plants, page 9C1- 9<br />

Table 9C1.4. continued<br />

ws C Leathesia difformis X X X* X! X<br />

nep N Leathesia nana X* X* X* X*<br />

nep F Macrocystis integrifolia X* drift<br />

cb C Melanosiphon intestinalis X X*! X* X* X* X* X* X*<br />

ws C Pilayella littoralis/washingtonensis X* X* X* X* X* X* X X X*<br />

ws C nr SeA Punctaria latifolia X* X*<br />

ak E Punctaria lobata X*<br />

cb C NR Jap Punctaria plantaginea* X X* X X X*<br />

cb C Punctaria tenuissima X*<br />

cb C Ralfsia fungiformis X* X*<br />

np N Saundersella simplex X* X*<br />

ws C Scytosiphon simplicissimus X* X* X* X* X X* X* X*<br />

np N Soranthera ulvoidea X* X* X X* X X* X* X*<br />

np N Soranthera ulvoidea f. difformis X* X*<br />

cb C Sphacelaria racemosa X* X*<br />

ws C Sphacelaria rigidula X X* X* X*<br />

HETEROKONTOPHYTA, Xanthophyceae<br />

Val Cor Whit CB SMB Gro RP Bus Green NW<br />

ws C NR BC Vaucheria longicaulis () X* X*!<br />

CHLOROPHYTA, Chlorophyceae<br />

Val Cor Whit CB SMB Gro RP Bus Green NW<br />

cb C Acrosiphonia arcta X* X* X*! X X* X* X* X X*<br />

np N Acrosiphonia saxatilis X* X* X*<br />

ws C NR BC Blidingia marginata X*<br />

ws C Blidingia minima X* X* X* X* X X* X* X*<br />

cb C Blidingia subsalsa X* X* X*<br />

cb C NR BC Capsosiphon fulvescens X*<br />

ws C Cladophora albida X* X* X* X* X X* X*<br />

cb C Cladophora hutchinsiae X*<br />

ws C Cladophora sericea X X* X X* X* X* X* X* X*!<br />

np N Cladophora stimpsonii X* X*<br />

nep N nr SeA Codium fragile subsp. fragile X*<br />

ws I# NR Wa Codium fragile subsp. tomentosoides X*<br />

ws C Enteromorpha intestinalis X* X* X X X X X<br />

ws C Enteromorpha linza X*! X X* X* X<br />

ws C Enteromorpha prolifera/torta X* X X* X* X* X X*<br />

cb C Gayralia oxyspermum X* X X X*<br />

cb C NR BC Halochlorococcum moorei X* X*<br />

cb C Kornmannia zostericola (epiphytic) X*<br />

cb C NR NAT Kornmannia leptoderma (epilithic) X*<br />

nep N NR Wa Monostroma fractum X* X*<br />

cb C Monostroma grevillei/arcticum X X X* X*<br />

ws C Percursaria percursa X* X*<br />

ws C Rhizoclonium implexum X*<br />

ws C Rhizoclonium riparium X*<br />

ws C Rhizoclonium tortuosum X* X* X* X* X<br />

ws C Ulothrix implexa (non flacca ) X* X* X<br />

ws C# Ulva fenestrata /expansa/lactuca X* X* X X* X* X* X* X*<br />

cb C Ulvaria obscura X* X X* X X*<br />

np N Ulvella setchellii X*<br />

ws C Urospora penicilliformis X* X


Chapt 9C1. Marine Plants, page 9C1- 10<br />

Table 9C1.4. Continued<br />

SPERMATOPHYTA, Seagrasses<br />

Val Cor Whit CB SMB Gro RP Bus Green NW<br />

cb C Zostera marina X* X* X* X X* X X*<br />

nep N Phyllospadix scouleri X X*<br />

nep N Phyllospadix serrulatus X<br />

LICHENS<br />

Val Cor Whit CB SMB Gro RP Bus Green NW<br />

cb C Verrucaria maura X X X<br />

47 41 56<br />

TOTALS: Species (total =146)<br />

47 41 56 10 45 63 61 59 71 69<br />

New Records (total =17)<br />

5 5 2 2 5 4 2 2 6 1<br />

GROUP TOTALS (with overlap excluded):<br />

Harbors Mud Bays Headlands Rk Bays<br />

Species in Merged Groups 87<br />

78<br />

96<br />

69<br />

New Records in Merged Groups 8<br />

7<br />

8<br />

1<br />

Abbreviations:<br />

Site Abbreviations and Dates:<br />

! = abundant or common Bus=Busby Island south reef, 21 June<br />

# = currently being examined with molecular techniques CB=Cloudman Bay, East Bleigh I, 21 June<br />

***=shore sites include both shore and marina sites<br />

Cor=Cordova, 23 June<br />

= uncertainty <strong>of</strong> identification Green=Green Island, northwest point, 24 June<br />

ak=Alaska<br />

Gro=Growler Island, near resort, 27 June<br />

ar=arctic<br />

NW=Northwest Bay, Knight Island, 25 June<br />

BC=British Columbia<br />

RP=Rocky Point headland, 22 June<br />

C=cryptogenic<br />

SMB=Saw Mill Bay, 22 June<br />

Cal=California<br />

V-Ck=Port Valdez checklist (all records known)<br />

cb=circumboreal Val=all Port Valdez collections, June 1998<br />

Ch=Chile<br />

Whit=Whittier, 26 June<br />

Com=Commander Islands, Russia<br />

Cor=Cordova<br />

drift= dying unattached<br />

E=endemic to Alaska<br />

F=failed introduction<br />

I=possible introduction<br />

Jap=Japan<br />

N=native to North Pacific<br />

NAT=North Atlantic<br />

nep= northeast Pacific<br />

np=North Pacific<br />

NR = new record to Alaska<br />

nr = northward range extension within Alaska<br />

nz=New Zealand<br />

O=Presence known from the Pilot Study and literature<br />

Ra=Distribution Range<br />

RK=rocky<br />

SEA=Southeast Alaska<br />

So=Closest source to PWS<br />

St=range status (see N, C, E, and I)<br />

un= living unattached<br />

Wa=Washington<br />

ws= widespread, occurring in North Pacific, North Atlantic, and Australia or New Zealand<br />

X*=Presence known from the current study; specimens available<br />

X=Presence known from the current study; no specimen taken


Chapt 9C1. Marine Plants, page 9C1- 11<br />

TABLE 9C1.5. Marine Algae Collected from Off-Shore*** Floats<br />

in Prince William Sound, June 1998<br />

NIS ANALYSIS<br />

TAXA Float FLOATS<br />

Only<br />

Range Stat NR So Cklist TAT WBF MBF EIF SBF EBF on floats<br />

CYANOPHYTA, Cyanophyceae<br />

ws C Calothrix crustacea X X* **<br />

ws C Rivularia atra X X* **<br />

RHODOPHYTA, Rhodophyceae<br />

nep N Antithamnionella pacifica X X*<br />

cb I NR SD Chroodactylon ramosum X X* **<br />

nep N nr SeAk Polysiphonia senticulosa X X*<br />

ws C Polysiphonia urceolata X X* **<br />

cb C Scagelia americana X X*<br />

HETEROKONTOPHYTA, Phaeophyceae<br />

nep N Coilodesme californica X X* **<br />

ak E NR Coilodesme n. sp. X X*<br />

np N Cystoseira geminata X X*<br />

cb C NR Com Delamarea attenuata X X*<br />

nep N nr BC Ectocarpus acutus X X* **<br />

nep N nr BC Ectocarpus dimorpha X X* **<br />

nep N Ectocarpus parvus X X* **, V-CK<br />

Ectocarpus sp. (Acinetospora ) X*<br />

Giffordia sp. X*<br />

np N Laminaria groenlandica X X*<br />

ws C Laminaria saccharina X X* X*<br />

np N Laminaria yezoensis X X*<br />

cb C Melanosiphon intestinalis X X*<br />

cb I NR Jap Microspongium globosum X X* **<br />

ws C Pilayella littoralis X X*<br />

Pilayella sp. (elongate X*<br />

intercalary structures)<br />

cb C NR Jap Punctaria plantaginea X X*<br />

cb C nr SeAk Punctaria latifolia (Desmotrichum ) X X*<br />

ws C Scytosiphon simplicissima X X*<br />

CHLOROPHYTA, Chlorophyceae<br />

ws C Cladophora albida X X* X*<br />

ws C Cladophora sericea X X* X* X*<br />

ws C Enteromorpha prolifera/torta X X*<br />

ws C Percursaria percursa X X*<br />

TOTALS: 27 17 1 4 1 4 7 9<br />

New Records 9 4 1 1 0 0 3 4<br />

Abbreviations:<br />

*=Specimen available LJ=LaJolla, California Float Sites and Dates (Coord. with JC)<br />

**=Only on floats in this study N=native EBF=Eaglek Bay floats, 26 June<br />

***=Sites accessed by boat nep=northeast Pacific EIF=Ester Island float, 25 June<br />

BC=British Columbia np=North Pacific MBF=Main Bay barrier buoy, 25 June<br />

C=cryptogenic nr=new record from neighboring area SBF=Squaw Bay float, 26 June<br />

cb=circumboreal NR=new record from remote area TAT=Oyster floats near Tatilek, 21 & 22 June<br />

Com=Commander Islands, SeAk=Southeast Alaska WBF=Windy Bay floats, 23 June<br />

Jap=Japan V-Ck=also known from the Valdez Checklist Float Cklist=species used in this study<br />

ws=widespread


Chapt 9C1. Marine Plants, page 9C1- 12<br />

Species were then categorized as to whether they were new distribution records (NR) to the area.<br />

These included species that had never before been reported from Prince William Sound (nr) or<br />

Alaska (NR). In each <strong>of</strong> these cases, the closest known records to the area were given as the<br />

source (So). Since the new records seemed to be the most likely category in which to find<br />

recognizable NIS, they are highlighted in gray throughout the charts and tables.<br />

This preliminary quantification <strong>of</strong> marine plant species and NIS in Prince William Sound<br />

required a number <strong>of</strong> lengthy, detailed steps. After gathering, identifying, and curating all <strong>of</strong> the<br />

species, site lists had to be prepared and both local and global biogeographic information<br />

compiled. Then, with this information in hand, the residency status and new distribution records<br />

<strong>of</strong> each species were determined. Only after all <strong>of</strong> this was completed could NIS begin to be<br />

recognized. Since many <strong>of</strong> the steps in this process revealed important data that characterized not<br />

only NIS but the marine flora in general, this report presents the site lists in their entirety and<br />

then summarizes the results for comparative purposes in tables and graphs. Since the results are<br />

lengthy, they have been organized into the following 7 major parts that are presented below:<br />

• The Species Lists by Site, including Port Valdez, Shore, and Floats.<br />

• The Total Species Numbers and Composition <strong>of</strong> the Individual Sites.<br />

• Total Species Numbers and Composition in each Habitat Type.<br />

• Native, Cryptogenic, and Introduced Species and their Taxonomic Composition.<br />

• Native, Cryptogenic, and Introduced Species in the Habitat Types.<br />

• New Species Records and Probable Introductions.<br />

• Comments on the Five Probable Introductions and One Important Failed Introduction.<br />

Results<br />

During our 9-day search for NIS in Port Valdez and Prince William Sound, 489 plant<br />

samples were processed (Table 9C1.6). These samples contained 155 different species<br />

dominated by the red (Rhodophyceae), brown (Phaeophyceae), and green (Chlorophyceae)<br />

algae, in that order. Among these species, 21 were found to be new records to the area, and, <strong>of</strong><br />

these, at least 5 appear to be introduced. In addition, 70 species were found to be cryptogenic,<br />

some <strong>of</strong> which have suspicious characteristics <strong>of</strong> NIS.<br />

TABLE 9C1.6. Collection Data*<br />

TAXONOMIC SAMPLES<br />

TOTAL NEW<br />

GROUP Total Herb. Form. SPECIES RECORDS<br />

Rhodophyceae 199 135 64 69 5<br />

Phaeophyceae 162 120 42 49 8<br />

Chlorophyceae 117 99 18 30 7<br />

Xanthophyceae 2 2 0 1 1<br />

Seagrasses 7 4 3 3 0<br />

Lichens 0 0 0 1 0<br />

Cyanophyceae 2 1 1 2 0<br />

Total, June 1998 489 361 128 155 21<br />

Abbreviations:<br />

* =Samples and species counts are only for the June 1998 trip.<br />

Herb.=Pressed herbarium sheets<br />

Form.=Bottles <strong>of</strong> preserved specimens


Chapt 9C1. Marine Plants, page 9C1- 13<br />

The total species and new species records/collecting site were correlated with collection<br />

time (Fig. 9C1.1). Longer collecting periods yielded more species at an R 2 value <strong>of</strong> 43%. New<br />

records, on the other hand, appear to be almost unaffected by collection time, showing an R 2 <strong>of</strong><br />

only 7%.<br />

FIG. 9C1.1. Collection Efficiency<br />

80<br />

180<br />

Total Species<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

Val<br />

al-sbr<br />

al-pil<br />

slough<br />

duckflat<br />

Cor<br />

Whit<br />

10<br />

0<br />

Major Collection Sites<br />

CB<br />

SMB<br />

Gro<br />

RP<br />

Bus<br />

Green<br />

NW<br />

New Records<br />

Total Species<br />

Collection Time<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Collection Time (minutes)<br />

The Site Species Lists. Species <strong>of</strong> marine and estuarine plants identified at all sites sampled<br />

during our June 1998 survey are listed in Tables 9C1.3, 9C1.4, and 9C1.5. The plants sampled<br />

were predominantly macrobenthic marine algae <strong>of</strong> the Rhodophyceae, Phaeophyceae,<br />

Chlorophyceae, Xanthophyceae, and Cyanophyceae along with several species <strong>of</strong> seagrasses and<br />

marine lichens. Species occurrence at the various sites is designated with an X in the lists. If<br />

samples were taken and curated for identification purposes, the species are listed with an X*,<br />

indicating that vouchers are available in the OSU/HMSC herbarium for study. In addition, each<br />

species is categorized for several biogeographic features that are necessary for the NIS Analysis,<br />

explained in the Methods section above.<br />

• Species <strong>of</strong> Port Valdez. Samples from 4 sampling sites in Port Valdez included 47 algal<br />

species and 5 new records (Table 9C1.3). The sites covering the largest areas (the Alyeska<br />

small boat ramp and the duckflat) contained the majority <strong>of</strong> the species. The highest species<br />

count occurred at the Alyeska boat ramp where the greatest amount <strong>of</strong> hard substratum was<br />

available for algal settlement. The highest number <strong>of</strong> new records occurred in the duckflat.<br />

A few <strong>of</strong> these species are good candidates for NIS status. However, their lack <strong>of</strong> earlier<br />

discovery may have an obvious explanation. Mudflats, like the duckflat, are not only<br />

notoriously poor habitats for most marine algae, but they can be dangerous in Alaska.<br />

Therefore, earlier phycologists avoided many <strong>of</strong> these areas. Knowing this to be true, it was<br />

possible to predict the occurrence <strong>of</strong> some new records (e.g., Fucus cottonii and Vaucheria<br />

longicaulis) in the mudflats and sloughs. Also shown in Table 9C1.3 is a Checklist <strong>of</strong> Algal<br />

Species for Port Valdez, which includes the species collected from the 1998 sampling, as


Chapt 9C1. Marine Plants, page 9C1- 14<br />

well as those found previously during the 1997 Pilot Study (Ruiz & Hines, 1997) and the<br />

literature (Calvin and Lindstrom, 1980, and Weigers et al., 1997). In addition to our summer<br />

sampling, this list includes year-round collections taken by the earlier investigators. The<br />

total count for the entire Port Valdez area, including these earlier records, amounts to 112<br />

species.<br />

• Species <strong>of</strong> Shore Sites. Shore sites include all intertidal areas and marinas sampled during<br />

the June 1998 cruise, along with the combined records for Port Valdez (Table 9C1.4). These<br />

10 sites covered a wide range <strong>of</strong> habitats, which were grouped into 4 major habitat types:<br />

Harbors, Mud Bays, Headlands and Reefs, and Rocky Bay (presented in more detail below).<br />

The overall species count for all <strong>of</strong> the shore areas was 146 species with 17 new records.<br />

The highest species diversity occurred at Green Island, Northwest Bay, and Growler Island,<br />

all <strong>of</strong> different habitat types; while the highest number <strong>of</strong> new records occurred at Green<br />

Island, Saw Mill Bay, Cordova, and Port Valdez, also a mixture <strong>of</strong> habitat types. Only two<br />

species (Dictyosiphon foeniculaceus and Fucus gardneri ) were found at all shore sites<br />

sampled. Four others (Cladophora sericea, Acrosiphonia arcta, Pilayella littoralis, and<br />

Neorhodomela oregona) were found at all but one site (and were possibly overlooked there).<br />

Numerous species (31) were common to all <strong>of</strong> the habitat types, but there were also an<br />

extraordinary number <strong>of</strong> species that appeared to be limited to only 1 habitat type (17 were<br />

found only in harbors, 9 only in mud bays, 19 only on headlands and reefs, and 5 only in<br />

rocky bays). Two species restricted to harbors are new records to the area: Porphyra<br />

rediviva, a newly discovered free-floating marsh plant that could be easily transported by<br />

ships, and Vaucheria longicaulis , a species unique to high mudflats that is common to many<br />

southern west coast harbors. Although not a new record, another interesting harbor species is<br />

Antithamnionella spirographidis. This species is reported to be common to harbors in British<br />

Columbia and is thought to be introduced to that area (Lindstrom in DeWreede 1996).<br />

However, its circumboreal and Australian existence leads me to categorize it as cryptogenic<br />

in this paper.<br />

• Species from Floats. Marine plants were sampled from five oyster floats and one barrier buoy<br />

(MBF) (Table 9C1.5). A total <strong>of</strong> 27 different algal species were identified from the floats.<br />

Of these, 9 were not collected at any <strong>of</strong> the other sites during our trip. Most <strong>of</strong> these unique<br />

species are small and could have been overlooked in other areas, but several are species that<br />

probably could only find suitable habitat on the floats. Over half the 27 species collected are<br />

well-known fouling organisms (e.g., Cladophora sericea, Pilayella littoralis, and<br />

Polysiphonia urceolata). Nine new species records, the highest habitat number in our<br />

survey, were also found on the floats. This may be related to the fact that most <strong>of</strong> the floats<br />

sampled are used in aquaculture, which could be a source <strong>of</strong> introductions. The highest<br />

counts for both species and new records occurred on the floats at Tatitlek Narrows (TAT)<br />

and Eaglek Bay (EBF) used in active oyster culture. Two <strong>of</strong> the new records found at these<br />

sites (Chroodactylon ramosum and Microspongium globosum) and possibly more are thought<br />

to be introduced. One species (Polysiphonia senticulosa) is considered to be a range<br />

extension from southeast Alaska, but it is already widespread in Prince William Sound. This<br />

species is presumably native in Washington to Southeast Alaska, and was recently reported<br />

to be introduced and pervasive in New Zealand (Nelson and Maggs, 1996).


Chapt 9C1. Marine Plants, page 9C1- 15<br />

The Total Number <strong>of</strong> Species and Species Composition <strong>of</strong> the Individual Sites. The overall<br />

number <strong>of</strong> species was 155 for all sites, but the numbers <strong>of</strong> species per site ranged from only 10<br />

to 71 species, indicating that there is considerable variation in species composition among<br />

habitats (Table 9C1.7, Fig. 9C1.1, 9C1.2). The 21 new records across all areas ranged from 1 to<br />

9 at the individual sites and was highest on floats. The highest species count (71 species)<br />

occurred at Green Island, the most exposed and highly saline site. At this site, the proportion <strong>of</strong><br />

red algal species was nearly 2 times that <strong>of</strong> the brown algae and 4 times that <strong>of</strong> the greens. The<br />

lowest species count (10 species) occurred at Cloudman Bay, a sheltered, estuarine mud bay. At<br />

this site there were almost no red algae, and the brown algae were more abundant than the<br />

greens.<br />

Table 9C1.7. Total Species Numbers and Composition at Each Site, June 1998<br />

Taxonomic Group Val Cor Whit CB SMB Gro RP Bus Green NW Floats Total* V-Total**<br />

Rhodophyceae 18 12 23 1 15 26 27 27 40 37 5 69 84<br />

Phaeophyceae 13 11 14 5 20 24 23 21 21 22 16 49 52<br />

Chlorophyceae 14 16 17 3 9 12 9 8 10 9 4 30 36<br />

Xanthophyceae 1 1 0 0 0 0 0 0 0 0 0 1 1<br />

Seagrasses 1 1 1 1 1 1 1 3 0 0 0 3 3<br />

Lichens 0 0 1 0 0 0 1 0 0 1 0 1 2<br />

Cyanophyceae 0 0 0 0 0 0 0 0 0 0 2 2 2<br />

TOTALS 47 41 56 10 45 63 61 59 71 69 27 155 180<br />

NEW RECORDS 5 5 2 2 5 4 2 2 6 1 9 21 23<br />

Abbreviations: Sites as in Table 1; Val=the Port Valdez collections combined; Floats=the float collections combined;<br />

Total*=with overlap and earlier collections excluded; V-Total**=Total* with the Port Valdez Checklist species included.<br />

Figure 9C1.2. Total Species Numbers and<br />

Composition at each Site, June 1998<br />

80<br />

70<br />

60<br />

Total Species<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Val Cor Whit CB SMB Gro RP Bus Green NW Floats<br />

Collecting Sites<br />

Rhodophyceae Phaeophyceae Chlorophyceae<br />

Xanthophyceae Seagrasses Lichens<br />

Cyanophyceae<br />

Total Species Numbers and Composition in each Habitat Type. Since several sampling sites<br />

had mixed habitats, categorizing the sites into distinct habitat types had some weaknesses.<br />

However, it increased the number <strong>of</strong> species sampled for each category <strong>of</strong> habitat, providing<br />

more power to the data analysis (Table 9C1.8, Fig. 9C1.3a, b).


Chapt 9C1. Marine Plants, page 9C1- 16<br />

TABLE 9C1.8. Habitat Type and Species Composition<br />

Taxonomic Group Valdez Harbors Mud Bays Rk Bays Headlands Floats Total<br />

Rhodophyceae 18 37 31 37 48 5 69<br />

Phaeophyceae 13 22 31 22 30 16 49<br />

Chlorophyceae 14 25 15 9 14 4 30<br />

Xanthophyceae 1 1 0 0 0 0 1<br />

Seagrasses 1 1 1 0 3 0 3<br />

Lichens 0 1 0 1 1 0 1<br />

Cyanophyceae 0 0 0 0 0 2 2<br />

Total 47 87 78 69 96 27 155<br />

Fig 3a. Habitat Type and<br />

Species Composition<br />

120<br />

100<br />

Total Species<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Valdez<br />

Harbors<br />

Mud Bays<br />

Rk Bays<br />

Headlands<br />

Floats<br />

Habitat Type<br />

Rhodophyceae Phaeophyceae Chlorophyceae<br />

Xanthophyceae Seagrasses Lichens<br />

Cyanophyceae<br />

Fig. 3b. Habitat Type and<br />

Percentage Composition<br />

100%<br />

80%<br />

Percentage Composition<br />

60%<br />

40%<br />

20%<br />

0%<br />

Valdez Harbors Mud Bays Rk Bays Headlands Floats<br />

Habitat Type<br />

Rhodophyceae Phaeophyceae Chlorophyceae<br />

Xanthophyceae Seagrasses Lichens<br />

Cyanophyceae


Chapt 9C1. Marine Plants, page 9C1- 17<br />

The 5 habitat types with their features and included sites are:<br />

• Harbors* (Val, Cor, and Whit). Sheltered areas with variable salinities (0-28 ppt) and<br />

variable substrates including mud, cobble, and wood (the pilings). Heavily influenced by<br />

boat traffic and other human activities. [* Note that Port Valdez (Val), also included in the<br />

Harbor group, is included separately in several <strong>of</strong> the tables to show the comparable diversity<br />

<strong>of</strong> this targeted site.]<br />

• Mud Bays (CB, SMB, Gro). Sheltered bays with salinity ranges from 3-11 ppt with a<br />

substratum <strong>of</strong> primarily mud, although cobble and bedrock was <strong>of</strong>ten available.<br />

• Rocky Bays (RB). One semi-sheltered bay with a salinity ranging from 10-27 ppt and a<br />

substratum varying from gravel to cobble to bedrock.<br />

• Headlands and Reefs (RP, Bus, Green). Very exposed habitats with salinity ranges from 15-<br />

30 ppt and a substratum consisting almost totally <strong>of</strong> bedrock and cobble.<br />

• Floats (TAT, WBF, MBF, EIF, SBF, EBF). Exposed to semi-sheltered <strong>of</strong>f-shore habitats.<br />

Salinities ranged from 16-28 ppt and substrata included 5 plastic oyster floats and line and 1<br />

cement buoy (MBF).<br />

Headlands and reefs with high exposure and high salinity had the greatest species<br />

diversity. As would be expected for temperate zones, they are dominated in descending order by<br />

red, brown, and green algae. Surprisingly, the next largest diversity <strong>of</strong> species occurred in the<br />

harbors. Although the red algae also predominated there, harbors had a large number <strong>of</strong> green<br />

algae. In the mud bays and on <strong>of</strong>f-shore floats, there was a tendency for increase in the<br />

percentage <strong>of</strong> brown algae. However, since total species number varies among habitat types,<br />

composition <strong>of</strong> algal groups may be partly an artifact <strong>of</strong> small number <strong>of</strong> species at the low<br />

diversity sites.<br />

The numbers <strong>of</strong> new records among the various habitat types were fairly uniform except<br />

in rocky bays where the sample size (1 bay) was small (Table 9C1.9). The slight increase in<br />

numbers on floats may be significant, but overall, the data indicate that habitat type has little to<br />

do with the discovery <strong>of</strong> new species records.<br />

TABLE 9C1.9. Habitat Type and New Species Records<br />

Valdez Harbors Mud Bays Headlands Rk Bays Floats (pvc/ Totals*<br />

TAXONOMIC (mixed) (mixed) (mud/cob) and Reefs (gravel/cob) concrete)<br />

GROUP SP NR SP NR SP NR SP NR SP NR SP NR SP NR %<br />

Rhodophyceae 18 1 37 2 31 1 48 2 37 1 5 2 69 5 7<br />

Phaeophyceae 13 1 22 2 31 4 30 4 22 0 16 7 49 8 16<br />

Chlorophyceae 14 2 25 3 15 2 14 2 9 0 4 0 30 7 23<br />

Xanthophyceae 1 1 1 1 0 0 0 0 0 0 0 0 1 1<br />

Seagrasses 1 0 1 0 1 0 3 0 0 0 0 0 3 0<br />

Lichens 0 0 1 0 0 0 1 0 1 0 0 0 1 0<br />

Cyanophyceae 0 0 0 0 0 0 0 0 0 0 2 0 2 0<br />

Total 47 5 87 8 78 7 96 8 69 1 27 9 155 21<br />

% Habitat Total 11 9 9 8 1 33 14<br />

% NR Total (21) 24 38 33 38 5 43 100<br />

* = excludes overlapping records<br />

cob= cobble


Chapt 9C1. Marine Plants, page 9C1- 18<br />

Native, Cryptogenic, and Introduced Species and their Taxonomic Composition. Of the 155<br />

total algal species found, 52% are native, 45% are cryptogenic, and 3% (5 species) appear to be<br />

introduced (Table 9C1.10, Fig. 9C1.4). The taxonomic composition <strong>of</strong> these groups parallels the<br />

findings in the Pilot Study survey for Port Valdez. The native species contain a very large<br />

percentage <strong>of</strong> red algae, about 64% <strong>of</strong> the total. The brown algae make up 27% <strong>of</strong> the natives,<br />

and the greens only 6%. The composition <strong>of</strong> the cryptogenic forms is almost the reverse. The<br />

red algae are only about 23% <strong>of</strong> the total count, while the browns and the greens both average<br />

about 35%.<br />

Table 9C1.10. Native, Cryptogenic, and Introduced<br />

Species and their Taxonomic Composition<br />

Taxonomic<br />

Group Total N<br />

Status**<br />

C I NR<br />

Rhodophyceae 69 51 16 2 5<br />

Phaeophyceae 49 22 25 2 8<br />

Chlorophyceae 30 5 24 1 7<br />

Xanthophyceae 1 0 1 0 1<br />

Seagrasses 3 2 1 0 0<br />

Lichens 1 0 1 0 0<br />

Cyanophyceae 2 0 2 0 0<br />

Totals 155 80 70 5 21<br />

% <strong>of</strong> Total 100 52 45 3 14<br />

NR 21 7 9 5<br />

** = For simplification, 2 endemics and 1 failed introduction are included with the natives.<br />

N=native, C=cryptogenic, I=potentially introduced, NR=new records<br />

Fig. 9C1.4. Residency Status and<br />

Taxonomic Composition<br />

180<br />

160<br />

Total Species<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

Cyanophyceae<br />

Lichens<br />

Seagrasses<br />

Xanthophyceae<br />

Chlorophyceae<br />

Phaeophyceae<br />

Rhodophyceae<br />

20<br />

0<br />

Total N C I NR<br />

Status<br />

Of the 21 new species records across all habitats, 5 were red algae, 8 brown, 7 green, and<br />

1 was a Xanthophyte (Table 9C1.9), reflecting a fairly uniform distribution <strong>of</strong> new records across<br />

at least the 3 major taxonomic groups. However, the percentage <strong>of</strong> new species records by group<br />

increased dramatically from red to brown to green algae. It is possible that this increase relates,<br />

in part, to our overall level <strong>of</strong> taxonomic understanding in each <strong>of</strong> these 3 major classes. Since<br />

stable morphological features usable in taxonomy decrease as one moves from the red to the<br />

brown to the green algae, ease <strong>of</strong> accurate identification likewise decreases. Hence, it is likely


Chapt 9C1. Marine Plants, page 9C1- 19<br />

that our knowledge <strong>of</strong> the Alaskan flora is correspondingly most complete for the reds, then the<br />

browns, and lastly the greens.<br />

Native, Cryptogenic and Introduced Species by Habitat Types. In all habitat types except the<br />

floats, the native and cryptogenic species were fairly evenly distributed and ranged from 44 to<br />

55% <strong>of</strong> the species (Table 9C1.11, Fig. 9C1.5a, b). However, there were some predictable<br />

reversals <strong>of</strong> dominance. In the harbors and mud bays and on the floats, the cryptogenic species<br />

were the most abundant, while on the headlands and reefs and in the rocky bays, the native<br />

species predominated. This reversal reflects the confounding effect <strong>of</strong> variation in groups among<br />

habitats (Figs. 9C1.3a, b). Since red algae predominated on the reefs and rocky bays (and green<br />

algae are relatively low in numbers), native species, consisting mostly <strong>of</strong> red algae, were also<br />

predominant there. On the other hand, in harbors and mud bays red algae were not as common<br />

(and green algae are more abundant); hence the numbers <strong>of</strong> native species were lower in those<br />

habitats. The reefs and rocky bays were under-collected in most cases, weakening the<br />

conclusions about algal species in these areas. On floats the cryptogenic forms consisted <strong>of</strong><br />

55% <strong>of</strong> the species while the native species consisted <strong>of</strong> only 37%. Since most <strong>of</strong> the floats<br />

sampled were from oyster farms, it is likely that they are periodically cleaned. Each cleaning <strong>of</strong><br />

the floats would provide cleared primary substrata for ephemeral (opportunistic) species that are<br />

quick to colonize and reproduce. Since ephemeral species are most <strong>of</strong>ten cryptogenic, their<br />

higher percentage may be understandable.<br />

Table 9C1.11. The Native, Cryptogenic, and Introduced<br />

Species Occurring in Each Major Habitat<br />

Residency<br />

Status Harbors<br />

Habitat Types<br />

Mud Bays Headlands Rk Bays Floats Totals<br />

Native* 38 35 52 36 10 80<br />

Cryptogenic 48 42 42 33 15 70<br />

Introduced 1 1 2 0 2 5<br />

Totals 87 78 96 69 27 155<br />

New Records 8 7 8 1 9 21<br />

*2 endemics and 1 failed introduction (under rk bay browns) are included in natives.<br />

Total Species<br />

Fig 9C1.5a. Species Residency Types<br />

Occurring in Each Major Habitat<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

% <strong>of</strong> Habitat<br />

Fig 9C1.5b. Major Habitats and Residency<br />

Type Composition<br />

100%<br />

80%<br />

60%<br />

40%<br />

20%<br />

Harbors<br />

Mud Bays<br />

Habitat Type<br />

Headlands<br />

Rk Bays<br />

Floats<br />

Introduced<br />

Cryptogenic<br />

Native*<br />

0%<br />

Harbors<br />

Mud Bays<br />

Habitat Types<br />

Headlands<br />

Rk Bays<br />

Floats<br />

Introduced<br />

Cryptogenic<br />

Native*


Chapt 9C1. Marine Plants, page 9C1- 20<br />

New Species Records and Probable Introductions. The 21 new species records for the June<br />

1998 trip are the most likely candidates to be NIS; however, several factors should be considered<br />

further before the status <strong>of</strong> the species can be determined definitively (Table 9C1.12). Since all<br />

<strong>of</strong> the new records appeared to have been overlooked for at least some period <strong>of</strong> time, the<br />

obvious questions related to why this oversight occurred are:<br />

TABLE 9C1.12. New Records <strong>of</strong> Benthic Marine Algae to Prince William Sound<br />

(species overlooked, misidentifications, range extensions, and possible introductions)<br />

Justification Stat Taxon Location Type Ra So C Comments<br />

Rhodophyta, Rhodophyceae<br />

gi I Ceramium sinicola Green Exp nep Cal 3 epiphyte, MB in progress<br />

gi, sol I Chroodactylon ramosum TAT F cb S. Cal. 1 microscopic<br />

rex N Polysiphonia senticulosa RP, Cor, Whit, Bus, All np,nz SeAk 1 easy to recognize<br />

Green, NW, TAT ex M invasive<br />

mid C Porphyra miniata Gro M cb Com. 2 MB in progress<br />

mid N Porphyra redidiva Val (duckflat) M nep Wa 1 recently described<br />

Heterokontophyta, Phaeophyceae<br />

mid E Coilodesme n. sp. Green, TAT Exp, F ak 1 epiphyte, morph. needed<br />

mid C Delamaraea attenuata SMB, Bus, EBF Exp, F cb Com 1 recently illustrated<br />

rex N Ectocarpus acutus MBF, EBF F nep BC 1<br />

rex N Ectocarpus dimorphus EBF F nep BC 1<br />

gi I Fucus cottonii Val (slough), SMB, M cb N. Atl 1 common in marshes<br />

CB, Gro<br />

MB in progress<br />

gi, sol I Microspongium globosum EBF F cb Jap, N. Atl 1 microscopic<br />

rex C Punctaria latifolia TAT, SMB, RP Exp, F cb SeAk 1<br />

mid C Punctaria plantaginea SMB, Cor, Whit, All cb N. Atl. 1 some think cold water<br />

Green, Gro ex F form <strong>of</strong> latifolia<br />

Heterokontophyta, Xanthophyceae<br />

reproductive material<br />

sol, rex C Vaucheria longicaulis Val, Cor M, H ws BC 3 needed to confirm sp.<br />

Chlorophyta, Chlorophyceae<br />

rex C Blidingia marginata Val M ws BC 1<br />

sol, rex C Capsosiphon fulvescens CB M cb BC 1 microscopic<br />

rex N Codium fragile* (NE Pacific form) Green Exp nep SeAk 1 epi=C. sinicola <br />

gi I Codium fragile<br />

subsp. tomentosoides Green Exp ws Wa. 2 MB needed for subsp.<br />

sol, rex C Halochlorococcum moorei Val, Cor H cb BC 1 microscopic, endophytic<br />

mid, sol C Kornmannia leptoderma non<br />

zostericola (epilithic) Cor H cb N. Atl. 2 Culture work needed<br />

mid, sol N Monostroma fractum Gro M nep Wa. 2 Culture work needed<br />

Abbreviations: (see earlier charts)<br />

* = Recently also reported in O’Clair et al. , 1996, morph.=morphological studies<br />

from my earlier EVOS collections<br />

rex=range extension<br />

Category=preliminary decisions based on<br />

sol=species overlooked<br />

morphological and distributional features<br />

Stat=residency status<br />

and the literature available<br />

Type=habitat type<br />

ex=except<br />

Exp=exposed cobble<br />

C=Certainty <strong>of</strong> Idenfication<br />

F=on floats<br />

1=absolute certainty<br />

H=harbor, on cobble<br />

2=Morphological identity but additional<br />

gi=geographic isolation study (eg, MB or cultures) needed<br />

I=likely introduction<br />

3=Vegetative morphology similar, but reproductive<br />

ID=identification or MB data needed for positive identification<br />

M=mud<br />

MB=molecular biological study<br />

mid=earlier misidentification


Chapt 9C1. Marine Plants, page 9C1- 21<br />

• Are any <strong>of</strong> the species taxonomically problematic Such problematic species <strong>of</strong>ten end up in<br />

new records lists; and, indeed, several <strong>of</strong> the new records are problematic species that require<br />

further study for positive identification. Investigations are currently in progress for 5 <strong>of</strong> these<br />

species.<br />

• Could the species have been mistaken for other similar species in the past Species that<br />

resemble one another can be confused easily. Often these mistakes are not revealed until a<br />

species is newly illustrated or described. In these cases, misidentifications and distributions<br />

could easily be corrected with herbarium searches. In the list, at least 6 species fall into this<br />

category, including at least 1 undescribed species.<br />

• Has small size or habitat restriction influenced the species discovery Microscopic species<br />

are frequently overlooked as are species from unusual habitats. On the list, 4 species are<br />

microscopic, and 1 occurs in the unlikely habitat <strong>of</strong> a high marsh.<br />

• Is the species new to the area through range extension or through an actual introduction For<br />

marine plants, historical (baseline and fossil) information, geographic isolation, and<br />

molecular data are appropriate for proving the latter.<br />

The final justification for categorizing a species <strong>of</strong> marine plant as introduced (Table 9C1.12)<br />

was based on many <strong>of</strong> these factors, but remains tentative. All 5 species listed as introduced are<br />

geographically isolated. Nine other species are northward range extensions from southeast<br />

Alaska or British Columbia, and these species are tentatively identified as native. However,<br />

these range extensions could be caused by either natural dispersal, possibly caused by El Niño<br />

events <strong>of</strong> the past few years, or they could be introduced with aquaculture transports.<br />

Of the 21 new records, at least 5 are at this time very strongly supported for NIS status<br />

based on their geographic isolation, and this is a very conservative estimate. To further confirm<br />

the status <strong>of</strong> these, molecular biological pro<strong>of</strong> <strong>of</strong> identifications are currently in progress.<br />

Comments on the 5 Probable Introductions and on 1 Important Failed Introduction.<br />

Additional description <strong>of</strong> each <strong>of</strong> the most probable introduced species and their habitats and<br />

distribution are provided below:<br />

Chroodactylon ramosum. Chroodactylon is a microscopic primitive red alga that is typically<br />

bright bluegreen in color. Its uniseriate, dichotomously branched filaments are unmistakable<br />

under the microscope. Although common to the North Atlantic in both Europe and North<br />

America, in the Pacific it is only known from Japan, southern Australia, and southern California.<br />

Because this alga generally occurs in estuarine or freshwater habitats (Vis and Sheath 1993), its<br />

occurrence in the turf algae <strong>of</strong> the oyster floats at Tatitlek was a surprise, except that it could<br />

have been brought in with oysters. The lack <strong>of</strong> records for this species in the well-worked<br />

marine and estuarine environments <strong>of</strong> British Columbia and Washington indicates that it is truly<br />

an isolated population and in all likelihood introduced.<br />

Codium fragile subsp. tomentosoides and the northeast Pacific complex*. The normal range <strong>of</strong><br />

the native species complex <strong>of</strong> Codium fragile in the northeast Pacific is from Baja California to<br />

southeast Alaska. This complex appears to consist <strong>of</strong> several unnamed subspecies (C.<br />

Trowbridge, pers. comm.). Separate from this is an alien subspecies called tomentosoides that<br />

has been reported to occur in San Francisco Bay. This alien subspecies is differentiated from the


Chapt 9C1. Marine Plants, page 9C1- 22<br />

native complex by having a different branching frequency and more rounded and mucronate<br />

utricle tips. At Green Island, two different subspecies <strong>of</strong> Codium appear to occur. The low<br />

intertidal form appears to be identical to the native complex. Its utricle tips are sharply pointed<br />

and it is fairly tightly branched. The second form occurs in the mid to upper intertidal and is<br />

more loosely branched with very short mucronate tips, nearly identical to subsp. tomentosoides.<br />

However, experts in the field (Silva and Max) have told me after considerable hesitancy, that<br />

neither are truly subsp. tomentosoides, and that both fall clearly within the native complex. This<br />

indicates that the Green Island Codium is probably a range extension or an introduction from<br />

southeast Alaska or from Washington, Oregon, or California. Perhaps studies on its epiphyte<br />

(discussed below) will enable us to detect its true source. (* Recently O’Clair et al., 1996, also<br />

noted that Codium occurs on Green Island. This record appears to be based on G.I. Hansen’s<br />

earlier EVOS project collections, now located in Juneau.)<br />

Ceramium sinicola. This Ceramium species was an epiphyte <strong>of</strong> Codium fragile at Green Island.<br />

The species, unlike Ceramium codicola, does not have bulbous rhizoids. It is completely<br />

corticated except for some slightly broken cortication near the tips like in the southern California<br />

species Ceramium sinicola. The morphology <strong>of</strong> the plants most closely matches the descriptions<br />

<strong>of</strong> Dawson (1950) and Setchell and Gardner (1924) for C. sinicola, and male, female, and<br />

tetrasporic specimens have all been observed. Its occurrence in Alaska is extremely unlikely<br />

unless it is a recent introduction. This past year I have been working with Mr. Tae Oh Cho, who<br />

is monographing the world species <strong>of</strong> Ceramium with both morphological and molecular<br />

techniques. He has agreed to look at this material for me and will also look at my Alaskan<br />

material <strong>of</strong> Ceramium rubrum which he feels may actually be C. kondoi, a Japanese/Korean<br />

species, and possibly another introduction to Alaska.<br />

Fucus cottonii. This species is unrecorded for the North Pacific, and yet it occurred in nearly all<br />

<strong>of</strong> the high mudflat/marsh areas visited during the June 1998 cruise <strong>of</strong> Prince William Sound.<br />

The plant was first observed in unpublished notes by G.I. Hansen on Vancouver Island in 1981<br />

and then at several Prince William Sound and Kenai sites during the EVOS studies. In some<br />

areas it dominated the supralittoral zone extending even into the terrestrial. At Cloudman Bay it<br />

occurred 100 meters away from the bay on stream banks intermixed with mosses and vascular<br />

plants. The plants in Alaska are mat-forming and either loose-lying on mud, entangled with<br />

other algae (such as Fucus gardneri), or intermixed with terrestrial plants. They range from 1-5<br />

cm in height. The blades are dichotomously branched and <strong>of</strong>ten terete and only 1-3 mm in<br />

diameter. In some habitats, they become flattened, still without a visible midrib, and up to 5 mm<br />

in diameter. No receptacles were found during the June trip, but during the EVOS studies G.I.<br />

Hansen found a number <strong>of</strong> plants with relatively small (up to 2 cm long), elongate, somewhat<br />

pointed receptacles with conceptacles and oogonia bearing 8 eggs. In some areas, the extent <strong>of</strong><br />

the mats <strong>of</strong> this small fucoid makes me question its form <strong>of</strong> reproduction. Since receptacles are<br />

so uncommon, propagation <strong>of</strong> the mats must be by fragmentation and vegetative growth, an<br />

advantageous feature for dispersal.<br />

There is some question as to the use <strong>of</strong> Fucus cottonii (= F. muscoides) as a valid species.<br />

Fletcher (1987) considers the species as a high marsh ecad <strong>of</strong> Fucus vesiculosis, an Atlantic and<br />

Arctic species, but others have accepted F. cottonii as a distinct species (Guiry, 1998). To<br />

confirm the validity <strong>of</strong> the species and my designation <strong>of</strong> the Prince William Sound material,


Chapt 9C1. Marine Plants, page 9C1- 23<br />

samples are being sent to Esther Serrao in Portugal, who is studying the phylogenetic<br />

relationships <strong>of</strong> the genus with molecular techniques.<br />

Microspongium globosum. This tiny brown alga was found growing epiphytically on<br />

Delamaraea attenuata on the floats at Tatitlek. The thalli were abundant and bore plurilocular<br />

sporangia that clearly match the diagrams for this species in Fletcher (1987). Known only from<br />

the North Atlantic and Japan, the species makes a surprising appearance in Alaska. It also has<br />

not been reported from the well investigated areas to the south. Its occurrence on the oyster<br />

floats at Tatitlek as an epiphyte on another new record to Alaska indicates to me that this species,<br />

possibly along with its host, is another new introduction to the area. However, its vector could<br />

also have been oysters from Japan.<br />

Macrocystis integrifolia. Since 1979 (Jay Johnson, Alaska Fish and Game, pers com.)<br />

Macrocystis has been imported (by plane) from southeast Alaska to Prince William Sound to be<br />

used as substrate for herring eggs in the lucrative Herring-Roe-On-Kelp (HROK) fishery.<br />

Normally only blades and fronds <strong>of</strong> the giant kelp are transported northward for the fishery.<br />

These are then placed in impoundment nets which house both the kelp and the fish. The eggladen<br />

blades are then harvested and sold primarily to Japan as a gourmet food item.<br />

Theoretically, the blades that are brought up to the Sound are clean (the most desirable for<br />

HROK) and are all harvested for later sale. However, during our June trip and during many <strong>of</strong><br />

Hansen’s earlier trips to the area, blades and holdfasts <strong>of</strong> the kelp that had escaped were found<br />

adrift in Prince William Sound. Perhaps due to the climate, none <strong>of</strong> these plants appear to have<br />

propagated in the area since none have ever been found attached anywhere north <strong>of</strong> southeast<br />

Alaska. Hence, in the site list the species is listed as a failed introduction. However, even with<br />

the transport <strong>of</strong> “eye-clean” blades, it is likely that numerous small algal and animal species are<br />

co-transported accidentally from southeast Alaska to Prince William Sound every year with this<br />

kelp. This may account, as much as the current El Niño, for many <strong>of</strong> our new range extensions.<br />

Discussion<br />

During the search for marine plant NIS in Prince William Sound, it was important to<br />

characterize the flora at each <strong>of</strong> the sites so that the probable introduced species and their impacts<br />

on the community could be recognized. In addition, information on the taxonomic and residency<br />

status composition <strong>of</strong> these communities was absolutely essential to be able to determine<br />

vulnerable sites for future invasions. Although 155 species <strong>of</strong> plants collected during the 1998<br />

cruise is probably only about half that <strong>of</strong> the actual flora <strong>of</strong> Prince William Sound, the data<br />

compiled reveal important trends in community composition. In addition, the final lists <strong>of</strong> new<br />

records and probable introductions give valuable insight into the difficulties <strong>of</strong> recognizing NIS.<br />

Limitations <strong>of</strong> the data. Although 19 sites were visited during the June 1998 survey, the<br />

time allowed for sampling was inadequate at many <strong>of</strong> the beaches. This had a substantial impact<br />

on the overall data. Moreover, the lack <strong>of</strong> year-round collections for the area limits the results in<br />

ways that cannot even be predicted. In terms <strong>of</strong> numbers, this can be shown clearly by<br />

comparing the total count <strong>of</strong> 112 species shown for Port Valdez in the Checklist (which includes<br />

seasonal collections) with the count <strong>of</strong> 47 for the area obtained during this short trip.


Chapt 9C1. Marine Plants, page 9C1- 24<br />

Information derived from additional collections and herbarium specimens from our sites would<br />

help to overcome these difficulties and to improve the resolution <strong>of</strong> the data.<br />

Although temperature and salinity influenced the total species counts for marine algal<br />

species, this could not be demonstrated clearly with the data on hand. Prince William Sound has<br />

regions heavily effected by rain, snow and ice melt, and marked changes in temperature and<br />

salinity occur throughout the year. During summers, salinity is the lowest as run<strong>of</strong>f produces a<br />

freshwater lens on the surface <strong>of</strong> many <strong>of</strong> the bays, including Port Valdez and Whittier. In these<br />

areas intertidal species are subjected to wide salinity fluctuations with the tidal cycle. Since these<br />

physical factors were measured only during the limited sampling periods, they do not reflect the<br />

range <strong>of</strong> conditions encountered over time by the intertidal species sampled.<br />

Limited historical knowledge <strong>of</strong> the flora and new records. Only two floristic papers<br />

on the marine algae (and plants) <strong>of</strong> Prince William sound have ever been published (Calvin and<br />

Lindstrom, 1980; Wiegers et al., 1997). In addition, an overall identification guide to the marine<br />

algae does not exist for Prince William Sound or even for Alaska, and we are left with using an<br />

assortment <strong>of</strong> references from neighboring areas to identify species. This lack <strong>of</strong> both taxonomic<br />

information and baseline data for Prince William Sound is clearly evident in the discovery <strong>of</strong> 21<br />

new records to the area amounting to 13.5% <strong>of</strong> the species collected during our short 9 day<br />

cruise. During our earlier Pilot Study, an additional 3 new records were found in Port Valdez<br />

alone. Though fairly evenly distributed among the 3 major taxonomic groups, there were a few<br />

more new records among brown and green algae than among the red, and the majority <strong>of</strong> the<br />

species appeared to be cryptogenic. In addition, new record species were slightly more abundant<br />

at certain sites. Green Island, the most diverse site in the study, bore 6 new records, while the<br />

float sites combined bore 9. Both <strong>of</strong> these areas (probably along with many others in Prince<br />

William Sound) appear to have been understudied in the past. Since, for this study, our probable<br />

NIS were derived from the new records, it is understandable that each <strong>of</strong> these 2 sites (or site<br />

types) also bore 2 <strong>of</strong> the 5 probable NIS designated in the study.<br />

Taxonomic composition. In nearly all temperate outer-coastal habitats, the red algal<br />

species are the highest in numbers followed by the brown and then the green algae forming a<br />

R>B>G hierarchical pattern <strong>of</strong> dominance. Proceeding from open coasts into protected bays and<br />

estuaries, the ratio changes to reflect a reduction in the number <strong>of</strong> red algae. For instance, <strong>of</strong>f the<br />

coast <strong>of</strong> Oregon, the R:B:G ratio is 61:22:17. In Prince William Sound, the overall ratio <strong>of</strong><br />

R:B:G in the species surveyed was 47:33:20, a ratio probably indicating the influence <strong>of</strong><br />

sheltered and less saline water. However, the overall composition pattern was still R>B>G<br />

(Table 9C1.13). The R>B>G dominance pattern in Prince William Sound occurred only at<br />

Rocky Headlands and Reefs and in Rocky Bays, all areas <strong>of</strong> moderate to high water movement<br />

(exposure) and relatively uniform salinity and temperature supporting established communities<br />

with numerous annuals and perennials. In Harbors, the proportion <strong>of</strong> green algae increased and<br />

the pattern became R>G>B, reflecting the tolerance <strong>of</strong> green algae for lower salinities found in<br />

this habitat. In addition, since many <strong>of</strong> the green and brown algae are ephemeral (opportunistic),<br />

they can survive the wide fluctuations in temperature and salinity. Moreover, since ephemeral<br />

forms are <strong>of</strong>ten fouling organisms, many are repeatedly brought in to seed these areas by boat<br />

traffic. In the mud bays and on the floats, the proportion <strong>of</strong> brown algae increased. In mud bays,<br />

the frequent shifts in mud level smothers many <strong>of</strong> the species, providing niches primarily for


Chapt 9C1. Marine Plants, page 9C1- 25<br />

ephemerals and unattached forms. On the oyster floats, the early successional ephemeral forms<br />

are also encouraged due to the periodic cleaning <strong>of</strong> the habitat. The higher and generally more<br />

uniform salinity <strong>of</strong> both <strong>of</strong> these habitats appears to enable the ephemeral browns to outcompete<br />

the ephemeral greens.<br />

Table 9C1.13. Summary <strong>of</strong> the Hierarchical Composition<br />

and Physical Features <strong>of</strong> each Habitat Type<br />

Observed during the June 1998 Survey<br />

Habitat Types<br />

Harbors Mud Bays Rk Headlands Rk Bays Floats<br />

Composition<br />

and Reefs<br />

Taxonomic* R>G>B B=R>G R>B>G R>B>G B>R>G<br />

variable variable variable<br />

Residency Status C>N C>N N>C N>C C>N<br />

Exposure low low high low med-high<br />

Salinity variable low-med high variable high<br />

Temperature variable variable uniform uniform uniform<br />

Substratum variable s<strong>of</strong>t hard hard hard<br />

* = includes only the 3 major taxonomic groups sampled.<br />

Resident type composition. Cryptogenic species predominated in the more disturbed<br />

and variable habitats <strong>of</strong> the Harbors, Mud Bays, and Floats, while the native species<br />

predominated in the less disturbed and more uniform habitats provided by Rocky Headlands and<br />

Reefs, and Rocky Bays. Cryptogenic algal species appear to contain a high percentage <strong>of</strong><br />

ephemeral forms. Hence, their ability to survive in fluctuating environments and perhaps in<br />

ballast water and on ship bottoms is high.<br />

Introduced species and their impact. The 5 probable plant NIS discovered during our<br />

survey are all isolated (and probably young) populations. Although four <strong>of</strong> these species do not<br />

appear to have wide distribution in Prince William Sound, Fucus cottonii does appear to have an<br />

expanding range. It was found at 4 <strong>of</strong> our sites and appears to be prevalent in the supra-littoral <strong>of</strong><br />

all <strong>of</strong> these areas. Unique to sloughs and the marsh area <strong>of</strong> mudflats, this species does not seem<br />

to be replacing any <strong>of</strong> the known marine or estuarine species. However, in Cloudman Bay, it<br />

may actually be out-competing some terrestrial plants. Fortunately, none <strong>of</strong> the probable NIS<br />

plants found in Prince William Sound appear to be hazardous to the environment. None are as<br />

toxic or as invasive as the Mediterranean introduction Caulerpa taxifolia (Lemee et al., 1993;<br />

Verlaque and Fritayre, 1994).<br />

The transport mechanisms <strong>of</strong> these introductions is only partially clear. The two species<br />

(Chroodactylon ramosum, Microspongium globosum ) found on oyster floats could have been<br />

brought into the area with the transplantation <strong>of</strong> oysters for aquaculture purposes. The vector for<br />

Codium and its epiphyte Ceramium is more debatable. The subspecies Codium fragile fragile<br />

was potenitally transported up from southeast Alaska with Macrocystis for the HROK industry.<br />

But the only method <strong>of</strong> transport for the subspecies Codium fragile tomentasoides would have to<br />

be either ballast water or as fouling on the hulls <strong>of</strong> ships. The importation mechanism <strong>of</strong> Fucus<br />

cottonii is even less clear. Its relatively widespread occurrence in Prince William Sound (and in<br />

patchy spots along the west coast) indicates that it is probably not a recent introduction.<br />

However, since it is a predominantly unattached species, it is also an excellent candidate for<br />

transport by ballast water.


Chapt 9C1. Marine Plants, page 9C1- 26<br />

Other potential introductions and their significance. What <strong>of</strong> the other 70 cryptogenic<br />

species which are possibly introductions, but which have less obvious characteristics <strong>of</strong><br />

invasion These species are, by definition, wide-ranging and many are abundant, <strong>of</strong>ten heavily<br />

impacting the communities in which they occur. Pro<strong>of</strong> <strong>of</strong> the NIS status <strong>of</strong> these prominent<br />

species is possible, but it will require detailed comparative morphological study and world-wide<br />

molecular biological tracking <strong>of</strong> their distributions. Furthermore, knowledge <strong>of</strong> the impacts <strong>of</strong><br />

these species on community structure will demand complex physiological and ecological studies<br />

<strong>of</strong> the species in both their introduced and native habitats. These studies are important projects<br />

for future investigators who are concerned about the conservation <strong>of</strong> our native biodiversity.<br />

References<br />

Abbott, I. A., and G. J. Hollenberg. 1976. Marine Algae <strong>of</strong> California. Stanford University<br />

Press, Stanford. xii+827 pp.<br />

Adams, N. M. 1983. Checklist <strong>of</strong> marine algae possibly naturalized in New Zealand. N. . J.<br />

Bot. 21: 1-2.<br />

Adams, N. M. 1994. Seaweeds <strong>of</strong> New Zealand, an illustrated guide. Canterbury University<br />

Press Publ., New Zealand. 360 pp.<br />

Calvin, N. I., and S. C. Lindstrom. 1980. Intertidal algae <strong>of</strong> Port Valdez, Alaska: species and<br />

distribution with annotations. Bot. Mar. 23: 791-797.<br />

Carlton, J. T. 1996. <strong>Biological</strong> invasions and cryptogenic species. Ecology 77 (6): 1653-1655.<br />

Chapman, J., and G. Hansen. 1997. Surveys <strong>of</strong> nonindigenous aquatic species for Port Valdez,<br />

Alaska. In: Ruiz, G.M. and A.H. Hines. 1997. Patterns <strong>of</strong> nonindigenous species transfer and<br />

invasion in Prince William Sound, Alaska: Pilot Study. Report, Prince William Sound Regional<br />

Citizens’ Advisory Council. 80pp.<br />

Dawson. E. Y. 1950. A review <strong>of</strong> Ceramium along the Pacific coast <strong>of</strong> North America with<br />

special reference to its Mexican representatives. Farlowia 4: 113-138.<br />

DeWreede, R. E. 1996. The impact <strong>of</strong> seaweed introductions on biodiversity. Global<br />

Biodiversity 6: 2-9.<br />

Fletcher, R. L. 1987. Seaweeds <strong>of</strong> the British Isles. Vol. 3. Fucophyceae (Phaeophyceae). Part<br />

1. British Museum (Natural History), London. 359 pp.<br />

Gabrielson, P. W., R. F. Scagel, and T. B. Widdowson. 1989. Keys to the benthic marine algae<br />

and seagrasses <strong>of</strong> British Columbia, southeast Alaska, Washington and Oregon. Phycological<br />

Contribution Number 4. Dept. <strong>of</strong> Botany, University <strong>of</strong> British Columbia, Vancouver. vi+187<br />

pp.<br />

Guiry, R. 1998. An internet accessible “taxonomic database” on “seaweeds” (primarily <strong>of</strong><br />

Europe). http://seaweed.ucg.ie.


Chapt 9C1. Marine Plants, page 9C1- 27<br />

Hansen, G. 1997. A revised checklist and preliminary assessment <strong>of</strong> the macrobenthic marine<br />

algae and seagrasses <strong>of</strong> Oregon. Pp. 175-200 in Kaye, T., A. Liston, R. Love, D. Luoma, R.<br />

Meinke, and M. Wilson (ed.). Conservation and Management <strong>of</strong> Native Flora and Fungi. Native<br />

Plant Society <strong>of</strong> Oregon, Corvallis.<br />

Hansen, G. I., D. J. Garbary, J. C. Oliveira, and R. F. Scagel. 1981. New records and range<br />

extensions <strong>of</strong> marine algae from Alaska. Syesis 14: 115-123.<br />

Lee, R. K. S. 1980. At catalogue <strong>of</strong> the marine algae <strong>of</strong> the Canadian Arctic. Publications in<br />

Botany, No. 9. National Museums <strong>of</strong> Canada, National Museum <strong>of</strong> Natural Sciences, Ottawa,<br />

ON. 82 pp.<br />

Lemee, R., D. Pesando, M. Durand-Clement, A. Dubreuil, A. Meinesz, A. Guerriero, and F.<br />

Pietra. 1993. Preliminary survey <strong>of</strong> toxicity <strong>of</strong> the green alga Caulerpa taxifolia introduced into<br />

the Mediterranean. J. Appl. Phycol. 5:485-493.<br />

Lindstrom, S. C. 1977. An annotated bibliography <strong>of</strong> the benthic marine algae <strong>of</strong> Alaska.<br />

ADF&G Technical Data Report No. 31. Juneau. 172 pp.<br />

Nelson, W. A., and C. A. Maggs. 1996. Records <strong>of</strong> adventive marine algae in New Zealand:<br />

Antithamnionella ternifolia, Polysiphonia senticulosa (Ceramiales, Rhodophyta), and Striaria<br />

attenuata (Dictyosiphonales, Phaeophyta). N. Z. J. Mar. Freshwat. Res. 30: 449-453.<br />

O’Clair, R. M., S. C. Lindstrom, I. R. Brodo. 1996 [1997]. Southeast Alaska’s Rocky Shores:<br />

Seaweeds and Lichens. Plant Press, Auke Bay.<br />

Perestenko, L. P. 1994. Red Algae <strong>of</strong> the Far-Eastern Seas <strong>of</strong> Russia. Komarov Botanical<br />

Institute, Russian Academy <strong>of</strong> Sciences, St. Petersburg. 331 pp. [In Russian].<br />

Phillips, R. C., and E. G. Menez. 1988. Seagrasses. Smithsonian Contributions to the Marine<br />

Sciences 34. v+104 pp.<br />

Rueness, J. 1977. Norsk Algeflora. Universitetsforlaget, Oslo. 266 pp. [In Norwegian].<br />

Ruiz, G. M., and A. H. Hines. 1997. The risk <strong>of</strong> nonindigenous species invasion in Prince<br />

William Sound associated with tanker traffic and ballast <strong>Water</strong> Management: Pilot Study.<br />

Regional Citizens’ Advisory Council <strong>of</strong> Prince William Sound RFP Number 632.97.1. 47 pp +<br />

52 pp tables and graphs.<br />

Scagel, R. F., P. W. Gabrielson, D. J. Garbary, L. Golden, M. W. Hawkes, S. C. Lindstrom, J. C.<br />

Oliveira, and T. B. Widdowson. 1989 [1993]. A Synopsis <strong>of</strong> the Benthic Marine Algae <strong>of</strong><br />

British Columbia, southeast Alaska, Washington and Oregon. Phycological Contribution<br />

Number 3. Dept <strong>of</strong> Botany, University <strong>of</strong> British Columbia, Vancouver, BC. 535 pp.


Chapt 9C1. Marine Plants, page 9C1- 28<br />

Sears, J. R. 1998. NEAS Keys to the Benthic Marine Algae <strong>of</strong> the Northeastern Coast <strong>of</strong> North<br />

America from Long Island sound to the Strait <strong>of</strong> Belle Isle. NEAS Contribution Number 1,<br />

Dartmouth, MA. xi+161pp.<br />

Selivanova, O. N., and G. G. Zhigadlova. 1997. Marine algae <strong>of</strong> the Commander Islands:<br />

preliminary remarks on the revision <strong>of</strong> the flora. Bot. Mar. 40: 1-24.<br />

Setchell, W. A., and N. L. Gardner. 1924. Expedition <strong>of</strong> the California Academy <strong>of</strong> Sciences to<br />

the Gulf <strong>of</strong> California in 1921. Proc. <strong>of</strong> the Cal. Acad. Sci., 4 th Series, 12: 12-88.<br />

Verlaque, M., and P. Fritayre. 1994. Mediterranean algal communities are changing in face <strong>of</strong><br />

the invasive alga Caulerpa taxifolia (Vahl) C. Agardh. Oceanol. Acta 17: 659-672.<br />

Vis, M. L., and R. G. Sheath. 1993. Distribution and systematics <strong>of</strong> Chroodactylon and<br />

Kyliniella (Porphyridiales, Rhodophyta) from North American streams. Jap. J. <strong>of</strong> Phycology 41:<br />

237-241.<br />

Wiegers, J. K., H. M. Feder, W. G. Landis, L. S. Nortensen, D. G. Shaw, V. J. Wilson. 1997. A<br />

regional multiple-stressor ecological risk assessment for Port Valdez, Alaska. IETC No. 9701<br />

and RCAC 1033.102. Inst. <strong>of</strong> Environmental Toxicology and Chemistry, Western Washington<br />

Univ., Bellingham, WA.<br />

Womersley, H. B. S. 1984. The Marine benthic flora <strong>of</strong> southern Australia, Part 1. Woolman,<br />

Government Printer, South Australia, 329 pp.<br />

Womersley, H. B. S. 1987. The marine benthic flora <strong>of</strong> southern Australia, Part 2. Australian<br />

Government Printing Division, Adelaide, 484 pp.<br />

Womersley, H. B. S. 1994. The marine benthic flora <strong>of</strong> southern Australia. Part 3A. Australian<br />

<strong>Biological</strong> Resources Study, Canberra, 508 pp.<br />

Womersley, H. B. S. The marine benthic flora <strong>of</strong> southern Australia. Part 3B. Australian<br />

<strong>Biological</strong> Resources Study, Canberra. 392 pp.<br />

Yoshida, T., K. Yoshinaga, and Y. Nakajima. 1995. Checklist <strong>of</strong> marine algae <strong>of</strong> Japan. Jap. J.<br />

Phycol. 43: 115-171. [In Japanese].


Chapt 9C2. Planktonic Cnidaria, Ctenophora, and Pelagic Mollusca, page 9C2- 1<br />

Chapter 9C2. Focal Taxonomic Collections: Planktonic Cnidaria, Ctenophora, and<br />

Pelagic Mollusca<br />

Claudia Mills, Friday Harbor Laboratories, University <strong>of</strong> Washington<br />

Methods<br />

Medusae, ctenophores, and pelagic molluscs were collected at sites in both Prince William<br />

Sound and Cook Inlet from August 8–14, 1999 using small plankton nets and a water scoop attached<br />

to a long handle. Specimens were examined in the field, relaxed, and fixed for transport to the<br />

laboratory. Specimens were reexamined microscopically at the Friday Harbor Laboratories in<br />

September 1999, in order to verify or assign species names.<br />

Results<br />

All pelagic Hydrozoa, Scyphozoa, Ctenophora and Mollusca are identified by site in Table<br />

9C2.1. Separate species lists for these groups follow for Prince William Sound (Table 9C2.2) and<br />

Cook Inlet (Table 9C2.3). An annotated species list follows (Table 9C2.4), including all species on<br />

both lists. In the time allotted to this project, I do not feel that I completed a comprehensive search<br />

<strong>of</strong> the literature for species previously collected in Prince William Sound and Cook Inlet, but no<br />

other papers came to mind. I also did not search for unpublished data at the University <strong>of</strong> Alaska.<br />

A few coelenterates were conspicuously missing from the region. We saw no<br />

stauromedusae, no Epiactis anemones on eelgrass, no Chrysaora or Phacellophora<br />

scyphomedusae, and no Anthopleura elegantissima or A. xanthogrammica.<br />

No known nonindigenous species <strong>of</strong> planktonic Cnidaria or Ctenophora were collected in<br />

Prince William Sound or Cook Inlet by our scientific teams in either 1998 or 1999. In the 1999<br />

expedition, 15 species <strong>of</strong> Hydrozoa were collected (including 3 hydroids [see section 9D. Fouling<br />

Communities) for more thorough hydroid work-up] and 14 species <strong>of</strong> hydromedusae), two<br />

scyphomedusae and unidentified scyphozoan polyps (scyphistomae), and two species <strong>of</strong><br />

ctenophores. Two molluscan species were also taken in the water column.<br />

The following species appear to be new records in the Prince William Sound region:<br />

Hydromedusae<br />

*Aequorea aequorea<br />

*Aequorea victoria<br />

*Clytia gregaria (=Phialidium gregarium)<br />

Eperetmus typus<br />

Euphysa sp.<br />

Gonionemus vertens<br />

Halitholus sp.<br />

*Melicertum octocostatum<br />

*Proboscidactyla flavicirrata<br />

Sarsia spp.<br />

Tiaropsis multicirrata


Chapt 9C2. Planktonic Cnidaria, Ctenophora, and Pelagic Mollusca, page 9C2- 2<br />

Ctenophora:<br />

*Bolinopsis infundibulum<br />

*Pleurobrachia bachei<br />

New NAME for common Scyphomedusa<br />

Aurelia labiata<br />

* indicates common species whose presence in PWS may be known, but I have not seen reports<br />

in print. Dr. Jennifer Purcell (Horn Point Laboratory, University <strong>of</strong> Maryland) is working with<br />

some <strong>of</strong> these, but her results are unpublished as yet.<br />

Following the annotated species list is a list and discussion <strong>of</strong> nonindigenous cnidarian<br />

species already present in some west coast estuaries that might be positioned to ultimately invade<br />

locations in Alaska. This list is accompanied by an Appendix (following the report) titled<br />

“Commentary on species <strong>of</strong> Hydrozoa, Scyphozoa and Anthozoa (Cnidaria) sometimes listed as<br />

non-indigenous in Puget Sound”, reprinted from Cohen et al. (1998). References are given at the end<br />

<strong>of</strong> the main report as well as the Appendix.<br />

References<br />

Arai, M. N. and A. Brinckmann-Voss, 1980. Hydromedusae <strong>of</strong> British Columbia and Puget Sound.<br />

Can. Bull. Fish Aquat. Sci., 204: 192 pp.<br />

Bigelow, H. B. 1912. The ctenophores. Bull. Mus. Comp. Zool., 56: 369-404, 2 pls.<br />

Bigelow, H. B. 1913. Medusae and siphonophorae collected by the U. S. Fisheries steamer<br />

“Albatross” in the Northwestern Pacific, 1906. Proc. U. S. Nat. Museum, 44: 1-119, 6 pls.<br />

Bigelow, H. B. 1920. Medusae and Ctenophora. Rep. Canadian Arctic Exp. 1913-18, Southern Party<br />

1913-16, Volume VIII: Mollusks, Echinoderms. Coelenterates, etc., Part H: 3H-22H, 2 pls.<br />

Calder, D. R. 1988. Shallow-water hydroids <strong>of</strong> Bermuda: the Athecatae. Royal Ontario Museum Life<br />

Sciences Contributions, 148: 1-107.<br />

Cohen, A., C. Mills, H. Berry, M. Wonham, B. Bingham, B. Bookheim, J. Carlton, J. Chapman, J.<br />

Cordell, L. Harris, T. Klinger, A. Kohn, C. Lambert, G. Lambert, K. Li, D. Secord, and J. T<strong>of</strong>t,<br />

November 1998. Report <strong>of</strong> the Puget Sound Expedition, September 8–16, 1998: a Rapid<br />

Assessment survey <strong>of</strong> non-indigenous species in the shallow waters <strong>of</strong> Puget Sound. Washington<br />

State Department <strong>of</strong> Natural Resources, Olympia, Washington, 37 pages.<br />

Greenberg, N., R. L. Garthwaite and D. C. Potts, 1996. Allozyme and morphological evidence for<br />

a newly introduced species <strong>of</strong> Aurelia in San Francisco Bay. Marine Biology, 125: 401-410.<br />

Harbo, R. M. 1999. Whelks to Whales: <strong>Coastal</strong> Marine Life <strong>of</strong> the Pacific Northwest. Harbour<br />

Publishing, Madeira Park, B.C., Canada.


Chapt 9C2. Planktonic Cnidaria, Ctenophora, and Pelagic Mollusca, page 9C2- 3<br />

Kramp, P. L. 1961. Synopsis <strong>of</strong> the medusae <strong>of</strong> the world. J. Mar. Biol. Assoc. U.K., 40: 1–469.<br />

Mills, C. E. 1981. Seasonal occurrence <strong>of</strong> planktonic medusae and ctenophores in the San Juan<br />

Archipelago (NE Pacific). Wasmann J. Biol., 39: 6-29.<br />

Mills, C. E. 1998 to present. Web Site: http://faculty.washington.edu/cemills/<br />

Mills, C. E. and F. Sommer, 1995. Invertebrate introductions in marine habitats: two species<br />

<strong>of</strong> hydromedusae (Cnidaria) native to the Black Sea, Maeotias inexspectata and Blackfordia<br />

virginica, invade San Francisco Bay. Marine Biology, 122: 279-288.<br />

Murbach, L. and C. Shearer. 1903. On medusae from the coast <strong>of</strong> British Columbia and<br />

Alaska. Proc. Zool. London 2:164-192, pls. 17-22.<br />

Purcell, J. E. 1998 Project report 98163S - Jellyfish as competitors and predators <strong>of</strong> fishes.<br />

On the web at http://www.uaa.alaska.edu/enri/apex/98163S.html.<br />

Ricketts, E. F. and J. Calvin, 1939. Between Pacific Tides. Stanford University Press, Stanford.<br />

Wrobel, D. and C. Mills, 1998. Pacific Coast Pelagic Invertebrates: a Guide to the Common<br />

Gelatinous Animals. Sea Challengers and the Monterey Bay Aquarium, Monterey, California.


Chapt 9C2. Planktonic Cnidaria, Ctenophora, and Pelagic Mollusca, page 9C2- 4<br />

Table 9C2.1. Hydrozoa, Scyphozoa, Ctenophora and pelagic Mollusca by site, 1999.<br />

Collections and identifications by Claudia E. Mills.<br />

1999 PWS EXPEDITION<br />

C.E. MILLS REPORT<br />

Homer<br />

Sadie<br />

Cove<br />

Seward<br />

Marina<br />

Lowell<br />

Pt<br />

Seward<br />

south <strong>of</strong><br />

Esther<br />

Is.<br />

Whittier<br />

Fairmoun<br />

t Bay<br />

HYDROZOA<br />

X<br />

Aequorea aequorea v, albida X X X X X X<br />

Aglantha digitale<br />

X<br />

Bougainvillia superciliaris<br />

x<br />

Clytia gregaria<br />

X X X X X<br />

(=Phialidium gregarium)<br />

Eperetmus typus X X<br />

Euphysa sp.<br />

X<br />

Eutonina indicans<br />

X<br />

Gonionemus vertens<br />

X<br />

Halitholus sp.<br />

X<br />

Leuckartiara sp.<br />

X<br />

Melicertum octocostatum X X X<br />

Mitrocoma cellularia<br />

X<br />

Obelia hydroids X X X<br />

Proboscidactyla flavicirrata X +<br />

polyps<br />

X X X<br />

Sarsia/Coryne sp. hydroids X<br />

Sarsia spp. medusae X X X X<br />

SCYPHOZOA<br />

Aurelia labiata<br />

X<br />

Cyanea capillata X X X X X X X<br />

unidentified scyphistomae<br />

(probably Aurelia sp.)<br />

X<br />

X<br />

Valdez<br />

Mar<br />

ina<br />

Tatitlek<br />

Bus<br />

-by<br />

Is.<br />

Cord<br />

ova<br />

CTENOPHORA<br />

Bolinopsis infundibulum<br />

Pleurobrachia bachei<br />

X<br />

X<br />

MOLLUSCA<br />

Melibe leonina X X X<br />

Clione limacina X


Chapt 9C2. Planktonic Cnidaria, Ctenophora, and Pelagic Mollusca, page 9C2- 5<br />

Table 9C2..2. Prince William Sound species list. See Table 1 for specific locations.<br />

Collections and identifications by Claudia E. Mills, unless otherwise noted.<br />

HYDROZOA<br />

REFERENCE<br />

Aequorea aequorea v. albida PWS 99; Purcell, 1998<br />

Aequorea victoria/ A. aequorea v. aequorea Purcell, personal communication 1999<br />

Catablema multicirrata Bigelow, 1913<br />

Clytia gregaria PWS 99<br />

(=Phialidium gregarium)<br />

Eperetmus typus PWS 98, PWS 99<br />

Euphysa sp. PWS 99<br />

Gonionemus vertens PWS 99<br />

Halitholus sp. PWS 99<br />

Melicertum octocostatum PWS 99<br />

Obelia longissima PWS 98<br />

Obelia spp. hydroids PWS 99<br />

Proboscidactyla flavicirrata PWS 99<br />

Sarsia spp. medusae PWS 99<br />

Staurophora mertensii Bigelow, 1913<br />

Tiaropsis multicirrata PWS 98<br />

SCYPHOZOA<br />

Aurelia"aurita" (Mills quotes) Purcell, 1998<br />

Aurelia labiata PWS 99<br />

Cyanea capillata PWS 99; Purcell, 1998<br />

Unidentified scyphistomae PWS 99<br />

(probably Aurelia sp.)<br />

CTENOPHORA<br />

Bolinopsis infundibulum PWS 99<br />

Pleurobrachia bachei PWS 99; Purcell, 1998<br />

MOLLUSCA<br />

Melibe leonina PWS 99<br />

* PWS 98 refers to specimens collected by Ruiz et al., June 1998 in Cook Inlet.<br />

PWS 99 refers to specimens collected by Greg Ruiz et al., August 1999 in Cook Inlet.


Chapt 9C2. Planktonic Cnidaria, Ctenophora, and Pelagic Mollusca, page 9C2- 6<br />

Table 9C2.3. Cook Inlet species list.<br />

Collections and identifications by Claudia E. Mills, unless otherwise noted.<br />

HYDROZOA<br />

*REFERENCE AND LOCATION<br />

Aequorea aequorea v. albida PWS 99 - Homer Marina<br />

Aglantha digitale<br />

PWS 99 - Sadie Cove, Katchemak Bay<br />

Bougainvillia superciliaris PWS 99 - Sadie Cove, Katchemak Bay<br />

Clytia gregaria<br />

PWS 99 - Sadie Cove, Katchemak Bay<br />

(=Phialidium gregarium)<br />

Eperetmus typus<br />

PWS 99 - Sadie Cove, Katchemak Bay<br />

Eutonina indicans<br />

PWS 99 - Homer Marina<br />

Leuckartiara sp.<br />

PWS 99 - Sadie Cove, Katchemak Bay<br />

Melicertum octocostatum<br />

PWS 99 - Homer Marina<br />

Mitrocoma cellularia<br />

PWS 99 - Homer Marina<br />

Obelia sp. hydroids<br />

PWS 99 - Homer Marina<br />

Proboscidactyla flavicirrata hydroids PWS 99 - Homer Marina<br />

Sarsia/Coryne sp. hydroids PWS 99 - Homer Marina<br />

Sarsia spp. medusae<br />

PWS 99 - Homer Marina, Sadie Cove<br />

SCYPHOZOA<br />

Cyanea capillata<br />

Unidentified scyphistomae<br />

(probably Aurelia sp.)<br />

PWS 99 - Homer Marina, Sadie Cove<br />

PWS 99 - Homer Marina<br />

CTENOPHORA<br />

(none)<br />

MOLLUSCA<br />

Clione limacina PWS 99 - Homer marina<br />

Melibe leonina<br />

PWS 99 - not collected but told <strong>of</strong> site at Jakal<strong>of</strong> Bay<br />

by Carmen Field<br />

* PWS 99 refers to specimens collected by Ruiz et al., August 1999 in Cook Inlet.


Chapt 9C2. Planktonic Cnidaria, Ctenophora, and Pelagic Mollusca, page 9C2- 7<br />

Table 9C2.4<br />

PRINCE WILLIAM SOUND ANNOTATED SPECIES LIST<br />

(combines both Cook Inlet and Prince William Sound locations)<br />

HYDROZOA<br />

Aequorea aequorea var. albida<br />

Distribution. Most <strong>of</strong> the Aequorea medusae that we saw were beached. Such specimens were seen at the<br />

Homer Marina, Lowell Point in Seward, the Whittier Marina, and in Cordova and Valdez. A few were<br />

seen in the water while underway south <strong>of</strong> Esther Island, along with Cyanea capillata.<br />

Remarks. This name was applied by Bigelow (1913) to Aequorea specimens measuring 120 mm and<br />

165 mm bell diameter, collected in Dutch Harbor. Such very-large Aequorea occur throughout southern<br />

Alaska, and are accompanied in some places by smaller specimens that seem very similar to Aequorea<br />

victoria at Friday Harbor (called Aequorea aequorea var. aequroea by Bigelow, 1913). Whether they<br />

are different sizes <strong>of</strong> the same species or 2 different species has still not been resolved (even the modern<br />

use <strong>of</strong> "A. victoria" as species name for Friday Harbor medusae is controversial). Only large-sized<br />

specimens (most 120-160 mm diameter) were seen in Prince William Sound in August 1999. Similar<br />

large Aequoreas in Prince William Sound were called A. victoria by Purcell (1998).<br />

Aequorea victoria or Aequorea aequorea var. aequorea<br />

Remarks. We did not collect any smaller specimens <strong>of</strong> Aequorea, but I am told by Dr. Jennifer Purcell,<br />

who has been doing a recent plankton study in Prince William Sound that small Aequoreas that look like<br />

those at Friday Harbor are also present. Bigelow (1913) calls these A. aequorea var. aequorea. Arai<br />

and Brinckmann-Voss later applied the name A. victoria to the same animals. It is not clear to me that<br />

A. victoria is not a junior synonym to A. aequorea.<br />

Aglantha digitale<br />

Distribution. Several Aglantha digitale medusae were collected at the head <strong>of</strong> Sadie Cove,<br />

Katchemak Bay, on August 8, 1999, by dipping from a small boat in about 8 feet <strong>of</strong> water. Most were<br />

within a layer <strong>of</strong> fresher water that occupied the upper 15" <strong>of</strong> the water column and were dead and<br />

decomposing. Many others were seen, but not collected.<br />

Remarks. There is no question about the identification <strong>of</strong> this material, although why these medusae<br />

were in the layer <strong>of</strong> low salinity water is not clear. This circumpolar species is well known in the<br />

North Pacific, North Atlantic and Arctic Oceans, including the Bering Sea.<br />

Bougainvillia superciliaris<br />

Distribution. Five Bougainvillia superciliaris medusae were collected at the head <strong>of</strong> Sadie Cove,<br />

Katchemak Bay, on August 8, 1999, by dipping from a small boat in about 8 feet <strong>of</strong> water. All were<br />

below a layer <strong>of</strong> fresher water that occupied the upper 15" <strong>of</strong> the water column. Several others were<br />

seen, but not collected.<br />

Remarks. These 6-12 mm high specimens best correspond with the description <strong>of</strong> Bougainvillia<br />

superciliaris, having its characteristic prominent peduncle above the manubrium. The Sadie Cove<br />

specimens had 36-40 tentacles on each <strong>of</strong> the four marginal bulbs, which is quite a bit higher than the


Chapt 9C2. Planktonic Cnidaria, Ctenophora, and Pelagic Mollusca, page 9C2- 8<br />

10-22 tentacles described for B. superciliaris in Kramp (1961). Bigelow (1913) found a single specimen<br />

<strong>of</strong> B. superciliaris <strong>of</strong> the same size <strong>of</strong>f Attu Island in the Aleutians, but also with less than 20 tentacles<br />

in each group. This tentacle number discrepancy leads to the question about species identification for the<br />

Sadie Cove material.<br />

Catablema multicirrata<br />

Distribution. This species (2 medusae) was collected by Bigelow (1913) <strong>of</strong>f Orca in Prince William<br />

Sound on July 19, 1906.<br />

Remarks. We did not find it in August 1999, but did not sample at that location.<br />

Clytia gregaria (=Phialidium gregarium)<br />

Distribution. Many individuals <strong>of</strong> this species were collected in Sadie Cove, Katchemak Bay and in<br />

Fairmount Bay, Tatitlek, <strong>of</strong>f Busby Island and in the Cordova Marina.<br />

Remarks. Most <strong>of</strong> the specimens correspond well to the description <strong>of</strong> Clytia gregaria (as Phialidium<br />

gregarium) in Kramp (1961), with about 40 tentacles and a few rudimentary bulbs alternating with<br />

marginal vesicles in 12 mm diameter medusae; the gonads were on the distal 1/2 <strong>of</strong> the radial canals.<br />

Some smaller medusae (7 mm diameter), with a few less tentacles and shorter gonads may be C.<br />

gregaria, or could be C. lomae, looking very similar to specimens collected in September 1998 in Puget<br />

Sound by Claudia Mills and Erik Thuesen. Seasonal morphological variation with changes in<br />

zooplankton prey availability have not been described, so it is difficult to be positive about the species<br />

name in some cases. The genus name Clytia has typically been applied only to the hydroid form, but it is<br />

an older genus name than Phialidium, and should be applied to both phases <strong>of</strong> the life cycle.<br />

Eperetmus typus<br />

Distribution. One young Eperetmus typus medusa was collected at the head <strong>of</strong> Sadie Cove,<br />

Katchemak Bay, on August 8, 1999, by dipping from a small boat in about 8 feet <strong>of</strong> water. It was<br />

below a layer <strong>of</strong> fresher water that occupied the upper 15" <strong>of</strong> the water column. Three more Eperetmus<br />

typus medusae were collected in Fairmount Bay, Prince William Sound, in vertical plankton tows<br />

taken <strong>of</strong>f the side <strong>of</strong> the Kristina with Jeff Cordell's 130 µm mesh plankton net in about 70- 90 feet <strong>of</strong><br />

water.<br />

Remarks. These 8-12 mm diameter immature specimens were very lively swimmers, that sank rapidly<br />

when they were not swimming. Both locations were protected coves and in both cases the animals may<br />

have been fairly near the bottom, but not enough is known to verify whether this species is indeed<br />

typical <strong>of</strong> protected coves and associated with the bottom in the same way as Gonionemus or<br />

Polyorchis.<br />

Euphysa sp.<br />

Distribution. Three small Euphysa sp. medusa were collected in Fairmount Bay, Prince William<br />

Sound, in vertical plankton tows taken <strong>of</strong>f the side <strong>of</strong> the Kristina with Jeff Cordell's 130 µm<br />

mesh plankton net in about 70- 90 feet <strong>of</strong> water on August 10, 1999.<br />

Remarks. These 1.5–3.5 mm high medusae were found in the lab by Jeff Cordell in his plankton tow<br />

material. The two smaller specimens clearly had 3 larger tentacles and either one small tentacle or one


Chapt 9C2. Planktonic Cnidaria, Ctenophora, and Pelagic Mollusca, page 9C2- 9<br />

bare bulb. The larger specimen had 4 tentacles. There is insufficient information to assign them to<br />

species.<br />

Eutonina indicans<br />

Distribution. Six Eutonina indicans medusae were collected in the Homer Marina, Katchemak Bay,<br />

Cook Inlet on August 8, 1999.<br />

Remarks. I am surprised that we did not find more <strong>of</strong> this species.<br />

Gonionemus vertens<br />

Distribution. More than 30 Gonionemus vertens medusae were seen in a dense eelgrass bed at low tide<br />

in front <strong>of</strong> Tatitlek, near the small town marina, on August 12, 1999.<br />

Remarks. These medusae emerged from within blades <strong>of</strong> eelgrass in the low intertidal as the tide came<br />

in. They were abundant. The pigmentation was less colorful and more brownish that specimens in the<br />

San Juan Islands. This species was previously not known north <strong>of</strong> Sitka (where it is mentioned by<br />

Ricketts and Calvin, 1939), except that probably the same species (as G. agassizii) was collected early<br />

this century by Trevor Kincaid in a salt lake on Unalaska Island, in the Aleutians (Murbach and<br />

Shearer, 1903). The same or a very similar species also occurs in Japan and the Russian Far East.<br />

Halitholus sp.<br />

Distribution. Three Halitholus sp. medusae were collected at the Tatitlek commercial (ferry) dock on<br />

August 11, 1999, in vertical plankton tows taken <strong>of</strong>f the side <strong>of</strong> the Kristina with Jeff Cordell's 130 µm<br />

mesh plankton net in about 50 feet <strong>of</strong> water. Two more <strong>of</strong> these medusae were seen using a flashlight,<br />

but not collected, later the same evening from the small Tatitlek town marina at about midnight.<br />

Remarks. These 7-8 mm high specimens cannot be referred to any described species <strong>of</strong> Halitholus.<br />

They are very similar to both Halitholus sp. I and Halitholus sp. II <strong>of</strong> Arai and Brinckmann-Voss (1980,<br />

pp. 48-52), which were previously known from British Columbia and Washington State.<br />

Leuckartiara sp.<br />

Distribution. Four Leuckartiara sp. medusae were collected at the head <strong>of</strong> Sadie Cove,<br />

Katchemak Bay, on August 8, 1999, by dipping from a small boat in about 8 feet <strong>of</strong> water. All<br />

were below a layer <strong>of</strong> fresher water that occupied the upper 15" <strong>of</strong> the water column. Several<br />

others were seen, but not collected.<br />

Remarks. These approximately 15 mm-high specimens cannot be referred to any described<br />

species <strong>of</strong> Leuckartiara. They bear some resemblance to Leuckartiara foersteri <strong>of</strong> Arai and<br />

Brinckmann-Voss (1980, pp. 52-53), which is known from British Columbia and Washington<br />

State. They had 8 large tentacles and 12 small tentacles, with no additional rudimentary marginal<br />

bulbs.<br />

Melicertum octocostatum<br />

Distribution. About ten Melicertum octocostatum medusae were found in the Homer Marina,<br />

Katchemak Bay, Cook Inlet, Fairmount Bay and the Cordova Marina.


Chapt 9C2. Planktonic Cnidaria, Ctenophora, and Pelagic Mollusca, page 9C2- 10<br />

Remarks. This species is well known elsewhere in Alaska as well as in the North Pacific and Atlantic; it<br />

probably occurs throughout Prince William Sound. These specimens were relatively small, all being<br />

under 12 mm in bell height.<br />

Mitrocoma cellularia<br />

Distribution. Homer Marina, Katchemak Bay, Cook Inlet on August 8, 1999.<br />

Remarks. Only a single small (15 mm diameter) specimen was collected. This specimen was only<br />

provisionally identified as M. cellularia until it was compared with a comparable-sized living M.<br />

cellularia in Friday Harbor. The small and large tentacles on the margin are the same, confirming the<br />

species identification.<br />

Obelia longissima (Pallas, 1766)<br />

Distribution. Various sites in Prince William Sound, summer 1998.<br />

Remarks. John Chapman sent all <strong>of</strong> the hydroids he collected in 1998 to Claudia Mills, who passed<br />

them on to Dr. Wim Vervoort <strong>of</strong> the Natural History Museum at Leiden, the Netherlands. Dr. Vervoort<br />

identified all <strong>of</strong> the hydroids that he saw as Obelia longissima. John Chapman has both the hydroids and<br />

their specific collection information.<br />

Obelia spp. hydroids<br />

Distribution. These hydroids were collected at least at the Seward Marina and at Lowell Point on<br />

August 10 and 11, 1999.<br />

Remarks. In my inexpert opinion, the blackened portions <strong>of</strong> some <strong>of</strong> the stems imply that these were<br />

probably Obelia longissima. I originally guessed that they might be Garveia franciscana, but they are<br />

not. They should be inspected by a hydroid specialist.<br />

Proboscidactyla flavicirrata<br />

Distribution. The hydroid <strong>of</strong> P. flavicirrata was found at the distal tips <strong>of</strong> several, 6 cm-long sabellid<br />

worm tubes in the Homer Marina, Katchemak Bay, Cook Inlet on August 8, 1999. This hydroid was<br />

actively producing medusa buds although no medusae were seen in this marina. Several P. flavicirrata<br />

medusae were collected in Fairmount Bay, Tatitlek and the Cordova Marina.<br />

Remarks. These medusae are very small; they probably occur throughout Prince William Sound.<br />

Sarsia/Coryne sp. hydroids<br />

Distribution. One or more clumps <strong>of</strong> hydroids that looked like Sarsia were collected by Jeff Goddard in<br />

the Homer Marina, Katchemak Bay, Cook Inlet on August 8, 1999.<br />

Remarks. I did not look carefully at this material. If it was reproductive and making medusa buds, it can<br />

be assigned to Sarsia; if it was reproductive and bearing fixed gonophores, it could be assigned to<br />

Coryne. Sarsia hydroids cannot usually be identified to species without their mature medusae.<br />

Sarsia spp. medusae


Chapt 9C2. Planktonic Cnidaria, Ctenophora, and Pelagic Mollusca, page 9C2- 11<br />

Distribution. About ten Sarsia medusae were collected from Sadie Cove and the Homer Marina,<br />

(Katchemak Bay, Cook Inlet) and Fairmount Bay and Busby Island.<br />

Remarks. Sarsia is a typical north-boreal hydrozoan genus. Many conspecific Sarsias are known from<br />

the Puget Sound / Strait <strong>of</strong> Georgia region and the entire life cycle - both hydroid and mature medusa - is<br />

usually needed for identification to species. Most <strong>of</strong> the medusae collected had the apical canal above<br />

the manubrium that is seen in Sarsia princeps and looked quite a bit like those pictured as S. princeps by<br />

Bigelow (1920), although they were rather small for that species. A second species seemed to also be<br />

present.<br />

Staurophora mertensii<br />

Distribution. This species (5 medusae) was collected by Bigelow (1913) in Prince William Sound - no<br />

further site description or date given.<br />

Remarks. We did not find it in August 1999.<br />

Tiaropsis multicirrata<br />

Distribution. Several Tiaropsis multicirrata were collected at station PWS 98-21 on June 24, 1998. John<br />

Chapman identified this site as Green Island, near Montague Island, on the south side <strong>of</strong> Prince William<br />

Sound.<br />

Remarks. Specimens sent to Claudia Mills for identification, summer 1998.<br />

SCYPHOZOA<br />

Aurelia labiata<br />

Distribution. Only two Aurelia labiata were seen, in the Cordova Marina, on August 13, 1999.<br />

Remarks. I would have expected to see this species or its northern congener Aurelia limbata (similar, but<br />

with a brown rim and tentacles) in many more locations. Aurelia tends to occur in dense aggregations at<br />

the surface - such "swarms" were described to me by resident kayakers as present in Sheep Bay near<br />

Cordova and at Long Bay <strong>of</strong>f Culross Passage near Whittier, but we did not see them. See Wrobel and<br />

Mills (1998) for a discussion <strong>of</strong> the differences between A. aurita and A. labiata. Purcell (1998) refers to<br />

the Prince William Sound species as A. aurita, but probably without knowing about the recently<br />

rediscovered A. labiata name.<br />

Cyanea capillata<br />

Distribution. Cyanea capillata was probably the most common medusa in Prince William Sound<br />

in August 1999. We saw it in the Homer Marina and Sadie Cove in Cook Inlet, as well as at the<br />

Whittier Marina, en route at the south end <strong>of</strong> Esther Island and south <strong>of</strong> Eaglek Bay, in<br />

Fairmount Bay, at Tatitlek and in the Cordova Marina. A.J. Paul told me that it is common in<br />

Resurrection Bay, but further out than the town <strong>of</strong> Seward.<br />

Remarks. In Prince William Sound this species comes in a range <strong>of</strong> colors, from red to pink or<br />

lilac, to yellowish, to a colorless "white". The size ranged from a couple <strong>of</strong> cm to about 30-40 cm<br />

in bell diameter. It was abundant in open water.


Chapt 9C2. Planktonic Cnidaria, Ctenophora, and Pelagic Mollusca, page 9C2- 12<br />

Unidentified scyphozoan polyps<br />

Distribution. Jeff Goddard observed scyphistomae on the docks at both Homer and Whittier.<br />

Remarks. Most scyphistomae on docks on the west coast have proven to be those <strong>of</strong> Aurelia spp.<br />

Other species <strong>of</strong> scyphozoan scyphistomae have not been observed in the field and I assume that<br />

they select other types <strong>of</strong> habitats. If these were Aurelia, they may have been either Aurelia<br />

labiata or perhaps Aurelia limbata, which is likely to also occur in the region.<br />

CTENOPHORA<br />

Bolinopsis infundibulum<br />

Distribution. Only one Bolinopsis specimen was seen on the PWS 1999 trip. It was collected on<br />

August 11, 1999, at the Tatitlek commercial (ferry) dock, in vertical plankton tows taken <strong>of</strong>f the<br />

side <strong>of</strong> the Kristina with Jeff Cordell's 130 µm mesh plankton net in about 50 feet <strong>of</strong> water.<br />

Remarks. I do not hesitate to call this specimen Bolinopsis infundibulum, which I have also<br />

collected at Dutch Harbor.<br />

Pleurobrachia bachei<br />

Distribution. Only one Pleurobrachia specimen was seen on the PWS 1999 trip. It was collected on<br />

August 11, 1999, at the Tatitlek commercial (ferry) dock, in vertical plankton tows taken <strong>of</strong>f the side <strong>of</strong><br />

the Kristina with Jeff Cordell's 130 µm mesh plankton net in about 50 feet <strong>of</strong> water.<br />

Remarks. Examination <strong>of</strong> this preserved ctenophore left some question about its species identity.<br />

This animal was fairly contracted in its preserved state, at which point the funnel canal appeared<br />

to be shorter than the pharynx, which is indicative <strong>of</strong> Pleurobrachia pileus (see Bigelow, 1912).<br />

This species name should not be applied lightly, however, to a North Pacific specimen, since all<br />

those collected from British Columbia to California have been identified as Pleurobrachia<br />

bachei. Comparison with 3 living P. bachei <strong>of</strong> the same size (about 7 mm) from Friday Harbor,<br />

revealed that the pharynx/canal ratios in that species to be similar to the preserved specimen<br />

from PWS, so that name is applied here.<br />

MOLLUSCA<br />

Clione limacina<br />

Distribution. A young pteropod collected in the Homer Marina (Cook Inlet) on August 8, 1999 was<br />

probably Clione limacina.<br />

Remarks. The identification was not confirmed by careful microscopic examination. This species is<br />

found in boreal and temperate regions worldwide.<br />

Melibe leonina<br />

Distribution. Several Melibe leonina was observed either swimming in the water column or<br />

attached to kelp at each <strong>of</strong>: Fairmount Bay, Tatitlek and Cordova. In addition, Carmen Field


Chapt 9C2. Planktonic Cnidaria, Ctenophora, and Pelagic Mollusca, page 9C2- 13<br />

informed me that this species is common in Jakal<strong>of</strong> Bay within Katchemak Bay, although we did<br />

not confirm that location.<br />

Remarks. This species was seen swimming well up in the water column at Fairmount Bay and over<br />

eelgrass at Tatitlek. It was attached to laminarian kelp in the marina at Cordova.


Chapt 9C2. Planktonic Cnidaria, Ctenophora, and Pelagic Mollusca, page 9C2- 14<br />

NONINDIGENOUS CNIDARIA, (MOST) ALREADY PRESENT IN SOME<br />

WEST COAST ESTUARIES<br />

that might be positioned to ultimately invade locations in Alaska.<br />

CNIDARIA<br />

HYDROZOA<br />

Bougainvillia muscus (Allman, 1863). Hydroid known on the west coast only from Friday<br />

Harbor, Washington (Mills, 1981, as B. ramosa); possibly the same species <strong>of</strong> Bougainvillia that<br />

is a pest/contaminant in some aquariums in California. Temperature tolerances not known. This<br />

may actually be a complex <strong>of</strong> cryptic species rather than one species (Calder, 1988).<br />

Blackfordia virginica Mayer, 1910. Hydroids and medusae on the west coast known from north<br />

San Francisco Bay and Coos Bay (J. T. Carlton, personal communication); has a wide salinity<br />

and temperature tolerance. Also reported from the Chesapeake Bay and several European and<br />

Asian harbors, and its apparent point <strong>of</strong> origin, the Black Sea. Full temperature tolerances not<br />

known, but most <strong>of</strong> Alaska is north <strong>of</strong> its known distribution.<br />

Cladonema radiatum Dujardin, 1843. Hydroids and tiny medusae abundant in eelgrass community<br />

in Padilla Bay, Washington, not far from Anacortes and Cherry Point oil terminals. Temperature<br />

tolerances not known, but this species is found in numerous locations worldwide, including northern<br />

and Mediterranean Europe, its putative natural range.<br />

Cordylophora caspia (Pallas, 1771). Hydroid known from the mouth <strong>of</strong> the Samish River in<br />

Samish Bay, not far south <strong>of</strong> the Cherry Point oil terminals. Is also found in very low salinity<br />

tributaries to north San Francisco Bay and elsewhere on the west coast. Requires very low<br />

salinity, temperature tolerances not known; assumed to be <strong>of</strong> Ponto-Caspian origin.<br />

Ectopleura crocea (L. Agassiz, 1862). This Atlantic hydroid is probably established in at least<br />

California and British Columbia (see photo attributed to this species in Harbo (1999, p. 32).<br />

Species <strong>of</strong> Tubularia/Ectopleura cannot be positively identified without examining the<br />

reproductive medusoids, which is rarely done by non-specialists.<br />

Maeotias inexspectata Ostroum<strong>of</strong>f, 1896. Medusae on the west coast known from low<br />

salinity tributaries to north San Francisco Bay, seemingly always in salinities less than 15 psu,<br />

maybe to as low as 1-2 psu (Mills and Sommer, 1995). Also known intermittently from the<br />

Chesapeake Bay and several European estuaries, and its apparent point <strong>of</strong> origin, the Black<br />

Sea and Sea <strong>of</strong> Azov. Temperature tolerances not known, but most <strong>of</strong> Alaska is north <strong>of</strong> its<br />

known distribution. This species was newly collected in the Baltic Sea in Estonia in August<br />

1999 (Risto Vainola, pers. comm.).<br />

Moerisia spp. Several species in this genus have been described from a variety <strong>of</strong> widely<br />

separated locations worldwide, including some rivers emptying into north San Francisco Bay<br />

(J.T. Rees, personal communication), in which both polyps and medusae <strong>of</strong> this genus have been<br />

found. Also known from the Chesapeake Bay. It is not clear how many species are involved


Chapt 9C2. Planktonic Cnidaria, Ctenophora, and Pelagic Mollusca, page 9C2- 15<br />

worldwide. Some populations are known to be single-sexed, inplying a single introduction.<br />

Temperature and salinity tolerances not known.<br />

SCYPHOZOA<br />

Aurelia aurita (Linnaeus, 1758). The most commonly-reported species <strong>of</strong> Aurelia worldwide. With<br />

its seemingly highly-transportable sessile polyp, there is some reason to assume that this species was<br />

carried early to many additional locations, although its home range is so-far not defined - genetic<br />

studies are currently underway by several researchers. All Aurelia that I have inspected carefully in<br />

Alaska appear to be Aurelia labiata Chamisso and Eysenhardt, 1821 or Aurelia limbata Brandt, 1835<br />

(the latter species known from the Aleutians and the Bering Sea). A. labiata was originally described<br />

from central California, but seems to range all the way up the North American Pacific coast. It<br />

would not be too surprising to find A. aurita also living on the west coast. A report <strong>of</strong> a geneticallydifferent<br />

population <strong>of</strong> Aurelia (Greenberg et al., 1996) in San Francisco Bay is likely to be such.<br />

Because it is more amenable to culture, most public aquariums on the west coast have Aurelia aurita<br />

on display, providing a possible source <strong>of</strong> introduction. The name Aurelia aurita has been rather<br />

indiscriminately applied in the literature, including on the west coast <strong>of</strong> North America, without<br />

careful morphological inspection.<br />

ANTHOZOA<br />

Diadumene lineata Merrill, 1870. Cryptogenic sea anemone known from several locations in<br />

Washington and California, as well as worldwide. We searched in seemingly appropriate habitat for<br />

this species in several locations including the intertidal at Lowell Point, Seward, but none were found.<br />

Temperature tolerances are not known and might be an issue in Alaska.<br />

Nematostella vectensis Stephenson, 1935. Cryptogenic sea anemone known from quiet, lowsalinity<br />

lagoon habitats in most coastal American states, as well as numerous locations<br />

worldwide. This species was not found during the 1999 Prince William Sound Expedition, but<br />

we may not have encountered the right kind <strong>of</strong> habitat. Temperature tolerances are not known<br />

and might be an issue in Alaska.<br />

CTENOPHORA<br />

Mnemiopsis leidyi A. Agassiz, 1865. This is apparently the only species <strong>of</strong> ctenophore known to have<br />

invaded a marine habitat outside <strong>of</strong> its home range (the Black Sea). This genus, whose 3 putative<br />

species are not entirely resolved taxonomically, is native to the eastern coast <strong>of</strong> North America,<br />

extending from New England well into Argentina. It has not been found yet in the Pacific Ocean.<br />

NOTE: Many ctenophores are assumed to have very broad global distributions, and it is not known at<br />

this time to what extent, if any, their ranges have been extended artificially by man.


Chapt 9C3. Polychaete Worms, page 9C3- 1<br />

Chapter 9C3. Focal Taxonomic Collections: Polychaete Worms<br />

Jerry Kudenov, Department <strong>of</strong> Biology, University <strong>of</strong> Alaska, Anchorage<br />

Summary<br />

Nearly all <strong>of</strong> the Prince William Sound samples <strong>of</strong> polychaetes collected during the 1998<br />

Expedition have been examined. Certain taxa, such as the Spirorbinae, have not yet been<br />

identified. Excluding the latter subfamily, 61 species have been tentatively identified and<br />

partially described. In essence, there appear to be no clearly defined species that could be listed<br />

as a NIS. However, at least five species may be new to science (species <strong>of</strong> Eumida, Scoloplos,<br />

Exogone, Nephtys and Glycera). At least three new range extensions may be noted for<br />

Phyllodoce medipapillata, Chaetozone senticosa and Rhynchospio glutaea. Finally, six species<br />

that have widespread distributions in the northern hemisphere are represented in the present<br />

material, including: Pholoe minuta, Eteone longa, Barantolla americana, Harmothoe imbricata,<br />

Capitella capitata and Amphitrite cirrata. The systematics <strong>of</strong> each <strong>of</strong> these species is terribly<br />

confused and precise identifications are impossible to render presently. For example, Eteone<br />

longa was originally described from Greenland (1780), and has since been reported from<br />

numerous localities in the Arctic, Atlantic and Pacific Oceans where it appears to be<br />

phenotypically “identical” wherever it occurs. Of course, this is likely not true since the<br />

distributions <strong>of</strong> most species are restricted spatially and temporally. Resolving such dilemmas<br />

falls outside the scope <strong>of</strong> this study, and these six species are therefore identified as above,<br />

pending future revisions. Although all identifications are reasonably precise and non-indigenous<br />

species are represented in these samples, all results are based on literature descriptions and are<br />

preliminary; present materials must be more carefully compared to known reference specimens.<br />

References<br />

Agassiz, A. 1863. On alternate generations in the Annelida and the embryology <strong>of</strong> Autolytus<br />

cornutus. Journal <strong>of</strong> the Boston Society <strong>of</strong> Natural History series 3, 7:384-409.<br />

Annenkova, N.P. 1934. Kurze Übersicht der Polychaeten der Litoralzone der Bering-Insel<br />

(Kommandor-Inseln), nebst Beschreibung neuer arten. Zoologischer Anzeiger 106: 322-331.<br />

Audouin, J.V and H. Milne-Edwards. 1834. Classification des Annelides, et description de celles<br />

qui habitent les cotes de la France. Ann. Sci. Nat. Paris 28: 187-247.<br />

Berkeley, E. 1927. Polychaetous annelids from the Nanaimo District. 3. Leodicidae to Spionidae.<br />

Contr. Canad. Biol. Ottawa, n.s. 3: 405-422.<br />

Berkeley, E. & C. Berkeley. 1938. Notes on Polychaeta from the coast <strong>of</strong> western Canada. 2.<br />

Syllidae. Ann. Mag. Nat. Hist. London, ser. 11, 1:33-49.<br />

Berkeley, E. & C. Berkeley. 1942. North Pacific Polychaeta, chiefly from the west coast <strong>of</strong><br />

Vancouver Island, Alaska and Bering Sea. Can. J. Res. Ottawa 20: 183-208.<br />

Blake, J.A. 1996. Chapter 8. Family Cirratulidae Ryckholdt, 1851, Including a revision <strong>of</strong> the<br />

genera and species from the eastern North Pacific. In, J.A. Blake , B. Hilbig and P. H. Scott (eds.),


Chapt 9C3. Polychaete Worms, page 9C3- 2<br />

Taxonomic Atlas <strong>of</strong> the Benthic Fauna <strong>of</strong> the Santa Maria Basin and Western Santa Barbara<br />

Channel. Santa Barbara Museum <strong>of</strong> Natural History. Volume 6 (The Annelida Part III): 263-384.<br />

Blake, J.A. & K.H. Woodwick. 1971. New species <strong>of</strong> Polydora (Polychaeta: Spionidae) from the<br />

coast <strong>of</strong> California. Bull. So. Calif. Acad. Sci., 70:72-79.<br />

Bush. K.J. 1904. Tubicolous annelid <strong>of</strong> the tribes Sabellides and Serpulides from the Pacific<br />

Ocean. Harriman Alaska Exped., N.Y., 12:169-355.<br />

Chiaje, S. delle 1841. Descrizione e notomie degli animali invertibrati della Sicilia ateriore osservati<br />

vivi neglii anni 1822-1830.<br />

Ehlers, E. 1887. Report on the annelids <strong>of</strong> the dredging expedition <strong>of</strong> the U.S. coast survey steamer<br />

Blake. Memoirs <strong>of</strong> the Museum <strong>of</strong> Comparative Zoology, Harvard 15:1-335.<br />

Grube, A.E. 1840. Actinien, Echinodermen und Würmen des Atriatischen und Mittelmeers. J.H.<br />

Bon. Königsberg, pp. 61-88.<br />

Grube, A.E. 1863. Beschreibung neuer oder wenig bekannter Anneliden. Arch. Naturg. Berlin 29:<br />

37-69.<br />

Fabricius, O. 1780. Fauna Groenlandica, systematice sistens, Animalia Groenlandiae occidentalis<br />

hactenus indagata, quoad nomen specificum, triviale, vernaculumque; synonym auctorum plurium,<br />

descriptionem, locum, victum, generationem. mores, usum, capturamque singuli; prout detegendi<br />

occasio fuit, maximaque parti secundum proprias observationes. Hafniae et Lipsiae. xvi and 452 pp.<br />

Harrington, N.R. 1897. On nereids commensal with hermit crabs. Transactions <strong>of</strong> the New York<br />

Academy <strong>of</strong> Sciences 16:214-221.<br />

Hartman, O. 1938. Review <strong>of</strong> the annelid worms <strong>of</strong> the family Nepthyidae from the northeast<br />

Pacific, with descriptions <strong>of</strong> five new species. Proc. U.S. Nat. Mus., 85: 143-158.<br />

Hartman, O. 1961. Polychaetous annelids from Californa. Allan Hancock Pac. Exp., 25: 1-226.<br />

Hartman, O. 1963. Submarine canyons <strong>of</strong> southern California. Pt. 3. Systematics: Polychaetes.<br />

Allan Hancock Pac. Expeds., 27(3):1-93.<br />

Healy, E.A. and G.P. Wells. 1959. Three new lugworms (Arenicolidae, Polychaeta) from the north<br />

Pacific area. Proceedings <strong>of</strong> the Zoological Society <strong>of</strong> London 133:315-355.<br />

Hobson, K.D. and K. Banse. 1981. Sedentariate and archiannelid polychaetes <strong>of</strong> British Columbia<br />

and Washington. Canadian Bulletin <strong>of</strong> Fisheries and <strong>Aquatic</strong> Sciences 209:1-144.<br />

Jacobi, R. 1883. Anatomisch-histogische Untersuchung der Polydoren der Keiler Bucht. Inaugural<br />

Dissertation, Keil:1-35.


Chapt 9C3. Polychaete Worms, page 9C3- 3<br />

Johnson, H.P. 1897. A preliminary account <strong>of</strong> the marine annelids <strong>of</strong> the Pacific coast, with<br />

descriptions <strong>of</strong> new species. Euphrosynidae, Amphinomidae, Palmyridae, Polynoidae and<br />

Sigalionidae. Proc. Calif. Acad. Sci., 1:153-190.<br />

Johnson, H.P. 1901. The Polychaeta <strong>of</strong> the Puget Sound region. Proc. Boston Soc. Nat. Hist.,<br />

29:381-437.<br />

Johnston, G. 1840. British Annelids. Ann. Mag. Nat. Hist. London, ser. 1, 4: 368-375.<br />

Kinberg, J.G.H. 1867. Annulata nova. Öfversight af Kungliga Vetenskaps-Akademiens<br />

Förhandlingar, Stockholm 23: 337-357.<br />

Kudenov, J.D. and L. H. Harris. 1995. Chapter 1. Family Syllidae Grube, 1850. In, J.A. Blake and<br />

B. Hilbig (eds.), Taxonomic Atlas <strong>of</strong> the Benthic Fauna <strong>of</strong> the Santa Maria Basin and Western<br />

Santa Barbara Channel. Santa Barbara Museum <strong>of</strong> Natural History. Volume 5 (The Annelida Part<br />

II): 1-97.<br />

Linnaeus, C. 1767. Systema naturae. 12th ed.<br />

Malmgren, A.J. 1866. Nordiska Hafs-Annulater. Öfversight af Kungliga Vetenskaps-Akademiens<br />

Förhandlingar, Stockholm 22: 355-410.<br />

Malmgren, A.J. 1867. Annulata Polychaeta Spetsbergiae, Groenlandiae, Islandiae et Scandinaviae<br />

hactenus cognita. Öfversight af Kungliga Vetenskaps-Akademiens Förhandlingar, Stockholm 24:<br />

127-235.<br />

Mesnil, F. 1896. Études de morphologie externe chez les annélides. Les Spionidiens des cotes de la<br />

Manche. Bulletin Scientifique de la France et de la Belgique 29: 110-287.<br />

Moore, J.P. 1908. Some polychaetous annelids <strong>of</strong> the northern Pacific coast <strong>of</strong> North America. Proc.<br />

Acad. Nat. Sci. Phila., 60:321-364.<br />

Moore, J.P. 1909. Polychaetous annelids from Monterey Bay and San Diego, California. Proc.<br />

Acad. nat. Sci. Phila., 61: 235-295.<br />

Moore, J.P. 1911. The polychaetous annelids dredged by the U.S.S. Albatross <strong>of</strong>f the coast <strong>of</strong><br />

southern California in 1904. Euphrosynidae (sic) to Goniadidae. Proc. Acad. Nat. Sci. Phila., 63:<br />

234-318.<br />

Müller, O.F. 1771. Von Würmern des sussen und salzigen Wassers. Copenhagen, Heinich Mumme<br />

und Faber. 200 pp.<br />

Müller, O.F. 1776. Zoologica Danicae Prodromus seu Annimalium Daniae et Norvegiae<br />

indigenarum characters, nomine et synonyma imprimis populaium. Havniae. 274 pp.


Chapt 9C3. Polychaete Worms, page 9C3- 4<br />

Oersted, A.S. 1843. Groenlandiae Annulata dosibranchiata. K. Danske Videns. naturw. math-Afh.<br />

Copenhagen, 10: 153-216.<br />

Pettibone, M.H. 1957. North American genera <strong>of</strong> the family Orbiniidae. Journal <strong>of</strong> the Washington<br />

Academy <strong>of</strong> Sciences 47: 159-167.<br />

Rathke, H. 1843. Beitrage zur Fauna Norwegens. Nova Acta Acad. Leop. Carol. Nat. Cur. Halle,<br />

20: 1-264.<br />

Schmarda, L.K. 1861. Neue wirbellose Thiere beobachet und gesammelt auf einer Reise um die<br />

Erde 1853 bis 1857. a. Turbellarien, Rotatorien und Annelidien. Part 2: 1-164.<br />

Zachs, I.G. 1933. Polychaeta <strong>of</strong> the North-Japanese Sea. Explorations <strong>of</strong> the Seas <strong>of</strong> the<br />

USSR 19:125-137. (In Russian).<br />

Table 9C3.1 POLYCHAETA, PRINCE WILLIAM SOUND, SUMMER 1998<br />

SIGALIONIDAE<br />

Pholoe minuta Fabricius, 1780<br />

PHYLLODOCIDAE<br />

Eteone longa (Fabricius, 1780)<br />

Eulalia bilineata (Johnston, 1840)<br />

Eumida species A (new species)<br />

Phyllodoce medipapillata Moore, 1909<br />

Phyllodoce species<br />

NEREIDIDAE<br />

Chelonereis cyclurus Harrington, 1897<br />

Platynereis species (bicanaliculata)<br />

CAPITELLIDAE<br />

Barantolla americana Hartman, 1963<br />

GONIADIAE<br />

Glycinde picta Berkeley 1927<br />

GLYCERIDAE<br />

Glycinde armigera Moore, 1911


Chapt 9C3. Polychaete Worms, page 9C3- 5<br />

ORBINIIDAE<br />

Scoloplos species A New Species<br />

POLYNOIDAE<br />

Harmothoe imbricata (Linnaeus, 1767)<br />

Harmothoe extenuata (Grube, 1840)<br />

Harmothoinae<br />

Lepidonotinae<br />

CHRYSOPELATIDAE<br />

Chrysopetalum occidentale Johnson, 1897<br />

SYLLIDAE<br />

Exogone cf. dwisula Kudenov & Harris, 1995<br />

Sphaerosyllis cf. californiensis Hartman, 1961<br />

Trypanosyllis gemmipara Johnson, 1901<br />

Eudontosyllis species A<br />

Tyosyllis alternata (Moore, 1908)<br />

Typosyllis hyalina Grube 1863<br />

Typosyllis pulchra Berkeley & Berkeley, 1938<br />

Typosyllis stewarti Berkeley & Berkeley, 1942<br />

Autoylus (Procerea) cornutus Agassiz, 1863<br />

LUMBRINDERIDAE<br />

Lumbrineris latrielli Audouin & Milne-Edwards, 1834<br />

ORBINIIDAE<br />

Leitoscoloplos pugettensis (Pettibone, 1957)<br />

Naineris dendritica (Kinberg, 1867)<br />

SPIONIDAE<br />

Spio filicornis (Müller, 1776)<br />

OPHELIIDAE<br />

Armandia brevis Hartman, 1938<br />

Ophelia limacina (Rathke, 1843)<br />

NEREIDIDAE<br />

Nereididae (postmetamorphic juvenile)<br />

SPIONIDAE<br />

Prionospio steenstrupi Malmgren, 1867


Chapt 9C3. Polychaete Worms, page 9C3- 6<br />

CIRRATULIDAE<br />

Cirratulus cingulatus Johnson, 1901<br />

Chaetozone senticosa Blake, 1996<br />

CAPITELLIDAE<br />

Capitella capitata (Fabricius, 1780)<br />

NEPHTYIDAE<br />

Nephtys species A (N. ciliata)<br />

Nephtys species A (juvenile)<br />

Nephtys species B (juvenile)<br />

ARENICOLIDAE<br />

Abarenicola pacifica Healy & Wells 1959<br />

OWENIIDAE<br />

Owenia fusiformis della Chiaje, 1841<br />

GLYCERIDAE<br />

Glycera cf. nana Johnson, 1901<br />

SPIONIDAE<br />

Rhynchospio glutaea (Ehlers, 1887)<br />

Prionospio sp.<br />

Dipolydora cf. socialis (Schmarda, 1861)<br />

Dipolydora sp. A (near bidentata) Zachs, 1933<br />

Dipolydora sp. B<br />

Dipolydora sp. C (near giardi (Mesnil, 1896))<br />

Polydora limicola Annenkova, 1934<br />

Diplydora quadrilobata (Jacobi, 1883)<br />

Polydora sp.<br />

MALDANIDAE<br />

Nicomache personata Johnson 1901<br />

PECTINARIIDAE<br />

Pectinaria granulata Johnson 1901<br />

AMPHARETIDAE<br />

Ampharete species A<br />

TEREBELLIDAE<br />

Amphitrite cirrata Müller. 1771<br />

Polycirrus species III Hobson & Banse, 1981


Chapt 9C3. Polychaete Worms, page 9C3- 7<br />

SABELLIDAE<br />

Laonome cf. kroyeri (Malmgren, 1866)<br />

Schizobranchia insignis Bush 1904<br />

SERPULIDAE<br />

Crucigera zygophora (Johnson, 1901)<br />

Serpula vermicularis Linnaeus, 1767<br />

Spirorbis species<br />

Table 3. Polychaeta Collected in 1998 PWS Expedition<br />

Note: Materials listed below as PWS NIS 1998 include Stations followed by the number <strong>of</strong><br />

specimens in parentheses.<br />

Pholoe minuta Fabricius, 1780<br />

PWS NIS 1998: Sta 1(1 specimen); Sta 5(1); 6 (fragments); Sta 7 (2); Sta (3); Sta 10(4); Sta<br />

11(1); Sta 41(3).<br />

Based on specimens, these are not Pholoe minuta sensu Fabricius. Original taxon described as<br />

having papillae disbursed over entire ventral and parapodial surfaces. Specimens all have small,<br />

close-set, short papillae over entire ventral surface; parapodia with conspicuous digitiform<br />

papillae. Whatever “Pholoe minuta” represents, it must be a polyphyletic species at the very<br />

least. It has a recorded distribution in both the Arctic and south Atlantic Oceans. This species is<br />

correctly identified to a single taxon. However its actual identity is questionable in view <strong>of</strong> its<br />

widespread distribution.<br />

Eteone longa (Fabricius, 1780)<br />

PWS NIS 1998: Sta 3(1 specimen ); Sta 15(2); Sta 16(3); Sta 17(8); Sta 18(9); Sta 36(1); Sta<br />

41(1).<br />

Technically, the Eteone longa/flava group is in severe disarray and is undoubtedly represents a<br />

complex taxonomic assemblage <strong>of</strong> closely related species. Whatever taxon is represented by<br />

PWS specimens <strong>of</strong> “E. longa” must remain obscure until a definitive study is published.<br />

Eulalia bilineata (Johnson, 1840)<br />

PWS NIS 1998: Sta 21(1 specimen).<br />

Keys out according to Blake (1996) and Pleijel (1991). Only one specimen, which is poorly<br />

preserved used for this identification; therefore it is considered to be tentative.<br />

Eumida species A (new species)<br />

PWS NIS 1998: Sta 21(2 specimens).<br />

Genus identification correct. Prostomium small, with 4 distal and one median unpaired antenna.<br />

Dorsal cirri triangular, pointed, lanceolate. Ventral cirri subtriangular, subtly pointed. Segment<br />

1 highly reduced, not fused to segment 2; in largest specimen it actually extends onto<br />

prostomium (although this may be artifactual); tentacular cirri lateral to prostomium. Segment 2


Chapt 9C3. Polychaete Worms, page 9C3- 8<br />

with two pairs <strong>of</strong> tentacular cirri, ventral pair shortest; lacking setae. Segment 3 with one pair<br />

tentacular cirri, with fascicle <strong>of</strong> setae in neuropodium.<br />

Parapodia all distally rounded, without hint <strong>of</strong> dorsal lobe; all about the same length throughout<br />

the body. Ventral cirri asymmetrical, subquadrangular, longest anteriorly and gradually<br />

decreasing in length, size posteriorly.<br />

Pygidium lacking appendages (lost).<br />

Phyllodoce medipapillata Moore, 1909<br />

PWS NIS 1998: Sta 21(1); 36(1).<br />

Two beautiful specimens, complete, well preserved with proboscides everted. Key out according<br />

to Blake (1994). Present record is a range extension, and potentially also an introduced species<br />

to PWS, assuming there are no other records <strong>of</strong> it between here and central to southern California<br />

(0-300 m) where it seems to be restricted.<br />

Phyllodoce species<br />

PWS NIS 1998: Sta 15(2 specimens)<br />

Juvenile individuals, one <strong>of</strong> which has proboscis everted. Both extremely small, unidentifiable.<br />

Chelonereis cyclurus Harrington, 1897<br />

PWS NIS 1998: Sta 3(3 specimens); Sta 5(4); Sta 6(3); Sta 9(1); Sta 10(1); Sta 11(32); Sta<br />

12(33); Sta 14(1); Sta 16(2); Sta 19(7); Sta 21(65); Sta 22(7); Sta 23(28); Sta 24(14); Sta 24N(2);<br />

Sta 25(10); Sta 28(57); Sta 30(8); Sta 31(2); Sta 32(3); Sta 34(35); Sta 35(106); Sta 36(2); Sta<br />

40(1); Sta 41(2); Sta 44(2).<br />

Characteristic species. Notosetae homogomph spinigers. Neurosetae heterogomph spinigers and<br />

falcigers. Largest specimen lacks homogomph falcigers in neuropodia.<br />

Platynereis species (bicanaliculata (Baird, 1863))<br />

PWS NIS 1998: Sta 12(1 specimen).<br />

Juvenile lacking tentacular cirri. This identification is highly tentative, based on a single<br />

specimen!<br />

Nereididae (postmetamorphic juvenile)<br />

PWS NIS 1998: Sta 6(1 specimen).<br />

Identified as “Platynereis” but the specimen is a postmetamorphic juvenile that is not<br />

identifiable to genus.<br />

Glycinde picta Berkeley 1927<br />

PWS NIS 1998: Sta 4(1 specimen ); Sta 7(1); Sta 15(1); Sta 16(2); Sta 41(1).<br />

All with ventral arc <strong>of</strong> micrognaths, characteristic <strong>of</strong> Glycinde picta along Pacific coast <strong>of</strong> North<br />

America.<br />

Glycinde armigera Moore, 1911<br />

PWS NIS 1998: Sta 13(1 specimen ); Sta 23(1).


Chapt 9C3. Polychaete Worms, page 9C3- 9<br />

Identification tentative in light <strong>of</strong> a dissection performed previously and prior to the present<br />

examination that damaged the critical region <strong>of</strong> macro- and micrognaths.<br />

Harmothoe imbricata (Linnaeus, 1776)<br />

PWS NIS 1998: Sta5(2 juveniles); Sta6(2 juveniles); Sta 10(3 specimens); Sta 11(10); Sta<br />

14(2); Sta 19(2); Sta 21(8); Sta 23(4); Sta 24(3) Sta24(1); Sta 28(7); Sta 30(2); Sta 34(7);<br />

Sta 35(17); Sta 36(9).<br />

Another widespread species that must be re-examined critically. Tentatively assigned to<br />

Harmothoe imbricata.<br />

Harmothoe extenuata (Grube, 1840)<br />

PWS NIS 1998: Sta 35(3 specimens).<br />

Seems to key out well. Some <strong>of</strong> the specimens included as H. imbricata likely identical to this<br />

taxon.<br />

Harmothoinae<br />

PWS NIS 1998: Sta 19(1 specimen); Sta 24N(2).<br />

These are most likely “H. imbricata “ juveniles, and should be referred to above as “”<br />

Lepidonotinae<br />

PWS NIS 1998: Sta 23(1 specimen ); Sta 24N(1); 34(2).<br />

Note that Station 34(2 specimens) contains the best specimens, which seem to key out to<br />

Parhalosydna, which seems somewhat <strong>of</strong> a stretch. Most <strong>of</strong> the specimens are not well<br />

preserved, nearly all lack elytra, and identification can not be made positively.<br />

Chrysopetalum occidentale Johnson, 1897<br />

PWS NIS 1998: Sta 23(1 specimen); 24(1).<br />

Highly characteristic species.<br />

Exogone cf. dwisula Kudenov & Harris, 1995<br />

PWS NIS 1998: Sta 19(1 specimen); Sta 21(1); Sta 23(10); Sta 32(1).<br />

This species is very closely allied to E. dwisula, and also to E. gemmifera. Antennae closely set,<br />

laterals about .67-.75x length <strong>of</strong> median. Pharynx extends through 1.5-2 segments, with anterior<br />

unpaired middorsal tooth. Proventriculus extends through 2 segments, with 15 rows muscle<br />

cells. Peristomial antennae small, inconspicuous, not visible in dorsal view. Setae number 4-5<br />

per parapodium, <strong>of</strong> 3 kinds: a) falcigers with deeply incised blades, confined to anterior setigers;<br />

b) stout awl-shaped spinigers, numbering 1-2 per anterior parapodium, 1 per median and<br />

posterior parapodia; c) dorsal and ventral simple seta, the former present in all setigers, the latter<br />

in the last few setigers. Aciculae numbering 1 per parapodium, all terminating in distally<br />

enlarged heads (blunt or beaked)<br />

Sphaerosyllis cf. californiensis Hartman, 1961<br />

PWS NIS 1998: Sta 10(1 specimen); Sta 19(1); Sta 19(11); Sta 21(2); Sta 21(2); Sta 23(65);<br />

Sta 23(5).<br />

One difference between these specimens and those examined by Kudenov & Harris (1995) is the<br />

presence <strong>of</strong> an additional pair <strong>of</strong> conspicuous papillae on distal parapodial surfaces; one is


Chapt 9C3. Polychaete Worms, page 9C3- 10<br />

anterior, the other posterior. A most unusual aspect to the setal morphology is the fact that the<br />

cutting teeth on blades <strong>of</strong> compound falcigers are set in 2 rows, members <strong>of</strong> one row alternating<br />

with those <strong>of</strong> the other row.<br />

This has not been reported for S. californiensis. Then again, I don’t believe anyone has ever<br />

looked closely enough! These specimens will represent a new species if S. californiensis lacks<br />

these alternating rows <strong>of</strong> teeth on blade cutting surfaces.<br />

Trypanosyllis gemmipara Johnson, 1901<br />

PWS NIS 1998: Sta 23(1 specimen).<br />

One small specimen, 61 segments. Bidentate falcigers. Trepan with 10 teeth; middorsal tooth<br />

absent.<br />

Eudontosyllis species A<br />

PWS NIS 1998: Sta 19(1 specimen); 23(1).<br />

Only 2 specimens, both anterior fragments. Specimen <strong>of</strong> Sta 19 in 2 pieces, with dorsal cirri; Sta<br />

23 in 1 piece, lacking dorsal cirri. Specimens key out to Eudontosyllis Knox 1960, which<br />

according to Fauchald (1977) is represented by a single species.<br />

Essential descriptive elements include: Prostomium reduced, with 2 pairs <strong>of</strong> large lenticulate;<br />

eyes Palps reduced, fused only basally. Paired occipital nuchal organs extending over setiger 1,<br />

not fused to dorsum; Antennae very long, smooth basally, terminating in a few distal moniliform<br />

elements, each long and cylindrical; Peristomial tentacles long, number 1 pair; Notoacicula<br />

present, each conspicuous, with distally bent tips; Notosetae as multispinose capillaries in small<br />

inconspicuous tufts. Neurosetal fascicles with bidentate compound falcigers.<br />

The one specimen with notosetal fascicles may be epitokous (Sta 23). Need to check out the<br />

specimen from Sta 19 for comparison.<br />

Tyosyllis alternata (Moore, 1908)<br />

PWS NIS 1998: Sta 5(1 specimen); 9(1); Sta10(1, juvenile).<br />

Typosyllis hyalina Grube 1863<br />

PWS NIS 1998: Sta 21(1 specimen).<br />

Typosyllis pulchra Berkeley & Berkeley, 1938<br />

PWS NIS 1998: Sta 21(1 specimen); 24(1).<br />

Typosyllis stewarti Berkeley & Berkeley, 1942<br />

PWS NIS 1998: Sta 21(5 specimens); 21(1); 23(1).<br />

Characteristic increase in thickness <strong>of</strong> falcigers in posterior segments. Many <strong>of</strong> these have lost<br />

their blades.<br />

Autoylus (Procerea) cornutus Agassiz, 1863<br />

A.cornutus Okada, 1933:645-647, figs. 3,4; Pettibone, 1963:144, fig. 37e.<br />

A.cornatus Hartman, 1944:338, pl. 13, fig. 5.


Chapt 9C3. Polychaete Worms, page 9C3- 11<br />

A. (Regulatus) cornutus, Imajima, 1966:49-51, Text-fig. 13a-i.<br />

PWS NIS 1998: Sta 19(1 specimen); Sta 20(2); Sta 25(1).<br />

Only two specimens include in these samples. Specimen (Sta. 19) is small, lacking tentacular<br />

and dorsal cirri. Dorsal cirri <strong>of</strong> setiger 1 longest; those from setiger 2 all shorter and about the<br />

same size. Both asexual forms exhibiting stolons between segments 13-14. Trepan with 18<br />

teeth: 9 larger and 9 smaller. Dorsal simple setae thick, distally truncate and serrated. Nuchal<br />

organs restricted to posterolateral regions <strong>of</strong> prostomium; not extended to posterior margin <strong>of</strong><br />

setiger 1.<br />

The species was originally reported from Atlantic habitats (Labrador to Chesapeake Bay;<br />

Plymouth) and has also been reported from Japan to British Columbia-Washington.<br />

Specimens (Sta. 20) are sexual forms for which only the genus is a certain identification.<br />

Swarming or sexually swimming stages have not been related to asexual phases, unfortunately,<br />

along the Pacific coast <strong>of</strong> North America (or most other places, except see Gidholm 1965, 1966).<br />

Nephtys species A (N. ciliata)<br />

NIW NIS 1998: Sta 10(1 specimen); Sta11(1); Sta 15(3); Sta 16(1); Sta 16(4); Sta 36(5).<br />

This appears to be a new species. It does not key out to anything in Banse & Hobson (1974)<br />

where, in the key, this species drops out <strong>of</strong> the key at couplet 6 (page 73). The couplet provides<br />

a choice between large, postsetal notopodial lobes without a middorsal proboscideal papilla<br />

versus medium-sized postsetal notopodial lobes with out without a dorsal median proboscideal<br />

papilla.<br />

To couplet 9, the next choice is interramal cirri, proboscis with unpaired dorsal papilla, which<br />

leads to a choice between N. ciliata or N. caecoides.<br />

It is not N. caecoides. Key leads to N. ciliata which lacks a dorsal pigment pattern. Notopodial<br />

postsetal lobe partly covered by acicular lobe, which, in N. caeca is large, but is relatively small,<br />

compared to the postsetal notopodial lobe. Proboscis proximally with small warts.<br />

In all, this appears to be N. ciliata. One principal difference appears to be the size <strong>of</strong> the<br />

postsetal notopodial lobes.<br />

Specimen 11(1) poorly preserved; assignment tentative.<br />

Nephyts species A (juvenile)<br />

NIW NIS 1998: Sta 15(7 specimens); Sta 17(1); Sta 17(1).<br />

All specimens are postmetamorphic or young juveniles and are unidentifiable to species. Note<br />

that all have conical acicular lobes and poorly defined postsetal lamellae. Specimen (17(1))<br />

obviously a newly postmetamorphic juvenile; assigned to this taxon for convenience.<br />

Nephyts species B (juvenile)<br />

NIW NIS 1998: Sta 11(3 specimens).


Chapt 9C3. Polychaete Worms, page 9C3- 12<br />

Interramal cirri short, almost straight except for distally curved tip, hanging almost straight<br />

down. Interramal cirri beginning from setiger 5. Acicular lobes generally rounded although<br />

notopodial lobe slightly bilobed; neuropodial lobe more evenly rounded.<br />

Glycera cf. nana Johnson, 1901<br />

NIW NIS 1998: Sta 10(1 specimen); Sta 11(1); Sta 16(1); Sta 24(3); Sta 36(1).<br />

These specimens are mighty peculiar! Postsetal lobes are rounded, with biramous parapodia as<br />

per Glycera. Ailerons winged as per Glycera. Proboscis with 3 kinds <strong>of</strong> papillae including long,<br />

slender and shorter tapering forms plus spherical papillae. Inferior presetal lobe pointed,<br />

appearing rather different from that for Glycera nana.<br />

Hilbig (1994) describes Glycera nana in terms that, compared to the present materials, intimates<br />

that the PWS specimens are sufficiently different to represent a new species.<br />

Lumbrineris latrielli Audouin & Milne-Edwards, 1834<br />

PWS NIS 1998: Sta 5(2 specimens); Sta 11(1).<br />

Keys out according to both Banse & Hobson (1974) and also Ruff (1995), particularly in view <strong>of</strong><br />

the latter’s comments. Specimen (Sta. 11) with dental formula: 1+1, 5+4, 2+2, 1+1. Yellow<br />

aciculae. Compound falcigers in anterior segments. Posterior pre- and postsetal lobes not<br />

elongate. No obvious pigmentation patterns in preserved specimens.<br />

Scoloplos species A New Species<br />

As Scoloplos armiger PWS NIS 1998: Sta 4(2 specimens); Sta 10(4); Sta 15(2); Sta 36(1); Sta<br />

41(22).<br />

As Scoloplos species PWS NIS 1998: Sta 7(1 specimen); Sta 10(3).<br />

As Orbiniidae PWS NIS 1998: Sta 10(4 specimens); Sta 41(1).<br />

All <strong>of</strong> these individuals represent a new taxon. There are no subpodial lobes present whatsoever.<br />

Number <strong>of</strong> thoracic segments numbering 14-15. Branchiae from posterior thoracic segments.<br />

Thoracic neurosetae with distally smooth, transparent hoods. Abdominal neurosetae include<br />

both capillaries and delicate spines. Neuropodial lobes in larger specimens digitiform; smaller<br />

specimens notched. These lobes are clearly different from those <strong>of</strong> both S. armiger and S.<br />

acmeceps.<br />

Leitoscoloplos pugettensis (Pettibone, 1957)<br />

PWS NIS 1998: Sta 5(1 specimen); Sta 15(2); Sta 17(14).<br />

Specimens correctly identified to species. No abdominal subpodial lobes present.<br />

Naineris dendritica (Kinberg, 1867)<br />

PWS NIS 1998: Sta 17(36 specimens).<br />

Agrees well with descriptions. Originally identified as N. quadricuspida on label, however, only<br />

one record can be assigned to this species, and even then, Hartman (1961) noted distinct and<br />

significant differences between her material compared to those described by Fabricius. In other<br />

words, N. quaricuspida does not occur on this coast!


Chapt 9C3. Polychaete Worms, page 9C3- 13<br />

Spio filicornis (Müller, 1776)<br />

PWS NIS 1998: Sta 5(2 specimens); Sta 10(1); Sta 15(12); Sta 17(1).<br />

Keys out according to Blake (1996).<br />

Armandia brevis Hartman, 1938<br />

PWS NIS 1998: Sta 5(3 specimens); Sta 7(3); Sta 10(5); Sta 11(12); Sta 11(1*); Sta 15(4).<br />

Everything keys out extremely well to this taxon following Hartman (1969). Need to check out<br />

the validity <strong>of</strong> this genus based on Colin Herman’s comments a few years ago. Specimen (Sta.<br />

11(1*)) is poorly preserved, has a pair <strong>of</strong> prostomial eyespots, and hints <strong>of</strong> lateral eyespots, and<br />

is taken here to represent Armandia brevis.<br />

Ophelia limacina (Rathke, 1843)<br />

PWS NIS 1998: Sta 5(1 specimen).<br />

This is a supposedly cosmopolitan species. It has 37 setigers compared to 39 originally<br />

described. First 10 setigers abranchiate. Ventral groove present from around setiger 10-11.<br />

Prionospio steenstrupi Malmgren, 1867<br />

PWS NIS 1998: Sta 6(1 specimen); Sta 9(3); Sta 11(10).<br />

Specimens poorly preserved, and trashed in most cases. Gills not well intact, and in a few<br />

specimens (Sta. 11) they are <strong>of</strong> variable lengths. The neuropodial lamella <strong>of</strong> setiger 2 with the<br />

characteristic ventral protuberance; those <strong>of</strong> setiger 3 squarish to ventrally pointed also.<br />

Identification tentative pending additional specimens.<br />

Cirratulus cingulatus Johnson, 1901<br />

PWS NIS 1998: Sta 6(1 specimen); Sta 11(1); Sta 16(2); Sta 17(8) + Sta 17(3); Sta 24(3); Sta<br />

24N(1).<br />

Specimens agree fairly well with description provided by Blake (1996:350-351). Neurosetal<br />

spines begin from setigers 23-26; notosetal spines from setigers 35-37. Specimen from Sta 24N<br />

may be a juvenile, with neurosetal spines from setiger 9. and notosetal spines from setiger 16.<br />

Eyes present in all specimens as line <strong>of</strong> 4-6 individual eyespots. The three specimens from Sta<br />

17 are very large and show size-dependent morphology concerning transverse band <strong>of</strong><br />

tentacles/cirri.<br />

Chaetozone senticosa Blake, 1996<br />

PWS NIS 1998: Sta 15(9 specimens); Sta 17(57).<br />

Keys out according to Blake (1996), although the final identification needs to be confirmed<br />

based on methyl green. Specimens with around 60-70 setigers, hooks beginning from around<br />

setiger 35-40. Prostomium short, triangular, with a single achaetous annulus.<br />

Originally reported from Central and Northern California. This may be a range extension,<br />

assuming the identification is valid.<br />

Barantolla americana Hartman, 1963<br />

PWS NIS 1998: Sta 3(1 specimen); Sta 4(1); Sta 9(2); Sta 15(3); Sta 19(1); Sta 41(1).


Chapt 9C3. Polychaete Worms, page 9C3- 14<br />

This is a dubious taxon. Originally described has having capillary setae only in notosetiger 6<br />

and neurosetiger 7; mixed capillaries in notosetiger 7 and neurosetiger 8; hooks only in<br />

notosetigers 8-11 and neurosetigers 9-11. In contrast, Fauchald (1977) lists Barantolla as<br />

having 6 setigers with capillaries followed by 1 mixed capillaries and hooks, and then 4 more<br />

with hooks only.<br />

The present specimens are at odds with the above descrepancies. Specimen 3(1) with mixed<br />

notosetae on setiger 5; 7(2) with capillaries only in notosetigers 1-5 and neurosetigers 1-6,<br />

mixed setae in notosetiger 6 and neurosetiger 7, and hooks only thereafter in notosetigers 7-11<br />

and neurosetigers 8-11; specimen 41(1) with capillaries only in both noto- and neurosetigers 1-6,<br />

and hooks only in both noto- and neurosetigers 7-11 (setiger with mixed setae apparently<br />

absent).<br />

Capitella capitata (Fabricius, 1780)<br />

NIW NIS 1998: Sta 7(3 specimens); Sta 9(1); Sta 15(9); Sta 41(17).<br />

Whatever Capitella capitata is, these specimens can be assigned to the stem species. But this is<br />

one the “cosmopolitan” species that can be almost anything.<br />

Abarenicola pacifica Healy & Wells 1959<br />

NIW NIS 1998: Sta 7(1 specimen); Sta 17(3); Sta 18(9).<br />

One large specimen (Sta. 7), intact; all others are juveniles. No question concerning identity.<br />

Owenia fusiformis della Chiaje, 1841<br />

NIW NIS 1998: Sta 7(1 specimen); Sta 41(1).<br />

Only two specimens. Have a collar as per Owenia collaris. Setae appear to have configuration<br />

found in Owenia fusiformis. Refer to recent paper on the family from IP4 (Paris).<br />

Rhynchospio glutaea (Ehlers, 1887)<br />

PWS NIS 1998: Sta 10(1 specimen); Sta 10(1).<br />

New record for Alaska. Not particularly surprising.<br />

Prionospio sp.<br />

PWS NIS 1998: Sta 18(12 specimens).<br />

Recheck. One specimen appeared to have gills on middle body segments. These are not<br />

polydorids as noted on label.<br />

Dipolydora cf. socialis (Schmarda, 1861)<br />

PWS NIS 1998: Sta 17(1 specimen).<br />

Tentative identification, but not Dipolydora socialis. Falcate spines <strong>of</strong> setiger 5 strongly falcate,<br />

with hint <strong>of</strong> flange; bristle absent. Setiger 1 postsetal lamellae poorly developed. Gizzard-like<br />

structure present around setigers 17-18, but not as portrayed by Blake (1996).<br />

Dipolydora sp. A (near bidentata) Zachs, 1933<br />

PWS NIS 1998: Sta 17(18 specimens); Sta 19(1); Sta 23(2).<br />

This taxon may be a shell borer. Spines <strong>of</strong> setiger 5 without distal bristles, with flange-tooth on<br />

lateral surface (not on convex surface as fas as I can see). Caruncle to posterior setiger 4.


Chapt 9C3. Polychaete Worms, page 9C3- 15<br />

Notosetae present on setiger 1. Prostomium deeply incised, bifurcate. Posterior notosetae<br />

capillaries; spinous packets, modified setae absent. Neurosetae without manubrium, from setiger<br />

7, bidentate to end <strong>of</strong> body.<br />

Dipolydora. sp B<br />

PWS NIS 1998: Sta 17(1 specimen).<br />

Prostomium incised, strongly bilobed. 4 pairs <strong>of</strong> eyes. Notosetae setiger 1 present, lobe reduced<br />

to papillar lobe. Caruncle to posterior setiger 3. Setiger 5 strongly modified; heavy spines<br />

distally falcate, heavy triangular tooth on concave surface, bristles present in notch between<br />

tooth and tip <strong>of</strong> spine. Bidentate neurosetae without manubria, from setiger 7. Branchiae from<br />

setiger 7.<br />

Does not key out using Blake 1996…falls out at couplet 10 (10B where choice is presence <strong>of</strong> 2<br />

accessory teeth) since this specimen has only 1 visible accessory tooth, and appears to lack a<br />

cowling.<br />

Dipolydora sp. C (near giardi (Mesnil, 1896))<br />

PWS NIS 1998: Sta 21(>100 specimens); Sta30(1).<br />

Numerous specimens. Prostomium incised, bilobed. No eyes. Setiger 1 complete, notosetae<br />

present, notopodium reduced to digitiform lobe. Caruncle to setiger posterior margin setiger 3.<br />

Setiger 5 modified; spines with accessory tooth on concave surface, with partial cowling on<br />

opposite side <strong>of</strong> concave surface extending to convex surface; bristles absent.<br />

Branchiae from setiger 9. Neurosetal hooks without manubria, from setiger 7.<br />

Dipolydora quadrilobata (Jacobi, 1883)<br />

PWS NIS 1998: Sta 15(1 specimen).<br />

Incomplete specimen, and identification is tentative.<br />

Polydora limicola Annenkova, 1934<br />

PWS NIS 1998: Sta 10(1 specimen); Sta 16(1); Sta 23(1).<br />

Incomplete specimen, and identification is tentative.<br />

Polydora sp.<br />

PWS NIS 1998: Sta 17(1 specimen).<br />

This is a juvenile specimen. It is small and slender. Prostomium entire. Eyes numbering 8.<br />

Setiger 5 is not modified. Pygidium 4-lobed. Probably not assignable to any known taxon.<br />

Nicomache personata Johnson 1901<br />

PWS NIS 1998: Sta 11(1 specimen).<br />

Identification certain to this species, although specimen is incomplete. Pigmentation pattern<br />

characteristic <strong>of</strong> species.


Chapt 9C3. Polychaete Worms, page 9C3- 16<br />

Pectinaria granulata Johnson 1901<br />

PWS NIS 1998: Sta 11(5 specimens); Sta 16(3); Sta 17(1); Sta 36(22).<br />

Correct identification.<br />

Laonome cf. kroyeri (Malmgren, 1866)<br />

PWS NIS 1998: Sta 17(14 specimens).<br />

Avicular uncini with short bases; companion setae absent. Both capillary and spatulate setae<br />

present. Radioles lacking external stylodes; collar bilobed. Need to reconfirm identity.<br />

Schizobranchia insignis Bush 1904<br />

PWS NIS 1998: Sta 19(4 specimen); Sta 23(2) + Sta 23(>20).<br />

Identification correct. Smallest specimen placed into shell vial (Sta. 23) is perhaps a juvenile,<br />

with all the setal features consistent. Note that large vial (Sta. 23) mislabeled as Terebellidae<br />

(instead <strong>of</strong> Sabellidae).<br />

Amphitrite cirrata Müller, 1771<br />

PWS NIS 1998: Sta 19(2 specimens); Sta 23(3); Sta 24(2); Sta35(1); Sta 36(1).<br />

This is another “cosmopolitan” species…at least in the northern hemisphere. A taxonomic black<br />

hole similar to Phole minuta and Eteone longa!! Specimen (Sta. 35) is juvenile terebellid,<br />

probably Amphitrite cirrata; it is not Ampharetidae)!<br />

Polycirrus species III Hobson & Banse, 1981<br />

PWS NIS 1998: Sta 36(1 specimen).<br />

This keys out as per Hobson & Banse (1981). However, as a general comment, the key is<br />

extremely poor and relies on imprecise terminology that overlaps features used to describe<br />

notosetae! In any case, it would seem appropriate to attach names instead <strong>of</strong> roman numerals.<br />

Ampharete species A<br />

PWS NIS 1998: Sta 41(1 specimen).<br />

The generic identification is correct. Single specimen lacks a tail, and cannot be identified to<br />

species. It is not Ampharete labrops, which has eyespots on upper buccal lip; present specimen<br />

lacks eyespots in corresponding region.<br />

Crucigera zygophora (Johnson, 1901)<br />

PWS NIS 1998: Sta 19(6 specimens); Sta 23(>20); Sta 24(1).<br />

Identification correct. Present specimens are textbook examples.<br />

Serpula vermicularis Linnaeus, 1767<br />

PWS NIS 1998: Sta 23(3 specimens).<br />

Identification correct. Tentacles solid red or banded red and white, at least in preservative.<br />

Spirorbis species<br />

PWS NIS 1998: Sta 17(>50 specimens).<br />

Dextrally spiraled tubes, 3 thoracic setigers. Species identifications pending examination <strong>of</strong><br />

remaining materials.


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 1<br />

Chapter 9C4. Focal Taxonomic Collections: Peracaridan Crustaceans<br />

John W. Chapman, Department <strong>of</strong> Fisheries & Wildlife, Hatfield Marine Science Center, Oregon<br />

State University<br />

Summary<br />

No clear peracaridan NIS were discovered among the scores <strong>of</strong> species collected in three<br />

surveys <strong>of</strong> 72 sites in 21 general areas <strong>of</strong> Prince William Sound and south central Alaska<br />

between 1997 and 1999. No NIS were found in UAF samples from the area collected<br />

previously. Two peracaridan species previously considered to be introduced are likely to be<br />

misidentified. Five species <strong>of</strong> NIS gammaridean amphipods were found in ballast water <strong>of</strong><br />

tankers travelling to Prince William Sound, indicating that this is an active mechanism <strong>of</strong> NIS<br />

transport to Alaska, even though they do not appear to have invaded or become established there.<br />

<strong>Invasions</strong> <strong>of</strong> Alaskan estuaries and marine waters by a broad diversity <strong>of</strong> peracaridan species<br />

have not occurred. The diversities <strong>of</strong> peracaridan NIS invasions in the northern hemisphere vary<br />

with climate, as do invasions by other taxa noted previously. Most marine and estuarine<br />

peracaridan NIS thus appear to be incapable <strong>of</strong> invading Alaska from lower latitudes due to the<br />

extreme climate. The risk <strong>of</strong> invasions by high diversities <strong>of</strong> NIS <strong>of</strong> pericaridans thus appears to<br />

be extremely low.<br />

These findings do not indicate whether a few NIS could be present at ecologically<br />

catastrophic abundances, however. Eight peracaridans that are prominent members <strong>of</strong> either<br />

fouling or benthic communities sampled in the survey, have unclear origins or cannot yet be<br />

clearly distinguished from species that are nonindigenous to the northeast Pacific. They are<br />

therefore classified as cryptogenic. These cryptogenic peracaridan species occur in the same<br />

areas as the s<strong>of</strong>t shell clam, Mya arenaria Linnaeus, 1758, which is one <strong>of</strong> the most clearly<br />

documented NIS in south central Alaska. If proven to be NIS, these cryptogenic peracaridan<br />

species, would be evidence that even a few NIS capable <strong>of</strong> invading Alaskan estuaries can<br />

increase to ecologically catastrophic densities. They would indicate that surveys <strong>of</strong> peracaridan<br />

NIS diversity, such as this one, are an insufficient basis for estimates <strong>of</strong> risk. Whether these<br />

peracaridan crustaceans are, in fact, native to the region therefore should be tested by analyses <strong>of</strong><br />

morphological variation, molecular genetics and by crossbreeding viability tests with their<br />

presumed original populations.<br />

Introduction<br />

A major objective <strong>of</strong> the south central Alaskan NIS survey was to determine whether<br />

introductions <strong>of</strong> marine or estuarine species have already occurred. An ultimate objective <strong>of</strong> the<br />

overall risk analysis is to predict whether Alaskan waters are vulnerable to NIS invasions. The<br />

survey results and comparisons <strong>of</strong> climate effects on peracaridan NIS diversity over the northern<br />

hemisphere provide a basis for this prediction.<br />

Predicting which nonindigenous species (NIS) can be introduced, where, and the factors<br />

that control their survival are major objectives <strong>of</strong> invasion ecology. These predictions require<br />

knowledge <strong>of</strong> the interactions between dispersal and processes that determine NIS survival. The


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 2<br />

mechanisms <strong>of</strong> NIS dispersal among estuaries are becoming well known (e.g., Cangelosi 1999,<br />

Cohen 1998, Frey et al.1999, Draheim and Olson 1999, Miller and Chapman 2000, Moy 1999,<br />

Ruiz et al. 1999, Thresher 1999), while the processes limiting NIS survival and production<br />

among estuaries remain poorly known. The distributions <strong>of</strong> NIS reveal how survival varies as<br />

dispersal occurs and thus indicate the interactions <strong>of</strong> dispersal, ecology, and survival.<br />

Interpreting the geography NIS distributions is thus a necessary part <strong>of</strong> the search for factors<br />

controlling NIS invasions.<br />

NIS are particularly diverse and abundant in estuaries <strong>of</strong> the northeastern Pacific,<br />

including San Francisco Bay, California (Carlton and Geller, 1993, Cohen and Carlton 1995,<br />

1997, Ruiz et al. 1997a, 1997b) and in Europe (Leppakoski, 1994, Leppakoski and Olenin, 1999,<br />

Eno, et al. 1997). The majority <strong>of</strong> these NIS have origins from western ocean coasts (Cohen and<br />

Carlton 1995, Leppakoski and Olenin, 1999) and progressively fewer NIS are known with<br />

increasing latitudes (Carlton 1979, Cohen et al. 1998, Mills et al. 2000). These geographical<br />

patterns do not appear to result entirely from the mechanisms <strong>of</strong> dispersal or patterns <strong>of</strong> endemic<br />

species diversity. Other processes controlling NIS distributions warrant consideration.<br />

Potential climate effects on east and west and north and south patterns <strong>of</strong> NIS diversity<br />

among estuaries and coastal waters <strong>of</strong> the northern hemisphere are <strong>of</strong> paramount concern in any<br />

NIS risk analysis for Alaska. The cold temperate climate <strong>of</strong> Alaska is at the extreme northern<br />

range <strong>of</strong> many northeast Pacific intertidal species (O’Clair 1977, O’Clair and O’Claire 1998).<br />

Climate effects are therefore considered in this section. Salinity and temperature variations in<br />

estuaries are dominant processes <strong>of</strong> climate that limit NIS survival. Most estuarine species<br />

survive within narrow temperature and salinity ranges. Most chemical, biological, and<br />

hydrological processes that also limit the abundances and distributions <strong>of</strong> estuarine organisms are<br />

also controlled by, or closely correlated with, salinity and temperature (e.g., Southward 1969,<br />

Green 1971, Ebbesmeyer et al. 1991, Cohen and Carlton 1995 1999, Chapman 1998, Thompson<br />

1998). NIS distributions are therefore influenced by salinity and temperature within local<br />

estuaries. In turn, salinity and temperature are affected by climate (Ebbesmeyer et al. 1991,<br />

Cayan 1993). Precipitation and air temperature variations (Ebbesmeyer et al. 1991, Cayan 1993)<br />

can be interpreted to infer salinity and temperature variations in local estuaries even though<br />

direct, long-term measures <strong>of</strong> these parameters are lacking in most cases.<br />

Amphipods recovered from 34 ballast water samples taken from tankers during 1998<br />

were examined to determine whether amphipods are transported by ballast water traffic from<br />

west coast ports and harbors.<br />

Methods<br />

Rapid assessment survey<br />

Prince William Sound, Seward and Homer, Alaska (60 o 00' - 61 o 00' N) survey results are<br />

compared to results <strong>of</strong> NIS surveys <strong>of</strong> the native, cryptogenic and introduced peracaridans from<br />

Puget Sound, Washington (47 o 10' - 49 o 00' N) and San Francisco Bay, California (37 o 30' - 38 o<br />

10' N) to resolve how peracaridan NIS invasions are distributed over a broad range <strong>of</strong> latitudes.


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 3<br />

Collections were made from three sites in Port Valdez in early spring <strong>of</strong> 1997, 46 sites<br />

throughout Prince William Sound in June 1998, and from 23 sites in Prince William Sound,<br />

Seward and Homer in 1999 (Ruiz and Hines 1997, Hines and Ruiz 1998) (Figure 9C4.1).<br />

Twenty six sites were surveyed in Puget Sound, Washington in September 1998 (Cohen et al.<br />

1998). San Francisco Bay was surveyed in early fall, late spring or summer <strong>of</strong> 1993, 1994, 1996<br />

and 1997 at 25 regular sites plus several irregular sites (Cohen 1998, Cohen and Carlton 1995,<br />

1997, 1998). The three systems are excellent for comparison because they have all received and<br />

have been interconnected by significant aquaculture and shipping activities that are vectors <strong>of</strong><br />

NIS dispersal in at least the last century.<br />

Figure 9C4.1. Prince William Sound, Alaska and south central Alaska rapid assessment sites with open boxes<br />

indicating all 46 sampling sites <strong>of</strong> 1998, inset indicating the five port areas sampled in 1999 and the shaded boxes<br />

indicating the eleven general sampling areas <strong>of</strong> the sound in 1999. (Latitudes longitudes and site descriptions are in<br />

appendix table 9C4.5).<br />

Each area was surveyed by the author in the same fashion. Survey samples were<br />

collected by hand, scrapings, cores, or dredge as necessary to remove biological communities or<br />

substratum from floats, intertidal pilings rocks and intertidal or shallow subtidal mudflats<br />

accessible at each collection site. These samples were washed on an 0.5 mm mesh sieve directly<br />

or decanted onto an 0.5 mm mesh sieve and washed following vigorous sloshing in buckets <strong>of</strong>


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 4<br />

seawater, to suspend organisms from the removed substratum. Harbor float, rock and piling<br />

substratums were emphasized in all three survey areas but other available habitats were sampled<br />

extensively as available. Organisms were picked directly from substratums during sample<br />

collection or from the sieves after washing or from voucher samples <strong>of</strong> substratums and<br />

examined under a stereomicroscope. All collected organisms were fixed in 10% formalin before<br />

transfer to 70% ETOH for long-term preservation. All specimens were identified to lowest<br />

possible taxonomic category.<br />

Voucher specimens will be deposited in the Los Angeles County Museum, the California<br />

Academy <strong>of</strong> Sciences and the Smithsonian National Museum <strong>of</strong> Natural History. The precise<br />

locality records and notes for each collection site are available from the author. Temperature and<br />

salinity was measured at each collection site. Surface salinties ranged between 0 and 33 o / oo in<br />

all three survey areas. Surface water temperatures ranged between 8 and 20 o C in Prince William<br />

Sound, between 10 and 21 o C in Puget Sound and between 12 and 30 o C in San Francisco Bay.<br />

San Francisco Bay is a well mixed estuary. Low surface salinities and clear stratification occur<br />

in both sounds in summer and were apparent during the surveys.<br />

All species from the three surveys were collected and examined directly by the author<br />

and thus are assumed to be a more standardized sample than would be likely from comparisons<br />

<strong>of</strong> different surveys and sampling methods employed by different investigators. The indigenous<br />

origins <strong>of</strong> species are inferred from previously published records or herein using the criteria <strong>of</strong><br />

Carlton (1979) and Chapman and Carlton (1991, 1994). The criteria used for cyptogenic species<br />

(species that are not clearly native or introduced) are adopted from Carlton (1996a). Only<br />

populations <strong>of</strong> species that have been moved by human activities to new locations, that are<br />

reproductive there, and that satisfy the criteria for nonindigenous species are considered here to<br />

be NIS.<br />

Alaskan Climate and Peracaridan NIS Invasion Risks<br />

Sources <strong>of</strong> NIS to Alaskan estuaries are available from a global population. The<br />

peracaridan Crustacea <strong>of</strong> the northern hemisphere considered here are as a sample <strong>of</strong> that<br />

population. Crustacea comprise approximately 25% <strong>of</strong> the 250 NIS reported from San Francisco<br />

Bay (Cohen and Carlton 1995, J. T. Carlton, personal communication), where they are the most<br />

diverse NIS taxon. The majority <strong>of</strong> these crustacean NIS are peracaridans. The Peracarida<br />

consist <strong>of</strong> relatively small, short-lived species that are primarily mysids, amphipods, isopods,<br />

tanaidaceans and cumaceans. The Peracarida are prominent in most North Pacific and North<br />

Atlantic marine and estuarine NIS communities (Bowman et al. 1981, Chapman 1988, 1999,<br />

Chapman and Carlton 1991, 1994, Mees and Fockedey 1993, Leppakoski 1994, Cohen and<br />

Carlton 1995, 1997, Eno et al. 1997, T<strong>of</strong>t et al. 1999). Both native and nonindigenous<br />

Peracarida are diverse, taxonomically well known, and ubiquitous in aquatic environments (e.g.,<br />

Barnard and Barnard 1983, Barnard and Karaman 1991, Chapman 1988, Cohen and Carlton<br />

1995, Chapman 2000). Peracarida develop directly, without larval dispersal stages or unique life<br />

history traits that complicate identifications and interpretations <strong>of</strong> their geographical<br />

distributions. Peracaridans may thus provide clear indications <strong>of</strong> the patterns <strong>of</strong> diversity within<br />

and among broad geographical regions.


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 5<br />

The species selected for the east to west geographical analysis <strong>of</strong> northern hemisphere<br />

peracaridan NIS are common or abundant where they occur and documented either in the<br />

literature or by personal observations. Species that are poorly documented, not examined<br />

directly, cryptogenic, or that are not introduced across the North Atlantic or North Pacific, were<br />

not included. For instance, the amphipod Chelicorophium curvispinum (Sars, 1895), which<br />

spread from the Black and Caspian Sea to northern Europe (Eno et. al. 1997), and the introduced<br />

mysid Acanthomysis bowmani Modlin and Orsi, 1997 in San Francisco Bay, which has unknown<br />

origins, and many northern NIS that are native to the southern hemisphere are not in the scope <strong>of</strong><br />

this study and are therefore excluded from the analysis.<br />

Long-term climate conditions in the northeast Pacific, including San Francisco Bay,<br />

Puget Sound and Prince William Sound are inferred from monthly average climate time series<br />

data for the Pacific Ocean and western Americas (Cayan et al. 1991). These data extend over<br />

approximately 100 years up to 1986. Global records <strong>of</strong> sea surface temperature and precipitation<br />

minus evaporation (http://www.cdc.noaa.gov/ 1998) are used for comparisons <strong>of</strong> temperature<br />

among ocean regions. The term “western ocean” is used in reference to the Pacific Ocean<br />

bordering the east Asian coast and the Atlantic Ocean bordering the eastern North American<br />

coast. The term “eastern ocean” refers to the ocean areas bordering the west coasts <strong>of</strong> Europe<br />

and North Africa and the west coast <strong>of</strong> North America.<br />

Amphipods in Ballast <strong>Water</strong><br />

Ballast water samples were collected in vertical plankton tows from “dedicated” ballast<br />

tanks, which are not contaminated by oil. Amphipods retained in the 0.25 mm mesh plankton<br />

nets preserved in 5% formalin, subsequently transferred to 70% ethanol for final sorting and<br />

identification. Samples were initially sorted under stereo microscopes at the Smithsonian<br />

Environmental Research Center or at the field <strong>of</strong>fice in Port Valdez and final amphipod<br />

identifications were performed at HMSC, Oregon State University.<br />

The origins <strong>of</strong> the ballast water sampled (Table 9C4.3) were the Los Angeles-Long<br />

Beach area, the San Francisco Bay area, Puget Sound (Anacortes) and the open ocean. One ship,<br />

from the San Francisco Bay area, exchanged the ballast water at sea during transit. The potential<br />

for dispersal <strong>of</strong> nonindigenous species is assessed from the presence <strong>of</strong> nonindigenous species in<br />

samples.<br />

Results<br />

North - South Climate<br />

The maximum, minimum, mean and range <strong>of</strong> monthly sea surface temperatures <strong>of</strong> the<br />

eastern Pacific vary by 5 o C or less between 28 o and 52 o N (Figure 9C4.2). The 11 to 14 o C<br />

maximum average monthly temperatures <strong>of</strong> Seward, Kodiak and Sitka, Alaska (between 58 and<br />

60 o N) overlap the Neah Bay, Washington maximum surface temperatures at 48 o N and are<br />

similar to the 13 o C average sea surface temperatures adjacent to San Francisco at 38 o N (Figure<br />

2). Nonindigenous species expected to reach south central Alaska might include those that can<br />

reproduce within Puget Sound in summer or in average San Francisco temperatures (Figure<br />

9C4.2).


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 6<br />

Figure 9C4.2. Sea surface temperature monthly average minimum, mean, maximum and range <strong>of</strong> northeast Pacific<br />

coastal waters estimate over an approximately 100 years up to 1986 (Cayan 1991).<br />

North - South Biodiversity<br />

Of the 106 peracaridan crustacean species identified from the surveys <strong>of</strong> Prince William<br />

Sound, Puget Sound and San Francisco Bay, 54 are native, 14 are cryptogenic and 38 are<br />

introduced (Table 9C4.1). Seven peracaridan crustaceans that prominent members <strong>of</strong> benthic or<br />

fouling communities that were recovered in the survey are cryptogenic (Table 9C4.1). They are<br />

the tanaidacean Leptochelia dubia (Kroyer, 1842) a cosmopolitan species (Miller, 1975); the<br />

cumacean Cumella vulgaris Hart, 1930 which occurs in Asia (Lomakina 1958) as well as the<br />

eastern Pacific; the amphipod Monocorophium carlottensis Bousfield and Hoover, 1997 is not<br />

clearly distinguished from the nonindigenous amphipods Monocorophium acherusicum and<br />

Monocorophium insidiosum (Ruiz and Hines 1997); the amphipod Hyale plumulosa (Stimpson,<br />

1857) is reported also from the western Atlantic (Bousfield 1973); the amphipod Jassa staudei<br />

Conlan 1990 is extemely similar to the cosmopolitan Jassa marmorata Holmes, 1903; the<br />

amphipod Pontogeneia rostrata Gurjanova, 1938 is reported from the eastern and western<br />

Pacific (Gurjanova 1938, 1951, Barnard 1962, 1964); the caprellid Caprella depranochir Mayer,<br />

1880 is reported from the eastern and western Pacific (Arimoto 1976, Kozl<strong>of</strong>f and Price1997).


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 7<br />

Table 9C4.1. The 106 peracaridan crustaceans identified as nonindigenous, cryptogenic or native, and the records<br />

per species collected from San Francisco Bay, California, (w/o “*”), south central Alaska and Prince William Sound<br />

(with “*”), or Puget Sound, Washington (underlined). Gnorimosphaeroma lutea was collected from San Francisco<br />

Bay and Prince William Sound only. No species were collected only in Puget Sound.<br />

Nonindigenous Cryptogenic Native<br />

Records Records Records<br />

Mysidacea Tanaidacea Mysidacea<br />

Accanthomysis aspera 1 Leptochelia dubia 3 Mysis littoralis* 1<br />

Tanaidacea Cumacea Isopoda<br />

Tanais stanfordi 2 Cumella vulgaris 3 Dynamenella glabra* 2<br />

Isopoda Gammaridea Gnorimosphaeroma lutea 2<br />

Asellus sp. 1 Ampithoe lacertosa 3 Gnorimosphaeroma oregonense 3<br />

Dynoides dentisinus 1 Dulichia sp. 1 Ianiropsis kincaidi* 2<br />

Euylana arcuata 1 Hyale plumulosa 3 Idotea montereyensis 3<br />

Ianiropsis serricadus 1 Ischyrocerus sp. 2 Idotea obscura* 1<br />

Limnoria quadripunctata 1 Jassa staudei 3 Idotea resecata 2<br />

Limnoria tripunctata 2 Monocorophium carlottensis* 2 Idotea wosnsenskii 3<br />

Munna ubiquita 1 Pontogeneia rostrata 3 Ligia pallasi* 1<br />

Paranthura sp. 1 Caprellidea Limnoria lignorum 2<br />

Sphaeroma quoyanum 1 Caprella depranochir* 2 Cumacea<br />

Synidotea laevidorsalis 1 Caprella laeviuscula 3 Diastylis alaskensis* 1<br />

Cumacea Caprella penantus 1 Diastylis sp.* 1<br />

Nippoleucon hinumensis 2 Caprella verrucosa 2 Lamprops beringi* 1<br />

Gammaridea Tritella sp. 1 Lamprops quadriplicata* 2<br />

Ampelisca abdita 1 Gammaridea<br />

Ampithoe valida 2 Allorchestes angusta 3<br />

Crangonyx sp. 1 Americorophium brevis* 2<br />

Eochelidium sp. 2 Americorophium salmonis* 2<br />

Gammarus daiberi 1 Americorophium spinicorne 2<br />

Grandidierella japonica 2 Ampithoe dalli* 2<br />

Hyalella azteca 1 Ampithoe kussakini* 1<br />

Jassa marmorata 2 Ampithoe sectimanus* 1<br />

Laticorophium baconi 2 Ampithoe simulans* 2<br />

Leucothoe alata 1 Anisogammarus pugettensis 3<br />

Melita nitida 2 Aoroides columbiae 3<br />

Melita sp. 1 Aoroides intermedius* 2<br />

Monocorophium<br />

2 Calliopius carinatus* 2<br />

acherusicum<br />

Monocorophium insidiosum 2 Calliopius pacificus* 2<br />

Monocorophium<br />

1 Eogammarus confervicolus 3<br />

oaklandense<br />

Monocorophium uenoi 1 Eogammarus oclairi* 1<br />

Trasorchestia enigmatica 1 Gammaridae n. gen. n. sp.* 1<br />

Paradexamine sp. 1 Gnathopleustes pugettensis 2<br />

Parapleustes derzhavini 1 Hyale frequens 3<br />

Senothoe valida 2 Lagunogammarus setosus* 2<br />

Sinocorophium<br />

1 Locustogammarus locustoides* 1<br />

heteroceratum<br />

Caprellidea Megamoera subtener* 2<br />

Caprella acanthogaster 2 Microdeutopus schmitti 1<br />

Caprella bidentata 1 Najna n. sp.* 1<br />

Caprella californica 2 Paracalliopiella pratti* 2<br />

Caprella equilibra 2 Parallorchestes ochotensis 3<br />

Table 9C4.1. Continued


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 8<br />

Paramoera bousfieldi* 2<br />

Paramoera mohri* 1<br />

Parampithoe humeralis.* 2<br />

Parampithoe mea* 1<br />

Photis brevis 2<br />

Pontogeneia inermis 3<br />

Pontogeneia ivanovi* 1<br />

Pontoporeia femorata* 2<br />

Spinulogammarus subcarinatus* 1<br />

Trasorchestia traskiana 3<br />

Caprellidea<br />

Caprella alaskana* 1<br />

Caprella gracilior* 1<br />

Caprella irregularis* 2<br />

Metacaprella kennerlyi* 2<br />

Total Species 38 14 54<br />

Records/Species 1.4 2.1 1.8<br />

The diversity <strong>of</strong> species collected is nearly nearly constant among sites (66 to 60 and 59,<br />

respectively, between San Francisco, Puget Sound and Prince William Sound). Of the 54 native<br />

species collected in Alaska, 52 (96%) were collected also in San Francisco Bay or Puget Sound<br />

(Table 9C4.1). The common pool <strong>of</strong> native species and the similar species diversities collected<br />

among the three areas both indicate that the habitat selection, collection and sample processing<br />

methods <strong>of</strong> the rapid assessment surveys were consistent among the three areas. Little variation<br />

in NIS diversity among these three sample sets was therefore likely to result from sample biases.<br />

From San Francisco Bay north to Puget Sound and Prince William Sound, introduced<br />

peracaridan species declined from 38 to 15 to 0 (Figure 9C4.3, X 2 > 27.01; p < 0.0001; df = 2),<br />

while the frequencies <strong>of</strong> cryptogenic peracaridan species were nearly constant at 11, 10 and 8,<br />

respectively (X 2 = 2.0; p > 0.73; df = 2). In contrast, the frequencies <strong>of</strong> native species increased<br />

to the north from 17 to 35 and 52 (Figure 9C4.3, X 2 > 27.01; p < 0.0001; df = 2 ). All<br />

peracaridan NIS and all but two <strong>of</strong> the cryptogenic peracaridan species at any site also occurred<br />

in San Francisco Bay while only 17 <strong>of</strong> the 54 native species were recovered from San Francisco<br />

Bay (Table 9C4.1, Figure 9C4.3). The peracaridan NIS that managed to invade northeast Pacific<br />

estuaries thus have adaptations to lower latitude climates than do the native species. The<br />

affinities <strong>of</strong> peracaridan NIS for low latitude climates closely corresponds to a pattern that would<br />

be expected if the peracaridan NIS are poorly adapted to cold water conditions or other factors <strong>of</strong><br />

climate that vary with latitude.


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 9<br />

Native Cryptogenic Nonindigenous<br />

60<br />

50<br />

Species<br />

40<br />

30<br />

20<br />

10<br />

0<br />

SFB<br />

PS<br />

PWS<br />

Figure 9C4.3. Native, cryptogenic, nonindigenous and total species in samples from San Francisco Bay, California,<br />

Puget Sound, Washington and Prince William Sound, Alaska (SFB, PS and PWS, respectively).<br />

Some NIS may be among the 8 cryptogenic peracaridan species <strong>of</strong> Prince William Sound<br />

(Figure 9C4.3). Six <strong>of</strong> these cryptogenic Alaskan peracaridan species have broad thermal<br />

tolerance ranges and occur also in Puget Sound and San Francisco Bay (Table 9C4.1). The<br />

nearly complete faunal peracaridan overlap between Alaska and the two more southern sites<br />

indicate that the low diversity <strong>of</strong> Alaskan NIS peracaridans are not likely to result from unique<br />

types <strong>of</strong> NIS peracaridans that were not collected in the survey. The nearly uniform pool <strong>of</strong><br />

native peracaridan species and uniform pool <strong>of</strong> NIS peracaridans among the areas require few<br />

qualifications or assumptions to arrive at conclusions <strong>of</strong> the patterns <strong>of</strong> diversity. The possibility<br />

<strong>of</strong> overlooking populations <strong>of</strong> nonindigenous peracaridan crustaceans in Alaska that occur at<br />

similar diversities and abundances as in Puget sound or San Francisco Bay, by these rapid<br />

assessment methods, is remote. The presence <strong>of</strong> peracaridan NIS that are not among the<br />

cryptogenic species <strong>of</strong> peracardans in Alaskan estuaries and marine waters is not significantly<br />

different from zero.<br />

These results are not surprising. The extreme climate <strong>of</strong> Alaska was previously assumed<br />

to limit the survival <strong>of</strong> nearly all NIS peracaridans. However, these data include only a single<br />

coast and three major areas <strong>of</strong> reference. NIS pericarican diversity was therefore compared<br />

between other geographical regions with climates that vary similarly to the variation that occurs<br />

between San Francisco and south central Alaska as a further test <strong>of</strong> the climate pattern.<br />

East -West Climate<br />

Sea surface temperatures are relatively constant between latitudes <strong>of</strong> 25 o and 50 o N in<br />

eastern oceans compared to western ocean areas (Figures 9C4.4 and 9C4.5). Eastern ocean<br />

species from 32 o to 50 o N evolved in temperature ranges that span only latitudes 40 to 42 o N in


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 10<br />

western oceans (Figure 9C4.6). Eastern ocean species thus have not evolved in conditions that<br />

would create broad temperature tolerance ranges. In contrast, most western ocean organisms<br />

survive temperature ranges exceeding the total temperature range <strong>of</strong> broad eastern ocean areas.<br />

Eastern oceans below 50 o N, are thus broad thermal targets for western ocean species over space<br />

and time while western ocean coasts are narrow thermal targets for eastern ocean species.<br />

N.W. Pacific<br />

N.E. Pacific<br />

30<br />

30<br />

25<br />

25<br />

SST (Deg. C)<br />

20<br />

15<br />

10<br />

5<br />

‘<br />

SST (Deg. C)<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

JF MA MJ JA SO ND<br />

60<br />

50<br />

30<br />

40<br />

Lat. N<br />

0<br />

-5<br />

JF MA MJ JA SO ND<br />

60<br />

50<br />

30<br />

40<br />

Lat. N<br />

Months<br />

Months<br />

N.W. Pacific<br />

N.E. Pacific<br />

5<br />

5<br />

4<br />

4<br />

Precip. (mm / day)<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

JF MA MJ JA SO ND<br />

30<br />

60<br />

50<br />

40<br />

Lat. N<br />

Precip. (mm / day)<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

JF MA MJ JA SO ND<br />

30<br />

60<br />

50<br />

40<br />

Lat. N<br />

Months<br />

Months<br />

Figure 9C4.4. Northwest and northeast Pacific sea surface temperature in degrees Celsius and bimonthly<br />

precipitation minus evaporation in mm -d at ten degree latitude intervals for the bimonthly periods <strong>of</strong> Jan-Feb, Mar-<br />

Apr, May-Jun, Jul-Aug, Sep-Oct and Nov-Dec. (Note: axes <strong>of</strong> latitude are reversed between graphs <strong>of</strong> temperature<br />

and


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 11<br />

N.W. Atlantic<br />

N.E. Atlantic<br />

30<br />

30<br />

25<br />

25<br />

SST (DEG. C)<br />

20<br />

15<br />

10<br />

SST (DEG. C)<br />

20<br />

15<br />

10<br />

5<br />

0<br />

JF MA MJ<br />

JA SO ND<br />

60<br />

30<br />

40<br />

50<br />

Lat. N.<br />

5<br />

0<br />

JF MA MJ JA SO ND<br />

60<br />

30<br />

40<br />

50<br />

Lat. N.<br />

Months<br />

Months<br />

N. W. Atlantic<br />

N.E. Atlantic<br />

4<br />

4<br />

3<br />

3<br />

Precip. (mm / day)<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

JF MA MJ<br />

JA<br />

Months<br />

SO<br />

ND<br />

30<br />

60<br />

50<br />

40<br />

Lat. N<br />

Precip. (mm/day)<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

JF<br />

MA<br />

MJ<br />

JA<br />

Months<br />

SO<br />

ND<br />

30<br />

60<br />

50<br />

40<br />

Lat. N<br />

Figure 9C4.5. Northwest and northeast Atlantic sea surface temperature in degrees Celsius and bimonthly<br />

precipitation minus evaporation in mm -d at ten degree latitude intervals for the bimonthly periods <strong>of</strong> Jan-Feb, Mar-<br />

Apr, May-Jun, Jul-Aug, Sep-Oct and Nov-Dec. (Note: axes <strong>of</strong> latitude are reversed between graphs <strong>of</strong> temperature<br />

and precipitation.)


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 12<br />

Degrees Celsius<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

25 30 35 40 45 50 55 60<br />

North Latitude<br />

6<br />

Precip - Evap / Day<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

25 30 35 40 45 50 55 60<br />

North Latitude<br />

NWA NEA NWP NEP<br />

Figure 9C4.6. Maximum and minimum monthly sea surface temperature in degrees Celsius (A) and monthly<br />

precipitation minus evaporation in mm d -1 (B) at ten degree latitude intervals for the northwest (dashed lines) and<br />

northeast (solid lines) Atlantic (thin lines) and Pacific (thick lines). Northeast Pacific, northwest Pacific, northeast<br />

Atlantic and northwest Atlantic are NEP, NWP, NEA and NWA, respectively.<br />

Precipitation, and thus salinity in estuaries, also vary from east to west in patterns that<br />

resemble the south to north pattern from San Francisco to Alaska. The broadest ranges <strong>of</strong><br />

precipitation occur in the eastern Pacific north <strong>of</strong> 35 o N. Lat. (Figure 9C4.4). The narrowest<br />

ranges <strong>of</strong> precipitation and negative net precipitation (desert conditions) occur in the eastern<br />

Pacific and Atlantic south <strong>of</strong> 35 o N. Lat. (Figure 9C4.4). Desert conditions do not occur at low<br />

latitudes in the northwest Pacific and occur in the northwest Atlantic only below 30 o N (Figure


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 13<br />

9C4.4). The latitudinal range and areal extent <strong>of</strong> low salinity estuaries is therefore less in eastern<br />

oceans than in western oceans and the climates are more uniform.<br />

The seasonal patterns <strong>of</strong> precipitation (Figures 9C4.4 and 9C4.5) also differ consistently<br />

between eastern and western oceans. More precipitation occurs in western oceans during<br />

summer when temperatures are maximum while most precipitation occurs in eastern oceans in<br />

winter when temperature are low (Figures 9C4.4 and 9C4.5). Where snow-melt is not important,<br />

and in the absence <strong>of</strong> major water impoundments, the salinity-temperature pattens <strong>of</strong> eastern and<br />

western ocean estuaries are out <strong>of</strong> synchrony. In high latitude regions, such as Alaska, run<strong>of</strong>f<br />

varies most with snow-melt and salinity is lower in warm seasons in correspondence with<br />

western ocean climates.<br />

East and West Biodiversity<br />

Peracaridan NIS diversity varied among the four northern hemisphere ocean coasts ( X 2 =<br />

17.27, p = 0.001 df = 3), with five times as many introductions to eastern ocean coasts (Table<br />

9C4.2; X 2 = 16.05, p = 0.001 df = 1). Except for the gammaridean amphipods Orchestia<br />

gammarella (Pallas, 1766) and Corophium volutator (Pallas, 1766) in the tidal mudflats and<br />

marshes <strong>of</strong> the Bay <strong>of</strong> Fundy, peracaridan NIS abundance and diversity in western Atlantic<br />

estuaries appeared to be low. Similarly, <strong>of</strong> the 28 peracaridan species included in the east to<br />

west analysis, only 2 - 3 NIS were in the northwest Pacific, compared to 20-23 in the<br />

northeastern Pacific and 10-12 in the northeast Atlantic (Table 9C4.2). None <strong>of</strong> the common<br />

northeast Pacific peracaridans were introduced to other areas <strong>of</strong> the world. Only 2 <strong>of</strong> the<br />

northeast Atlantic species were clearly introduced to other regions compared to13 from the<br />

northwest Pacific and 14 from the northwest Atlantic (Table 9C4.2). Remarkably, 5 - 9 <strong>of</strong> the 28<br />

NIS (Table 9C4.2) have been reported on two coasts and 4 <strong>of</strong> these species have been discovered<br />

on 3 coasts.<br />

Climate and NIS Diversity<br />

The ranks <strong>of</strong> climates from least to most similar based on overall temperature variation<br />

and seasonal precipitation (Figures 9C4.2, 9C4.3 and 9C4.4) were, northeast Pacific, northeast<br />

Atlantic, northwest Pacific and northwest Atlantic (NEP, NEA, NWP and NWA, respectively).<br />

The ranks <strong>of</strong> NIS invaders <strong>of</strong> these regions (Imports, Table 1) were from highest to lowest: NEP,<br />

NEA, NWP and NWA. The ranks <strong>of</strong> native species that have been introduced to other regions<br />

(Exports, Table 1) were from lowest to highest: NEP, NEA, and NWP and NWA. The east and<br />

west variations in NIS imports and exports were thus correlated with climate variation (Kendall<br />

coefficient <strong>of</strong> concordance W = 1.0; X 2 = 8.2; p < 0.02; df = 2) (Siegal 1956) in a similar pattern<br />

to the south to north pattern <strong>of</strong> NIS between San Francisco Bay and Prince William Sound.


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 14<br />

Table 9C4.2. The east and west destinations and sources <strong>of</strong> common introduced peracaridan crustaceans <strong>of</strong> the<br />

Northwest Pacific Northeast Pacific, Northwest Atlantic and Northeast Atlantic (NWP, NEP NWA and NEA,<br />

respectively), their native, introduced, or probable introduced status (N, I, and I, respectively) and the numbered<br />

reference sources.<br />

Common Introduced Nonindigenous Estuarine Peracaridan<br />

Crustaceans <strong>of</strong> the Northern Hemisphere<br />

NWP NEP NWA NEA Sources<br />

Mysidacea<br />

Acanthomysis aspera N I 1,2<br />

Cumacea<br />

Nippoleucon hinumensis N I 1,3<br />

Isopoda<br />

Asellus communis I N I 4<br />

Caecidotea racovitzai I N 7<br />

Dynoides dentisinus N I 1<br />

Ianiropsis serricatus N I 1,8<br />

Paranthura sp. N I 1<br />

Synidotea laevidorsalis N I I I 1,5<br />

Amphipoda<br />

Ampelisca abdita I N 1,6,10<br />

Ampithoe valida I N 1,9,10<br />

Apocorophium lacustre N I 13,14<br />

Caprella acanthogaster N I I 1,10,11<br />

Corophium sp. N I 15,16<br />

Corophium volutator I N 13,14,17<br />

Crangonyx floridanus I N 7<br />

Crangonyx pseudogracilis N I 18<br />

Gammarus daiberi I N 1,7<br />

Gammarus tigrinus N I 13,14,18,19<br />

Grandidierella japonica N I I 10,20,21<br />

Jassa marmorata I I N I 10,22,23<br />

Leucothoe alata N I 1,24<br />

Melita nitida I I N 1,6,10<br />

Microdeutopus gryllotalpa I N I 13,25<br />

Moncorophium uenoi N I 9,10<br />

Monocorophium acherusicum I I N I 1,9,10<br />

Monocorophium insidiosum I I N I 1,9,10<br />

Orchestia gammarella I N 13,14,19<br />

Parapleustes derzhavini N I 1,6,10<br />

Sinocorophium heteroceratum N I 1,12<br />

Total Natives (Exports) 13 0 14 2<br />

Total NIS (Imports) 1 - 3 21 - 23 2 - 3 10 - 12<br />

N = native; I = introduced; = distribution not completely resolved but probable<br />

1) Cohen and Carlton 1995; 2) Modlin and Orsi 1997; 3) Watling 1991; 4) Williams 1972; 5) Chapman and Carlton 1991, 1994; 6)<br />

Chapman 1988; 7) T<strong>of</strong>t et al. 1999; 8) Kussakin 1988; 9) Barnard 1975; 10) Carlton 1979; 11) Platvoet et al. 1995; 10) Carlton 1979;<br />

12) Chapman and Cole In Prep.; 13) Bousfield 1973; 14) Lincoln 1979; 15) Hirayama 1984, 1986; 16) Janta 1995; 17) Chapman and<br />

Smith In prep.; 18) Costello 1993; 19) Watling 1979; 20) Chapman and Dorman 1975; 21) Smith et al. 1999; 22) Conlan 1990; 23)<br />

Mills et al. 1999; 24) Nagata 1965a-d; 25) Chapman and Miller In Prep.


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 15<br />

Table 9C4.3. Ballast and Port Valdez amphipos zooplankton samples subdivided into major source areas (Port<br />

Valdez, Benicia water exchanged at sea, San Francisco Bay area and southern California, respectively).


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 16<br />

Amphipods in Ballast <strong>Water</strong><br />

The 125 specimens recovered include one hyperiid species and fourteen species and ten<br />

families <strong>of</strong> gammaridean amphipods. Five <strong>of</strong> the gammaridean amphipods are NIS in the<br />

northeast Pacific and were present in ballast tanks discharged into waters <strong>of</strong> Port Valdez. These<br />

preliminary data indicate that ballast water traffic is a potential mechanism for transporting<br />

amphipods among harbors and coastal U. S. waters. The amphipod diversity in these samples<br />

(Table 9C4.4) is high given the small number <strong>of</strong> specimens involved. Except for the Ocean<br />

exchanged water and the water from Anacortes, Puget Sound, the heterogeneity among<br />

zooplankton sources is almost complete with a significant difference among the four species<br />

represented by more than 8 specimens (O 2 ; p < 0.001, df = 12). Only Ampelisca abdita and<br />

Gammarus daiberi occurred in more than one zooplankton source. Descriptions <strong>of</strong> the<br />

amphipods in these records are given in Appendix Table 94C. 8. The occurrence <strong>of</strong> amphipod<br />

species as a function <strong>of</strong> temperature and salinity <strong>of</strong> ballast water is shown in Figures 9C4.7 and<br />

9C4.8, respectively.<br />

Table 9C4.4. The average salinities, teperatures, subtotals, cryptogenic, introduced and native origins and total<br />

numbers <strong>of</strong> amphipod Crustacea collected in Port Valdez waters and from dedicated ballast tanks containing water<br />

exchanged at sea, or entrained from Puget Sound, San Francisco Bay or southern California.<br />

Discussion<br />

Most estuarine peracaridan NIS <strong>of</strong> the northeast Pacific are from the western sides <strong>of</strong> the<br />

Pacific or the Atlantic oceans. Peracaridan crustacean NIS diversity coincided with particular<br />

climates between 25 and 60 o N. Lat. Annual sea surface temperatures at latitudes below 50 o N<br />

vary less along northeast Pacific and Atlantic coasts than along western ocean coasts and, also in<br />

contrast to western ocean coasts, low salinity conditions occur in winter months rather than the<br />

summer months.


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 17<br />

Figure 9C4.7. Native, introduced and cryptogenic amphipod numbers with temperature from 34 ballast water<br />

samples.<br />

Figure 9C4.8. Native, introduced and cryptogenic amphipod numbers with salinity from 34 ballast water samples.<br />

The great diversity <strong>of</strong> invading species in northeast Pacific estuaries may thus result, in<br />

part, from the great diversity <strong>of</strong> climates that invading species are adapted to relative to the<br />

narrow range <strong>of</strong> climates in the region. The low diversity <strong>of</strong> native northeast Pacific species that<br />

invade other areas may also result, in part, from the relatively broad range <strong>of</strong> climate variations<br />

they must endure to survive elsewhere. The decline <strong>of</strong> northeast Pacific NIS diversity from<br />

south to north coincides with fewer introductions occurring where greater annual variations in<br />

temperature occur and where low salinity conditions occur during warm water periods.<br />

All <strong>of</strong> the peracaridan NIS known from Puget Sound occurred also in San Francisco Bay.<br />

The absence <strong>of</strong> cold water NIS in Southern Alaska is consistent with a pattern <strong>of</strong> introductions


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 18<br />

occurring less in continental climates <strong>of</strong> high temperature variations and low summer salinities.<br />

The overall pattern <strong>of</strong> NIS peracaridan diversity in the northern hemisphere strongly suggests<br />

that northeast Pacific estuarine peracaridan NIS <strong>of</strong> San Francisco Bay and north are<br />

predominantly from lower latitudes. Few <strong>of</strong> the presently known recognized northeast Pacific<br />

NIS peracaridans are thus likely to become established in southern Alaskan waters, even though<br />

Alaskan weather variations resemble western ocean climates from where most NIS originate.<br />

<strong>Aquatic</strong> species with nearly any life history and from nearly any taxon can be introduced<br />

(e.g. Carlton 1985, Cohen and Carlton 1995, Eno et al. 1997, Smith et al. 1999, Hewitt et al.<br />

1999). The many vectors, directions, distributions, routes <strong>of</strong> introduction (e.g., Carlton 1979,<br />

1985, 1987, 1999, Carlton and Geller 1993, Ruiz et al. 1997) and taxa available for introductions<br />

over the last 500 years (e.g. Carlton 1992, Carlton and Hodder 1995, Ruiz et al. 1997) have<br />

moved broad diversities <strong>of</strong> species to many suitable and unsuitable areas. The present<br />

distributions <strong>of</strong> NIS are a mosaic <strong>of</strong> surviving populations composed <strong>of</strong> a broad diversity <strong>of</strong> taxa<br />

and life histories. These surviving nonindigenous populations are surrounded by unsuitable<br />

areas in which they were also introduced but failed to survive. The patterns <strong>of</strong> transport<br />

mechanisms superimposed on this mosaic reveal where introductions fail. Resolution <strong>of</strong> this<br />

global pattern can reveal sources, destinations, targets and vectors <strong>of</strong> NIS and which ecosystems<br />

are most vulnerable.<br />

The probability <strong>of</strong> particular species introductions from one region to another cannot be<br />

determined from these data. NIS invasions in northern hemisphere estuaries, even confined to<br />

peracaridan crustaceans, are more complex than Tables 9C4.1 and 9C4.2 indicate. Additionally<br />

many evolutionary and ecological processes that are likely to contribute to the patterns <strong>of</strong> NIS<br />

invasions are not addressed. Western ocean estuaries may be older, with more diverse biotas and<br />

could be less intensely altered by human activities, for instance, than eastern ocean estuaries.<br />

When and how climates control NIS distributions are complicated by other processes including<br />

human and natural disturbances, and the timing, geography and magnitude <strong>of</strong> transport vectors.<br />

Also, the complexity <strong>of</strong> climate variations are drastically simplified in Figure 9C4.2, and<br />

Figures 9C4.4 - 9C4.6 on the assumption that large populations distributed over broad<br />

geographic areas are more likely to reflect average conditions over extended periods. However,<br />

other time intervals for integration could be better than the one and two month averages selected<br />

here for climate analyses. These simplifications may reduce the fit between biogeographical<br />

boundaries and climate and thus obscure interactions between NIS distributions and climate.<br />

These correlations between west ocean to east ocean NIS peracaridan invasions and<br />

climate nevertheless deserve close inspection. Source and destination climates for peracaridan<br />

NIS may be easier to identify than particular species that are likely to be introduced by particular<br />

dispersal vectors. Moreover, peracaridans appear to be a sufficient taxon to sample NIS<br />

biogeography. Similar east to west patterns <strong>of</strong> other NIS taxa have also been noted (Cohen and<br />

Carlton 1995, Leppakoski and Olin 2000, Miller and Chapman 2000). Moreover, the patterns <strong>of</strong><br />

NIS invasions must correspond to climate patterns if climate is an important ecological and<br />

evolutionary mechanism controlling the geography species.


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 19<br />

The correlations between marine and estuarine peracaridan NIS invasions with<br />

temperature and salinity conditions may reveal where, and perhaps how, climates control NIS<br />

distributions. NIS peracaridans are unlikely to be as suited to local climates as native species<br />

that have had more evolutionary time to adapt. From a maximum possible <strong>of</strong> 3, the average<br />

occurrence <strong>of</strong> NIS between San Francisco Bay, Puget Sound and Prince William Sound is 1.4<br />

compared to 1.8 records per native species (Table 9C4.2). This restriction <strong>of</strong> NIS peracaridan<br />

distributions in the northeast Pacific relative to native peracaridan species may result from their<br />

different adaptations to climate. NIS peracaridan dispersal vectors are sufficient to move NIS<br />

peracaridans to Prince William Sound. Port Valdez is the third largest ballast water port in the<br />

U.S. and the associated nonindigenous ballast water species that it receives are diverse and<br />

abundant (Hines et al. 1999) but none <strong>of</strong> these peracaridan species have been discovered in<br />

Prince William Sound. At the same time, the same nonindigenous ballast water species are<br />

invading San Francisco Bay at an accelerating rate (Cohen and Carlton 1998). The greater<br />

diversity <strong>of</strong> NIS in San Francisco Bay (Figure 9C4.1), the complete overlap between Puget<br />

Sound NIS and San Francisco Bay NIS and the absence <strong>of</strong> NIS in the Prince William Sound<br />

collections (Table 9C4.1), indicate that peracaridans have warm water origins and survive poorly<br />

in the cold-water areas <strong>of</strong> the northeast Pacific.<br />

The introductions <strong>of</strong> Corophium volutator and Orchestia gammarellus (Table 9C4.2)<br />

from Europe to eastern North America are exceptions to the western ocean to eastern ocean<br />

pattern <strong>of</strong> introductions listed here. Corophium volutator is confined in North America to the<br />

Bay <strong>of</strong> Fundy. Orchestia gammarellus is confined in North America to the Bay <strong>of</strong> Fundy and<br />

the outer coasts north to Newfoundland (Bousfield 1973, Watling 1979). The climates <strong>of</strong> these<br />

areas are isolated from the Gulf Current and have narrower temperature ranges than areas either<br />

to the north or south (Bousfield 1973). The successes <strong>of</strong> these two species, and other European<br />

species such as the green crab Carcinus maenus and the European littorine snail Littorina littorea<br />

in this region, and the Bay <strong>of</strong> Fundy in particular, may result from the closer match between the<br />

climate <strong>of</strong> this region and the climate <strong>of</strong> northern Europe.<br />

The occurrence <strong>of</strong> 5 NIS species <strong>of</strong> amphipods in segregated ballast water <strong>of</strong> tankers<br />

discharging into Port Valdez indicates that this is an active mechanism <strong>of</strong> transport introduding<br />

NIS arriving to Prince William Sound, even though none <strong>of</strong> these species appears to have<br />

become established yet.<br />

Conclusions<br />

These results reveal that climate and evolution interact to prevent estuarine peracaridan<br />

NIS from invading south central Alaska. Western ocean introductions <strong>of</strong> peracaridans to eastern<br />

ocean estuaries are common while few eastern ocean peracaridan species spread in the opposite<br />

direction. Unless Arctic Ocean passages <strong>of</strong> ballast water from the north Atlantic become<br />

possible, or global climate changes significantly, or massive shipping from high latitudes <strong>of</strong> the<br />

southern hemisphere occurs, ballast water sources NIS peracaridans from climates similar to<br />

south central Alaska are too remote to pose a significant risk.


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 20<br />

Like a lock and key, the adaptations <strong>of</strong> successful invaders must be sufficient to survive<br />

in climates and types <strong>of</strong> disturbances that occur in the new invaded areas. Thermal adaptations<br />

<strong>of</strong> western ocean species may thus fit eastern ocean climates while the thermal adaptations <strong>of</strong><br />

most eastern ocean species may be insufficient for western ocean climates. By the same<br />

mechanism, seasonal salinity disturbances may confine western ocean NIS peracaridans in<br />

eastern ocean estuaries to areas where the most stable salinity conditions occur and control which<br />

taxonomic groups <strong>of</strong> NIS peracaridans predominate in particular estuaries. This pattern <strong>of</strong><br />

invasion appears to be consistent among many taxa even though the particular interacting<br />

mechanisms <strong>of</strong> climate and adaptation creating the pattern remain unresolved and the particular<br />

species that invade remain unpredictable. However, predicting where species can survive<br />

provides a means to identify, particular mechanisms <strong>of</strong> introduction, source regions for NIS <strong>of</strong><br />

greatest concern, the likely secondary dispersal routes <strong>of</strong> newly introduced species and the<br />

possible role <strong>of</strong> climate changes on further invasions.<br />

Seasonal temperature variations are difficult for shallow water organisms to avoid. The<br />

extreme high and low temperature ranges <strong>of</strong> western ocean climates (Figures 9C4.4 and 9C4.5)<br />

create adaptations that span most eastern ocean temperature ranges. The reverse is less likely<br />

and must prevent survival <strong>of</strong> many western ocean introductions <strong>of</strong> eastern ocean species. The<br />

entire sea surface temperature range <strong>of</strong> the northeast Pacific between 35 and 50 o N is overlapped<br />

by the temperature ranges <strong>of</strong> the western ocean coasts between 37 and 42 o N (Figure 9C4.6).<br />

Thermal limits for the NIS peracaridans at 60 o N (Prince William Sound) are apparent<br />

also for the Pacific oyster, Crassostrea gigas (Thunberg, 1795), native to the western Pacific and<br />

cultured commercially in Asia as far north as Hokkaido, Japan (Quayle, 1969) at about 44 o N.<br />

Crassostrea grows but does not spawn in the low temperatures <strong>of</strong> Prince William Sound or south<br />

central Alaska (Foster 1991, Hines and Ruiz 1997). The minimum monthly temperatures <strong>of</strong><br />

Prince William Sound match western Atlantic and western Pacific minimum temperatures as far<br />

south as 44 o N (Figure 9C4.6). Thus, lethal low temperatures might not be encountered in the<br />

sound by western ocean NIS peracaridans from 44 o N or even slightly farther south. However,<br />

maximum northeast Pacific sea surface temperatures at 60 o N match western Atlantic and<br />

western Pacific maximums only as far south as 48 o N (Figure 9C4.6) the inability <strong>of</strong> C. gigas to<br />

spawn in Alaska is therefore not surprising.<br />

The poor match <strong>of</strong> seasonal precipitation across oceans (Figures 9C4.4 and 9C4.5) may<br />

also affect the patterns <strong>of</strong> introduction. The range <strong>of</strong> coinciding temperature and salinity<br />

tolerances that peracaridan species require to survive and reproduced in south central Alaska<br />

may prohibit NIS peracaridans that also survive in Long Beach, San Francisco or Puget Sound.<br />

The low summer salinities in Prince William Sound (Hines and Ruiz 1997) due to snow melt,<br />

more closely matches a western ocean climate (Figures 9C4.4 and 9C4.5). Only the largest<br />

eastern ocean estuaries or estuaries with impounded freshwater sources, such as San Francisco<br />

Bay, are likely to have stable haloclines in summer that match those <strong>of</strong> western ocean estuaries.<br />

The high diversity and predominance <strong>of</strong> benthic peracaridan NIS in the northeast Pacific<br />

(Table 9C4.1) may result in part from their superior adaptive responses to large salinity ranges


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 21<br />

(Figure 9C4.6). All peracaridan life stages are highly mobile, and their short reproductive cycles<br />

allow dispersal away from unsuitable conditions and rapid recruitment when conditions improve<br />

(e.g., Watkin 1941). Peracaridans can avoid rapid changes in salinity (Figures 9C4.4 and 9C4.5)<br />

by migrating short vertical distances or by swimming into water masses in which transport them<br />

to higher or lower salinity areas.<br />

San Francisco Bay may be particularly suited to NIS peracaridans that cannot avoid or<br />

quickly adapt to changing salinities. The particular predominance and high diversity <strong>of</strong> large,<br />

long-lived, suspension feeding NIS in San Francisco Bay (Carlton 1979, Nichols et al. 1990,<br />

Thompson 1998) may result from human water impoundments that limit major freshwater run<strong>of</strong>f<br />

events. San Francisco Bay is the largest estuary <strong>of</strong> the eastern Pacific. Massive water diversions<br />

and impoundments in the San Francisco Bay watershed, aided by its large size, create a stable<br />

salinity structure more typical <strong>of</strong> western ocean estuaries. Sedentary, long-lived species,<br />

including molluscs (Nicholls et al. 1990), burrowing decapods (Posey et al. 1991, Grosholz and<br />

Ruiz 1995, Cohen and Carlton 1997) and sedentariate polychaetes (Pearson and Rosenberg<br />

1978) predominate in benthic communities in the absence <strong>of</strong> major salinity disturbances. These<br />

taxa can control the trophic dynamics in estuaries (Nichols et al. 1986, Kimmerer et al. 1994,<br />

Barber 1997, Thayer et al. 1997, Thompson 1998) but are slow to repopulate areas following<br />

disturbances.<br />

The vulnerability <strong>of</strong> estuaries to invasion and the potentials <strong>of</strong> particular taxa and life<br />

history types to become invasive may be increasing globally and increase the risk <strong>of</strong> NIS<br />

invasions <strong>of</strong> Alaskan waters in the future. <strong>Water</strong> diversions and impoundments and land use<br />

practices on western coasts combined with global temperature increases are reducing the<br />

differences between climates <strong>of</strong> eastern and western ocean estuaries. The convergence <strong>of</strong><br />

climates will increase the potential for biological exchanges.<br />

The predominantly western ocean to eastern ocean direction <strong>of</strong> peracaridan invasions and<br />

south to north gradient in peracaridan invasions support a lock and key hypothesis in which<br />

peracaridan NIS cannot be introduced outside <strong>of</strong> their tolerance ranges. Obvious predictions <strong>of</strong><br />

this hypothesis that should be tested are: 1) sources <strong>of</strong> eastern ocean invaders are from a narrow<br />

range <strong>of</strong> western ocean latitudes; 2) eastern ocean invaders <strong>of</strong> western oceans have restricted<br />

geographical ranges; 3) specific physiological tolerances and life history adaptations <strong>of</strong> most NIS<br />

exceed the stresses experienced in the climates invaded; 4) southern hemisphere NIS invasions<br />

superimpose on and are superimposed upon by northern hemisphere NIS when their origins are<br />

from similar climates; 5) climates affect the life histories and taxonomic composition <strong>of</strong> invaders<br />

and; 6) invaders <strong>of</strong> western to western or eastern to eastern oceans have broader ecological and<br />

geographical ranges than mixed climate invaders.<br />

The analysis <strong>of</strong> climates and the geography <strong>of</strong> introductions must include more species<br />

and taxa in more detail than is possible here. However, failure to determine the origins <strong>of</strong> the<br />

cryptogenic peracaridan species (Table 9C4.1) are a more critical short-coming <strong>of</strong> this risk<br />

analysis. The eight cryptogenic peracaridans are abundant over broad ecological distributions<br />

within the south central Alaska. Even though none <strong>of</strong> the cryptogenic peracaridan species


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 22<br />

appear to be associated with ballast water as a means <strong>of</strong> introduction, these species are abundant<br />

and wide spread. If introduced, they are pro<strong>of</strong> that even a few NIS invaders <strong>of</strong> Alaskan estuaries<br />

can increase to ecologically catastrophic densities. Moreover surveys <strong>of</strong> NIS diversity, such as<br />

this one, are an insufficient for estimating ecological risks if these species are introduced. Due to<br />

the potential for a single species to produce massive impacts, conclusions <strong>of</strong> risk from global<br />

patterns <strong>of</strong> diversity <strong>of</strong> diversity and climate therefore could conflict with conclusions <strong>of</strong> risk<br />

based on presence <strong>of</strong> even a single NIS in a system. The occurrence <strong>of</strong> 5 NIS species <strong>of</strong><br />

amphipods in segregated ballast water <strong>of</strong> tankers discharging into Port Valdez indicates that this<br />

is an active mechanism <strong>of</strong> transport introduding NIS arriving to Prince William Sound, even<br />

though none <strong>of</strong> these species appears to have become established yet.<br />

Acknowledgments<br />

James Carlton, Williams College, Maritime Studies Program provided many inspirations<br />

leading to this project, pointing out problems and providing solutions. Todd Miller read an early<br />

draft <strong>of</strong> this manuscript. Robert Malouf and Jan Auyong, NOAA Oregon State University Sea<br />

Grant College Program; and Leon Cammen, NOAA National Sea Grant College Program and<br />

the Oregon State legislature for assistance with in kind and direct financial support from Grants<br />

NA0061RD09 and NA0061RD19; Patrick Clinton and Bryan Coleman, OAO, and Walter<br />

Nelson, US EPA, <strong>Coastal</strong> Ecology Branch, Newport, Oregon for technical assistance and<br />

facilities use. The Prince William Sound survey was greatly assisted by Joel Kopp and Robert<br />

Benda, Regional Citizens’ Advisory Council <strong>of</strong> Prince William Sound (RCAC), Nora Foster,<br />

Howard Feder and Mike Stekoll, University <strong>of</strong> Alaska; Anson Hines, Greg Ruiz and George<br />

Smith, Smithsonian Environmental Research Center; Gary Sonnevil, US Fish and Wildlife<br />

Service; the personnel <strong>of</strong> the Alyeska Pipeline Service Company and Valdez Marine; Todd<br />

Miller and Gayle Hansen, Oregon State University, Milos Falta, owner, and Capt. Richard<br />

Vodica <strong>of</strong> the “Kristina”, Steve Totemov and Gary Kompk<strong>of</strong>f, <strong>of</strong> Tatitlek and Gail Irvine <strong>of</strong> the<br />

USGS, Anchorage. The Puget Sound survey was funded by the United States Department <strong>of</strong><br />

Natural Resources, the Washington State Department <strong>of</strong> Natural Resources through Helen Berry<br />

and Betty Bookheim and facilities were provided by the University <strong>of</strong> Washington (UW),<br />

Western Washington State University (WWU), organized by Claudia Mills, (UW) and Andrew<br />

Cohen, San Francisco Estuary Institute, participants included Brian Bingham,, James Carlton,<br />

Leslie Harris, L.A. County Museum, Alan Kohn, UW, Terry Klinger, Charles and Gretchen<br />

Lambert, Kevin Li, David Secord, WWU, Jason T<strong>of</strong>t, UW and Marjorie Wonham, UW. The<br />

San Francisco Bay survey was funded through grants from the USFWS, Oregon Sea Grant and<br />

PEW travel funds to James Carlton and organized by Andrew Cohen and James Carlton.<br />

Participants included Claudia Mills, Leslie Harris, John Holliman, Gretchen Lambert, Jan<br />

Thompson, USGS, Menlo Park, Terry Gosliner, California Academy <strong>of</strong> Sciences, Jeff Crooks,<br />

U.C. San Diego.<br />

References<br />

http://www.cdc.noaa.gov/ 1998. Sea surface temperature and precipitation data. NOAA-CIRES<br />

Climate Diagnostics Center, Boulder Colorado.


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 23<br />

Arimoto, I. 1976. Taxonomic studies <strong>of</strong> caprellids found in the Japanese and adjacent waters,<br />

Spec. Pub. Seto Mar. Biol. Lab., 3:1-229.<br />

Barber, B. J. 1997. Impacts <strong>of</strong> bivalve introductions on marine ecosystems: a review, pp.141-<br />

153 In Azeta, M. Takayanagi, K, McVey, M. P., Park, P. K., Keller, B. J. (eds.) Proceedings <strong>of</strong><br />

the 25th UJNR aquaculture panel symposium, October 16-17, 1996, Bulletin <strong>of</strong> the National<br />

Research Institute <strong>of</strong> Aquaculture, Vol. Supplement 3. Yokohama, Japan.<br />

Barnard, J. L. 1962b. Benthic marine Amphipoda <strong>of</strong> southern California: Families Tironidae to<br />

Gammaridae, Pac. Nat., 3(2):73-115.<br />

Barnard, J. L. 1964a. Marine Amphipoda <strong>of</strong> Bahia de San Quintin, Baja California, Pac. Nat.,<br />

4:55-139.<br />

Barnard, J. L. and C. M. Barnard, 1983a., Freshwater Amphipoda <strong>of</strong> the World I. Evolutionary<br />

Patterns,, 1, Hayfield Associates, Mt. Vernon, VA, vii + 1-359 + ix-xvii pp.<br />

Barnard, J. L. and C. M. Barnard, 1983b., Freshwater Amphipoda <strong>of</strong> the World II. Handbook and<br />

Bibliography,, 2, Hayfield Associates, Mt. Vernon, VA, 359 - 830 pp.<br />

Barnard, J. L. and G. S. Karaman 1990a. The families and genera <strong>of</strong> marine gammaridean<br />

Amphipoda (except marine gammaroids). Part 1, Records <strong>of</strong> the Australian Museum, :1-417.<br />

Barnard, J. L. and G. S. Karaman 1990b. The families and genera <strong>of</strong> marine gammaridean<br />

Amphipoda (except marine gammaroids). Part 2, Records <strong>of</strong> the Australian Museum, 13:419-<br />

866.<br />

Bousfield, E. L. 1973. Shallow-water gammaridean Amphipoda <strong>of</strong> New England, Cornell<br />

University Press, 312 pp.<br />

Bousfield, E. L. and P. M. Hoover 1997. The amphipod superfamily Corophioidae on the Pacific<br />

Coast <strong>of</strong> North America. Part V. Family Corophiinae, new subfamily. Systematics and<br />

distributional ecology, Amphipacifica, 2(3):67-139.<br />

Bowman, T. E., N. L. Bruce and J. D. Standing 1981. Recent introduction <strong>of</strong> the cirolanid<br />

isopod crustacean Cirolana arcuata into San Francisco Bay, Journal <strong>of</strong> Crustacean Biology<br />

1(4)545-557.<br />

Cangelosi, A. A. 1999. <strong>Biological</strong> results from the Great Lakes ballast technology demonstration<br />

project, Abstract, In J. Pederson (ed.) National Conference on Marine Bioinvasions, 24-27 Jan.<br />

1999, Massachutsets Institute <strong>of</strong> Technology, Cambridge, Massachusetts.


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 24<br />

Carlton, J. T. 1979. History, biogeography, and ecology <strong>of</strong> the introduced marine and estuarine<br />

invertebrates <strong>of</strong> the Pacific coast <strong>of</strong> North America, Ph.D. Thesis, University <strong>of</strong> California,<br />

Davis.<br />

Carlton, J. T. 1985. Transoceanic and interoceanic dispersal <strong>of</strong> coastal marine organisms: the<br />

biology <strong>of</strong> ballast water, Oceanogr. Mar. Biol. Ann. Rev, 23:313-371<br />

Carlton, J. T. 1987. Patterns <strong>of</strong> transoceanic marine biological invasions in the Pacific Ocean,<br />

Bull. Mar. Sci., 31:452-465.<br />

Carlton, J. T. 1992. Marine species introductions by ships’ ballast water: an overview, pp. 23-25,<br />

In M. R. DeVoe (eds.) "Introductions and transfers <strong>of</strong> marine species" South Carolina Sea Grant<br />

Consortium, Charleston, S.C.<br />

Carlton, J. T. 1996a. <strong>Biological</strong> invasions and cryptogenic species, Ecology 77(6):1653-1655.<br />

Carlton, J. T. 1996b. Patterns, process, and prediction in marine invasion ecology. <strong>Biological</strong><br />

Conservation 78, 97-106, Biol. Cons., 78:97-106.<br />

Carlton, J. T. 1999. 13. The scale and ecological consequences <strong>of</strong> biological invasions in the<br />

World’s oceans, pp. 195-212, In O. T. Sandlund et al. (eds.) "Invasive Species and Biodiversity<br />

Management" Kluwer Academic Publishers, Copenhagen, The Netherlands.<br />

Carlton, J. T. and J. B. Geller 1993. Ecological roulette: The global transport <strong>of</strong> nonindigenous<br />

marine organisms, Science 261:78-82.<br />

Carlton, J. T. and J. Hodder 1995. Biogeography and dispersal <strong>of</strong> coastal marine organisms:<br />

Experimental studies on a replica <strong>of</strong> a 16th-century sailing vessel, Mar. Biol. 121(4):721-730<br />

Cayan, D. R., D. R. McLain, W. D. Nichols and J. S. DiLeo, 1991. Monthly climatic time series<br />

data for the Pacific Ocean and western Americas, Open File Report 91-92, U.S. Geological<br />

Survey, Menlo Park, California, 380 pp.<br />

Cayan, D. R. 1993. Spring climate and salinity in the San Francisco Bay Estuary, <strong>Water</strong><br />

Resources Research, 29:293-303.<br />

Chapman, J. W. 1988. <strong>Invasions</strong> <strong>of</strong> the northeast Pacific by Asian and Atlantic Gammaridean<br />

amphipod crustaceans, including a new species <strong>of</strong> Corophium, Journal <strong>of</strong> Crustacean Biology<br />

8(3):364-382.<br />

Chapman, J. W. 1998. Climate and non-indigenous species introductions in northern<br />

hemisphereestuaries, pp. 286-298, In E. Muckle-Jeffs (eds.) "Proceedings <strong>of</strong> Eighth International<br />

Zebra Mussel and <strong>Aquatic</strong> Nuisance Species Conference, March 16-19, 1998" International<br />

Zebra Mussel Conference Proceedings, Pembroke, Ontario, Canada.<br />

Chapman, J. W. and J. T. Carlton 1991. A test <strong>of</strong> criteria for introduced species: the global<br />

invasion by the isopod Synidotea laevidorsalis (Miers, 1881), Journal <strong>of</strong> Crustacean Biology<br />

11(3):386-400.


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 25<br />

Chapman, J. W. and J. T. Carlton 1994. Predicted discoveries <strong>of</strong> the introduced isopod Synidotea<br />

laevidorsalis (Miers, 1881), Journal <strong>of</strong> Crustacean Biology 14(4):700-714.<br />

Chapman, J. W. and J. A. Dorman 1975. Diagnosis, systematics and notes on Grandidierella<br />

japonica (Amphipoda, Gammaridea) and its introduction to the Pacific coast <strong>of</strong> the United<br />

States, Bulletin <strong>of</strong> the Southern California Academy <strong>of</strong> Sciences 74(3):104-108.<br />

Chapman, J. W. and T. Miller In Preparation. The introduced gammaridean amphipods <strong>of</strong><br />

Humboldt Bay, California.<br />

Chapman, J. W. and F. A. Cole In preparation. The ballast-water introduction <strong>of</strong> the<br />

gammaridean amphipod Corophium heteroceratum into the eastern Pacific from Asia.<br />

Cohen, A. N., 1998. Ship’s ballast water and the introduction <strong>of</strong> exotic organisms into the San<br />

Francisco Estuary: Current status <strong>of</strong> the problem and options for management,, Report funded by<br />

CALFED Category III Steering Committee, administered by California Urban <strong>Water</strong> Agencies,<br />

October 1998, San Francisco Bay Institute, Richmond, California, 81 pp.<br />

Cohen, A. N. 1999. The invasion <strong>of</strong> the Pacific coast by the European Green crab Carcinus<br />

maenus, pp. 173-177, In Anonymous (eds.) "Proceedings <strong>of</strong> the Eighth International Zebra<br />

Mussel and <strong>Aquatic</strong> Nuisance Species Conference" International Zebra Mussel and <strong>Aquatic</strong><br />

Nuisance Species Conference, Pembroke, Ontario, Canada.<br />

Cohen, A. N. and J. T. Carlton 1995. Nonindigenous species in a United States estuary: A case<br />

history <strong>of</strong> the ecological and economic effects <strong>of</strong> biological invasions in the San Francisco and<br />

Delta region, U. S. Fish and Wildlife Service 246 pp. + Appendices.<br />

Cohen, A. N. and J. T. Carlton 1997. Transoceanic transport mechanisms: The introduction <strong>of</strong><br />

the Chinese mitten crab Eriocher sinensis to California, Pac. Sci., 51(1):1-11.<br />

Cohen, A. N. and J. T. Carlton 1998. Accelerating invasion rates in a highly invaded estuary,<br />

Science, 279:555-558.<br />

Cohen, A., C. Mills, H. Berry, M. Wonham, B. Bingham, B. Bookheim, J. Carlton, J. Chapman,<br />

J. Cordell, L. Harris, T. Klinger, A. Kohn, C. Lambert, G. Lambert, K. Li, D. Secord and J. T<strong>of</strong>t,<br />

1998., Puget Sound Expedition: A rapid assessment survey <strong>of</strong> non-indigenous species in the<br />

shallow waters <strong>of</strong> Puget Sound, Washington State Department <strong>of</strong> Natural Resources, Olympia,<br />

Washington, 37 pp.<br />

Conlan, K. 1990. Revision <strong>of</strong> the crustacean amphipod genus Jassa Leach (Corophioidea:<br />

Ischyroceridae), Canadian Journal <strong>of</strong> Zoology 68:2031-2075.<br />

Costello, M. J. 1993. Biogeography <strong>of</strong> alien amphipods occurring in Ireland, and interactions<br />

with native species, Crustaceana 65(3):287-299.


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 26<br />

Crawford, G. I. 1937. A review <strong>of</strong> the amphipod genus Corophium with notes on the British<br />

species, J. Mar. Biol. Ass. U. K., 21:589-630.<br />

Draheim, R. and R. Olson 1999. Consideration in the development <strong>of</strong> new risk assessment<br />

techniques for aquatic nuisance species: The role <strong>of</strong> transport vectors in risk assessment,<br />

Abstract, In J. Pederson (ed.) National Conference on Marine Bioinvasions, 24-27 Jan. 1999,<br />

Massachutsets Institute <strong>of</strong> Technology, Cambridge, Massachusetts.<br />

Ebbesmeyer, C. C., D. R. Cayan, D. R. McLain, F. H. Nichols, D. H. Peterson and K. T.<br />

Redmond 1991. 1976 step in the Pacific climate: Forty environmental changes between 1968-<br />

1975 and 1977-1984, pp. 120-141, In J. L. Betancourt and V. L. Sharp (eds.) "Proceedings<br />

Seventh Annual Pacific climate (PACLIM) Workshop" Vol. Technical Report 26. Interagencies<br />

Ecological Studies Program, California Dept. <strong>of</strong> <strong>Water</strong> Resources, Sacramento.<br />

Eno, N.C., R. A. Clark and W. G. Sanderson, eds. 1997. Non-native marine species in British<br />

waters: a review and directory. Joint Nature Conservation Committee, Peterborough, U.K. , 152<br />

pp.<br />

Foster, N. 1991. Intertidal bivalves: A guide to the common marine bivalves <strong>of</strong> Alaska, 152 pp.<br />

Frey, M. A., G. M. Ruiz, A. H. Hines, S. Altman and L. D. McCann 1999. Measuring the<br />

efficacy <strong>of</strong> ballast water exchange, Abstract, In J. Pederson (ed.) National Conference on Marine<br />

Bioinvasions, 24-27 Jan. 1999, Massachutsets Institute <strong>of</strong> Technology, Cambridge,<br />

Massachusetts.<br />

Green, J. 1971. The biology <strong>of</strong> estuarine organisms, University <strong>of</strong> Washington, Seattle, 401 pp.<br />

Grosholz, E. D. and G. M. Ruiz 1995. Spread and potential impact <strong>of</strong> the recently introduced<br />

European green crab Carcinus maenus in central California, Marine Biology 122:239-247.<br />

Gurjanova, E. F. 1938. Amphipoda. Gammaroidea <strong>of</strong> Siaukhu Bay and Sudzuhke Bay (Japan<br />

Sea), Reports <strong>of</strong> the Japan Sea Hydrobiological Expedition <strong>of</strong> the Zoologicala Institute <strong>of</strong> the<br />

Academy <strong>of</strong> Sciences USSR in 1934, 1:241-404.<br />

Gurjanova, E., 1951., Bokoplavy morei SSSR i sopredel’nykh vod (Amphipoda-Gammaridea),,<br />

41, Akademiia Nauk SSSR,, 1029 pp.<br />

Hart, J. F. L. 1930. Some Cumacea <strong>of</strong> the Vancouver Island region, Contrib. Can. Biol. Fish.,<br />

n.s., 6:25-40.<br />

Hewitt, C. L., M. L. Campbell, R. E. Thresher and R. B. Martin, (eds)1999. “Marine <strong>Biological</strong><br />

<strong>Invasions</strong> <strong>of</strong> Port Phillip Bay, Victoria”, Centre for Research on Introduced Marine Pests, Centre<br />

for Research on Introduced Marine Pests Technical Report No. 20, CSIRO Marine Research,<br />

Hobart, 344 pp.


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 27<br />

Hines, A. H. and G. M. Ruiz 1998. <strong>Biological</strong> invasions <strong>of</strong> cold-water coastal ecosystems:<br />

Ballast mediated introduction in Port Valdez / Prince William Sound, Alaska, Smithsonian<br />

Environmental Research Center 1998 Progress Report, 3 December 1998 to: Regional Citizen’s<br />

Advisory Council <strong>of</strong> Prince William Sound, Valdez, AK, 37 pp. + 15 Tables & 19 Figures.<br />

Hines, A., G. Ruiz, M. Frey, G. Smith and J. Chapman 1999. Nonindigenous species in high<br />

latitude/cold water ecosystems: Prince William Sound, Alaska, The North American<br />

contribution, National Conference on Marine Bioinvasions, Massachusetts Institute <strong>of</strong><br />

Technology, Cambridge MA, 24-27 January, 1999.<br />

Hirayama, A. 1984. Taxonomic studies on the shallow water gammardean Amphipoda <strong>of</strong> West<br />

Kyushu, Japan. II. Corophiidae. Publications <strong>of</strong> the Seto Marine <strong>Biological</strong> Laboratory<br />

XXIX(1/3):1-92, figs. 43-100.<br />

Hirayama, A. 1986. Marine gammaridean Amphipoda (Crustacea) from Hong Kong. I. The<br />

family Corophiidae, genus Corophium. pp. 449-485, In E. B. Morton (ed.) “Proceedings <strong>of</strong> the<br />

Second International Marine Biology Workshop, Marine Flora and Fauna <strong>of</strong> Hong Kong and<br />

Southern China”, Hong Kong University Press, Hong Kong.<br />

Hirayama, A. 1987. Taxonomic studies on the shallow water gammaridean Amphipoda <strong>of</strong> West<br />

Kyushu, Japan. VII. Melitidae (Melita), Melphidippidae, Oedicerotidae, Phliantidae, and<br />

Phoxocephalidae, Publ. Seto Marine Biology Laboratory XXXII(1/2):1-62, figs. 221-263.<br />

Holmes, S. J. 1903. Synopsis <strong>of</strong> the North American invertebrates. 18. The Amphipoda, Am.<br />

Nat., 37:267-292.<br />

Ishimaru, S. 1985. A new species <strong>of</strong> Leptochelia (Crustacea, Tanaidacea) from Japan, with a<br />

redescription <strong>of</strong> L. savignyi (Kryoyer, 1842), Publ. Seto Mar. Biol. Lab., 30(4/6):241-267<br />

Janta, A. 1995. Distribution <strong>of</strong> Corophium multisetosum Stock, 1952 (Crustacea, Amphipoda) in<br />

European waters with some notes on its ecology, Polish Arch. Hydrobiol., 42(4):395-399<br />

Kinne, O. 1963. Physiology <strong>of</strong> estuarine organisms with special reference to salinity and<br />

temperature, pp. 525-540, In G. H. Lauff (ed.) “Estuaries” American Association for the<br />

Advancement <strong>of</strong> Science, Washington, D. C.<br />

Kimmerer, W. J., E. Gartside and J. J. Orsi 1994. Predation by an introduced clam as the likely<br />

cause <strong>of</strong> substantial declines in zooplankton <strong>of</strong> San Francisco Bay, Mar. Ecol. Prog. Ser. 113:81-<br />

93.<br />

Kozl<strong>of</strong>f, E. N. and L. H. Price, 1997., Marine Invertebrates <strong>of</strong> the Pacific Northwest, 2nd,,<br />

University <strong>of</strong> Washington Press, Seattle, 539 pp.<br />

Kussakin, O. G. 1988. [Marine and brackish-water Isopoda <strong>of</strong> the cold and temperate waters <strong>of</strong><br />

the Northern hemisphere, Volume III, Suborder Asellota. Part I. Families Janiridae, Santidae,


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 28<br />

Dendrotionidae, Munnidae, Paramunnidae, Haplomunnidae, Mesosignidae, Haploniscidae,<br />

Mictosomatidae, Ischnomesidae], Opredeliteli po Faune SSSR, 152:1-501 (In Russian).<br />

Leppakoski, E. 1994. The Baltic and Black Sea seriously contaminated by nonindigenous<br />

species Pp. 20-25, In Archambault, W. (ed.), Nonindigenous Estuarine and Marine Organisms<br />

(NEMO), Proceedings <strong>of</strong> the Conference and Workshop, April 1993, Seattle.<br />

Leppakoski, E. and S. Olenin 1999. Xenodiversity <strong>of</strong> the European brackish water seas: The<br />

North American contribution, National Conference on Marine Bioinvasions, Massachusetts<br />

Institute <strong>of</strong> Technology, Cambridge MA, 24-27 January, 1999.<br />

Lincoln, R. J. 1979. British marine Amphipoda: Gammaridea, British Museum <strong>of</strong> Natural<br />

History, London, 658 pp.<br />

Lomakina, N. B. 1958. [Cumacean crustaceans (Cumacea) <strong>of</strong> the seas <strong>of</strong> the SSSR.], Opredeliteli<br />

po Faune SSSR, 66:1-301.<br />

Mees, J. and N. Fockedey 1993. First record <strong>of</strong> Synidotea laevidorsalis (Miers, 1881) (Crustacea:<br />

Isopoda) in Europe (Gironde estuary, France), Hydrobiologia 264:61-63.<br />

Miller, R. J. 1975. Isopoda and Tanaidacea, pp. 277-312, In R. I. Smith and J. T. Carlton (eds.)<br />

"Light’s Manual: Intertidal invertebrates <strong>of</strong> the central California coast" University <strong>of</strong> California<br />

Press, Berkeley.<br />

Miller, T. W. and J. W. Chapman 1999. Live seafood as a potential mechanism for the<br />

introduction <strong>of</strong> nonindigenous bivalve molluscs to the northeast Pacific, pp. 1-12, In B. Paust<br />

(eds.) "Live <strong>Aquatic</strong> Products 1999" Alaska Sea Grant, Seattle.<br />

Modlin, R. F. and J. J. Orsi 1997. Acanthomysis bowmani, a new species, and A. aspera Ii,<br />

Mysidacea newly reported from the Sacramento-San Joaquin Estuary, California (Crustacea:<br />

Mysidae), Proc. Biol. Soc. Wash., 110(3):439-446.<br />

Moy, P. B.. 1999. Developemnt <strong>of</strong> an aquatic nuisance species barrier in a commercial, Abstract,<br />

In J. Pederson (ed.) National Conference on Marine Bioinvasions, 24-27 Jan. 1999,<br />

Massachutsets Institute <strong>of</strong> Technology, Cambridge, Massachusetts.<br />

Nagata, K. 1965a. Studies on marine gammaridean Amphipoda <strong>of</strong> the Seto Inland Sea. I.<br />

Publications <strong>of</strong> the Seto Marine <strong>Biological</strong> Laboratory XIII(2):131-170.<br />

Nagata, K. 1965b. Studies on marine gammaridean Amphipoda <strong>of</strong> the Seto Inland Sea. II.<br />

Publications <strong>of</strong> the Seto Marine <strong>Biological</strong> Laboratory XIII(3):171-186.<br />

Nagata, K. 1965c. Studies on marine gammaridean Amphipoda <strong>of</strong> the Seto Inland Sea. III.<br />

Publications <strong>of</strong> the Seto Marine <strong>Biological</strong> Laboratory XIII(4):291-326.


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 29<br />

Nagata, K. 1965d. Studies on marine gammaridean Amphipoda <strong>of</strong> the Seto Inland Sea. IV.<br />

Publications <strong>of</strong> the Seto Marine <strong>Biological</strong> Laboratory XIII(5):327-348.<br />

Nichols, F. H., J. E. Cloern, S. N. Luoma and D. H. Peterson 1986. The modification <strong>of</strong> an<br />

estuary, Science 231:525-548.<br />

Nichols, F. H., J. K. Thompson and L. E. Shemmel 1990. Remarkable invasion <strong>of</strong> San Francisco<br />

Bay (California, USA) by the Asian clam Potamocorbula amurensis. II. Displacement <strong>of</strong> a<br />

former community, Marine Ecological Progress Series 66:99-101.<br />

O’Clair, C. E. 1977. Marine invertebrates in rocky intertidal communities. The environment <strong>of</strong><br />

Amchitka Island, Alaska, 1977, pp. 395-449, In M. L. Merritt and R. G. Fuller (eds.) "The<br />

Environment <strong>of</strong> Amchitka Island, Alaska".<br />

O’Clair, R. M. and C. E. O’Clair, 1998., Southeast Alaska’s Rocky Shores, 1st, 1, Plant Press,<br />

Auke Bay, Alaska, XI + 564 pp.<br />

Pearson, T. H. and R. Rosenberg 1978. Macrobenthic succession in relation to organic<br />

enrichment and pollution <strong>of</strong> the marine environment, Marine Biology, Annual Review 16:229-<br />

311.<br />

Platvoet, D., R. H. de Bruyne and A. W. Gmelig Meyling 1995. Description <strong>of</strong> a new Caprellaspecies<br />

from the Netherlands: Caprella macho nov.spec. (Crustacea, Amphipoda, Caprellidea),<br />

Bull. Zool. Mus. Univ. Amsterdam, 15(1):1-4.<br />

Posey, M. H., B. R. Dumbauld and D. A. Armstrong 1991. Effects <strong>of</strong> burrowing mud shrimp<br />

Upogebia pugettensis (Dana), on abundances <strong>of</strong> macr<strong>of</strong>auna, J. Exp. Mar. Biol. Ecol. 148:283-<br />

294.<br />

Quayle, D. B. 1969. Pacific oyster culture in British Columbia, Fish. Res. Bd. Canada, Bull.,<br />

169:1-192<br />

Ruiz, G. M., J. T. Carlton, E. D. Grosholz and A. H. Hines 1997a. Global invasions <strong>of</strong> marine<br />

and estuarine habitats by non-indigenous species: mechanisms, extent, and consequences,<br />

American Zoologist 37:621-632.<br />

Ruiz, G. M., P. F. F<strong>of</strong>on<strong>of</strong>f, A. H. Hines and J. T. Carlton 1997b. Analysis <strong>of</strong> nonindigenous<br />

species invasions <strong>of</strong> the Chesapeake Bay (USA) Part 1. Report submitted to the U.S. Fish and<br />

Wildlife Service, Washington.<br />

Ruiz, G. M. and A. H. Hines 1997. The risk <strong>of</strong> nonindigenous species invasion in Prince<br />

William Sound associated with oil tanker traffic and ballast water management: Pilot study, Final<br />

Report to Regional Citizens’s Advisory Council <strong>of</strong> Prince William Sound, 46 pp. plus<br />

appendices.


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 30<br />

Siegel, S. 1956. Nonparametric statistics for the behavioral sciences, McGraw-Hill, New York,<br />

312 pp.<br />

Smith, L. D., M. J. Wonham, L. D. McCann, G. M. Ruiz, A. H. Hines and J. T. Carlton 1999.<br />

Invasion pressure to a ballast-flooded estuary and an assessment <strong>of</strong> inoculant survival, Biol.<br />

Invas., 1(1):67-87.<br />

Smith, P., J. Perrett, P. Garwood and P. G. Moore 1999. Two additions to the UK marine fauna:<br />

Desdemona ornata Banse, 1957 (Polychaeta, Sabellidae) and Grandidierella japonica<br />

Stephensen, 1938 (Amphipoda, Gammaridea), Newslet. Porcupine Mar. Nat. Hist. Soc., (2):8-11<br />

Southward, A. J. 1969. Life on the seashore, Harvard University Press, Cambridge, Maryland<br />

153 pp.<br />

Thayer, S. A., R. C. Haas, R. D. Hunter, R. H. Kushler 1997. Zebra mussel Dreissena<br />

polymorpha effects on sediment, other zoobenthos, and the diet and growth <strong>of</strong> adult yellow perch<br />

(Perca flavescens) in pond enclosures. Canadian Journal <strong>of</strong> Fisheries and <strong>Aquatic</strong> Science,<br />

54(8): 1903-1915.<br />

Thompson, B. 1998. Benthic macr<strong>of</strong>aunal assemblages <strong>of</strong> San Francisco Bay and Delta,<br />

Interagency Ecological Program for the Sacramento-San Joaquin Estuary Newsletter, 11(2):26-<br />

32.<br />

Thompson, J. K. 1998. Trophic effects <strong>of</strong> Potamocorbula amurensis in San Francisco Bay,<br />

California, Proc. Eighth Int. Zebra Mussel Conf., 1(Pembroke, Ontario, Canada):171-172.<br />

Thresher, R. E. 1999. Marine bio-invasions: Take-home from ten years <strong>of</strong> managing the problem<br />

in Australia, Abstract, In J. Pederson (ed.) National Conference on Marine Bioinvasions, 24-27<br />

Jan. 1999, Massachutsets Institute <strong>of</strong> Technology, Cambridge, Massachusetts.<br />

T<strong>of</strong>t, J., J. Cordell and C. Simenstad 1999. More non-indigenous species First records <strong>of</strong> one<br />

amphipod and two isopods in the delta, IEP Newsletter, 12(4):35-37.<br />

Watkin, E. E. 1941. Observations on the night tidal migrant Crustacea <strong>of</strong> Kames Bay, Journal <strong>of</strong><br />

the Marine <strong>Biological</strong> Association, U.K. 25:81-96.<br />

Watling, L. 1979. Zoogeographic affinities <strong>of</strong> northeaster North American gammaridean<br />

Amphipoda, pp. 256-282 In A. B. Williams (ed.), “Symposium on the composition and evolution<br />

<strong>of</strong> crustaceans in the cold and temperate waters <strong>of</strong> the world ocean” Bulletin <strong>of</strong> the <strong>Biological</strong><br />

Society <strong>of</strong> Washington, No. 3.<br />

Watling, L. 1991. Revision <strong>of</strong> the cumacean family Leuconidae, Journal <strong>of</strong> Crustacean Biology,<br />

11(4):569-582


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 31<br />

Williams, W. D. 1972. Occurrence in Britain <strong>of</strong> Asellus communis Say, 1818, a North American<br />

freshwater isopod, Crustaceana, Supplement 3:134-138.


Appendix Table 9C4.5. Site Descriptions<br />

Chapt 9C4. Peracaridan Crustaceans, page 9C4- 32


Appendix Table 9C4.5. Continued<br />

Chapt 9C4. Peracaridan Crustaceans, page 9C4- 33


Appendix Table 9C4.6. Peracardian Crustacea August 1999<br />

Chapt 9C4. Peracaridan Crustaceans, page 9C4- 34


Appendix Table 9C4.7. UAF unidentified Amphipoda<br />

Chapt 9C4. Peracaridan Crustaceans, page 9C4- 35


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 36<br />

APPENDIX TABLE 9C4.8 Descriptions <strong>of</strong> Amphipod Species Identified in Ballast <strong>Water</strong><br />

Tanks.<br />

Hyperidae<br />

Hyperidae<br />

Hyperia cf. medusarum (Bowman 1973:6-10, figs. 2-6 and references therein; Brusca<br />

1981:21, fig. 9e; Vinogradov et al. 1996:323-327, fig. 131 and references therein). Hyperiaa<br />

medusarum is a morphologically variable bipolar pelagic species <strong>of</strong> cold and moderately cold<br />

water marine regions <strong>of</strong> both hemispheres, occurring in the Bering Sea, the Gulf <strong>of</strong> Alaska and<br />

the coastal waters <strong>of</strong> Canada and the western U. S. (Vinogradov et al. 1996). Specimens <strong>of</strong> this<br />

study are all less than 4 mm in length, and none are mature. Gnathopods, mandibles and<br />

pereopods closely resemble H. medusarum but the identifications are tentative. The sutures<br />

between pereonites 1 and 2 and between coxal plates and pereionites are faint. Their appearance<br />

only in the Anacortes samples and in the open ocean exchanged ballast water samples (Table 1)<br />

are consistent with the life history <strong>of</strong> typical hyperiids and this species is very likely native to the<br />

region.<br />

Gammaridea<br />

Ampeliscidae<br />

Ampelisca abdita Mills, 1964a; Northeast Pacific records <strong>of</strong> Ampelisca milleri are: Jones<br />

1961:253-254; Filice 1959a:183; Filice 1959b:10; Chapman and Dorman 1975:107, 106;<br />

Chapman 1988:365-368, fig. 2 (and references therein); Dickensen 1982:15-17, fig. 9; (not<br />

Barnard 1954b:9-11). The range <strong>of</strong> A. abdita on the east coast <strong>of</strong> the U.S.extends from Maine to<br />

the eastern Gulf <strong>of</strong> Mexico (Mills, 1967, Bousfield 1973, Chapman 1988).<br />

Ampelisca abdita from San Francisco Bay, Bolinas Lagoon and Tomales Bay was<br />

confused with Ampelisca milleri Barnard 1954 for 40 years and was probably introduced into<br />

San Francisco Bay from the eastern U. S. with shipments <strong>of</strong> the eastern oyster Crassostrea<br />

virginica(Chapman 1988). The species dominates s<strong>of</strong>t, subtidal sedimentst’s <strong>of</strong> San Francisco<br />

Bay at salinities between 10 and 25 PSU and must occasionally occur as zooplankton in massive<br />

numbers as it seasonally exits and repopulates shallow subtidal an intertidal mudflats (Mills<br />

1967).<br />

Arigissidae<br />

Argissa hamatipes (Norman 1869); Syrrhoe hamatipes Norman 1869:279; Boeck<br />

1871:125; Argissa stebbingi Bonnier 1896:626-630, pl.36, fig.4; Argissa typica Sars<br />

1895:141-142, pl.48; Chevreux & Fage 1925:90, figs.81-82; Ruffo 1982:159-161, figs. 106-107;<br />

Argissa hamatipes Walker 1904:246; Stebbing 1906:277; Shoemaker 1930:37-40, figs.15-16;<br />

Stephensen 1935:140; Stephensen 1940:41; Stephensen 1944:52; Gurjanova 1951:327-328,<br />

fig.193; Gurjanova 1962:392-393; J.L. Barnard 1962c:151; J.L. Barnard 1964a:218-219; Nagata<br />

1965:154-155, fig.7; J.L. Barnard 1966a:61; J.L. Barnard 1967a:14-15, fig.1d-i; J.L. Barnard<br />

1969b:159, fig. 65; J.L. Barnard 1971b:9; Bousfield 1973:121-122, pl.XX; Griffiths 1975:;<br />

Lincoln 1979:334, fig.157; Ledoyer 1982:144-146, fig. 50; Hirayama 1983:147-149, figs.38-41;<br />

Barnard & Barnard 1983:607-608; Thomas & McCann 1997:22, fig.2.1.<br />

Argissa hamatipes is an entirely marine, nearly cosmopolitan species with an extensive<br />

bathymetric distribution that ranges throughout coastal north Pacific shelf regions from southern<br />

California to southern Japan and the north Atlantic from North Carolina Greenland and Iceland,


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 37<br />

throughout northern Europe and the western Mediterranean, Madagascar and South Africa.<br />

Many <strong>of</strong> the the synonymies are unclear. This extremely dispersed species is likely to be a<br />

species complex and the identity <strong>of</strong> the North Pacific population is probably incorrect.<br />

Nevertheless, the very broad open ocean distribution in the northeast Pacific population strongly<br />

indicates that it is a native to the region.<br />

Corophiidae<br />

Monocorophium acherusicum Podacerus cylindricus Lucas 1842:232; Corophium<br />

cylindricum Smith 1873:566; Paulmier 1905:167, fig. 37; Holmes 1905:521-522, fig. ; C.<br />

cylindricus Stebbing 1914:372-373; Kunkel 1918:171-173, fig. 52; Corophium contractum<br />

Thompson 1881:220-221, fig. 9; Corophium bonnellii K. H. Barnard 1932:244 (in Crawford<br />

1937); Corophium acherusicum 1853:178; Costa 1857:232, Fig. 1827; Bate 1862:282; Heller<br />

1867:51-52, pl 4 fig. 14; DeElla Valle 1893:364-367, pl. I, Fig. II, Pl. 8, figs. 17, 18, 20-41;<br />

Sowinsky 1897:9; Sowinsky 1898:455; Chevreux 1900a:109; Graeffe 1902:20; Holmes<br />

1905:521-522, fig. ; Stebbing 1906:692-740; Chevreux 1911:271; K. H. Barnard 1916:272-274;<br />

Stebbing 1917a:448; Ussing and Stephensen 1924:78-79; Chevreux 1925c:271; Chevreux and<br />

Fage 1925:368, fig. 376; Chevreux 1926:392; Cecchini 1928e:8, pl. 1, fig. 6a; Cecchini<br />

1928b:309-312, fig. 1; Schellenberg 1928:672;Schijfsma 1931a:22-25; Monod 1931a:499; Fage<br />

1933:224; Candeias 1934:3; Shoemaker 1934c:24-25; Cecchini-Parenzan 1935:227-229, fig. 52;<br />

Shoemaker 1935c:250; Crawford 1936:104; Schellenberg 1936c:21; Schijsfma 1936:122-123;<br />

Crawford 1937:617-620, 650, fig. 2; Monod 1937:13; Miloslavskaya 1939:148-149; K. H.<br />

Barnard 1940:482; Bassindale 1941:174; Stephensen 1944a:134; Shoemaker 1947:53, figs. 2, 3;<br />

Shoemaker 1949a:76; Soika 1949:210-211; Gurjanova 1951:977-978, fig. 680; Reid 1951:269;<br />

Stock and Bloklader 1952:4-5; J.L. Barnard 1954a:36; Hurley 1954e:442-445, figs. 35-39; J. L.<br />

Barnard 1955a:37; Irie 1957:5-6, fig. 6; Irie 1958c:145; Irie 1959: tab. 4; J.L.Barnard 1959:38;<br />

Nayar 1959:43-44, pl. XV, figs. 14-20; Irie In Okada and Ochida et al. 1960:122, pl. 61, fig. 12;<br />

Nagata 1960:177; J. L. Barnard 1961:182; Irie and Nagata 1962:20; Nagata 1964:10; Barnard<br />

1964a:111, chart 5; Nagata 1965c:317; Nagata 1966:334; Kikuchi 1966:, tab 21; Kikuchi<br />

1968:179; Reish and J. L. Barnard 1967:16; Ledoyer 1968:214; Fearn-Wannan 1968b:134-135;<br />

Mordhukai-Boltovskoi 1969:485, pl. 25, fig. 2; Sivaprakasam 1969d:156, fig. 14; Bellan-Santini<br />

1971:260-261; J. L. Barnard 1971a:59; J. L. Barnard 1972b:48; Bousfield 1973:201, Pl. LXII.2;<br />

Griffiths 1974:181-182;Griffiths 1974b:228; Griffiths 1974c:281; Griffiths 1975:109; Fox and<br />

Bynum 1975:225; Hirayama 1984:13, fig. 50; Azuma 1986:77; Sudo et al. 1987:1570; Inaba<br />

1988:141; Monocorophium acherusicum Bousfield and Hoover 1997:111-114, figs. 26-27.<br />

Monocorophium acherusicum could be the most widely distributed and widely<br />

introduced estuary invertebrate in the world, occurring in fouling and benthic mud communities<br />

<strong>of</strong> shallow and intertidal areas on all continents except Antarctica. C. acherusicum has been<br />

reported at all latitudes between 60 o North and South. However, many <strong>of</strong> the records <strong>of</strong> this<br />

species at latitudes greater than 60 o , including all records from Alaska are doubtful (Hines et al.<br />

1999) due likely confusion with other species. M. acherusicum was not found in the present<br />

surveys <strong>of</strong> south central Alaska, including Port Valdez and Prince William Sound.<br />

Parthenogenic populations <strong>of</strong> an extremely similar species, that closely resembles<br />

Monocorophium carlottensis Bousfield and Hoover, 1997, occurs in nearly all fouling<br />

communities <strong>of</strong> these areas (Chapman 1999, Peracarida and Decapoda). All Alaskan records <strong>of</strong>


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 38<br />

the nonindigenous species, M. insidiosum and M. acherusicum are probably referrable to M.<br />

carlottensis.<br />

Sinocorophium heteroceratum (Yu, 1938) Corophium heteroceratum Yu 1938:93-101,<br />

figs. 7-11; Sinocorophium heteroceratum Bousfield and Hoover 1997:75, 78.<br />

Sinocorophium heteroceratum was introduced into San Francisco Bay and Los Angeles<br />

Harbor from Asia in the mid 1980s where it presumed to have been transported with ballast<br />

water traffic (Cohen and Carlton 1995). This species occurs predominantly in s<strong>of</strong>t sediments in<br />

high salinity, sub-tidal areas <strong>of</strong> San Francisco Bay and Los Angeles Harbor (Chapman and Cole,<br />

MS in preparation). Sinocorophium heteroceratum are also unlikely to have been introduced<br />

with aquaculture industries, or ship fouling in San Francisco Bay or Los Angeles Harbor because<br />

its lack <strong>of</strong> association with fouling communities.<br />

Grandidierella japonica Stephensen, 1938:179-184; Nagata 1960:179; Nagata<br />

1965c:320-321; Chapman and Dorman 1975:104-108, 4 figs., Nagata 1984:15, fig. 53-56; Muir<br />

1997; Smith et al. 1999:8-9, fig. 3.<br />

Grandidierella japonica occurs in salinities from 5-40 PSU predominantly in warm<br />

intertidal areas <strong>of</strong> nearly all estuaries from Puget Sound to San Diego. Dense populations are<br />

especially common in low-salinity tidepools and seepage areas; mixed sediment. The species has<br />

been introduced to Hawaii (Muir 1997) England (Smith et al. 1999), and estuaries <strong>of</strong> the<br />

northeast Pacific between Puget Sound and San Diego (Chapman and Dorman 1975, Staude<br />

1997, Bay et al. 1988). Grandidierella was most likely introduced to the northeast Pacific with<br />

Pacific oysters from Japan between the 1930s and 1950s (Chapman and Dorman 1975). Its<br />

recent arrival in Europe (Smith et al. 1999) is more likely to be associated with ballast water. It<br />

was misidentified in Hawaii for 25 years as Neogamphopus cabinae (Muir 1997) where the<br />

mechanism <strong>of</strong> its introduction is unclear. The massive ballast water traffic from San Francisco<br />

Bay to Hawaii is a possible mechanism for its introduction there.<br />

Cyphocharidae<br />

Cyphocharis challengeri Stebbing 1888: ;Birstein and Vinogradov 1955:212 (with<br />

references); J. L. Barnard 1961b:31; Bowman and McCain 1967:1-14, figs. 1-9 (with<br />

references).<br />

The most common epipelagic gammaridean amphipod in sub-Arctic <strong>of</strong>fshore and coastal<br />

waters <strong>of</strong> the North Pacific is Cyphocharis challengeri (Bowman and McCain 1967). Bousfield<br />

and McCain (1967) demonstrated that most <strong>of</strong> the variation in the anterior protrusion <strong>of</strong><br />

pereonite 1 varies with size. The species is endemic to the North Pacific but has been reported<br />

from a broad range <strong>of</strong> latitudes in the Atlantic and Indian Ocean. .<br />

Eusiridae<br />

Pontogeneia rostrata Gurjanova, 1938; Gurjanova, 1938:330,398, fig.39; Gurjanova,<br />

1951:719, fig.500; Nagata 1960:171-173, pl.14; J.L.Barnard, 1962b:81; J.L.Barnard,<br />

1964b:114-116, fig.20; Nagata 1965b:185, fig. 26; Nagata 1965e:563; Nagata 1966:334;<br />

J.L.Barnard, 1969a:111,112,114; Itoh 1970:29; Mukai 1971:178; Itoh, Honma and Kakimoto<br />

1972:25; Honma and Kitami 1978:40; Azuma 1980:28; Barnard 1979a:49, figs. 25-27 (part);<br />

Imada et al. 1981:127; Itoh 1981:24; Itoh, Honma and Kitami 1982:41; Hirayama 1985a:28;<br />

Azuma et al. 1985:4; Azuma 1986:74; Sudo et al. 1987:1570; Inaba 1988:146; Ariyama<br />

1988:129, fig. 13f; Barnard and Karaman 1991:334; Ishimaru 1994:45.


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 39<br />

A widely reported species in the North Pacific from Bahia de San Quintin, Mexico<br />

(Barnard 1964) to Alaska and down the Asian coast to southern Japan (Ishimaru, 1994).<br />

Pontogeneia rostrata was recovered in the nonindigenous species surveys <strong>of</strong> Prince William<br />

Sound (Hines 1999). However, P. rostrata can easily be confused with species <strong>of</strong> Accedemorea<br />

its extremely broad range in the Northeast Pacific and uncertain taxonomic status prevents clear<br />

resolution <strong>of</strong> whether it is endemic or introduced. This species is cryptogenic (Carlton 1996).<br />

Gammaridae<br />

Gammarus daiberi Bousfield, 1969; Bousfield 1969:10(1)4-8, figs. 1& 4; Bousfield<br />

1973:52, pl. IV.2; T<strong>of</strong>t et al. 1999:36.<br />

A probable 1980s ballast water introduction into San Francisco Bay from the eastern<br />

Unites States. Gammarus daiberi is an estuarine species most abundant in the low salinity<br />

ranges between 1.5 and 15 PSU and is largely pelagic. Except for this report, this species is<br />

unknown in the northeast Pacific outside <strong>of</strong> San Francisco Bay. Its range in the eastern U.S.<br />

extends from Delaware Bay to South Carolina (Bousfield 1973). Gammarus daiberi is a<br />

probable ballast water introduction into San Francisco Bay that arrived in the 1980s.<br />

Eogammarus confervicolus Mara confervicola Stimpson 1856:90; Gammarus<br />

confervicolus Stimpson 1857:520-521; Bate 1862:218, pl. 38, fig. 9; Holmes 1904:239; Melita<br />

confervicola Stebbing 1906:428; Anisogammarus confervicolus Saunders 1933:248 (in part); J.L.<br />

Barnard 1954a:9-12, pls.9-10; Shoemaker 1964:423, figs. 14-15; Pamamat 1968:211; Bousfield<br />

and Hubbard 1968:3; Anisogammarus (Eogammarus) confervicolus Schellenberg 1937a:274;<br />

Tzvetkova 1975:145-147, fig. 57; Bousfield 1958a:86, fig. 10; Eogammarus confervicolus<br />

Bousfield 1979:317-319, fig.4.<br />

Eogammarus confervicolus is the only native species recovered from ballast water that<br />

was also collected in the Prince William Sound nonindigenous species survey (Chapman 1999).<br />

Eogammarus confervicolus is extremely euryhaline and is occasionally pelagic. It occurs mainly<br />

in estuaries and protected coastal shores. Eogammarus confervicolus is the most common and<br />

widely distributed gammaroidean amphipod <strong>of</strong> the North American Pacific coast (Bousfield<br />

1979).<br />

Megaluropidae<br />

Gibberosus longimerus Hoek; Megaluropus longimerus; J.L.Barnard 1962b:103,<br />

figs.20-21; J.L.Barnard, 1964a:224; J.L. Barnard 1966b:19; J.L.Barnard, 1969a:126; J.L.<br />

Barnard 1971b:15; Gibberosus myersi (McKinney 1980); Megaluropus myersi McKinney 1980;<br />

Megaluropus longimerus <strong>of</strong> Cadien et al. NEP (in part); (not Schellenberg 1925:151-153,<br />

fig.14).<br />

The genus is poorly studied north <strong>of</strong> northern California (Cadien et al. 1997).<br />

Schellenberg (1925) figured only two appendages from his specimens from Lagos, Nigeria and<br />

the type specimens have not been compared to California material. The possibility <strong>of</strong> these<br />

populations comprising a single species seems remote. The common occurrence <strong>of</strong> this species<br />

over a broad range <strong>of</strong> coastal and nearshore waters (Barnard 1962) indicates that it is endemic.<br />

Melphidipiidae<br />

Melphisana bola Barnard 1962b:81-82, fig.7; Thomas & McCann 1997:42, fig.2.20.<br />

This native species is limited to depths no greater than 130 m on the southern California<br />

coastal shelf (Barnard 1962b, Thomas and McCann 1997). Appendages are usually missing this<br />

species on recovery from benthic samples (Barnard 1962b, Thomas and McCann 1997) greatly


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 40<br />

complicating identifications. These specimens are in excellent condition is in sharp contrast ot<br />

previous material on which the species is described.<br />

Oedicerotidae<br />

Hartmanodes hartmanae Monoculodes hartmanae J.L. Barnard 1962:363, figs. 6-7;<br />

Barnard & Karaman 1991:560; Hartmanodes hartmannae Bousfield & Chevrier 1996:92-93, fig.<br />

10. Bousfield and Chevrier (1996) did not find this species in their 200 samples from the shelf<br />

benthos and coastal waters <strong>of</strong> Canada and it is not listed in by Staude (1997). This species is<br />

native to southern California marine waters where it occurs at less than 40 m depths (Barnard<br />

1962). Hartmanodes hartmannae is the most abundant gammaridean amphipod found in the<br />

samples.<br />

Westwoodilla caecula Halimedon caecula Bate 1857:140; Halimedon Molleri Boeck<br />

1871:169-170; Halimedon Mulleri Sars 1895:327-329, pl.115; Halimedon acutifrons Sars<br />

1895:329-330, pl.116, fig.1; Westwoodilla caecula Enequist 1950:333-338, figs.40-56;<br />

Gurjanova 1951:541-543, pl. 357; Mills 1962:5-9, fig.1; J.L. Barnard 1962e:370; J.L. Barnard<br />

1964a:235; J.L. Barnard 1966a:80 (forma acutifrons); J.L. Barnard 1966b:27; J.L. Barnard<br />

1971b:51; Lincoln 1979:354, fig.167; Thomas & McCann 1997:58, figs. 2.37, 2.38; Beare, D. J.<br />

and P. G. Moore 1998.<br />

This species may not be part <strong>of</strong> a complex <strong>of</strong> similar species distributed around the Arctic<br />

Ocean, the Japan Sea, the north east Pacific from British Columbia to southern California and the<br />

North Atlantic from Greenland to the Gulf <strong>of</strong> St. Lawrence and northern Europe. This extremely<br />

widespread, common, species in <strong>of</strong>fshore marine s<strong>of</strong>t-sediment environments is most likely<br />

endemic to cold water areas <strong>of</strong> the northeast Pacific. Its occurrence in Port Valdez zooplankton<br />

samples is not surprising.<br />

Synopiidae<br />

Tiron sp.<br />

The short dactyls, spineless telson, tiny mandibular palp, smooth dorsal urosome <strong>of</strong> this<br />

single specimen do not agree with either <strong>of</strong> the local species Tiron tropakis J. L. Barnard, 1972<br />

or Tiron biocellata J. L. Barnard, 1962. Pelagic dispersal <strong>of</strong> benthic peracaridans usually occurs<br />

as adults and <strong>of</strong>ten is preceded by slight morphological changes that are adaptive for swimming.<br />

These changes are poorly understood. The low morphological correspondence <strong>of</strong> this single<br />

specimen with a known species is therefore not surprising. The specimen is therefore considered<br />

more likely to be a member <strong>of</strong> one <strong>of</strong> the above native species than an introduced species.<br />

References for Appendix Table 9C4.8 (Descriptions <strong>of</strong> Amphipod Species Identified in<br />

Ballast <strong>Water</strong> Tanks:<br />

Alldredge, A. L. and J. M. King 1980. Effects <strong>of</strong> moonlight on the vertical migration patterns <strong>of</strong><br />

demersal zooplankton, J. Exp. Mar. Biol. Ecol., 44:133-156<br />

Barnard, J. L. 1952b. Some Amphipoda from central California, Wasmann J. Biol., 10:9-36, 9<br />

pls.<br />

Barnard, J. L. 1954b. Marine Amphipoda <strong>of</strong> Oregon, Oregon State Monogr., 8:1-103<br />

Barnard, J. L. 1954c. Amphipoda <strong>of</strong> the family Ampeliscidae collected in the eastern Pacific<br />

Ocean by the Velero III and Velero IV, Allan Hancock Pac. Expeds., 18:1-137<br />

Barnard, J. L. 1955. Notes on the amphipod genus Aruga with the description <strong>of</strong> a new species,<br />

Bull. Sth. Calif. Acad. Sci., 54:97-103


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 41<br />

Barnard, J. L. 1958. Amphipod crustaceans as fouling organisms in Los Angeles-Long Beach<br />

Harbors, with reference to the inludence <strong>of</strong> seawater turbidity, Calif. Fish Game, 44:161-170,<br />

2 figs., 5 Tabs.<br />

Barnard, J. L. 1959a. The common pardaliscid Amphipoda <strong>of</strong> southern California, with a<br />

revision <strong>of</strong> the family, Pac. Nat., 1(12):36-43<br />

Barnard, J. L. 1959b. Estuarine Amphipoda, pp. 13-69, In J. L. Barnard and D. J. Reish (eds.)<br />

"Ecology <strong>of</strong> Amphipoda and Polychaeta <strong>of</strong> Newport Bay, California" Allan Hancock<br />

Foundation Publications, Occasional Papers<br />

Barnard, J. L. 1961a. Relationship <strong>of</strong> southern California amphipod faunas in Newport Bay and<br />

in the open sea, Pac. Nat., 2(4):166-186<br />

Barnard, J. L. 1962a Benthic marine Amphipoda <strong>of</strong> southern California: Families Aoridae,<br />

Photidae, Ischyroceridae, Corophiidae, Podoceridae, Pac. Nat., 3(1):1-72<br />

Barnard, J. L. 1962b. Benthic marine Amphipoda <strong>of</strong> southern California: Families Tironidae to<br />

Gammaridae, Pac. Nat., 3(2):73-115<br />

Barnard, J. L. 1962c. Benthic marine Amphipoda <strong>of</strong> southern California: Families<br />

Amphilochidae, Leucothoidae, Stenothoidae, Argissidaem, Hyalidae, Pac. Nat., 3(3):116-163<br />

Barnard, J. L. 1962f. Benthic marine Amphipoda <strong>of</strong> southern California: Family Oedicerotidae,<br />

Pac. Nat., 3(12):351-371<br />

Barnard, J. L. 1964a. Marine Amphipoda <strong>of</strong> Bahia de San Quintin, Baja California, Pac. Nat.,<br />

4:55-139<br />

Barnard, J. L. 1964d. Los anfipodos bentonicos marinos de la costa occidental de Baja<br />

California, Rev. Soc. Mex. Hist. Nat., 24:205-274<br />

Barnard, J. L. 1967c. Bathyal and abyssal gammaridean Amphipoda <strong>of</strong> Cedros Trench, Baja<br />

California, U. S. Nat. Mus. Bull., 260:i-vi + 1-204<br />

Barnard, J. L. 1969a. Gammaridean Amphipoda <strong>of</strong> the rocky intertidal <strong>of</strong> California: Monterey<br />

Bay to La Jolla, Bull. U.S. Nat. Mus., 258:1-230<br />

Barnard, J. L. 1970a. Sublittoral Gammaridea (Amphipoda) <strong>of</strong> the Hawaiian Islands,<br />

Smithsonian Cont. Zool., 34:1-286<br />

Barnard, J. L. 1970b. Benthic ecology <strong>of</strong> Bahia de San Quintin, Baja California, Smithsonian<br />

Cont. Zool., 44:1-56<br />

Barnard, J. L. 1971a. Keys to the Hawaiian marine Gammaridea, 0-30m, Smithsonian Cont.<br />

Zool., 59:1-135<br />

Barnard, J. L. 1971b. Gammaridean Amphipoda from a deep-sea transect <strong>of</strong>f Oregon,<br />

Smithsonian Cont. Zool., 61:1-86<br />

Barnard, J. L. 1972a. The marine fauna <strong>of</strong> New Zealand. Algae living littoral Gammaridea<br />

(Crustacea, Amphipoda), New Zealand Oceanogr. Inst. Mem., 62:1-216<br />

Barnard, J. L. 1977a. The cavernicolous fauna <strong>of</strong> Hawaiian lava tubes 9. Amphipoda (Crustacea)<br />

from brackish lava ponds on Hawaii and Maui, Pac. Insects, 17:33-40<br />

Barnard, J. L. 1979. Littoral gammaridean Amphipoda from the Gulf <strong>of</strong> California and the<br />

Galapagos Islands, Smithsonian Cont. Zool., 271:1-149<br />

Barnard, J. L. and G. S. Karaman 1990a. The families and genera <strong>of</strong> marine gammaridean<br />

Amphipoda (except marine gammaroids). Part 1, Records <strong>of</strong> the Australian Museum, :1-417


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 42<br />

Barnard, J. L. and G. S. Karaman 1990b. The families and genera <strong>of</strong> marine gammaridean<br />

Amphipoda (except marine gammaroids). Part 2, Records <strong>of</strong> the Australian Museum, 13:419-<br />

866<br />

Barnard, K. H. 1940. Contributions to the crustacean fauna <strong>of</strong> South Africa. XII. Further<br />

additions to the Tanaidacea, Isopoda, and Amphipoda, Ann. S. Afr. Mus., 32:282-543<br />

Bate, C. S. 1856. On the British Edriophthalma, pp. 18-62, In (eds.) "Report <strong>of</strong> the Twenty-fifth<br />

Meeting <strong>of</strong> the British Association for the Advancement <strong>of</strong> Science",<br />

Bate, C. S. 1858. On some new genera and species <strong>of</strong> Crustacea Amphipoda, Ann. Mag. Nat.<br />

Hist., 1:361-362<br />

Bate, C. S. 1864. Characters <strong>of</strong> new species <strong>of</strong> crustaceans discovered by J. K. Lord on the coast<br />

<strong>of</strong> Vancouver Island, Zool. Soc. London Proc. Sci. Meet., :661-668<br />

Bay, S. M., M. G. Nipper and D. J. Greenstein 1989. Acute and chronic sediment test methods<br />

using the amphipod Grandidierella japonica, Environ. Toxicol. Chem., 8:1191-1200<br />

Beare, D. J. and P. G. Moore 1998. The life histories <strong>of</strong> the <strong>of</strong>fshore oedicerotids Westwoodilla<br />

caecula and Monoculodes packardi (Crustacea: Amphipoda) from Loch Fyne, Scotland, J.<br />

Mar. Biol. Assoc., U.K., 78:835-852<br />

Beckett, D. C., P. A. Lewis and J. H. Green 1998. Where have all the Crangonyx gone The<br />

disappearance <strong>of</strong> the amphipod Rangonyx Pseudogracilis, and subsequent appearance <strong>of</strong><br />

Gammarus nr. fasciatus, in the Ohio River, Am. Midl. Nat., 139:201-209<br />

Bellan-Santini, D. 1990. Mediterranean deep-sea amphipods: composition, structure and<br />

affinities <strong>of</strong> the fauna, Prog. Oceanogr., 24:275-285<br />

Bellan-Santini, D. and S. Ruffo 1996. Faunistique et biogéographie des amphipodes marins<br />

benthiques de Méditerranée, Polskie Arch. Hydrobiol., 42(1995):319-325<br />

Birstein, J. A. and M. E. Vinogradov 1955. Pelagicheski gammaridy (Amphipoda, Gammaridea)<br />

Kurilo-Kamchatskoi Zapadiny, Akad. Nauk SSSR, Inst. Okeanol. Trudy, 12:210-287<br />

Birstein, J. A. and M. E. Vinogradov 1958. Pelagicheski gammaridy (Amphipoda, Gammaridea)<br />

severnozapadnoi chasti Tikogo Okeana, Akad. Nauk SSSR, Inst. Okeanol. Trudy, 27:219-257<br />

Boeck, A. 1872. Bidrag til Californiens Amphipodefauna, Forhandl. Vidensk.-Selsk. Christiana,<br />

1872, :32-51<br />

Bousfield, E. L. 1958b. Fresh-water amphipod crustaceans <strong>of</strong> glaciated North America, Canadian<br />

Field Nat., 72(1):55-113<br />

Bousfield, E. L. 1969. New records <strong>of</strong> Gammarus (Crustacea: Amphipoda) from the middle<br />

Atlantic region, Chesapeake Sci., 10(1):1-17<br />

Bousfield, E. L., 1973., Shallow-water gammaridean Amphipoda <strong>of</strong> New England, 1st,, Cornell<br />

University Press, Ithica, NY, 312 pp.<br />

Bousfield, E. L. 1979a. The amphipod superfamily Gammaroidea in the northeastern Pacific<br />

region: Systematics and distributional ecology, Bull. Biol. Soc. Wash., :297-357<br />

Bousfield, E. L. and A. Chevrier 1996. The amphipod family Oedicerotidae on the Pacific coast<br />

<strong>of</strong> North America. Part 1. The Monoculodes and Synchelidium generic complexes:<br />

Systematics and distributional ecology, Amphipacifica, 2(2):75-148<br />

Bousfield, E. L. and P. M. Hoover 1997. The amphipod superfamily Corophioidae on the Pacific<br />

Coast <strong>of</strong> North America. Part V. Family Corophiinae, new subfamily. Systematics and<br />

distributional ecology, Amphipacifica, 2(3):67-139


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 43<br />

Bowman, T. E. 1973. Pelagic amphipods <strong>of</strong> the genus Hyperia and closely related genera<br />

(Hyperiidea: Hyperiidae), Smithsonian Cont. Zool., (136):1-76<br />

Bowman, T. E. and J. C. McCain 1967. Variation and distribution <strong>of</strong> the pelagic amphipod<br />

Cyphocaris challengeri in the northeast Pacific (Gammaridea: Lysianassidae), Proc. U.S. Nat.<br />

Mus., 122(3588):1-14<br />

Carlton, J. T. 1979a. History, biogeography, and ecology <strong>of</strong> the introduced marine and estuarine<br />

invertebrates <strong>of</strong> the Pacific coast <strong>of</strong> North America, Ph.D., University <strong>of</strong> California, Davis,<br />

904 pp.<br />

Carlton, J. T. 1979b. Introduced invertebrates <strong>of</strong> San Francisco Bay, pp. 427-444, In T. J.<br />

Conomos (eds.) "San Francisco Bay: The urbanized estuary" American Association <strong>of</strong><br />

Associated Scientists, California Academy <strong>of</strong> Sciences, San Francisco<br />

Carlton, J. T. 1985. Transoceanic and interoceanic dispersal <strong>of</strong> coastal marine organisms: the<br />

biology <strong>of</strong> ballast water, Oceanogr. Mar. Biol. Ann. Rev, 23:313-371<br />

Carlton, J. T. 1987. Patterns <strong>of</strong> transoceanic marine biological invasions in the Pacific Ocean,<br />

Bull. Mar. Sci., 31:452-465<br />

Carlton, J. T. 1996. <strong>Biological</strong> invasions and cryptogenic species, Ecology, 77:1653-1655<br />

Carlton, J. T. and J. B. Geller 1993. Ecological roulette: The global transport <strong>of</strong> nonindigenous<br />

marine organisms, Science, 261:78-82<br />

Chapman, J. W. 1988. <strong>Invasions</strong> <strong>of</strong> the northeast Pacific by Asian and Atlantic gammaridean<br />

amphipod crustaceans, including a new species <strong>of</strong> Corophium, J. Crust. Biol., 8:364-382<br />

Chapman, J. W. 1999a. Climate and non-indigenous species introductions in northern<br />

hemisphere estuaries, pp. 1-14, In E. Muckle-Jeffs (eds.) "International Zebra Mussel<br />

Conference Proceedings, March 1998" International Zebra Mussel Conference Proceedings,<br />

Sacramento, CA<br />

Chapman, J. W. 1999b. Climate and nonindigenous peracaridan crustaceans in northern<br />

hemisphere estuaries, pp. 1-19, In J. Pederson (eds.) "National Conference on Marine<br />

Bioinvasions, Massachusetts Institute <strong>of</strong> Technology, January 1999" Massachutsetts Sea<br />

Grant, Cambridge, MA<br />

Chapman, J. W. and J. A. Dorman 1975. Diagnosis, systematics and notes on Grandidierella<br />

japonica (Amphipoda: Gammaridea) and its introduction to the Pacific coast <strong>of</strong> the United<br />

States, Bull. Sth. Calif. Acad. Sci., 74:104-108<br />

Cohen, A. N. and J. T. Carlton, 1995., Nonindigenous species in a United States estuary: A case<br />

history <strong>of</strong> the ecological and economic effects <strong>of</strong> biological invasions in the San Francisco<br />

and Delta region, U. S. Fish and Wildlife Service, Washington, D.C., 246 pp.<br />

Costa, A. 1857. Ricerche sui Crostacei Anipodi del regno di Napoli, Mem. R. Accad. Sci.<br />

Napoli, 1:165-235<br />

Crawford, G. I. 1937a. The fauna <strong>of</strong> certain estuaries in west England adn south Wales, with<br />

special reference to the Tanaidacea, Isopoda and Amphipoda, J. Mar. Biol. Ass. U. K.,<br />

21:647-662<br />

Crawford, G. I. 1937b. A review <strong>of</strong> the amphipod genus Corophium with notes on the British<br />

species, J. Mar. Biol. Ass. U. K., 21:589-630<br />

Dickensen, J. J. 1982. 1. Family Ampeliscidae, genus Ampelisca, Nat. Mus. Can. Publ. Biol.<br />

Oceanogr., (10):1-39


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 44<br />

Fish, C. J. 1925. Seasonal distribution <strong>of</strong> the plankton <strong>of</strong> the Woods Hole region, Bull. U. S. Bur.<br />

Fish., 41:91-179.<br />

Gurjanova, E. F. 1938. Amphipoda. Gammaroidea <strong>of</strong> Siaukhu Bay and Sudzuhke Bay (Japan<br />

Sea), Reports <strong>of</strong> the Japan Sea Hydrobiological Expedition <strong>of</strong> the Zoologicala Institute <strong>of</strong> the<br />

Academy <strong>of</strong> Sciences USSR in 1934, 1:241-404<br />

Gurjanova, E., 1951., Bokoplavy morei SSSR i sopredel’nykh vod (Amphipoda-Gammaridea),,<br />

41, Akademiia Nauk SSSR,, 1029 pp.<br />

Gurjanova, E. F. 1955. Novye vidy bokoplavov (Amphipoda, Gammaridea) is severnoi chasti<br />

Tixogo Okeana, Trud. Zool. Inst. Akad. Nauk SSSR, 18:166-218<br />

Gurjanova, E. 1962. Bokoplavy severnoi chasti Tixogo Okeana (Amphipoda-Gammaridea)<br />

chast’ 1, Akad. Nauk SSSR, 74:1-440<br />

Hirayama, A. 1983. Taxonomic studies on the shallow-water gammaridean Amphipoda <strong>of</strong> West<br />

Kyushu, Japan. I. Acanthonotozomatidae, Ampleiscidae, Amphithoidae, Amphilochidae,<br />

Argissidae. Atylidae, and Colomastigidae, Publ. Seto Mar. Biol. Lab., 28:75-150<br />

Hirayama, A. 1984. Taxonomic studies on the shallow water gammaridean Amphipoda <strong>of</strong> West<br />

Kyushu, Japan. II. Corophiidae, Publ. Seto Mar. Biol. Lab., 29(1/3):1-92<br />

Hirayama, A. 1985. Taxonomic studies <strong>of</strong> the shallow water gammaridean Amphipoda <strong>of</strong> West<br />

Kyushu, Japan. IV. Dexaminidae (Guernea), Eophliantidae, Eusiridae, Haustoridae, Hyalidae,<br />

Ischyroceridae, Publ. Seto Mar. Biol. Lab., 30(1/3):1-53<br />

Holmes, S. J. 1904. Amphipod crustaceans <strong>of</strong> the Expedition, Harriman Alaska Exped., 10:233-<br />

246<br />

Honma, Y. and T. Kitami 1978. Fauna and flora in the waters adjacent to the Sado marine<br />

<strong>Biological</strong> Station, Niigata University, Ann. Rep. Sado Mar. Biol. Sta., Niigata Univ., 8:7-81<br />

Hurley, D. E. 1954e. Studies on the New Zealand amphipodan fauna No. 7. The Family<br />

Corophiidae, including a new species <strong>of</strong> Paracorophium, Trans. Roy. Soc. New Zealand,<br />

82:431-460<br />

Irie, H. 1958a. Ecological study on important species <strong>of</strong> epibenthic amphipods, Bull. Rez.<br />

Coloniz. Tsushima Current, :135-145<br />

Irie, H. 1959. Studies on pelagic amphipods in the adjacent seas <strong>of</strong> Japan, Bull. Fac. Fish.,<br />

Nagasaki Univ., 8:20-42<br />

Irie, H. and K. Nagata 1962. A list <strong>of</strong> benthic Crustacea known in Ariake Sea, Bull. Fac. Fish.,<br />

Nagasaki Univ., 13:19-24<br />

Ishimaru, S. 1994. A catalogue <strong>of</strong> Gammaridean and Ingolfiellidean Amphipoda recorded from<br />

the vicinity <strong>of</strong> Japan, Rep. Sado Mar. Biol. Sta., Niigata Univ., 24:29-86<br />

Irie, H. 1958. Ecological study on important species <strong>of</strong> epibenthic amphipods, Bull. Rez.<br />

Coloniz. Tsushima Current, :135-145<br />

Ishimaru, S. 1994. A catalogue <strong>of</strong> Gammaridean and Ingolfiellidean Amphipoda recorded from<br />

the vicinity <strong>of</strong> Japan, Rep. Sado Mar. Biol. Sta., Niigata Univ., 24:29-86<br />

Itoh, S., Y. Honma and Kakimoto 1972. A preliminary report <strong>of</strong> the amphipod fauna in the<br />

waters around Sado Island, Proc. Jap. Soc. Syst. Zool., 8:21-28<br />

Jones, M. L. 1961. A quantitative evaluation fo the benthic fauna <strong>of</strong>f Point Richmond,<br />

California, Univ. Calif. Publ. Zool., 67:219-320<br />

Kikuchi, T. 1966. An ecological study on animal communities <strong>of</strong> the Zostera marina belt in<br />

Tomioka Bay, Amakusa, Kyushu, Publ. Amakusa Mar. Biol. Lab., 1(1):1-106


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 45<br />

Kikuchi, T. 1968. Faunal list <strong>of</strong> the Zostera marina belt in Tomioka Bay, Amakusa, Kyushu,<br />

Publ. Amakusa Mar. Biol. Lab., 1(2):163-192<br />

Kunkel, B. W. 1918. The Arthrostraca <strong>of</strong> Connecticut, Connecticut Sta. Geol. Nat. Hist. Surv.<br />

Bull., 26:1-261<br />

Ledoyer, M. 1968. Ecologie de la fauna vagile des biotopes Mediterraneens accessibles in<br />

scaphandre autonome (Region de Marseille principalement). IV. - Synthese de l’etude<br />

ecologique, Rec. Trav. Sta. Mar. d’End. Bull., 44(60):125-295<br />

Ledoyer, M. 1982. Crustaces Amphipodes gammariens: Families des Acanthonozomatidae a<br />

gammaridea, Faune Madagascar, 59(1):1-598<br />

Lincoln, R. J., 1979., British marine Amphipoda: Gammaridea,,, British Museum <strong>of</strong> Natural<br />

History, London, 658 pp.<br />

Lucas, H., 1842., Histoire naturelle des crustaces des arachnides et des myriapodes ...,,,, Paris,<br />

pp.<br />

McKinney, L. D. 1980a-b. Four new and unusual amphipods from the Gulf <strong>of</strong> Mexico and<br />

Caribbean Sea, Proc. Biol. Soc. Wash., 93:83-103<br />

Mills, E. L. 1962. Amphipod crustaceans <strong>of</strong> the Pacific coast <strong>of</strong> Canada, II. Family<br />

Oedicerotidae, Nat. Mus. Can., 15:1-21<br />

Mills, E. L. 1964. Ampelisca abdita a new amphipod crustacean from eastern North America,<br />

Can. J. Zool., 42(60):559-575<br />

Mills, E. L. 1967. A reexamination <strong>of</strong> some species <strong>of</strong> Ampelisca (Crustacea: Amphipoda) from<br />

the east coast <strong>of</strong> North America, Can. J. Zool., 45:635-652<br />

Monod, T. 1931. Faune de l’appontement de l’administration a Port-Etienne (Afrique Occidentale<br />

Francaise), Bull. Soc. Zool. France, 55(60):489-501<br />

Monod, T. 1937. I. Crustaces. Missions A. Gruvel dans le Canal de Suez, Mem. L’Inst. D’Egypte,<br />

34:1-19<br />

Montagne, D. E. and D. B. Cadien 1998. A taxonomic listing <strong>of</strong> s<strong>of</strong>t bottom macro- and<br />

megainvertebrates from infaunal & epibenthic monitoring programs in the southern<br />

California Bight, Edition 3, 15 June 1998, Southern California Association <strong>of</strong> Marine<br />

Invertebrate Taxonomists, San Pedro, California, 167 pp.<br />

Muir, D. G. 1997. New records <strong>of</strong> peracarid Crustacea in Hawaii (Crustacea: Peracarida), Bishop<br />

Mus. Occas. Pap., No. 49:50-54<br />

Mukai, H. 1971. The phytal animals on the thalli <strong>of</strong> Sargassum serratifolium in the Sargassum<br />

region, with reference to their seasonal fluctuations, Mar. Biol., 8:170-182<br />

Nagata, K. 1960. Preliminary notes on benthic gammaridean Amphipoda from the Zostera<br />

region <strong>of</strong> Mihara Bay, Seto Inland Sea, Japan, Publ. Seto Mar. Biol. Lab., 8:163-182, 2 figs.,<br />

pls. 13-17<br />

Nagata, K. 1964. A list <strong>of</strong> gammaridean Amphipoda from the sea around the Amakusa Marine<br />

<strong>Biological</strong> Laboratory, Fauna and Flora <strong>of</strong> the Sea Around Amakusa Marine <strong>Biological</strong><br />

Laboratory, V. Amphipod Crustacea, 8:1-10<br />

Nagata, K. 1965a. Studies <strong>of</strong> marine gammaridean Amphipoda <strong>of</strong> the Seto Inland Sea, I, Publ.<br />

Seto Mar. Biol. Lab., 13:131-170<br />

Nagata, K. 1965b. Studies <strong>of</strong> marine gammaridean Amphipoda <strong>of</strong> the Seto Inland Sea, II, Publ.<br />

Seto Mar. Biol. Lab., 13:171-186


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 46<br />

Nagata, K. 1965c. Studies <strong>of</strong> marine gammaridean Amphipoda <strong>of</strong> the Seto Inland Sea, III, Publ.<br />

Seto Mar. Biol. Lab., 13:191-326<br />

Nagata, K. 1966. Studies <strong>of</strong> marine gammaridean Amphipoda <strong>of</strong> the Seto Inland Sea. IV, Publ.<br />

Seto Mar. Biol. Lab., 13:327-348<br />

Reid, D. M. 1951. Report on the Amphipoda (Gammaridea and Caprellidea) <strong>of</strong> the coast <strong>of</strong><br />

tropical West Africa, Atlantide Rep., 2:189-291<br />

Reish, D. J. and J. L. Barnard 1967. The benthic Polychaeta and Amphipoda <strong>of</strong> Morrow Bay,<br />

California, Proc. U.S. Nat. Mus., 120(3565):1-26<br />

Ruffo, S. 1982a. The Amphipoda <strong>of</strong> the Mediterranean. Part 1. Gammaridea<br />

(Acanthonotozomatidae to Gammaridae), Mem. L’Inst. Oceanogr., 13:1-364<br />

Sars, G. O. 1895. Amphipoda, An account <strong>of</strong> the Crustacea <strong>of</strong> Norway with short descriptions<br />

and figures <strong>of</strong> all the species, 1:i-viii + 1-711<br />

Schellenberg, A. 1925. Crustacea. VIII. Amphipoda, pp. 111-204, In W. Michaelsen (eds.)<br />

"Beitrage zur Kenntnis der Meeresfauna Westafrikas" L. Friedrichsohn & Co., Hamburg,<br />

Germany<br />

Schellenberg, A. 1928. Report on the Amphipoda. Zoological results <strong>of</strong> the Cambridge<br />

Expedition to Suez Canal. 1924, Trans. Zool. Soc. London, 22:633-692<br />

Shoemaker, C. R. 1930a. The Amphipoda <strong>of</strong> the Cheticamp Expedition <strong>of</strong> 1917, Contrib. Can.<br />

Biol. Fish. (New Ser.), 5(10):221-359<br />

Shoemaker, C. R. 1934a. Two new species <strong>of</strong> Corophium from the west coast <strong>of</strong> America, J.<br />

Wash. Acad. Sci., 24:356-360<br />

Shoemaker, C. R. 1934b. The amphipod genus Corophium on the east coast <strong>of</strong> America, Proc.<br />

Biol. Soc. Wash., 47:23-32<br />

Shoemaker, C. R. 1935a. The amphipods <strong>of</strong> Porto Rico [sic.] and the Virgin Islands. Science<br />

Survey <strong>of</strong> Porto Rico [sic.] and the Virgin Islands, New York Acad. Sci., 15:229-253<br />

Shoemaker, C. R. 1949. The amphipod genus Corophium on the west coast <strong>of</strong> America, J. Wash.<br />

Acad. Sci., 39:66-82<br />

Shoemaker, C. R. 1964. Seven new amphipods from the west coast <strong>of</strong> North America with notes<br />

on some unusual species, Proc. U.S. Nat. Mus., 115:391-430<br />

Smith, P., J. Perrett, P. Garwood and P. G. Moore 1999. Two additions to the UK marine fauna:<br />

Desdemona ornata Banse, 1957 (Polychaeta, Sabellidae) and Grandidierella japonica<br />

Stephensen, 1938 (Amphipoda, Gammaridea), Newslet. Porcupine Mar. Nat. Hist. Soc., (2):8-<br />

11<br />

Staude, C. P. 1997. Phylum Arthropoda: Subphylum Crustacea: Class Malacostraca: Order<br />

Amphipoda, pp. 346-391, In E. N. Kozl<strong>of</strong>f and L. H. Price (eds.) "Marine Invertebrates <strong>of</strong> the<br />

Pacific Northwest" University <strong>of</strong> Washington Press, Seattle, WA<br />

Stebbing, T. R. R., 1888., Report on the Amphipoda collected by H. M. S. Challenger during the<br />

years 1873-1876, Zoology, 29, Eyrie and Spottiswoodie, London, xxiv + 1737 pp.<br />

Stebbing, T. R. R., 1906., Amphipoda. I. Gammaridea, Das Tierreich, 21, Oxford University<br />

Press, Berlin, 806 pp.<br />

Stephensen, A. 1938. The Amphipoda <strong>of</strong> northern Norway and Spitzbergen with adjacent waters,<br />

Tromso Museum Skr., 3:141-278<br />

Stephensen, K. 1944. Some Japanese Amphipods, Vidensk. Medd. Dansk Naturh. Foren.,<br />

108(4):25-88


Chapt 9C4. Peracaridan Crustaceans, page 9C4- 47<br />

Stimpson, W. 1856. On some Californian Crustacea, Proc. Calif. Acad. Sci., 1:87-90<br />

Stimpson, W. 1857. On the Crustacea and Echinodermata <strong>of</strong> the Pacific shores <strong>of</strong> North<br />

America, Boston J. Nat. Hist., 6:444-532<br />

Thomas, J. D. and L. D. McCann 1997. The families Argissidae, Dexaminidae, Eursiridae,<br />

Gammaridae, Leucothoidae, Melphidippidae, Oedicerotidae, Pardaliscidae, Phoxocephalidae,<br />

Podoceridae, Stegocephalidae, Stenothoidae, Stilipedidae, Synopiidae, and Urothoidae, pp.<br />

21-136, In J. A. Blake, L. Watling and P. H. Scott (eds.) "Taxonomic Atlas <strong>of</strong> the Benthic<br />

Fauna <strong>of</strong> the Santa Maria Basin and Western Santa Barbara Channel" Santa Barbara Museum<br />

<strong>of</strong> Natural History, Santa Barbara, California<br />

T<strong>of</strong>t, J., J. Cordell and C. Simenstad 1999. More non-indigenous species First records <strong>of</strong> one<br />

amphipod and two isopods in the delta, IEP Newslet., 12(4):35-37<br />

Tzvetkova, N. L. 1975a. Pribezhnye gammaridy severny kh I dal’nevostochnykh morei SSSR I<br />

sopredel’nykh vod, Akad. Nauk SSSR, Zool. Inst. Izdatel. "Nauka", Leningrad, :1-256<br />

Vinogradov, M. E., A. F. Volkov and T. N. Semenova, 1996., Hyperiid amphipods (Amphipoda,<br />

Hyperiidea) <strong>of</strong> the world oceans,,, Science Publishers, Inc., 10 <strong>Water</strong> Street, #310, Lebanon,<br />

NH 03766, xxvii + 632 pp. pp.<br />

Williams, A. B. and K. H. Bynum 1972. A ten-year study <strong>of</strong> meroplankton in North Carolina<br />

estuaries: Amphipods, Chesapeake Sci., 13:175-192<br />

Williams, R. J., F. B. Griffiths, E. J. Van der Wal and J. Kelly 1988. Cargo vessel ballast water<br />

as a vector for the transport <strong>of</strong> nonindigenous marine species, Estuar. Coast. Shelf. Sci.,<br />

26:409-420<br />

Yu, S. C. 1938. Descriptions <strong>of</strong> two new amphipod Crustacea from Tankgu, Bulletin <strong>of</strong> the Fan<br />

Memorial Institute <strong>of</strong> Zoology, 8:83-1


Chapt 9C5. Copepod Crustaceans, page 9C5- 1<br />

Chapter 9C5. Focal Taxonomic Collections: Copepod Crustaceans<br />

Jeffery R. Cordell, Wetland <strong>Ecosystems</strong> Team, Fishery Sciences, University <strong>of</strong> Washington,<br />

Seattle<br />

Methods<br />

Copepods were identified from three types <strong>of</strong> samples. The first method consisted <strong>of</strong><br />

sweeps that were made through algal and fouling assemblages on the underside <strong>of</strong> docks, using a<br />

small hand-held net consisting <strong>of</strong> 130 µm mesh material attached to a stainless steel hoop <strong>of</strong><br />

approximately 15 cm diameter. An effort was made to disturb algal and bivalve holdfasts in<br />

order to capture copepods from those microhabitats. The second type <strong>of</strong> samples taken were<br />

vertical water column plankton hauls made either <strong>of</strong>f a dock or from a small boat in the harbor<br />

with a 0.25 m diameter 250 µm mesh plankton net. The net was lowered to the bottom, and after<br />

waiting approximately 1 minute for disturbance to dissipate, the net was slowly pulled to the<br />

surface. The third type <strong>of</strong> samples were taken from settling plates used for collecting fouling<br />

macro-invertebrates by briefly soaking plates in 5% formaldehyde solution in a plastic tub and<br />

washing the residue through 130 µm mesh.<br />

In the laboratory, each sample was examined under a dissecting microscope, and several<br />

representatives <strong>of</strong> each species <strong>of</strong> copepod were removed. Each species was then further<br />

examined under a compound microscope. Identification was made as far as possible without<br />

dissection <strong>of</strong> individuals (with the exception <strong>of</strong> occasional removal <strong>of</strong> the abdomen to facilitate<br />

viewing the fifth leg).<br />

Results and Discussion<br />

We identified 68 species <strong>of</strong> harpacticoid copepods, six calanoids, four cyclopoids, and<br />

several unidentified poecilostomatoid species (Table 9C5.1). Of these, none is a confirmed<br />

introduced species.<br />

For harpacticoids, our results were similar to those <strong>of</strong> Kask et al. (1982) for the Nanaimo<br />

estuary in southern British Columbia in both the number <strong>of</strong> species found (75 in B.C.) and in that<br />

most <strong>of</strong> the species that were identified were either northern Pacific, broadly distributed boreal<br />

species (i.e., Pacific and Atlantic records), or probably undescribed species. Kask et al. (1982)<br />

speculated that the presence <strong>of</strong> many <strong>of</strong> the species that they found might have been the result <strong>of</strong><br />

introductions from ship fouling communities. Harpacticoid copepods may be particularly likely<br />

to be transported and introduced because as a group they have successfully occupied almost all<br />

benthic and epibenthic habitats. Also, many species have multiple life history modes (e.g.,<br />

resting and planktonic stages) that may also increase their chance <strong>of</strong> being transported and<br />

introduced. However, these same factors may also explain wide natural distributions. The<br />

paucity <strong>of</strong> studies <strong>of</strong> harpacticoid taxonomy in the northeastern Pacific makes it nearly<br />

impossible to determine whether or not a given species has been introduced without extensive<br />

distribution or genetic studies. Many <strong>of</strong> the species described in Lang’s monograph on the<br />

harpacticoids <strong>of</strong> central California (Lang, 1965) occur in Puget Sound (J. Cordell, unpublished<br />

data) and southern British Columbia (Kask et. al., 1982), and Lang’s species that also occur in<br />

Prince William Sound (Table 9C5.2) probably have continuous distributions. Other species that<br />

we encountered have Arctic and circumboreal distributions. An example <strong>of</strong> this is the important


Chapt 9C5. Copepod Crustaceans, page 9C5- 2<br />

Table 9C5.1. Copepoda<br />

Order Harpacticoida<br />

Fam. Ameiridae<br />

Ameira longipes Boeck, 1865<br />

Ameira sp. 1<br />

Ameira sp. 2<br />

Ameiridae, unid. sp. 1<br />

Fam. Ancorabolidae<br />

Arthropsyllus serratus Sars, 1909<br />

Fam. Canthocamptidae<br />

Mesochra pygmaea (Claus, 1863)<br />

Mesochra sp. 1<br />

Fam. Canthocamptidae, incertae sedis<br />

Leimia vaga Willey, 1923<br />

Fam. Cletodidae<br />

Acrenhydrosoma sp.<br />

Fam. Danielsseniidae<br />

Danielssenia typica<br />

Fam Diosaccidae<br />

Diosaccus spinatus Lang, 1965<br />

Diosaccus sp. 1<br />

Amphiascopsis cinctus<br />

Amphiascus minutus<br />

Amphiascus sp. 1<br />

Amphiascoides cf. debilis<br />

Amphiascoides sp. 1<br />

Amonardia perturbata Lang, 1965<br />

Amonardia normani<br />

Robertsonia sp.<br />

Stenhelia peniculata Lang, 1965<br />

Fam. Ectinosomatidae<br />

Ectinosoma sp.<br />

Halectinosoma sp. 1<br />

Halectinosoma sp. 2<br />

Halectinosoma sp. 3<br />

Microsetella norvegica<br />

Fam. Tachidiidae<br />

Microarthridion littorale (Poppe, 1881)


Chapt 9C5. Copepod Crustaceans, page 9C5- 3<br />

Table 9C5.1. (continued) Copepoda<br />

Fam. Harpacticidae<br />

Harpacticus uniremis Kröyer, 1842<br />

Harpacticus septentrionalis Klie, 1941<br />

Harpacticus compressus Frost, 1967<br />

Harpacticus sp.- uniremis group 1<br />

Harpacticus sp.- obscurus group 1<br />

Harpacticus sp.- obscurus group 2<br />

Zaus sp.<br />

Fam. Laophontidae<br />

Echinolaophonte sp.<br />

Heterolaophonte discophora (Willey, 1929)<br />

Heterolaophonte longisetigera Klie, 1950<br />

Heterolaophonte variabilis Lang, 1965<br />

Heterolaophonte sp. 1<br />

Laophonte elongata Boeck, 1872<br />

Laophonte applanata<br />

Laophonte sp. 1<br />

Pseudonychocamptus spinifer Lang, 1965<br />

Paralaophonte cf. congenera (Sars, 1908)<br />

Paralaophonte pacifica Lang, 1965<br />

Paralaophonte perplexa (T. Scott, 1898)<br />

Paralaophonte hyperborea (Sars, 1909)<br />

Paralaophonte sp. 1<br />

Laophontidae, unid.<br />

Fam. Longipediidae<br />

Longipedia sp.<br />

Fam. Parastenheliidae<br />

Parastenhelia sp. 1<br />

Parastenhelia sp. 2<br />

Fam. Tegastidae<br />

Tegastes sp. 1<br />

Tegastes sp. 2<br />

Fam. Thalestridae<br />

Idomene sp.<br />

Diarthrodes sp. 2<br />

Parathalestris sp. 1<br />

Parathalestris sp. 2<br />

Parathalestris sp. 3<br />

Dactylopusia vulgaris Sars, 1905<br />

Dactylopusia glacialis Sars, 1909<br />

Dactylopusia cf. glacialis<br />

Dactylopusia paratisboides Lang, 1965<br />

Dactylopusia sp. 1<br />

Paradactylopodia sp. 1


Chapt 9C5. Copepod Crustaceans, page 9C5- 4<br />

Table 9C5.1. (continued) Copepoda<br />

Fam. Tisbidae<br />

Tisbe cf. furcata (Baird, 1837)<br />

Tisbe spp.<br />

Scutellidium arthuri Poppe, 1884<br />

Order Cyclopoida<br />

Fam. Cyclopinidae<br />

Fam. Cyclopidae<br />

Euryte sp.<br />

Halicyclops sp.<br />

Fam. Oithonidae<br />

Oithona similis Claus, 1863<br />

O. spinirostris Claus, 1863<br />

Order Poecilostomatoida<br />

Unidentified spp.<br />

Order Calanoida<br />

Fam. Acartiidae<br />

Acartia cf. clausi Giesbrecht, 1889<br />

Acartia longiremis (Lilljeborg, 1853)<br />

Fam. Centropagidae<br />

Centropages abdominalis Sato, 1913<br />

Fam. Paracalanidae<br />

Paracalanus sp.<br />

Fam. Pseudocalanidae<br />

Pseudocalanus spp.<br />

Fam. Temoridae<br />

Eurytemora herdmani Thompson and Scott, 1897


Chapt 9C5. Copepod Crustaceans, page 9C5- 5<br />

Table 9C5.2. Copepods Collected at 6 Locations in Southcentral Alaska in August 1999.<br />

1999 Copepoda Homer Whittier Cordova Valdez Seward Shotgun<br />

Cove<br />

Order Harpacticoida<br />

Fam. Ameiridae<br />

Ameira longipes<br />

x<br />

Ameira sp. 1 x x x x<br />

Ameira sp. 2 x x<br />

Family Ancorabolidae<br />

Arthropsyllus serratus<br />

x<br />

Fam. Canthocamptidae<br />

Mesochra pygmaea x x<br />

Mesochra sp. 1<br />

x<br />

Fam. Canthocamptidae, incertae sedis<br />

Leimia vaga<br />

x<br />

Fam. Danielsseniidae<br />

Danielssenia typica<br />

x<br />

Fam Diosaccidae<br />

Diosaccus spinatus x x<br />

Amphiascopsis cinctus x x x<br />

Amphiascus minutus x x x x<br />

Amphiascus sp. 1 x x<br />

Amphiascoides sp. 1<br />

x<br />

Amonardia perturbata x x<br />

Fam. Ectinosomatidae<br />

Ectinosoma sp.<br />

Fam. Harpacticidae<br />

Harpacticus uniremis x x x x x<br />

H. septentrionalis x<br />

H. compressus x<br />

H. unidentified sp. x<br />

Harpacticus sp. A- uniremis group<br />

x<br />

Harpacticus sp.- obscurus group 1 x x x<br />

Harpacticus sp.- obscurus group 2<br />

x<br />

Zaus sp.<br />

Fam. Laophontidae<br />

Unidentified sp.<br />

x<br />

Heterolaophonte discophora x x<br />

Heterolaophonte longisetigera x x x<br />

Laophonte elongata<br />

x<br />

Pseudonychocamptus spinifer x x<br />

Paralaophonte cf. congenera<br />

x<br />

Paralaophonte pacifica<br />

x<br />

Paralaophonte perplexa x x x<br />

Paralaophonte sp. 1<br />

x<br />

Family Parastenheliidae<br />

Parastenhelia sp. 1<br />

x<br />

Parastenhelia sp. 2<br />

x


Chapt 9C5. Copepod Crustaceans, page 9C5- 6<br />

Table 9C5.2. (continued) Copepods Collected at 6 Locations in Southcentral Alaska in<br />

August 1999.<br />

1999 Copepoda Homer Whittier Cordova Valdez Seward Shotgun<br />

Cove<br />

Fam. Tegastidae<br />

x<br />

Tegastes sp. 1 x x<br />

Tegastes sp. 2<br />

Fam. Thalestriade<br />

Diarthrodes sp. 1<br />

x<br />

Diarthrodes sp. 2<br />

x<br />

Parathalestris sp. 1<br />

x<br />

Parathalestris sp. 2<br />

x<br />

Parathalestris sp. 3<br />

x<br />

Dactylopusia vulgaris x x x x<br />

Dactylopusia cf. glacialis<br />

x<br />

Paradactylopodia sp.<br />

x<br />

Fam. Tisbidae<br />

Tisbe cf. furcata x x<br />

Tisbe sp. x x x x<br />

Scutellidium arthuri x x<br />

Order Cyclopoida<br />

Family Cyclopinidae<br />

x<br />

Family Cyclopidae<br />

Euryte sp. x x x<br />

Halicyclops sp. x x<br />

Order Poecilostomatoida<br />

x<br />

Total Number <strong>of</strong> Taxa 28 11 20 1 3 23


Chapt 9C5. Copepod Crustaceans, page 9C5- 7<br />

juvenile salmon prey species Harpacticus uniremis, which occurs in the arctic and as far south as<br />

the English Channel in the Atlantic (Kask et al. 1982) and La Jolla, California in the Pacific<br />

(Gunnill, 1982).<br />

Settling plates appear to be a good way to sample the diversity <strong>of</strong> harpacticoid and other<br />

epibenthic/epiphytic copepods. In each case where we had dock sweep samples to compare with<br />

settling plate samples, more species were collected from the settling plates. Only one species,<br />

the algal blade dwelling Scutellidium arthuri was found only in the dock sweep samples.<br />

Reduced numbers <strong>of</strong> copepod taxa in the dock sweep samples was probably due to low and/or<br />

highly fluctuating surface salinities and/or temperatures. This assertion is supported by the fact<br />

that dock sweep samples taken in harbors with high freshwater input (e.g., Valdez, Seward) had<br />

extremely low taxa numbers, and those without much freshwater (Homer, Shotgun Cove) had the<br />

highest number <strong>of</strong> taxa.<br />

One species <strong>of</strong> harpacticoid copepod that we found in dock sweep collections, Leimia<br />

vaga, may be regarded as “probably introduced”. This species, which was described from Nova<br />

Scotia, is also abundant in many estuaries in Oregon and Washington, where it is restricted to<br />

brackish reaches (J. Cordell, unpublished data); however, this species was not reported from the<br />

Nanaimo estuary by Kask (1982). The fact that L. vaga has restricted habitat requirements and<br />

apparently disjunct populations on the Pacific coast may indicate that it has been introduced.<br />

Although a number <strong>of</strong> Asian planktonic copepods have become established in California,<br />

Oregon, and Washington estuaries (e.g., Cordell and Morrison, 1996, Orsi and Ohtsuka, 1999),<br />

we found no introduced species in the vertical haul samples. In fact, overall planktonic copepod<br />

diversity was quite low, and almost all <strong>of</strong> the copepod numbers were made up <strong>of</strong> only three taxa:<br />

Acartia longiremis, Pseudocalanus spp., and Oithona similis. Also, we did not encounter several<br />

taxa that have been previously reported from ballast water arriving to Prince William Sound<br />

(Ruiz and Hines, 1997; Hines et al., 1998; Chapt. 3 <strong>Biological</strong> Characteristics <strong>of</strong> Ballast <strong>Water</strong>).<br />

As with dock-associated harpacticoids, our shallow sampling depths that were probably subject<br />

to large fluctuations in salinity and temperature may have decreased diversity <strong>of</strong> planktonic<br />

copepods in our samples.<br />

References<br />

Gunnill, F.C. 1982. Effects <strong>of</strong> plant size and distribution on the numbers <strong>of</strong> invertebrate species<br />

and individuals inhabiting the brown alga Pelvetia fastigiata. Mar. Biol., 69: 263-280.<br />

Kask, B.A., J.R. Sibert, and B. Windecker. 1982. A check list <strong>of</strong> marine and brackish water<br />

harpacticoid copepods from the Nanaimo estuary, southwestern British Columbia. Syesis, 15:<br />

25-38.<br />

Lang, K. 1965. Copepoda Harpacticoidea from the Californian Pacific coast. Kungliga Svenska<br />

Vetenskapsakademiens Handlingar, (4)10(2), 1-560.<br />

Cordell, J.R. and S.M. Morrison. 1996. The invasive Asian copepod Pseudodiaptomus inopinus<br />

in Oregon, Washington, and British Columbia estuaries. Estuaries, 19 (3): 629-638.


Chapt 9C5. Copepod Crustaceans, page 9C5- 8<br />

Orsi, J.J., and S. Ohtsuka. 1999. Introduction <strong>of</strong> the Asian copepods Acartiella sinensis,<br />

Tortanus dextrilobatus (Copepoda: Calanoida), and Limnoithona tetraspina (Copepoda:<br />

Cyclopoida) to the San Francisco estuary, California, USA. Plank. Biol. Ecol., 46 (2): 128-131.


Chapt 9C6 Decapod Crustaceans, page 9C6- 1<br />

Chapter 9C6. Focal Taxonomic Collections: Decapod Crustaceans<br />

Anson Hines, Smithsonian Environmental Research Center<br />

Lise Schickel, University <strong>of</strong> California, Santa Barbara<br />

Nora Foster, University <strong>of</strong> Alaska Museum<br />

Results<br />

We collected a total <strong>of</strong> 21 species <strong>of</strong> decapods, including 12 species <strong>of</strong> brachyuran crabs,<br />

3 species <strong>of</strong> lithodid crabs, 3 species <strong>of</strong> hermit crabs, and 5 species <strong>of</strong> caridean shrimp (Table<br />

9C6.1). All <strong>of</strong> these species were collected by hand or dip net in the intertidal and shallow<br />

subtidal zones, or on float fouling communities. None <strong>of</strong> these species is a new record for the<br />

region (Jensen, 1995).<br />

We also noted parasitic castrators (rhizocephalan cirripedes, entoniscid isopods) <strong>of</strong><br />

decapods in the collections during August 1999. Several <strong>of</strong> the samples <strong>of</strong> the hermit crab<br />

Pagurus hirsutiusculus exhibited infections by rhizocephalan parasites. The crab<br />

Lophopanopeus bellus also has a high prevalence <strong>of</strong> infection by the rhizocephalan<br />

“Loxothylacus panopaei” at Tatitlek. (Note: The name given to this rhizocephalan in the<br />

literature by Boschma (1955) for the west coast <strong>of</strong> North America is undoubtedly incorrect and<br />

should be renamed, as this is not the same species that is found in xanthid crabs <strong>of</strong> the eastern<br />

and gulf coasts.) The population <strong>of</strong> the shore crab Hemigrapsus oregonensis also had high<br />

prevalence <strong>of</strong> the entoniscid isopod Portunion conformis.<br />

References<br />

Boschma, H. 1955. The described species <strong>of</strong> the family Sacculinidae. Zool. Verhandel. 27: 48-<br />

76.<br />

Jensen, G.C. 1995. Pacific Coast Crabs and Shrimps. Sea Challengers, Monterey, California. 87<br />

pp.


Chapt 9C6 Decapod Crustaceans, page 9C6- 2<br />

Table 9C6.1. Decapod Crustaceans in Field Surveys<br />

Decapod Crustaceans<br />

1997; 1998; 1999<br />

Homer Sew<br />

-<br />

ard<br />

Whittier<br />

Port Saw-<br />

Valdez Mill<br />

Bay<br />

Rocky<br />

Pt.,<br />

Gallen<br />

a Bay<br />

Busby<br />

Is.<br />

Tatitlek<br />

Cordovcier<br />

Gla-<br />

Is.<br />

Green<br />

Island<br />

Consta-<br />

Tine<br />

Harbor<br />

Port<br />

Chalmers<br />

Brachura<br />

Cancer magister X X X X X<br />

Cancer oregonensis X X X X X X X X X<br />

Cancer productus X X<br />

Cancer gracilis<br />

X<br />

Chionoecetes bairdi<br />

X<br />

(molts)<br />

Chorilla longipes<br />

X<br />

Hemigrapsus oregonensis X X X X X X,9 X,4 X,7 X X<br />

Lophopanopeus bellus X X X,5 X X<br />

Oregonia gracilis X X X X<br />

Pugettia gracilis X X X<br />

Scyra acutifrons<br />

X<br />

Telmessus cheiragonus X X X X X X X X X<br />

Anomura<br />

Cryptolithodes typicus<br />

X<br />

Hapalogaster grebnitzii X X X X<br />

Phyllolithodes papillosus<br />

X<br />

Pagurus beringanus X X<br />

Pagurus granosimanus X X X X<br />

Pagurus hirsutiusculus X,1 X,2 X X,3 X X X X,6 X,8 X X X X<br />

Caridea<br />

Eualus b9iunguis<br />

X<br />

Hyppolyte clarki X X<br />

Heptacarpus stimpsoni X X X<br />

Spirontocaris ochotensis X X X X<br />

Spirontocaris prionota X X<br />

Parasite Notes:<br />

Aug 1999:<br />

1 = 7/9 with bopyrid isopod<br />

2 = 1/32 with rhizocephalan Peltogaster paguri; 1/32 with rhizocephalan<br />

Peltogasterella gracilis<br />

3 = 0/9 infected<br />

4 = 30/45 with entoniscid isopod Portunion<br />

conformis<br />

5 = 19/44 with rhizocephalan Loxothylacus<br />

panopei<br />

6 = 1/6 with bopyrid isopod; 2/6 with rhizocephalan Peltogaster paguri; 1/6 with isopod<br />

and P. paguri<br />

7 = 0/13 with Portunion conformis<br />

8 = 3/30 with Peltogaster paguri;<br />

1/30 with Peltogasterella gracilis<br />

June 1998: 9 = 2/93 with<br />

rhizocephalan


Chapt 9C7. Shelled Molluscs, page 9C7- 1<br />

Chapter 9C7. Focal Taxonomic Collections: Shelled Molluscs<br />

Nora Foster, <strong>Aquatic</strong> Collection, University <strong>of</strong> Alaska Museum<br />

Methods<br />

Molluscs were collected and identified by N. Foster at sites in Prince William Sound<br />

during June 20-28, 1998 and August 8-14, 1999. In 1999 the field survey was expanded to<br />

include sites in Homer, Seward, and Hinchinbrook Entrance (see Fig. 9A.2 above). Also, J.<br />

Goddard and L. Schickel participated in the second year’s field collecting and identification,<br />

providing expertise in opisthobranch taxonomy (see Chapt 9C8. Opisthobranch Molluscs).<br />

Site information. Site information was collected by J. Chapman & T. Miller (see Chapt 9B).<br />

Sampling and processing. Presence and relative abundance (recorded as abundant, common, or<br />

rare) <strong>of</strong> the easily identified and abundant species were recorded in the field. Field notes were<br />

then transferred to spreadsheets maintained by J. Chapman. Voucher specimens <strong>of</strong> small or rare,<br />

mollusks were collected and or were preserved in 10% formalin. Identifications were made by<br />

N. Foster at the University <strong>of</strong> Alaska Museum <strong>Aquatic</strong> Collection.<br />

Identifications and distributions. No comprehensive reference is available for Alaskan marine<br />

mollusca. Major references used for both identifications and distribution records include Foster<br />

(1991) , Coan and Scott (unpublished draft ), Baxter (1987), Turgeon (1998), Kozl<strong>of</strong>f (1996),<br />

and Harbo (1997). Voucher collections form this study will be accessioned into the UAM<br />

<strong>Aquatic</strong> Collection as accession 1998-003 and 1999-001.<br />

Results<br />

Seventy-nine mollusc species were collected or identified from 27 sites in 1998 (Table<br />

9C7.1). Sixty- six three species were collected or identified from 16 sites in 1999 (Table 9C7.2).<br />

Mollusks were collected from three general types <strong>of</strong> habitats:<br />

1. Human-made structures, including oyster lantern nets, and associated floats and buoys, and<br />

docks. Characteristic mollusks from fouling communities are Mytilus trossulus, Lacuna<br />

vincta, Hiatella arctica. This represented the richest habitat for nudibranchs, including 12<br />

new records. Small mytilids were examined, to look for Musculista stenhousia.<br />

2. Mudflats. Upper intertidal areas <strong>of</strong> mudflats, near Cordova and Valdez and Homer were<br />

dominated by Mya arenaria. A search was made for Nuttalia obscurata, Batillaria cumingi,<br />

Ilyanassa obsoleta, and Nassa fratercula, but these potenial NIS were not found at any site <strong>of</strong><br />

our surveys.<br />

3. Rocky intertidal zones <strong>of</strong> beaches, sheltered bays with eelgrass. Fauna <strong>of</strong> rocky intertidal<br />

areas, both in bays and headlands is fairly well documented. It is the habitat that is richest in<br />

species, but has fewest NIS candidates or new collecting records.<br />

In combination for the two years, 115 species <strong>of</strong> molluscs were sampled (Table 9C7.3).<br />

Of these species, the s<strong>of</strong>t-shelled clam Mya arenaria is an NIS (Strasser 1999) that was widely<br />

distributed as a self-sustaining population in intertidal s<strong>of</strong>t sediments <strong>of</strong> protected bays<br />

throughout Prince William Sound. Recently, Foster examined archaeological evidence for


Chapt 9C7. Shelled Molluscs, page 9C7- 2<br />

Table 9C7.1. Shelled<br />

Molluscs 1998 Survey<br />

Harbors<br />

Valdez<br />

Cordova<br />

Whittier<br />

Mud bays<br />

Valdez<br />

Bligh Island<br />

Valdez Arm<br />

Growler Island<br />

Cordova<br />

Headlands &<br />

Reefs<br />

Valdez Arm<br />

Busby Island<br />

Green Island<br />

Rocky<br />

Bays<br />

Gastropoda<br />

x<br />

Acmaea mitra x x x<br />

Acteocina harpa<br />

x<br />

Aglaja ocelligera<br />

Alia gauspata x x x x<br />

Alvania sp. x x x x x<br />

Archidoris montereyensis x x x x<br />

Barleeia sp.<br />

x<br />

Buccinum baeri x x x<br />

Cerithiidae<br />

x<br />

Cerithiopsis sp. x x<br />

Crepidula dorsata<br />

x<br />

Crepidula perforans<br />

x<br />

Crepidula sp.<br />

x<br />

Cryptobranchia concentrica<br />

x<br />

Cryptonatica affinis x x<br />

Dendronotus<br />

Northwest Bay<br />

Fouling<br />

Valdez<br />

Cordova<br />

Whittier<br />

Bligh Island<br />

Eagilik Bay<br />

Evans Island<br />

Knight Island<br />

Lake Bay<br />

Main bay<br />

Sheep Bay<br />

Shotgun Cove<br />

Squaw Bay<br />

Port Valdez<br />

Valdez Arm<br />

Windy Bay<br />

Dendronotus albopunctatus<br />

x<br />

Dendronotus frondosus x x<br />

Diplodonta impolita<br />

x<br />

Dorid nudibranch x x x<br />

Doridella steinbergi x x x<br />

Eubranchus olivaceous x x<br />

Fusitriton oregonensis<br />

x<br />

Granulina margaritula<br />

x<br />

Haminoea virescens x x x<br />

Hermissenda crassicornis x x x x x<br />

Lacuna sp. x x x x x x x<br />

Lacuna marmorata x x x x x<br />

Lacuna vincta x x x x x x x<br />

Lepeta caeca<br />

x


Chapt 9C7. Shelled Molluscs, page 9C7- 3<br />

Table 9C7.1.<br />

(Continued) Shelled<br />

Molluscs 1998 Survey<br />

Harbors<br />

Valdez<br />

Cordova<br />

Whittier<br />

Mud bays<br />

Valdez<br />

Bligh Island<br />

Valdez Arm<br />

Growler Island<br />

Cordova<br />

Headlands &<br />

Reefs<br />

Valdez Arm<br />

Busby Island<br />

Green Island<br />

Rocky<br />

Bays<br />

Northwest Bay<br />

Valdez<br />

Cordova<br />

Whittier<br />

Bligh Island<br />

Eagilik Bay<br />

Evans Island<br />

Knight Island<br />

Lake Bay<br />

Main bay<br />

Sheep Bay<br />

Shotgun Cove<br />

Squaw Bay<br />

Port Valdez<br />

Valdez Arm<br />

Lepetidae<br />

x<br />

Lirularia lirulata<br />

x<br />

Littorina scutulata x x x x x x x<br />

Littorina sitkana x x x x x x x x x x x<br />

Lottia pelta x x x x x x x x x x x x x<br />

Lottia sp. x x x x x x x x x x<br />

Margarites berhigensis x x<br />

Margarites helicinus x x<br />

Margarites pupilliis x x x x x x x x<br />

Margarites sp.<br />

Nassarius mendicus x x<br />

Neptunea lyrata<br />

x<br />

Nucella lamellosa x x x x x<br />

Nucella lima x x x<br />

Ocenebra interfossa<br />

x<br />

Odostomia spp.<br />

x<br />

Olivella baetica x x x<br />

Onepota spp. x x<br />

Scabrotrophon maltzani<br />

x<br />

Searlesia dira x x x<br />

Tectura fenestrata x x<br />

Tectura persona x x x x x x x x<br />

Tectura scutum x x x x x x x<br />

Trichotropis cancellata x x x<br />

Trichotropis insignis x x<br />

unidentified Turridae<br />

x<br />

Velutina rubra<br />

x<br />

Bivalvia<br />

Axinopsida sp.<br />

x<br />

Bankia setacea x x<br />

Chlamys rubida x x x x<br />

Clinocardium nuttalli x x x x x x<br />

Crassostrea gigas<br />

x<br />

Fouling<br />

Windy Bay


Chapt 9C7. Shelled Molluscs, page 9C7- 4<br />

Table 9C7.1.<br />

(Continued) Shelled<br />

Molluscs 1998 Survey<br />

Harbors<br />

Valdez<br />

Cordova<br />

Whittier<br />

Mud bays<br />

Valdez<br />

Bligh Island<br />

Valdez Arm<br />

Growler<br />

Island<br />

Cordova<br />

Headlands &<br />

Reefs<br />

Valdez Arm<br />

Busby Island<br />

Green Island<br />

Rocky<br />

Bays<br />

Northwest<br />

Bay<br />

Fouling<br />

Valdez<br />

Cordova<br />

Whittier<br />

Bligh Island<br />

Eagilik Bay<br />

Evans Island<br />

Knight Island<br />

Lake Bay<br />

Main bay<br />

Sheep Bay<br />

Shotgun Cove<br />

Squaw Bay<br />

Port Valdez<br />

Valdez Arm<br />

Gari californica<br />

x<br />

Hiatella arctica x x x x x x x x x x x x x x x x x x x<br />

Macoma balthica x x x x x x x x<br />

Macoma inquinata x x x x x x x<br />

Macoma nasuta x x<br />

Macoma sp. x x<br />

Modiolus modiolus x x<br />

Montacutidae x x<br />

Musculus vernicosus x x x x x<br />

Mya arenaria x x x x<br />

Mya pseudoarenaria<br />

x<br />

Mya sp. x x x x<br />

Mya truncata x x x x<br />

Mysella tumida x x x<br />

Mytilus trossulus x x x x x x x x x x x x x x x x x x x x x<br />

Pododesmus macroschisma x x x x x x x<br />

Protothaca staminea x x x x x x x<br />

Pseudopythinia compressa x x<br />

Saxidomus giganteus x x x x x x x x x x<br />

Serripes groenlandicus x x x x<br />

Serripes laperousii<br />

x<br />

Tresus capax x x<br />

Turtonia minuta x x<br />

Yoldia hyperborea<br />

x<br />

Polyplacophora<br />

Cryptochiton stelleri<br />

x<br />

Katherina tunicata<br />

x<br />

Lepidozona interstinctus<br />

x<br />

Mopalia ciliata x x x<br />

Mopalia lignosa x x x x x<br />

Mopalia sp. x x<br />

Schizoplax brandtii x x<br />

Tonicella insignis x x<br />

Tonicella lineata x x x<br />

Windy Bay


Chapt 9C7. Shelled Molluscs, page 9C7- 5<br />

Table 9C7.2. Shelled<br />

Molluscs 1999 Survey<br />

Homer<br />

Seward<br />

Lowell Pt<br />

Whittier<br />

Shot-gun<br />

Cove<br />

Fairmont<br />

Bay<br />

Valdez<br />

Cloudman<br />

Bay<br />

Busby Is.<br />

Cordov<br />

a<br />

Windy<br />

Bay<br />

Constantine<br />

Harbor<br />

Tatitlek<br />

a = abundant<br />

r = rare<br />

c = common<br />

p = present<br />

floats<br />

benthic<br />

homer<br />

spit<br />

benthic<br />

floats<br />

float<br />

fouling<br />

benthic<br />

grab<br />

benthic<br />

benthic<br />

floats<br />

floats<br />

benthic<br />

Gastropoda<br />

Alia gauspata<br />

r<br />

Archidoris montereyensis<br />

r<br />

Boreotrophon<br />

r<br />

Buccinum baeri<br />

c<br />

Cerithiidae<br />

r<br />

Collisella digitalis<br />

c<br />

Collisellla strigatellla c c<br />

Crepipatella dorsata<br />

r<br />

Cryptobranchia alba r r r r<br />

Cryptonatica <strong>of</strong>finis r r<br />

dorid nudibranch c c<br />

Granulina margaritula<br />

Haminoea vesicula c r r c<br />

Hermissenda crassicornis<br />

c<br />

Lacuna vincta c c c c c c<br />

Littorina sitkana a c c a c r c<br />

Llttoria scutulata c c<br />

Lottia pelta a c c c c<br />

Lottia strigatella<br />

r<br />

Margarites pupillis r r<br />

Melibe leonina<br />

c<br />

Nassarius mendicus<br />

r<br />

Neptunea lyrata<br />

p<br />

Nucella lamellosa c r<br />

Nucella lima c c r<br />

Ocinebrina interfossa<br />

r<br />

Odostomia sp. r r r<br />

Oenopota sp<br />

r<br />

Olivella baetica r r<br />

Onchidoris bilammelata<br />

c<br />

Polycera zosterae<br />

c<br />

Tectura fenestrata<br />

c<br />

Tectura persona c c<br />

Tectura scutum c c c<br />

Trichotropis cancellata c r<br />

Velutina plicatilis<br />

r<br />

Polyplacophora<br />

Mopalia cf M. imporcata r<br />

Mopallia cf. M.spectabilis<br />

r<br />

Moplalia ciliata r r<br />

Schizoplax brandtii<br />

r<br />

Tonicella lineata r r<br />

Tonicella rubra<br />

r<br />

Bivalvia<br />

Bankia setacea<br />

p<br />

Chlamys rubida r r<br />

Clinocardium californiense r<br />

Clinocardium nuttalli c c c c<br />

Clinocardium sp. c p<br />

Crassicardia crassidens<br />

r<br />

Cryptomya californica<br />

r<br />

r


Chapt 9C7. Shelled Molluscs, page 9C7- 6<br />

Table 9C7.2.<br />

(Continued) Shelled<br />

Molluscs 1999 Survey<br />

a = abundant<br />

r = rare<br />

c = common<br />

p = present<br />

Homer Valdez Cordov<br />

a<br />

floats<br />

benthic<br />

homer<br />

spit<br />

Seward<br />

Lowell Pt<br />

benthic<br />

Whittier<br />

floats<br />

Shot-gun<br />

Cove<br />

float<br />

Fairmont<br />

Bay<br />

fouling<br />

benthic<br />

grab<br />

Cloudman<br />

Bay<br />

benthic<br />

Busby Is.<br />

benthic<br />

floats<br />

Windy<br />

Bay<br />

Constantine<br />

Harbor<br />

floats<br />

benthic<br />

Tatitlek<br />

Cyclocardia sp. r r<br />

Hiatella acrtica c c c c c p c c c<br />

Humilaria kennerleyi<br />

r<br />

Macoma balthica a c a c a c<br />

Macoma calcarea<br />

p<br />

Macoma inquinata c c a c c c<br />

Macoma lama<br />

r<br />

Macoma obliqua r r<br />

Macoma sp. p p<br />

Modiolus modiolus r r<br />

Mya arenaria c a c<br />

Mya pseudoarenaria c c<br />

Mya sp.<br />

p<br />

Mya truncata c c r<br />

Mytilus trossulus a a a a c a a a a a a<br />

Neaeromya compressa<br />

r<br />

Pododesmus macroschisma<br />

r<br />

Protothaca staminea c c p c<br />

Saxidomus giganteus c c p c<br />

Serripes groenlandicus p r<br />

Serripes laperousii<br />

r<br />

Siliqua patula p p<br />

Spisula polynyma c c c<br />

Tresus capax c c<br />

Vilasina vernicosa c c c<br />

Yoldia myalis<br />

p


Chapt 9C7. Shelled Molluscs, page 9C7- 7<br />

Table 9C7.3. All Mollusks from Both 1998 and 1999<br />

Species Distribution NIS status<br />

Acmaea mitra<br />

NE Pac<br />

Acteocina harpa<br />

NE Pac<br />

Aglaja ocelligera NE Pac new record<br />

Astyris gauspata<br />

NE Pac<br />

Alvania sp.<br />

Archidoris montereyensis NE Pac<br />

Axinopsida sp.<br />

Bankia setacea<br />

NE Pac<br />

Barleeia sp. <br />

Boreotrophon<br />

Buccinum baeri<br />

NE Pac<br />

Cerithiidae<br />

Cerithiopsis<br />

Chlamys rubida<br />

NE Pac<br />

Clinocardium californiense NE Pac<br />

Clinocardium nuttallii<br />

NEW Pac<br />

Clinocardium sp.<br />

Lottia digitalis<br />

NE Pac<br />

Lottia strigatellla<br />

NE Pac<br />

Cyclocardia crassidens NEW Pac<br />

Crassostrea gigas<br />

introduced<br />

Crepidula sp.<br />

Crepipatella dorsata<br />

NE Pac<br />

Cryptobranchia alba<br />

NE Pac<br />

Cryptobranchia concentrica NEW Pac<br />

Cryptomya californica<br />

NEW Pac<br />

Cryptonatica affinis<br />

arctic circumboreal<br />

Cyclocardia sp.<br />

Dendronotus frondosus northern hemisphere<br />

Dendronotus sp.<br />

Diplodonta impolita<br />

NE Pac<br />

dorid nudibranch<br />

Acanthodoris<br />

Doridella steinbergi<br />

NE Pac<br />

Eubranchus olivaceous NE Pac new record<br />

Fusitriton oregonensis<br />

NE Pac<br />

Gari californica<br />

NE Pac<br />

Granulina margaritula<br />

NE Pac<br />

Haminoea vesicula<br />

NE Pac<br />

Haminoea virescens<br />

NE Pac<br />

Hermissenda crassicornis NE Pac<br />

Hiatella arctica<br />

northern hemisphere<br />

Humilaria kennerleyi<br />

NE Pac<br />

Lacuna marmorata<br />

NE Pac<br />

Lacuna sp.<br />

Lacuna vincta<br />

amphiboreal<br />

Lepidozona interstinica<br />

NE Pac<br />

Lepetidae<br />

Lirularia lirulata<br />

NE Pac


Chapt 9C7. Shelled Molluscs, page 9C7- 8<br />

Table 9C7.3. (Continued) All Mollusks from Both 1998 and 1999<br />

Species Distribution NIS status<br />

Littorina scutulata<br />

NE Pac<br />

Littorina sitkana<br />

NE Pac<br />

Lottia pelta<br />

NE Pac<br />

Lottia sp<br />

Lottia strigatella<br />

NE Pac<br />

Macoma balthica circumboreal poss. cryptogenic<br />

Macoma calcarea<br />

ampiboreal<br />

Macoma inquinata<br />

NE Pac<br />

Macoma lama<br />

NEW pac<br />

Macoma nasuta<br />

NE Pac<br />

Macoma obliqua<br />

NE Pac<br />

Macoma sp.<br />

Margarites beringensis<br />

AK<br />

Margarites helicinus<br />

circumboreal<br />

Margarites pupillus<br />

NE Pac<br />

Margarites sp.<br />

Melebe leonina<br />

NE Pac<br />

Modiolus modiolus<br />

circumboreal<br />

Montacutidae<br />

Mopalia cf M. imporcata NE Pac<br />

Mopalia ciliata<br />

NE Pac<br />

Mopalia lignosa<br />

NE Pac<br />

Moplalia cf. M.spectabilis NE Pac<br />

Mya arenaria amphiboreal introduced<br />

Mya pseudoarenaria<br />

NE Pac<br />

Mya sp.<br />

Mya truncata<br />

amphiboreal<br />

Mysella tumida<br />

NE Pac<br />

Mytilus trossulus<br />

NE Pac<br />

Nassarius mendicus<br />

NE Pac<br />

Neaeromya compressa NE Pac<br />

Neptunea lyrata<br />

NE Pac<br />

Nucella lamellosa<br />

NE Pac<br />

Nucella lima<br />

NE Pac<br />

Ocinebrina interfossa<br />

NE Pac<br />

Odostomia spp.<br />

Oenopota sp.<br />

Olivella baetica<br />

NE Pac<br />

Onchidoris bilamellata<br />

amphiboreal<br />

Onchidoris sp.<br />

Pododesmus macroschisma NE Pac<br />

Polycera zosterae<br />

NE Pac<br />

Protothaca staminea<br />

NE Pac<br />

Saxidomus giganteus<br />

NE Pac<br />

Scabrotrophon maltzani NE Pac<br />

Schizoplax brandtii<br />

NEW Pac<br />

Searlesia dira<br />

NE Pac<br />

Serripes groenlandicus circumboreal<br />

Serripes laperousii<br />

circumboreal<br />

Siliqua patula<br />

NE Pac


Chapt 9C7. Shelled Molluscs, page 9C7- 9<br />

Table 9C7.3. (Continued) All Mollusks from Both 1998 and 1999<br />

Species Distribution NIS status<br />

Spisula polynyma<br />

amphiboreal<br />

Tectura fenestrata<br />

NE Pac<br />

Tectura persona<br />

NE Pac<br />

Tectura scutum<br />

NE Pac<br />

Tonicella insignis<br />

AK<br />

Tonicella lineata<br />

NE Pac<br />

Tonicella rubra<br />

circumboreal<br />

Tresus capax<br />

NE Pac<br />

Trichotropis cancellata<br />

NE Pac<br />

Trichotropis insignis<br />

NEW Pac<br />

Turtonia minuta<br />

amphiboreal<br />

Velutina plicatilis<br />

arctic circumboreal<br />

Velutina rubra<br />

AK<br />

Vilasina vernicosa<br />

NEW Pac<br />

Yoldia hyperborea<br />

circumboreal<br />

Yoldia myalis<br />

amphiboreal


Chapt 9C7. Shelled Molluscs, page 9C7- 10<br />

occurrence <strong>of</strong> Mya arenaria in Alaskan waters before the 1890s. No M. arenaria were found in<br />

samples from shell middens from Sitka (1070-470 yr BP) (Foster, unpublished data) and S.<br />

Hawkins Island (500-200 yr BP and 2150-1380 yr BP) (Yarborough, unpublished data), and<br />

faunal lists from two other Prince William Sound sites (ca. 400-200 yr BP) (Yarborough,<br />

unpublished data), and from Resurrection Bay and Aialik Bay (1700s –1800s AD) (Yarborough,<br />

unpublished data). These negative findings are consistent with M. arenaria being an invasive<br />

species that was introduced in the late 1880s. In addition, the Asian oyster Crassostrea gigas<br />

was also widely distributed in protected bays <strong>of</strong> Prince William Sound and Katchemak Bay,<br />

where it is cultured abundantly in nets suspended vertically in the water column. However, it is<br />

sustained as an aquaculture species by importation <strong>of</strong> laboratory produced spat, and is not a selfsustaining<br />

population, probably because water temperatures are too cold for gonad development<br />

and spawning. The common clam Macoma balthica may be viewed as a cryptogenic species that<br />

may be introduced from the north Atlantic; but because <strong>of</strong> its circumboreal distribution and<br />

variation in shell morphology, it is difficult to reconstruct the history <strong>of</strong> this species’<br />

biogeography.<br />

References:<br />

Baxter, R. 1987. Mollusks <strong>of</strong> Alaska. Shells and Sea Life. Bayside, California, 163pp.<br />

Behrens, D.W. 1991. Pacific coast nudibranchs. Second edition. Monterey California. 207 pp.<br />

Coan, E.V. and P.V. Scott. 1999. Personal Communication. (unpublished draft <strong>of</strong> guide to<br />

Pacific coast bivalves.)<br />

Feder, H.M. and G.E.M. Matheke. 1980. Distribution, abundance, community structure and<br />

tropic structure <strong>of</strong> the infauna <strong>of</strong> the northeast Gulf <strong>of</strong> Alaska. Inst. Mar. Sci. Rept. R78-8, Univ.<br />

<strong>of</strong> Alaska, Fairbanks. 209 pp.<br />

Fisher, W.K. 1930. Asteroidea <strong>of</strong> the North Pacific and adjacent waters. Part 3. Forcipulata<br />

(concluded). Smithsonian Institution. U. S. Nat. Mus. Bull 76. 245 pp.<br />

Foster, N.R. 1981. A synopsis <strong>of</strong> the marine prosobranch and bivalve mollusks in Alaskan<br />

waters. Univ. Alaska, Institute <strong>of</strong> Marine Science Technical Rept IMS 81-3, 479 p.<br />

Foster, N. R. 1991. Intertidal Bivalves: A Guide to the Common Marine Bivalves <strong>of</strong> Alaska.<br />

University <strong>of</strong> Alaska Press, Fairbanks, Alaska. 152 pp.<br />

Harbo, R. M. 1997. Shells and Shellfish <strong>of</strong> the Pacific Northwest A field guide. Harbour<br />

Publishing, Madiera Park, BC, Canada. 270 pp.<br />

Kozl<strong>of</strong>f, E. N. 1996. Marine Invertebrates <strong>of</strong> the Pacific Northwest. University <strong>of</strong> Washington<br />

Press. 539 pp.<br />

Strasser, M. 1999. Mya arenaria- an ancient invader <strong>of</strong> the North Sea Coast. Helgolander<br />

Meeresuntersuchungen 52: 309-324.


Chapt 9C7. Shelled Molluscs, page 9C7- 11<br />

Turgeon , D.A. (ed.) 1998. Common and Scientific Names <strong>of</strong> <strong>Aquatic</strong> Invertebrates from the<br />

United States and Canada: Mollusks, Second Edition. American Fisheries Society Special<br />

Publication 26. 526 pp.


Chapt 9C8. Opisthobranch Molluscs, page 9C8- 1<br />

Chapter 9C8. Focal Taxonomic Collections: Opisthobranch Molluscs<br />

Jeffrey H. R. Goddard, Marine Science Institute, University <strong>of</strong> California, Santa Barbara<br />

Introduction<br />

The Smithsonian Environmental Research Center, in conjunction with the University <strong>of</strong><br />

Alaska, U.S. Fish and Wildlife Service and Prince William Sound Advisory Council, conducted<br />

in August 1999 a survey <strong>of</strong> Prince William Sound for non-indigenous marine species. Owing to<br />

the abundance <strong>of</strong> opisthobranch molluscs observed in a similar survey the previous summer, I<br />

was invited to help identify members <strong>of</strong> this taxon in the 1999 survey. The following report<br />

summarizes the 1999 collection <strong>of</strong> opisthobranch molluscs and attempts to identify nonindigenous<br />

and cyptogenic members <strong>of</strong> the fauna.<br />

Methods<br />

Specimens were collected by hand from floating docks, intertidal mudflats and rocky<br />

shores, jetties, and from settling panels deployed earlier in the year. Observations were made <strong>of</strong><br />

living animals, either with a dissecting microscope in the laboratory, or with a hand lens while<br />

traveling to the next collecting station. Voucher specimens were fixed in either 5 to 10 %<br />

formalin or 70 % ethanol. Specimens not identified during the expedition were examined,<br />

dissected and identified in the laboratory at UCSB.<br />

Results<br />

Twenty-eight species were found, consisting primarily <strong>of</strong> dorid nudibranchs. These are<br />

listed below with notes on their classification, habitats, and prey; an asterisk marks range<br />

extensions. Distributions and abundance in our field collections are summarized in Table 9C8.1<br />

following the list.<br />

Cephalaspidea<br />

Aglaja ocelligera (Bergh, 1894)<br />

Numerous specimens were found on the intertidal mudflats west <strong>of</strong> the Cordova marina.<br />

Haminoea sp. (either vesicula or virescens)<br />

Egg masses <strong>of</strong> this species were abundant on Zostera in the Cordova marina, where Nora Foster<br />

collected a single specimen.<br />

Melanochlamys diomedea (Bergh, 1894)<br />

Adults and egg masses <strong>of</strong> this species were abundant on mudflats just west <strong>of</strong> the Cordova<br />

marina.<br />

Sacoglossa<br />

*Alderia modesta (Loven, 1844)<br />

Adults and their egg masses were abundant on Vaucheria sp. on the high intertidal mudflats<br />

immediately west <strong>of</strong> the Cordova marina. Range extension from Vancouver Island, British<br />

Columbia (Millen, 1980).


Chapt 9C8. Opisthobranch Molluscs, page 9C8- 2<br />

*Olea hansineensis Agersborg, 1923<br />

One specimen <strong>of</strong> this opisthobranch egg eating sacoglossan was found on the egg masses <strong>of</strong><br />

Melanochlamys diomedea on the mudflat west <strong>of</strong> the Cordova marina. Range extension from<br />

Sechelt Inlet, British Columbia (Millen, 1980).<br />

Nudibranchia, Doridacea<br />

Acanthodoris nanaimoensis O’Donoghue, 1921<br />

A specimen about 35 mm long was found in the low intertidal on the jetty at the Cordova marina.<br />

This species was recently collected from Little Green Island, Prince William Sound (Nora<br />

Foster, personal communication, 1999).<br />

Acanthodoris pilosa (Abildgaard, 1789)<br />

Three specimens, 2.2 to 5 mm long, were found on drift pieces <strong>of</strong> a large, unidentified,<br />

fleshy, orange-brown colored ctenostome bryozoan on the mudflats just west <strong>of</strong> the Cordova<br />

marina. Note: unidentified species <strong>of</strong> cheilostome bryozoans were growing on the above<br />

ctenostome and may have been the prey <strong>of</strong> these specimens <strong>of</strong> A. pilosa. Two additional<br />

specimens, 5.5 and 7 mm long, were found on settling panels in the Cordova marina.<br />

*Adalaria jannae Millen, 1987<br />

This species was abundant, along with its ribbon shaped egg masses, on Membranipora sp.<br />

growing on Laminaria on the docks at Whittier and on the moored buoy at Shotgun Cove. A.<br />

jannae closely resembles Onchidoris muricata, but lacks the medial radular teeth found in the<br />

latter; A. jannae also has 4 to 6 small lateral teeth on each half row <strong>of</strong> the radula, as well as a<br />

ribbon shaped egg masses (Millen, 1987). The radular formula from an 8 mm long (preserved)<br />

specimen from Shotgun Cove was 30 (4.1.0.1.4.). Range extension from Sointula, British<br />

Columbia (Millen, 1987).<br />

Adalaria proxima (Alder & Hancock, 1854)<br />

Two specimens, 3 mm long (alive) and 10 mm long (preserved) were found on the unidentified<br />

ctenostome bryozoan mentioned above for Acanthodoris pilosa and on the jetty, respectively, at<br />

Cordova (the above note for the prey <strong>of</strong> Acanthodoris pilosa also applies to this species). The<br />

radular formula for these two specimens was 30 (7.1.1.1.7) and 36 (9.1.1.1.9), respectively, and<br />

the changes in shape <strong>of</strong> the teeth with increasing body size match that described for this species<br />

by Thompson & Brown (1984). Note: previous Alaskan records <strong>of</strong> this species can be found<br />

under the names Adalaria albopapillosa, A. pacifica, and A. virescens (see Lee & Foster,<br />

1985:444), all three <strong>of</strong> which Millen (1987) considered junior synonyms <strong>of</strong> A. proxima.<br />

*Adalaria sp. 1 <strong>of</strong> Behrens (1991) and Millen (1987:2701)<br />

One specimen, 3.3 mm long (preserved) <strong>of</strong> this distinctive species was found on the low<br />

intertidal rocky shore at Tatitlek. Range extension from Ketchikan, Alaska (Millen, 1989).<br />

Adalaria sp.<br />

Two specimens, 2 and 3 mm long, were found on the same fleshy ctenostome bryozoan that<br />

Acanthodoris pilosa was found at Cordova (and the same note on prey also applies here). An


Chapt 9C8. Opisthobranch Molluscs, page 9C8- 3<br />

additional specimen, 3 mm long, was found on a settlement panel at Valdez. The radular<br />

formula (24 x 4.1.0.1.4 in a 3 mm specimen), tooth shape, and bipinnate gills inserted in separate<br />

pits place this onchidoridid in the genus Adalaria, but the presence <strong>of</strong> long slender dorsal<br />

papillae lacking spicules does not appear to match any described species.<br />

*Ancula pacifica MacFarland, 1905<br />

A single specimen, lacking orange lines on the body, was found on the floating docks in the<br />

Cordova marina. This species (or the color form <strong>of</strong> A. pacifica lacking orange lines on the body)<br />

may be a junior synonym <strong>of</strong> Ancula gibbosa (Risso, 1818). Range extension from Grant Island,<br />

Ketchikan, Alaska (Millen, 1989).<br />

Archidoris montereyensis (Cooper, 1863)<br />

Two specimens were found eating the sponge Halichondria panicea growing on oysters in<br />

Fairmont Bay, and two specimens were found in the marina at Cordova.<br />

Doridella steinbergae (Lance, 1962)<br />

This species was found on its prey, Membranipora sp., on Laminaria on the floating docks at<br />

Whittier, and on drift Laminaria on the mudflats at Cordova. The range <strong>of</strong> this species was<br />

extended by Foster (1987) northward to Prince William Sound and more recently westward to<br />

Mink Island, Katmai National Park (Nora Foster, personal communication, 1999).<br />

*Geitodoris heathi (MacFarland, 1905)<br />

Four specimens were found on the low intertidal rocky shore at Tatitlek. Range extension from<br />

Ketchikan, Alaska (Millen, 1989).<br />

Onchidoris bilamellata (Linnaeus, 1767)<br />

This circumboreal species feeds on Balanus spp. and was abundant, along with its egg masses, in<br />

the Homer marina, on the settling panels at Fairmont Bay and Tatitlek, and on rocks in and<br />

around the Cordova marina.<br />

Onchidoris muricata (Müller, 1776)<br />

Atotal <strong>of</strong> five small specimens were found, two on settling panels at Valdez, and three on settling<br />

panels at Cordova. Note: previous Alaskan records <strong>of</strong> this species can be found under the names<br />

O. hystricina and O. varians (see Lee & Foster, 1985:444), which Millen (1985) synonomized<br />

with O. muricata.<br />

*Palio zosterae (O’Donoghue, 1924)<br />

Adults and egg masses were abundant on the bryozoan Membranipora sp. growing on Laminaria<br />

on the floating docks at Whittier; a few specimens were also found on the buoy at Shotgun Cove<br />

and on the docks at Cordova. P. zosterae may be a junior synonym <strong>of</strong> P. pallida Bergh, 1880; if<br />

not these specimens represent a small westward range extension from Hawkins Island, Prince<br />

William Sound (Nora Foster, personal communication, 1999).<br />

Triopha catalinae (Cooper, 1863)<br />

Three specimens were found under cobbles in the low intertidal at Tatitlek.


Chapt 9C8. Opisthobranch Molluscs, page 9C8- 4<br />

Nudibranchia, Dendronotacea<br />

Dendronotus frondosus (Ascanius, 1774)<br />

Specimens were found on Obelia-like hydroids on settling panels at Seward, Fairmont Bay,<br />

Potato Point in Valdez narrows, and Tatitlek. Adults and egg masses were also common on the<br />

docks at Cordova.<br />

Melibe leonina (Gould, 1852)<br />

Specimens were found on Zostera in Fairmont Bay, on a settling panel at Tatitlek, and on the<br />

docks at Cordova.<br />

Nudibranchia, Arminacea<br />

Dirona albolineata MacFarland in Cockerell & Eliot, 1905<br />

Four small specimens were found on the floating docks in the Cordova marina, an additional<br />

juvenile specimen was found on a settling panel at Tatitlek.<br />

*Janolus fuscus (O’Donoghue, 1924)<br />

Two specimens, 60 to 70 mm long, were found with their egg masses on Bugula sp. on docks in<br />

the Homer marina. Range extension from Klu Bay, Revillagigedo Island, Alaska (Robilliard &<br />

Barr, 1978).<br />

Nudibranchia, Aeolidacea<br />

Aeolidia papillosa (Linnaeus, 1761)<br />

One 70 mm long specimen was found on the docks at Homer.<br />

*Cuthona albocrusta (MacFarland, 1966)<br />

A single specimen <strong>of</strong> this distinctive species was found on the docks at Cordova. Range<br />

extension from White Rock, southern British Columbia (Millen, 1983).<br />

*Cuthona pustulata (Alder & Hancock, 1864)<br />

Four specimens, 4 to 5 mm long, were found feeding on the hydroid Sarsia sp. on a dock in the<br />

marina at Homer. These specimens resembled Gosliner & Millen’s (1984) description <strong>of</strong><br />

Cuthona pustulata from British Columbia, especially with regard to overall shape <strong>of</strong> the body,<br />

cerata, and head tentacles. Our specimens differed however by lacking large white spots on the<br />

cerata (they did have smaller opaque white flecks) and by having slightly fewer rows <strong>of</strong> cerata<br />

with fewer cerata per row. The radula and shape <strong>of</strong> the radular teeth <strong>of</strong> our specimens are<br />

virtually identical to that described by Gosliner & Millen (1984) but differed in having 4 to 5<br />

lateral denticles, compared to 5 to 9. Range extension from Galiano Island, British Columbia<br />

(Gosliner & Millen, 1984).<br />

*Eubranchus olivaceus (O’Donoghue, 1922)<br />

This distinctive aeolid was found with its egg masses on Obelia-like hydroids on the docks at<br />

Homer and at Whittier. Range extension from Prince William Sound (Nora Foster, personal<br />

communication, 1999).


Chapt 9C8. Opisthobranch Molluscs, page 9C8- 5<br />

Hermissenda crassicornis (Eschscholtz, 1831)<br />

Hermissenda was found at Whittier, Shotgun Cove, Fairmont Bay, Tatitlek, and in the Cordova<br />

marina. Specimens were small at all sites except Cordova, where they were up to 35 mm long.<br />

Discussion<br />

Most <strong>of</strong> the opisthobranchs collected during this survey are cold-temperate species endemic to<br />

the northern Pacific Ocean, especially the northeastern Pacific. The remainder are circumboreal<br />

species, a few <strong>of</strong> which (e.g., Dendronotus frondosus and Onchidoris bilamellata) penetrate the<br />

Arctic Ocean (see information on distributions in Marcus, 1961; McDonald, 1983; Thompson &<br />

Brown, 1984; Behrens, 1991). To my knowledge, none <strong>of</strong> the species collected in our survey are<br />

non-indigenous in the Prince William Sound region. While native/non-native status can not be<br />

assigned with certainty to the unidentified species <strong>of</strong> Adalaria or the tentatively identified<br />

specimens <strong>of</strong> Cuthona pustulata, the radiation <strong>of</strong> both <strong>of</strong> these genera in boreal waters suggests<br />

that both <strong>of</strong> these species are probably also indigenous to Prince William Sound.<br />

References<br />

Behrens, D.W. 1991. Pacific coast nudibranchs. Sea Challengers: Monterey, California. 107 pp.<br />

Foster, N.R. 1987. Range extension for Doridella steinbergae (Lance, 1962) to Prince William<br />

Sound, Alaska. The Veliger 30: 97-98.<br />

Gosliner, T.M. and S.V. Millen, 1984. Records <strong>of</strong> Cuthona pustulata (Alder & Hancock, 1854)<br />

from the Canadian Pacific. The Veliger 26: 183-187.<br />

Lee, R.S. and N. R. Foster. 1985. A distributional list with range extensions <strong>of</strong> the opisthobranch<br />

gastropods <strong>of</strong> Alaska. The Veliger 27: 440-448.<br />

Marcus, E. 1961. Opisthobranch mollusks from California. The Veliger 3(Supplement): 1-85.<br />

McDonald, G.R. 1983. A review <strong>of</strong> the nudibranchs <strong>of</strong> the California coast. Malacologia 24:<br />

114-276.<br />

Millen, S.V. 1980. Range extensions, new distribution sites, and notes on the biology <strong>of</strong><br />

sacoglossan opisthobranchs (Mollusca: Gastropoda) in British Columbia. Canadian Journal <strong>of</strong><br />

Zoology 58: 1207-1209.<br />

Millen, S.V. 1983. Range extensions <strong>of</strong> opisthobranchs in the northeastern Pacific. The Veliger<br />

25: 383-386.<br />

Millen, S.V. 1985. The nudibranch genera Onchidoris and Diaphorodoris (Mollusca,<br />

Opisthobranchia) in the northeastern Pacific. The Veliger 28: 80-93.<br />

Millen, S.V. 1987. The nudibranch genus Adalaria, with a description <strong>of</strong> a new species from the<br />

northeastern Pacific. Canadian Journal <strong>of</strong> Zoology 65: 2696-2702.


Chapt 9C8. Opisthobranch Molluscs, page 9C8- 6<br />

Millen, S.V. 1989. Opisthobranch range extensions in Alaska with the first records <strong>of</strong> Cuthona<br />

viridis (Forbes, 1840) from the Pacific. The Veliger 32: 64-68.<br />

Robilliard, G.A. and L. Barr. 1978. Range extensions <strong>of</strong> some nudibranch molluscs in Alaskan<br />

waters. Canadian Journal <strong>of</strong> Zoology 56: 152-153.<br />

Thompson, T.E. and G.H. Brown. 1984. Biology <strong>of</strong> opisthobranch molluscs, Vol. II. Ray<br />

Society: London. 229 pp.


Chapt 9C8. Opisthobranch Molluscs, page 9C8- 7<br />

Table 9C8. 1. Numbers <strong>of</strong> opisthobranch molluscs collected at 8 sites on the Kenai Peninsula and in Prince William Sound, Alaska,<br />

August 1999. A number followed by (S) means those specimens were found on fouling plates only.<br />

Table 9C8.1 Opisthobranch Homer Seward Whittier Shotgun Fairmont Tatitlek Cordova<br />

Molluscs 1999<br />

Species marina mudflat marina Lowell Pt. marina Cove Bay Valdez rocky shore mudflats marina<br />

Aeolidia papillosa 1<br />

Eubranchus olivaceus >10 1<br />

Cuthona pustulata 4<br />

Janolus fuscus 2<br />

Onchidoris bilamellata >10 >10(S) 3(S) >10* >10<br />

Melanochlamys diomedea 1 >100<br />

Dendronotus frondosus 7(S) >10 2(S) >1(S) >10<br />

Palio zosterae >100 >1 >1<br />

Adalaria jannae >100 >10<br />

Hermissenda crassicornis 5 >10 >10 >1 >10<br />

Doridella steinbergae 2 >10*<br />

Archidoris montereyensis 1 2<br />

Melibe leonina 1 >1(S) 1<br />

Onchidoris muricata 2(S) 3(S)<br />

Adalaria sp. 1(S) 2*<br />

Adalaria sp. 1 <strong>of</strong><br />

Behrens (1991) 1<br />

Geitodoris heathi 4<br />

Triopha catalinae 3<br />

Aglaja ocelligera >10<br />

Acanthodoris pilosa 3* 2(S)<br />

Adalaria proxima 1* 1<br />

Alderia modesta >10<br />

Olea hansineensis 1<br />

Haminoea sp. 1<br />

Acanthodoris nanaimoensis 1<br />

Dirona albolineta 1(S) 4<br />

Ancula pacifica 1<br />

Cuthona albocrusta 1<br />

Number <strong>of</strong> species per site 5 1 1 0 5 3 5 3 8 9 14<br />

* specimens found on cobbles, drift kelp, or drift bryozoans lying on the mudflat.


Chapt 9C9. Echinoderms, page 9C9- 1<br />

Chapter 9C9. Focal Taxonomic Collections: Echinoderms<br />

Nora Foster, University <strong>of</strong> Alaska Museum<br />

Anson H. Hines, Smithsonian Environmental Research Center<br />

Results<br />

Echinoderm collections over the two years <strong>of</strong> field sampling included 4 species <strong>of</strong><br />

holothuroid, 1 species <strong>of</strong> ophiuroid, 6 species <strong>of</strong> asteroid, and 1 species ophiurioid (Table<br />

9C9.1). No crinoid species were collected. All <strong>of</strong> these species are reported as native to Alaska.<br />

However, Asterias amurensis, a northwest Pacific seastar, was found at Homer spit <strong>of</strong> Kachemak<br />

Bay, <strong>of</strong>f Cook Inlet. This is a range extension form the Shumagin Islands (Fisher 1930) and<br />

from the Kodiak Shelf and Izhut Bay, Kodiak Island, and Bering and Chukchi Seas, where it was<br />

found by Jewett and Feder (1981). Specimens <strong>of</strong> A. amurenis are not represented in the<br />

University <strong>of</strong> Alaska Museum’s collections for trawl surveys in either the Gulf <strong>of</strong> Alaska (Foster,<br />

1999 pers. comm.) or Cook Inlet (Feder and Paul 1981, Feder et al. 1981). The survey <strong>of</strong> Cook<br />

Inlet also included scuba surveys. It would have been very unusual for such collections to miss<br />

a large conspicuous sea star (30 cm from ray tip to ray tip). Prior experienced naturalists<br />

working in Kachemak Bay reported the sudden recent appearance <strong>of</strong> this species. This species is<br />

an invasive species in Tasmania, where it was probablyintroduced by ballast water (it has a longlived<br />

planktotrophic larva). In Tasmania it is having adverse impacts on native bivalves and is<br />

considered to be a serious pest. We consider this species to be cryptogenic in Cook Inlet, with<br />

characteristics that are very suspicious <strong>of</strong> an NIS. Because it is a voracious predator, it could<br />

have a major impact on benthic communities.<br />

References<br />

Feder, H.M. and A.J. Paul. 1981. Distribution and abundance <strong>of</strong> some epibenthic invertebrates<br />

<strong>of</strong> Cook Inlet, Alaska. Univ. Alaska Fairbanks, Institute <strong>of</strong> Marine Science Tech. Rept. R80-3,<br />

154 p.<br />

Feder, H.M., A.J. Paul, M. Hoberg, and S. Jewett. 1981. Distribution, abundance, community<br />

structure and trophic relationships <strong>of</strong> the nearshore benthos <strong>of</strong> Cook Inlet. In: Environmental<br />

assessment <strong>of</strong> the Alaskan Continental Shelf. Final Reports, <strong>Biological</strong> Studies 14:45-676.<br />

Fisher, W.K. 1930. Asteroidea <strong>of</strong> the North Pacific and Adjacent <strong>Water</strong>s. Part 3. Forcipulata<br />

(concluded). Smithsonian Institution. U. S. Nat. Mus. Bull 76. 245 pp.<br />

Jewett, S.C. and H. M Feder. 1981. Epifaunal invertebrates <strong>of</strong> the continental shelf <strong>of</strong> the Bering<br />

and Chukchi Seas. Pp. 1131-1153 in Hood, D.W. and J. Clader (ed.), The Eastern Bering Sea<br />

Shelf: Oceanography and Resources. Vol. II, U.S. Dept <strong>of</strong> Commerce. Distributed by the<br />

University <strong>of</strong> Washington Press, Seattle. 1339 p.


Chapt 9C9. Echinoderms, page 9C9- 2<br />

Table 9C9.1. Echinoderms 1998, 1999<br />

Homer Seward Whittier Growler Sawmill<br />

Island Bay<br />

Port<br />

Valdez<br />

Rockey<br />

Point<br />

Busby<br />

Island<br />

Tatitlek Cloudman<br />

Bay<br />

Cordova Constantine<br />

Harbor<br />

Port<br />

Chalmers<br />

Green<br />

Island<br />

Chenega Northwest<br />

Bay<br />

Main<br />

Bay<br />

Eupentacta X<br />

pseudoquesemita<br />

Cucumaria<br />

X<br />

frondosa japonica<br />

Psolus chitonoides X X<br />

Cucumaria vegae<br />

X<br />

Ophiopholis<br />

X X X<br />

aculeata<br />

Pycnopodia X X X X X X X X X X X X X<br />

helianthoides<br />

Evasterias<br />

X X X X X X<br />

troschelii<br />

Pisaster ochraceus X X X<br />

Asterias amurensis X<br />

Dermasterias<br />

X X X X<br />

imbricata<br />

Leptasterias sp. X X X<br />

Strongylocentrotus<br />

droebachiensis<br />

X X X


Chapt 9C10. Ascidians, page 9C10- 1<br />

Chapter 9C10. Focal Taxonomic Collections: Ascidians<br />

Gretchen Lambert, Friday Harbor Laboratories, University <strong>of</strong> Washington<br />

Results<br />

A total <strong>of</strong> 12 species <strong>of</strong> ascidians were collected during this expedition. The highest<br />

number <strong>of</strong> species and <strong>of</strong> individuals was at Homer, Tatitlek and Cordova, the three locations<br />

with the highest salinity. No ascidians were recorded from Seward or Whittier, or the floats at<br />

Valdez, where the salinity was only 10-12 parts per thousand, although fouling panels at Valdez,<br />

submerged at about 7m, did have some ascidians. Ascidians require at least 25-27 parts per<br />

thousand and prefer a salinity <strong>of</strong> 30 or higher. Three <strong>of</strong> the 12 species are colonial, the other 9<br />

are solitary forms. Although there were not a large number <strong>of</strong> species collected, they do<br />

represent a good diversity. Both orders and all three suborders <strong>of</strong> the class Ascidiacea are<br />

represented and include a total <strong>of</strong> 6 families. Seven <strong>of</strong> the 12 species are known to brood their<br />

embryos and release swimming tadpoles; all 7 <strong>of</strong> these did harbor mature embryos. At the end <strong>of</strong><br />

this report is a list <strong>of</strong> the ascidian voucher specimens collected in 1998; there were no additional<br />

species to the 1999 collections.<br />

The collection includes an undescribed species <strong>of</strong> Distaplia, a colonial form in the<br />

suborder Aplousobranchia. It is surprising that this species is very abundant at both Homer and<br />

Cordova marinas, yet has gone unrecognized for nearly a century. It is possible that if Ritter<br />

(1901) or Huntsman (1912) collected it, they may have considered it merely a variant <strong>of</strong><br />

Distaplia occidentalis. On the other hand, this species may have been much rarer during Ritter’s<br />

and Huntsman’s time. Its preferred habitat is apparently sheltered surfaces, shallow but never<br />

exposed at low tide and away from very much light. It is thus “pre-adapted” for the huge surface<br />

area and specialized environment provided by marina floats and the many submerged ropes up to<br />

3m. in length that are <strong>of</strong>ten suspended from floats. Before the building <strong>of</strong> large marinas, this<br />

particular type <strong>of</strong> habitat was not abundant. The marina environment is also somewhat unstable,<br />

subject to changing seasonal conditions. Many ascidians are well adapted to take advantage <strong>of</strong><br />

this instability. Distaplia spp., like most aplousobranchs, are very fast growing, reach sexual<br />

maturity in a few weeks, reproduce and then die back to a dedifferentiated basal portion than can<br />

survive until environmental conditions are again suitable for rapid growth. This new species is<br />

somewhat similar to a cold-water form from the Kamchatka Peninsula <strong>of</strong> Russia, and an analysis<br />

and description <strong>of</strong> it is being prepared in collaboration with Dr. Karen Sanamyan <strong>of</strong> the<br />

Kamchatka Institute <strong>of</strong> Science.<br />

Two species <strong>of</strong> the genus Ascidia were collected and present a taxonomic problem. One<br />

corresponds to Ascidia adhaerens Ritter, 1901, the other to Ascidiopsis columbiana Huntsman,<br />

1912. (The genus Ascidiopsis is no longer valid; it was synonymized under the genus Ascidia.)<br />

Van Name (1945) synonymized these two NE Pacific species under Ascidia callosa, probably<br />

incorrectly; A. callosa was described in 1852 by Stimpson from U.S. east coast specimens from<br />

Massachusetts. The recent genetic analysis <strong>of</strong> many Atlantic and Pacific species <strong>of</strong> various taxa<br />

that closely resemble each morphologically and were originally lumped into the same species has<br />

resulted in many cases in their separation into different species (R. Strathmann pers. comm.).<br />

However, a recent re-examination <strong>of</strong> Stimpson’s syntypes <strong>of</strong> Ascidia callosa and Ritter’s<br />

paratypes <strong>of</strong> Ascidia adhaerens, borrowed from the Smithsonian National Museum <strong>of</strong> Natural


Chapt 9C10. Ascidians, page 9C10- 2<br />

History, has confirmed that these are the same species. Thus, Ascidia adhaerens remains a<br />

synonym under A. callosa. The type specimen <strong>of</strong> Huntsman’s Ascidiopsis columbiana was<br />

borrowed from the Royal Ontario Museum in Toronto. I was able to confirm that this species is<br />

indeed distinct from Ascidia callosa and thus should be resurrected as a valid species, which will<br />

be done in a publication now in preparation.<br />

Botrylloides violaceus is not native to Alaska, or to any part <strong>of</strong> the NE Pacific. It is a<br />

Japanese species that appeared on the U.S. Pacific coast about 20 years ago (J. Carlton pers.<br />

comm.). Since that time it has spread and become extremely abundant from southern California<br />

to British Columbia (Lambert and Lambert, 1998). This is the first report <strong>of</strong> its presence in any<br />

part <strong>of</strong> Alaska, however. Although large colonies were not observed, the fouling panels at<br />

Tatitlek contained numerous newly settled zooids most <strong>of</strong> which appeared healthy. Thus<br />

somewhere close to the panels there had to be mature colonies which were supplying the shortlived<br />

tadpoles that settled on the panels. B. violaceus incubates its embryos; the tadpoles that are<br />

released are huge, complex, and usually swim for just a very brief period, perhaps only a few<br />

minutes, before settling. The unusual tadpole morphology allows for easy recognition <strong>of</strong> this<br />

invasive species (Saito et al., 1981).<br />

Molgula retortiformis and Ascidia callosa are apparently the only species collected on<br />

this expedition that occur in both the North Pacific and North Atlantic (Van Name, 1945).<br />

Chelyosoma productum, Corella inflata and C. willmeriana, Distaplia occidentalis, Pyura<br />

haustor and Styela truncata have been recorded only from the NE Pacific. Halocynthia<br />

hilgendorfi is known from both the NW and NE Pacific.<br />

Sixty-five species <strong>of</strong> ascidians are known to occur in Alaskan waters. Most <strong>of</strong> these were<br />

obtained by dredging many decades ago and may be restricted to the Bering Sea or the Arctic<br />

Ocean. The ascidian fauna <strong>of</strong> Alaska is still mostly unexplored, and probably there exist a<br />

number <strong>of</strong> undescribed species.<br />

Publication <strong>of</strong> the present work, including a description <strong>of</strong> the new Distaplia species and<br />

redescription <strong>of</strong> the two Ascidia species, is in preparation with Dr. Karen Sanamyan <strong>of</strong> the<br />

Kamchatka Institute <strong>of</strong> Ecology.<br />

References<br />

Huntsman, A.G. 1912. Ascidians from the coasts <strong>of</strong> Canada. Trans. Canad. Inst. 9: 111-148.<br />

Kott, P. 1985. The Australian Ascidiacea. Mem. Qd. Mus. 23: 1-440.<br />

Lambert, C.C. & G. Lambert 1998. Non-indigenous ascidians in southern California harbors and<br />

marinas. Mar. Biol. 130: 675-688.<br />

Lambert, G., C.C. Lambert & D.P. Abbott 1981. Corella species in the American Pacific<br />

Northwest: distinction <strong>of</strong> C. inflata Huntsman, 1912 from C. willmeriana Herdman, 1898<br />

(Ascidiacea, Phlebobranchia). Can. J. Zool. 59: 1493-1504.<br />

Nishikawa, T. 1991. The ascidians <strong>of</strong> the Japan Sea. II. Publ. Seto Mar. Biol. Lab. 35: 25-170.


Chapt 9C10. Ascidians, page 9C10- 3<br />

O’Clair, R.M. & C.E. O’Clair 1998. Southeast Alaska’s Rocky Shores. . Plant Press, Auke Bay,<br />

AK, 564 pp.<br />

Ritter, W.E. 1901. Papers from the Harriman Alaska Expedition. XXIII. The ascidians. Proc.<br />

Wash. Acad. Sci. 3: 225-266.<br />

Ritter, W.E. 1913. The simple ascidians from the northeastern Pacific in the collection <strong>of</strong> the<br />

United States National Museum. Proc. U.S. Natl. Mus. 45: 427-505.<br />

Saito, Y., H. Mukai & H. Watanabe 1981. Studies on Japanese compound styelid ascidians II. A<br />

new species <strong>of</strong> the genus Botrylloides and redescription <strong>of</strong> B. violaceus Oka. Publ. Seto Mar.<br />

Biol. Lab. 26: 357-368.<br />

Sanamyan, K. 1993. Ascidians from the north-western Pacific region. 2. Molgulidae. Ophelia<br />

38: 127-135.<br />

Sanamyan, K. 1996. Ascidians from the north-western Pacific region. 3. Pyuridae. Ophelia 45:<br />

199-210.<br />

Van Name, W.G. 1945. The North and South American Ascidians. Bull. Amer. Mus. Nat. Hist.<br />

84: 1-476.


Chapt 9C10. Ascidians, page 9C10- 4<br />

Table 9C10.1 Sites visited:<br />

1. Aug. 8 Homer Marina, Kachemak Bay, Cook Inlet<br />

Salinity 27 % o 1 ft. depth, 30 % o at 2m depth; Temp. 10 o C<br />

Most <strong>of</strong> the following records are from suspended ropes.<br />

Ascidia callosa--common esp. about halfway between the inner and outer ends <strong>of</strong> the marina.<br />

Some contain brooded larvae in atrial chamber. Two small specimens from fouling panel:<br />

one from E1 and one from OH--2-P2.<br />

Corella inflata--reported by John Chapman but not personally seen in spite <strong>of</strong> extensive<br />

sampling <strong>of</strong> floats and ropes. Samples lost; record not verified.<br />

Distaplia new sp. very abundant at most locations in the marina, esp. on ropes 1-2 m. deep. A<br />

few small colonies on fouling panel.<br />

Molgula retortiformis: 2 large and 8 small specimens on ropes. Two small specimens on fouling<br />

plate E1. The large animals contain brooded embryos in the atrial chamber.<br />

Styela truncata - 1 small individual.<br />

2. Aug. 9: Seward Marina.<br />

Salinity 11 % o about a foot down.<br />

Temperature 11.5 o C.<br />

No ascidians either at the marina or Lowell Pt. rocky intertidal (11 % o , 11.5 o C.)<br />

3. Aug. 10, 1999 Whittier marina.<br />

No sal. or temp. readings taken. Sal. very low; no ascidians on floats.<br />

4. Aug. 10, 1999 Fairmont Bay oyster farm, Prince Wm. Sound.<br />

Salinity 25 % o about a foot down.<br />

Temperature 14 o C.<br />

Ascidia columbiana--numerous small specimens on concrete blocks <strong>of</strong> the fouling panels and<br />

one large one on bottom <strong>of</strong> submerged 4 ft long oyster bag.<br />

5. Aug. 11, 1999 Valdez Marina<br />

No salinity or temp. readings taken<br />

No ascidians observed on marina floats or suspended ropes.<br />

6. Aug. 11-12, 1999 Tatitlek<br />

Salinity 27 % o about a foot down.<br />

Temperature 17 o C. surface<br />

a) Fouling panels and frames, 3m depth:<br />

Ascidia columbiana -- a few small specimens on the concrete blocks for the fouling panels and<br />

one on panel PL3-l.<br />

Botrylloides violaceus -- numerous very small zooids on panels. Largest one with 2 zooids in<br />

colony. Youngest appeared to be only hours post metamorphosis.<br />

Corella inflata -- common on both the panels and frames about 3m depth, with brooded larvae in<br />

the atrial chamber.


Chapt 9C10. Ascidians, page 9C10- 5<br />

Table 9C10.1 (Continued) Sites visited:<br />

b) Intertidal rocks, low tide, morning Aug. 12<br />

Ascidia columbiana -- one large specimen coll. by J. Goddard.<br />

Chelyosoma productum -- about 12 seen, 2 collected.<br />

Halocynthia igaboja -- one very small immature specimen coll. by J. Goddard.<br />

Pyura haustor -- 4 seen, one incomplete specimen collected. Difficult to collect; wedged tightly<br />

into rock crevices.<br />

c) oyster cages from across bay: one small Corella inflata.<br />

7. Aug. 13, 1999 Cordova Marina. Tide just beginning to come in.<br />

Salinity 27 % o about a foot down.<br />

Temperature 13 o C. surface<br />

Ascidia callosa-- numerous on floats and especially on suspended ropes. Some contain brooded<br />

larvae in atrial chamber.<br />

Corella inflata -- large, common, full <strong>of</strong> brooded larvae in atrial chamber.<br />

Distaplia new sp. --abundant colonies, with many mature larvae.<br />

Distaplia occidentalis -- common; several color morphs, large heads, with mature larvae.<br />

Styela truncata -- numerous. Some contain brooded larvae in atrial chamber.<br />

b) Fouling panels<br />

Ascidia callosa -- 12 small specimens from I dock, Pl. 3, 3 in a second vial.<br />

Corella inflata -- one small specimen from I dock, Pl. 3; two in a second vial.<br />

Corella willmeriana-- (specimens identified on site, not saved apparently.)<br />

Distaplia new sp. -- numerous small colonies from I dock Pl. 3, one in a second vial.<br />

Styela truncata -- 8 on fouling panels in voucher collection in one vial, 3 in another.<br />

8. Aug. 14, 1999 Valdez fouling panels, Berth 5<br />

Corella willmeriana -- 3 individuals, 1 large and 2 small. Specimens identified on site; not saved<br />

apparently.<br />

Ascidia columbiana -- one small specimen from fouling panel (or perhaps the concrete block<br />

anchoring the panels) at 20 ft. (sampled 8/14).


Chapt 9C10. Ascidians, page 9C10- 6<br />

Table 9C10.2 Ascidian vouchers from fouling panels 1998, identified Sept. 1999<br />

Data taken from jar labels.<br />

Homer 3/9/98 -- Styela truncata (1)<br />

Homer: 9/3/98 -- Ascidia callosa (1)<br />

Homer Oct. 1998 -- Distaplia new sp. collected by G. Sonnevil. Colonies without gonads or<br />

larvae.<br />

Homer 5/11/99 -- Distaplia new sp. collected by G. Sonnevil. Colonies small, immature.<br />

Chenega 7/9/98 -- Corella inflata (2) Port San Juan, Chenega sm. boat hbr<br />

Chenega 9/7/98 -- Ascidia callosa (1)<br />

Chenega no date -- Corella inflata (7) panel MI - 05 - (can’t read label)<br />

Valdez 9/8/98 -- Corella inflata (2) at Alyeska berths<br />

No location given -- Ascidia sp. (1) too small to ID to species. Panel WH-04-P3.


Chapt 9C10. Ascidians, page 9C10- 7<br />

Table 9C10.3 Systematics<br />

Class Ascidiacea<br />

OrderAplousobranchia<br />

Family Holozoidae<br />

Distaplia occidentalis Bancr<strong>of</strong>t, 1899<br />

Distaplia new species<br />

Order Phlebobranchia<br />

Family Corellidae<br />

Chelyosoma productum Stimpson, 1864<br />

Corella inflata Huntsman, 1912<br />

Corella willmeriana Herdman, 1898<br />

Family Ascidiidae<br />

Ascidia callosa Stimpson, 1852<br />

Ascidia columbiana (Huntsman, 1912)<br />

Order Stolidobranchia<br />

Family Styelidae<br />

Botrylloides violaceus Oka, 1927<br />

Styela truncata Ritter, 1901<br />

Family Pyuridae<br />

Halocynthia igaboja Oka, 1906<br />

Pyura haustor (Stimpson, 1864)<br />

Family Molgulidae<br />

Molgula retortiformis Verrill, 1871<br />

Table 9C10. 4 Ascidian References by Depth and Habitat<br />

Depth(m)<br />

Selected References<br />

intertidal, floats;to 10m Ritter ’01, ’13; VName 45; PWS Expedition 1999<br />

us. 0-60m<br />

Ritter’01,Huntsman’12,VName45,Abbott66,O’Clair98;PWS Exped.’99<br />

0-few m. Saito et al 81,Lambert & Lambert 98, PWS Exped. 1999<br />

intertidal - 50m Huntsman ’12,VName 45,O’Clair98; PWS Exped. ’99<br />

0-50m Huntsman ’12,VName 45; PWS Exped. ’99<br />

0-few m. Huntsman ’12,VName 45; PWS Exped. ’99<br />

float PWS Expedition 1999<br />

floats; intertidal-few m. VName 45, O’Clair 98, PWS Expedition 1999<br />

to 57m VName 45, Nishikawa 91,Sanamyan 96,O’Clair98, PWS Exped. ’99<br />

4-75m; floats Ritter 01,VName 45,Abbott66,Sanamyan 93, PWS Exped. ’99<br />

intertidal - 114m VName 45, Sanamyan 96,O’Clair98; PWS Exped. ’99<br />

ropes on floats;0-20m Ritter ’01, Van Name 45, PWS Exped. ’99


Chapt 9C10. Ascidians, page 9C10- 8<br />

Table 9C10.5 Ascidan Species Distribution in Alaska<br />

Genus Species Author/date Family Distribution in Alaska<br />

Ascidia callosa Stimpson, 1852 Ascidiidae Homer;PWS:Fairmont Bay<br />

oyster<br />

farm,Tatitlek,Cordova,Valdez,<br />

Chenega<br />

Ascidia columbiana (Huntsman,<br />

1912)<br />

Ascidiidae Arctic coast to Alask. Penin. &<br />

SE Alaska<br />

Botrylloides violaceus Oka, 1927 Styelidae PWS: Tatitlek<br />

Chelyosom<br />

a<br />

productum Stimpson, 1864 Corellidae PWS: Tatitlek; Sitka<br />

Sound:Passage Is.<br />

Corella willmeriana Herdman, 1898 Corellidae PWS: Cordova, Valdez<br />

Corella inflata Huntsman, 1912 Corellidae PWS: Tatitlek, Cordova,<br />

Valdez, Chenega<br />

Distaplia new sp. Holozoidae Cook Inlet: Homer Marina;<br />

PWS: Cordova Marina<br />

Distaplia occidentalis Bancr<strong>of</strong>t, 1899 Holozoidae PWS: Cordova Marina;<br />

Chichag<strong>of</strong> Is.<br />

Halocynthia igaboja Oka, 1906 Pyuridae Gulf <strong>of</strong> Alaska: Kodiak<br />

Is.;Chichag<strong>of</strong> Is.; PWS:<br />

Tatitlek; Prince Rupert BC<br />

Molgula retortiformis Verrill, 1871 Molgulidae SE Bering Sea to Sitka; Canoe<br />

Bay; SE Chukchi Sea; Homer<br />

Marina<br />

Pyura haustor (Stimpson, 1864) Pyuridae Alaska Gulf:Sanak Is.,<br />

Shumagin Is.; Sitka<br />

Sound:Alice Is.; PWS: Tatitlek<br />

Styela truncata Ritter, 1901 Styelidae Yakutat Bay; Cook Inlet:<br />

Homer Marina; PWS: Cordova<br />

Marina


Chapt 9D. Fouling Community Surveys, page 9D- 1<br />

9D. Fouling Community Surveys<br />

Anson H. Hines, Smithsonian Environmental Research Center<br />

Gregory M. Ruiz, Smithsonian Environmental Research Center<br />

9D1. Purpose<br />

Fouling communities in many bays, harbors and estuaries are frequently invaded by NIS<br />

associated with shipping traffic (Cohen & Carlton 1995, Hewitt 1993, Coles et al. 1999).<br />

Fouling communities have major impact on ships and floating structures, ranging from buoys<br />

and floats to aquaculture pens and nets, as well as surfaces <strong>of</strong> oysters and mussels themselves.<br />

Consequently, fouling communities are well-studied in many parts <strong>of</strong> the world, but they have<br />

received little study in Alaskan waters. We conducted surveys <strong>of</strong> fouling communities in Prince<br />

William Sound, Seward and Homer using experimental fouling plates. The use <strong>of</strong> fouling plates<br />

provides a replicated standardized assay for NIS in a community that is prone to invasions, but<br />

which has received little prior ecological analysis in Alaska. We also surveyed fouling<br />

communities on floats, pilings, and buoys to compare these substrates with our experimental<br />

plates.<br />

9D2. Methods<br />

We conducted two surveys that focused on fouling communities that settled on natural<br />

surfaces and experimental plates, which we deployed in earlier spring months at an array <strong>of</strong> sites<br />

in Homer, Seward and Prince William Sound. We sampled these fouling plates in 7-17<br />

September 1998 and in 8-16 August 1999.<br />

The team for the fouling community surveys consisted <strong>of</strong>:<br />

• Greg Ruiz (SERC), molluscs, parasites, fouling communities;<br />

• Anson Hines (SERC), barnacles and decapod crustaceans;<br />

• James Carlton (Mystic Seaport), marine/estuarine invertebrates and global NIS<br />

• Melissa Frey (SERC); technical and field assistance<br />

• George Smith (SERC); technical and field assistance<br />

• Lea Ann Henry (University <strong>of</strong> Ontario), hydroid identifications;<br />

• Judy Winston (Virginia Museum <strong>of</strong> Natural History), bryozoan identifications.<br />

We deployed arrays <strong>of</strong> fouling plates at 12 locations, including 2 on the Kenai Peninsula<br />

(Homer, Seward) and 10 in Prince William Sound (Table 9D.1). At each site we deployed 5<br />

arrays suspended at depths <strong>of</strong> either 1 meter (3 arrays) or 3 meters (2 arrays) below mean low<br />

water level. Each array consisted <strong>of</strong> settling plates attached to a frame made <strong>of</strong> 2 crossed pieces<br />

<strong>of</strong> pvc pipe (20 mm diameter, 50 cm long), which was suspended in a horizontal position by a<br />

line attached to a dock or float and weighted by a concrete block. Settling plates made <strong>of</strong> 14 cm<br />

x 14 cm x 7 mm thick pvc (3 plates) or plywood (1 plate) were attached to each <strong>of</strong> the 4 ends <strong>of</strong><br />

the cross in a horizontal position. The horizontal orientation assured that sediment would not<br />

accumulate on the underside, providing a clean surface addition to several irregular surfaces <strong>of</strong><br />

the frame and top surfaces for settlement. To maximize the chance <strong>of</strong> detecting possible NIS<br />

within each site, the 5 arrays were dispersed as widely as possible to sample the range <strong>of</strong><br />

microhabitats present. We deployed the plates during April-May <strong>of</strong> each year and retrieved them<br />

in August-September, providing a “soak time” <strong>of</strong> about 4 months.


Chapt 9D. Fouling Community Surveys, page 9D- 2<br />

Table 9D.1. Sampling Locations for Fouling Community Surveys.<br />

Site 1998 1999<br />

Kenai Sites<br />

Homer X X<br />

Seward X X<br />

Prince William Sound<br />

Port Valdez<br />

Marine Terminal X X<br />

Valdez Area X X<br />

Growler Island<br />

X<br />

Whittier<br />

X<br />

Chenega<br />

X<br />

Port Chalmers<br />

X<br />

Fairmont Bay<br />

X<br />

Tatitlek<br />

Oyster Culture<br />

X<br />

Docks<br />

X<br />

Cordova<br />

X<br />

At the time <strong>of</strong> retrieving the arrays, the fouling plates were removed from their frame and<br />

placed individually into ziplock plastic bags for transport to a laboratory. Each plate was<br />

examined under a dissecting microscope and sessile and motile species were scored as present or<br />

absent. Voucher specimens were preserved and sent to taxonomic experts for authoritative<br />

identification. At the present stage <strong>of</strong> this project, we have used the fouling plates to develop an<br />

inventory <strong>of</strong> species. However, using this technique, the occurrence and abundance <strong>of</strong> species<br />

can be quantified and compared statistically for frequency <strong>of</strong> plates with species present. This<br />

type <strong>of</strong> comparison will proceed in new work during 2000 and 2001 as we sample other locations<br />

in Alaska and the major ports <strong>of</strong> western North America along the lower 48 states.<br />

9D3. Results<br />

During the soak time <strong>of</strong> ca. 4 months, the fouling plates accumulated dense community<br />

assemblages with large biomasses <strong>of</strong> mussels, barnacles, ascidians, hydroids, and bryozoans<br />

(Table 9.D.2). The fouling communities were rich in species, particularly for bryozoans,<br />

hydroids, nudibranchs, and ascidians Combining the 2 years <strong>of</strong> study across the12 sampling<br />

locations, we recorded more than 107 taxa/species on the fouling plates (Table 9D.2), including:<br />

8 families <strong>of</strong> polychaete worms, 13 species <strong>of</strong> acidians, 34 species <strong>of</strong> bryozoans, 1 species <strong>of</strong> sea<br />

anemone, 3 species <strong>of</strong> barnacle and 13 taxa <strong>of</strong> motile crustacea, 2 species <strong>of</strong> echinoderms, 12<br />

species <strong>of</strong> hydroids, 29+ taxa <strong>of</strong> molluscs, and 1 species <strong>of</strong> protozoan. Diversity <strong>of</strong> hydroids was<br />

particularly high at Homer (11 species). Byozoans were most diverse at Chenega (10 species),<br />

Homer (13 species), Port Valdez (14 species), and Tatilek (13 species). Acidians were most<br />

diverse at Homer (6 species) and Cordova (6 species).


Chapt 9D. Fouling Community Surveys, page 9D- 3<br />

Table 9D.2. Taxa Recovered on Fouling Plates. Asterisk denotes NIS. x denotes presence in 1998 and or 1999.<br />

Site Key: AL=Alyeska terminal; CH=Chenega Bay; GR=Growler Isl.; HO=Homer, MI=Montague Isl.;<br />

SE=Seward;VA=Port Valdez; WH=Whittier; CORD=Cordova; FRMNT=Fairmount Bay; PTOPT=Potato Pt.<br />

TAT=Tatitlek<br />

Site<br />

AL CH GR HO MI SE VA WH CORD FRMNT PTOPT TAT<br />

Protozoan Foliculina x x x x x x x x x<br />

AL CH GR HO MI SE VA WH CORD FRMNT PTOPT TAT<br />

Cnidaria Metridium senile x<br />

Metridium sp. x x x<br />

AL CH GR HO MI SE VA WH CORD FRMNT PTOPT TAT<br />

Hydroids Calycella syringa x<br />

Clytia hemispherca<br />

x<br />

Clytia kincaidi<br />

x<br />

Companulina rugosa<br />

x<br />

* Garveia franciscana x<br />

Gonoththyraea clarki x x x x<br />

Obelia longissima x x x x x x x x<br />

Obelia sp. x x x x x x x x<br />

Opercularella lacerata<br />

x<br />

Sarsia eximia<br />

x<br />

Sarsia tubulosa<br />

x<br />

Sertularia robusta<br />

x<br />

AL CH GR HO MI SE VA WH CORD FRMNT PTOPT TAT<br />

Annelida Capitellidae x x x x<br />

Cirratulidae x x<br />

Nereidae x x x x x x x x x<br />

Polynoidae x x x x x x x x x<br />

Sabellidae x x x<br />

Serpulidae x x x x x x x x x x<br />

Spirorbidae x x x x x x x x x x x<br />

Syllidae x x x x x x<br />

Terebellidae<br />

x<br />

AL CH GR HO MI SE VA WH CORD FRMNT PTOPT TAT<br />

Mollusca Acanthodoris sp. x<br />

Acmaeidae<br />

x<br />

Aelolididae<br />

x<br />

Alvania sp. x x x x x<br />

Chlamys sp. x x x<br />

Clinocardium sp.<br />

x<br />

Dendronotus frondosus x x<br />

Dendronotus sp x x<br />

Fusitron oregonensis<br />

x<br />

Haminoea sp. x x x<br />

Hermissenda sp. x x x x x x x x x x<br />

Hiatella arcitca x x x x x x x x x x x<br />

Hinnites sp.<br />

x<br />

Lacuna sp. x x x x<br />

Lacuna vincta<br />

x<br />

Limacina helicina<br />

x


Chapt 9D. Fouling Community Surveys, page 9D- 4<br />

Table 9D.2. Continued<br />

AL CH GR HO MI SE VA WH CORD FRMNT PTOPT TAT<br />

Mollusca Lottia sp. x<br />

cont. Margarites helinicus x<br />

Margarites pupillis x x<br />

Mytilus trossulus x x<br />

Mytilus sp. x x x x x x x x x x x x<br />

Odostomia sp. x x x x<br />

Onchidoris sp. x x x x<br />

Onchidoris murricata x x<br />

Onchidoris sp. x x x x x x<br />

Pododesma macroshisma<br />

x<br />

Pododesmus sp. x x<br />

Sacoglossan sp. x x<br />

Tritonia sp.<br />

x<br />

Vilisina vernicosa<br />

x<br />

AL CH GR HO MI SE VA WH CORD FRMNT PTOPT TAT<br />

Crustacea Ampithoe sp. x<br />

Balanus cariosus x x x x x x x<br />

Balanus crenatus x x x x x x x x x x x x<br />

Semibalanus carriosus x x x<br />

Cancer magister x x<br />

Caprellidae x x x x x x<br />

Corophium sp. x x x x<br />

Eogammarus sp.<br />

x<br />

Gnorimosphaeroma oregonense x x x x x<br />

Harpacticus uniramus<br />

x<br />

Jassa sp. x x<br />

Munna sp.<br />

x<br />

Oregonia gracilis<br />

x<br />

Scyra acutifems<br />

x<br />

Spirontocaris sp.<br />

x<br />

AL CH GR HO MI SE VA WH CORD FRMNT PTOPT TAT<br />

Bryozoa Alcyonidium sp. x x x x x x<br />

Alcyonidium hirsutum x x<br />

Bugula californica x x<br />

Bugula pacifica x x x<br />

Bugula sp. x x x x x x x x<br />

Calloporella craticula x x x<br />

Calloporella "lineata"<br />

x<br />

Cauloramphus pseudospinifer<br />

x<br />

Celleporella hyalina x x x x x x<br />

Cribrilina sp. x x<br />

Cribrilina corbicula x x x x x x<br />

Cribrilina sp. x x x x x x x<br />

Crisia serrulata<br />

x<br />

Cryptosula okadai<br />

x<br />

Electra sp. x x x<br />

Fenestruloides eopacifica x x<br />

Filicrisia franciscana x x x<br />

Harmeria scutulata<br />

x<br />

Hippothoa sp. x x x<br />

Lichenopora sp.<br />

x


Chapt 9D. Fouling Community Surveys, page 9D- 5<br />

Table 9D.2. continued<br />

AL CH GR HO MI SE VA WH CORD FRMNT PTOPT TAT<br />

Bryozoa Membranipora menbrenacea x<br />

cont. Membranipora sp. x x<br />

Microporella germana<br />

x<br />

Parasmittina trispinosa<br />

x<br />

Phidolopora pacifica x x<br />

Porella major x x<br />

Rhamphostomella gigantea<br />

x<br />

Rhamphostomella hincksi<br />

x<br />

* Schizoporella "unicornis" x<br />

Tegella armifera<br />

x<br />

Tegella aquilirostris<br />

x<br />

Tubulipora tuba x x x<br />

Tubulipora sp.<br />

x<br />

AL CH GR HO MI SE VA WH CORD FRMNT PTOPT TAT<br />

Echino- Psolus sp. x<br />

dermata Strongylocentrotus sp. x x<br />

AL CH GR HO MI SE VA WH CORD FRMNT PTOPT TAT<br />

Ascidia Ascidia sp. x<br />

Ascidia callosa x x x<br />

Ascidia columbiana x x x<br />

* Botrylloides violaceus x<br />

Corella sp. x x x<br />

Corella inflata x x x x<br />

Corella willmariana x x<br />

Distaplia sp. (new) x x<br />

Distaplia alaskensis x x<br />

Molgula retortiformis<br />

x<br />

Molgula sp. x x<br />

Ritterella sp. x x x<br />

Styela truncata<br />

x<br />

Among these species, there were 3 NIS: the ascidean Botrylloides violaceus, the bryozoan<br />

Schizoporella unicornis, and the hydroid Garvieia franciscana. These are the first records for<br />

two <strong>of</strong> these species (B. violaceus and G. franciscana) in Alaska. Botrylloides violaceus<br />

(=Botryllus aurantius is a colonial tunicate that is native to the northwest Pacific (Japan), and<br />

may have been first found on the West Coast in 1973, in San Francisco Bay (Cohen and Carlton<br />

1995). It is now widespread, from southern California to British Columbia (Cohen et al. 1998;<br />

Lambert and Lambert 1998). B. violaceus was abundant on fouling plates in Prince William<br />

Sound in 1999 (G. Lambert 1999 pers. comm.). Schizoporella unicornis is a bryozoan found in<br />

the northwest Pacific but was first collected in the Eastern Pacific in 1927, in Puget Sound<br />

(Carlton 1979; Cohen and Carlton 1995). Its first Alaska collection was made between 1944 and<br />

1949, in Kodiak (U. S. Navy 1951; Carlton, pers. comm.). Schizoporella unicornis may have<br />

been introduced in ship fouling or with plantings <strong>of</strong> Pacific Oysters (Cohen and Carlton 1995).<br />

In 1999, it was found in Tatilek. This form, while definitely introduced to the Pacific coast, may<br />

actually be a complex <strong>of</strong> several species (Winston 1999 pers. comm.). Garveia franciscana<br />

(Rope Grass Hydroid) has been found in many estuaries around the world, but its origin is<br />

uncertain. The Indo-Pacific and the Black--Caspian Sea basin have been suggested as possible<br />

native regions (Cohen and Carlton 1995; Calder 1997 pers. comm.) It was first described from<br />

San Francisco Bay in 1902, which was its only known location on the west coast <strong>of</strong> North<br />

America (Cohen and Carlton 1995), until we found it near Homer in 1999 (Lea-Anne Henry


Chapt 9D. Fouling Community Surveys, page 9D- 6<br />

pers. comm. 1999). In other regions <strong>of</strong> the world, this hydroid has been an economically<br />

important fouling organism, adversely affecting ships, power plants and fishing gear (Simkina<br />

1963; Andrews 1973; McLean 1972). In addition, fouling plates at Homer and Cordova had<br />

large biomasses <strong>of</strong> the new/undescribed ascidian, Distaplia sp. nov, which has many suspicious<br />

characteristics <strong>of</strong> NIS. Diastaplia sp. nov. is a new, undescribed species <strong>of</strong> tunicate, which is<br />

very abundant in fouling communities on floats and man-made substrates in marinas at Homer<br />

and Cordova. It was first collected in 1998 in Homer and was found in both Homer and Cordova<br />

in 1999. It was not found at other sites within Prince William Sound where other, native species<br />

<strong>of</strong> tunicate were common in fouling communities but lack similar shipping/boating traffic (e.g.,<br />

Tatitlek, Chenega, Port Chalmers). Its appearance is also suspicious, because it was not found in<br />

1901 when tunicates were collected in the region at nearby sites. This tunicate could be a<br />

formerly rare native species that has taken advantage <strong>of</strong> the newly created marina habitat, or a<br />

recent introduction (G. Lambert 1999 pers. comm.).<br />

Fouling communities on the plates suspended at 1m depth were greatly diminished at<br />

Seward, Whittier and Port Valdez during the summer, when snow and glacial melt produced<br />

markedly low salinities in the surface waters and also thick sediment deposits that covered the<br />

plates. Fouling plate arrays at 3 m depth in these locations experienced higher salinities, but still<br />

suffered from heavy sediment deposits. It was evident, however, that these plates had developed<br />

rich fouling communities prior to the summer season <strong>of</strong> greatest freshwater run<strong>of</strong>f and siltation.<br />

Species composition <strong>of</strong> fouling communities on the experimental plates were generally<br />

quite similar to the composition on surrounding surfaces (floats, pilings, lines, oysters, etc) at<br />

comparable tidal levels. Since the arrays were suspended below mean low water, the main<br />

groups <strong>of</strong> specie s that the plates did not sample adequately were species on pilings in the<br />

intertidal zone, such as Balanus glandula, Semibalanus balanoides, and various species <strong>of</strong><br />

acmaeid limpets.


Chapt 9E. Museum, Reference and Voucher Specimens, page 9E- 1<br />

Chapter 9E. Re-Examination <strong>of</strong> Museum, Reference, and Voucher Specimens<br />

Nora Foster, University <strong>of</strong> Alaska Museum, Fairbanks<br />

9E1. Purpose<br />

As a result <strong>of</strong> environmental assessment work in Port Valdez during the 1970’s for<br />

construction <strong>of</strong> the Valdez Marine Terminal, and the Exxon Valdez oil spill (EVOS), a large<br />

ecological database exists for Prince William Sound. Through a careful scrutiny <strong>of</strong> both the<br />

species lists and specimens archived in museum, reference and voucher collections for the past<br />

work, this part <strong>of</strong> our study was intended to test the idea that this extensive prior work in Prince<br />

William Sound should have detected NIS. However, in spite <strong>of</strong> the amount <strong>of</strong> sampling done in<br />

Prince William Sound, some species lists were developed without input from taxonomic experts,<br />

so that the biota is still poorly known. Few prior surveys have focused on biogeography or<br />

taxonomy, and until this study, none has specifically looked for NIS.<br />

9E2. Methods<br />

Literature sources for Prince William Sound invertebrates include:<br />

• Reports on marine fauna <strong>of</strong> the northeastern Gulf <strong>of</strong> Alaska, compiled as a result <strong>of</strong> the Outer<br />

Continental Shelf Environmental Assessment Project (OCSEAP);(Feder and Matheke, 1980;<br />

Feder and Jewett, 1988);<br />

• Thesis by M. Hoberg (1986);<br />

• Project reports on the Port Valdez environment (Cooney and Coyle, 1988; Feder et al., 1976;<br />

Feder and Bryson-Schwafel, 1988; Feder and Keiser, 1980; Jewett and Feder, 1977);<br />

• Eyerdam’s (1924) species lists;<br />

• Haven (1971); and<br />

• Several taxonomic references (Butler, 1980; Hart, 1982; Lambert, 1981; 1991; Behrens, 1991<br />

and others) for additional distribution records in Alaskan waters.<br />

A vast array <strong>of</strong> preserved biological samples from Prince William Sound and adjacent<br />

Gulf <strong>of</strong> Alaska are housed in the <strong>Aquatic</strong> Collection <strong>of</strong> the University <strong>of</strong> Alaska Museum<br />

(UAM). The major part <strong>of</strong> these are collections made as part <strong>of</strong> the OCSEAP projects in the mid-<br />

1970’s, environmental monitoring <strong>of</strong> Port Valdez, and Max Hoberg’s thesis material from three<br />

bays in the outer part <strong>of</strong> the Sound. Intertidal and benthic biota from the s<strong>of</strong>t bottom<br />

communities <strong>of</strong> Prince William Sound are well represented in the collection. Species lists for<br />

this material were generated using the museum accession records.<br />

EVOS Specimen Archives<br />

The specimens collected as part environmental surveys after the 1989 Exxon Valdez oil<br />

spill supplement the UAM collection. Subtidal invertebrates in 1,154 lots have been transferred<br />

to the UAM from warehouse storage for examination. These represent sampling conducted<br />

during 1990, 1991, 1993, and 1995, from 15 selected unoiled sites. The collections provide<br />

samples <strong>of</strong> shallow subtidal fauna from silled fjords, eelgrass beds, and habitats dominated by<br />

Laminaria. With limited resources, each specimen from this large number <strong>of</strong> samples cannot be<br />

examined individually, so it has been necessary to select subset <strong>of</strong> specimens for careful reexamination.


Chapt 9E. Museum, Reference and Voucher Specimens, page 9E- 2<br />

The subset <strong>of</strong> reference and voucher specimens examined as part <strong>of</strong> this study was<br />

selected by first compiling a list <strong>of</strong> 88 invertebrate taxa by comparing the lists <strong>of</strong> known taxa<br />

from Prince William Sound (discussed above) with lists <strong>of</strong> known NIS from west coast source<br />

ports: Puget Sound, San Francisco Bay, southern California, and other localities (see Ruiz &<br />

Hines, 1997). This compilation <strong>of</strong> 88 species includes:<br />

• species that may be confused with known NIS in Alaska;<br />

• NIS known from western North America (especially those extending to higher latitudes);<br />

• taxonomically difficult species and species complexes;<br />

• biogeographic outliers; and<br />

• range extensions.<br />

For example, polychaete specimens <strong>of</strong> most Boccardia and Polydora, were removed for reexamination<br />

because for their resemblance to Polydora ligni. Similarly, capitellid and many<br />

syllid polychaetes were selected to check for the presence <strong>of</strong> Barontolla americana, Capitella<br />

capitata, and Decamastus spp. The gastropod slipper shell Crepidula was partitioned from the<br />

collections to check for Crepidula fornicata and C. plana. Specimens <strong>of</strong> the amphipod<br />

Corophuim were selected to check for several NIS Corophium reported from Puget Sound. This<br />

original list was considered a working document and has been refined as the project has<br />

progressed (Table 9.E.1).<br />

Table 9.E.1. Museum and Reference Samples Selected for Re-Examination<br />

Family Genus Species Specimen Source<br />

Amphitoidae Amphitoe sp. Jewett samples<br />

Amphitoidae Amphitoe simulans Jewett samples<br />

Corophidae Corophium sp. Jewett samples<br />

Corophidae Corophium brevis Jewett samples<br />

Gammaridae Melita sp. UAM uncataloged<br />

Gammaridae Gammarus sp. Jewett samples<br />

Gammaridae Jassa sp. Jewett samples<br />

Gammaridae Melita dentata UAM uncataloged<br />

Cardiidae Clinocardium fucanum Jewett samples<br />

Glycymeridae Glycymeris septentrionalis Jewett samples<br />

Kelliidae Pseudopythina* compressa Jewett samples<br />

Kelliidae Pseudopythina* rugifera* Jewett samples<br />

Mytilidae Dacrydium vitreum* Jewett samples<br />

Mytilidae Dacrydium pacificum* UAM cataloged<br />

Ungulinidae Diplodonta orbella Port Valdez uncataloged<br />

Ungulinidae Diplodonta impolita UAM cataloged<br />

Adontorhina sp. Jewett samples<br />

Cryptosula okaidai Jewett samples<br />

Atyidae Haminoea virescens Little Green Island<br />

Atyidae Haminoea vesicula PWS 98 samples<br />

Atyidae Haminoea sp. Jewett samples<br />

Calyptraeidae Crepidula dorsata* Jewett samples<br />

Calyptraeidae Crepidula sp. Jewett samples<br />

Calyptraeidae Crepidula grandis Jewett samples<br />

Calyptraeidae Crepidula sp. Jewett samples<br />

Diaphanidae Diaphana minuta* Jewett samples


Chapt 9E. Museum, Reference and Voucher Specimens, page 9E- 3<br />

Table 9.E.1. Continued<br />

Diaphanidae Diaphana brunnea Jewett samples<br />

Diaphanidae Diaphana sp. UAM cataloged<br />

Fissurellidae Puncturella cooperi* Jewett samples<br />

Lacunidae Lacuna sp. UAM cataloged<br />

Lacunidae Lacuna vincta* Jewett samples<br />

Lacunidae Lacuna variegata* UAM cataloged<br />

Lacunidae Lacuna marmorata* UAM cataloged<br />

Lamellariidae Velutina sp. UAM cataloged<br />

Rissoidae Barleeia acuta* Jewett samples<br />

Scaphandridae Cylichna alba UAM cataloged<br />

Scaphandridae Cylichna occulta UAM cataloged<br />

Scaphandridae Cylichna sp. UAM cataloged<br />

Scaphandridae Cylichna attonsa Jewett samples<br />

Scaphandridae Cylichnella culcitella Jewett samples<br />

Scaphandridae Cylichnella harpa Jewett samples<br />

Scaphandridae Cylichnella sp. Jewett samples<br />

Turridae Kurtziella plumbea Jewett samples<br />

Turridae Taranis strongi Jewett samples<br />

Limnoriidae Limnoria lignorum Jewett samples<br />

Limnoriidae Limnoria Jewett samples<br />

Capitellidae Barantolla americana Jewett samples<br />

Capitellidae Barantolla sp. Jewett samples<br />

Capitellidae Capitella sp. Jewett samples<br />

Capitellidae Capitella capitata Jewett samples<br />

Capitellidae Decamastus sp. Jewett samples<br />

Capitellidae Decamastus sp. Jewett samples<br />

Capitellidae Heteromastus sp. Jewett samples<br />

Capitellidae Heteromastus filliformis Jewett samples<br />

Capitellidae Mediomastus sp. Jewett samples<br />

Capitellidae Notomastus sp. Jewett samples<br />

Nereidae Platynereis bicanaliculata Jewett samples<br />

Polynoidae Harmothoe imbricata Jewett samples<br />

Spionidae Malacoceros sp. Jewett samples<br />

Spionidae Nerine cirratulus Jewett samples<br />

Spionidae Polydora sp. Jewett samples<br />

Spionidae Polydora cf P.bracycephalata Jewett samples<br />

Spionidae Polydora socialis Jewett samples<br />

Spionidae Prionospio cirrifera Jewett samples<br />

Spionidae Prionospio sp. Jewett samples<br />

Spionidae Prionospio steenstrupi Jewett samples<br />

Spionidae Prionospoi malmgreni Jewett samples<br />

Spionidae Pygospio sp. Jewett samples<br />

Spionidae Pygospio elegans Jewett samples<br />

Spionidae Rhynchospio glutaeus Jewett samples<br />

Spionidae Scolelepis sp. Jewett samples<br />

Spionidae Scolelepis squamata Jewett samples<br />

Spionidae Spio cirrifera Jewett samples<br />

Spionidae Spio fillicornis Jewett samples<br />

Spionidae Spio sp. Jewett samples<br />

Spionidae Spiophanes berkeleyorum Jewett samples<br />

Spionidae Spiophanes bombyx Jewett samples<br />

Spionidae Spiophanes sp. Jewett samples


Chapt 9E. Museum, Reference and Voucher Specimens, page 9E- 4<br />

Table 9.E.1. Continued<br />

Spionidae Sternapsis scutata Jewett samples<br />

Syllidae Typosyllis armillaris UAM uncataloged<br />

Syllidae Typosyllis fasciata Jewett samples<br />

Syllidae Typosyllis harti UAM uncataoged<br />

Syllidae Typosyllis sp. UAM uncataoged<br />

Jewett samples<br />

<strong>Biological</strong> Technician Max Hoberg (UAF) used the suspect list to remove 1,154 specimens for<br />

screening: 154 crustaceans, 1081 polychaetes, 307 molluscs, 30 bryozoans. From these,<br />

specimens in the best condition were removed for further study. Thirty-five small crustacea<br />

were loaned to focal taxonomic expert J. Chapman (OSU), and similarly polychaete specimens<br />

were loaned to focal taxonomic expert J. Kudenov (UA Anchorage). Analyses <strong>of</strong> these<br />

specimens (presently on-going) will be reported in the 2000 final report for the University <strong>of</strong><br />

Alaska Sea Grant.<br />

9E3. Results<br />

Mollusc Taxa, including One Known NIS<br />

Most east Pacific records <strong>of</strong> the s<strong>of</strong>t shell clam, Mya arenaria, are the result <strong>of</strong> its<br />

accidental introduction along with Atlantic oysters, starting in San Francisco Bay in 1869, and<br />

Puget Sound in 1888 or 1889. We found that the clam was abundant in mud sediments in<br />

Cordova. We also found it in Port Valdez, Tatitlek, Constantine Harbor, Homer and Seward.<br />

Mya arenaria is also documented in Alaska from Nunivak Island, Norton Sound, and Kodiak<br />

Island (UAM collection records) as well as southeastern Alaska.<br />

Nora Foster examined mollusc specimens from both the EVOS specimens and cataloged<br />

and uncataloged specimens the UA Museum, selecting the following taxa for re-examination:<br />

• small venerids and Turtonia, were examined as possibly misidentified specimens <strong>of</strong> potential<br />

NIS Protamcorbicula amurensis, Venerupsis philipinarium, or Nuttalia obscurata;<br />

• small individuals <strong>of</strong> Musuculus spp. were reexamined as possibly misidentified specimens <strong>of</strong><br />

the potential NIS Musculista stenhousei;<br />

• Cerithiidae were re-examined were reexamined as possibly misidentified specimens <strong>of</strong> the<br />

potential NIS Battilaria;<br />

• Ocenibrina were reexamined as possibly misidentified specimens <strong>of</strong> the potential NIS<br />

Urosalpinx cineria and Ocenebra inornata, two introduced oyster drills; and<br />

• Crepidula specimens were reexamined as possibly misidentified specimens <strong>of</strong> the potential<br />

NIS Crepidula fornicata.<br />

None <strong>of</strong> these potential NIS taxa were found. However, to date it has been possible to examine<br />

carefully only a small subsample <strong>of</strong> the collections, and we are faced with the situation <strong>of</strong> there<br />

being too many samples and too little time.<br />

University <strong>of</strong> Alaska Sea Grant funding for this analysis <strong>of</strong> existing museum and<br />

reference collections continues until June 30, 2000. The goals for this remaining time frame are<br />

to:<br />

• Incorporate information from additional taxonomic experts and ecologists.


Chapt 9E. Museum, Reference and Voucher Specimens, page 9E- 5<br />

• Check database against additional grey literature sources (e.g., O’Clair & Zimerman,1987).<br />

• Add to the database a biogeographical descriptor, indicating whether the PWS record<br />

represents a range extension, and a reference source for the animal’s distribution.<br />

• Publish with J. Goddard an analysis <strong>of</strong> our 1999 collections <strong>of</strong> opisthobranch molluscs <strong>of</strong><br />

Prince William Sound (see also focal taxonomic subsection 9C8 Opisthobranch Molluscs,<br />

above).<br />

• Incorporate <strong>of</strong> additional specimens collected as part <strong>of</strong> this assessment <strong>of</strong> EVOS collections<br />

into the UAM <strong>Aquatic</strong> Collection.<br />

References<br />

Anonymous. 1999. Draft long-term monitoring plan to be presented to trustees. Exxon Valdez<br />

Oil Spill Trustees Council Restoration Update 6 (4): 7.<br />

Austin, W.C. 1985. An annotated checklist <strong>of</strong> marine invertebrates in the <strong>Cold</strong> Temperate<br />

Northeast Pacific. Khoyatan Marine Laboratory, Cowichan Bay, British Columbia. Vols. 1-3.<br />

682 pp.<br />

Banse, K. and K.D. Hobson. 1968. Benthic errantiate polychaetes <strong>of</strong> British Columbia and<br />

Washington. Bull. Fish. Res. Bd. Can. 185: 111 pp.<br />

Barnard, J.L. 1969. The families and genera <strong>of</strong> Marine Gammaridean Amphipoda. Smithsonian<br />

Institution (USNM Bull. 271), Washington. D.C. 535 pp.<br />

Baxter, R. 1987. Mollusks <strong>of</strong> Alaska. Shells and Sea Life. Bayside, California. 163 pp.<br />

Behrens, 1991. Pacific coast nudibranchs; A guide to the Opisthobranchs Alaska to Baja<br />

California. Sea Challengers, Monterey California. 107 pp.<br />

Berkeley, E. and C. Berkeley. 1948. Annelida. Polycheata Errantia. Canadian Pacific Fauna,<br />

9b(1). 111pp.<br />

Berkeley, E. and C. Berkeley. 1952. Annelida. Polycheata Sedentaria. Canadian Pacific Fauna,<br />

9b(1), 139.<br />

Bernard, F.R. 1979. Bivalve mollusks <strong>of</strong> the Western Beaufort Sea. Contrib. Sci.: Natur. Hist.<br />

Mus. Los Angeles County. Los Angeles, California. 313: 1-80.<br />

Blanchard, A. and H.M. Feder. 1997. Reproductive timing and nutritional storage cycles <strong>of</strong><br />

Mytilus trossulus Gould, 1850, in Port Valdez, Alaska, Site <strong>of</strong> a Marine Oil Terminal. Veliger<br />

40(2): 121-130.<br />

Butler, T.H. 1980. Shrimps <strong>of</strong> the Pacific Coast <strong>of</strong> Canada. Can. Bull. Fish. Aquat. Sci., Bull.<br />

202, 280p.<br />

Coan, E.C. Unpublished manuscript.


Chapt 9E. Museum, Reference and Voucher Specimens, page 9E- 6<br />

Cooney, R.T. and K.O. Coyle. 1988. <strong>Water</strong> Column Production. In Environmental Studies in<br />

Port Valdez, Alaska: A Basis for Management. Pages 93-110. D.G. Shaw and M.J. Hameedi<br />

(Eds.). Vol. 24. Springer-Verlag, New York.<br />

Dick, M.H. and J.R.P. Ross. 1988. Intertidal Bryozoa (Cheilostomata) <strong>of</strong> the Kodiak Vicinity,<br />

Alaska. Center for Pacific Northwest Studies, Western Washington University. Occasional Paper<br />

No. 23. Bellingham, Washington. 133p.<br />

D‘yakonov, A.M. 1954. Ophiuroids <strong>of</strong> the USSR Seas. Acad. Sci. USSR. Israel Program<br />

Scient. Transl. (1967), Jerusalem. 123p.<br />

Eyerdam, W. 1924. Marine shells <strong>of</strong> Drier Bay, Knight Island, Prince William Sound, Alaska.<br />

The Nautilus. 38(1):22-28.<br />

Feder, H.M., L.M. Cheek, P. Flannagan, S.C. Jewett, M.H. Johnston, A.S. Naidu, S.A. Norrell,<br />

A.J. Paul, A. Scarborough and D. Shaw. 1976. The sediment environment <strong>of</strong> Port Valdez,<br />

Alaska: The effect <strong>of</strong> oil on this ecosystem. Ecol. Res. Studies. EPA-600/3-76-086, pp322.<br />

Feder, H.M. and B. Bryson-Schwafel. 1988. The Intertidal Zone. In Environmental Management<br />

<strong>of</strong> Port Valdez, Alaska: A Basis for Management. D.G. Shaw and M.J. Hameedi (Eds.).<br />

Vol 24. Springer-Verlag, New York, p117-151.<br />

Feder, H.M. and S.C. Jewett. 1988. The Subtidal Benthos. In Gulf <strong>of</strong> Alaska: Physical<br />

Environment and <strong>Biological</strong> Resources. Pages 347-396. D.W. Hood and S.T. Zimmerman<br />

(Eds.). US Dept. Commerce, OCS Office. MMS 86-0095.<br />

Feder, H.M. and G. Keiser. 1980. Intertidal Biology. In Port Valdez, Alaska: Environmental<br />

Studies 1976-1979. Pages 143-224. J.M. Colonell (Ed.). Occasional Publ. No. 5, Inst. Mar. Sci.,<br />

Univ. <strong>of</strong> Alaska, Fairbanks.<br />

Feder, H.M. and G.E.M. Matheke. 1980. Distribution, adundance, community structure and<br />

tropic structure <strong>of</strong> the benthic infauna <strong>of</strong> the northeast Gulf <strong>of</strong> Alaska. Inst. Mar. Sci. Rept. R78-<br />

8, Univ. <strong>of</strong> Alaska, Fairbanks, 209pp.<br />

Feder, H.M., A.J. Paul and J. McDonald. 1979. A preliminary survey <strong>of</strong> the benthos <strong>of</strong><br />

Resurrection Bay and Aialik Bay, Alaska. Sea Grant Rept. No. 79-9, IMS Rept. R78-7, Inst.<br />

Mar. Sci., Univ. <strong>of</strong> Alaska, Fairbanks, 53pp.<br />

Feder, H.M. and A.J. Paul. 1980. Food <strong>of</strong> the King crab, Paralithodes camtschatica and the<br />

Dungeness crab, Cancer magister in Cook Inlet, Alaska. Proceed. Nat. Shellfish. Assoc. 70:240-<br />

246.<br />

Foster, N.R. 1987. Hermaea vancouverensia O’Donoghue, 1924 from Kodiak Island and Unga<br />

Island, Alaska. Veliger. 30(1):98.


Chapt 9E. Museum, Reference and Voucher Specimens, page 9E- 7<br />

Foster, N.R. 1991. Intertidal Bivalves: A Guide to the Common Marine Bivalves <strong>of</strong> Alaska.<br />

University <strong>of</strong> Alaska Press, Fairbanks. 152p.<br />

Hart, J.F.L. 1968. Crab-like Anomura and Brachyura (Crustacea: Decapoda) from southeastern<br />

Alaska and Prince William Sound. Nat. Mus. Can. Nat Hist. Papers. 38:6.<br />

Hart, J.F.L. 1982. Crabs and their relatives <strong>of</strong> British Columbia. British Columbia Provincial<br />

Museum, Victoria. 40: 267p.<br />

Haven, S. B. 1971. Effect <strong>of</strong> land-level changes on intertidal invertebrates, with discussion <strong>of</strong><br />

post-earthquake ecological succession. The great Alaska earthquake <strong>of</strong> 1964: Biology. National<br />

Academy <strong>of</strong> Sciences. pp82-125.<br />

Hoberg, M.K. 1986. A numerical analysis <strong>of</strong> the benthic infauna <strong>of</strong> three bays in Prince William<br />

Sound, Alaska. Dept. Biology. Humboldt State University, Arcata, California. 153p.<br />

Hobson, K.D. and K. Banse. 1981. Sedentariate and Archiannelid polychaetes <strong>of</strong> British<br />

Columbia and Washington. Can. Bull. Fish. Aquat. Sci. 209: 144p.<br />

Jewett, S.C. and H.M. Feder. 1977. Biology <strong>of</strong> the Harpacticoid copepod, Harpacticus uniremis<br />

Kroyer on Dayville Flats, Port Valdez, Alaska. Ophelia. 16(1):111-119.<br />

Kluge, G.A. 1962. Bryozoa <strong>of</strong> the northern seas <strong>of</strong> the USSR. Smithsonian Institution and the<br />

National Science Foundation (transl., 1975), TT 72-52010. Amerind Publishing Co. Pvt. Ltd.,<br />

New Delhi. 711p.<br />

Kozl<strong>of</strong>f, E.N. 1987. Marine Invertebrates <strong>of</strong> the Pacific Northwest. University <strong>of</strong> Washington<br />

Press, Seattle. 511p.<br />

Lambert, P. 1981. The Sea Stars <strong>of</strong> British Columbia. British Columbia Provincial, Victoria. 39:<br />

152p.<br />

Lambert, P. 1997. Sea Cucumbers <strong>of</strong> British Columbia, Southeast Alaska and Puget Sound.<br />

UBC Press. Vancouver, British Columbia. 166p.<br />

Lee, R.S. and N.R. Foster. 1985. A distributional list with range extensions <strong>of</strong> the opisthobranch<br />

gastropods <strong>of</strong> Alaska. Veliger. 27(4):440-448.<br />

Millen, S. 1985. The nudibranch genera Onchidoris and Diaphorodoris (Mollusca,<br />

Opisthobranchia) in the northeastern Pacific. Veliger. 28(1):80-93.<br />

Millen, S. 1987. The nudibranch genus Adalaria with a description <strong>of</strong> a new species from the<br />

northeastern Pacific. Can. J. Zool. 65:2696-2702.


Chapt 9E. Museum, Reference and Voucher Specimens, page 9E- 8<br />

O’Clair, C. E. , and S. T. Zimmerman. 1987, Biogeography and ecology <strong>of</strong> intertidal and subtidal<br />

communities. Chapter 11, pp. 305-337. In The Gulf <strong>of</strong> Alaska: Physical environment and<br />

biological resources. OCS study MMS-96-0095.<br />

Pavlovskii, E.N. 1955. Atlas <strong>of</strong> the Invertebrates <strong>of</strong> the Far Eastern Seas <strong>of</strong> the USSR. Acad. Sci.<br />

USSR, Zool. Inst. Israel Program Scient. Transl. (1966), Jerusalem. 457p.<br />

Paul, A.J. and H.M. Feder. 1973. Growth, recruitment and distribution <strong>of</strong> the Littleneck clam,<br />

Protothaca staminea, in Galena Bay, Prince William Sound, Alaska. Fishery Bull. 71(3):665-<br />

677.<br />

Scheel, D., N.R. Foster and K.R. Hough. 1997. Habitat and <strong>Biological</strong> Assessment Shepard Point<br />

Road and Project. Final Rept. Prince William Sound Science Center. Cordova, Alaska.<br />

www.pwssc.gen.ak/~shepard.<br />

Ruiz, G.M. and A.H. Hines. 1997. The risk <strong>of</strong> nonindigenous species invasion in Prince William<br />

Sound associated with oil tanker traffic and ballast water management: Pilot study. Technical<br />

Report , Regional Citizens’ Advisory Council <strong>of</strong> Prince William Sound, 80 p.<br />

Schultz, G.A. 1969. The Marine Isopod Crustaceans. Wm. C. Brown Company. Dubuque, Iowa.<br />

359p.<br />

Schuster, R.O. and A.A. Grigarick. 1965. Taridigrada from Western North America: with<br />

emphasis on the fauna <strong>of</strong> California. Univ. Calif. Publ. Zool., Berkeley. 76: 67p.<br />

Squires, J.J. and A.F.G. Figueria. 1974. Shrimps and shrimp-like Anomura (Crustacea:<br />

Decapoda) from southeastern Alaska and Prince William Sound. Publ. Biol. Oceanogr. Nat.<br />

Mus. Can. 6:23.<br />

Stoker, S.W. 1978. Benthic invertebrate macr<strong>of</strong>auna <strong>of</strong> the eastern continental shelf <strong>of</strong> the<br />

Bering/Chukchi Seas. Ph.D. Disseration. Inst. Mar. Sci., Univ. Alaska, Fairbanks, 259p.<br />

Ushakov, P.V. 1955. Polychaeta <strong>of</strong> the Far Eastern Seas <strong>of</strong> the USSR. Acad. Sci. USSR. Israel<br />

Program Scient Transl. (1965), Jerusalem. 419p.


Chapt 10. Biodiversity, page 10- 1<br />

Chapter 10. Biodiversity <strong>of</strong> Prince William Sound<br />

Nora Foster, University <strong>of</strong> Alaska Museum<br />

Howard M. Feder, Institute <strong>of</strong> Marine Sciences, University <strong>of</strong> Alaska Fairbanks<br />

10A. Summary<br />

Basic taxonomic, biogeographic, and habitat information for 1876 species <strong>of</strong> marine<br />

plants and animals <strong>of</strong> Prince William Sound were compiled into structured data sets. This species<br />

inventory is intended as a baseline from which biodiversity responses to future environmental<br />

changes can be assessed measured. The data sets include 39 possibly undescribed species, 89<br />

range extensions, and 17 nonindigenous species. Two hundred thirty-one marine plant species,<br />

mostly algae, are present. Twenty invertebrate phyla are represented, and Annelida, Mollusca,<br />

and Crustacea account for over 60% <strong>of</strong> the invertebrates. Vertebrates include 175 fish, 14<br />

mammal, and 113 bird species. The fauna and flora <strong>of</strong> Prince William Sound is a mixture <strong>of</strong><br />

species with biogeographic affinities that overlap the northeastern and northwestern Pacific as<br />

well as the Arctic and Atlantic regions.<br />

10B. Purpose<br />

A single inventory <strong>of</strong> Prince William Sound biodiversity is currently lacking. This gap in<br />

taxonomic and biogeographic knowledge is an impediment to efforts to monitor environmental<br />

change, to understand the diversity <strong>of</strong> plant and animal life and to clarify biogeographic<br />

relationships among the living organisms in the rich waters <strong>of</strong> Prince William Sound and the<br />

adjacent shelf <strong>of</strong> the northern Gulf <strong>of</strong> Alaska. (Hines et al. 2000) The purpose <strong>of</strong> this report is to<br />

compile a database for the plant and animal species <strong>of</strong> Prince William Sound. The project is one<br />

component <strong>of</strong> a research project on potential introductions <strong>of</strong> nonindigenous species into Prince<br />

William Sound, especially through the discharge <strong>of</strong> ballast water from oil tankers traveling into<br />

Port Valdez. Annotated species lists were developed for the project to help taxonomic experts<br />

establish a current baseline for the status <strong>of</strong> nonindigenous species in Prince William (Hines et<br />

al. 2000).<br />

Working versions <strong>of</strong> the data sets were compiled by M. Fry and expanded by N. Foster<br />

with assistance by M. Hoberg, and review by K. Coyle (zooplankton), J. Goddard<br />

(opisthobranch gastropods), J. Kudenov (polychaete annelids), G. Lambert (urochordates), P.<br />

Lambert (echinoderms), C. Mecklenberg (fishes), C. Mills (Cnidaria and Ctenophora), J.<br />

Norenburg (nemerteans) and others. Additional polychaete identifications were accomplished for<br />

this report by J. Kudenov. The draft versions <strong>of</strong> the data sets were included in the final project<br />

report (Hines et al. 2000).<br />

10C. Scope<br />

Taxonomic<br />

The data sets list free-living macrophytes and animals . Protists and most endoparasites<br />

are outside the scope <strong>of</strong> the project.<br />

Geographic<br />

Prince William Sound waters are well-defined We have used literature and collecting<br />

records from Port Bainbridge east to Orca Inlet, and south and east to the outer coasts <strong>of</strong>


Chapt 10. Biodiversity, page 10- 2<br />

Montague and Hinchinbrook islands. However, for some taxa, (e.g. Bryozoa), the fauna <strong>of</strong><br />

adjacent areas (northeastern Gulf <strong>of</strong> Alaska and Kodiak Island waters) are better documented and<br />

some records for those areas are included. Migratory birds and marine mammals that inhabit<br />

Prince William Sound waters seasonally are included in the data set. Planktonic Cnidaria and<br />

Crustacea from the northern Gulf <strong>of</strong> Alaska listed in the data sets occur in Prince William Sound<br />

rarely, with their presence dependent on oceanographic conditions.<br />

10D. Methods<br />

Literature sources<br />

A large number <strong>of</strong> species included in the data sets are based on their listing in the<br />

environmental surveys <strong>of</strong> the Gulf <strong>of</strong> Alaska, Prince William Sound, and Port Valdez in the late<br />

1970’s and early 80’s. We compiled species lists from Cooney et al. (1973) and Cooney and<br />

Coyle (1988):plankton, Feder et al. (1976):sediments, Feder and Bryson-Schwafel (1988):the<br />

intertidal zone, Feder and Jewett(1987):subtidal benthos, Feder and Keiser (1980):intertidal<br />

biology, Feder and Matheke (1980):benthic infauna, Feder et al. (1979):benthos <strong>of</strong> Resurrection<br />

and Aialik bays, Feder and Paul (1973):the intertidal zone, Feder and Paul (1980):Cook Inlet,<br />

Hoberg (1986):benthic infauna, Jewett and Feder (1977):Port Valdez, and Rogers et al.<br />

(1986):nearshore fishes.<br />

Species names from field guides and taxonomic revisions <strong>of</strong> characteristic northeastern<br />

Pacific taxa have been added, for example Banse and Hobson (1968) (benthic errantiate<br />

polychaetes), Barnard (1969) (gammaridean amphipods), Butler (1980) (shrimp), Coan et al.<br />

(2000) (bivalve mollusks), Dick and Ross (1988) (Bryozoa), Lambert (1981, 1997) (sea stars and<br />

sea cucumbers), and Schultz (1969) (isopods). For detailed information on the geographical<br />

ranges, we have relied on the same taxonomic revisions and regional publications. However, this<br />

information in a consistent format has been difficult to obtain for many species. When specific<br />

reference to a species’ occurrence in Prince William Sound was not available, we used Austin<br />

(1985). We have also deleted inaccurate records that have crept into the literature, and have<br />

made changes in nomenclature based on reviews and taxonomic revisions accomplished after<br />

the environmental surveys mentioned above.<br />

Biogeographic analyses presented here use conventions based on a global system<br />

developed by the World Conservation Union and described in Kelleher et al. (1995) (Figures<br />

10.1 and 10.2). The biogeographic summaries are based on numbers <strong>of</strong> species for which we<br />

have confident identifications, leaving out unidentified or undescribed species. Some <strong>of</strong> the<br />

analyses exclude birds, because the migratory habits <strong>of</strong> some species fit poorly into the<br />

bioregional classification used for algae, invertebrates and fishes.


Chapt 10. Biodiversity, page 10- 3<br />

Figure 10.1. Biogeographic areas <strong>of</strong> the North Pacific.<br />

Figure 10.2. Biogeographic areas <strong>of</strong> the North Atlantic.


Chapt 10. Biodiversity, page 10- 4<br />

Specimens and observations<br />

The second major source for names <strong>of</strong> Prince William Sound species is the collections <strong>of</strong><br />

the University <strong>of</strong> Alaska Museum (UAM). Names <strong>of</strong> algae, mollusks, bryozoans, and fishes were<br />

entered from specimen catalogues. Voucher specimens for many <strong>of</strong> the species listed in the<br />

environmental studies are in the UAM <strong>Aquatic</strong> Collection, but may not be catalogued. A large<br />

number <strong>of</strong> specimens was also collected in 1990-1995 by Dr. Stephen Jewett as part <strong>of</strong> damage<br />

assessment after the 1989 Exxon Valdez oil spill. While not accessioned into the UAM, these<br />

specimens were available for this study . Each species entry should be traceable to a specimen<br />

identified to the species level by an expert. Citing specimens from other museum collections,<br />

however, goes beyond the scope <strong>of</strong> the project.<br />

Rapid community assessments, focal taxonomic collections, and fouling plate surveys in<br />

Prince William Sound in 1998 and 1999 were intended to detect well-established nonindigenous<br />

species, especially in areas at risk for invasion (Hines and Ruiz 2000). Taxonomic experts who<br />

participated in the field work in Prince William Sound and the Kenai Peninsula contributed<br />

names and distribution information for marine plants (G. Hansen), Cnidaria and Ctenophora (C.<br />

Mills), opisthobranch gastropods (J. Goddard), polychaete annelids (J. Kudenov), Crustacea (J.<br />

Chapman and J. Cordell), Bryozoa (J. Winston), and urochordates (G. and C. Lambert).<br />

Results<br />

The data sets<br />

The data sets comprising the bulk <strong>of</strong> this report are in the form <strong>of</strong> separate Excel<br />

worksheets for algae and vascular plants, Cnidaria and Ctenophora, Annelida, Mollusca,<br />

Arthropoda , Bryozoa, Echinodermata, miscellaneous invertebrate taxa, fishes, birds, mammals<br />

(Tables 10.1 – 10.11). Data are presented in tabular form, one species per row.<br />

The following data fields, as columns, are common to all data sets:<br />

• Family, Genus, Species<br />

An attempt has been made to use the currently accepted name<br />

• Other Name<br />

The column contains family, genus or species names under which the taxon has<br />

appeared in the cited literature, museum catalogs, or specimens labels, which may not<br />

reflect revisions made in the past 20 years.<br />

• A Source for the name<br />

UAM specimen available in the University <strong>of</strong> Alaska Museum <strong>Aquatic</strong> Collection<br />

EVOS specimen archived as part <strong>of</strong> Exxon Valdez oil spill damage assessment studies<br />

Other sources are in Literature Cited section <strong>of</strong> this report.<br />

• Habitat<br />

For most invertebrates the following conventions are used:<br />

I intertidal Inf infauna P plankton<br />

ST subtidal Epi epifauna


Chapt 10. Biodiversity, page 10- 5<br />

Abbreviations used in the fish, bird and mammal sections will be given with the<br />

Summary Information for those taxa.<br />

• Bioregion<br />

An “x” marks the presence <strong>of</strong> a species in the large scale bioregions: Northwestern<br />

Pacific (NWP), Arctic (AR), and Northeastern Atlantic (NWA) (Figures 1, 2).<br />

Occurrence <strong>of</strong> each species with in the northeastern Pacific bioregion is further<br />

designated by Roman numerals denoting a small scale bioregion (Figure 3).<br />

• Origin<br />

For species that represent a new collecting record or nonindigenous species, “origin”<br />

indicates the area closest to Prince William Sound from which the species is likely to<br />

have spread.<br />

• NIS status<br />

nr<br />

NR<br />

C<br />

definite<br />

possible<br />

range extension within Alaska to Prince William Sound<br />

new record for Alaska<br />

cryptogenic<br />

definite nonindigenous species<br />

likely a nonindigenous species<br />

• Reference to Distribution<br />

Literature source for distributional information.<br />

Summary information for major taxa<br />

Marine Plants<br />

Red, brown, and green algae account for over 90% <strong>of</strong> the 231 marine plants listed in the<br />

data set (Table 10.1). Ten taxa could not be determined to the species level. The non-vascular<br />

plant species lists is based on G. Hansen’s (2000) report and cataloged UAM specimens. Records<br />

<strong>of</strong> Chrysophyta and Ascomycota are based on Feder and Keiser 1980, and Feder and Bryson-<br />

Schwafel 1988. Additional distribution information is derived from Scagel et al. 1986 and<br />

Lindstrom 1977. Ten vascular plants species are included. The surfgrasses and eelgrass are<br />

obvious vascular plants, but a few other species are included because <strong>of</strong> their presence in the<br />

upper intertidal and splash zones. Sources used are Scheel et al. 1997; Hulten 1968, and Hansen<br />

2000. Hansen (2000) found 17 new distributional records for marine plants in Prince William<br />

Sound. There is one undescribed species, a Coilodesme and six species are possibly introduced.


Chapt 10. Biodiversity, page 10- 6<br />

Table 10.1. Marine plants.<br />

BIOREGION<br />

SPECIMEN or<br />

SOURCE<br />

COMMUNI<br />

TY NEP NWP AR NWA ORIGIN<br />

NIS<br />

STATUS<br />

REFERENCE to<br />

DISTRIBUTION<br />

PHYLUM FAMILY GENUS SPECIES OTHER NAMES<br />

Feder and Bryson-<br />

Ascomycota Verrucaricaea Verrucaria mucosa<br />

Schwafel 1988 I II III IV x x C Hansen 2000<br />

Ascomycota Verrucaricaea Verrucaria maura Hansen 2000 I II III IV x x C Hansen 2000<br />

Chlorophyta Acrosiphoniaceae Acrosiphonia saxitilis Spongomorpha Hansen 2000 I II III IV x Hansen 2000<br />

Chlorophyta Acrosiphoniaceae Acrosiphonia arcta Hansen 2000 I II III IV x x C Hansen 2000<br />

Chlorophyta Acrosiphoniaceae Acrosiphonia coalita Hansen 2000 I II III IV Hansen 2000<br />

Chlorophyta Acrosiphoniaceae Urospora penicilliformis Hansen 2000 I x x x x C Hansen 2000<br />

Chlorophyta Capsosiphonaceae Capsosiphon fulvescens Hansen 2000 I II III IV x x BC NR, C Hansen 2000<br />

Chlorophyta Chlorocystidaceae Halochlorococcum moorei Hansen 2000 I II III IV x x BC NR, C Hansen 2000<br />

Chlorophyta Cladophoraceae Chaetomorpha capillaris/ cannabina Hansen 2000 I II III IV x x Hansen 2000<br />

Chlorophyta Cladophoraceae Chaetomorpha recurva Hansen 2000 I II III IV WA NR Hansen 2000<br />

Chlorophyta Cladophoraceae Cladophora sericea C. gracilis Hansen 2000 I II III IV x C Hansen 2000<br />

Chlorophyta Cladophoraceae Cladophora albida Hansen 2000 I II III IV x x C Hansen 2000<br />

Chlorophyta Cladophoraceae Cladophora hutchinsiae Hansen 2000 I II III IV x x C Hansen 2000<br />

Chlorophyta Cladophoraceae Cladophora stimpsonii Hansen 2000 I II III IV Hansen 2000<br />

Chlorophyta Cladophoraceae Rhizoclonium implexum R. implexum Hansen 2000 I x x x x C Hansen 2000<br />

Chlorophyta Cladophoraceae Rhizoclonium riparium Hansen 2000 I x x x x C Hansen 2000<br />

Chlorophyta Cladophoraceae Rhizoclonium tortuosum Hansen 2000 I x x x x C Hansen 2000<br />

Chlorophyta Codiaceae Codium fragile subsp. fragile Hansen 2000 I II III IV V VI SE Alaska nr Hansen 2000<br />

Chlorophyta Codiaceae Codium<br />

fragile subsp.<br />

tomentosoides fragile Hansen 2000 I x x x x WA probable Hansen 2000<br />

Chlorophyta Collinsiellaceae Collinsiella tuberculata<br />

Feder and Bryson-<br />

Schwafel 1988 I II III IV Scagel et al. 1986<br />

Chlorophyta Gayraliaceae Gayralia oxyspermum Hansen 2000 I II III IV x x C Hansen 2000<br />

Chlorophyta Monostromataceae Monostroma fractum Hansen 2000 I II III IV WA NR Hansen 2000<br />

Chlorophyta Monostromataceae Monostroma grevillei/arcticum M. arcticum Hansen 2000 I II III IV x x C Hansen 2000<br />

Chlorophyta Ulotrichaceae Ulothrix flacca U. pseud<strong>of</strong>lacca<br />

Feder and Bryson-<br />

Schwafel 1988 I II III IV x x C Scagel et al. 1986<br />

Chlorophyta Ulotrichaceae Ulothrix implexa ( non flacca) Hansen 2000 I II III IV x x C Scagel et al. 1986<br />

Chlorophyta Ulvaceae Blidingia chadefauldi Hansen 2000 I x x x C Hansen 2000<br />

Chlorophyta Ulvaceae Blidingia marginata Hansen 2000 I x x x x BC NR, C Hansen 2000<br />

Chlorophyta Ulvaceae Blidingia minima Hansen 2000 I x x x x C Hansen 2000<br />

Chlorophyta Ulvaceae Blidingia subsalsa Hansen 2000 I II III IV x x C Hansen 2000<br />

Chlorophyta Ulvaceae Enteromorpha compressa<br />

Feder and Bryson-<br />

Schwafel 1988 I x x x x C Scagel et al. 1986<br />

Chlorophyta Ulvaceae Enteromorpha clathrata E. crinita Hansen 2000 I x x x x C Scagel et al. 1986<br />

Chlorophyta Ulvaceae Enteromorpha intestinalis Hansen 2000 I x x x x C Hansen 2000<br />

Chlorophyta Ulvaceae Enteromorpha linza Hansen 2000 I x x x x C Hansen 2000<br />

Chlorophyta Ulvaceae Enteromorpha prolifera/torta Hansen 2000 I x x x x C Hansen 2000<br />

Chlorophyta Ulvaceae Kornmannia leptoderma Hansen 2000 I/epilithic II III IV x x North Atlantic NR, C Hansen 2000


Chapt 10. Biodiversity, page 10- 7<br />

Table 10.1. Continued.<br />

BIOREGION<br />

PHYLUM FAMILY GENUS SPECIES OTHER NAMES<br />

SPECIMEN or<br />

SOURCE<br />

COMMUNI<br />

TY NEP NWP AR NWA ORIGIN<br />

NIS<br />

STATUS<br />

REFERENCE to<br />

DISTRIBUTION<br />

Chlorophyta Ulvaceae Kornmannia zostericola Hansen 2000 I/epiphytic II III IV x x C Hansen 2000<br />

Feder and Bryson-<br />

Chlorophyta Ulvaceae Ulva fenestrata U. lactuca Schwafel 1988 I II III IV x Scagel et al. 1986<br />

fenestrata/expansa/<br />

Chlorophyta Ulvaceae Ulva<br />

lactuca Hansen 2000 I x x x x C Hansen 2000<br />

Chlorophyta Ulvaceae Ulvaria obscura<br />

Monostroma<br />

fuscum Hansen 2000 I II III IV x x C Hansen 2000<br />

Chlorophyta Ulvellaceae Ulvella setchelli Hansen 2000<br />

I/epiphytic/e<br />

ndophytic II III IV V VI x C Hansen 2000<br />

Chlorophyta Cladophoraceae Percursaria percursa Hansen 2000 brack/I x x x x C Hansen 2000<br />

Cyanophyta Calothryx crustacea Hansen 2000 I x x x x C Hansen 2000<br />

Cyanophyta Rivularia atra Hansen 2000 I x x x x C Hansen 2000<br />

Phaeophyta Alariaceae Alaria prelonga/marginata Hansen 2000 I/ST II III IV V x Hansen 2000<br />

Phaeophyta Alariaceae Alaria<br />

taeniata/augusta/<br />

crispa Hansen 2000 I/ST II III IV x Hansen 2000<br />

Phaeophyta Alariaceae Alaria<br />

tenuifolia/pylaii/<br />

membranacea Hansen 2000 I/ST II III IV x Hansen 2000<br />

Phaeophyta Chordaceae Chorda filum Hansen 2000 I/ST II III IV x x Hansen 2000<br />

Phaeophyta Chordariacea Chordaria flagelliformis Hansen 2000 I/ST II III IV x x x C Hansen 2000<br />

Phaeophyta Chordariacea Chordaria gracilis Hansen 2000 I/ST II III IV x C Hansen 2000<br />

Phaeophyta Chordariaceae Eudesme virescens Hansen 2000 I II III IV x x Hansen 2000<br />

Phaeophyta Chordariaceae Saundersella simplex UAM I/epiphytic II III IV x Scagel et al. 1986<br />

Phaeophyta Coilodesmaceae Coilodesme bulligera C. polygnampta Hansen 2000 I II III IV x x C Hansen 2000<br />

Phaeophyta Coilodesmaceae Coilodesme californica Hansen 2000<br />

I/ST/<br />

epiphytic II III IV V VI Hansen 2000<br />

Phaeophyta Coilodesmaceae Coilodesme undescribed Hansen 2000 I II III x Hansen 2000<br />

Phaeophyta Cystoseiraceae Cystoceria germinata Hansen 2000 I/ST II III IV x Hansen 2000<br />

Phaeophyta Desmarestiaceae Desmarestia lingulata UAM I/ST II III IV V VI Scagel et al. 1986<br />

Phaeophyta Desmarestiaceae Desmarestia viridis D. media UAM I/ST II III IV V VI x x C Scagel et al. 1986<br />

Phaeophyta Desmarestiaceae Desmarestia viridis Hansen 2000 I/ST II III IV V VI x x Hansen 2000<br />

Phaeophyta Desmarestiaceae Desmarestia aculeata D. intermedia UAM I/ST II III IV x x C Hansen 2000<br />

Phaeophyta Dictyosiphonaceae Dictyosiphon foeniculaceus Hansen 2000 I II III IV x x C Hansen 2000<br />

Phaeophyta Dictyosiphonaceae Dictyosiphon sinicola UAM I II III IV Scagel et al. 1986<br />

Phaeophyta Ectocarpaceae Ectocarpus parvus Hansen 2000 I II III IV V VI Hansen 2000<br />

Phaeophyta Ectocarpaceae Ectocarpus siliculosus Hansen 2000 I x x x x C Hansen 2000<br />

Phaeophyta Ectocarpaceae Ectocarpus acutus Hansen 2000 I II III IV V BC nr Hansen 2000<br />

Phaeophyta Ectocarpaceae Ectocarpus dimorpha E. dimorphus Hansen 2000 I II III IV V BC nr Hansen 2000<br />

Phaeophyta Ectocarpaceae Ectocarpus sp. (Acinetospora) Hansen 2000 I II III IV V Hansen 2000<br />

Phaeophyta Ectocarpaceae Pilayella littoralis Hansen 2000 I x x x x Hansen 2000


Chapt 10. Biodiversity, page 10- 8<br />

Table 10.1. Continued.<br />

BIOREGION<br />

SPECIMEN or<br />

SOURCE<br />

COMMUNI<br />

TY NEP NWP AR NWA ORIGIN<br />

NIS<br />

STATUS<br />

REFERENCE to<br />

DISTRIBUTION<br />

PHYLUM FAMILY GENUS SPECIES OTHER NAMES<br />

littoralis/<br />

Phaeophyta Ectocarpaceae Pilayella<br />

washingtoniensis Hansen 2000 I x x x x C Hansen 2000<br />

Phaeophyta Ectocarpaceae Pilayella unidentified Hansen 2000 I/epiphytic II Hansen 2000<br />

Phaeophyta Ectocarpiaceae Spongonema tomentosum Hansen 2000 I/epiphytic II III IV V VI x x x C Hansen 2000<br />

Phaeophyta Elachistaceae Elachista fucicola Hansen 2000 I/epiphytic II III IV V x x Hansen 2000<br />

Phaeophyta Elachistaceae Elachista lubrica Hansen 2000 I/epiphytic II III x x Hansen 2000<br />

gardneri/distichus/<br />

Phaeophyta Fucaceae Fucus<br />

evanensis Hansen 2000 I II III IV V C Hansen 2000<br />

Phaeophyta Fucaceae Fucus cottoni Hansen 2000 I II III IV x x North Atlantic probable Hansen 2000<br />

Phaeophyta Fucaceae Fucus spiralis UAM I II III IV C Hansen 2000<br />

Phaeophyta Heterochordariaceae Analipus japonicus UAM I II III IV V x Scagel et al. 1986<br />

Phaeophyta Laminariaceae Agarum clathratum (cribrosum) Hansen 2000 ST II III IV x x C Hansen 2000<br />

Phaeophyta Laminariaceae Costaria costata Hansen 2000 I II III IV x Hansen 2000<br />

Phaeophyta Laminariaceae Cymathere triplicata Hansen 2000 ST II III IV x Hansen 2000<br />

Phaeophyta Laminariaceae Hedophyllum sessile UAM I II III IV V Scagel et al. 1986<br />

Phaeophyta Laminariaceae Laminaria groenlandica<br />

Feder and Bryson-<br />

Schwafel 1988 I/ST II III IV Scagel et al. 1986<br />

"groenlandica"/<br />

Phaeophyta Laminariaceae Laminaria<br />

bongardiana Hansen 2000 ST II III IV x x Hansen 2000<br />

Phaeophyta Laminariaceae Laminaria dentigera UAM ST II III IV x Scagel et al. 1986<br />

Phaeophyta Laminariaceae Laminaria longipes UAM I/ST II III IV x Scagel et al. 1986<br />

Phaeophyta Laminariaceae Laminaria yezoensis Hansen 2000 I II III IV x Hansen 2000<br />

Phaeophyta Laminariaceae Laminaria saccharina Hansen 2000 I II III IV x x C Hansen 2000<br />

Phaeophyta Laminariaceae Pleurophycus gardneri UAM ST II III IV V Scagel et al. 1986<br />

Phaeophyta Leathesiaceae Leathesia difformis<br />

Feder and Bryson-<br />

Schwafel 1988 I x x x x C Scagel et al. 1986<br />

Phaeophyta Leathesiaceae Leathesia nana Hansen 2000 I II III IV V VI Hansen 2000<br />

II III IV V VI<br />

Phaeophyta Lessoniaceae Macrocystis integrifolia UAM ST VII VIII IX SE Alaska definate Hansen 2000<br />

Phaeophyta Lessoniaceae Nereocystis leutkeana UAM ST II III IV V Scagel et al. 1986<br />

Phaeophyta Punctariaceae Delamarea attenuata Hansen 2000 I II III IV x x<br />

Commander<br />

Islands NR, C Hansen 2000<br />

Feder and Bryson-<br />

Phaeophyta Punctariaceae Myelophycus intestinalis Melanosiphon Schwafel 1988 I II III IV x x C Scagel et al. 1986<br />

latifolia<br />

Phaeophyta Punctariaceae Punctaria<br />

(Desmotrichium) Hansen 2000 ST II III IV x x SE Alaska nr Hansen 2000<br />

Phaeophyta Punctariaceae Punctaria lobata Hansen 2000<br />

E/ST/<br />

epiphytic II III IV Hansen 2000<br />

Phaeophyta Punctariaceae Punctaria plantagenea Hansen 2000 I II III IV x x Japan NR, C Hansen 2000


Chapt 10. Biodiversity, page 10- 9<br />

Table 10.1. Continued.<br />

BIOREGION<br />

PHYLUM FAMILY GENUS SPECIES OTHER NAMES<br />

SPECIMEN or<br />

SOURCE<br />

COMMUNI<br />

TY NEP NWP AR NWA ORIGIN<br />

NIS<br />

STATUS<br />

REFERENCE to<br />

DISTRIBUTION<br />

Phaeophyta Punctariaceae Punctaria tenuimissima Hansen 2000 I II III IV x x C Hansen 2000<br />

Phaeophyta Punctariaceae Soranthera ulvoidea Hansen 2000 I II III IV x Hansen 2000<br />

Phaeophyta Punctariaceae Soranthera ulvoidea f. difformis Hansen 2000 I/epiphytic II III IV x Hansen 2000<br />

Phaeophyta Ralfsiaceae Microspongium globosum Hansen 2000 I/epiphytic II III IV x x Japan probable Hansen 2000<br />

Phaeophyta Ralfsiaceae Ralfsia fungiformis Hansen 2000 I II III IV x x C Hansen 2000<br />

Phaeophyta Scytosiphonaceae Colpomenia peregrina Hansen 2000 I x x x x C Hansen 2000<br />

Phaeophyta Scytosiphonaceae Colpomenia bullosa Hansen 2000 I/epiphytic II III IV x Hansen 2000<br />

Phaeophyta Scytosiphonaceae Petalonia fascia Hansen 2000 I/ST x x x x Hansen 2000<br />

Phaeophyta Scytosiphonaceae Scytosiphon lomentaria<br />

Feder and Bryson-<br />

Schwafel 1988 I x x x x Scagel et al. 1986<br />

Phaeophyta Scytosiphonaceae Scytosiphon simplicissima Hansen 2000 I x x x x C Hansen 2000<br />

Phaeophyta Sphacelariaceae Sphacelaria racemosa Hansen 2000 I/ST II III IV x x C Hansen 2000<br />

Phaeophyta Sphacelariaceae Sphacelaria rigidula Hansen 2000 I x x x x C Hansen 2000<br />

Rhodophyta Acrochaetiaceae Acrochaetium unidentified UAM I C<br />

Rhodophyta Acrochaetiaceae Audouienlla membranaceum<br />

Rhodochorton<br />

membranaceum UAM I x x x x C Scagel et al. 1986<br />

Rhodophyta Acrochaetiaceae Audouinella purpurea Hansen 2000 I x x x x C Hansen 2000<br />

Rhodophyta Bangiaceae Bangia atropurpurea Hansen 2000 I x x x x C Hansen 2000<br />

Rhodophyta Bangiaceae Porphyra cuneiformis Hansen 2000 I/ST II III IV Hansen 2000<br />

Rhodophyta Bangiaceae Porphyra miniata Hansen 2000 I/ST II III IV x x<br />

Commander<br />

Islands NR Hansen 2000<br />

Rhodophyta Bangiaceae Porphyra mumfordii Hansen 2000 I/ST II III IV Hansen 2000<br />

Rhodophyta Bangiaceae Porphyra nereocystis Hansen 2000<br />

ST/<br />

epiphytic II III IV Hansen 2000<br />

Rhodophyta Bangiaceae Porphyra perforata Hansen 2000 I II III IV x Hansen 2000<br />

Rhodophyta Bangiaceae Porphyra purpureo-violacea Hansen 2000 I/ST II III IV x x North Atlantic NR, C Hansen 2000<br />

Rhodophyta Bangiaceae Porphyra rediviva Hansen 2000 I II III IV WA NR Hansen 2000<br />

Rhodophyta Bangiaceae Porphyra cf. P. thuretti<br />

Feder and Bryson-<br />

Schwafel 1988 I II III IV Scagel et al. 1986<br />

Rhodophyta Bangiaceae Porphyra torta/abbottae Hansen 2000 I II III IV x Hansen 2000<br />

Rhodophyta Ceramiaceae Antithamnion dendroideum UAM ST<br />

II III IV V VI<br />

VII VIII IX Scagel et al. 1986<br />

Rhodophyta Ceramiaceae Antithamnionella pacifica Hansen 2000<br />

ST/<br />

epiphytic II III IV Hansen 2000<br />

Rhodophyta Ceramiaceae Antithamnionella spiriographidis Hansen 2000 I II III IV x x x C Scagel et al. 1986<br />

Rhodophyta Ceramiaceae Callithamnion acutum Hansen 2000 I II III IV Hansen 2000<br />

Rhodophyta Ceramiaceae Callithamnion pikeanum v. laxum Hansen 2000 I II III IV Hansen 2000<br />

Rhodophyta Ceramiaceae Callithamnion pikeanum v. pikeaum Hansen 2000 I II III IV Hansen 2000


Chapt 10. Biodiversity, page 10- 10<br />

Table 10.1. Continued.<br />

BIOREGION<br />

SPECIMEN or<br />

SOURCE<br />

COMMUNI<br />

TY NEP NWP AR NWA ORIGIN<br />

NIS<br />

STATUS<br />

REFERENCE to<br />

DISTRIBUTION<br />

PHYLUM FAMILY GENUS SPECIES OTHER NAMES<br />

Feder and Bryson-<br />

Rhodophyta Ceramiaceae Callophyllis unidentified<br />

Schwafel 1988 I II III IV<br />

Rhodophyta Ceramiaceae Ceramium gardneri Hansen 2000 I II III IV Hansen 2000<br />

pacificum/<br />

Rhodophyta Ceramiaceae Ceramium<br />

washingtoniensis Hansen 2000 I II III IV Hansen 2000<br />

Rhodophyta Ceramiaceae Ceramium rubrum/kondoi Hansen 2000 I x x x x Hansen 2000<br />

Rhodophyta Ceramiaceae Ceramium cimbricum Hansen 2000 I II III IV x x Hansen 2000<br />

Rhodophyta Ceramiaceae Ceramium sinicola Hansen 2000 I II III IV CA probable Hansen 2000<br />

Rhodophyta Ceramiaceae Ceramium rubrum UAM I x x x x Scagel et al. 1986<br />

Rhodophyta Ceramiaceae Hollenbergia unidentified UAM I/ST Scagel et al. 1986<br />

Rhodophyta Ceramiaceae Hollenbergia subulata UAM I/ST II III IV V Scagel et al. 1986<br />

Rhodophyta Ceramiaceae Microcladia borealis Hansen 2000 I II III IV Hansen 2000<br />

Rhodophyta Ceramiaceae Neoptilota asplenioides Hansen 2000 I/ST II III IV x Hansen 2000<br />

Rhodophyta Ceramiaceae Platythamnion pectinatum Hansen 2000 ST II III IV Hansen 2000<br />

Rhodophyta Ceramiaceae Plenosporium cf. P. vancouverianum Hansen 2000 ST II III IV x Hansen 2000<br />

Rhodophyta Ceramiaceae Ptilota serrata ( incl. pectinata) Hansen 2000 I/ST II III IV x x C Hansen 2000<br />

Rhodophyta Ceramiaceae Ptilota californica UAM I/ST II III IV x C Scagel et al. 1986<br />

Abbott and Hollenberg<br />

Rhodophyta Ceramiaceae Ptilota plumosa P. p v. filicina UAM I/ST II III IV V VI x C<br />

1976<br />

Rhodophyta Ceramiaceae Ptilota filicina P. tenuis Hansen 2000 I/ST II III IV Hansen 2000<br />

Rhodophyta Ceramiaceae Scagiella americana Hansen 2000 I II III IV x x C Hansen 2000<br />

Rhodophyta Choreocolacaceae Leachiella pacifica Hansen 2000 I II III IV V VI x Hansen 2000<br />

Rhodophyta Cladophoraceae Chroodactylon ramosus Hansen 2000 I II III IV x x CA probable Hansen 2000<br />

Rhodophyta Corallinaceae Bossiella chiloensis UAM I/ST II III IV Scagel et al. 1986<br />

Rhodophyta Corallinaceae Bossiella cretacea UAM I/ST II III IV x Scagel et al. 1986<br />

Rhodophyta Corallinaceae Bossiella plumosa UAM I II III IV Scagel et al. 1986<br />

Rhodophyta Corallinaceae Calliarthron unidentified UAM I Scagel et al. 1986<br />

Rhodophyta Corallinaceae Clathromorphum reclinatum I/epiphytic II III IV V VI x Scagel et al. 1986<br />

Rhodophyta Corallinaceae Corallina frondescens Hansen 2000 I II III IV Hansen 2000<br />

II III IV V VI<br />

Rhodophyta Corallinaceae Corallina <strong>of</strong>ficianalis v. chilensis Hansen 2000 I/ST VII VII VIII IX x Hansen 2000<br />

Rhodophyta Corallinaceae Corallina vancouverensis UAM I II III IV Scagel et al. 1986<br />

Rhodophyta Corallinaceae Lithophyllum dispar Hansen 2000 II III IV Hansen 2000<br />

Rhodophyta Corallinaceae Lithothamnion unidentified I Scagel et al. 1986<br />

Rhodophyta Corallinaceae Mesophyllum lamellatum Scagel 1986 I II III IV V VI Scagel et al. 1986<br />

Rhodophyta Delesseriacaea Delesseria decipiens Hansen 2000 I II III IV Hansen 2000<br />

Rhodophyta Delesseriaceae Phycodrys riggii Hansen 2000 I/ST II III IV x Hansen 2000<br />

Rhodophyta Delesseriaceae Tokidadendron kurilensis T. bullata Hansen 2000 I II III IV x Hansen 2000


Chapt 10. Biodiversity, page 10- 11<br />

Table 10.1. Continued.<br />

BIOREGION<br />

PHYLUM FAMILY GENUS SPECIES OTHER NAMES<br />

SPECIMEN or<br />

SOURCE<br />

COMMUNI<br />

TY NEP NWP AR NWA ORIGIN<br />

NIS<br />

STATUS<br />

REFERENCE to<br />

DISTRIBUTION<br />

Rhodophyta Dumontiacaea Cryptosiphonia woodii Hansen 2000 I II III IV Hansen 2000<br />

Rhodophyta Dumontiacaea Weeksia coccinea Hansen 2000 II III IV Hansen 2000<br />

Rhodophyta Dumontiaceae Constantinea subulifera Hansen 2000 I II III IV x Hansen 2000<br />

Rhodophyta Dumontiaceae Constantinea simplex<br />

Feder and Bryson-<br />

Schwafel 1988 I II III IV V Scagel et al. 1986<br />

Rhodophyta Dumontiaceae Dumontia simplex Hansen 2000 I II III IV Hansen 2000<br />

Rhodophyta Dumontiaceae Dumontia contorta D. incrassata Hansen 2000 I II III IV x x C Hansen 2000<br />

Rhodophyta Dumontiaceae Farlowia mollis UAM I/ST II III IV V VI x Scagel et al. 1986<br />

Rhodophyta Dumontiaceae Neodilsea unidentified UAM I Hansen 2000<br />

Rhodophyta Endocladiaceae Endocladia muricata Hansen 2000 I II III IV Hansen 2000<br />

Rhodophyta Endocladiaceae Gloiopeltis furcata Hansen 2000 I II III IV x Hansen 2000<br />

Rhodophyta Erythropeltidaceae Erythrotrichia carnea Hansen 2000 I x x x x Hansen 2000<br />

ST/<br />

Rhodophyta Erythropeltidiaceae Smithoria naiadum Hansen 2000 epiphytic II III IV C Hansen 2000<br />

Rhodophyta Gigartinaceae Gigartina unidentified UAM I/ST Hansen 2000<br />

Rhodophyta Gigartinaceae Iridaea cordata UAM I/ST II III IV x Scagel et al. 1986<br />

Rhodophyta Gigartinaceae Iridaea cornucopiae<br />

Feder and Bryson-<br />

Schwafel 1988 I II III IV x Scagel et al. 1986<br />

Rhodophyta Gigartinaceae Rhodoglossum latissimum UAM I II III IV Scagel et al. 1986<br />

Rhodophyta Halemeniaceae Cryptonemia obovata Hansen 2000 I II III IV x Hansen 2000<br />

Rhodophyta Halemeniaceae Cryptonemia borealis Hansen 2000 I II III IV x Hansen 2000<br />

Rhodophyta Helminthocladiaceae Nemalion helminthoides Hansen 2000 I x x x x C Hansen 2000<br />

Rhodophyta Hildenbrandiaceae Hildenbrandia rubra H. prototypus Hansen 2000 I x x x x C Scagel et al. 1986<br />

Rhodophyta Nemastomataceae Neodilsea borealis<br />

N. americana/<br />

Schizymenia UAM I II III IV Scagel et al. 1986<br />

Rhodophyta Palmariaceae Devaleraea ramentacea Hansen 2000 I II III IV x x C Hansen 2000<br />

Rhodophyta Palmariaceae Halosaccion glandiforme Hansen 2000 I II III IV x Hansen 2000<br />

Rhodophyta Palmariaceae Halosaccion firmum Hansen 2000 I II III IV x Hansen 2000<br />

Rhodophyta Palmeriaceae Palmaria mollis/palmata Hansen 2000 I II III IV x x C Hansen 2000<br />

Rhodophyta Palmeriaceae Palmaria<br />

calophylloides/<br />

stenogona Hansen 2000 I II III IV x Hansen 2000<br />

Rhodophyta Palmeriaceae Palmaria hecatensis Hansen 2000 I II III IV Hansen 2000<br />

Rhodophyta Petrocelidaceae Mastocarpus cf. M. pacificus Hansen 2000 I II III IV x Hansen 2000<br />

Rhodophyta Petrocelidaceae Mastocarpus papillatus complex Hansen 2000 I II III IV Hansen 2000<br />

Rhodophyta Petrocelidaceae Mastocarpus papillatus Gigartina cristata UAM I<br />

II III IV V VI<br />

VII VII VIII IX Scagel et al. 1986<br />

Rhodophyta Phyllophoraceae Ahnfeltia plicata UAM I II III IV x x Scagel et al. 1986<br />

Rhodophyta Phyllophoraceae Ahnfeltia fastigata Hansen 2000 I x x x x C Hansen 2000<br />

Rhodophyta Phyllophoraceae Ahnfeltiopsis gigartinoides Arnfeltia Hansen 2000 I II III IV Hansen 2000


Chapt 10. Biodiversity, page 10- 12<br />

Table 10.1. Continued.<br />

BIOREGION<br />

PHYLUM FAMILY GENUS SPECIES OTHER NAMES<br />

SPECIMEN or<br />

SOURCE<br />

COMMUNI<br />

TY NEP NWP AR NWA ORIGIN<br />

NIS<br />

STATUS<br />

REFERENCE to<br />

DISTRIBUTION<br />

Rhodophyta Rhodomelaceae Polysiphonia brodiaei Hansen 2000 I x x x x C Hansen 2000<br />

Rhodophyta Rhodomelaceae Polysiphonia eastwoodae Hansen 2000 I II III IV Hansen 2000<br />

Rhodophyta Rhodomelaceae Polysiphonia<br />

hendryi v.<br />

deliquescens Hansen 2000 I II III IV Hansen 2000<br />

Rhodophyta Rhodomelaceae Polysiphonia hendryi v. hendryi Hansen 2000 I II III IV Hansen 2000<br />

Rhodophyta Rhodomelaceae Polysiphonia hendryi v. luxurians Hansen 2000 I II III IV Hansen 2000<br />

Rhodophyta Rhodomelaceae Polysiphonia hendryi v. pacifica Hansen 2000 I II III IV Hansen 2000<br />

Rhodophyta Rhodomelaceae Polysiphonia<br />

pacifica v.<br />

determinata Hansen 2000 I/ST II III IV Hansen 2000<br />

Rhodophyta Rhodomelaceae Polysiphonia pacifica v. pacifica Hansen 2000 I/ST II III IV Hansen 2000<br />

Rhodophyta Rhodomelaceae Polysiphonia pungens Hansen 2000 I II III IV Hansen 2000<br />

Rhodophyta Rhodomelaceae Polysiphonia hendryi P. collinsii UAM I II III IV x Scagel et al. 1986<br />

Rhodophyta Rhodomelaceae Polysiphonia pacifica<br />

Feder and Bryson-<br />

Schwafel 1988 I II III IV Scagel et al. 1986<br />

Rhodophyta Rhodomelaceae Polysiphonia senticulosa Hansen 2000 I II III IV SE Alaska nr Hansen 2000<br />

Rhodophyta Rhodomelaceae Polysiphonia stricta (ureceolata) Hansen 2000 I II III IV x x Hansen 2000<br />

Rhodophyta Rhodomelaceae Polysiphonia ureceolata Hansen 2000 I x x x x Hansen 2000<br />

Rhodophyta Rhodomelaceae Pterosiphonia bipinnata Hansen 2000 I II III IV x Hansen 2000<br />

Rhodophyta Rhodomelaceae Rhodomela lycopodioides Hansen 2000 I II III IV x x C Hansen 2000<br />

Rhodophyta Rodomelaceae Neorhodomela larix Rhodomela Hansen 2000 I/ST II III IV x Hansen 2000<br />

Rhodophyta Rodomelaceae Neorhodomela aculaeta Hansen 2000 I/ST II III IV x Hansen 2000<br />

Rhodophyta Rodomelaceae Neorhodomela oregona Hansen 2000 I/ST II III IV x Hansen 2000<br />

Rhodophyta Rodomelaceae Odonthalia floccosa Hansen 2000 I II III IV Hansen 2000<br />

Rhodophyta Rodomelaceae Odonthalia kamtschatica Hansen 2000 I II III IV x Hansen 2000<br />

Rhodophyta Rodomelaceae Odonthalia setacea Hansen 2000 I II III IV x Hansen 2000<br />

Rhodophyta Rhodymeniaceae Rhodymenia pertusa Hansen 2000 I II III IV x Hansen 2000<br />

Rhodophyta Solieriaceae Opuntiella californica Hansen 2000 ST II III IV Hansen 2000<br />

Rhodophyta Gigartinaceae Mazzaella heterocarpa Hansen 2000 I II III IV Hansen 2000<br />

Rhodophyta Gigartinaceae Mazzaella phyllocarpa Hansen 2000 I II III IV x Hansen 2000<br />

Rhodophyta Gigartinaceae Mazzaella splendescens Hansen 2000 I II III IV Hansen 2000<br />

Xanthophyta Vaucheria longicaulis () Hansen 2000 I II III IV x x BC NR Hansen 2000<br />

vascular plant Caryophyllaceae Honchneya peploides Scheel et al. 1997 I II III IV x Hulten 1968<br />

vascular plant Cyperaceae Carex unidentified Feder and Bryson-SchwI Hulten 1968<br />

vascular plant Gramineae Puccinellia nutkaensis Scheel et al. 1997 I II III IV Hulten 1968<br />

vascular plant Gramineae Puccinellia plumila Hulten 1968 I II III IV Hulten 1968<br />

vascular plant Primulaceae Glaux maritima Scheel et al. 1997 I II III IV x x Hulten 1968<br />

vascular plant Rosaceae Potentilla unidentified Feder and Bryson-SchwI Hulten 1968<br />

vascular plant Sparganiaceae Phyllospadix scouleri Hansen 2000 I/ST II III IV Hulten 1968<br />

vascular plant Sparganiaceae Phyllospadix serrulatus Hansen 2000 I/ST II III IV Hulten 1968<br />

vascular plant Sparganiaceae Zostera marina Hansen 2000 I/ST II III IV x x Hulten 1968


Chapt 10. Biodiversity, page 10- 13<br />

Cnidaria and Ctenophora<br />

One hundred two species <strong>of</strong> Cnidaria and Ctenophora are listed in this report (Table<br />

10.2). Twenty-seven <strong>of</strong> the taxa have been identified to the generic level, and not to species.<br />

Anthozoa are probably under-counted, because they are difficult to identify based on preserved<br />

specimens. The hydrozoans and scyphozoans include 34 species, four <strong>of</strong> which, the hydrozoans<br />

Tiaropsis multicirrata, Eperetmus typus, Gonionemus vertens and Proboscidactyla flavicirrata,<br />

are distributional range extensions (Mills 2000). Thirty species records are derived from T.<br />

Cooney‘s (1987) compilation <strong>of</strong> Gulf <strong>of</strong> Alaska plankton.<br />

Table 10.2. Cnidaria and Ctenophora.<br />

PHYLUM/<br />

SPECIMEN or<br />

CLASS FAMILY GENUS SPECIES OTHER NAMES SOURCE HABITAT NEP NWP AR NWA ORIGIN<br />

Cnidaria:<br />

Anthozoa Actiniidae Anthopleura artemesia<br />

Cnidaria:<br />

Anthozoa Actiniidae Cribirnopsis unidentified Rosenthal 1977 ST/Epi<br />

Cnidaria:<br />

Anthozoa Actiniidae Urticina crassicornis<br />

NIS<br />

STATUS<br />

REFERENCE to<br />

DISTRIBUTION<br />

Feder and Bryson-<br />

Schwafel 1988 I II III IV Austin 1985<br />

Feder and Jewett<br />

1987 I/ST/Epi II III IV x Austin 1985<br />

Cnidaria:<br />

Anthozoa Actinostolidae Stomphia unidentified Scheel et al. 1997 ST/Epi<br />

Cnidaria:<br />

Anthozoa Carophllidae Carophyllia alaskensis UAM ST II III IV Austin 1985<br />

Cnidaria:<br />

Anthozoa Cerianthidae Pachycerianthus unidentified UAM ST<br />

Cnidaria:<br />

Anthozoa Epizoanthidae Epizoanthus unidentified UAM ST<br />

Cnidaria:<br />

Anthozoa Halcalvidae Peachia unidentified<br />

Cnidaria:<br />

Anthozoa Metridiidae Metridium senile<br />

Feder and Matheke<br />

1980 ST<br />

Feder and Jewett<br />

1987 I/ST/Epi II x x x Austin 1985<br />

Cnidaria:<br />

Anthozoa Metridiidae Metridium unidentified NRF observation ST<br />

Cnidaria:<br />

Anthozoa Pennatulidae Ptilosarcus gurneyi Feder et al. 1979 ST II III IV Austin 1985<br />

Cnidaria:<br />

Anthozoa Primnoidae Callogorgia unidentified UAM ST<br />

Cnidaria:<br />

Anthozoa Primnoidae Primnoa unidentified UAM ST<br />

Cnidaria:<br />

Anthozoa Virgularidae Acanthoptilum ptile<br />

Feder and Matheke<br />

1980 ST II III<br />

Cnidaria:<br />

Anthozoa Virgularidae Stylatula elongata Rosenthal 1977 ST II III IV V<br />

Cnidaria:<br />

British<br />

columbia NR Austin 1985<br />

Hydrozoa Aeginidae Aegina citrea A. rosea Cooney 1987 P II III IV V VI x x Austin 1985<br />

Cnidaria:<br />

Hydrozoa Aequoreidae Aequorea<br />

aequorea v.<br />

albida Mills 2000 ST II III IV<br />

Wrobel and Mills<br />

1998<br />

Cnidaria:<br />

Hydrozoa Aequoreidae Aequorea unidentified Cooney:SEA ST<br />

Cnidaria:<br />

Hydrozoa Aequoreidae Aequorea<br />

victoria/ A.<br />

aequorea v.<br />

aequorea Mills 2000 ST II III IV<br />

Wrobel and Mills<br />

1998<br />

Cnidaria:<br />

Hydrozoa Agalmidae Agalma elegans Cooney 1987 P II III x Austin 1985<br />

Cnidaria:<br />

Hydrozoa Agalmidae Nanomia unidentified Cooney 1987 P<br />

Cnidaria:<br />

Hydrozoa Bougainvilliidae Bougainvillia superciliaris Mills 2000 ST II III IV x Austin 1985<br />

Cnidaria:<br />

Hydrozoa Bougainvilliidae Garveia franciscana Mills 2000 ST x x x x uncertain definate<br />

Cnidaria:<br />

Hydrozoa Calycopsidae Calycopsis simulans<br />

Cnidaria:<br />

Hydrozoa Campanulariidae Clytia gregaria<br />

Cnidaria:<br />

Hydrozoa Campanulariidae Clytia hemispherca<br />

Wrobel and Mills<br />

1998 P x<br />

Phialidium<br />

gregarium Mills 2000 I II III IV<br />

BIOREGION<br />

Hines and Ruiz<br />

2000<br />

Wrobel and Mills<br />

1998<br />

Wrobel and Mills<br />

1998<br />

Hines and Ruiz<br />

2000 ST/Epi II III IV V VI x Austin 1985<br />

Cnidaria:<br />

Hydrozoa Campanulariidae Clytia kincaidi Mills 2000 ST x x x x Austin 1985<br />

Cnidaria:<br />

Hydrozoa Campanulariidae Gonothyraea clarki Mills 2000 I II III IV x Austin 1985<br />

Cnidaria:<br />

Hydrozoa Campanulariidae Obelia longissima Mills 2000 I II x x Austin 1985<br />

Cnidaria:<br />

Hydrozoa Campanulariidae Obelia borealis O. dichotoma Cooney 1987 P II III IV V x Austin 1985<br />

Cnidaria:<br />

Hydrozoa Campanulariidae Obelia unidentified Mills 2000 I<br />

Cnidaria:<br />

Hydrozoa Campanulariidae Obelia spp. (hydriods) Mills 2000 I<br />

Cnidaria:<br />

Hydrozoa Campanulariidae Phialidium gregarium P. languidum Cooney 1987 P II III IV V Austin 1985


Chapt 10. Biodiversity, page 10- 14<br />

Table 10.2 continued.<br />

PHYLUM/<br />

SPECIMEN or<br />

CLASS FAMILY GENUS SPECIES OTHER NAMES SOURCE HABITAT NEP NWP AR NWA ORIGIN<br />

Cnidaria:<br />

Hydrozoa Campanulariidae Verticillina verticillata<br />

Feder and Matheke<br />

1980 ST II III IV V x x<br />

NIS<br />

STATUS<br />

REFERENCE to<br />

DISTRIBUTION<br />

Cnidaria:<br />

Hydrozoa Clausophyidae Chuniphyes multidentata Cooney 1987 P II III IV V VI Austin 1985<br />

Cnidaria:<br />

Hydrozoa Corymorphidae Euphysa japonica Cooney 1987 P II III IV x x x<br />

Wrobel and Mills<br />

1998<br />

Cnidaria:<br />

Hydrozoa Corymorphidae Euphysa unidentified Mills 2000 I/ST/Epi<br />

Cnidaria:<br />

Hydrozoa Corynidae Sarsia spp. (medusae) Mills 2000 I/ST/Epi<br />

Cnidaria:<br />

Hydrozoa Corynidae Sarsia tubulosa Mills 2000 I/ST/Epi x x x x Austin 1985<br />

Cnidaria:<br />

Hydrozoa Corynidae Sarsia eximia Mills 2000 I/ST/Epi II x x Austin 1985<br />

Cnidaria:<br />

Hydrozoa Corynidae Sarsia princeps Cooney 1987 P II III IV x Austin 1985<br />

Cnidaria:<br />

Hydrozoa Corynidae Sarsia rosaria Cooney 1987 P II III IV x Austin 1985<br />

Cnidaria:<br />

Hydrozoa Corynidae Sarsia/Coryne sp. (hydroids) Mills 2000 I/ST/Epi<br />

Cnidaria:<br />

Hydrozoa Cuninidae Cunina globosa Cooney 1987 P II III IV Cooney 1987<br />

Cnidaria:<br />

Hydrozoa Diphyidae Dimophyes arctica Cooney 1987 P<br />

II III IV V VI<br />

VII VIII x x x Austin 1985<br />

Cnidaria:<br />

Hydrozoa Diphyidae Lensia concoidea Cooney 1987 P II III IV V VI x x Austin 1985<br />

Cnidaria:<br />

Hydrozoa Diphyidae Muggiaea atlantica Cooney 1987 P II III x x Austin 1985<br />

Cnidaria:<br />

Hydrozoa Eirenidae Eutonina indicans<br />

Wrobel and Mills<br />

1998 P II III IV x<br />

Wrobel and Mills<br />

1998<br />

Cnidaria:<br />

Hydrozoa Eutimidae Eutonima indicans Mills 2000 ST II III IV Austin 1985<br />

Cnidaria:<br />

Hydrozoa Haleciidae Grammaria immersa Rosenthal 1977 ST II III x Austin 1985<br />

Cnidaria:<br />

Hydrozoa Halicreatidae Halicreas unidentified Cooney:SEA P<br />

Cnidaria:<br />

Hydrozoa Halimedusidae Halimedusa typus Cooney 1987 P II III IV Austin 1985<br />

Cnidaria:<br />

Hydrozoa Hippopodiidae Vogtia serrata V. pentacantha Cooney 1987 P II III x x Austin 1985<br />

Cnidaria:<br />

Hydrozoa Laodicidae Cuspidella unidentified Cooney:SEA P<br />

Cnidaria:<br />

Hydrozoa Laodicidae Staurophora mertensii Mills 2000 ST II x x Austin 1985<br />

Cnidaria:<br />

Hydrozoa Laodicidae Stegopoma plicatile<br />

BIOREGION<br />

Feder and Matheke<br />

1980 ST II x x Austin 1985<br />

Cnidaria:<br />

Hydrozoa Lovenellidae Calycella springe Mills 2000 I II x x Austin 1985<br />

Cnidaria:<br />

Hydrozoa Melicertidae Melicertum campanula Cooney:SEA ST II III IV x x Austin 1985<br />

Cnidaria:<br />

Hydrozoa Melicertidae Melicertum octocostatum Mills 2000 ST II x x<br />

Cnidaria:<br />

Hydrozoa Mitrocomidae Mitrocoma cellularia Halistaura Mills 2000 ST II III IV V<br />

Cnidaria:<br />

Hydrozoa Mitrocomidae Tiaropsidium unidentified Cooney 1987 P<br />

Cnidaria:<br />

Hydrozoa Mitrocomidae Tiaropsis multicirrata Mills 2000 I/ST/Epi II III IV x x SE Alaska nr<br />

Cnidaria:<br />

Hydrozoa Olindiasidae Eperetmus typus Mills 2000 ST II III IV SE Alaska nr<br />

Cnidaria:<br />

Hydrozoa Olindiasidae Gonionemus unidentified Cooney:SEA ST<br />

Cnidaria:<br />

Hydrozoa Olindiasidae Gonionemus vertens Mills 2000 ST II III IV SE Alaska nr<br />

Wrobel and Mills<br />

1998<br />

Wrobel and Mills<br />

1998<br />

Wrobel and Mills<br />

1998<br />

Wrobel and Mills<br />

1998<br />

Wrobel and Mills<br />

1998


Chapt 10. Biodiversity, page 10- 15<br />

Table 10.2 continued.<br />

PHYLUM/<br />

SPECIMEN or<br />

CLASS FAMILY GENUS SPECIES OTHER NAMES SOURCE HABITAT NEP NWP AR NWA ORIGIN<br />

NIS<br />

STATUS<br />

REFERENCE to<br />

DISTRIBUTION<br />

Cnidaria:<br />

Hydrozoa Pandeidae Catablema multicirrata Mills 2000 ST/Epi II III IV x Austin 1985<br />

Cnidaria:<br />

Hydrozoa Pandeidae Halitholus unidentified Mills 2000 ST<br />

Cnidaria:<br />

Hydrozoa Pandeidae Leuckartiara breviconis Neoturris Cooney 1987 P II III IV Austin 1985<br />

Cnidaria:<br />

Hydrozoa Pandeidae Leuckartiara nobilis<br />

Catablema<br />

nodulosa Cooney 1987 P II III IV Austin 1985<br />

Cnidaria:<br />

Hydrozoa Pandeidae Leuckartiara octona Cooney 1987 P II III IV Austin 1985<br />

Cnidaria:<br />

Hydrozoa Pandeidae Leuckartiara unidentified Mills 2000 I/ST/Epi<br />

Cnidaria:<br />

Hydrozoa Pandeidae Neoturris breviconis<br />

Wrobel and Mills<br />

1998 P II II III IV V<br />

Cnidaria:<br />

Hydrozoa Pandeidae Perigonimus unidentified Cooney:SEA P<br />

Cnidaria:<br />

Hydrozoa Pandeidae Stomotoka atra<br />

Wrobel and Mills<br />

1998 P II III<br />

Cnidaria:<br />

Hydrozoa Periphyllidae Periphylla periphylla P. hyacinthina Cooney 1987 P II III IV V VI x<br />

Wrobel and Mills<br />

1998<br />

Wrobel and Mills<br />

1998<br />

Wrobel and Mills<br />

1998<br />

Cnidaria:<br />

Hydrozoa Phialellidae Campanulina rugosa Mills 2000 ST II III IV Austin 1985<br />

Cnidaria:<br />

Hydrozoa Phialellidae Opercularella lacerata Mills 2000 ST II x x Austin 1985<br />

Cnidaria:<br />

Hydrozoa Polyorchidae Polyorchis penicillatus<br />

Wrobel and Mills<br />

1998 P II III IV V VI<br />

Wrobel and Mills<br />

1998<br />

Cnidaria:<br />

Hydrozoa Prayidae Nectopyramis diomedeae Cooney 1987 P II III IV V VI x Austin 1985<br />

Cnidaria:<br />

Hydrozoa Prayidae Praya reticulata Nectodroma Cooney 1987 P<br />

II III IV V VI<br />

VII VIII Austin 1985<br />

Cnidaria:<br />

Hydrozoa Proboscidactylidae Proboscidactyla flavicirrata Mills 2000 I/ST/Epi II x x SE Alaska nr<br />

Cnidaria:<br />

Hydrozoa Protohydridae Protohydra unidentified<br />

Feder and Bryson-<br />

Schwafel 1988<br />

Wrobel and Mills<br />

1998<br />

Cnidaria:<br />

Hydrozoa Rathkeidae Rathkea jaschnowi Cooney:SEA P II x Bering Sea nr Naumov 1960<br />

Cnidaria:<br />

Hydrozoa Rathkeidae Rathkea octopunctata R. blumenbachii Cooney 1987 P II III IV x x<br />

Cnidaria:<br />

Hydrozoa Rathkeidae Rathkea unidentified Cooney:SEA P<br />

Cnidaria:<br />

Hydrozoa Rhopalonematidae Aglantha digitale<br />

Cooney and Coyle<br />

1988 P/ST II III IV x x<br />

Wrobel and Mills<br />

1998<br />

Wrobel and Mills<br />

1998<br />

Cnidaria:<br />

Hydrozoa Rhopalonematidae Pantachogon haekeli Cooney 1987 P II III IV x Austin 1985<br />

Cnidaria:<br />

Hydrozoa Sertulariidae Sertularia robusta Mills 2000 ST II x x Austin 1985<br />

Cnidaria:<br />

Hydrozoa Tubularidae Hybocodon prolifer Cooney 1987 P II III x Austin 1985<br />

Cnidaria:<br />

Hydrozoa Tubularidae Plotocnide borealis Cooney:SEA P II III IV x x Austin 1985<br />

Cnidaria:<br />

Hydrozoa Tubularidae Tubularia prolifera Cooney:SEA P II x x x Austin 1985<br />

Cnidaria:<br />

Scyphozoa Cyaneidae Cyanea capillata Mills 2000 ST II x x<br />

Cnidaria:<br />

Scyphozoa Pelagiidae Chrysaora melangaster Cooney 1987 P II III IV V VI x<br />

Cnidaria:<br />

Scyphozoa Ulmariidae Aurelia aurita Mills 2000 ST II x x<br />

Cnidaria:<br />

Scyphozoa Ulmariidae Aurelia labiata Mills 2000 ST II III IV x<br />

Cnidaria:<br />

Scyphozoa Ulmariidae Aurelia unidentified Mills 2000 P<br />

Cnidaria:<br />

Scyphozoa Ulmariidae Phacellophora camtschatica Catablema Cooney:SEA P II III IV V VI x x<br />

Ctenophora Beroidae Beroe unidentified Cooney 1987 P<br />

Wrobel and Mills<br />

1998<br />

Wrobel and Mills<br />

1998<br />

Wrobel and Mills<br />

1998<br />

Wrobel and Mills<br />

1998<br />

Wrobel and Mills<br />

1998<br />

Ctenophora Bolinopsidae Bolinopsis infundibulum Mills 2000 ST II x x<br />

Wrobel and Mills<br />

1998<br />

Ctenophora Mertensiidae Mertensia sp. (ovum)<br />

Cooney and Coyle<br />

1988 P II x x Austin 1985<br />

Ctenophora Pleurobranchiidae Hormiphora cucumis<br />

Wrobel and Mills<br />

1998 P II III x<br />

Ctenophora Pleurobranchiidae Pleurobrachia bachei Mills 2000 ST II III IV<br />

BIOREGION<br />

Wrobel and Mills<br />

1998<br />

Wrobel and Mills<br />

1998


Chapt 10. Biodiversity, page 10- 16<br />

Annelida<br />

The region’s polychaete annelid fauna is particularly rich, with 233 species in 46<br />

families. Kudenov (2000) has noted three range extensions, for Phyllodoce medipapillata,<br />

Chaetozone senticosa, and Rhynchospio glutaea. Some species <strong>of</strong> Eumida, Scoloplos, Exogone,<br />

Nephtys, Glycera, and the archaeannelid Polygordius are likely to be undescribed. Seven taxa,<br />

including members <strong>of</strong> the Spirorbidae have not been identified below the generic level. Nineteen<br />

new records from the UAM collection and Exxon Valdez oil spill specimens represent range<br />

extensions.<br />

Hirudinea and Oligochaeta are not included in the data sets (Table 10.3), because we lack<br />

reliable identifications for specimens found in Prince William Sound. At least one species <strong>of</strong><br />

marine leech is present in UAM samples from the adjacent Gulf <strong>of</strong> Alaska. Kozl<strong>of</strong>f (1987) lists<br />

14 leech species with distributions from Oregon north. Oligochaetes have been collected, but no<br />

effort has been made to identify them to family or lower taxon. Austin (1985) lists eight<br />

oligochaete species whose ranges include Alaska or southeast Alaska.<br />

Information on distribution, habitat, and nomenclatural changes have been drawn from<br />

Austin (1985), Banse and Hobson (1968), Berkeley and Berkeley (1948, 1952), Hobson and<br />

Banse (1981), Kudenov (2000) and Ushakov (1955).<br />

Table 10.3. Annelida.<br />

GENUS SPECIES OTHER NAMES<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN<br />

REFERENCE to<br />

NIS STATUS DISTRIBUTION<br />

Ampharete acutifrons EVOS ST/Inf II III IV Austin 1985<br />

Ampharete finmarchia A. arctica<br />

Feder et al.<br />

1979 ST/Inf II III IV x x x Austin 1985<br />

Amphicteis<br />

gunneri<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV x Ushakov 1955<br />

Amphicteis<br />

scaphobranchiata<br />

Feder et al.<br />

1979 ST/Inf II III IV Austin 1985<br />

Anobothrus<br />

gracilis<br />

Feder et al.<br />

1979 ST/Inf II III IV x Austin 1985<br />

Lysippe<br />

labiata<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV Austin 1985<br />

Melinna<br />

cf. M. cristata<br />

Feder et al.<br />

1979 ST/Inf II III IV x Austin 1985<br />

Melinna<br />

cristata<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV x Austin 1985<br />

Melinna<br />

elisabethae<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV Austin 1985<br />

Pseudosabellides lineata Asabellides EVOS ST/Inf II III IV x Austin 1985<br />

Pseudosabellides sibirica Asabellides littoralis UAM ST/Inf II III IV Austin 1985<br />

Sosanella unidentified UAM<br />

Aphrodita japonica UAM ST/Inf II III IV x Austin 1985<br />

Drilonereis<br />

falcata minor<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV<br />

BIOREGION<br />

Drilonereis longa UAM ST/Inf II x x<br />

British<br />

Columbia NR Austin 1985<br />

British<br />

Columbia NR Austin 1985<br />

Abarenicola<br />

pacifica<br />

Feder and<br />

Bryson-<br />

Schwafel 1988 I/ST/Inf II III IV x Austin 1985<br />

Barantolla americana EVOS I/ST/Inf II III IV C Austin 1985<br />

Capitella<br />

capitata<br />

Feder and<br />

Bryson-<br />

Schwafel 1988 I/ST/Inf II x x x C Austin 1985<br />

Heteromastus filiformis EVOS ST/Inf II III IV V x x possible Austin 1985<br />

Mediomastus unidentified EVOS I/ST/Inf<br />

Mesochaetopterus taylori EVOS ST/Inf II III IV<br />

British<br />

Columbia NR Austin 1985<br />

Feder and<br />

Spiochaetopterus costarum<br />

Matheke 1980 ST/Inf x x x x Austin 1985


Chapt 10. Biodiversity, page 10- 17<br />

Table 10.3 continued.<br />

BIOREGION<br />

GENUS SPECIES OTHER NAMES<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN<br />

REFERENCE to<br />

NIS STATUS DISTRIBUTION<br />

Chrysopetalium occidentale Kudenov 2000 II III IV V VI x Kudenov 2000<br />

Chaetozone senticosa Kudenov 2000 ST/Inf II IV V California NR Kudenov 2000<br />

Feder and<br />

Chaetozone<br />

setosa<br />

Matheke 1980 ST/Inf x x x x Austin 1985<br />

Cirratulus cingulatus Kudenov 2000 ST/Inf II III IV Kudenov 2000<br />

Cirratulus cirratus EVOS ST/Inf x x x x<br />

British<br />

Columbia NR Austin 1985<br />

Tharyx<br />

monilaris<br />

Feder and<br />

Bryson-<br />

Schwafel 1988 ST/Inf II III IV Austin 1985<br />

Tharyx<br />

multifilis<br />

Feder and<br />

Bryson-<br />

Schwafel 1988 I/ST/Inf II III IV Austin 1985<br />

Tharyx<br />

parvus<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV Austin 1985<br />

Tharyx secundus EVOS ST/Inf II III IV<br />

British<br />

Columbia NR Austin 1985<br />

Cossura<br />

longocirrata<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV Austin 1985<br />

Dorvillea rudolphi EVOS ST/Inf II III IV<br />

Dorvillea<br />

pseudorubrovittata<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV Austin 1985<br />

Protodorvillea gracilis EVOS ST/Inf II III IV Austin 1985<br />

Schistomeringos unidentified UAM ST<br />

Eunice valens E. kobiensis UAM ST/Inf II III IV x Austin 1985<br />

Brada<br />

granulata<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV x Austin 1985<br />

Flabelligera affinis EVOS ST/Inf II III IV x Austin 1985<br />

Pherusa plumosa EVOS I/ST/Inf II III IV x Austin 1985<br />

Pherusa<br />

papillata<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV Austin 1985<br />

Glycera sp. undescribed Kudenov 2000 Kudenov 2000<br />

Glycera cf. G. nana Kudenov 2000<br />

Glycera nana G. capitata<br />

Feder and<br />

Bryson-<br />

Schwafel 1988 ST/Inf II III IV x Austin 1985<br />

Hemipodus borealis EVOS I/ST/Inf II III IV Austin 1985<br />

Glycinde armigera EVOS ST/Inf II III IV x Austin 1985<br />

Glycinde<br />

Goniada<br />

Goniada<br />

picta<br />

annulata<br />

maculata<br />

Feder and<br />

Bryson-<br />

Schwafel 1988 I/ST/Inf II III IV Austin 1985<br />

Feder and<br />

Jewett 1988 ST/Inf II III IV Austin 1985<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV Austin 1985<br />

Microphthalmus sczelkowii<br />

Feder and<br />

Bryson-<br />

Schwafel 1988 ST/Inf II x x California NR Austin 1985<br />

Micropodarke dubia EVOS ST/Inf II III IV Austin 1985<br />

Feder and<br />

Podarkeopsis glabrus Gyptis brevipalpa<br />

Matheke 1980 ST/Inf II III IV Austin 1985<br />

Pelagobia longicirrata Cooney 1987 P II III IV V VI x x Austin 1985<br />

Feder et al.<br />

II III IV V VI<br />

Lumbrineris<br />

latreilli<br />

1979 ST/Inf VII VIII IX x Austin 1985<br />

Lumbrineris limicola UAM ST/Inf II III IV SE Alaska nr<br />

Lumbrineris<br />

Lumbrineris<br />

luti<br />

similabris<br />

Feder and<br />

Jewett 1988 ST/Inf II III IV<br />

British<br />

Columbia NR Austin 1985<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV Austin 1985<br />

Lumbrineris<br />

zonata<br />

Feder and<br />

Bryson-<br />

Schwafel 1988 I/ST/Inf II III IV Austin 1985<br />

Ninoe<br />

gemmea<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV Austin 1985<br />

Ninoe<br />

simpla<br />

Feder et al.<br />

1979 ST/Inf II III IV Austin 1985<br />

Magelona berkeleyi EVOS ST/Inf II III IV<br />

British<br />

Columbia NR Austin 1985<br />

Magelona hobsonae M. pitekai<br />

Feder and<br />

Bryson-<br />

Schwafel 1988 I/ST/Inf II III IV<br />

British<br />

Columbia NR Austin 1985


Chapt 10. Biodiversity, page 10- 18<br />

Table 10.3 continued.<br />

GENUS SPECIES OTHER NAMES<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN<br />

REFERENCE to<br />

NIS STATUS DISTRIBUTION<br />

Metasychis disparidentata Asychis<br />

Feder et al.<br />

1979 ST/Inf II III IV x Austin 1985<br />

Nicomache personata UAM ST/Inf II III IV Austin 1985<br />

Notoproctus<br />

pacificus<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV Austin 1985<br />

Petaloproctus borealis P. tenuis EVOS ST/Inf II III IV x Austin 1985<br />

Praxillella praetermissa EVOS ST/Inf II III IV x Austin 1985<br />

Praxillella<br />

gracilis<br />

Feder and<br />

Jewett 1988 ST/Inf II III IV Austin 1985<br />

Praxillella pacifica P. affinis<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV Austin 1985<br />

Rhodine<br />

bitorquata<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV Austin 1985<br />

Aglophamus<br />

rubella anops<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV Austin 1985<br />

Nephtys cornuta cornuta UAM ST/Inf II III IV Austin 1985<br />

Nephtys ferruginea EVOS ST/Inf II III IV Austin 1985<br />

Nephtys<br />

punctata<br />

Feder and<br />

Jewett 1988 ST/Inf II III IV x Austin 1985<br />

Nephtys<br />

caeca<br />

Feder and<br />

Bryson-<br />

Schwafel 1988 I/ST/Inf II III IV V x x x Austin 1985<br />

Nephtys ciliata EVOS I/ST/Inf II x x Austin 1985<br />

Nephtys<br />

cornuta<br />

Feder and<br />

Matheke 1980 I/ST/Inf II III IV Austin 1985<br />

Nephtys<br />

cornuta franciscana<br />

Feder and<br />

Matheke 1980 I/ST/Inf II III IV Austin 1985<br />

Nephtys sp. undescribed Kudenov 2000<br />

Chelonereis cyclurus Kudenov 2000 ST/Inf II III IV V x Austin 1985<br />

Nereis grubei UAM I/ST/Inf II III IV x Austin 1985<br />

Nereis pelagica UAM I/ST/Inf II III IV Austin 1985<br />

Nereis<br />

procera<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV V VI Austin 1985<br />

Nereis<br />

vexillosa<br />

Feder and<br />

Bryson-<br />

Schwafel 1988 I/inf II III IV V VI Austin 1985<br />

Nereis<br />

zonata<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV V VI x Austin 1985<br />

Platynereis bicanaliculata P. agassizi EVOS I/ST/Inf II III IV Austin 1985<br />

Onuphis iridescens UAM ST/Inf II III IV x Austin 1985<br />

Onuphis<br />

conchylega<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV x<br />

BIOREGION<br />

Banse and Hobson<br />

1968<br />

Onuphis<br />

geophiliformis<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV x Austin 1985<br />

Onuphis<br />

parva<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV x<br />

Banse and Hobson<br />

1968<br />

Onuphis stigmatis ST/Inf II III IV Austin 1985<br />

Armandia brevis EVOS ST/Inf II III IV Austin 1985<br />

Ophelia<br />

limacina<br />

Ophelina acuminata Amnotrypane aulogaster<br />

Travisia<br />

forbesii<br />

Feder and<br />

Bryson-<br />

Schwafel 1988 I/ST/Inf x x x x Austin 1985<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV V VI x Austin 1985<br />

Feder et al.<br />

1979 ST/Inf II x x x Austin 1985<br />

Leitoscoloplos<br />

panamensis<br />

Feder and<br />

Bryson-<br />

Schwafel 1988 I/ST/Inf II III IV Austin 1985<br />

Leitoscoloplos pugettensis L. elongatus<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV Austin 1985<br />

Naineris dendritica Kudenov 2000 ST/Inf II III IV V Austin 1985<br />

Naineris drenritica N. laevigata UAM ST/Inf II III IV Austin 1985<br />

Naineris uncinata EVOS ST/Inf II III IV Austin 1985<br />

Naineris<br />

unidentified<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV Austin 1985<br />

Scoloplos acmeceps EVOS ST/Inf II III IV Austin 1985<br />

Scoloplos armiger EVOS ST/Inf II III IV x x Austin 1985<br />

Scoloplos sp. undescribed Kudenov 2000<br />

Feder and<br />

Myriochele oculata M. heeri<br />

Matheke 1980 ST/Inf II III IV x Austin 1985<br />

Owenia<br />

fusiformis<br />

Feder and<br />

Bryson-<br />

Schwafel 1988 I/ST/Inf II III IV x x Austin 1985<br />

Aricidea ramosa EVOS ST/Inf II III IV x Austin 1985


Chapt 10. Biodiversity, page 10- 19<br />

Table 10.3 continued.<br />

BIOREGION<br />

GENUS SPECIES OTHER NAMES<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN<br />

REFERENCE to<br />

NIS STATUS DISTRIBUTION<br />

Aricidea<br />

lopezi<br />

Feder and<br />

Jewett 1988 ST/Inf II III IV x Austin 1985<br />

Aricidea<br />

neosuecica<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV Austin 1985<br />

Aricidea nolani A. suecica UAM ST/Inf II III IV Austin 1985<br />

Cirrophoras lyra EVOS ST/Inf II III IV Austin 1985<br />

Cirrophoras branchiatus UAM ST/Inf II III IV Austin 1985<br />

Paraonis<br />

gracilis<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV x x Austin 1985<br />

Amphictene moorei A. auricoma<br />

Feder and<br />

Matheke 1980 I/ST/Inf II III IV x Austin 1985<br />

Cistenides granulata C. brevicoma<br />

Feder and<br />

Bryson-<br />

Schwafel 1988 I/ST/Inf II III IV x Austin 1985<br />

Pectinaria californiensis EVOS ST/Inf II III IV Austin 1985<br />

Pholoides asperus Polyodontidae:Peisidice<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV Austin 1985<br />

Anaitides groenlandica Phyllodoce UAM ST/Inf II III IV x x Austin 1985<br />

Anaitides<br />

mucosa<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV x Austin 1985<br />

Anaitides<br />

maculata<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV x Austin 1985<br />

Eteone<br />

longa<br />

Feder and<br />

Bryson-<br />

Schwafel 1988 I/ST/Inf II III IV x C Austin 1985<br />

Eulalia viridis UAM ST/Inf II III IV x Austin 1985<br />

Eumida sp. undescribed Kudenov 2000 ST/Inf<br />

Hypoeulalia bilineata Eulalia UAM ST/Inf II III IV x x Austin 1985<br />

Mysta barbata UAM ST/Inf II x x Chukchi Sea nr Ushakov 1955<br />

Nereiphylla castanea Phyllodoce, Genetylus UAM ST/Inf II III IV x Austin 1985<br />

Notophyllum tectum UAM ST/Inf II III IV Austin 1985<br />

Phyllodoce medipapillata Kudenov 2000 ST/Inf II III IV V California NR Kudenov 2000<br />

Ancistrosyllis<br />

hamata<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV Austin 1985<br />

Polygordius sp. undescribed UAM ST/Inf Kudenov 2000<br />

Feder and<br />

Antinoella<br />

sarsi<br />

Matheke 1980 ST/Inf II III IV x x Ushakov 1955<br />

Arcteobia<br />

spinelytris<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV x Austin 1985<br />

Feder and<br />

Byglides macrolepidus Antinoella<br />

Matheke 1980 ST/Inf II III IV Austin 1985<br />

Eunoe depressa UAM ST/Inf II III IV x Austin 1985<br />

Eunoe oerstedi EVOS ST/Inf II III IV Austin 1985<br />

Eunoe senta UAM ST/Inf II III IV Austin 1985<br />

Gattyana<br />

ciliata<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV x Austin 1985<br />

Gattyana<br />

cirrosa<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV x x Austin 1985<br />

Gattyana<br />

treadwelli<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV x Austin 1985<br />

Halosydna brevisetosa UAM ST/Inf II III IV Austin 1985<br />

Harmothoe extenuata UAM ST/Inf II III IV x x Austin 1985<br />

Harmothoe imbricata EVOS I/ST/Inf II III IV x x C Austin 1985<br />

Hesperonoe<br />

complanata<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV Austin 1985<br />

Lepidonotus helotypus UAM ST/Inf II III IV Ushakov 1955<br />

Feder and<br />

Lepidonotus<br />

squamatus<br />

Matheke 1980 ST/Inf x x x x Austin 1985<br />

Nemida tamarae UAM ST/Inf II Bering Sea nr Ushakov 1955<br />

Feder et al.<br />

Polynoe<br />

canadensis<br />

1979 ST/Inf II III IV x Austin 1985<br />

Idanthyrsus<br />

armatus<br />

Feder and<br />

Matheke 1980 ST/Inf<br />

II III IV V VI<br />

VII VIII IX Austin 1985<br />

Idanthyrsus ornamentatus EVOS ST/Inf II III IV Austin 1985<br />

Chone magna EVOS ST/Inf II III IV Austin 1985<br />

Chone cincta UAM ST/Inf II III IV x Austin 1985<br />

Euchone hancocki EVOS ST/Inf II III IV Austin 1985<br />

Euchone longifissuirata UAM ST/Inf II III IV x x Ushakov 1955<br />

Euchone<br />

analis<br />

Feder and<br />

Bryson-<br />

Schwafel 1988 I/ST/Inf II III IV x x Ushakov 1955<br />

Fabricia<br />

sabella<br />

Feder and<br />

Bryson-<br />

Schwafel 1988 I/ST/Inf II x x Austin 1985


Chapt 10. Biodiversity, page 10- 20<br />

Table 10.3 continued.<br />

BIOREGION<br />

GENUS SPECIES OTHER NAMES<br />

SPECIMEN or<br />

REFERENCE to<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN NIS STATUS DISTRIBUTION<br />

Laonome<br />

kroyeri<br />

Feder and<br />

Bryson-<br />

Schwafel 1988 I/ST/Inf II x x<br />

Berkeley and<br />

Berkeley 1952<br />

Myxicola<br />

infundibulum<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV x Austin 1985<br />

Potentilla ocellata UAM ST/Inf II III IV Austin 1985<br />

Schizobranchia insignis Kudenov 2000 II III IV V Austin 1985<br />

Scalibregma<br />

inflatum<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV Austin 1985<br />

Crucigera<br />

irregularis<br />

Feder and<br />

Matheke 1980 ST/Epi II III IV Austin 1985<br />

Crucigera zygophora UAM ST/Epi II III IV x Austin 1985<br />

Pseudochitinopoma occidentalis EVOS ST/Epi II III IV Austin 1985<br />

Serpula vermicularis Kudenov 2000 ST/Epi II III IV x Kudenov 2000<br />

Pholoe<br />

sp. "minuta"<br />

Feder and<br />

Bryson-<br />

Schwafel 1988 I/ST/Inf II III IV x x C Austin 1985<br />

Sphaerodoropsis minuta EVOS ST/Inf II III IV x Austin 1985<br />

Sphaerodoropsis sphaerulifer EVOS ST/Inf II III IV x Austin 1985<br />

Sphaerodorum papillifer EVOS ST/Inf II x x x Austin 1985<br />

Dipolydora cf. D. bidentata Kudenov 2000 Kudenov 2000<br />

Dipolydora cf. D. giardi Kudenov 2000 Kudenov 2000<br />

Dipolydora cf. D. socialis Kudenov 2000 Kudenov 2000<br />

Laonice cirrata EVOS ST/Inf x x x x Austin 1985<br />

Berkeley and<br />

Rhynchospio glutaea Malacoceros EVOS ST/Inf II x x nr<br />

Berkeley 1952<br />

Polydora limicola Kudenov 2000 ST/Inf II III IV V Austin 1985<br />

Polydora cf. P.brachycephalata UAM ST/Inf II III IV Austin 1985<br />

Polydora ciliata P. pygidialis<br />

Feder and<br />

Bryson-<br />

Schwafel 1988 I/ST/Inf x x x x Austin 1985<br />

Dipolydora quadrilobata EVOS I/ST/Inf II III IV C Austin 1985<br />

II III IV V VI<br />

Polydora socialis Dipolydora UAM ST/Inf VII VIII IX Austin 1985<br />

Prionospio cirrifera EVOS ST/Inf II III IV x Austin 1985<br />

Prionospio steenstrupi EVOS I/ST/Inf x x x x Austin 1985<br />

Pygospio elegans EVOS I/ST/Inf II x x Austin 1985<br />

Scolelepis squamata Nerine cirratulus EVOS ST/Inf II III IV Austin 1985<br />

Spio filicornis EVOS ST/Inf x x x x Austin 1985<br />

Spiophanes berkeleyorum EVOS ST/Inf II III IV x Austin 1985<br />

Spiophanes bombyx EVOS ST/Inf x x x x Austin 1985<br />

Feder et al.<br />

Spiophanes cirrata S. kroyeri<br />

1979 ST/Inf II x x Austin 1985<br />

Circeis<br />

spirillum<br />

Feder and<br />

Bryson-<br />

Schwafel 1988 I/Epi II III IV Austin 1985<br />

Dexiospira<br />

unidentified<br />

Feder and<br />

Bryson-<br />

Schwafel 1988 I/Epi II III IV Austin 1985<br />

Spirorbis<br />

unidentified<br />

Feder and<br />

Matheke 1980 ST/Epi II III IV x x Austin 1985<br />

Sternaspis<br />

scutata<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV Austin 1985<br />

Autolytus alexandri A. verrilli UAM ST/Inf II III IV Austin 1985<br />

Autolytus cornatus A. prismaticus UAM ST/Inf II x x x Austin 1985<br />

Eusyllis<br />

bloomstrandi<br />

Feder and<br />

Matheke 1980 ST/Inf II x x Austin 1985<br />

Exogone sp. undescribed Kudenov 2000<br />

Exogone cf. E. dwisula Kudenov 2000 Kudenov 2000<br />

Exogone<br />

lourei<br />

Feder and<br />

Bryson-<br />

Schwafel 1988 ST/Inf II III IV Austin 1985<br />

Exogone naidina E. gemmifera<br />

Feder and<br />

Bryson-<br />

Schwafel 1988 I/ST/Inf II III IV x Austin 1985<br />

Feder and<br />

Exogone<br />

verugera<br />

Matheke 1980 ST/Inf x x x x Austin 1985<br />

Sphaerosyllis cf. C. californiensis Kudenov 2000 Kudenov 2000


Chapt 10. Biodiversity, page 10- 21<br />

Table 10.3 continued.<br />

BIOREGION<br />

GENUS SPECIES OTHER NAMES<br />

SPECIMEN or<br />

REFERENCE to<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN NIS STATUS DISTRIBUTION<br />

Feder and<br />

Bryson-<br />

Schwafel 1988 ST/Inf II III IV x<br />

Banse and Hobson<br />

1968<br />

Sphaerosyllis<br />

erinaceous<br />

Feder and<br />

Syllis armillaris Typosyllis<br />

Matheke 1980 ST/Inf II III IV V VI x x x Austin 1985<br />

Syllis fasciata Typosyllis EVOS ST/Inf II III IV Austin 1985<br />

Syllis harti Typosyllis EVOS ST/Inf II III IV<br />

Feder and<br />

Syllis harti armillaris Typosyllis<br />

Matheke 1980 ST/Inf II III IV<br />

British<br />

Columbia NR Austin 1985<br />

Syllis harti unguicula Typosyllis UAM ST/Inf II III IV<br />

British<br />

Columbia NR<br />

Feder and<br />

Syllis heterochaeta Langerhansia cornuta Matheke 1980 ST/Inf II III IV x Austin 1985<br />

Syllis hyalina Typosyllis Kudenov 2000 I/ST/Inf x x x x Austin 1985<br />

Trypanosyllis gemmipara Kudenov 2000 II III IV V Austin 1985<br />

Typosyllis stuarti Kudenov 2000 II III Austin 1985<br />

Typosyllis alternata Kudenov 2000 I/ST/Inf II III IV x Austin 1985<br />

Amphitrite cirrata Kudenov 2000 II III IV V x C Austin 1985<br />

Artacama conifera UAM ST/Inf II III IV Austin 1985<br />

Artacama<br />

proboscidea<br />

Feder et al.<br />

1979 ST/Inf II III IV x Austin 1985<br />

Lanassa venusta EVOS ST/Inf II III IV x x Austin 1985<br />

Laphania boecki EVOS ST/Inf II x x Austin 1985<br />

Leana abranchiata UAM ST/Inf II III IV x x Austin 1985<br />

Feder and<br />

Lysilla<br />

loveni<br />

Matheke 1980 ST/Inf II x x Austin 1985<br />

Pista<br />

cristata<br />

Feder and<br />

Matheke 1980 ST/Inf II x x Austin 1985<br />

Feder and<br />

Pista vinogradovi P. pacifica<br />

Jewett 1988 ST/Inf II III IV x Austin 1985<br />

Polycirrus medusa UAM ST/Inf II x x Austin 1985<br />

Proclea graffi UAM ST/Inf II III IV Austin 1985<br />

Terbellides<br />

stroemi<br />

Feder and<br />

Jewett 1988 ST/Inf x x x x Austin 1985<br />

Tomopteris septentrionalis Cooney 1987 P x x x Austin 1985<br />

Tomopteris pacificus Cooney 1987 P II III IV V x Austin 1985<br />

Tomopteris<br />

unidentified<br />

Cooney and<br />

Coyle 1988 P<br />

Trichobranchus<br />

glacialis<br />

Feder and<br />

Matheke 1980 ST/Inf II x x x Austin 1985<br />

Disoma carica Disomidae:Trichochaeta UAM ST/Inf II III IV x Austin 1985<br />

Disoma multisetosum Disomidae:Trichochaeta UAM ST/Inf II III IV x Austin 1985<br />

Typhloscolex mulleri Cooney: SEA ST II III IV x x NE Pacific NR Austin 1985<br />

Mollusca<br />

Three hundred fifteen mollusk species, representing all classes except<br />

monoplacophorans, are included in the data set (Table 10.4). There is one aplacophoran, and 108<br />

bivalves, 179 gastropods, 17 polyplacophorans, three scaphopods, and eight cephalopods.<br />

Mollusks in the UAM comprise one <strong>of</strong> the chief sources for the data set. Information on<br />

nomenclature and distribution derives form Austin (1985), Baxter (1987), Behrens (1991), Coan<br />

et al. (2000), and Turgeon et al. (1998).<br />

The shelled fauna is quite well known, but opisthobranchs, because they require special<br />

techniques to collect and preserve, have not been adequately documented in Alaska. It is not<br />

surprising to find potentially undescribed species and geographical range extensions within the<br />

Prince William Sound fauna. A paper describing range extensions for 11 species <strong>of</strong><br />

opisthobranchs is in preparation by J. Goddard and N. Foster.


Chapt 10. Biodiversity, page 10- 22<br />

Table 10.4. Mollusca.<br />

BIOREGION<br />

GENUS SPECIES OTHER NAMES<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN NIS STATUS<br />

REFERENCE to<br />

DISTRIBUTION<br />

Chaetoderma robustum UAM ST/Inf II III IV Baxter 1987<br />

Pododesmus macroschisma UAM ST/Epi II III IV Coan et al. 2000<br />

Astarte borealis UAM ST/Inf II x x x Coan et al. 2000<br />

Astarte compacta A. polaris UAM ST/Inf II III IV Coan et al. 2000<br />

Astarte elliptica A. alaskensis UAM ST/Inf II x x Coan et al. 2000<br />

Astarte esquimaulti UAM ST/Inf II III x Coan et al. 2000<br />

Astarte ovata A. borealis UAM ST/Inf II x x x Coan et al. 2000<br />

Clinocardium blandum C. fucanum Coan et al. 2000 I/ST/Inf II III IV Coan et al. 2000<br />

Clinocardium californiense UAM I/ST/Inf II III IV x Coan et al. 2000<br />

Clinocardium ciliatum UAM I/ST/Inf II x x x Coan et al. 2000<br />

Clinocardium nuttallii UAM I/ST/Inf II III IV x Coan et al. 2000<br />

Serripes groenlandicus UAM I/ST/Inf II x x x Coan et al. 2000<br />

Serripes laperousii UAM I/ST/Inf II x x x Coan et al. 2000<br />

Serripes notabilis UAM ST/Inf II III IV x Coan et al. 2000<br />

Cyclocardia crebricosta UAM ST/Inf II III IV x Coan et al. 2000<br />

Cyclocardia ventricosa UAM ST/Inf II III IV Coan et al. 2000<br />

Miodontiscus prolongata Coan et al. 2000 ST/Inf II III IV x Coan et al. 2000<br />

Cardiomya behringensis Coan et al. 2000 ST/Inf II III IV x Coan et al. 2000<br />

Cardiomya pectinata UAM ST/Inf II III IV Coan et al. 2000<br />

Cardiomya planetica UAM ST/Inf II III IV Coan et al. 2000<br />

Glycymeris septentrionalis EVOS ST/Inf II III IV Coan et al. 2000<br />

Hiatella arctica UAM I/ST/Epi/Inf x x x x Coan et al. 2000<br />

Panomya ampla Coan et al. 2000 ST/Inf II III IV x Coan et al. 2000<br />

Panomya norvegica P. arctica UAM ST/Inf II x x x Coan et al. 2000<br />

Kellia suborbicularis Kelliidae Coan et al. 2000 ST/Inf II III IV Coan et al. 2000<br />

Mysella planata Coan et al. 2000 ST/Inf II III IV x Coan et al. 2000<br />

Neaeromya compressa Pseudopythina UAM I/ST/Inf II III IV Coan et al. 2000<br />

Rochefordia tumida Mysella UAM ST/Inf II III IV Coan et al. 2000<br />

Limatula attenuata L. subauriculata Coan et al. 2000 ST/Epi II III IV x Coan et al. 2000<br />

Lucina tenuisculpta Parvilucina UAM ST/Inf II III IV Coan et al. 2000<br />

Lucinoma annulatum UAM ST/Inf II III IV Coan et al. 2000<br />

Entodesma navicula E. saxicola UAM I/Epi/Inf II III IV x Coan et al. 2000<br />

Lyonsia bracteata UAM ST/Inf II III IV Coan et al. 2000<br />

Mactromeris polynyma UAM I/ST/Inf II x Coan et al. 2000<br />

Tresus capax Coan et al. 2000 I/ST/Inf II III IV Coan et al. 2000<br />

Tresus nuttallii UAM I/ST/Inf II III IV Coan et al. 2000<br />

Malletia pacifica M. cuneata UAM ST/Inf II III IV Coan et al. 2000<br />

Cryptomya californica Coan et al. 2000 I/ST/Inf II III IV x Coan et al. 2000<br />

Mya arenaria UAM I/Inf II III IV x N Atlantic definate Coan et al. 2000<br />

Mya truncata UAM I/ST/Inf II x x x Coan et al. 2000<br />

Crenella decussata UAM I/ST/Epi II x x x Coan et al. 2000<br />

Dacrydium vitreum UAM ST/Inf II x x x Coan et al. 2000<br />

Modiolus modiolus UAM ST/Inf II x x Coan et al. 2000<br />

Musculus discors UAM ST/Inf II x x Coan et al. 2000<br />

Musculus glacialis M. corrugatus UAM ST/Inf II x x x Coan et al. 2000<br />

Musculus niger UAM ST/Inf II x x x Coan et al. 2000<br />

Mytilus trossulus M. edulis UAM I/ST/Epi II III IV Coan et al. 2000<br />

Solamen columbianun Megacrenella Coan et al. 2000 ST/Inf II III IV x Coan et al. 2000<br />

Vilasina seminuda Musculus Coan et al. 2000 ST/Epi II III IV x Coan et al. 2000<br />

Vilasina vernicosa Musculus UAM ST/Epi II III IV x Coan et al. 2000<br />

Nuculana conceptionis Perrisonota UAM ST/Inf II III IV Coan et al. 2000<br />

Nuculana minuta UAM ST/Inf II x x x Coan et al. 2000<br />

Nuculana navisa Coan et al. 2000 ST/Inf II III IV Coan et al. 2000<br />

Nuculana pernula N. fossa UAM ST/Inf II x x x Coan et al. 2000<br />

Eunucula tenuis Nucula UAM ST/Inf II x x Coan et al. 2000<br />

Crassostrea gigas UAM I/ST/Epi II III IV x NW Pacific definate Coan et al. 2000<br />

Pandora wardiana P. grandis UAM ST/Inf II III IV x Coan et al. 2000<br />

Pandora bilirata Coan et al. 2000 ST/Inf II III IV x Coan et al. 2000<br />

Pandora filosa Coan et al. 2000 ST/Inf II III IV Coan et al. 2000<br />

Pandora glacialis UAM ST/Inf II x x x Coan et al. 2000<br />

Chlamys rubida UAM ST/Epi II III IV x Coan et al. 2000<br />

Crassdoma gigantea Hinnites Coan et al. 2000 ST/Epi II III IV Coan et al. 2000<br />

Delectopecten vancouverensis D. randolphi UAM ST/Epi II III IV x Coan et al. 2000<br />

Parvamussium alaskense UAM ST/Epi II III IV Coan et al. 2000<br />

Patinopecten caurinus UAM ST/Epi II III IV Coan et al. 2000<br />

Periploma aleuticum UAM ST/Inf II x x x Coan et al. 2000<br />

Siliqua alta Solenidae: S. sloati UAM I/ST/Inf II III IV x Coan et al. 2000<br />

Siliqua patula Solenidae Coan et al. 2000 I/Inf II III IV Coan et al. 2000<br />

Philibrya setosa Coan et al. 2000 ST/Inf II III IV Coan et al. 2000<br />

Penitella penita Coan et al. 2000 I/ST/Inf II III IV Coan et al. 2000


Chapt 10. Biodiversity, page 10- 23<br />

Table 10.4 continued.<br />

BIOREGION<br />

GENUS SPECIES OTHER NAMES<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN NIS STATUS<br />

REFERENCE to<br />

DISTRIBUTION<br />

Gari californica UAM I/Inf II III IV x Coan et al. 2000<br />

Macoma dexioptera UAM ST/Inf II Coan et al. 2000<br />

Macoma elimata UAM ST/Inf II III IV Coan et al. 2000<br />

Macoma moesta UAM ST/Inf II III IV x x Coan et al. 2000<br />

Macoma balthica UAM I/Inf x x x x C Coan et al. 2000<br />

Macoma brota UAM ST/Inf II III IV Coan et al. 2000<br />

Macoma calcarea UAM ST/Inf II x x x Coan et al. 2000<br />

Macoma carlottensis UAM ST/Inf II III IV Coan et al. 2000<br />

Macoma expansa UAM I/ST/Inf II III IV Coan et al. 2000<br />

Macoma golikovi M. obliqua UAM I/ST/Inf II III IV Coan et al. 2000<br />

Macoma inquinata UAM I/ST/Inf II III IV Coan et al. 2000<br />

Macoma lipara Coan et al. 2000 ST/Inf II III IV Coan et al. 2000<br />

Macoma nasuta UAM I/ST/Inf II III IV Coan et al. 2000<br />

Tellina modesta UAM ST/Inf II III IV Coan et al. 2000<br />

Bankia setacea UAM ST/Inf II III IV x Coan et al. 2000<br />

Thracia challisiana Coan et al. 2000 ST/Inf II III IV Coan et al. 2000<br />

Thracia condoni Coan et al. 2000 ST/Inf II III IV Coan et al. 2000<br />

Thracia myopsis UAM ST/Inf II x x x Coan et al. 2000<br />

Thracia trapeziodes UAM ST/Inf II III IV Coan et al. 2000<br />

Adontorhina cyclia UAM I/ST/Inf II III IV x Coan et al. 2000<br />

Axinopsida serricata UAM I/ST/Inf II x x x Coan et al. 2000<br />

Conchocoele bisecta Thyasira Coan et al. 2000 ST/Inf II III IV x Coan et al. 2000<br />

Mendicula ferruginosa Odontogena borealis UAM ST/Inf II x x x Coan et al. 2000<br />

Thyasira flexuosa UAM ST/Inf II x x x Coan et al. 2000<br />

Turtonia minuta UAM I/Inf II x Coan et al. 2000<br />

Diplodonta impolita UAM I/Inf II III IV Coan et al. 2000<br />

Compsomyax subdiaphana UAM ST/Inf II III IV Coan et al. 2000<br />

Humilaria kennerleyi UAM I/ST/Inf II III IV Coan et al. 2000<br />

Liocyma fluctuosa UAM ST/Inf II x x x Coan et al. 2000<br />

Nutricola lordi Psephidia ovalis UAM I/Inf II III IV Coan et al. 2000<br />

Nutricola tantilla Transenella UAM I/ST/Inf II III IV Coan et al. 2000<br />

Protothaca staminea UAM I/ST/Inf II III IV x Coan et al. 2000<br />

Saxidomus gigantea UAM I/Inf II III IV Coan et al. 2000<br />

Yoldia hyperborea Y. amygdalea UAM ST/Inf II x x x Coan et al. 2000<br />

Yoldia<br />

montereyensis<br />

Megayoldia martyria/<br />

M. secunda/ M.<br />

beringiana UAM ST/Inf II III IV Coan et al. 2000<br />

Yoldia myalis UAM ST/Inf II x Coan et al. 2000<br />

Yoldia seminuda Y. scissurata UAM ST/Inf II III IV x Coan et al. 2000<br />

Yoldia thraciaeformis Megayoldia UAM ST/Inf II x x x Coan et al. 2000<br />

Gonatus<br />

unidentified<br />

Feder and Jewett<br />

1988 P<br />

Benthoctopus leioderma<br />

Scheel- possible<br />

for PWS ST/Epi II III IV Austin 1985<br />

Octopus d<strong>of</strong>leini Enteroctopus<br />

Scheel et al.<br />

1997 ST/Epi II III IV Austin 1985<br />

Octopus<br />

rubescens<br />

Scheelobservation<br />

ST/Epi II III IV Austin 1985<br />

Rossia pacifica UAM ST/Epi II III IV x Austin 1985<br />

II III IV V<br />

Chiroteuthis veranayi C. calyx Cooney 1987 P<br />

VI Austin 1985<br />

Gliteuthis armata G. phyllura Cooney 1987 P<br />

II III IV V<br />

VI x Austin 1985<br />

Acanthodoris<br />

hudsoni<br />

Lee and Foster<br />

1985 I/ST/Epi II III IV<br />

Lee and Foster<br />

1985<br />

Lee and Foster<br />

1985<br />

Acanthodoris nanaimoenisis Goddard 2000 I/ST/Epi II III IV<br />

Lee and Foster<br />

Acanthodoris pilosa<br />

1985 I/ST/Epi II x x Behrens 1991<br />

Acmaea mitra UAM I/Epi II III IV Austin 1985<br />

Aeolidia<br />

papillosa<br />

Lee and Foster<br />

1985 I/ST/Epi x x x x Behrens 1991<br />

Lee and Foster<br />

Aglaja ocelligera Melanochlamys Goddard 2000 I/ST/Epi II III IV<br />

1985<br />

Melanochlamys diomedea Aglaja<br />

Feder and Bryson-<br />

Schwafel 1988 I/ST/Epi II III IV SE Alaska nr<br />

Lee and Foster<br />

1985


Chapt 10. Biodiversity, page 10- 24<br />

Table 10.4 continued.<br />

BIOREGION<br />

GENUS SPECIES OTHER NAMES<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN NIS STATUS<br />

REFERENCE to<br />

DISTRIBUTION<br />

Archidoris montereyensis I/ST/Epi II III IV<br />

Lee and Foster<br />

1985<br />

Archidoris<br />

Armina<br />

odhneri<br />

californica<br />

Lee and Foster<br />

1985 I/ST/Epi II III IV<br />

Lee and Foster<br />

1985 ST/Epi II III IV<br />

Haminoea vesicula Foster 2000 I/ST/Epi II III IV<br />

Lee and Foster<br />

1985<br />

Lee and Foster<br />

1985<br />

Lee and Foster<br />

1985<br />

Lee and Foster<br />

1985<br />

Haminoea virescens Baxter 1987 I/ST/Epi II III IV<br />

Barleeia subtenuis UAM I/Inf II III IV Baxter 1987<br />

Barleeia haliotiphila Baxter 1987 I/Inf II III IV Baxter 1987<br />

Pseudodiala acuta Barleeia UAM I/Inf II III IV<br />

British<br />

Columbia NR Baxter 1987<br />

Ancistrolepis eucosmuis UAM ST/Epi II III IV Baxter 1987<br />

Beringius kennicotti UAM ST/Epi II III IV Austin 1985<br />

Buccinum baerii UAM I/Epi II III IV Austin 1985<br />

Buccinum plectrum UAM ST/Epi II III IV x x Austin 1985<br />

Colus aphelus C. hypolispus UAM ST/Epi II III IV x x<br />

Turgeon et al.<br />

1998<br />

Colus halli UAM ST/Epi II III IV Austin 1985<br />

Lirabuccinum dira Searlesia UAM I/ST/Epi II III IV Baxter 1987<br />

Lussivolutopsius filosa Volutopsius UAM I/ST/Epi II III IV Baxter 1987<br />

Neptunea lyrata UAM ST/Epi II III IV x x Austin 1985<br />

Neptunea pribil<strong>of</strong>fensis UAM ST/Epi II III IV x Austin 1985<br />

Pyrul<strong>of</strong>usus harpa Volutopsius UAM I/ST/Epi II III IV Austin 1985<br />

Volutopsius undescribed sp. Baxter 1987 I/ST/Epi II III IV<br />

Turgeon et al.<br />

1998<br />

Caecum crebricinctum Micranellum UAM I/ST/Inf II III IV Baxter 1987<br />

Caecum occidentale Fartulum UAM I/Inf II III IV Baxter 1987<br />

Calliostoma ligatum Trochidae UAM I/ST/Epi II III IV Baxter 1987<br />

Calyptraea fastigiata UAM I/ST/Epi II III IV Baxter 1987<br />

Crepidula perforans Baxter 1987 I/ST/Epi II III IV Austin 1985<br />

Crepipatella lingulata<br />

Calyptraea fastigiata/<br />

Crepiptella dorsata UAM I/ST/Epi II III IV Baxter 1987<br />

Admete viridula A. couthouyi UAM ST/Inf II x x x Baxter 1987<br />

Neadmete modesta UAM ST/Inf II III IV Baxter 1987<br />

Trichotropis borealis Trichotropidae UAM I/ST/Epi II x Baxter 1987<br />

Trichotropis cancellata Trichotropidae UAM I/ST/Epi II III IV Baxter 1987<br />

Trichotropis insignis Trichotropidae UAM I/ST/Epi II III IV x Baxter 1987<br />

Stylidium eschrichti Bittium Baxter 1987 I/Inf II III IV Austin 1985<br />

II III IV V<br />

Cadlina luteomarginata Rosenthal 1977 ST/Epi VI SE Alaska nr Behrens 1991<br />

Cooney and<br />

Wrobel and Mills<br />

Clione<br />

limacina<br />

Coyle 1988 P x x x x<br />

1998<br />

Cocculina baxteri UAM ST/Epi II III Baxter 1987<br />

Alia carinata Mitrella I/ST/Epi II III IV Baxter 1987<br />

Amphissa columbiana UAM I/ST/Inf II III IV Baxter 1987<br />

Amphissa reticulata UAM ST/Epi II III IV Baxter 1987<br />

Astrys gauspata Alia UAM I/ST/Inf II III IV Baxter 1987<br />

Grantotoma incisula Turridae: Oenopota UAM ST/Inf II x Baxter 1987<br />

Kurtziella plumbea Turridae EVOS I/ST/Epi II III IV Austin 1985<br />

Oenopota bicarinata Turridae UAM ST/Inf II x Austin 1985<br />

Oenopota excurvata Turridae UAM ST/Inf II III IV Austin 1985<br />

Oenopota krausei Turridae UAM ST/Inf II III IV Austin 1985<br />

Oenopota rugulata Turridae UAM ST/Inf II x Austin 1985<br />

Oenopota turricula Turridae UAM ST/Inf II x Austin 1985<br />

Propebela arctica<br />

Turridae: Oenopota<br />

viridula UAM ST/Inf II x Baxter 1987<br />

Pseudotaranis strongi Turridae: Tarais EVOS ST/Epi II III IV Austin 1985<br />

Doridella steinbergi Suhinia EVOS ST/Epi II III IV Behrens 1991<br />

Flabellina trophina F. fusca<br />

Lee and Foster<br />

1985 ST/Epi II III IV<br />

Lee and Foster<br />

1985 ST/Epi II x x x<br />

Lee and Foster<br />

1985<br />

Lee and Foster<br />

1985<br />

Flabellina salmonacea<br />

Euclio pyamidata Clio Cooney 1987 P x x x x Austin 1985<br />

Granulina margaritula Marginellidae UAM I/ST/Epi II III IV Baxter 1987


Chapt 10. Biodiversity, page 10- 25<br />

Table 10.4 continued.<br />

GENUS SPECIES OTHER NAMES<br />

Dendronotus<br />

Dendronotus<br />

Dendronotus<br />

Diaphana<br />

albus<br />

frondosus<br />

iris<br />

minuta<br />

BIOREGION<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN NIS STATUS<br />

REFERENCE to<br />

DISTRIBUTION<br />

Lee and Foster<br />

1985 ST/Epi II III IV Behrens 1991<br />

Lee and Foster<br />

1985 ST/Epi II x Behrens 1991<br />

Lee and Foster<br />

1985 ST/Epi II III IV Behrens 1991<br />

Lee and Foster<br />

1985 ST/Inf II x<br />

Diaphana brunnea UAM II III IV<br />

Turgeon et al.<br />

1998<br />

Lee and Foster<br />

1985<br />

Dirona<br />

albolineata<br />

Lee and Foster<br />

1985 ST/Epi II III IV Behrens 1991<br />

Dirona<br />

aurantia<br />

Lee and Foster<br />

1985 ST/Epi II III IV Behrens 1991<br />

Anisodoris lentigenosa<br />

Lee and Foster<br />

1985 ST/Epi II III IV Behrens 1991<br />

Anisodoris nobilis<br />

Lee and Foster<br />

1985 ST/Epi II III IV Behrens 1991<br />

Dialula<br />

sandiegensis<br />

Lee and Foster<br />

1985 ST/Epi II III IV Behrens 1991<br />

Geitodoris heathi Goddard 2000 ST/Epi II III IV<br />

British<br />

Columbia NR Behrens 1991<br />

Eubranchus olivaceous Goddard 2000 ST/Epi II III IV SE Alaska nr Behrens 1991<br />

Melanella columbiana Vitreolina UAM II III IV Baxter 1987<br />

Melanella micrans Balcis UAM ST/Epi II III IV Baxter 1987<br />

Hermissenda crassicornis Goddard 2000 I/ST/Epi II III IV Behrens 1991<br />

Diadora aspera Baxter 1987 I/ST/Epi II III IV Austin 1985<br />

Puncturella cooperi UAM ST/Epi II III IV Austin 1985<br />

Puncturella galeata UAM ST/Epi II III IV Austin 1985<br />

Puncturella noachina UAM ST/Epi II III IV x x Austin 1985<br />

Feder and Bryson-<br />

Gastropteron pacificum<br />

Schwafel 1988 I/Epi II III IV Behrens 1991<br />

Ancula pacifica Goddard 2000 ST/Epi II III IV SE Alaska nr Behrens 1991<br />

Alderia modesta Goddard 2000 ST/Epi II x<br />

British<br />

Columbia NR Behrens 1991<br />

Cryptobranchia alba UAM I/ST/Epi II III IV x Baxter 1987<br />

Cryptobranchia concentrica UAM I/ST/Epi II III IV x Baxter 1987<br />

Lepeta caeca UAM ST/Epi II III IV x Baxter 1987<br />

Limacina<br />

helicina<br />

Cooney and<br />

Coyle 1988 P x x x x<br />

Wrobel and Mills<br />

1998<br />

Lacuna carinata Lacunidae UAM I/ST/Epi II III IV Austin 1985<br />

Lacuna marmorata Lacunidae Baxter 1987 I/ST/Epi II III IV Baxter 1987<br />

Lacuna variegata Lacunidae Baxter 1987 I/ST/Epi II III IV Baxter 1987<br />

Lacuna vincta Lacunidae UAM I/ST/Epi II x Austin 1985<br />

Littorina scutulata UAM I/Epi II III IV Austin 1985<br />

Littorina sitkana UAM I/Epi II III IV Austin 1985<br />

Lottia borealis UAM I/Epi II III IV Austin 1985<br />

Lottia instabilis Baxter 1987 I/ST/Epi II III IV Austin 1985<br />

Lottia ochracea UAM I/ST/Epi II III IV Baxter 1987<br />

Lottia pelta UAM I/ST/Epi II III IV Austin 1985<br />

Lottia triangularis Baxter 1987 I/ST/Epi II III IV Austin 1985<br />

Lottia digitalis UAM I/Epi II III IV Baxter 1987<br />

Tectura fenestrata UAM I/Epi II III IV Austin 1985<br />

Tectura persona UAM I/Epi II III IV Austin 1985<br />

Tectura scutum UAM I/ST/Epi II III IV Austin 1985<br />

Tectura testudinalis Baxter 1987 I/ST/Epi II x Austin 1985<br />

Boreotrophon clathratus UAM I/ST/Epi II x x x Baxter 1987<br />

Boreotrophon multicostata UAM I/ST/Epi II III IV<br />

Turgeon et al.<br />

1998<br />

Boreotrophon truncatus B. pacificus/ B. beringi UAM I/ST/Epi II x x x<br />

Turgeon et al.<br />

1998<br />

Nucella canaliculata UAM I/Epi II III IV Baxter 1987<br />

Nucella lamellosa UAM I/Epi II III IV Austin 1985<br />

Nucella lima UAM I/Epi II III IV x Baxter 1987<br />

Ocenebrina interfossa Ocenebra UAM I/Epi II III IV Baxter 1987<br />

Ocenebrina lurida Ocenebra UAM I/Epi II III IV Austin 1985<br />

Scabrotrophon maltzan Trophonopsis lasius UAM I/Epi II III IV Baxter 1987


Chapt 10. Biodiversity, page 10- 26<br />

Table 10.4 continued.<br />

BIOREGION<br />

GENUS SPECIES OTHER NAMES<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN NIS STATUS<br />

REFERENCE to<br />

DISTRIBUTION<br />

Nassarius mendicus UAM I/ST/Inf II III IV Austin 1985<br />

Cryptonatica affinis<br />

Natica russa/ Natica<br />

aleutica/ Natica clausa UAM I/ST/Inf II III IV x x x Austin 1985<br />

Euspira pallida Polinices pallidus UAM I/ST/Inf II x x x Austin 1985<br />

Olea hansinensis Goddard 2000 ST/Epi II III IV<br />

British<br />

Columbia NR Behrens 1991<br />

Olivella baetica UAM I/ST/Inf II III IV Baxter 1987<br />

Onchidella<br />

borealis<br />

Lee and Foster<br />

1985 I/Epi II III IV<br />

Lee and Foster<br />

1985<br />

British<br />

Columbia NR Behrens 1991<br />

Lee and Foster<br />

1985<br />

Adalaria jannae Goddard 2000 ST/Epi II III IV<br />

Lee and Foster<br />

Adalaria<br />

proxima<br />

1985 ST/Epi II x x<br />

Adalaria sp. 1 <strong>of</strong> Behrens Goddard 2000 ST/Epi II III IV SE Alaska nr Behrens 1991<br />

Onchidoris<br />

bilamellata<br />

Lee and Foster<br />

1985 ST/Epi II x x<br />

Lee and Foster<br />

1985<br />

Lee and Foster<br />

1985<br />

Onchidoris muricata Goddard 2000 ST/Epi II x x<br />

Policera zosterae Goddard 2000 ST/Epi II III IV SE Alaska nr Behrens 1991<br />

Lee and Foster<br />

Lee and Foster<br />

Triopha catalinae Triophidae<br />

1985 ST/Epi II III IV x<br />

1985<br />

Cyclostremella concordia Cyclostremellidae UAM II III IV Baxter 1987<br />

Odostomia angularis UAM I/ST/Inf II III IV Austin 1985<br />

Odostomia arctica UAM I/ST/Inf II x x Arctic nr<br />

Turgeon et al.<br />

1998<br />

Odostomia iliuliukensis UAM I/ST/Inf II III IV Austin 1985<br />

Odostomia cassandra<br />

Feder and<br />

Matheke 1980 I/ST/Inf II III IV Austin 1985<br />

Odostomia pesa Baxter 1987 I/ST/Inf II III IV Baxter 1987<br />

Turbonilla canadensis Baxter 1987 I/ST/Inf II III IV Austin 1985<br />

Turbonilla eyerdami Baxter 1987 I/ST/Inf II III IV Austin 1985<br />

Turbonilla lordii Baxter 1987 I/ST/Inf II III IV Austin 1985<br />

Turbonilla lyalli Baxter 1987 I/ST/Inf II III IV Austin 1985<br />

Turbonilla middendorffi Baxter 1987 I/ST/Inf II III IV Austin 1985<br />

Turbonilla rinella Baxter 1987 I/ST/Inf II III IV Austin 1985<br />

Fusitriton oregonensis Cyamatiidae UAM I/ST/Epi II III IV Baxter 1987<br />

Retusa obtusa R. perteuis/ R. semen UAM I/ST/Inf II x Bering Sea nr<br />

Lee and Foster<br />

1985<br />

"Rissoella" alaskensis<br />

Feder and<br />

Bryson-Schwafel<br />

1988 I/ST/Inf II III IV Austin 1985<br />

Alvania compacta UAM I/ST/Inf II III IV Baxter 1987<br />

Alvania moerchi Baxter 1987 I/ST/Inf II x x x Baxter 1987<br />

Alvania rosana UAM I/ST/Inf II III IV Baxter 1987<br />

Feder and Bryson-<br />

Boreocingula martyni Cingula katherenae Schwafel 1988 I/ST/Inf II III IV Austin 1985<br />

Falsicingula aleutica Falsicingulidae UAM I/ST/Inf II III IV Baxter 1987<br />

Onoba dalli Alvania Baxter 1987 I/ST/Inf II III IV Baxter 1987<br />

Onoba cerinella Baxter 1987 I/ST/Inf II III IV Austin 1985<br />

Onoba kyskensis Baxter 1987 I/ST/Inf II III IV Austin 1985<br />

Onoba montereyensis Alvania carpenteri Baxter 1987 I/ST/Inf II III IV Austin 1985<br />

Acteocina culcitella Cylichnella EVOS I/ST/Inf II III IV Austin 1985<br />

Acteocina harpa A. oldroydi<br />

Lee and Foster<br />

1985 I/ST/Inf II III IV Behrens 1991<br />

Cylichna attonsa UAM I/ST/Inf II III IV Austin 1985<br />

Lee and Foster<br />

Cylichna occulta UAM I/ST/Inf II x<br />

1985<br />

Cylichna alba UAM I/ST/Inf II x x x Austin 1985<br />

Siphonaria thirsites UAM I/Epi II III IV Baxter 1987<br />

Hermaea vancouverensis Hermaeidae Foster 1987 ST/Epi II III IV Behrens 1991<br />

Cuthona albocrusta Goddard 2000 ST/Epi II III IV Washington NR Goddard 2000<br />

Cuthona pustulata Goddard 2000 ST/Epi II III IV<br />

British<br />

Columbia NR Goddard 2000<br />

Melibe<br />

leonina<br />

Lee and Foster<br />

1985 P II III IV<br />

Lee and Foster<br />

1985


Chapt 10. Biodiversity, page 10- 27<br />

Table 10.4 continued.<br />

GENUS SPECIES OTHER NAMES<br />

Tritonia<br />

Tritonia<br />

diomedea<br />

festiva<br />

BIOREGION<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN NIS STATUS<br />

REFERENCE to<br />

DISTRIBUTION<br />

Lee and Foster<br />

1985 ST/Epi II III IV x<br />

Lee and Foster<br />

1985 ST/Epi II III IV<br />

Lee and Foster<br />

1985 ST/Epi II III IV x<br />

Lee and Foster<br />

1985<br />

Lee and Foster<br />

1985<br />

Lee and Foster<br />

1985<br />

Trochuina tetraquetra<br />

Cidarina cidaris UAM ST/Epi II III IV Baxter 1987<br />

Lirularia succincta UAM I/Inf II III IV Austin 1985<br />

Margarites beringensis UAM I/Inf II III IV Baxter 1987<br />

Margarites helicinus UAM ST/Inf II x x x Austin 1985<br />

Margarites pupillus UAM ST/Inf II III IV Austin 1985<br />

Solariella varicosa UAM ST/Inf II x Baxter 1987<br />

Solariella obscura UAM ST/Inf II x Austin 1985<br />

Spiromoellaria kachemakens UAM I/ST/Epi II III IV Baxter 1987<br />

Aforia circinata UAM ST/Inf II III IV Baxter 1987<br />

Tachyrhynchus erosus Baxter 1987 ST/Inf II x Austin 1985<br />

Tachyrhynchus reticulatus Baxter 1987 ST/Inf II III IV Austin 1985<br />

Velutina plicatilis Baxter 1987 ST/Epi II x Austin 1985<br />

Velutina prolongata Baxter 1987 ST/Epi II III IV Austin 1985<br />

Velutina rubra Foster 2000 I/Epi II III IV Austin 1985<br />

Velutina undata Baxter 1987 ST/Epi II x x x Austin 1985<br />

Volumitra alaskana UAM ST/Epi II III IV Baxter 1987<br />

Arctomelon stearnsii UAM ST/Epi II III IV Austin 1985<br />

Janolus fuscus Goddard 2000 ST/Epi II III IV SE Alaska nr Goddard 2000<br />

Turgeon et al.<br />

Clio pyramidata Cooney 1987 P x x x<br />

1998<br />

Cryptochiton stelleri UAM I/ST/Epi II III IV Baxter 1987<br />

Lepidozona interstincta Ischnochiton UAM ST/Epi II III IV Baxter 1987<br />

Stenonemus albus Ischnochiton UAM ST/Epi II x Baxter 1987<br />

Leptochiton rugatus UAM I/ST/Epi II III IV x Austin 1985<br />

Katherina tunicata UAM I/Epi II III IV Baxter 1987<br />

Mopalia laevior UAM I/ST/Epi II III IV Austin 1985<br />

Mopalia lignosa UAM I/ST/Epi II III IV Baxter 1987<br />

Mopalia ciliata UAM I/ST/Epi II III IV Baxter 1987<br />

Mopalia cirrata UAM I/ST/Epi II III IV Baxter 1987<br />

Mopalia mucosa UAM I/ST/Epi II III IV Baxter 1987<br />

Mopalia spectabilis Baxter 1987 I/ST/Epi II III IV Baxter 1987<br />

Mopalia swanii UAM I/ST/Epi II III IV Austin 1985<br />

Placiphorella rufa UAM I/ST/Epi II III IV Austin 1985<br />

Schizoplax brandtii UAM I/Epi II III IV x Austin 1985<br />

Tonicella insignis Ischnochitonidae Foster 2000 I/ST/Epi II III IV Baxter 1987<br />

Tonicella lineata Ischnochitonidae UAM I/ST/Epi II III IV Baxter 1987<br />

Tonicella rubra Ischnochitonidae UAM I/ST/Epi II x Baxter 1987<br />

Rhabdus rectius Dentalium dalli UAM ST/Inf II III IV Baxter 1987<br />

Pulsellum salishorum UAM ST/Inf II III IV Baxter 1987<br />

Polyschides tolmei Cadulus stearnsi UAM ST/Inf II III IV Baxter 1987


Chapt 10. Biodiversity, page 10- 28<br />

Arthropoda<br />

Chelicerata and Pycnogonida are relatively scarce in Prince William Sound compared to<br />

Crustacea. Seven <strong>of</strong> the ten pycnogonid species are included in the data set based on UAM<br />

specimens, One Acarina and one pseudoscorpion are frequently observed in the high intertidal<br />

zone <strong>of</strong> southeastern and south-central Alaska.<br />

Crustacea make up about 28% <strong>of</strong> the animal species listed in the data set (Table 10.5).<br />

We list 172 copepods, (including planktonic species from the Gulf <strong>of</strong> Alaska which may be<br />

present occasionally in Prince William Sound), 105 decapods, 105 amphipods, 21 cumacean, 19<br />

isopods, and smaller numbers <strong>of</strong> others.<br />

Several taxa (e.g. Ostracoda) are probably very much under-counted. Six copepods, one<br />

amphipod, and two ostracods are identified to the family level, and no further. A large number<br />

<strong>of</strong> small crustacea, mostly harpacticoid copepods and amphipods have not been identified to<br />

species. Two species, the amphipod Jassa sp./marmorata and the copepod Leimia vaga are<br />

possible NIS, but this number probably represents an underestimate. Cordell (2000) pointed out<br />

that “Harpacticoid copepods may be particularly likely to be transported and introduced because<br />

as a group they have successfully occupied almost all benthic and epibenthic habitats. … The<br />

paucity <strong>of</strong> studies <strong>of</strong> harpacticoid taxonomy in the northeastern Pacific makes it nearly<br />

impossible to determine whether or not a given species has been introduced without extensive<br />

distribution or genetic studies.” We have not included an inventory <strong>of</strong> parasitic cirripedia or<br />

isopods, but several species <strong>of</strong> these were recorded by Hines et al. (2000).<br />

Sources for information <strong>of</strong> Crustacea include Barnard 1969 (amphipods), Butler 1980<br />

(shrimp), Hart 1982 (crabs), and Schultz 1969 and Squires and Figueria 1974 (isopods). J.<br />

Chapman (2000) contributed to the information on Pericarida, and J. Cordell (2000) to our<br />

knowledge <strong>of</strong> the harpacticoid Copepoda. Records for the planktonic crustacea derive from<br />

unpublished data compiled from T. Cooney’s Sound Ecosystem Analysis project <strong>of</strong> 1994-1998.<br />

We found eleven new records for the occurrence <strong>of</strong> Crustacea.<br />

The third major group <strong>of</strong> Arthropoda, marine and brackish water insects, have not been<br />

surveyed in any detail in the area. For insects, Austin (1985) lists eight Coleoptera, and 12<br />

Diptera with ranges that include Alaska.


Chapt 10. Biodiversity, page 10- 29<br />

Table 10.5. Arthropoda.<br />

BIOREGION<br />

HIGHER TAXON FAMILY GENUS SPECIES OTHER NAMES<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN<br />

REFERENCE to<br />

NIS STATUS DISTRIBUTION<br />

Arachnida: Acarina Nemolgus littoralis<br />

Foster/Hobergobservation<br />

I/Epi<br />

Arachnida:<br />

Pseudoscorpionida unidentified unidentified UAM I/epi<br />

Crustacea: Amphipoda Acanthonotozomatidae Odius carinatus EVOS ST/Epi II x Austin 1985<br />

Crustacea: Amphipoda Ampeliscidae Ampelisca birulai<br />

Feder and<br />

Matheke 1980 I/ST/Inf II III IV x x<br />

Coyle and Highsmith<br />

1994<br />

Crustacea: Amphipoda Ampeliscidae Ampelisca brevisimulata EVOS ST II III IV Austin 1985<br />

Crustacea: Amphipoda Ampeliscidae Ampelisca caryei EVOS ST II III IV Austin 1985<br />

Crustacea: Amphipoda Ampeliscidae Ampelisca pugetica EVOS ST II III IV Austin 1985<br />

Crustacea: Amphipoda Ampeliscidae Ampelisca eschrichti<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV x Austin 1985<br />

Feder and<br />

Crustacea: Amphipoda Ampeliscidae Ampelisca macrocephala A. careyi<br />

Matheke 1980 ST/Inf II III IV Austin 1985<br />

Feder and<br />

Crustacea: Amphipoda Ampeliscidae Haploops tubicola<br />

Matheke 1980 ST/Inf II x x Austin 1985<br />

Crustacea: Amphipoda Amphitoidae Ampithoe kussakini Chapman 2000 I/Inf II III IV x Chapman 2000<br />

Crustacea: Amphipoda Amphitoidae Ampithoe sectimanus Chapman 2000 I/Inf II III IV Chapman 2000<br />

Crustacea: Amphipoda Amphitoidae Ampithoe simulans<br />

Feder and Bryson-<br />

Schwafel 1988 I/ST x x x x Austin 1985<br />

Crustacea: Amphipoda Amphitoidae Peramphithoe eoa Ampithoe mea Chapman 2000 I/Inf II III IV Chapman 2000<br />

Crustacea: Amphipoda Amphitoidae Peramphithoe humeralis Ampithoe Chapman 2000 I/Inf II III IV Chapman 2000<br />

Crustacea: Amphipoda Anisogammaridae Anisogammarus pugettensis EVOS ST/Epi II III IV x Chapman 2000<br />

Crustacea: Amphipoda Anisogammaridae Eogammarus confervicolus Anisogammarus Chapman 2000 I/Inf II III IV Chapman 2000<br />

Crustacea: Amphipoda Anisogammaridae Eogammarus oclairi Chapman 2000 I/Inf II III IV Chapman 2000<br />

Crustacea: Amphipoda Anisogammaridae Eogammarus unidentified Chapman 2000 I/ST<br />

Crustacea: Amphipoda Anisogammaridae Locustogammarus locustoides Chapman 2000 I/Inf II III IV Chapman 2000<br />

Crustacea: Amphipoda Anisogammaridae Spinulogammarus subcarinatus Chapman 2000 I II III IV Chapman 2000<br />

Crustacea: Amphipoda Aoridae Aoroides columbiae EVOS ST II III IV x Austin 1985<br />

Crustacea: Amphipoda Atylidae Atylus collingi EVOS ST II III IV x Austin 1985<br />

Crustacea: Amphipoda Calliopiidae Calliopiella unidentified Paracalliopiella Chapman 2000 I/Inf


Chapt 10. Biodiversity, page 10- 30<br />

Table 10.5 continued.<br />

HIGHER TAXON FAMILY GENUS SPECIES OTHER NAMES<br />

BIOREGION<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN<br />

REFERENCE to<br />

NIS STATUS DISTRIBUTION<br />

Crustacea: Amphipoda Calliopiidae Calliopius behringi Cooney 1987 I/ST II III x x x Gur’yanova 1951, 1962<br />

Crustacea: Amphipoda Calliopiidae Calliopius carinatus Chapman 2000 I/Inf II III IV Chapman 2000<br />

Crustacea: Amphipoda Calliopiidae Calliopius laeviuscula Cooney 1987 P III IV V VI x x Austin 1985<br />

Crustacea: Amphipoda Caprellidae Caprella drepanochir Chapman 2000 I/Inf II III IV x C Chapman 2000<br />

Crustacea: Amphipoda Caprellidae Caprella laeviuscula Chapman 2000 I/Inf II III IV x Chapman 2000<br />

Crustacea: Amphipoda Caprellidae Caprella unidentified Chapman 2000 I/Inf<br />

Crustacea: Amphipoda Caprellidae Metacaprella kennerlyi Chapman 2000 I/Inf II III IV Chapman 2000<br />

Feder and<br />

Crustacea: Amphipoda Corophidae Neohela unidentified<br />

Matheke 1980 ST/Inf<br />

Crustacea: Amphipoda Corophidae Americorophium brevis Corophium Chapman 2000 I/Inf II III IV Chapman 2000<br />

Crustacea: Amphipoda Corophidae Americorophium salmonis Corophium Chapman 2000 I/Inf II III IV Chapman 2000<br />

Crustacea: Amphipoda Corophidae Americorophium spinicore Corophium Chapman 2000 I/Inf II III IV Chapman 2000<br />

Crustacea: Amphipoda Corophidae Corophium unidentified EVOS ST<br />

Crustacea: Amphipoda Corophidae Monocorophium carlottensis Chapman 2000 I/Inf II III IV C Chapman 2000<br />

Crustacea: Amphipoda Dexamidae Guernea unidentified EVOS ST<br />

Crustacea: Amphipoda Eusiridae Eusiriella multicalceola Gracilipes Cooney 1987 P II III Austin 1985<br />

Crustacea: Amphipoda Eusiridae Pontogeneia unidentified EVOS ST<br />

Crustacea: Amphipoda Eusiridae Rhachotropis natator Cooney 1987 P II III IV V x Austin 1985<br />

Crustacea: Amphipoda Gammaridae Lagunogammarus setosus Chapman 2000 I/Inf II III IV x Chapman 2000<br />

Feder and<br />

Crustacea: Amphipoda Haustoriidae Ericthonius hunteri E. rubricornis<br />

Matheke 1980 I/ST/Inf II x x Austin 1985<br />

Crustacea: Amphipoda Hyalellidae Najna unidentified Najnidae EVOS I/St<br />

Crustacea: Amphipoda Hyalidae Allorchestes angusta Chapman 2000 I/Inf II III IV x Chapman 2000<br />

Crustacea: Amphipoda Hyalidae Hyale frequena Chapman 2000 I/Inf II III IV Chapman 2000


Chapt 10. Biodiversity, page 10- 31<br />

Table 10.5 continued.<br />

HIGHER TAXON FAMILY GENUS SPECIES OTHER NAMES<br />

BIOREGION<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN<br />

REFERENCE to<br />

NIS STATUS DISTRIBUTION<br />

Crustacea: Amphipoda Hyalidae Hyale plumulosa Chapman 2000 I/Inf II x x C Chapman 2000<br />

Crustacea: Amphipoda Hyperiidae Euprimno macropa Primno abyssalis Cooney: SEA P<br />

II III IV V<br />

VI VII VIII<br />

IX x x Austin 1985<br />

Crustacea: Amphipoda Hyperiidae Euprimno unidentified Primno Cooney 1987 P<br />

Crustacea: Amphipoda Hyperiidae Hyperia medusarum hystryx Cooney 1987 P<br />

Crustacea: Amphipoda Hyperiidae Hyperia unidentified Cooney 1987 P<br />

Crustacea: Amphipoda Hyperiidae Hyperoche medusarum Cooney 1987 P<br />

II III IV V<br />

VI x Austin 1985<br />

II III IV V<br />

VI x Austin 1985<br />

Crustacea: Amphipoda Hyperiidae Hyperoche unidentified Cooney 1987 P<br />

Crustacea: Amphipoda Hyperiidae Parathemisto gracilipes Thermisto Cooney 1987 P II III x x Austin 1985<br />

Crustacea: Amphipoda Hyperiidae Parathemisto libellula Thermisto Cooney 1987 P II III IV V x Austin 1985<br />

Crustacea: Amphipoda Hyperiidae Parathemisto pacifica Thermisto Cooney 1987 P II III IV x Austin 1985<br />

Crustacea: Amphipoda Isaeidae Photis unidentified EVOS ST/Inf<br />

Crustacea: Amphipoda Ischyroceridae Ischyrocerus unidentified EVOS I/ST/Inf<br />

Crustacea: Amphipoda Ischyroceridae Jassa sp./J. marmorata Chapman 2000 I/Inf II possible Austin 1985<br />

Crustacea: Amphipoda Ischyroceridae Jassa staudel Chapman 2000 I/Inf II III IV C Chapman 2000<br />

Feder and<br />

Crustacea: Amphipoda Ischyroceridae Protomedeia unidentified<br />

Matheke 1980 I/ST/Inf<br />

Crustacea: Amphipoda Lanceolidae Lanceola pacifica Cooney 1987 P II III x x Gur’yanova 1951, 1962<br />

Crustacea: Amphipoda Lycaeidae Tryphana malmii Cooney 1987 P II III IV V Austin 1985<br />

Crustacea: Amphipoda Lysianassidae Andaniexis subabyssis Cooney 1987 P II III IV x Gur’yanova 1951, 1962<br />

Crustacea: Amphipoda Lysianassidae Anonyx unidentified<br />

Feder and<br />

Matheke 1980 I/ST/Inf<br />

Feder and<br />

Crustacea: Amphipoda Lysianassidae Crybelocephalus unidentified<br />

Matheke 1980 P x x x x<br />

Crustacea: Amphipoda Lysianassidae Cyphocaris anonyx C. micronyx Cooney 1987 P<br />

II III IV V<br />

VI VII VIII x Austin 1985


Chapt 10. Biodiversity, page 10- 32<br />

Table 10.5 continued.<br />

HIGHER TAXON FAMILY GENUS SPECIES OTHER NAMES<br />

Crustacea: Amphipoda Lysianassidae Cyphocaris challengeri<br />

BIOREGION<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN<br />

REFERENCE to<br />

NIS STATUS DISTRIBUTION<br />

Cooney and Coyle<br />

1988 S/P x x x x Austin 1985<br />

Crustacea: Amphipoda Lysianassidae Hippomedon kurilicus H. abyssi UAM ST II III IV x Gur’yanova 1951, 1962<br />

Crustacea: Amphipoda Lysianassidae Koroga megalops Cooney 1987 P II III x x x Austin 1985<br />

Crustacea: Amphipoda Lysianassidae Lepidepecerium unidentified EVOS ST<br />

Crustacea: Amphipoda Lysianassidae Onismius unidentified EVOS ST<br />

Crustacea: Amphipoda Lysianassidae Orchomene obtusa Cooney: SEA ST<br />

II III IV V<br />

VI VII Gur’yanova 1951, 1962<br />

Crustacea: Amphipoda Lysianassidae Orchomene pacifica EVOS ST II III IV x Austin 1985<br />

Crustacea: Amphipoda Lysianassidae Orchomene unidentified EVOS ST<br />

Crustacea: Amphipoda Lysianassidae Paracallisoma alberti Cooney 1987 P II III x Gur’yanova 1951, 1962<br />

Feder and<br />

Crustacea: Amphipoda Melitidae Maera loveni M.danae<br />

Matheke 1980 ST/Inf II x x Austin 1985<br />

Crustacea: Amphipoda Melitidae Melita dentata EVOS ST II III IV x Austin 1985<br />

Crustacea: Amphipoda Melphidippidae unidentified unidentified Cooney: SEA ST II III x NE Pac NR Austin 1985<br />

Feder and<br />

Crustacea: Amphipoda Oedicerotidae Aceroides latipes<br />

Matheke 1980 I/ST/Inf II III IV x Austin 1985<br />

Crustacea: Amphipoda Oedicerotidae Bathymedon unidentified EVOS ST/Inf<br />

Feder and<br />

Crustacea: Amphipoda Oedicerotidae Monoculodes diamesus<br />

Matheke 1980 I/ST/Inf II III IV Gur’yanova 1951, 1962<br />

Crustacea: Amphipoda Oedicerotidae Synchelidium rectipalmatum EVOS ST/Inf II III IV Austin 1985<br />

Crustacea: Amphipoda Oedicerotidae Westwoodillia rectangulata W. caecula Cooney 1987 P II x Gur’yanova 1951, 1962<br />

Crustacea: Amphipoda Oxycephalidae Streesia unidentified Cooney 1987 P<br />

Crustacea: Amphipoda Paraphronimidae Paraphronima crassipes Cooney 1987 P<br />

II III IV V<br />

VI VII x Austin 1985<br />

Feder and<br />

Crustacea: Amphipoda Pardaliscidae Nicippe tumida<br />

Matheke 1980 I/ST/Inf II III IV x Austin 1985<br />

Feder and<br />

Crustacea: Amphipoda Phoxocephalidae Harpiniopsis sanpedroensis Harpinia<br />

Matheke 1980 I/ST/Inf II III IV Austin 1985<br />

Crustacea: Amphipoda Phoxocephalidae Paraphoxus homilis EVOS ST/Inf II III IV Austin 1985<br />

Crustacea: Amphipoda Phoxocephalidae Paraphoxus similis EVOS ST/Inf II III IV Austin 1985<br />

II III IV V<br />

Crustacea: Amphipoda Phronimidae Phronima sedentaria Cooney 1987 P<br />

VI x Austin 1985


Chapt 10. Biodiversity, page 10- 33<br />

Table 10.5 continued.<br />

BIOREGION<br />

HIGHER TAXON FAMILY GENUS SPECIES OTHER NAMES<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN<br />

REFERENCE to<br />

NIS STATUS DISTRIBUTION<br />

II III IV V<br />

Crustacea: Amphipoda Phrosinidae Primno macropa P. abyssalis Cooney 1987 P<br />

VI x x Austin 1985<br />

Crustacea: Amphipoda Pleustidae Pleustes cataphractus EVOS I/Inf x x x Austin 1985<br />

Crustacea: Amphipoda Pontogeneiidae Megamorea subiener Chapman 2000 I/Inf II III IV Chapman 2000<br />

Crustacea: Amphipoda Pontogeneiidae Paramoera bousfieldi Chapman 2000 I/Inf II III IV Chapman 2000<br />

Crustacea: Amphipoda Pontogeneiidae Paramoera columbiana<br />

Feder and Bryson-<br />

Schwafel 1988 I/Inf II III IV Austin 1985<br />

Crustacea: Amphipoda Pontogeneiidae Paramoera mohri Chapman 2000 I/Inf II III IV Chapman 2000<br />

Crustacea: Amphipoda Pontogeneiidae Pontogeneia ivanovae P. ivanovi Chapman 2000 I/Inf II III IV Chapman 2000<br />

Crustacea: Amphipoda Pontogeneiidae Pontogeneia rostrata Chapman 2000 I/Inf II III IV C Chapman 2000<br />

Crustacea: Amphipoda Pontoporeiidae Pontoporeia femorata Chapman 2000 I/Inf II III IV Chapman 2000<br />

Crustacea: Amphipoda Proscinidae Proscina birsteini Cooney 1987 P II x Gur’yanova 1951, 1962<br />

II III IV V<br />

Crustacea: Amphipoda Scinidae Scina borealis UAM I/ST/Inf VI x x Austin 1985<br />

Crustacea: Amphipoda Scinidae Scina rattayi Cooney 1987 P II III IV x Austin 1985<br />

Crustacea: Amphipoda Scinidae Scina unidentified Cooney: SEA P<br />

Crustacea: Amphipoda Scinidae Scina stebbingi Cooney 1987 P II x Gur’yanova 1951, 1962<br />

Feder and<br />

Crustacea: Amphipoda Stenothoidae Metopa unidentified<br />

Matheke 1980 I/ST/Inf<br />

Crustacea: Amphipoda Stenothoidae Metopelloides erythrophthalmus EVOS II III IV Austin 1985<br />

Feder and<br />

Crustacea: Amphipoda Synopiidae Syrrhoe crenulata<br />

Matheke 1980 I/ST/Inf II x x Austin 1985<br />

Crustacea: Amphipoda Synopiidae Tiron biocellata EVOS II III IV Austin 1985<br />

Crustacea: Amphipoda Talitridae Talitrus unidentified<br />

Crustacea: Amphipoda Urothoidae Urothoe denticulata<br />

Feder and Bryson-<br />

Schwafel 1988 I/Inf<br />

Feder and<br />

Matheke 1980 I/ST/Inf II III IV Gur’yanova 1951, 1962<br />

Crustacea: Amphipoda Vibiliidae Viblia australis Cooney 1987 P II III IV x Austin 1985<br />

II III IV V<br />

Crustacea: Cladocera Podonidae Evadne nordmanni Cooney 1987 P<br />

VI x x x Austin 1985<br />

Crustacea: Cladocera Podonidae Evadne unidentified Cooney 1987 P


Chapt 10. Biodiversity, page 10- 34<br />

Table 10.5 continued.<br />

BIOREGION<br />

HIGHER TAXON FAMILY GENUS SPECIES OTHER NAMES<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN<br />

REFERENCE to<br />

NIS STATUS DISTRIBUTION<br />

Crustacea: Cladocera Podonidae Evadne tergistina Pseudevadne Cooney 1987 P<br />

II III IV V<br />

VI Austin 1985<br />

Crustacea: Cladocera Podonidae Podon leuckarti Cooney 1987 P II III IV x x Austin 1985<br />

II III IV V<br />

Crustacea: Cladocera Podonidae Podon polyphmoies Cooney 1987 P<br />

VI x x x Austin 1985<br />

Crustacea: Cladocera Podonidae Podon unidentified Cooney 1987 P<br />

Crustacea: Copepoda:<br />

Calanoida Acartiidae Acartia cf. A. clausi Cordell 2000 P II III IV Cordell 2000<br />

Crustacea: Copepoda:<br />

Calanoida Acartiidae Acartia longiremis<br />

Crustacea: Copepoda:<br />

Calanoida Acartiidae Acartia unidentified Cooney: SEA P<br />

Crustacea: Copepoda:<br />

Calanoida Acartiidae Acartia tumida<br />

Crustacea: Copepoda:<br />

Calanoida Aetideidae Aetideus divergens A. armatus Cooney 1987 P<br />

Cooney and Coyle<br />

1988 P II x x Austin 1985<br />

Cooney and Coyle<br />

1988 P II III IV x Austin 1985<br />

II III IV V<br />

VI Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Aetideidae Aetideus pacificus Cooney 1987 P II III IV x Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Aetideidae Aetideus unidentified Cooney 1987 P<br />

Crustacea: Copepoda:<br />

Calanoida Aetideidae Bradyidius saanichi Cooney 1987 P II III IV Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Aetideidae Chiridiella unidentified<br />

Cooney and Coyle<br />

1988 P<br />

Crustacea: Copepoda:<br />

Calanoida Aetideidae Chiridius gracilis Cooney 1987 P II III x x Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Aetideidae Chiridius poppei Cooney 1987 P II x Brodsky 1950<br />

Crustacea: Copepoda:<br />

Calanoida Aetideidae Chiridius unidentified<br />

Cooney and Coyle<br />

1988 P<br />

Crustacea: Copepoda:<br />

Calanoida Aetideidae Gaetanus intermedius Gaidius Cooney 1987 P II III IV Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Aetideidae Gaidius tenuispinus G. minutus Cooney 1987 P II III IV Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Aetideidae Gaidius variabilis Cooney 1987 P II III IV x Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Aetideidae Pseudochirella sarsi Euchaetidae: Euchaeta Cooney 1987 P II III IV Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Aetideidae Pseudochirella unidentified Cooney 1987 P<br />

Crustacea: Copepoda:<br />

Calanoida Aetideidae unidentified unidentified Cooney: SEA P<br />

Crustacea: Copepoda:<br />

Calanoida Augaptilidae Haloptilus pseudooxycephalus Cooney 1987 P II III IV x Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Augaptilidae Pachyptilis pacificus Cooney 1987 P II III x Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Calanidae Calanus glacialis E. marshallae Cooney 1987 P II III IV x Austin 1985


Chapt 10. Biodiversity, page 10- 35<br />

Table 10.5 continued.<br />

HIGHER TAXON FAMILY GENUS SPECIES OTHER NAMES<br />

Crustacea: Copepoda:<br />

Calanoida Calanidae Calanus marshallae C. glacialis<br />

BIOREGION<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN<br />

REFERENCE to<br />

NIS STATUS DISTRIBUTION<br />

Cooney and Coyle<br />

1988 P II III IV x Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Calanidae Calanus pacificus Cooney 1987 P II III IV Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Calanidae Neocalanus cristatus Cooney 1987 P II III IV V x x Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Calanidae Neocalanus flemingeri Cooney: SEA P II III IV Miller 1988<br />

Crustacea: Copepoda:<br />

Calanoida Calanidae Neocalanus plumchrus<br />

Cooney and Coyle<br />

1988 P II III IV x Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Calanidae Neocalanus unidentified Cooney: SEA P<br />

Crustacea: Copepoda:<br />

Calanoida Candaciidae Candacia bipinnata Cooney: SEA P II III IV V x x Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Candaciidae Candacia columbiae<br />

Crustacea: Copepoda:<br />

Calanoida Centropagidae Centropages abdominalis<br />

Cooney and Coyle<br />

1988 P II III IV x Cooney 1987<br />

Cooney and Coyle<br />

1988 P II III IV x Cordell 2000<br />

Crustacea: Copepoda:<br />

Calanoida Clausocalanidae Clausocalanus arcuicornis Cooney 1987 P II III IV Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Clausocalanidae Clausocalanus unidentified Cooney: SEA P<br />

Crustacea: Copepoda:<br />

Calanoida Clausocalanidae Mesocalanus tenuicornis Cooney 1987 P II x x Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Clausocalanidae Microcalanus unidentified Cooney 1987 P<br />

Crustacea: Copepoda:<br />

Calanoida Clausocalanidae Pseudocalanus unidentified Cooney: SEA P<br />

Crustacea: Copepoda:<br />

Calanoida Corycaeidae Corycaeus anglicus Cooney 1987 P II III IV V x Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Corycaeidae Corycaeus unidentified Cooney: SEA P<br />

Crustacea: Copepoda:<br />

Calanoida Ectinosomatidae Microsetella rosea Cooney 1987 P<br />

Crustacea: Copepoda:<br />

Calanoida Ectinosomatidae Microsetella unidentified Cooney: SEA P<br />

Crustacea: Copepoda:<br />

Calanoida Eucalanidae Eucalanus bungii<br />

Crustacea: Copepoda:<br />

Calanoida Euchaetidae Euchaete elongata<br />

II III VI V<br />

VI x x Austin 1985<br />

Cooney and Coyle<br />

1988 P II III IV Austin 1985<br />

Cooney and Coyle<br />

1988 P II III IV x Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Heterhabdidae Heterorhabdus compactus Cooney 1987 P II x x Brodsky 1950<br />

Crustacea: Copepoda:<br />

Calanoida Heterhabdidae Heterorhabdus robustoides Cooney 1987 P II III x<br />

Gardner and Szabo<br />

1982<br />

Crustacea: Copepoda:<br />

Calanoida Heterhabdidae Heterorhabdus tanneri Cooney 1987 P II III IV x x Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Heterhabdidae Heterostylites longicornis Cooney: SEA P III VI V VI x Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Heterhabdidae Heterostylites major Cooney 1987 P II III IV x Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Lucicutiidae Lucicutia flavicornis Cooney 1987 P<br />

II III IV V<br />

VI x Austin 1985


Chapt 10. Biodiversity, page 10- 36<br />

Table 10.5 continued.<br />

BIOREGION<br />

HIGHER TAXON FAMILY GENUS SPECIES OTHER NAMES<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN<br />

REFERENCE to<br />

NIS STATUS DISTRIBUTION<br />

Crustacea: Copepoda:<br />

Calanoida Lucicutiidae Lucicutia ovalis Cooney 1987 P II III IV x Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Lucicutiidae Lucicutia unidentified Cooney: SEA P<br />

Crustacea: Copepoda:<br />

Calanoida Metridiidae Metridia curticauda<br />

Crustacea: Copepoda:<br />

Calanoida Metridiidae Metridia okhotensis M. longa<br />

Crustacea: Copepoda:<br />

Calanoida Metridiidae Metridia pacifica<br />

Crustacea: Copepoda:<br />

Calanoida Metridiidae Metridia princeps<br />

Crustacea: Copepoda:<br />

Calanoida Metridiidae Metridia unidentified<br />

Cooney and Coyle<br />

1988 P II III IV x Austin 1985<br />

Cooney and Coyle<br />

1988 P II III IV x Austin 1985<br />

Cooney and Coyle<br />

1988 P II III IV x Austin 1985<br />

Cooney and Coyle<br />

1988 P<br />

Cooney and Coyle<br />

1988 P<br />

II III IV V<br />

VI x x Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Metridiidae Pleuromamma robusta Cooney 1987 P II III IV x Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Metridiidae Pleuromamma scutullata Cooney 1987 P II III IV x Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Monstrillidae Cymbasoma rigidum Cooney 1987 P II III x Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Monstrillidae Monstrilla canadensis Cooney 1987 P II III IV x<br />

Crustacea: Copepoda:<br />

Calanoida Monstrillidae Monstrilla helgolandica Cooney 1987 P II III IV x<br />

Crustacea: Copepoda:<br />

Calanoida Monstrillidae Monstrilla longiremus Cooney 1987 P II III IV<br />

Crustacea: Copepoda:<br />

Calanoida Monstrillidae Monstrilla unidentified Cooney: SEA P<br />

Crustacea: Copepoda:<br />

Calanoida Monstrillidae Monstrilla wandlii Cooney 1987 P II III IV x<br />

Crustacea: Copepoda:<br />

Calanoida Paracalanidae Paracalanus parvus Cooney 1987 P<br />

Crustacea: Copepoda:<br />

Calanoida Paracalanidae Paracalanus unidentified Cordell 2000 P<br />

Crustacea: Copepoda:<br />

Calanoida Phaennidae Gaetanus unidentified<br />

Cooney and Coyle<br />

1988 P<br />

Gardner and Szabo<br />

1982<br />

Gardner and Szabo<br />

1982<br />

Gardner and Szabo<br />

1982<br />

Gardner and Szabo<br />

1982<br />

II III IV V<br />

VI x x Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Pontellidae Epilabidocera longipedata E. amphitrites Cooney 1987 P II III IV x Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Pseudocalanidae Pseudocalanus unidentified Cordell 2000 P<br />

Crustacea: Copepoda:<br />

Calanoida Scolecitrichidae Lophothrix frontalis Cooney 1987 P<br />

II III IV V<br />

VI x Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Scolecitrichidae Racovitzanus antarcticus Cooney 1987 P III IV x x Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Scolecitrichidae Scaphocalanus brevicornis Cooney 1987 P II III IV x x Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Scolecitrichidae Scaphocalanus magnus Cooney 1987 P II III IV x x Austin 1985


Chapt 10. Biodiversity, page 10- 37<br />

Table 10.5 continued.<br />

BIOREGION<br />

HIGHER TAXON FAMILY GENUS SPECIES OTHER NAMES<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN<br />

REFERENCE to<br />

NIS STATUS DISTRIBUTION<br />

Crustacea: Copepoda:<br />

Calanoida Scolecitrichidae Scolecithricella minor Cooney 1987 P II x x Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Scolecitrichidae Scolecithricella ovata S. subdentata Cooney: SEA P<br />

II III IV V<br />

VI Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Spinocalanidae Spinocalanus brevicaudatus Cooney 1987 P II III x x Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Temoridae Eurytemora americana Cooney 1987 P II III x Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Temoridae Eurytemora herdmani E. pacifica Cordell 2000 P II III IV x Austin 1985<br />

Crustacea: Copepoda:<br />

Calanoida Temoridae Eurytemora unidentified Cooney 1987 P<br />

Crustacea: Copepoda:<br />

Calanoida Tharydidae Undinella unidentified Cooney 1987 P<br />

Crustacea: Copepoda:<br />

Calanoida Tortanidae Tortanus discaudata<br />

Crustacea: Copepoda:<br />

Calanoida Amallothryx inornata P<br />

Crustacea: Copepoda:<br />

Cyclopoida Cyclopidae Euryte unidentified Cordell 2000 P<br />

Cooney and Coyle<br />

1988 P II x x Austin 1985<br />

Crustacea: Copepoda:<br />

Cyclopoida Cyclopidae Halicyclops unidentified Cordell 2000 P<br />

Crustacea: Copepoda:<br />

Cyclopoida Cyclopinidae Cyclopina unidentified Cooney 1987 P<br />

Crustacea: Copepoda:<br />

Cyclopoida Cyclopinidae unidentified unidentified Cordell 2000 P<br />

Crustacea: Copepoda:<br />

Cyclopoida Oithonidae Oithona similis Cordell 2000 P x x x x Cordell 2000<br />

Crustacea: Copepoda:<br />

Cyclopoida Oithonidae Oithona unidentified Cooney: SEA P<br />

Crustacea: Copepoda:<br />

Cyclopoida Oithonidae Oithona spinirostris Cordell 2000 P x x x x Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Ameiridae Ameira longipes Cordell 2000 I/Inf II x x Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Ameiridae Ameira sp. 1 Cordell 2000 I/Inf<br />

Crustacea: Copepoda:<br />

Harpacticoida Ameiridae Ameira sp. 2 Cordell 2000 I/Inf<br />

Crustacea: Copepoda:<br />

Harpacticoida Ameiridae unidentified sp. 1 Cordell 2000 I/Inf


Chapt 10. Biodiversity, page 10- 38<br />

Table 10.5 continued.<br />

HIGHER TAXON FAMILY GENUS SPECIES OTHER NAMES<br />

BIOREGION<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN<br />

REFERENCE to<br />

NIS STATUS DISTRIBUTION<br />

Crustacea: Copepoda:<br />

Harpacticoida Ancorabilidae Arthropsyllus serratus Cordell 2000 I/Inf II III IV Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Canthocamptidae Mesochra pygmaea<br />

Feder and Bryson-<br />

Schwafel 1988 I/Inf II x x x Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Canthocamptidae Mesochra sp. 1 Cordell 2000 I/Inf<br />

Crustacea: Copepoda:<br />

Harpacticoida Canthocamptidae unidentified incertae sedis Cordell 2000 II III IV Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Cletodidae Acrenhydrosoma unidentified Cordell 2000 I/Inf<br />

Crustacea: Copepoda:<br />

Harpacticoida Cletodidae Leimia vaga Cordell 2000 I/Inf II x x possible Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Cletodidae Nannopus palustris<br />

Crustacea: Copepoda:<br />

Harpacticoida Cletodidae Rhizothrix unidentified<br />

Crustacea: Copepoda:<br />

Harpacticoida Danielsseniidae Danielsennia typica<br />

Feder and Bryson-<br />

Schwafel 1988 I/ST/Inf II x x Austin 1985<br />

Feder and Bryson-<br />

Schwafel 1988<br />

I/ST/Inf<br />

Feder and Bryson-<br />

Schwafel 1988 I/Inf II x x Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Diosaccidae Amonardia normani Cordell 2000 I/Inf II III IV Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Diosaccidae Amonardia perturbata Cordell 2000 I/Inf II III IV Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Diosaccidae Amphiascoides cf. D. debilis Cordell 2000 I/Inf II x x Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Diosaccidae Amphiascoides sp. 1 Cordell 2000 I/Inf<br />

Crustacea: Copepoda:<br />

Harpacticoida Diosaccidae Amphiascopis cinctus Cordell 2000 I/Inf II x x Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Diosaccidae Amphiascus minutus Cordell 2000 I/Inf II III IV Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Diosaccidae Amphiascus sp. 1 Cordell 2000 I/Inf


Chapt 10. Biodiversity, page 10- 39<br />

Table 10.5 continued.<br />

HIGHER TAXON FAMILY GENUS SPECIES OTHER NAMES<br />

BIOREGION<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN<br />

REFERENCE to<br />

NIS STATUS DISTRIBUTION<br />

Crustacea: Copepoda:<br />

Harpacticoida Diosaccidae Diosaccus sp. 1 Cordell 2000 I/Inf<br />

Crustacea: Copepoda:<br />

Harpacticoida Diosaccidae Diosaccus spinatus Cordell 2000 I/Inf II III IV Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Diosaccidae Robertsonia unidentified Cordell 2000 I/Inf<br />

Crustacea: Copepoda:<br />

Harpacticoida Diosaccidae Stenhelia peniculata Cordell 2000 I/Inf II III IV Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Diosaccidae Stenhelia unidentified<br />

Feder and Bryson-<br />

Schwafel 1988<br />

I/ST/Inf<br />

Crustacea: Copepoda:<br />

Harpacticoida Ectinosomatidae Ectinosoma unidentified Cordell 2000 I/Inf<br />

Crustacea: Copepoda:<br />

Harpacticoida Ectinosomatidae Halectinosoma finmarchium<br />

Crustacea: Copepoda:<br />

Harpacticoida Ectinosomatidae Halectinosoma gothiceps<br />

Feder and Bryson-<br />

Schwafel 1988 I/ST/Inf II x x Austin 1985<br />

Feder and Bryson-<br />

Schwafel 1988 I/ST/Inf II x x Austin 1985<br />

Crustacea: Copepoda:<br />

Harpacticoida Ectinosomatidae Halectinosoma sp. 1 Cordell 2000 I/Inf<br />

Crustacea: Copepoda:<br />

Harpacticoida Ectinosomatidae Halectinosoma sp. 2 Cordell 2000 I/Inf<br />

Crustacea: Copepoda:<br />

Harpacticoida Ectinosomatidae Halectinosoma sp. 3 Cordell 2000 I/Inf<br />

Crustacea: Copepoda:<br />

Harpacticoida Ectinosomatidae Microarthridion norvegica Cordell 2000 I/Inf x x x x Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Harpacticidae Harpacticus compressus Cordell 2000 I/Inf II III IV Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Harpacticidae Harpacticus septentrionalis Cordell 2000 I/Inf II III IV Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Harpacticidae Harpacticus<br />

sp.- obscurus group<br />

1 Cordell 2000 I/Inf II III IV Cordell 2000


Chapt 10. Biodiversity, page 10- 40<br />

Table 10.5 continued.<br />

HIGHER TAXON FAMILY GENUS SPECIES OTHER NAMES<br />

BIOREGION<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN<br />

REFERENCE to<br />

NIS STATUS DISTRIBUTION<br />

Crustacea: Copepoda:<br />

Harpacticoida Harpacticidae Harpacticus<br />

Crustacea: Copepoda:<br />

Harpacticoida Harpacticidae Harpacticus<br />

sp.- obscurus group<br />

2 Cordell 2000 I/Inf II III IV Cordell 2000<br />

sp.- uniremis group<br />

1 Cordell 2000 I/Inf II III IV Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Harpacticidae Harpacticus superflexus<br />

Crustacea: Copepoda:<br />

Harpacticoida Harpacticidae Harpacticus uniremis<br />

Feder and Bryson-<br />

Schwafel 1988 I/ST/Inf II III Cooney 1987<br />

Feder and Bryson-<br />

Schwafel 1988 I/ST/Inf II x x Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Harpacticidae Zaus unidentified Cordell 2000 I/Inf<br />

Crustacea: Copepoda:<br />

Harpacticoida Laophontidae Echinolaophonte unidentified Cordell 2000 I/Inf<br />

Crustacea: Copepoda:<br />

Harpacticoida Laophontidae Heterolaophonte discophora Cordell 2000 I/Inf II x x Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Laophontidae Heterolaophonte longisetigera Cordell 2000 I/Inf II x x Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Laophontidae Heterolaophonte sp. 1 Cordell 2000 I/Inf<br />

Crustacea: Copepoda:<br />

Harpacticoida Laophontidae Heterolaophonte variabilis Cordell 2000 I/Inf II III IV Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Laophontidae Laophonte applanata Cordell 2000 I/Inf II III IV Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Laophontidae Laophonte elongata Cordell 2000 I/Inf II III IV Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Laophontidae Laophonte sp. 1 Cordell 2000 I/Inf<br />

Crustacea: Copepoda:<br />

Harpacticoida Laophontidae Paralaophonte cf. L. congenera Cordell 2000 I/Inf II III IV Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Laophontidae Paralaophonte hyperborea Cordell 2000 I/Inf II x x Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Laophontidae Paralaophonte pacifica Cordell 2000 I/Inf II III IV Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Laophontidae Paralaophonte perplexa<br />

Feder and Bryson-<br />

Schwafel 1988 I/ST/Inf II III IV x Cordell 2000


Chapt 10. Biodiversity, page 10- 41<br />

Table 10.5 continued.<br />

HIGHER TAXON FAMILY GENUS SPECIES OTHER NAMES<br />

BIOREGION<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN<br />

REFERENCE to<br />

NIS STATUS DISTRIBUTION<br />

Crustacea: Copepoda:<br />

Harpacticoida Laophontidae Paralaophonte sp. 1 Cordell 2000 I/Inf<br />

Crustacea: Copepoda:<br />

Harpacticoida Laophontidae Pseudonychocamptus spinifer Cordell 2000 I/Inf II III IV Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Longipediidae Longipedia unidentified Cordell 2000 I/Inf<br />

Crustacea: Copepoda:<br />

Harpacticoida Parastenheliidae Parastenhelia sp. 1 Cordell 2000 I/Inf<br />

Crustacea: Copepoda:<br />

Harpacticoida Parastenheliidae Parastenhelia sp. 2 Cordell 2000 I/Inf<br />

Crustacea: Copepoda:<br />

Harpacticoida Tachidiidae Microarthridion littorale<br />

Feder and Bryson-<br />

Schwafel 1988 I/Inf II x x Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Tegastidae Tegestes sp. 1 Cordell 2000 I/Inf<br />

Crustacea: Copepoda:<br />

Harpacticoida Tegastidae Tegestes sp. 2 Cordell 2000 I/Inf<br />

Crustacea: Copepoda:<br />

Harpacticoida Thalestridae Dactylopausia cf. D. glacialis Dactylopodia Cordell 2000 I/Inf II x x Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Thalestridae Dactylopausia glacialis Dactylopodia Cordell 2000 I/Inf II x x Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Thalestridae Dactylopausia paratisboides Dactylopodia Cordell 2000 I/Inf II III IV Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Thalestridae Dactylopausia sp. 1 Dactylopodia Cordell 2000 I/Inf<br />

Crustacea: Copepoda:<br />

Harpacticoida Thalestridae Dactylopausia vulgaris Dactylopodia Cordell 2000 I/Inf II x x Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Thalestridae Diarthrodes sp. 2 Cordell 2000 I/Inf<br />

Crustacea: Copepoda:<br />

Harpacticoida Thalestridae Idomene unidentified Cordell 2000 I/Inf<br />

Crustacea: Copepoda:<br />

Harpacticoida Thalestridae Paradactylopodia latipes<br />

Feder and Bryson-<br />

Schwafel 1988 I/ST/Inf II III IV Austin 1985


Chapt 10. Biodiversity, page 10- 42<br />

Table 10.5 continued.<br />

HIGHER TAXON FAMILY GENUS SPECIES OTHER NAMES<br />

Crustacea: Copepoda:<br />

Harpacticoida Thalestridae Paradactylopodia latipes<br />

BIOREGION<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN<br />

REFERENCE to<br />

NIS STATUS DISTRIBUTION<br />

Feder and Bryson-<br />

Schwafel 1988 I/ST/Inf II III IV Austin 1985<br />

Crustacea: Copepoda:<br />

Harpacticoida Thalestridae Paradactylopodia sp. 1 Cordell 2000 I/Inf<br />

Crustacea: Copepoda:<br />

Harpacticoida Thalestridae Parathalestris sp. 1 Cordell 2000 I/Inf<br />

Crustacea: Copepoda:<br />

Harpacticoida Thalestridae Parathalestris sp. 2 Cordell 2000 I/Inf<br />

Crustacea: Copepoda:<br />

Harpacticoida Thalestridae Parathalestris sp. 3 Cordell 2000 I/Inf<br />

Crustacea: Copepoda:<br />

Harpacticoida Tisbidae Scutellidium arthuri Cordell 2000 I/Inf II III IV Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Tisbidae Tisbe cf. T. furcata Cordell 2000 I/Inf II III IV Cordell 2000<br />

Crustacea: Copepoda:<br />

Harpacticoida Tisbidae Tisbe gracilis Cooney 1987 I/Inf Cooney 1987<br />

Crustacea: Copepoda:<br />

Harpacticoida Tisbidae Tisbe inflata <br />

Feder and Bryson-<br />

Schwafel 1988 I/ST/Inf II III IV Austin 1985<br />

Crustacea: Copepoda:<br />

Harpacticoida Tisbidae Tisbe unidentified Cordell 2000 I/Inf<br />

Crustacea: Copepoda:<br />

Poecilostomatoida Oncaeidae Lubbockia wilsonae Cooney 1987 P II III x Austin 1985<br />

Crustacea: Copepoda:<br />

Poecilostomatoida Oncaeidae Oncaea borealis Copepoda: Cyclopoida Cooney 1987 P<br />

II III IV V<br />

VI x Austin 1985<br />

Crustacea: Copepoda:<br />

Poecilostomatoida Oncaeidae Oncaea conifera Cooney 1987 P II III IV x x x Austin 1985<br />

Crustacea: Copepoda:<br />

Poecilostomatoida Oncaeidae Oncaea prolata O. notopus Cooney 1987 P II III IV Austin 1985<br />

Crustacea: Copepoda:<br />

Poecilostomatoida Oncaeidae Oncaea unidentified Cooney: SEA P<br />

Crustacea: Copepoda:<br />

Poecilostomatoida Oncaeidae Pseudolubbokia dilatata Cooney 1987 P II III IV x Austin 1985<br />

Crustacea: Copepoda:<br />

Poecilostomatoida unidentified unidentified Copepoda: Cyclopoida Cordell 2000<br />

Crustacea: Cumacea Bodoptriidae Vaunthompsonia pacifica EVOS ST<br />

II III IV V<br />

VI Austin 1985


Chapt 10. Biodiversity, page 10- 43<br />

Table 10.5 continued.<br />

BIOREGION<br />

HIGHER TAXON FAMILY GENUS SPECIES OTHER NAMES<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN<br />

REFERENCE to<br />

NIS STATUS DISTRIBUTION<br />

Crustacea: Cumacea Diastylidae Brachydiastylis unidentified<br />

Feder and<br />

Matheke 1980 I/ST/Inf<br />

Crustacea: Cumacea Diastylidae Diastylis alaskensis EVOS ST II III IV x Austin 1985<br />

Crustacea: Cumacea Diastylidae Diastylis bidentata EVOS ST II III IV x Austin 1985<br />

Crustacea: Cumacea Diastylidae Diastylis koreana EVOS ST II III IV x Austin 1985<br />

Crustacea: Cumacea Diastylidae Diastylis paraspinulosa Hoberg 1986 ST<br />

II III IV V<br />

VI Austin 1985<br />

Crustacea: Cumacea Diastylidae Diastylopsis dawsoni Hoberg 1986 ST<br />

II III IV V<br />

VI Austin 1985<br />

Crustacea: Cumacea Diastylidae Leptostylis unidentified EVOS ST II III IV x x Austin 1985<br />

Crustacea: Cumacea Lampropidae Lamprops beringi Chapman 2000 I/Inf II III IV Chapman 2000<br />

Crustacea: Cumacea Lampropidae Lamprops quadriplicata EVOS ST II x x Chapman 2000<br />

Crustacea: Cumacea Lampropidae Lamprops sarsi EVOS ST II III IV x Austin 1985<br />

Crustacea: Cumacea Leuconiidae Eudorella emarginata<br />

Feder and Jewett<br />

1988 ST/Inf II x x Austin 1985<br />

Crustacea: Cumacea Leuconiidae Eudorellopsis biplicata EVOS ST/Inf II x x Austin 1985<br />

Crustacea: Cumacea Leuconiidae Eudorellopsis deformis EVOS ST/Inf II III IV Austin 1985<br />

Crustacea: Cumacea Leuconiidae Eudorellopsis dezhavini EVOS ST/Inf II III IV x Austin 1985<br />

Crustacea: Cumacea Leuconiidae Eudorellopsis integra<br />

Feder and<br />

Matheke 1980 ST/Inf II x x Austin 1985<br />

Crustacea: Cumacea Leuconiidae Leptocuma unidentified<br />

Feder and Bryson-<br />

Schwafel 1988 I/ST<br />

Crustacea: Cumacea Leuconiidae Leucon nasica<br />

Feder and<br />

Matheke 1980 ST/Inf II x x x Austin 1985<br />

Crustacea: Cumacea Leuconiidae Leucon nasica orientalis UAM ST II x x x Austin 1985<br />

Crustacea: Cumacea Nannastacidae Campylaspis rubicunda UAM II x x x Schultz 1969<br />

Crustacea: Cumacea Nannastacidae Cumella vulgaris<br />

Feder and Bryson-<br />

Schwafel 1988 I/ST/Epi II III IV C Chapman 2000<br />

Crustacea: Decapoda Atelecyclidae Telmessus cheiragonus Hart 1968 I/ST II III IV Hart 1968<br />

Crustacea: Decapoda Callianassidae Callinassa unidentified Hart 1968 I/ST<br />

Crustacea: Decapoda Cancridae Cancer branneri Hart 1968 I/ST/Epi II III IV Hart 1968<br />

Crustacea: Decapoda Cancridae Cancer gracilis Hart 1968 I/ST/Epi II III IV Hart 1968<br />

Crustacea: Decapoda Cancridae Cancer magister Hart 1968 I/ST/Epi II III IV Hart 1968<br />

Crustacea: Decapoda Cancridae Cancer oregonensis Hart 1968 I/ST/Epi II III IV Hart 1968<br />

Crustacea: Decapoda Cancridae Cancer productus Hart 1968 I/ST/Epi II III IV Hart 1968<br />

Crustacea: Decapoda Crangonidae Argis alaskensis UAM ST/Epi II III IV Butler 1980<br />

Crustacea: Decapoda Crangonidae Argis lar EVOS ST/Epi II III IV x Butler 1980


Chapt 10. Biodiversity, page 10- 44<br />

Table 10.5 continued.<br />

BIOREGION<br />

HIGHER TAXON FAMILY GENUS SPECIES OTHER NAMES<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN<br />

REFERENCE to<br />

NIS STATUS DISTRIBUTION<br />

Crustacea: Decapoda Crangonidae Argis dentata<br />

Squires and<br />

Figueira 1974 I/ST II III IV x Butler 1980<br />

Crustacea: Decapoda Crangonidae Argis levior<br />

Squires and<br />

Figueira 1974 ST/Epi II III IV Butler 1980<br />

Crustacea: Decapoda Crangonidae Crangon alaskensis Cooney 1987 ST/Epi<br />

II III IV V<br />

VI Austin 1985<br />

Crustacea: Decapoda Crangonidae Crangon communis<br />

Squires and<br />

Figueira 1974 ST/Epi II III IV x Butler 1980<br />

Crustacea: Decapoda Crangonidae Crangon dalli<br />

Squires and<br />

Figueira 1974 ST/Epi II III IV x Butler 1980<br />

Crustacea: Decapoda Crangonidae Crangon franciscorum<br />

Squires and<br />

Figueira 1974 I/ST II III IV Butler 1980<br />

Crustacea: Decapoda Crangonidae Crangon nigricauda<br />

Squires and<br />

Figueira 1974 ST/Epi II III IV Butler 1980<br />

Crustacea: Decapoda Crangonidae Lissocrangon stylirostris Crangon<br />

Squires and<br />

Figueira 1974 ST/Epi II III IV Butler 1980<br />

Crustacea: Decapoda Crangonidae Mesocrangon minuitella EVOS ST/Epi II III IV Butler 1980<br />

Crustacea: Decapoda Crangonidae Neocrangon alaskensis Crangon<br />

Squires and<br />

Figueira 1974 ST/Epi II III IV x Butler 1980<br />

Crustacea: Decapoda Crangonidae Paracrangon echinata<br />

Squires and<br />

Figueira 1974 ST/Epi II III IV x Butler 1980<br />

Crustacea: Decapoda Crangonidae Rhynchocramgon alata EVOS ST/Epi II III IV x Butler 1980<br />

Squires and<br />

Crustacea: Decapoda Crangonidae Sclerocrangon boreas<br />

Figueira 1974 ST/Epi II III IV x Butler 1980<br />

Crustacea: Decapoda Galatheidae Munida quadrispina UAM ST/Epi II III IV Butler 1980<br />

Crustacea: Decapoda Grapsidae Hemigrapsus nudus Hart 1968 I/ST/Epi II III IV Hart 1968<br />

Crustacea: Decapoda Grapsidae Hemigrapsus oregonensis<br />

Crustacea: Decapoda Hippolytidae Eualus fabricii<br />

Feder and Bryson-<br />

Schwafel 1988 I/ST/Epi II III IV Hart 1968<br />

Squires and<br />

Figueira 1974 ST/Epi II III IV x Butler 1980<br />

Crustacea: Decapoda Hippolytidae Eualus macropthalmalmus UAM ST/Epi II III IV Butler 1980<br />

Crustacea: Decapoda Hippolytidae Eualus suckleyi UAM ST/Epi II III IV x Butler 1980<br />

Crustacea: Decapoda Hippolytidae Eualus avinus UAM ST/Epi II III IV Butler 1980<br />

Squires and<br />

Crustacea: Decapoda Hippolytidae Eualus gaimardii<br />

Figueira 1974 ST/Epi II III IV x Austin 1985


Chapt 10. Biodiversity, page 10- 45<br />

Table 10.5 continued.<br />

HIGHER TAXON FAMILY GENUS SPECIES OTHER NAMES<br />

Crustacea: Decapoda Hippolytidae Eualus pusiolus<br />

Crustacea: Decapoda Hippolytidae Eualus townsendi<br />

Crustacea: Decapoda Hippolytidae Heptacarpus decorus<br />

Crustacea: Decapoda Hippolytidae Heptacarpus brevirostris<br />

Crustacea: Decapoda Hippolytidae Heptacarpus camtschaticus<br />

Crustacea: Decapoda Hippolytidae Heptacarpus carinatus<br />

Crustacea: Decapoda Hippolytidae Heptacarpus paludicola<br />

Crustacea: Decapoda Hippolytidae Heptacarpus pictus<br />

Crustacea: Decapoda Hippolytidae Heptacarpus sitchensis<br />

Crustacea: Decapoda Hippolytidae Heptacarpus stimpsoni<br />

Crustacea: Decapoda Hippolytidae Heptacarpus stylus<br />

Crustacea: Decapoda Hippolytidae Heptacarpus tridens<br />

Crustacea: Decapoda Hippolytidae Hippolyte clarki<br />

Crustacea: Decapoda Hippolytidae Lebbeus groenlandicus<br />

BIOREGION<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN<br />

REFERENCE to<br />

NIS STATUS DISTRIBUTION<br />

Squires and<br />

Figueira 1974 ST/Epi II x x Butler 1980<br />

Squires and<br />

Figueira 1974 ST/Epi II III IV x Butler 1980<br />

Squires and<br />

Figueira 1974 ST/Epi II III IV Butler 1980<br />

Squires and<br />

Figueira 1974 I/ST II III IV Butler 1980<br />

Squires and<br />

Figueira 1974 I/ST II III IV x Butler 1980<br />

Squires and<br />

Figueira 1974 I/ST II III IV Butler 1980<br />

Squires and<br />

Figueira 1974 I/ST II III IV Butler 1980<br />

Squires and<br />

Figueira 1974 I/ST II III IV Austin 1985<br />

Squires and<br />

Figueira 1974 I/ST II III IV Butler 1980<br />

Squires and<br />

Figueira 1974 I/ST II III IV Butler 1980<br />

Squires and<br />

Figueira 1974 I/ST II III IV Butler 1980<br />

Squires and<br />

Figueira 1974 I/ST II III IV Butler 1980<br />

Squires and<br />

Figueira 1974 I/ST II III IV Butler 1980<br />

Squires and<br />

Figueira 1974 I/ST II III IV x Butler 1980<br />

Crustacea: Decapoda Hippolytidae Spirontocaris arcuata UAM I/ST II III IV x Butler 1980<br />

Crustacea: Decapoda Hippolytidae Spirontocaris lamellicornis UAM I/ST II III IV Butler 1980<br />

Crustacea: Decapoda Hippolytidae Spirontocaris ochotensis<br />

Squires and<br />

Figueira 1974 I/ST II III IV x Butler 1980<br />

Crustacea: Decapoda Hippolytidae Spirontocaris phippsi<br />

Squires and<br />

Figueira 1974 I/ST II x x Austin 1985<br />

Crustacea: Decapoda Lithodidae Acantholithodes hispidus Hart 1968 I/ST II III IV Hart 1968<br />

Crustacea: Decapoda Lithodidae Cryptolithodes sitchensis Hart 1968 I/ST/Epi II III IV Hart 1968<br />

Crustacea: Decapoda Lithodidae Cryptolithodes typicus Hart 1968 I/ST II III IV Hart 1968<br />

Crustacea: Decapoda Lithodidae Hapalogaster cavicauda Austin 1985 I/ST/Epi II III IV Austin 1985<br />

Crustacea: Decapoda Lithodidae Hapalogaster grebnitskii Hart 1968 I/ST II III IV x Hart 1968<br />

Crustacea: Decapoda Lithodidae Hapalogaster mertensii Hart 1968 I/ST/Epi II III IV Hart 1968


Chapt 10. Biodiversity, page 10- 46<br />

Table 10.5 continued.<br />

HIGHER TAXON FAMILY GENUS SPECIES OTHER NAMES<br />

BIOREGION<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN<br />

REFERENCE to<br />

NIS STATUS DISTRIBUTION<br />

Crustacea: Decapoda Lithodidae Lithodes aequispina UAM ST/Epi II III IV Hart 1968<br />

Crustacea: Decapoda Lithodidae Lithodes couesi UAM ST/Epi II III IV Hart 1968<br />

Crustacea: Decapoda Lithodidae Lopholithodes foraminatus UAM ST/Epi II III IV Hart 1968<br />

Crustacea: Decapoda Lithodidae Oedignathus inermis Hart 1968 I/ST/Epi II III IV x Hart 1968<br />

Crustacea: Decapoda Lithodidae Paralithodes camtschatica UAM ST/Epi II III IV Hart 1968<br />

Crustacea: Decapoda Lithodidae Phyllolithodes papillosus UAM I/ST II III IV Hart 1968<br />

Crustacea: Decapoda Lithodidae Placetron wosnessenskii UAM ST/Epi II III IV Hart 1968<br />

Crustacea: Decapoda Lithodidae Rhinolithodes wosnessenskii UAM ST/Epi II III IV Hart 1968<br />

Feder and Jewett<br />

Crustacea: Decapoda Majidae Chionecetes bairdi<br />

1988 ST/Epi II III IV Hart 1968<br />

Crustacea: Decapoda Majidae Chorilia longipes Hart 1968 ST/Epi II III IV x Hart 1968<br />

Crustacea: Decapoda Majidae Hyas lyratus Hart 1968 I/ST II III IV Hart 1968<br />

Crustacea: Decapoda Majidae Oregonia gracilis Hart 1968 I/ST II III IV Hart 1968<br />

Crustacea: Decapoda Majidae Pugettia gracilis Hart 1968 I/ST/Epi II III IV Hart 1968<br />

Crustacea: Decapoda Majidae Pugettia producta Hart 1968 I/ST II III IV Hart 1968<br />

Crustacea: Decapoda Majidae Pugettia richii Hart 1968 I/ST II III IV Hart 1968<br />

Crustacea: Decapoda Majidae Scyra acutifrons Hines et al. 2000 I/ST II III IV x Hart 1968<br />

II III IV V<br />

Crustacea: Decapoda Oplophoridae Hymenadora frontalis Cooney 1987 P<br />

VI x Austin 1985<br />

Crustacea: Decapoda Paguridae Discorsopagurus schmitti UAM I/ST II III IV Hart 1968<br />

Crustacea: Decapoda Paguridae Elassochirus cavimanus UAM ST/Epi II III IV x Hart 1968<br />

Crustacea: Decapoda Paguridae Elassochirus gilli UAM I/ST II III IV Hart 1968<br />

Crustacea: Decapoda Paguridae Elassochirus tenimanius UAM I/ST II III IV Hart 1968<br />

Crustacea: Decapoda Paguridae Labidochirus splendescens UAM I/ST II III IV x x Hart 1968<br />

Crustacea: Decapoda Paguridae Pagurus aleuticus UAM I/ST II III IV Hart 1968<br />

Crustacea: Decapoda Paguridae Pagurus beringanus UAM I/ST II III IV Hart 1968<br />

Crustacea: Decapoda Paguridae Pagurus capillatus UAM I/ST II III IV Hart 1968


Chapt 10. Biodiversity, page 10- 47<br />

Table 10.5 continued.<br />

HIGHER TAXON FAMILY GENUS SPECIES OTHER NAMES<br />

BIOREGION<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN<br />

REFERENCE to<br />

NIS STATUS DISTRIBUTION<br />

Crustacea: Decapoda Paguridae Pagurus cornutus UAM ST/Epi II III IV Hart 1968<br />

Crustacea: Decapoda Paguridae Pagurus granosimanus UAM I/ST II III IV Hart 1968<br />

Crustacea: Decapoda Paguridae Pagurus<br />

hirsutiusculus<br />

hirsutiusculus<br />

Feder and Bryson-<br />

Schwafel 1988 I/ST II III IV Hart 1968<br />

Crustacea: Decapoda Paguridae Pagurus kennerleyi UAM I/ST II III IV Hart 1968<br />

Crustacea: Decapoda Paguridae Pagurus samuelis UAM I/ST/Epi II III IV Hart 1968<br />

Crustacea: Decapoda Paguridae Pagurus caurinus Hart 1968 I/ST II III IV V Hart 1968<br />

Crustacea: Decapoda Paguridae Pagurus confragosus Feder et al. 1979 ST/Epi II III IV Hart 1968<br />

Crustacea: Decapoda Paguridae Pagurus ochotensis<br />

Crustacea: Decapoda Pandalidae Pandalopsis dispar<br />

Crustacea: Decapoda Pandalidae Pandalus danae<br />

Feder and Bryson-<br />

Schwafel 1988 I/ST II III IV Hart 1968<br />

Feder and Jewett<br />

1988 ST/Epi II III IV Butler 1980<br />

Squires and<br />

Figueira 1974 I/ST II III IV Butler 1980<br />

Crustacea: Decapoda Pandalidae Pandalus jordani UAM ST/Epi II III IV Butler 1980<br />

Crustacea: Decapoda Pandalidae Pandalus unidentified Cooney: SEA ST/Epi<br />

Crustacea: Decapoda Pandalidae Pandalus borealis<br />

Feder and Jewett<br />

1988 ST/Epi II x x Butler 1980<br />

Crustacea: Decapoda Pandalidae Pandalus goniurus<br />

Squires and<br />

Figueira 1974 ST/Epi II III IV x Butler 1980<br />

Crustacea: Decapoda Pandalidae Pandalus hypsinotus<br />

Squires and<br />

Figueira 1974 I/ST II III IV x Butler 1980<br />

Crustacea: Decapoda Pandalidae Pandalus montagui tridens<br />

Squires and<br />

Figueira 1974 ST/Epi II III IV Butler 1980<br />

Crustacea: Decapoda Pandalidae Pandalus platyceros<br />

Squires and<br />

Figueira 1974 I/ST II III IV x Butler 1980<br />

Crustacea: Decapoda Pandalidae Pandalus stenolepis<br />

Squires and<br />

Figueira 1974 ST/Epi II III IV Butler 1980<br />

Crustacea: Decapoda Pasiphaeidae Pasiphaea pacifica UAM P II III IV x Butler 1980<br />

Crustacea: Decapoda Pinnotheridae Pinnixa littoralis Hart 1968 I/ST II III IV Hart 1968<br />

Crustacea: Decapoda Pinnotheridae Pinnixa occidentalis Hart 1968 ST/Epi II III IV Hart 1968<br />

Feder and<br />

Crustacea: Decapoda Pinnotheridae Pinnixa schmitti<br />

Matheke 1980 ST/Epi II III IV Hart 1968


Chapt 10. Biodiversity, page 10- 48<br />

Table 10.5 continued.<br />

HIGHER TAXON FAMILY GENUS SPECIES OTHER NAMES<br />

BIOREGION<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN<br />

REFERENCE to<br />

NIS STATUS DISTRIBUTION<br />

Crustacea: Decapoda Porcellanidae Petrolisthes eriomerus Hart 1968 I/ST II III IV Hart 1968<br />

Crustacea: Decapoda Sergestidae Sergestes similis Eusergestes Cooney 1987 P<br />

II III IV V<br />

VI x Austin 1985<br />

Crustacea: Decapoda Upogebiidae Upogebia pugettensis<br />

Squires and<br />

Figueira 1974 I/Inf II III IV Hart 1968<br />

Crustacea: Decapoda Xanthidae Lophopanopeus bellus bellus Hart 1968 I/ST II III IV Hart 1968<br />

Crustacea:<br />

Euphausiacea Euphausiidae Euphausia pacifica Cooney 1987 P<br />

II III IV V<br />

VI x Austin 1985<br />

Crustacea:<br />

Euphausiacea Euphausiidae Stylocherion unidentified Cooney 1987 P<br />

Crustacea:<br />

Euphausiacea Euphausiidae Tessarabranchion oculata Cooney 1987 P II III IV V x Austin 1985<br />

Crustacea:<br />

Euphausiacea Euphausiidae Thysanoessa inermis Cooney 1987 P<br />

II III IV V<br />

VI x Austin 1985<br />

Crustacea:<br />

Euphausiacea Euphausiidae Thysanoessa longipes Cooney 1987 P III IV x Austin 1985<br />

Crustacea:<br />

Euphausiacea Euphausiidae Thysanoessa spinifera Cooney 1987 P<br />

II III IV V<br />

VI Austin 1985<br />

Crustacea:<br />

Euphausiacea Euphausiidae Thysanoessa inspinata Cooney 1987 P II III IV x Austin 1985<br />

Crustacea:<br />

Euphausiacea Euphausiidae Thysanoessa raschii<br />

Cooney and Coyle<br />

1988 P II x x Austin 1985<br />

Crustacea: Isopoda Aegidae Rocinela angustana UAM ST II III IV Schultz 1969<br />

Crustacea: Isopoda Dajidae Holophryxus alascensis UAM ST II III IV Austin 1985<br />

Crustacea: Isopoda Gnathiidae Gnathia tridens EVOS ST II III IV California NR Schultz 1969<br />

Crustacea: Isopoda Gnathiidae Gnathia unidentified<br />

Feder and<br />

Matheke 1980 ST/Inf Schultz 1969<br />

Crustacea: Isopoda Idoteidae Idotea fewkesi EVOS I/ST<br />

II III IV V<br />

VI Schultz 1969<br />

Crustacea: Isopoda Idoteidae Idotea obscura Chapman 2000 I/Epi II III IV Chapman 2000<br />

Crustacea: Isopoda Idoteidae Pentidotea wosnessenskii Idotea<br />

Feder and Bryson-<br />

Schwafel 1988 I/Epi II III IV Schultz 1969<br />

Crustacea: Isopoda Idoteidae Synidotea ritteri UAM ST/Epi II III IV V California NR Schultz 1969<br />

Crustacea: Isopoda Janiridae Janiropsis kincaldi J. pugettensis Chapman 2000 I II III IV Chapman 2000<br />

Crustacea: Isopoda Ligiidae Ligia pallasii Chapman 2000 I/Epi II III IV Chapman 2000<br />

Crustacea: Isopoda Limnoriidae Limnoria lignorum EVOS I/ST II III IV Schultz 1969<br />

cf. M.<br />

Crustacea: Isopoda Munnidae Munna<br />

chromocephala UAM ST II III IV Washington NR Schultz 1969<br />

Crustacea: Isopoda Munnidae Munna ubiquita EVOS ST II III IV Washington NR Schultz 1969<br />

Crustacea: Isopoda Munnidae Pleurogonium unidentified I/Epi Schultz 1969<br />

Crustacea: Isopoda Sphaeromatidae Dynamenella sheari UAM I/Epi II III IV Austin 1985<br />

Crustacea: Isopoda Sphaeromatidae Exosphaeroma amplicauda UAM I/Epi II III IV Schultz 1969<br />

Crustacea: Isopoda Sphaeromatidae Exosphaeroma unidentified UAM I/Epi Schultz 1969<br />

Crustacea: Isopoda Sphaeromatidae Gnorimosphaeroma lutea G. insulare Chapman 2000 I/Epi II III IV Chapman 2000


Chapt 10. Biodiversity, page 10- 49<br />

Table 10.5 continued.<br />

HIGHER TAXON FAMILY GENUS SPECIES OTHER NAMES<br />

Crustacea: Isopoda Sphaeromatidae Gnorimosphaeroma oregonensis<br />

BIOREGION<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN<br />

REFERENCE to<br />

NIS STATUS DISTRIBUTION<br />

Feder and Bryson-<br />

Schwafel 1988 I/ST II III IV Schultz 1969<br />

Crustacea: Leptostraca Nebaliidae Nebalia unidentified EVOS P<br />

Crustacea: Mysidacea Lophogastridae Gnatahophausia gigas Cooney 1987 P<br />

Crustacea: Mysidacea Mysidae Acanthomysis nephropthalma Cooney 1987 P<br />

II III IV V<br />

VI VII VIII<br />

IX x x Austin 1985<br />

II III IV V<br />

VI Austin 1985<br />

Crustacea: Mysidacea Mysidae Acanthomysis pseudomacraspis Cooney 1987 P II III IV x Austin 1985<br />

II III IV V<br />

Crustacea: Mysidacea Mysidae Holmsiella anomala Cooney 1987 P<br />

VI x Austin 1985<br />

Crustacea: Mysidacea Mysidae Meterythrops robusta Cooney 1987 P II III IV x Austin 1985<br />

Crustacea: Mysidacea Mysidae Mysis littoralis Chapman 2000 P II x x x Chapman 2000<br />

Crustacea: Mysidacea Mysidae Mysis oculata M. littoralis Cooney 1987 P II III IV x x Austin 1985<br />

Crustacea: Mysidacea Mysidae Neomysis kadiakensis Cooney 1987 P II III IV Austin 1985<br />

Crustacea: Mysidacea Mysidae Neomysis rayi Cooney 1987 P II III IV V x Austin 1985<br />

II III IV V<br />

Crustacea: Mysidacea Mysidae Pseudomma truncatus Cooney 1987 P<br />

VI Austin 1985<br />

Crustacea: Ostracoda Halocyprididae Conchoecia alata minor Alacia<br />

Cooney and Coyle<br />

1988 ST/P II III<br />

Crustacea: Ostracoda Halocyprididae Conchoecia elegans Paraconchoecia UAM ST/P II III<br />

Cooney and Coyle<br />

Crustacea: Ostracoda Halocyprididae Conchoecia unidentified<br />

1988 ST/P<br />

British<br />

Columbia NR Austin 1985<br />

British<br />

Columbia NR Austin 1985<br />

Crustacea: Ostracoda Parodoxostomatinae unidentified unidentified UAM ST/P<br />

Crustacea: Ostracoda Philomedidae Philomedes dentata UAM ST/Inf II III<br />

Crustacea: Ostracoda Philomedidae Scleroconcha trituberculata UAM ST/Inf II III<br />

British<br />

Columbia NR Austin 1985<br />

British<br />

Columbia NR Austin 1985<br />

Crustacea: Ostracoda Podocopidae unidentified unidentified UAM<br />

Crustacea: Tanaidacea Paratanaidae Leptochelia savignyi Chapman 2000 I/Epi II x x C Chapman 2000<br />

Crustacea: Thoracica Balanamorpha Balanus crenatus<br />

Crustacea: Thoracica Balanamorpha Balanus glandula<br />

Crustacea: Thoracica Balanamorpha Chirona evermani<br />

Feder and Bryson-<br />

Schwafel 1988 I/ST II III IV x Austin 1985<br />

Feder and Bryson-<br />

Schwafel 1988 I/Epi II III IV Austin 1985<br />

Feder and<br />

Matheke 1980 ST/Inf II III IV Austin 1985


Chapt 10. Biodiversity, page 10- 50<br />

Table 10.5 continued.<br />

HIGHER TAXON FAMILY GENUS SPECIES OTHER NAMES<br />

Crustacea: Thoracica Balanamorpha Semibalanus balanoides Balanus<br />

Crustacea: Thoracica Balanamorpha Semibalanus cariosus Balanus<br />

BIOREGION<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN<br />

REFERENCE to<br />

NIS STATUS DISTRIBUTION<br />

Feder and Bryson-<br />

Schwafel 1988 I/Epi II III IV Austin 1985<br />

Feder and Bryson-<br />

Schwafel 1988 I/Epi II III IV x Austin 1985<br />

Crustacea: Thoracica Chthamalidae Chthamalus dalli EVOS I/Epi II III IV x Austin 1985<br />

Crustacea: Thoracica Scalpellidae Scaphellum pacificum<br />

Feder and<br />

Matheke 1980 ST/Epi II III IV x Austin 1985<br />

Pycnogonida Ammotheidae Achelia alaskensis Child 1995 ST/Epi II III IV x Child 1995<br />

Pycnogonida Ammotheidae Achelia borealis UAM ST/Epi II III IV x x Child 1995<br />

Pycnogonida Ammotheidae Achelia chaelata UAM ST/Epi II III IV Washington NR Austin 1985<br />

Pycnogonida Ammotheidae Achelia gracilipes Ammothea UAM ST/Epi II III IV<br />

British<br />

Columbia NR Austin 1985<br />

Pycnogonida Ammotheidae Achelia latifrons Child 1995 ST/Epi II III IV x Child 1995<br />

Pycnogonida Ammotheidae Achelia megova Child 1995 ST/Epi II III IV Child 1995<br />

Pycnogonida Ammotheidae Achelia pribil<strong>of</strong>ensis Ammothea UAM ST/Epi II III IV Bering Sea nr Child 1995<br />

Pycnogonida Phoxochilidiidae Phoxichilidium femoratum UAM ST/Epi II x x Austin 1985<br />

Pycnogonida Phoxochilidiidae Phoxichilidium quadrodentatum UAM ST/Epi II III IV Austin 1985<br />

Pycnogonida Tanystylidae Tanystylum anthostomasti UAM ST/Epi II III IV x Austin 1985


Chapt 10. Biodiversity, page 10- 51<br />

Echinodermata<br />

Ninety-nine echinoderm species, representing all five classes are listed (Table 10.6).<br />

Principal sources for taxonomic and distributional information are D‘yakonov (1954)<br />

(ophiuroids), Lambert (1981, 1997) (Asteroidea and Holothuroidea). No range extensions or<br />

possibly undescribed species were noted for Prince William Sound.<br />

Table 10.6. Echinodermata.<br />

CLASS FAMILY GENUS SPECIES<br />

BIOREGION<br />

OTHER<br />

NAMES SPECIMEN or SOURCE HABITAT NEP NWP AR NWA<br />

REFERENCE to<br />

DISTRIBUTION<br />

Asteroidea Asteriidae Evasterias troschelii<br />

Feder and Bryson-<br />

Schwafel 1988 I/ST/Epi II III IV Lambert 1981<br />

Asteroidea Asteriidae Leptasterias hexactis UAM I/ST/Epi II III IV Lambert 1981<br />

Asteroidea Asteriidae Orthasterias koehleri UAM ST II III IV Lambert 1981<br />

Asteroidea Asteriidae Pisaster ochraceus UAM I/ST/Epi II III IV Lambert 1981<br />

Asteroidea Asteriidae Pycnopodia helianthoides<br />

Feder and Bryson-<br />

Schwafel 1988 I/ST/Epi II III IV Lambert 1981<br />

Asteroidea Asteriidae Rathbunaster californianus UAM ST II III IV Lambert 1981<br />

Asteroidea Asteropseidae Dermasterias imbricata Poraniidae UAM I/ST/Epi II III IV Lambert 1981<br />

Asteroidea Astropectinidae Dipsacaster borealis UAM ST II III IV Austin 1985<br />

Asteroidea Astropectinidae Leptychaster anomalus Feder and Matheke 1980 ST II III IV Lambert 1981<br />

Asteroidea Astropectinidae Leptychaster arcticus UAM ST II III IV x x x Lambert 1981<br />

Asteroidea Astropectinidae Leptychaster pacificus Lambert 1981 ST II III IV Lambert 1981<br />

Asteroidea Benthopectinidae Luidiaster dawsoni UAM ST II III IV Lambert 1981<br />

Asteroidea Benthopectinidae Nearchaster aciculosus UAM ST II III IV Austin 1985<br />

Asteroidea Echinasteridae Henricia aspera UAM ST II III IV Lambert 1981<br />

Asteroidea Echinasteridae Henricia asthenactis Lambert 1981 ST II III IV Lambert 1981<br />

Asteroidea Echinasteridae Henricia leviuscula UAM ST II III IV Lambert 1981<br />

Asteroidea Echinasteridae Henricia longispina Lambert 1981 ST II III IV x Lambert 1981<br />

Asteroidea Echinasteridae Henricia sanguinolenta UAM ST II III x x Lambert 1981<br />

Asteroidea Echinasteridae Poraniopsis inflata UAM ST II III IV x Lambert 1981<br />

Asteroidea Goniasteridae Ceramaster arcticus UAM ST II III IV Lambert 1981<br />

Asteroidea Goniasteridae Ceramaster patagonicus Lambert 1981 ST<br />

II III IV V VI<br />

VII VIII IX Lambert 1981<br />

Asteroidea Goniasteridae Gephyreaster swifti Radiasterridae Feder and Jewett 1987 ST II III IV Lambert 1981<br />

Asteroidea Goniasteridae Hippasteria spinosa UAM ST II III IV Lambert 1981<br />

Asteroidea Goniasteridae Mediaster aequalis UAM ST II III IV Lambert 1981<br />

Asteroidea Goniasteridae Pseudarchaster parelii UAM ST II x x Lambert 1981<br />

Asteroidea Goniopectinidae Ctenodiscus crispatus Ctenodiscidae UAM ST<br />

I II III IV V<br />

VI VII IX x x x Lambert 1981<br />

Asteroidea Luidiidae Luidia foliolata UAM ST II III IV Lambert 1981<br />

Asteroidea Pedicellasteridae Pedicellaster magister Heliasteridae UAM ST II III IV x Austin 1985<br />

Asteroidea Pterasteridae Diplopteraster multipes UAM ST II III IV V x x x Lambert 1981<br />

Asteroidea Pterasteridae Pteraster militaris UAM ST II III IV x Lambert 1981<br />

Asteroidea Pterasteridae Pteraster tesselatus UAM ST II III IV Lambert 1981<br />

Asteroidea Solasteridae Crossaster papposus UAM ST II III IV x x x Lambert 1981<br />

Asteroidea Solasteridae Lophaster furcilliger UAM ST II III IV Lambert 1981<br />

Asteroidea Solasteridae Solaster dawsoni UAM ST II III IV x Lambert 1981<br />

Asteroidea Solasteridae Solaster endeca UAM ST II III IV V x x Lambert 1981<br />

Asteroidea Solasteridae Solaster paxillatus UAM ST II III IV x Lambert 1981<br />

Asteroidea Solasteridae Solaster stimpsoni Lambert 1981 ST II III IV x Lambert 1981<br />

Criniodea Antedonidae Florometra serratissima Austin 1985 ST II III IV V Austin 1985<br />

Criniodea Antedonidae Florometra asperrima<br />

Helimetra<br />

gracilis UAM ST II III IV V x Austin 1985<br />

Criniodea Antedonidae Psathyrometra fragilis Austin 1985 ST II III IV V x Austin 1985<br />

Criniodea Antedonidae Retiometra alascana Austin 1985 ST II III IV Austin 1985<br />

Echinoidea Echinarachniidae Echinarachnius parma Foster and Hines 2000 ST II III IV x Pavloskii 1955<br />

Echinoidea Schizasteridae Brisaster townsendi Feder and Matheke 1980 ST II III IV x Pavloskii 1955<br />

Echinoidea Strongylocentrotidae Allocentrotus fragilis Feder and Jewett 1987 ST II III IV Austin 1985<br />

Echinoidea Strongylocentrotidae Strongylocentrotus droebachiensis<br />

Feder and Bryson-<br />

Schwafel 1988 I/ST/Epi II x x Austin 1985<br />

Echinoidea Strongylocentrotidae Strongylocentrotus franciscanus Rosenthal 1977 ST/Epi II III IV V Austin 1985<br />

Holothuroidea Cucumariidae Cucumaria frondosa japonica Lambert 1997 ST II III IV Lambert 1997<br />

Holothuroidea Cucumariidae Cucumaria miniata Lambert 1997 ST II III IV Lambert 1997<br />

Holothuroidea Cucumariidae Cucumaria vegae Lambert 1997 ST II III IV x Lambert 1997<br />

Holothuroidea Cucumariidae Ekmania diomedeae Lambert 1997 ST II III IV x Lambert 1997<br />

Holothuroidea Cucumariidae Pentamera calcigera UAM ST II x x Austin 1985<br />

Holothuroidea Cucumariidae Thyonidium kurilensis Lambert 1997 ST II III IV x Lambert 1997<br />

Holothuroidea Molpadiidae Molpadia intermedia UAM ST II III IV Lambert 1997<br />

Holothuroidea Phyllophoridae Pentamera populifera Lambert 1997 ST II III IV Lambert 1997<br />

Holothuroidea Phyllophoridae Thyone cf. T. benti UAM ST II III IV Lambert 1997<br />

Holothuroidea Psolidae Psolus chitonoides Lambert 1997 ST II III IV Lambert 1997<br />

Holothuroidea Psolidae Psolus squamatus Lambert 1997 ST II x x Lambert 1997<br />

Holothuroidea Sclerodactylidae Eupentacta pseudoquinquesemita Lambert 1997 ST II III IV Lambert 1997<br />

Holothuroidea Stichopodidae Parastichopus californicus Lambert 1997 ST II III IV Lambert 1997<br />

Holothuroidea Synallactidae Pseudostichopus mollis Lambert 1997 ST x x x x Lambert 1997<br />

Holothuroidea Synallactidae Synallactes challengeri Lambert 1997 ST x x x x Lambert 1997<br />

Holothuroidea Synaptidae Leptosynapta clarki UAM ST II III IV x Austin 1985<br />

Ophiuroidea Amphiuridae Amphipolis squamata Feder and Jewett 1987 ST x x x x Austin 1985<br />

Ophiuroidea Amphiuridae Diamphiodia craterodmeta Amphiodia Feder and Matheke 1980 ST II III IV x D’Yakanov 1954<br />

Ophiuroidea Amphiuridae Unioplis macraspis Amphioplus Feder and Matheke 1980 ST II III IV x Austin 1985<br />

Ophiuroidea Ophiactidae Ophiopholis aculeatata O. caryi Rosenthal 1977 ST II II IV x Austin 1985<br />

Ophiuroidea Ophiuridae Ophiura sarsi Feder and Matheke 1980 ST II x x x Austin 1985<br />

Ophiuroidea Ophiuridae Ophiura quadrispina Feder and Matheke 1980 ST II III IV D’Yakanov 1954


Chapt 10. Biodiversity, page 10- 52<br />

Bryozoa<br />

Bryozoa are abundant in Alaskan waters and prevalent in the fouling community. The<br />

data set consists <strong>of</strong> 74 species (Table 10.7), which is probably an underestimate. Nineteen<br />

identifications are confident only to the generic level. Sources for distribution data include Dick<br />

and Ross (1988), Hines and Ruiz (2000), Kluge (1962), as well as cataloged specimens in the<br />

UAM collection. J. Winston (2000) contributed the identifications and distributional information<br />

for 22 species. Schizoporella unicornis is regarded as a nonindigenous species, native to the<br />

northwestern Pacific. Ten species are possible new records for Alaska, range extensions form<br />

either the Arctic or Pacific region.<br />

Table 10.7. Bryozoa.<br />

ORDER FAMILY GENUS SPECIES<br />

OTHER<br />

NAMES<br />

Cheilostomata:<br />

Anasca Beaniidae Beania mirabilis UAM ST<br />

BIOREGION<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN<br />

REFERENCE to<br />

NIS STATUS DISTRIBUTION<br />

II III IV V VI<br />

VII VIII IX x x<br />

British<br />

Columbia nr Austin 1985<br />

Cheilostomata:<br />

Anasca Bugulidae Bugula californica Hines and Ruiz 2000 I II III IV Austin 1985<br />

Cheilostomata:<br />

Anasca Bugulidae Bugula pacifica Hines and Ruiz 2000 I II III IV Austin 1985<br />

Cheilostomata:<br />

Anasca Bugulidae Bugula unidentified Hines and Ruiz 2000 I<br />

Cheilostomata:<br />

Anasca Bugulidae Dendrobeania curvirostrata Hines and Ruiz 2000 I II III IV V VI<br />

British<br />

Columbia NR Austin 1985<br />

Cheilostomata:<br />

Anasca Bugulidae Dendrobeania lichenoides UAM I II III IV Dick and Ross 1988<br />

Cheilostomata:<br />

Anasca Bugulidae Dendrobeania murrayana UAM ST II x x x Kluge 1962<br />

Cheilostomata:<br />

Anasca Calloporidae Calloporella craticula Callopora Hines and Ruiz 2000 I/ST II x x x Kluge 1962<br />

Cheilostomata:<br />

Anasca Calloporidae Calloporella lineata Callopora UAM I/ST II x x x C Kluge 1962<br />

Cheilostomata:<br />

Anasca Calloporidae Calloporella "lineata" Hines and Ruiz 2000 I/ST II x x Austin 1985<br />

Cheilostomata:<br />

Anasca Calloporidae Tegella aquilirostris Hines and Ruiz 2000 I/ST II III IV x Austin 1985<br />

Cheilostomata:<br />

Anasca Calloporidae Tegella armifera Hines and Ruiz 2000 I/ST II III IV x Austin 1985<br />

Cheilostomata:<br />

Anasca Calloporidae Tegella robertsonae UAM ST II III IV V VI x Osburn 1950<br />

Cheilostomata:<br />

Anasca Cryptosulidae Cryptosula okadai Hines and Ruiz 2000 I II III IV x Dick and Ross 1988<br />

Cheilostomata:<br />

Anasca Cryptosulidae Harmeria scutulata Hippothoidae UAM I/ST II x x x Arctic nr Dick and Ross 1988<br />

Cheilostomata:<br />

Anasca Electridae Cauloramphus pseudospinifer Hines and Ruiz 2000 I II III IV x Dick and Ross 1988<br />

Cheilostomata:<br />

Anasca Electridae Electra unidentified UAM I<br />

Cheilostomata:<br />

Anasca Flustridae Termin<strong>of</strong>lustra membranaceotruncata UAM I/ST II x x x Dick and Ross 1988<br />

Cheilostomata:<br />

Anasca Hincksinidae Cauloramphus "variegata" C. spiniferum UAM I/ST II III IV V x x Austin 1985<br />

Cheilostomata:<br />

Anasca Membraniporidae Conopeum sp. (chesapeakensis) Hines and Ruiz 2000 I/ST II III IV V x x x Austin 1985<br />

Cheilostomata:<br />

Anasca Membraniporidae Membranipora membranipora Hines and Ruiz 2000 I/ST II III x x x Kluge 1962<br />

Cheilostomata:<br />

Anasca Membraniporidae Membranipora serrilamella UAM I/ST x x x x N Pacific nr Austin 1985<br />

Cheilostomata:<br />

Anasca Microporidae Micropora unidentified UAM I/ST<br />

Cheilostomata:<br />

Anasca Microporinidae Microporina articulata UAM I II x x x Dick and Ross 1988<br />

Cheilostomata:<br />

Anasca Scrupariidae Brettia unidentified<br />

Bicellariidae/C<br />

orynoprella UAM I/ST<br />

Cheilostomata:<br />

Anasca Scrupocellariidae Scrupocellaria unidentified UAM I/ST<br />

Cheilostomata:<br />

Anasca Scrupocellariidae Tricellaria gracilis UAM I/ST II x x x Kluge 1962<br />

Cheilostomata:<br />

Anasca Scrupocellariidae Tricellaria occidentalis UAM ST II III IV V VI<br />

British<br />

Columbia nr Austin 1985<br />

Cheilostomata:<br />

Anasca Scrupocellariidae Tricellaria ternata UAM I II x x x Dick and Ross 1988<br />

Cheilostomata:<br />

Ascophora Cribrilinidae Cribrilina annulata UAM I/ST II x x x Kluge 1962<br />

Cheilostomata:<br />

Ascophora Cribrilinidae Cribrilina corbicula Hines and Ruiz 2000 I II III IV C Austin 1985<br />

Cheilostomata:<br />

Ascophora Cribrilinidae Cribrilina unidentified Hines and Ruiz 2000 I/ST<br />

Cheilostomata:<br />

Ascophora Hippoporinidae Lepralia unidentified Hippothoa UAM I/ST<br />

Cheilostomata:<br />

Ascophora Hippothoidae Cellepora craticula Costazia Hines and Ruiz 2000 I/ST x C Kluge 1962


Chapt 10. Biodiversity, page 10- 53<br />

Table 10.7 continued.<br />

ORDER FAMILY GENUS SPECIES<br />

OTHER<br />

NAMES<br />

BIOREGION<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN<br />

REFERENCE to<br />

NIS STATUS DISTRIBUTION<br />

Cheilostomata:<br />

Ascophora Hippothoidae Celleporella hyalina Hippothoa UAM I/ST x x x x C Dick and Ross 1988<br />

Cheilostomata:<br />

Ascophora Hippothoidae Hippothoa unidentified UAM I<br />

Cheilostomata:<br />

Ascophora Microporellidae Fenestruloides eopacifica Hines and Ruiz 2000 I II III IV V VI California NR Soule et al. 1996<br />

Cheilostomata:<br />

Ascophora Microporellidae Microporella germana Hines and Ruiz 2000 I II III IV Dick and Ross 1988<br />

Cheilostomata:<br />

Ascophora Mucronellidae Cystisella bicornia Osburn 1952 ST II III IV x Osburn 1952<br />

Cheilostomata:<br />

Ascophora Mucronellidae Cystisella saccata Osburn 1952 ST II III x Arctic nr Osburn 1952<br />

Cheilostomata:<br />

Ascophora Mucronellidae Parasmittina trispinosa Smittinidae Hines and Ruiz 2000 I x x x x C Dick and Ross 1988<br />

Cheilostomata:<br />

Ascophora Mucronellidae Porella acutirostris Smittinidae UAM I/ST II III IV V VI x x x Dick and Ross 1988<br />

Cheilostomata:<br />

Ascophora Mucronellidae Porella acutirostris<br />

Cheilostomata:<br />

Ascophora Mucronellidae Rhamphostomella bilaminata<br />

Cheilostomata:<br />

Ascophora Mucronellidae Rhamphostomella gigantea<br />

Cheilostomata:<br />

Ascophora Mucronellidae Rhamphostomella hincksi<br />

P. major<br />

Smittinidae Hines and Ruiz 2000 ST II III IV V VI x x x Osburn 1952<br />

Rhamphostom<br />

ellidae UAM I/ST x x Kluge 1962<br />

Rhamphostom<br />

ellidae Hines and Ruiz 2000 ST x x Arctic nr Osburn 1952<br />

Rhamphostom<br />

ellidae Hines and Ruiz 2000 ST II x x Kluge 1962<br />

Cheilostomata:<br />

Ascophora Mucronellidae Smittina unidentified Smittinidae UAM I/ST<br />

Cheilostomata:<br />

Ascophora Reteporidae Phidolopora pacifica P. labiata Hines and Ruiz 2000 I II III IV Austin 1985<br />

Cheilostomata:<br />

Ascophora Schizoporellidae Hippodiplosia unidentified UAM I/ST II x x x Kluge 1962<br />

Cheilostomata:<br />

Ascophora Schizoporellidae Hippoporina vulgaris Hines and Ruiz 2000 I/ST II<br />

Cheilostomata:<br />

Ascophora Schizoporellidae Schizomavella porifera Hines and Ruiz 2000 I/ST II x x x Arctic nr Osburn 1952<br />

Cheilostomata:<br />

Ascophora Schizoporellidae Schizoporella "unicornis" Hines and Ruiz 2000 I x x x x NW Pacific Definate Hines and Ruiz 2000<br />

Cheilostomata:<br />

Ascophora Umbonulidae Umbonula unidentified UAM I/ST<br />

Ctenostomata Alcyonidiidae Alcyonidium hirsutum Hines and Ruiz 2000 I/ST II x x x NE Atlantic NR Kluge 1962<br />

Ctenostomata Alcyonidiidae Alcyonidium polynoum A. mytili Hines and Ruiz 2000 I/ST II III IV V x x x C Austin 1985<br />

Ctenostomata Alcyonidiidae Alcyonidium unidentified Hines and Ruiz 2000 I/ST<br />

III IV V VI<br />

Cyclostomata Crisiidae Crisia occidentalis UAM I/ST VII VIII IX x x Washington NR Austin 1985<br />

Cyclostomata Crisiidae Crisia serrulata Hines and Ruiz 2000 I II III IV Austin 1985<br />

Cyclostomata Crisiidae Filicrisia fanciscana Hines and Ruiz 2000 I II III IV x Austin 1985<br />

Cyclostomata Crisiidae Filicrisia geniculata UAM I/ST II x x Kluge 1962<br />

Cyclostomata Crisiidae Filicrisia smitti Hines and Ruiz 2000 ST II III x x x Kluge 1962<br />

Cyclostomata Diaperoeciidae Diaperoecia unidentified UAM ST<br />

Cyclostomata Diastoporidae Disporella unidentified UAM I/ST<br />

Cyclostomata Heteroporidae Heteropora magna UAM ST II III IV<br />

British<br />

Columbia nr Austin 1985<br />

Cyclostomata Heteroporidae Heteropora pacifica UAM ST II III IV Austin 1985<br />

Cyclostomata Heteroporidae Heteropora unidentified UAM I/ST<br />

Cyclostomata Lichenoporidae Lichenopora unidentified UAM I/ST<br />

Cyclostomata Oncousoeciidae Oncousiecia unidentified UAM I/ST<br />

Cyclostomata Oncousoeciidae Stomatopora granulata UAM I/ST II III IV x Kluge 1962<br />

Cyclostomata Tubuliporidae Idmonea unidentified Idmoneidae UAM I/ST<br />

Cyclostomata Tubuliporidae Platonea unidentified UAM I/ST<br />

Cyclostomata Tubuliporidae Tubulipora flabellaris UAM I/ST II III IV x Kluge 1962<br />

Cyclostomata Tubuliporidae Tubulipora sp. (tuba) Hines and Ruiz 2000 I/ST II III IV<br />

Cyclostomata Tubuliporidae Tubulipora tuba<br />

T.<br />

occidentalis,<br />

T. fasciculifera Hines and Ruiz 2000 I/ST II III IV V<br />

British<br />

Columbia NR Austin 1985<br />

Miscellaneous Invertebrates<br />

Ninety-five taxa, representing twelve different phyla make up this data set (Table 10.8).<br />

Nemerteans, chaetognaths, brachiopods, and urochordates , and are fairly well-known or have<br />

received the attention <strong>of</strong> the project’s taxonomists. (Lambert 2000; Mills 2000). However, it is<br />

clear that sponges, flatworms, and nematodes are undercounted. The nonindigenous sponge,<br />

Cliona thosina was recorded by the fouling community survey (Hines and Ruiz 200).<br />

Phylum<br />

taxa reported in this study<br />

Porifera 4<br />

Platyhelminthes none identified to species<br />

Nemertea 54<br />

Sipunculida 3<br />

Priapulida 1<br />

Echiuridae 1


Chapt 10. Biodiversity, page 10- 54<br />

Phoronidae none identified to species<br />

Brachiopoda 3<br />

Chaetognatha 5<br />

Tardigrada 1<br />

Urochordata 28<br />

Gnathostomulida, Gastrotrichida, Kinorhyncha have not been documented.<br />

Table 10.8. Miscellaneous invertebrates.<br />

Bioregion<br />

PHYLUM/ CLASS FAMILY GENUS SPECIES OTHER NAMES<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN NIS STATUS<br />

REFERENCE to<br />

DISTRIBUTION<br />

Brachiopoda:<br />

Articulata Cancellothyrididae Terebratulina unguicula UAM I/ST/Epi II III IV Austin 1985<br />

Brachiopoda:<br />

Articulata Hemithyridae Hemithiris psittacea UAM ST II III IV x x Austin 1985<br />

Brachiopoda:<br />

Articulata Laqueidae Terebratalia transversa UAM ST II III IV SE Alaska nr Austin 1985<br />

Brachiopoda:<br />

Articulata Laqueidae Laqueus californianus UAM ST II III IV x Austin 1985<br />

Chaetagnatha Eukrohniidae Eukrohnia fowleri Cooney 1987 P II III IV x x x Austin 1985<br />

Chaetagnatha Eukrohniidae Eukrohnia bathypelagica Cooney 1987 P II III IV x Austin 1985<br />

Chaetagnatha Eukrohniidae Eukrohnia hamata<br />

Cooney and Coyle<br />

1988 P x x x x<br />

Smith and Johnson<br />

1996<br />

Chaetagnatha Sagittidae Sagitta elegans<br />

Cooney and Coyle<br />

1988 P II III IV<br />

Smith and Johnson<br />

1996<br />

Chaetagnatha Sagittidae Sagitta scrippsae Cooney 1987 P<br />

II III IV V VI<br />

VII VIII x Austin 1985<br />

Echiurida Echiuridae Echiuris<br />

echiuris<br />

alaskensis<br />

Feder and Bryson-<br />

Schwafel 1988 I II III IV x Austin 1985<br />

Nematoda unidentified unidentified<br />

Feder and<br />

Matheke 1980 Inf<br />

Nemertea Amphiporidae Amphiporus angulatus Coe 1910 I II III IV V VI x Coe 1904<br />

Nemertea Amphiporidae Amphiporus bimaculatus Coe 1910 I<br />

II III IV V VI<br />

VII VIII Coe 1904<br />

Nemertea Amphiporidae Amphiporus exilis A. formidabilis Coe 1910 I II III IV V VI Coe 1904<br />

Nemertea Amphiporidae Amphiporus gelatinosus Austin 1985 I II III x Austin 1985<br />

Nemertea Amphiporidae Amphiporus imparispinosus Austin 1985 I<br />

II III IV V VI<br />

VII VIII Austin 1985<br />

Nemertea Amphiporidae Amphiporus lactifloreus I I<br />

Nemertea Amphiporidae Amphiporus leuciodes Coe 1910 I III Coe 1904<br />

Nemertea Amphiporidae Amphiporus nebulosus Coe 1910 I II III Coe 1904<br />

Nemertea Amphiporidae Amphiporus tigrinus Coe 1910 I III IV Coe 1904<br />

Nemertea Amphiporidae Zygonemertes albida Coe 1910 I III IV V VI Coe 1904<br />

Nemertea Amphiporidae Zygonemertes thalassina Coe 1910 I II III Coe 1904<br />

Nemertea Amphiporidae Zygonemertes virescens Austin 1985 I<br />

I II III IV V VI<br />

VII VIII IX x Austin 1985<br />

III IV V VI<br />

Nemertea Carinomidae Carinoma griffini C. mutabilis Coe 1910 I<br />

VII VIII Coe 1904<br />

Nemertea Carinomidae Carinomella lactea Tubulanidae Austin 1985 I I II III IV V VI Austin 1985<br />

Nemertea Cephalothricidae Cephalothrix linearis Procephalothrix spiralis Coe 1910 I II III IV V VI Coe 1904<br />

Nemertea Cerebratulidae Cerebratulus albifrons Coe 1910 I III IV V VI Coe 1904<br />

Nemertea Cerebratulidae Cerebratulus herculeus Coe 1910 I III IV V VI Coe 1904<br />

Nemertea Cerebratulidae Cerebratulus longiceps Coe 1910 I II III IV V Coe 1904<br />

Nemertea Cerebratulidae Cerebratulus marginatus Coe 1910 I III Coe 1904<br />

Nemertea Cerebratulidae Cerebratulus montgomeryi Coe 1910 I II III IV V Coe 1904<br />

Nemertea Cerebratulidae Cerebratulus occidentalis Coe 1910 I II III Coe 1904<br />

Nemertea Cerebratulidae Cerebratulus unidentified<br />

Feder and Matheke<br />

1980 ST<br />

Nemertea Emplectonematidae Emplectonema buergeri Coe 1910 I III Coe 1904<br />

Nemertea Emplectonematidae Emplectonema gracile Coe 1910 I II III IV V Coe 1904<br />

Nemertea Emplectonematidae Paranemertes carnea Coe 1910 I II III IV Coe 1904<br />

Nemertea Emplectonematidae Paranemertes pallida Coe 1910 I II III Coe 1904<br />

Feder and Bryson-<br />

Nemertea Emplectonematidae Paranemertes peregrina<br />

Schwafel 1988 I II III IV x Austin 1985<br />

Nemertea Lineidae Lineus torquatus Coe 1910 I II III IV V VI Coe 1904<br />

Nemertea Lineidae Micrura alaskensis Coe 1910 I<br />

III IV V VI<br />

VII VIII Coe 1904<br />

Nemertea Lineidae Micrura verrilli Coe 1910 I II III IV V VI Coe 1904<br />

Nemertea Lineidae Myoisophagus sanguineus Lineus socialis/vegetus Austin 1985 I II III IV V VI x x Austin 1985<br />

Nemertea Tetrastemmatidae Tetrastemma aberrans Coe 1910 I II III Coe 1904<br />

Nemertea Tetrastemmatidae Tetrastemma bicolor Coe 1910 I II III Coe 1904<br />

Nemertea Tetrastemmatidae Tetrastemma caecum Amphinemertes Coe 1910 I/ST II III Coe 1904<br />

Nemertea Tetrastemmatidae Tetrastemma candidum Austin 1985 I<br />

II III IV V VI<br />

VII VIII x x Austin 1985<br />

Nemertea Tetrastemmatidae Tetrastemma nigrifrons Austin 1985 I<br />

I II III IV V VI<br />

VII VIII IX Austin 1985<br />

Nemertea Tubulanidae Carinella albocinctus Tubulanus Austin 1985 ST II III IV V VI Austin 1985<br />

Nemertea Tubulanidae Carinella annulatus Tubulanus Austin 1985 I II III x Austin 1985<br />

Nemertea Tubulanidae Carinella capistrata Tubulanus capistratus Coe 1910 I II Coe 1904<br />

Nemertea Tubulanidae Carinella cingulatus Tubulanus Austin 1985 I II III IV V VI Austin 1985<br />

Nemertea Tubulanidae Carinella dinema Tubulanus sexlineatus Coe 1910 I II III Coe 1904<br />

Nemertea Tubulanidae Carinella frenatus Tubulanus Austin 1985 I II III IV V VI Austin 1985<br />

Nemertea Tubulanidae Carinella nothus Tubulanus Austin 1985 I II III x Austin 1985<br />

Nemertea Tubulanidae Carinella speciosa Tubulanus polymorphus Coe 1910 I II III Coe 1904<br />

Nemertea Valenciniidae Taeniosoma princeps Baseodiscus Coe 1910 I II III IV Coe 1904<br />

Phoronida unidentified unidentified<br />

Feder and Matheke<br />

1980 ST


Chapt 10. Biodiversity, page 10- 55<br />

Table 10.8 continued.<br />

Bioregion<br />

PHYLUM/ CLASS FAMILY GENUS SPECIES OTHER NAMES<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN NIS STATUS<br />

REFERENCE to<br />

DISTRIBUTION<br />

Platyhelminthes unidentified unidentified<br />

Feder and Bryson-<br />

Schwafel 1988 Inf<br />

Porifera Myxillidae Myxilla incrustans UAM ST II III IV x Austin 1985<br />

Porifera Subertidae Suberites ficus<br />

Scheel, Foster, and<br />

Hough, 1997 I/ST/Epi II III IV Austin 1985<br />

Porifera Spirastrellidae Cliona thosina Hines et al. 2000 boring II unkown definate<br />

Porifera Spirastrellidae Cliona celata Rosenthal 1977 Epi II III IV V Austin 1985<br />

Priapulida Priapulidae Priapulus caudatus<br />

Feder and Matheke<br />

1980 ST II x x x Austin 1985<br />

Sipunculida Golfingiidae Golfingia margaritacea<br />

Feder and Matheke<br />

1980 I/ST/Inf II x x Austin 1985<br />

Sipunculida Golfingiidae Golfingia vulgaris<br />

Feder and Matheke<br />

1980 ST II x x Austin 1985<br />

Sipunculida Golfingiidae Phascolion strombi<br />

Feder and Matheke<br />

1980 ST x x x x Austin 1985<br />

Sipunculida Phascolosomatidae Phascolosoma agassizii Fisher 1952 I/ST/Inf<br />

II III IV V VI<br />

VIII IX Austin 1985<br />

Tardigrada Hypsibiidae Hypsibius appelloefi<br />

Feder and Bryson-<br />

Schwafel 1988 ST x x x x<br />

Schuster and<br />

Grigarick 1965<br />

Urochordata:<br />

Ascidiacea Ascidiidae Ascidia adhaerens Lambert 2000 I II x x Lambert 2000<br />

Urochordata:<br />

Ascidiacea Ascidiidae Ascidia columbiana A. callosa Lambert 2000 I II III IV x Lambert 2000<br />

Urochordata:<br />

Ascidiacea Ascidiidae Ascidia unidentified Lambert 2000 I/ST/Epi<br />

Urochordata:<br />

Ascidiacea Clavelinidae Distaplia alaskensis Lambert 2000 ST/Epi<br />

Urochordata:<br />

Ascidiacea Clavelinidae Distaplia sp. undescribed Lambert 2000 ST/Epi possible Lambert 2000<br />

Urochordata:<br />

Ascidiacea Corellidae Chelysoma columbiana Austin 1985 ST/Epi II III IV Austin 1985<br />

Urochordata:<br />

Ascidiacea Corellidae Chelysoma productum Lambert 2000 ST/Epi II III IV V VI Austin 1985<br />

Urochordata:<br />

Ascidiacea Corellidae Corella inflata Lambert 2000 I II III IV Austin 1985<br />

Urochordata:<br />

Ascidiacea Corellidae Corella unidentified Lambert 2000 I<br />

Urochordata:<br />

Ascidiacea Corellidae Corella willmeriana Lambert 2000 I II III IV Austin 1985<br />

Urochordata:<br />

Ascidiacea Molgulidae Molgula retortiformis Lambert 2000 I II x x Austin 1985<br />

Urochordata:<br />

Ascidiacea Polyclinidae Ritterella unidentified Lambert 2000 I<br />

Urochordata:<br />

Ascidiacea Pyruridae Boltenia echinata EVOS ST/Epi II III IV x Austin 1985<br />

Urochordata:<br />

Ascidiacea Pyruridae Boltenia ovifera UAM ST/Epi II III IV x Pavloskii 1955<br />

Urochordata:<br />

Ascidiacea Pyruridae Halocynthia igoboja UAM ST/Epi II III IV x Austin 1985<br />

Urochordata:<br />

Ascidiacea Pyruridae Halocynthia auranticum Tethyum<br />

Scheel, Foster, and<br />

Hough, 1997 ST/Epi II III IV x Austin 1985<br />

Urochordata:<br />

Ascidiacea Pyruridae Pyura haustor Lambert 2000 ST/Epi II III IV V VI Austin 1985<br />

Urochordata:<br />

Ascidiacea Styelidae Botrylloides violaceus Lambert 2000 ST/Epi x Japan definate<br />

Urochordata:<br />

Ascidiacea Styelidae Cnemidocarpa finmarkiensis Stylea Rosenthal 1977 ST/Epi II III IV V x x Austin 1985<br />

Urochordata:<br />

Ascidiacea Styelidae Metandrocarpa taylori Rosenthal 1977 ST/Epi II III IV V Austin 1985<br />

Urochordata:<br />

Ascidiacea Styelidae Styela truncata Lambert 2000 I II III IV Austin 1985<br />

Urochordata:<br />

Ascidiacea Clavelinidae Distaplia occidentalis Lambert 2000 ST/Epi III IV V VI<br />

British<br />

Columbia NR Austin 1985<br />

Urochordata:<br />

Larvacea Fritillariidae Fritillaria borealis Cooney 1987 P II III IV V VI x x x Austin 1985<br />

Urochordata:<br />

Larvacea Fritillariidae Fritillaria unidentified Cooney: SEA P<br />

Urochordata:<br />

Larvacea Oikopleuridae Oikopleura labradorensis Cooney 1987 P II III IV V x x x<br />

Urochordata:<br />

Larvacea Oikopleuridae Oikopleura unidentified<br />

Cooney and Coyle<br />

1988 P<br />

Urochordata:<br />

Larvacea Oikopleuridae Oikopleura vanhoeffeni Cooney 1987 P II III x x x<br />

Urochordata Oikopleuridae Oikopleura dioica Cooney 1987 P II III IV V<br />

II III IV V VI<br />

Urochordata Salpida Salpa fusiformis Cooney 1987 P<br />

VII VIII IX x x<br />

II III IV V VI<br />

Urochordata Salpida Salpa maxima Cooney 1987 P<br />

VII VIII IX x x<br />

Wrobel and Mills<br />

1998<br />

Wrobel and Mills<br />

1998<br />

Wrobel and Mills<br />

1998<br />

Wrobel and Mills<br />

1998<br />

Wrobel and Mills<br />

1998<br />

Fishes<br />

The 175 species we list represent 33 families (Table 10.9). The fish data set uses records<br />

for fish specimens catalogued in the University <strong>of</strong> Alaska Museum, as well as published and<br />

manuscript sources. (Baxter unpublished manuscript, Hart 1973). Name changes derive from and<br />

Humann (1996). Two species, the American shad, Alosa sapidissima, and the Atlantic Salmon,<br />

Samo salar are nonindigenous.<br />

Mecklenberg, (letter <strong>of</strong> 10/30/00) recognizes an undescribed cottid, possibly a<br />

Malacocottus. It has been identified incorrectly as Thecopterus aleuticus.


Chapt 10. Biodiversity, page 10- 56<br />

The following habitat descriptors used in the data sets are based on usage in Eschmeyer<br />

et al (1983)and Eschmeyer (1990) and Hart (1973).<br />

Table 10.9. Fishes.<br />

ANA anadromous BW brackish D dermesal<br />

E eelgrass Epip epipelagic Est estuaries<br />

FW freshwater I intertidal KB kelp bed<br />

NS nearshore Off <strong>of</strong>fshore Pel pelagic<br />

PB pebble bottom RI rocky intertidal<br />

RST rocky subtidal SAB sand bottom<br />

SB s<strong>of</strong>tbottom ST subtidal<br />

SW saltwater<br />

BIOREGION<br />

FAMILY GENUS SPECIES OTHER NAMES<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN NIS STATUS<br />

REFERENCE to<br />

DISTRIBUTION<br />

Acipenseridae Acipenser medirostris Hart 1973 BW, SW, NS IV x x Hart 1973<br />

Acipenseridae Acipenser transmontanus Hart 1973 ANA IV Hart 1973<br />

Agonidae Anoplagonus inermis UAM D IV x Hart 1973<br />

Agonidae Aspidophoroides bartoni UAM SB, SA IV x Baxter 1987ms<br />

Agonidae Aspidophoroides olrikii UAM SB, SA IV x Baxter 1987ms<br />

Agonidae Bathyagonus infraspinata Asterotheca UAM D, SB IV Hart 1973<br />

Agonidae Bathyagonus nigripinnis UAM D, SB IV x x Hart 1973<br />

Agonidae Bathyagonus pentacanthus Asterotheca Hart 1973 D, SB IV Hart 1973<br />

Agonidae Bathyagonus alascanus<br />

Asterotheca<br />

alascana Hart 1973 RST, D<br />

II III<br />

IV Hart 1973<br />

Agonidae Bothragonus swani Hart 1973 I, ST IV Hart 1973<br />

Agonidae Hypsagonus quadricornis Hart 1973 D, SB IV x x Hart 1973<br />

Agonidae Occella verrucosa Hart 1973 D, SB IV Hart 1973<br />

Agonidae Odontopyxis trispinosa UAM D, SB IV SE Alaska nr Hart 1973<br />

Agonidae Podothecus acipenserinus Agonus Hart 1973 D IV x Hart 1973<br />

Ammodytidae Ammodytes hexapterus UAM I, ST, NS, P IV x x Hart 1973<br />

Anarhichadidae Anarrhichthys ocellatus Hart 1973 RST, D IV x Hart 1973<br />

Anoplopomatidae Anoplopoma fimbria Feder et al. 1979 ST, D IV x x Hart 1973<br />

1, ST, SAB, KB, II III<br />

Aulorhynchidae Aulorhynchus flavidus UAM<br />

E<br />

IV Hart 1973<br />

Bathylagidae Leuroglossus callorhinus L. schmidti UAM P IV x Hart 1973<br />

Bathymasteridae Bathylagus milleri Hart 1973 P IV x Hart 1973<br />

Bathymasteridae Bathylagus ochotensis Hart 1973 P IV x x Hart 1973<br />

Bathymasteridae Bathymaster caerule<strong>of</strong>asciatus Rogers et al. 1986 RST<br />

II III<br />

IV<br />

II III<br />

IV<br />

Eschmeyer et al.<br />

1983<br />

Eschmeyer et al.<br />

1983<br />

Bathymasteridae Bathymaster leurolepis Rogers et al. 1986 I/ST<br />

x<br />

Bathymasteridae Bathymaster signatus UAM D, SB IV x x Hart 1973<br />

Bathymasteridae Ronquilus jordani Hart 1973 RST, D IV Hart 1973<br />

Bothidae Citharichthys sordidus Hart 1973 D, SAB IV Hart 1973<br />

Carcharhinidae Prionace glauca UAM Epip x x x x Hart 1973<br />

Clupeidae Alosa sapidissima UAM ANA III IV x Atlantic definate Hart 1973<br />

Clupeidae Clupea pallasii UAM P, Est II x x Hart 1973<br />

Cottidae Artedius fenestralis Hart 1973 I, ST IV Hart 1973<br />

Cottidae Artedius harringtoni Hart 1973 I, RST IV Hart 1973<br />

Cottidae Artedius lateralis UAM I, ST IV Hart 1973<br />

Cottidae Blepsias bilobus UAM I, ST IV x x Hart 1973<br />

Cottidae Blepsias cirrhosus Hart 1973 I, ST IV x Hart 1973<br />

RI, ST, SAB, E, II III<br />

Cottidae Clinocottus acuticeps UAM<br />

KB<br />

IV Hart 1973<br />

Cottidae Clinocottus embryum UAM RI IV Hart 1973<br />

Cottidae Clinocottus globiceps Hart 1973 RI IV Hart 1973<br />

Cottidae Dasycottus setiger UAM SB IV x Hart 1973<br />

Cottidae Enophrys bison Hart 1973 RST, SB IV Hart 1973<br />

Cottidae Gymnocanthus galeatus UAM SB, NS IV Hart 1973<br />

Cottidae Hemilepidotus hemilepidotus UAM I, RST, NS IV x Hart 1973<br />

Cottidae Hemilepidotus jordani UAM ST IV x Hart 1973<br />

Cottidae Hemilepidotus spinosus Hart 1973 I, ST IV SE Alaska nr Hart 1973<br />

Cottidae Icelinus borealis UAM SB IV Hart 1973<br />

Cottidae Icelus spiniger Hart 1973 SB IV x x Hart 1973<br />

Cottidae Leptocottus armatus UAM I, ST IV Hart 1973<br />

Cottidae Malacocottus kincaidi UAM SB IV x Hart 1973<br />

Cottidae Malacocottus zonurus UAM SB IV x Hart 1973<br />

Cottidae Myoxocephalus polyacanthocephalus Hart 1973 I, NS, SB, SAB IV x Hart 1973<br />

Cottidae Myoxocephalus scorpius<br />

M.<br />

groenlandicus Rogers et al. 1986 ST<br />

II III<br />

IV x x Baxter 1987ms


Chapt 10. Biodiversity, page 10- 57<br />

Table 10.9 continued.<br />

BIOREGION<br />

FAMILY GENUS SPECIES OTHER NAMES<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN NIS STATUS<br />

REFERENCE to<br />

DISTRIBUTION<br />

Cottidae Myoxocephalus verrucosus UAM ST IV x Baxter 1987ms<br />

Cottidae Nautichthys ocul<strong>of</strong>asciatus Hart 1973 RST IV x x Hart 1973<br />

Cottidae Oligocottus maculosus Hart 1973 I, RST IV x x Hart 1973<br />

Cottidae Oligocottus rimensis UAM I, RST IV Hart 1973<br />

Cottidae Psychrolutes paradoxus Hart 1973 NS, RST, SB IV x x Hart 1973<br />

Cottidae Psychrolutes sigalutes Gilbertidia Hart 1973 RST, NS, SB IV Hart 1973<br />

Cottidae Radulinus asprellus UAM NS IV Hart 1973<br />

Cottidae Rhamphocottus richardsoni UAM I, RST, SAB IV Hart 1973<br />

Cottidae Malacocottus sp.<br />

Thecopterus<br />

aleuticus UAM RST II Bering Sea nr Baxter 1987ms<br />

Cottidae Triglops macellus Hart 1973 D IV Hart 1973<br />

Cottidae Triglops pingelii UAM D II x x x Hart 1973<br />

Cryptacanthodidae Delolepis giganteus Hart 1973 SB IV Hart 1973<br />

Cryptacanthodidae Lyconectes aleutensis UAM ST, NS, SAB IV Hart 1973<br />

Cyclopteridae Aptocyclus ventricosus Hart 1973 I, ST IV x x Hart 1973<br />

Cyclopteridae Careproctus colletti UAM SB, SA II x Hart 1973<br />

Cyclopteridae Careproctus gilberti Hart 1973 SB, SA IV Hart 1973<br />

Cyclopteridae Careproctus melanurus UAM ST, SB, SAB IV Hart 1973<br />

Cyclopteridae Eumicrotremus orbis UAM I, RST IV x Hart 1973<br />

Cyclopteridae Liparis callyodon Hart 1973 I IV Hart 1973<br />

Cyclopteridae Liparis cyclopus Hart 1973 NS IV Hart 1973<br />

Cyclopteridae Liparis dennyi UAM SB, SA IV Hart 1973<br />

Cyclopteridae Liparis florae UAM I IV Hart 1973<br />

Cyclopteridae Liparis pulchellus Hart 1973 SB IV x Hart 1973<br />

Cyclopteridae Liparis rutteri Hart 1973 I, ST IV Hart 1973<br />

Cyclopteridae Nectoliparis pelagicus UAM P IV x Hart 1973<br />

Cyclopteridae Paraliparis deani UAM D IV x x SE Alaska nr Hart 1973<br />

Gadidae Eleginus gracilis UAM P, D IV x Hart 1973<br />

Gadidae Gadus macrocephalus UAM P, D IV x x Hart 1973<br />

Gadidae Merluccius productus Hart 1973 P, D IV x Hart 1973<br />

Gadidae Microgadus proximus UAM D IV Hart 1973<br />

Gadidae Theragra chalcogramma UAM Off, D IV x x Hart 1973<br />

Gasterosteidae Gasterosteus aculeatus Hart 1973 FW/SW, NS II x Hart 1973<br />

Hexagrammidae Hexagrammos decagrammus Hart 1973 RST, KB, SAB IV Hart 1973<br />

Hexagrammidae Hexagrammos lagocephalus Hart 1973 RST IV x Hart 1973<br />

Hexagrammidae Hexagrammos octogrammus UAM RST IV x x Hart 1973<br />

Hexagrammidae Hexagrammos stelleri UAM RST, NS, E IV x x Hart 1973<br />

Hexagrammidae Ophiodon elongatus Hart 1973<br />

NS, RST, SB,<br />

SAB<br />

II III<br />

IV Hart 1973<br />

Lamnidae Cetorhinus maximus Hart 1973 Epip, P, NS x x x x Hart 1973<br />

Lamnidae Lamna ditropus Hart 1973 Off, Epip, NS IV x x Hart 1973<br />

Osmeridae Hypomesus pretiosus pretiosus Hart 1973 NS IV x Hart 1973<br />

Osmeridae Mallotus villosus Hart 1973 Oceanic II x x x Hart 1973<br />

Osmeridae Spirinchus thaleichthys Hart 1973 ANA IV Hart 1973<br />

Osmeridae Thaleichthys pacificus UAM ANA IV x Hart 1973<br />

Petromyzontidae Lampetra japonica Rogers et al. 1986 ANA IV Baxter 1987ms<br />

Petromyzontidae Lampetra tridentata Hart 1973 ANA IV x x Hart 1973<br />

Pholidae Apodichthys flavidus Hart 1973 I/RT IV Hart 1973<br />

Pholidae Pholis gilli UAM I/RT IV Hart 1973<br />

Pholidae Pholis laeta UAM I, ST IV Hart 1973<br />

Pleuronectidae Atheresthes stomias UAM SB, Off IV Hart 1973<br />

Pleuronectidae Eopsetta jordani Hart 1973 SAB IV Hart 1973<br />

Pleuronectidae Glyptocephalus zachirus UAM SB, SAB IV Hart 1973<br />

Pleuronectidae Hippoglossoides elassodon UAM SB IV x x Hart 1973<br />

Pleuronectidae Hippoglossus stenolepis Rogers et al. 1986 ST, NS<br />

II III<br />

IV x<br />

Eschmeyer et al.<br />

1983<br />

Pleuronectidae Iopsetta ischyra Hart 1973 NS, Off IV Hart 1973<br />

Pleuronectidae Limanda aspera UAM NS IV x x Hart 1973<br />

Pleuronectidae Limanda proboscidea UAM SB IV Hart 1973<br />

Pleuronectidae Microstomus pacificus UAM SB IV Hart 1973<br />

Pleuronectidae Platichthys stellatus UAM NS, Est IV x x Hart 1973<br />

Pleuronectidae Pleuronectes bilineata Lepidosetta UAM NS, Off, PB IV x x Hart 1973<br />

Pleuronectidae Pleuronectes vetulus Parophrys UAM I, ST IV Hart 1973<br />

Pleuronectidae Pleuronichthys decurrens Feder et al. 1979 SB IV Hart 1973<br />

Pleuronectidae Psettichthys melanostictus Hart 1973 NS IV Hart 1973<br />

Pleuronectidae Reinhardtius hippoglossoides Hart 1973 SAB, PB II x x x Hart 1973<br />

Rajidae Bathyraja kincaidi Raja UAM D IV Hart 1973<br />

Rajidae Bathyraja aleutica Wilimovsky 1958 D II III x Wilimovsky 1958<br />

Rajidae Bathyraja interrupta Escheyer et al. 1983<br />

Rajidae Raja binoculata Escheyer et al. 1983 D<br />

II III<br />

IV<br />

II III<br />

IV<br />

Escheyer et al.<br />

1983<br />

Escheyer et al.<br />

1983<br />

Escheyer et al.<br />

1983<br />

Rajidae Raja parmifera Escheyer et al. 1983 D II III x<br />

Rajidae Raja rhina Bathyraja Feder et al. 1979 D IV Hart 1973<br />

Rajidae Bathyraja stellulata Raja Hart 1973 D IV Hart 1973<br />

Salmonidae Oncorhynchus clarki Salmo clarki Hart 1973 ANA, FW IV Hart 1973<br />

Salmonidae Oncorhynchus gorbuscha UAM ANA IV x Hart 1973<br />

Salmonidae Oncorhynchus keta Hart 1973 ANA IV x x Hart 1973


Chapt 10. Biodiversity, page 10- 58<br />

Table 10.9 continued.<br />

BIOREGION<br />

FAMILY GENUS SPECIES OTHER NAMES<br />

SPECIMEN or<br />

SOURCE HABITAT NEP NWP AR NWA ORIGIN NIS STATUS<br />

REFERENCE to<br />

DISTRIBUTION<br />

Salmonidae Oncorhynchus kisutch Hart 1973 ANA IV x Hart 1973<br />

Salmonidae Oncorhynchus mykiss Salmo gardnerii Hart 1973 ANA IV x Hart 1973<br />

Salmonidae Oncorhynchus nerka Hart 1973 ANA IV x x Hart 1973<br />

Salmonidae Oncorhynchus tshawytscha Hart 1973 ANA IV x x Hart 1973<br />

Salmonidae Salmo salar Hart 1973 ANA III IV x<br />

British<br />

Columbia definate Hines et al. 2000<br />

Salmonidae Salvelinus malma Hart 1973 ANA IV x x Hart 1973<br />

Scombridae Sarda chiliensis Hart 1973 NS IV x Hart 1973<br />

Scorpaenidae Sebastes aleutianus UAM D IV Hart 1973<br />

Scorpaenidae Sebastes alutus UAM Off IV x Hart 1973<br />

II III<br />

Eschmeyer et al.<br />

Scorpaenidae Sebastes auriculatus Rogers et al. 1986 ST, NS IV SE Alaska nr<br />

1983<br />

Scorpaenidae Sebastes borealis UAM SB IV x Hart 1973<br />

Scorpaenidae Sebastes brevispinis Hart 1973 D IV Hart 1973<br />

Scorpaenidae Sebastes caurinus Hart 1973 RST, SAB, NS IV Hart 1973<br />

Scorpaenidae Sebastes ciliatus Hart 1973 D, NS IV x Hart 1973<br />

Scorpaenidae Sebastes crameri Hart 1973 SB IV Hart 1973<br />

Scorpaenidae Sebastes diploproa Hart 1973 Off, SB IV Hart 1973<br />

Scorpaenidae Sebastes elongatus Hart 1973 RST, SB IV Hart 1973<br />

Scorpaenidae Sebastes emphaeus Rogers et al. 1986 ST, NS IV Baxter 1987ms<br />

Scorpaenidae Sebastes flavidus Hart 1973 P IV Hart 1973<br />

Scorpaenidae Sebastes maliger Hart 1973 RST, NS IV Hart 1973<br />

Scorpaenidae Sebastes melanops Hart 1973 D, NS, RR IV Hart 1973<br />

Scorpaenidae Sebastes mystinus Hart 1973 D, RR, KB IV Hart 1973<br />

Scorpaenidae Sebastes nebulosus Rogers et al. 1986 NS, RST, RR IV SE Alaska nr Baxter 1987ms<br />

Scorpaenidae Sebastes nigrocinctus Rogers et al. 1986 RST IV SE Alaska nr Baxter 1987ms<br />

Scorpaenidae Sebastes paucispinis Hart 1973 D, RR IV Hart 1973<br />

Scorpaenidae Sebastes proriger Hart 1973 D IV Hart 1973<br />

Scorpaenidae Sebastes ruberrimus Feder et al. 1979 RR IV Hart 1973<br />

Scorpaenidae Sebastes variegatus UAM D IV Hart 1973<br />

Scorpaenidae Sebsatsolobus alascanus Hart 1973 SB IV x Hart 1973<br />

Scorpaenidae Sebsatsolobus altivelis Hart 1973 Off, SB IV Hart 1973<br />

Scytalinidae Scytalina cerdale Hart 1973 I, NS SAB, PB IV Hart 1973<br />

Sphyraenidae Sphyraena argentea Hart 1973 NS IV Hart 1973<br />

Squalidae Somniosus pacificus Hart 1973 I, P, D IV x x Hart 1973<br />

Squalidae Squalus acanthias Hart 1973 P, D II x x Hart 1973<br />

Stichaeidae Anoplarchus insignis Hart 1973 RST IV Hart 1973<br />

Stichaeidae Anoplarchus purpurescens UAM I, RST IV Hart 1973<br />

Stichaeidae Chirolophis decoratus Hart 1973 RST, KB IV Hart 1973<br />

Stichaeidae Chirolophis nugator Rogers et al. 1986 RST<br />

II III<br />

IV<br />

Eschmeyer et al.<br />

1983<br />

Stichaeidae Lumpenella longirostris UAM Off IV Hart 1973<br />

Stichaeidae Lumpenus maculatus UAM SAB IV x Hart 1973<br />

Stichaeidae Lumpenus sagitta UAM Off, NS IV x Hart 1973<br />

Stichaeidae Phytichthys chirus Hart 1973 I, RST IV Hart 1973<br />

Stichaeidae Poroclinus rothrocki Hart 1973 SB, SA IV Hart 1973<br />

Stichaeidae Stichaeus punctatus UAM RST, SAB II x x x Hart 1973<br />

Stichaeidae Xiphister mucosus UAM I, RST IV Hart 1973<br />

Trichodontidae Trichodon trichodon UAM NS, SB SAB IV x x Hart 1973<br />

Zaproridae Zaprora silenus Hart 1973 D IV x x Hart 1973<br />

Zoarcidae Bothrocara molle UAM SB, SA IV x Hart 1973<br />

Zoarcidae Lycodapus mandibularis UAM P IV Hart 1973<br />

Zoarcidae Lycodes brevipes UAM SB, SAB IV x x Hart 1973<br />

Zoarcidae Lycodes diapterus UAM SB IV x x Hart 1973<br />

Zoarcidae Lycodes palearis UAM SB- SAB IV x Hart 1973<br />

Zoarcidae Lycodopsis pacifica Feder et al. 1979 P IV Hart 1973<br />

Stichaeidae Xiphister atropurpureus Hart 1973 I, RST IV Hart 1973<br />

Birds<br />

The rich bird fauna <strong>of</strong> Prince William Sound, the northern Gulf <strong>of</strong> Alaska coast and<br />

Copper River Delta has been described in detail by Isleb and Kessel (1973, 1989). From their<br />

checklist, we have selected 114 species with habitats designated “ beaches and tidal flats, rocky<br />

shores, and reefs, inshore waters, and <strong>of</strong>fshore waters” (Table 10.10).<br />

The American Ornithologists’ Union’s (1983) Check-list <strong>of</strong> North American Birds, was<br />

used to update common and scientific names. Usage <strong>of</strong> terms that define status: migrant, visitor,<br />

breeder and resident is derived from Isleb and Kessel (1973).<br />

Nsh nearshore m migrant<br />

Pel pelagic v visitor<br />

Int intertidal r rare<br />

b breeder


Chapt 10. Biodiversity, page 10- 59<br />

Table 10.10. Birds.<br />

FAMILY GENUS SPECIES COMMON NAME<br />

OTHER<br />

NAMES SOURCE HABITAT STATUS<br />

Gaviidae Gavia immer Common Loon Isleib and Kessel 1973 nsh r<br />

Gaviidae Gavia adamsii Yellow-billed Loon Isleib and Kessel 1973 nsh r<br />

Gaviidae Gavia arctica Arctic Loon Isleib and Kessel 1973 nsh r<br />

Gaviidae Gavia stellata Red-throated Loon Isleib and Kessel 1973 nsh r<br />

Podicipedidae Podiceps grisegena Red-necked Grebe Isleib and Kessel 1973 nsh r<br />

Podicipedidae Podiceps auritis Horned Grebe Isleib and Kessel 1973 nsh r<br />

Porcellariidae Fulmarus glacialis Fulmar Isleib and Kessel 1973 pel v<br />

Porcellariidae Puffinus creatopus Pink-footed Shearwater Isleib and Kessel 1973 pel v<br />

Porcellariidae Puffinus carneipes Pale-footed Shearwater Isleib and Kessel 1973 pel v<br />

Porcellariidae Puffinus griseus Sooty Shearwater Isleib and Kessel 1973 pel v<br />

Porcellariidae Puffinus tenuirostris Slender-billed Shearwater Isleib and Kessel 1973 pel v<br />

Porcellariidae Oceandroma furcata Fork-tailed Storm Petrel Isleib and Kessel 1973 pel r<br />

Phalacrocoracidae Phalacrocorax auritius Double-crested Cormorant Isleib and Kessel 1973 nsh/int r<br />

Phalacrocoracidae Phalacrocorax penicillatus Brandt’s Cormorant Isleib and Kessel 1973 nsh/int b<br />

Phalacrocoracidae Phalacrocorax peligicus Pelagic Cormorant Isleib and Kessel 1973 nsh/int r<br />

Phalacrocoracidae Phalacrocorax urile Red-faced Cormorant Isleib and Kessel 1973 nsh/int r<br />

Ardeidae Ardea herodias Great blue Heron Isleib and Kessel 1973 int r<br />

Anatidae Cygnus columbianus Whistling Swan Olor Isleib and Kessel 1973 int m<br />

Anatidae Cygnus buccinator Trumpeter Swam Olor Isleib and Kessel 1973 int r<br />

Anatidae Branta canadensis Canada Goose Isleib and Kessel 1973 int r<br />

Anatidae Branta bernicula Brant B. nigricans Isleib and Kessel 1973 int m<br />

Anatidae Chen canagica Emperor Goose Philacate Isleib and Kessel 1973 int m<br />

Anatidae Anser albifrons Greater White-fronted Goose Isleib and Kessel 1973 int m<br />

Anatidae Chen caerulescens Snow Goose<br />

C.<br />

hyperborea Isleib and Kessel 1973 int m<br />

Anatidae Anas platyrhynchos Mallard Isleib and Kessel 1973 int r<br />

Anatidae Anas strepera Gadwall Isleib and Kessel 1973 int r<br />

Anatidae Anas acuta Northern Pintail Isleib and Kessel 1973 int r<br />

Anatidae Anas crecca Green-winged Teal<br />

A.<br />

carolinensis Isleib and Kessel 1973 int r<br />

Anatidae Anas discors Blue-winged Teal Isleib and Kessel 1973 int m<br />

Anatidae Anas penelope Europeam Widgeon Mareca Isleib and Kessel 1973 int m<br />

Anatidae Anas americana American Widgeon Mareca Isleib and Kessel 1973 int r<br />

Anatidae Anas clypeata Northern Shoveler Spatula Isleib and Kessel 1973 int m/b<br />

Anatidae Aythya valisineria Canvasback Isleib and Kessel 1973 int m/b<br />

Anatidae Aythya marila Greater Scaup Isleib and Kessel 1973 int r<br />

Anatidae Bucephala clangula Common Goldeneye Isleib and Kessel 1973 int/nsh r<br />

Anatidae Bucephala islandica Barrow’s Goldeneye Isleib and Kessel 1973 int/nsh r<br />

Anatidae Bucephala albeola Bufflehead Isleib and Kessel 1973 int/nsh r<br />

Anatidae Clangula hymenalis Oldsquaw Isleib and Kessel 1973 int/nsh r<br />

Anatidae Histrionicus histrionicus Harlequin Duck Isleib and Kessel 1973 int/nsh r<br />

Anatidae Polysticta stelleri Steller’s Eider Isleib and Kessel 1973 int/nsh v<br />

Anatidae Somateria mollissima Common Eider Isleib and Kessel 1973 int/nsh v<br />

Anatidae Somateria spectabilis King Eider Isleib and Kessel 1973 int/nsh v<br />

Anatidae Melanitta fusca White-winged Scoter M. deglandi Isleib and Kessel 1973 int/nsh r<br />

Anatidae Melanitta perspicillata Surf Scoter Isleib and Kessel 1973 int/nsh r<br />

Anatidae Melanitta nigra Black Scoter Oidema Isleib and Kessel 1973 int/nsh r<br />

Anatidae Lophodytes cucullatus Hooded Merganser Isleib and Kessel 1973 int/nsh r<br />

Anatidae Mergus merganser Common Merganser Isleib and Kessel 1973 int/nsh<br />

Anatidae Mergus serrator Red-breated Merganser Isleib and Kessel 1973 int/nsh r<br />

Accipitridae Haliaeetus leucocephalus Bald Eagle Isleib and Kessel 1973 int r<br />

Accipitridae Circus cyaneus Marsh Hawk Isleib and Kessel 1973 int r<br />

Accipitridae Pandion haliaetus Osprey P. rusticolus Isleib and Kessel 1973 int r<br />

Accipitridae Falco peregrinus Peregrine Falcon Isleib and Kessel 1973 int r<br />

Accipitridae Falco columbarius Merlin Isleib and Kessel 1973 int r<br />

Gruidae Grus canadensis Sandhill Crane Isleib and Kessel 1973 int r<br />

Hematopodidae Haematopus bachmani Black Oystercatcher Isleib and Kessel 1973 int r<br />

Caradriidae Charadrius semipalmatus Semipalmated Plover Isleib and Kessel 1973 int m/b<br />

Caradriidae Charadrius vociferus Killldeer Isleib and Kessel 1973 int v<br />

Caradriidae Pluvialis dominica American Golder Plover Isleib and Kessel 1973 int m/b<br />

Caradriidae Pluvialis squatarola Black-bellied Plover Squatarola Isleib and Kessel 1973 int m<br />

Caradriidae Aphriza virgata Surfbird Isleib and Kessel 1973 int r<br />

Caradriidae Arinaria interpres Ruddy Turnstone Isleib and Kessel 1973 int m


Chapt 10. Biodiversity, page 10- 60<br />

Table 10.10 continued.<br />

FAMILY GENUS SPECIES COMMON NAME<br />

OTHER<br />

NAMES SOURCE HABITAT STATUS<br />

Caradriidae Arinaria melanocephala Black Turnstone Isleib and Kessel 1973 int r<br />

Caradriidae Galligano galligano Common Snipe Capella Isleib and Kessel 1973 int r<br />

Caradriidae Numenius phaeopus Whimbrel Isleib and Kessel 1973 int m<br />

Caradriidae Actitus macularia Spotted Sandpiper Isleib and Kessel 1973 int m<br />

Caradriidae Trigna solitaria Solitary Sandpiper Isleib and Kessel 1973 int m<br />

Caradriidae Heteroscelus incanus Wandering Tattler Isleib and Kessel 1973 int m<br />

Caradriidae Tringa melanoleuca Greater Yellowlegs Tatonus Isleib and Kessel 1973 int m<br />

Caradriidae Tringa flavipes Lesser Yellowlegs Tatonus Isleib and Kessel 1973 int m<br />

Caradriidae Calidris canutus Red Knot Isleib and Kessel 1973 int m<br />

Caradriidae Calidris ptilocnemis Rock Sandpiper Erolia Isleib and Kessel 1973 int m<br />

Caradriidae Calidris acuminata Sharp-tailed Sandpiper Erolia Isleib and Kessel 1973 int m<br />

Caradriidae Calidris melanotos Pectoral Sandpiper Erolia Isleib and Kessel 1973 int m<br />

Caradriidae Calidris baridii Baird’s Sandpiper Erolia Isleib and Kessel 1973 int m<br />

Caradriidae Calidris minutilla Least Sandpiper Erolia Isleib and Kessel 1973 int m/b<br />

Caradriidae Calidris alpina Dunlin Erolia Isleib and Kessel 1973 int r<br />

Caradriidae Limnodromus griseus Short-billed Dowitcher Isleib and Kessel 1973 int m/b<br />

Caradriidae Limnodromus scolopaceus Long-billed Dowitcher Isleib and Kessel 1973 int m<br />

Caradriidae Calidris pusilla Semipaliated Sandpiper Ereunetes Isleib and Kessel 1973 int m<br />

Caradriidae Calidris mauri Western Sandpiper Ereunetes Isleib and Kessel 1973 int m<br />

Caradriidae Limosa lapponica Bar-tailed Godwit Isleib and Kessel 1973 int m<br />

Caradriidae Limosa haemastica Hudsonian Godwit Isleib and Kessel 1973 int<br />

Caradriidae Calidris alba Sanderling Crocethia Isleib and Kessel 1973 int m<br />

Caradriidae Phalaropus fulicarius Red Phalarope Isleib and Kessel 1973 int/nsh/pel m<br />

Caradriidae Lobipes lobatus Northern Phalarope Isleib and Kessel 1973 int/nsh/pel m/b<br />

Stercorariidae Stercorarius pomarinus Pomarine Jaeger Isleib and Kessel 1973 pel m<br />

Stercorariidae Stercorarius parasiticus Parasitic Jaeger Isleib and Kessel 1973 pel m/b<br />

Stercorariidae Stercorarius longicaudus Long-tailed Jaeger Isleib and Kessel 1973 pel m<br />

Stercorariidae Catharacta skua Greater Skua Isleib and Kessel 1973 pel v<br />

Laridae Larus hyperboreus Glaucus Gull Isleib and Kessel 1973 int/nsh/pel r<br />

Laridae Larus glaucesens Glaucous-winged Gull Isleib and Kessel 1973 int/nsh/pel r<br />

Laridae Larus argentatus Herring Gull Isleib and Kessel 1973 int/nsh/pel r<br />

Laridae Larus canus Mew Gull Isleib and Kessel 1973 int/nsh/pel r<br />

Laridae Larus philadelphia Bonaparte’s Gulls Isleib and Kessel 1973 int/nsh/pel m/b<br />

Laridae Rissa tridactyla Black-legged Kittywake Isleib and Kessel 1973 int/nsh/pel r<br />

Laridae Xema sabini Sabine’s Gull Isleib and Kessel 1973 int/nsh/pel m<br />

Laridae Sterna paradisaea Arctic Tern Isleib and Kessel 1973 int/nsh/pel m/b<br />

Laridae Sterna aleutica Aleutian Tern Isleib and Kessel 1973 int/nsh/pel b<br />

Alcidae Uria aalge Common Murre Isleib and Kessel 1973 nsh/pel r<br />

Alcidae Uria lomvia Thick-billed Murre Isleib and Kessel 1973 nsh/pel r<br />

Alcidae Cepphus columba Pigeon Guillemont Isleib and Kessel 1973 nsh/pel r<br />

Alcidae Brachyramphus marmoratus Marbled Murrelet Isleib and Kessel 1973 nsh/pel r<br />

Alcidae Brachyramphus brevirostis Kitlitz’s Murrelet Isleib and Kessel 1973 nsh/pel r<br />

Alcidae Synthliboramphus antiquum Ancient Murrelet Isleib and Kessel 1973 nsh/pel r<br />

Alcidae Aethia psittacula Parakeet Auklet<br />

Synthlibora<br />

mphus Isleib and Kessel 1973 nsh/pel b<br />

Alcidae Aethia cristatella Crested Auklet Isleib and Kessel 1973 nsh/pel v<br />

Alcidae Cerorhica monocrata Rhinoceros Auklet Isleib and Kessel 1973 nsh v/b<br />

Alcidae Fratercula corniculata Horned Puffin Isleib and Kessel 1973 nsh/pel r<br />

Alcidae Lunda cirrhata Tufted Puffin Isleib and Kessel 1973 nsh/pel r<br />

Alcedinidae Megaceryle alcyon Belted Kingfisher Isleib and Kessel 1973 int r<br />

Corvidae Cyanocitta stelleri Steller’s Jay Isleib and Kessel 1973 int r<br />

Corvidae Corvus corax Common Raven Isleib and Kessel 1973 int r<br />

Corvidae Corvus caurinus Northwestern Crow Isleib and Kessel 1973 int r<br />

Mammals<br />

Eleven marine mammal species are well known from Prince William Sound. We also<br />

include the river otter, and black and brown bear because <strong>of</strong> their use <strong>of</strong> marine resources<br />

(salmon, intertidal animals) (Table 10.11). Wynne (1992) and UAM mammal collection records<br />

were used as a source for species names. Distribution, community, and status are inferred from<br />

range maps in Wynne (1992).


Chapt 10. Biodiversity, page 10- 61<br />

Table 10.11. Mammals.<br />

FAMILY GENUS SPECIES COMMON NAME<br />

BIOREGION<br />

SPECIMEN or<br />

SOURE HABITAT STATUS NEP NWP AR NWA Source<br />

Balaenopteridae Balaenoptera acutorostrata Minke Whale Wynne 1992 nsh/pel m x x x x Wynne 1992<br />

Balaenopteridae Balaenoptera physalus Fin Whale Wynne 1992 nsh/pel m x x x x Wynne 1992<br />

Balaenopteridae Megaptera novaeangliae Humpback Whale Wynne 1992 nsh m x x x x Wynne 1992<br />

Delphinidae Orcinus orca Killer Whale Wynne 1992 nsh/pel r/m x x x x Wynne 1992<br />

Eschrichtiidae Eschrichtius robustus Grey Whale Wynne 1992 pel m II III IV Wynne 1992<br />

Mustelidae Enhydra lutris Sea Otter Wynne 1992 int/nsh r II III IV x Hall 1981<br />

Mustelidae Lontra canadensis River Otter UAM Mammals int r x x x x Hall 1981<br />

Otariidae Callorhinus ursinus Northern Fur Seal UAM Mammals pel m II III IV x Hall 1981<br />

Otariidae Eumetopias jubatus Steller’s Sea Lion UAM Mammals nsh r II III IV x Hall 1981<br />

Phocidae Phoca vitulina Harbor Seal UAM Mammals nsh r II III IV Hall 1981<br />

Phoecoenidae Phocoena phocoena Harbor Porpoise Wynne 1992 nsh m/r II x x Wynne 1992<br />

Phoecoenidae Phocoenoides dalli Dall’s Porpoise Wynne 1992 nsh/pel m/r II III IV x Wynne 1992<br />

Ursidae Ursus americanus Black Bear UAM Mammals int r II III Hall 1981<br />

Ursidae Ursus arctos Brown Bear UAM Mammals int r II III Hall 1981<br />

10E. Discussion<br />

The data sets contain entries for 1878 taxa, <strong>of</strong> which all but 180 are species-level<br />

identifications. Thirty-nine species are recognized as possibly undescribed. Eighty-nine species<br />

had not previously been reported in Prince William Sound, and represent distributional range<br />

extension. (Table 10.12.) These species were probably overlooked in previous environmental<br />

surveys, because <strong>of</strong> their small size, cryptic appearance, similarity to more well-known species,<br />

or lack <strong>of</strong> taxonomic experts to work with them. Eighteen species are likely to represent<br />

nonindigenous species. At least 97 species are uncertain in origin (cryptogenic). Over 70% <strong>of</strong> the<br />

animals (1343) are invertebrates. Arthropods 24.3%, mollusks 16.8%, and polychaete annelids<br />

12.4% make up the largest number <strong>of</strong> total species. (Table 10.13. Figure 10.4).<br />

Plants<br />

Cnidaria/<br />

Ctenophora<br />

Nemertea<br />

Polychaeta<br />

Mollusca<br />

Arthropoda<br />

probable NIS 5 1 2 1 9<br />

definate NIS 1 1 2 1 1 1 2 9<br />

range extension<br />

within Alaska 4 9 1 8 1 8 31<br />

range extension to<br />

Alaska 17 2 19 7 10 2 1 58<br />

cryptogenic 68 7 1 6 82<br />

potential new or<br />

undescribed species 1 6 2 1 1 11<br />

not identified to<br />

species 10 27 1 7 1 109 19 5 3 182<br />

total spcies-level<br />

taxa 231 102 45 233 315 455 68 74 30 23 178 113 14 1881<br />

Echinodermata<br />

Bryozoa<br />

Urochordata<br />

Other<br />

invertebrates<br />

Fishes<br />

Birds<br />

Mammals<br />

TOTALS<br />

Table 10.12. Summary <strong>of</strong> Prince William Sound marine biota by NIS status and identification confidence.


Chapt 10. Biodiversity, page 10- 62<br />

Plants<br />

Cnidaria/ Ctenophor<br />

Mollusca<br />

numer <strong>of</strong> species 231 102 315 233 455 66 74 98 178 113 14<br />

percent <strong>of</strong> total fauna 6.2% 19.1% 14.2% 27.7% 4.0% 4.5% 6.0% 10.6% 6.9% 0.9%<br />

percent <strong>of</strong> total biota 12.3% 5.4% 16.8% 12.4% 24.3% 3.5% 3.9% 5.2% 9.3% 6.0% 0.7%<br />

total invertebrates 1343<br />

total vertebrates 302<br />

total plants 233<br />

total biota considered 1876<br />

Polychaeta<br />

Arthropoda<br />

Echinodermata<br />

Bryozoa<br />

Other invertebrates<br />

Fishes<br />

Birds<br />

Mammals<br />

Table 10.13. Summary <strong>of</strong> the plants and animals considered.<br />

Marine Plants<br />

Ascomycota<br />

Cyanophyta<br />

Xanthophyta<br />

Chlorophyta<br />

Rhodophyta<br />

Phaeophyta<br />

vascular plants<br />

Marine Biota<br />

total invertebrates<br />

total vertebrates<br />

total plants<br />

Marine Invertebrates<br />

Cnidaria/Ctenophora<br />

Polychaeta<br />

Mollusca<br />

Arthropoda<br />

Echinodermata<br />

Bryozoa<br />

other invertebrate phyla<br />

Vertebrates<br />

fishes<br />

birds<br />

mammals<br />

Figure 10.4. Species composition <strong>of</strong> Prince William Sound marine biota by major taxon.


Chapt 10. Biodiversity, page 10- 63<br />

The marine biota <strong>of</strong> Prince William Sound is a mix <strong>of</strong> species with ranges that overlap<br />

several biogeographic provinces. Forty-nine percent <strong>of</strong> the biota for which reliable data are<br />

available are northeast Pacific species, not found north or west <strong>of</strong> Bering Strait. Over one third<br />

<strong>of</strong> the species (43.4 %) have geographic ranges that extend into the northwestern Pacific. Fewer<br />

species have distributions that overlap the north Atlantic 19.6.5% and/or Arctic 16.9%. The<br />

biogeographic affinities vary greatly among the phyla.<br />

We caution users <strong>of</strong> these data sets that in spite <strong>of</strong> our best efforts the information is only<br />

as good as our sources. We were unable to obtain data, or found few reliable records, for five<br />

major groups <strong>of</strong> animals: sponges, Anthozoa, Nematoda, Oligochaeta , Hirudinea, Ostracoda and<br />

insects. Two factors account for this, lack <strong>of</strong> taxonomic experts, and the need for specialized<br />

collection and preservation techniques. Further, even among several well-known taxonomic<br />

groups, we found few sources <strong>of</strong> authentic information and so we have had to rely on<br />

unpublished reports and manuscripts. We hope that using these data sets will not perpetuate<br />

erroneous records. In critical situations, users are advised to rely on museum records and<br />

consultation with other experts.<br />

10F. References<br />

Abbott, I. S. and G. J. Hollenberg. 1976. Marine Algae <strong>of</strong> California. Stanford University Press.<br />

Stanford, California. 827p.<br />

American Ornithologists’ Union. 1983. Check-list <strong>of</strong> North American Birds. 7th edition.<br />

American Ornithologists’ Union, Washington DC.<br />

Austin, W.C. 1985. An annotated checklist <strong>of</strong> marine invertebrates in the cold temperate<br />

northeast Pacific. Khoyatan Marine Laboratory, Cowichan Bay, British Columbia. Vols. 1-3,<br />

682p.<br />

Banse, K. and K.D. Hobson. 1968. Benthic errantiate polychaetes <strong>of</strong> British Columbia and<br />

Washington. Bull. Fish. Res. Bd. Can. 185: 111p.<br />

Barnard, J.L. 1969. The families and genera <strong>of</strong> marine gammaridean Amphipoda. Smithsonian<br />

Institution (USNM Bull. 271), Washington. D.C., 535p.<br />

Baxter, R. 1987. Mollusks <strong>of</strong> Alaska. Shells and Sea Life. Bayside, California. 163p.<br />

Baxter, R. [dated 1987] Unpublished manuscript. Annotated Key to the Fishes <strong>of</strong> Alaska. 771p.<br />

Behrens, 1991. Pacific coast nudibranchs; A guide to the Opisthobranchs Alaska to Baja<br />

California. Sea Challengers, Monterey California. 107p.<br />

Berkeley, E. and C. Berkeley. 1948. Annelida. Polychaeta Errantia. Canadian Pacific Fauna,<br />

9b(1), 111p.<br />

Berkeley, E. and C. Berkeley. 1952. Annelida. Polychaeta Sedentaria. Canadian Pacific Fauna,<br />

9b(1), 139p.


Chapt 10. Biodiversity, page 10- 64<br />

Brodsky, K.A. 1950. Calanoida <strong>of</strong> the Far Eastern Seas and Polar Basin <strong>of</strong> the U.S.S.R.. Dokl.<br />

Akad. Nauk. SSSR. 35: 1-442. USSR Israel Program Scient. Transl.(1967), Jerusalem. Transl.<br />

No. TT-65-51200. 440p.<br />

Butler, T.H. 1980. Shrimps <strong>of</strong> the Pacific coast <strong>of</strong> Canada. Can. Bull. Fish. Aquat. Sci., Bull. 202, 280p.<br />

Chapman, J. W. 2000. Focal taxonomic collections: Pericaridian crustaceans. Chapter 9C4 In<br />

Hines, A. H. et al. 2000. <strong>Biological</strong> invasion <strong>of</strong> cold-water ecosystems: ballast-mediated<br />

introductions in Port Valdez/Prince William Sound, Alaska Final Project Report.<br />

Child, C. A. 1992. Keys to the known Alaskan Pycnogonids. Unpublished key on file to the<br />

University <strong>of</strong> Alaska Museum <strong>Aquatic</strong> Collection.<br />

Child, C. A. 1995. Pycnogonids <strong>of</strong> the Western Pacific Islands, XI. Collections form the<br />

Aleutians and other Bering Sea Islands, Alaska. Smithsonian Contributions to Zoology. No. 569.<br />

30pp.<br />

Coe, W. R. 1904. Nemerteans. Harriman Alaska Series, Vol. 11, 220 pp.<br />

Coan, E. V., P. V. Scott, F. R. Bernard. 2000. Bivalve seashells <strong>of</strong> western North America. Santa<br />

Barbara Museum <strong>of</strong> Natural History Monographs, Studies in Biodiversity: no. 2.<br />

Cooney, R.T. 1987. Zooplankton. In Gulf <strong>of</strong> Alaska: Physical Environment and <strong>Biological</strong><br />

Resources. Pages 347-396. D.W. Hood and S.T. Zimmerman (Eds.). US Dept. Commerce, OCS<br />

Office. MMS 86-0095.<br />

Cooney, R.T. Unpublished data. Sound Ecosystem Analysis (SEA), 1994-1998.<br />

Cooney, R.T. D. R. Redburn, and W. E. Shiels. 1973. Zooplankton studies Chapter 8 In<br />

Environmental Studies <strong>of</strong> Port Valdez. Hood, D. W. .E. Shiels, and E. J. Kelley, eds. Institute <strong>of</strong><br />

Marine Science Occasional Publication No. 3.<br />

Cooney, R.T. and K.O. Coyle. 1988. <strong>Water</strong> Column Production. In Environmental Studies in<br />

Port Valdez, Alaska: A Basis for Management. Pages 93-110. D.G. Shaw and M.J. Hameedi<br />

(Eds.). Vol. 24. Springer-Verlag, New York.<br />

Cordell, J. R. 2000. Focal taxonomic collections: Copepod crustaceans. Chapter 9C5 In Hines,<br />

A. H. et al. 2000. <strong>Biological</strong> invasion <strong>of</strong> cold-water ecosystems: ballast-mediated introductions<br />

in Port Valdez/Prince William Sound, Alaska Final Project Report.<br />

Coyle, K.O. and R.C. Highsmith. 1994. Amphipod community in the northern Bering Sea:<br />

Analysis <strong>of</strong> potential structuring mechanisms. Mar Ecol. Prog. Series. 107(3):233-244.<br />

Dick, M.H. and J.R.P. Ross. 1988. Intertidal Bryozoa (Cheilostomata) <strong>of</strong> the Kodiak Vicinity,<br />

Alaska. Center for Pacific Northwest Studies, Western Washington University. Occasional Paper<br />

No. 23. Bellingham, Washington. 133p.


Chapt 10. Biodiversity, page 10- 65<br />

D‘yakonov, A.M. 1954. Ophiuroids <strong>of</strong> the USSR Seas. Acad. Sci. USSR. Israel Program Scient.<br />

Transl. (1967), Jerusalem. 123p.<br />

Eschmeyer, W. N. 1990 Catalog <strong>of</strong> the genera <strong>of</strong> recent fishes. California Academy <strong>of</strong> Sciences<br />

San Francisco. 679p.<br />

Eschmeyer, W.N., E.S. Herald and H. Hammann. 1983. A Field Guide to the Pacific Coast<br />

Fishes <strong>of</strong> North American. Houghton Mifflin Company, Boston. 336p.<br />

Feder, H.M., L.M. Cheek, P. Flannagan, S.C. Jewett, M.H. Johnston, A.S. Naidu, S.A. Norrell,<br />

A.J. Paul, A. Scarborough and D. Shaw. 1976. The sediment environment <strong>of</strong> Port Valdez,<br />

Alaska: The effect <strong>of</strong> oil on this ecosystem. Ecol. Res. Studies. EPA-600/3-76-086, 322pp.<br />

Feder, H. M. and B. Bryson-Schwafel. 1988. The Intertidal Zone. In Environmental<br />

Management <strong>of</strong> Port Valdez, Alaska: A Basis for Management. D.G. Shaw and M.J. Hameedi<br />

(Eds.). Vol 24. Springer-Verlag, New York, p117-151.<br />

Feder, H.M. and S.C. Jewett. 1987. The Subtidal Benthos. In Gulf <strong>of</strong> Alaska: Physical<br />

Environment and <strong>Biological</strong> Resources. Pages 347-396. D.W. Hood and S.T. Zimmerman<br />

(Eds.). US Dept. Commerce, OCS Office. MMS 86-0095.<br />

Feder, H.M. and G. Keiser. 1980. Intertidal Biology. In Port Valdez, Alaska: Environmental<br />

Studies 1976-1979. Pages 143-224. J.M. Colonell (Ed.). Occasional Publ. No. 5, Inst. Mar. Sci.,<br />

Univ. <strong>of</strong> Alaska, Fairbanks.<br />

Feder, H.M. and G.E.M. Matheke. 1980. Distribution, abundance, community structure and<br />

tropic structure <strong>of</strong> the benthic infauna <strong>of</strong> the northeast Gulf <strong>of</strong> Alaska. Inst. Mar. Sci. Rept. R78-<br />

8, Univ.<strong>of</strong> Alaska, Fairbanks, 209pp.<br />

Feder, H.M., A.J. Paul and J. McDonald. 1979. A preliminary survey <strong>of</strong> the benthos <strong>of</strong><br />

Resurrection Bay and Aialik Bay, Alaska. Sea Grant Rept. No. 79-9, IMS Rept. R78-7, Inst.<br />

Mar. Sci., Univ. <strong>of</strong> Alaska, Fairbanks, 53pp.<br />

Feder, H.M. and A.J. Paul 1973 Abundance estimations and growth-rate comparisons for the<br />

clam Protothaca staminea from three beaches in Prince William Sound, Alaska, with additional<br />

comments on size-weight relationships, harvesting, and marketing Inst Mar. Sci. Tech Rept.<br />

R73-3, Univ. <strong>of</strong> Alaska, Fairbanks 34pp.<br />

Feder, H.M. and A.J. Paul. 1980. Food <strong>of</strong> the King crab, Paralithodes camtschatica and the<br />

Dungeness crab, Cancer magister in Cook Inlet, Alaska. Proceed. Nat. Shellfish. Assoc. 70:240-<br />

246.<br />

Foster, N. R. 1987. Hermaea vancouverensis O’Donoghue, 1924, from Kodiak Island and Unga<br />

Island, Alaska. Veliger 30(1):98.


Chapt 10. Biodiversity, page 10- 66<br />

Gardner, G. A. and I. Szabo. 1982. British Columbia Pelagic Marine Copepoda. An<br />

identification manual and annotated bibliography. Canadian Special Publication <strong>of</strong> Fisheries and<br />

<strong>Aquatic</strong> Sciences. No. 62. 536p.<br />

Goddard, H. J. 2000. Focal taxonomic collections: opisthobranch mollusks. Chapter 9C8 In<br />

Hines, A. H. et al. 2000. <strong>Biological</strong> invasion <strong>of</strong> cold-water ecosystems: ballast-mediated<br />

introductions in Port Valdez/Prince William Sound, Alaska Final Project Report.<br />

Gur’yanova, F.F. 1951. Amphipods <strong>of</strong> the Seas <strong>of</strong> the USSR and adjacent waters. Izdatelstvo<br />

Akademii Nauk SSSR. Leningrad. In Russian. 1092p.<br />

Gur’yanova, F.F. 1962. Amphipods <strong>of</strong> the North Pacific Ocean (Amphipoda Gammaridea)<br />

Izdatel’stov Akademii Nauk SSSR. Leningrad. In Russian. 440p.<br />

Hansen, G. I. 2000. Focal taxonomic collections: Marine plants in Prince William Sound,<br />

Alaska. Chapter 9C1 In Hines, A. H. et al. 2000. <strong>Biological</strong> invasion <strong>of</strong> cold-water ecosystems:<br />

ballast-mediated introductions in Port Valdez/Prince William Sound, Alaska Final Project<br />

Report.<br />

Hall, E. R. 1981. The mammals <strong>of</strong> North America. Volume II, Second Edition. John Wiley &<br />

Sons. 1175 pp.<br />

Hart, J. L. 1973. Pacific Fishes <strong>of</strong> Canada. Fisheries Research Board <strong>of</strong> Canada, Bulletin 180.<br />

Ottawa, Ontario, Canada. 740p.<br />

Hart, J.F.L. 1968. Crab-like Anomura and Brachyura (Crustacea: Decapoda) from southeastern<br />

Alaska and Prince William Sound. Nat. Mus. Can. Nat Hist. Papers. 38:6.<br />

Hart, J.F.L. 1982. Crabs and their relatives <strong>of</strong> British Columbia. British Columbia Provincial<br />

Museum, Victoria. 40: 267p.<br />

Hines, A. H., Ruiz, G. M., J. Chapman, G. I. Hansen, J. T. Carlton, N. R.. Foster, and H. M.<br />

Feder, 2000. <strong>Biological</strong> invasions <strong>of</strong> cold-water ecosystems: ballast-mediated introductions in<br />

Port Valdez/Prince William Sound, Alaska Final Project Report.<br />

Hines, A. H. and G. M. Ruiz. 2000. Fouling community survey. Chapter 9D In Hines, A. H.<br />

et al. 2000. <strong>Biological</strong> invasion <strong>of</strong> cold-water ecosystems: ballast-mediated introductions in Port<br />

Valdez/Prince William Sound, Alaska Final Project Report.<br />

Hines, A. H., G. M. Ruiz, and P. W. F<strong>of</strong>on<strong>of</strong>f. 2000. Summary <strong>of</strong> NIS. Chapter 8 In Hines, A.<br />

H.et al. 2000. <strong>Biological</strong> invasion <strong>of</strong> cold-water ecosystems: ballast-mediated introductions in<br />

Port Valdez/Prince William Sound, Alaska Final Project Report.<br />

Hines, A. H., L. Schickel, and N. R. Foster. 2000. Focal taxonomic collections: Decapod<br />

crustacean. Chapter 9C6 In Hines, A. H. et al. 2000. <strong>Biological</strong> invasion <strong>of</strong> cold-water<br />

ecosystems: ballast-mediated introductions in Port Valdez/Prince William Sound, Alaska Final<br />

Project Report.


Chapt 10. Biodiversity, page 10- 67<br />

Hoberg, M.K. 1986. A numerical analysis <strong>of</strong> the benthic infauna <strong>of</strong> three bays in Prince William<br />

Sound, Alaska. Dept. Biology. Humboldt State University, Arcata, California. 153p.<br />

Hobson, K.D. and K. Banse. 1981. Sedentariate and Archiannelid polychaetes <strong>of</strong> British<br />

Columbia and Washington. Can. Bull. Fish. Aquat. Sci. 209: 144p.<br />

Hulten, E. 1968. Flora <strong>of</strong> Alaska and neighboring territories: A manual <strong>of</strong> the vascular plants.<br />

Stanford University Press. Stanford, California. 1008p.<br />

Humann, P. 1996. <strong>Coastal</strong> fishes Identification: California to Alaska. New World Publications,<br />

Inc. Jacksonville, Florida. 205p.<br />

Isleb, M. E. and B. Kessel, 1973. Birds <strong>of</strong> the north gulf coast-Prince William Sound region,<br />

Alaska. <strong>Biological</strong> Papers <strong>of</strong> the University <strong>of</strong> Alaska. No. 14, 149p.<br />

Jewett, S.C. and H.M. Feder. 1977. Biology <strong>of</strong> the Harpacticoid copepod, Harpacticus uniremis<br />

Kroyer on Dayville Flats, Port Valdez, Alaska. Ophelia. 16(1):111-119.<br />

Kluge, G.A. 1962. Bryozoa <strong>of</strong> the northern seas <strong>of</strong> the USSR. Smithsonian Institution and the<br />

National Science Foundation (Transl., 1975), TT 72-52010. Amerind Publishing Co. Pvt. Ltd.,<br />

New Delhi. 711p.<br />

Kelleher, G., C. Bleakley and S. Wells. 1995. A global representative system <strong>of</strong> marine protected<br />

areas. Vols. 1-4. The Great Barrier Reef marine Park Authority, The World Bank, and the World<br />

Conservation Union (IUCN) Washington D.C.<br />

Kozl<strong>of</strong>f, E.N. 1987. Marine invertebrates <strong>of</strong> the Pacific Northwest. University <strong>of</strong> Washington<br />

Press, Seattle. 511p.<br />

Kudenov, J. 2000. Focal taxonomic collections: Polychaete worms. Chapter 9C3 In Hines, A. H.<br />

et al. 2000. <strong>Biological</strong> invasion <strong>of</strong> cold-water ecosystems: ballast-mediated introductions in Port<br />

Valdez/Prince William Sound, Alaska Final Project Report.<br />

Lambert, G. 2000. Focal taxonomic collections: Ascidians. Chapter 9C10 In Hines, A. H. et al.<br />

2000. <strong>Biological</strong> invasion <strong>of</strong> cold-water ecosystems: ballast-mediated introductions in Port<br />

Valdez/Prince William Sound, Alaska Final Project Report.<br />

Lambert, P. 1981. The Sea Stars <strong>of</strong> British Columbia. British Columbia Provincial Museum,<br />

Victoria. 39: 152p.<br />

Lambert, P. 1997. Sea Cucumbers <strong>of</strong> British Columbia, Southeast Alaska and Puget Sound.<br />

UBC Press. Vancouver, British Columbia. 166p.<br />

Lee, R. S. and N. R. Foster. 1985. A distributional list with range extensions <strong>of</strong> the opistobranch<br />

gastropods <strong>of</strong> Alaska. Veliger, 27(4)(2):440-448.


Chapt 10. Biodiversity, page 10- 68<br />

Lindstrom, S.C. 1977. An annotated bibliography <strong>of</strong> the benthic marine algae <strong>of</strong> Alaska. Alaska<br />

Department <strong>of</strong> Fish and Game, Technical Report 31.<br />

Miller, C.B. 1988. Neocalanus flemingeri, A New Species <strong>of</strong> Calanidae (Copepoda: Calanoida)<br />

from the Subarctic Pacific Ocean, with a comparative redescription <strong>of</strong> Neocalanus plumchrus<br />

(Marukawa) 1921. Prog. Oceanog. 20:223-273.<br />

Mills, C. 2000. Focal Taxonomic collections: Planktonic Cnidaria, Ctenophora, and pelagic<br />

Mollusca. Chapter 9C2 In Hines, A. H. et al. 2000. <strong>Biological</strong> invasion <strong>of</strong> cold-water<br />

ecosystems: ballast-mediated introductions in Port Valdez/Prince William Sound, Alaska Final<br />

Project Report.<br />

Naumov, D.V. 1960. Hydroids and Hydromedusae <strong>of</strong> the USSR. Izdatel’stvo Akademii Nauk<br />

SSSR. Leningrad. Israel Program for Scientific Translations (1969), Jerusalem. 660pp.<br />

Osburn, R. C. 1950. Bryozoa <strong>of</strong> the Pacific coast <strong>of</strong> America, part 1, Anasca. Allan Hancock<br />

Pacific Expeditions 14(1). University <strong>of</strong> Southern California Press. Los Angeles, California. 1-<br />

269p.<br />

Osburn, R. C. 1952. Bryozoa <strong>of</strong> the Pacific coast <strong>of</strong> America, part 2, Cheilostoma-Ascophora.<br />

Allan Hancock Pacific Expeditions 14(8). University <strong>of</strong> Southern California Press. Los Angeles,<br />

California. 271-611p.<br />

Pavlovskii, E. N. 1955. Atlas <strong>of</strong> the Invertebrates <strong>of</strong> the Far Eastern Seas <strong>of</strong> the USSR. Acad.<br />

Sci. USSR, Zool. Inst. Israel Program Scient. Transl. (1966), Jerusalem. 457p.<br />

Rogers, D. E., B. Rogers, and R. J. Rosenthal. 1986. The nearshore fishes. In The Gulf <strong>of</strong><br />

Alaska: Physical environment and biological resources. Pages 399-457. D.W. Hood and S.T.<br />

Zimmerman (Eds.). US Dept. Commerce, OCS Office. MMS-96-0095.<br />

Rosenthal, R. J. 1977. Final data report subtidal monitoring program Port Valdez (1976).<br />

Unpublished report to the U.S. Department <strong>of</strong> Commerce, NOAA. from Dames and Moore.<br />

Scagel, R. F., D. J. Garbary, L. Golden, and M. W. Hawkes., 1986. A Synopsis <strong>of</strong> the benthic<br />

marine algae <strong>of</strong> British Columbia, northern Washington, and southeast Alaska. University <strong>of</strong><br />

British Columbia Phycological Contribution No. 1. 444p.<br />

Scheel, D., N.R. Foster and K.R. Hough. 1997. Habitat and <strong>Biological</strong> Assessment Shepard<br />

Point Road and port project. Final Rept. Prince William Sound Science Center. Cordova,<br />

Alaska. www.pwssc.gen.ak/~shepard.<br />

Schultz, G.A. 1969. The Marine Isopod Crustaceans. Wm. C. Brown Company. Dubuque, Iowa.<br />

359p.


Chapt 10. Biodiversity, page 10- 69<br />

Schuster, R.O. and A.A. Grigarick. 1965. Taridigrada from western North America: with<br />

emphasis on the fauna <strong>of</strong> California. Univ. Calif. Publ. Zool., Berkeley. 76: 67p.<br />

Smith, D. L. and K. B. Johnson. 1996. A Guide to Marine <strong>Coastal</strong> Plankton and Marine<br />

Invertebrate Larvae. 2 nd ed. Kendall/Hunt Publishing Company. Dubuque, Iowa. 221p.<br />

Soule, D.F., J.D. Soule and H.W. Chaney. 1996. The Bryozoa In: Taxonomic Atlas <strong>of</strong> the<br />

Benthic Fauna <strong>of</strong> the Santa Maria Basin and the Western Santa Barbara Channel . .J.A. Blake,<br />

H.W. Henry, P.H. Scott and A.L. Lissner (eds). Santa Barbara Museum <strong>of</strong> Natural History. Santa<br />

Barbara, California. Vol. 13. 343p.<br />

Squires, J.J. and A.F.G. Figueria. 1974. Shrimps and shrimp-like Anomura (Crustacea:<br />

Decapoda) from southeastern Alaska and Prince William Sound. Publ. Biol. Oceanogr. Nat.<br />

Mus. Can. 6:23.<br />

Turgeon, D. D., J. F. Quinn, jr., A. E. Bogan, E . V. Coan, F. G. Hochberg, W. G. Lyons, P. M.<br />

Mikkelsen, R. J. Neves, C. F. E. Roper, G. Rosenberg, B. Roth, A. Scheltema, F. G. Thompson,<br />

M. Veccione, and J. D. Williams. 1998. Common and scientific names <strong>of</strong> aquatic invertebrates<br />

from the United States and Canada: Mollusks 2nd edition. American Fisheries Society, Special<br />

Publication 26, Bathesda, Maryland.<br />

Ushakov, P.V. 1955. Polychaeta <strong>of</strong> the Far Eastern Seas <strong>of</strong> the USSR. Acad. Sci. USSR. Israel<br />

Program Scient. Transl. (1965), Jerusalem. 419p.<br />

Wilimovsky. N. J. 1958. Provisional keys to the fishes <strong>of</strong> Alaska. Fish. Res. Lab., U.S. Fish and<br />

Wildlife Service. Juneau, Alaska. 113 pp.<br />

Wrobel, D. and C. Mills. 1998. Pacific coast pelagic invertebrates A guide to common gelatinous<br />

animals. Sea Challengers and Monterey Bay Aquarium Monterey California. 108p.<br />

Wynne, K. 1992. Guide to marine mammals <strong>of</strong> Alaska. Alaska Sea Grant Program. Fairbanks,<br />

Alaska.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!