urn:Isid:zoobank.org:pub:8B9DADD0-415E-4120-A10E-8A3411C1C1A4

Biodiversity and phylogeny of Ammotheidae (Arthropoda: Pycnogonida)

Romain SABROUX ${ }^{1}$, Laure CORBARI ${ }^{2}$, Franz KRAPP ${ }^{3}$, Céline BONILLO ${ }^{4}$, Stépahnie LE PRIEUR ${ }^{5}$ \& Alexandre HASSANIN ${ }^{6,{ }^{*}}$
${ }^{1,2,6}$ UMR 7205, Institut de Systématique, Evolution et Biodiversité, Département Systématique et Evolution, Sorbonne Universités, Muséum national d'Histoire naturelle, 55 rue Buffon, CP 51, 75005 Paris, France.
${ }^{3}$ Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany.
${ }^{4,5}$ UMS CNRS 2700, Muséum national d'Histoire naturelle, CP 26, 57 rue Cuvier, 75231 Paris Cedex 05, France.
*Corresponding author: hassanin@mnhn.fr
${ }^{1}$ Email: romain.sabroux@mnhn.fr
${ }^{2}$ Email: corbari@mnhn.fr
${ }^{3}$ Email: franz.krapp.zfmk@uni-bonn.de
${ }^{4}$ Email: bonillo@mnhn.fr
${ }^{5}$ Email: sleprieur@mnhn.fr
${ }^{1}$ urn:lsid:zoobank.org:author:F48B4ABE-06BD-41B1-B856-A12BE97F9653
${ }^{2}$ urn:Isid:zoobank.org:author:9E5EBA7B-C2F2-4F30-9FD5-1A0E49924F13
${ }^{3}$ urn:Isid:zoobank.org:author:331AD231-A810-42F9-AF8A-DDC319AA351A
${ }^{4}$ urn:Isid:zoobank.org:author:7333D242-0714-41D7-B2DB-6804F8064B13
${ }^{5}$ urn:Isid:zoobank.org:author:5C9F4E71-9D73-459F-BABA-7495853B1981
${ }^{6}$ urn:1sid:zoobank.org:author:0DCC3E08-B2BA-4A2C-ADA5-1A256F24DAA1

Abstract

The family Ammotheidae is the most diversified group of the class Pycnogonida, with 297 species described in 20 genera. Its monophyly and intergeneric relationships have been highly debated in previous studies. Here, we investigated the phylogeny of Ammotheidae using specimens from poorly studied areas. We sequenced the mitochondrial gene encoding the first subunit of cytochrome c oxidase (CO1) from 104 specimens. The complete nuclear 18S rRNA gene was sequenced from a selection of 80 taxa to provide further phylogenetic signal. The base composition in CO1 shows a higher heterogeneity in Ammotheidae than in other families, which may explain their apparent polyphyly in the CO1 tree. Although deeper nodes of the tree receive no statistical support, Ammotheidae was found to be monophyletic and divided into two clades, here defined as distinct subfamilies: Achelinae comprises the genera Achelia Hodge, 1864, Ammothella Verrill, 1900, Nymphopsis Haswell, 1884 and Tanystylum Miers, 1879; and Ammotheinae includes the genera Ammothea Leach, 1814, Acheliana Arnaud, 1971, Cilunculus Loman, 1908, Sericosura Fry \& Hedgpeth, 1969 and also Teratonotum gen. nov., including so far only the type species Ammothella stauromata Child, 1982. The species Cilunculus gracilis Nakamura \& Child, 1991 is reassigned to Ammothella, forming the binomen Ammothella gracilis (Nakamura \& Child, 1991) comb. nov. Additional taxonomic re-arrangements are suggested for the genera Achelia, Acheliana, Ammothella and Cilunculus.

Keywords. Pantopoda, taxonomy, DNA phylogeny, barcode of life, strand-bias.
Sabroux R., Corbari L., Krapp F., Bonillo C., Le Prieur S. \& Hassanin A. 2017. Biodiversity and phylogeny of Ammotheidae (Arthropoda: Pycnogonida). European Journal of Taxonomy 286: 1-33. http://dx.doi.org/10.5852/ ejt. 2017.286

Introduction

Sea spiders (Arthropoda: Pycnogonida: Pantopoda) represent a small group of exclusively marine arthropods which are distributed worldwide, from the tropical to the polar regions, from littoral to abyssal depths. There are 1385 described species that are classified in 79 genera and 11 families (Bamber et al. 2015). They exhibit a typical "spider-like" appearance, with generally four pairs of walking legs attached to a slender trunk. They show a remarkable diversity of forms (from the slender Nymphon Fabricius, 1794 to the stout Pycnogonum Brünnich, 1764), a variable number of leg pairs (from 4 to 6), a wide size range (leg span from 1 to 700 mm) and a great diversity of colours, ranging from the palest to the most colourful (e.g., the multi-coloured Anoplodactylus evansi Clark, 1963) (Arnaud \& Bamber 1987; Bamber et al. 2015). The position of sea spiders as a class of the subphylum Chelicerata is accepted by most recent molecular studies (Regier et al. 2010; Rehm et al. 2014; Roeding et al. 2009).

The pycnogonid families were distinguished based on the presence/absence and the structure of the three cephalic appendages: chelifores, palps and ovigers (e.g., Hedgpeth 1948). However, the number of families has varied heavily during the taxonomic history of Pycnogonida, from 8 families in Hedgpeth (1948) to 27 in Fry (1978). More recent classifications have recognized between 9 (Arnaud \& Bamber 1987) and 11 families (Bamber 2007b). The position of some genera was also highly debated (e.g., Pallenopsis Wilson, 1881, Endeis Philippi, 1843, Tanystylum Miers, 1879). The four previous molecular studies on pycnogonids have questioned the validity of several families (Arango 2003b; Arango \& Wheeler 2007; Nakamura et al. 2007; Arabi et al. 2010). Among them, the most problematic taxon probably remains the family Ammotheidae.

Originally, Dohrn (1881) gave an extensive definition of Ammotheidae by integrating the genera Ammothea Leach, 1814, Barana Dohrn, 1881 (currently accepted as Ascorhynchus Sars, 1878), Clotenia Dohrn, 1881 (accepted as Tanystylum) and Trygaeus Dohrn, 1881. Later during the same year, Hoek (1881) created the family Ascorhynchidae combining Ascorhynchus, Ammothea and Tanystylum, inter alia. The question of splitting Ammothea and Ascorhynchus (and their respective relatives) into two families has always been a matter of debate, because they show puzzling combinations of characters (e.g., the same chelae reduction vs different oviger structures). While most specialists included them in a single family (e.g., Arnaud \& Bamber 1987; Dohrn 1881; Hedgpeth 1941; Hoek 1881; Nakamura \& Child 1991; Stephensen 1933; Stock 1994), some early authors split them into two families (e.g., Bouvier 1923). Finally, molecular studies (Arango \& Wheeler 2007; Nakamura et al. 2007; Arabi et al. 2010) cast doubt on the hypothesis of a single family (which was Ammotheidae according the priority rule of taxonomic nomenclature). Nakamura et al. (2007) suggested the resurrection of the family Ascorhynchidae, a position that was followed by the commonly used classifications of Bamber (2007b; 2015), but Ascorhynchidae and Ammotheidae were grouped into the same superfamily Ascorhynchoidea Hoek, 1881 (and not "Pocock, 1904" as listed by Bamber 2007b and Bamber et al. 2015).

Even now, the status of Ammotheidae sensu Bouvier (1923) (i.e., excluding Ascorhynchidae) is rather unclear. As previously commented by Bouvier, most of the characters used to describe this reduced taxon show exceptions: for instance, their main character, i.e., the reduction of chelae to small buds, is not constant (for example, adults of Nymphopsis muscosa Loman, 1908 bear chelate chelae); the number of palp articles is highly variable (4 to 9); the abdomen can be articulated or not to the trunk, and their development can be direct or larval (Bamber 2007b). The family Ammotheidae sensu Bouvier (1923)
was found to be poly- or paraphyletic in the molecular studies of Nakamura et al. (2007) and Arango \& Wheeler (2007). However, these results may have been caused by the use of unreliable molecular data (carryover DNA contamination and high levels of missing data, inaccurate methods of DNA alignment and the extreme heterogeneity of nucleotide composition in the mitochondrial genes of sea spiders, see Arabi et al. 2010). Nevertheless, the taxon was recovered monophyletic in the tree obtained from a concatenation of five mitochondrial and nuclear markers, but based on only ten species (of the 297 described) (Arabi et al. 2010). Therefore, we consider that the status of Ammotheidae is an open question that needs to be studied with a better taxonomic sampling, including more species diversity.

Previous studies on sea spiders have mainly focused on species from the Southern Ocean. As a consequence, we have a great amount of knowledge on this fauna in terms of biodiversity (León 2001; Munilla \& Soler-Membrives 2009, 2015), integrative taxonomy, population genetics (Arango et al. 2011; Dietz et al. 2015; Krabbe et al. 2010), biogeography (Griffiths et al. 2011; Munilla \& SolerMembrives 2009) and parasitology (Schiaparelli et al. 2008). Historically, one of the first invertebrate species described from Antarctica was a sea spider (Decolopoda australis Eights, 1835) and since then, pycnogonids have been considered as a flagship group in Antarctica. Moreover, taxonomists were particularly interested in Antarctic sea spiders because of their large size and their "extra-legged" representatives (ten legs or more) (e.g., Bouvier 1910). In contrast, species from non-Antarctic regions are often tiny in size, and thus more difficult to collect or study by non-specialists. As a consequence, most of the barcode sequences (5 ' fragment of the gene encoding the first subunit of cytochrome c oxidase, CO1) currently available for Ammotheidae in the nucleotide databases come from southern ecoregions (South Australia, South America and Antarctica; Fig. 1).

Here, we investigated the diversity and phylogeny of Ammotheidae by focusing on sea spiders collected in several poorly studied tropical areas (e.g., Papua New Guinea, South Madagascar, Marquesas Islands) during the latest expeditions of the Muséum national d'Histoire naturelle of Paris (MNHN). We generated 104 sequences of the CO1 mitochondrial gene and 80 sequences of the 18 S rRNA (18S) nuclear gene. These datasets were analysed to address the following three main questions: (1) Are Ammotheidae monophyletic? (2) Are the "big five" ammotheid genera (Ammothea, Achelia Hodge, 1864, Ammothella Verrill, 1900, Cilunculus Loman, 1908 and Tanystylum) monophyletic? (3) How heterogeneous is the base composition in CO1 sequences of Ammotheidae?

Material and methods

Sampling

The specimens selected for this study were collected during the following MNHN expeditions and deep sea cruises (Fig. 2), organized under the "Planète Revisitée" and "Tropical Deep Sea Benthos" programs (Bouchet et al. 2008; Richer de Forges et al. 2013): BATHUS 3 (New Caledonia, 1993), SANTO (Vanuatu, 2006), CEAMARC (Antarctica, 2008), MAINBAZA (Mozambique Channel, 2009), ATIMO VATAE (South Madagascar, 2010), BIOPAPUA (Bismarck Sea, Papua New Guinea, 2010), PAPUA NIUGINI (Madang, Papua New Guinea, 2012), PAKAIHI I TE MOANA (Marquesas Islands, 2012), KARUBENTHOS (Guadeloupe, 2012); KAVIENG (Kavieng, Papua New Guinea, 2014), GUYANE 2014 (off French Guiana, 2014), and ILES DU SALUT (French Guiana, 2014). Details of the field operations are available at http://expeditions.mnhn.fr/. Some additional specimens have been provided by IFREMER (BICOSE, BIOBAZ, HYDROMAR and FUTUNA 3 cruises). All the geographical locations are reported in Appendix 1. The specimens were collected from littoral shores to hydrothermal vents (3500 m depth).

DNA extraction, amplification and sequencing

Total DNA was extracted from a leg removed on specimens preserved in $80-95 \%$ ethanol using the QIAamp DNA Micro Kit (Qiagen, Hilden, Germany). The samples were lysed in $360 \mu 1$ of ATL (twice
as much as recommended by the manufacturer) and $40 \mu 1$ of proteinase K . The volumes of AL and ethanol were also doubled. The rest of the protocol followed the volumes indicated by the manufacturer. Final extract volumes contained between 25 and 100μ l of DNA solution.

Two markers were sequenced for this study: the mitochondrial CO1 gene and the nuclear 18S gene. We used a new set of primers to amplify CO1 sequences (Py-CO1-U: 5'-TCA-ACW-AAT-CAT-AAA-GAY-ATT-GG-3' and Py-CO1-L3: 5'-GGR-TCH-CCH-CCH-GMD-GGR-TC-3') and the three sets used in previous studies for the 18 S sequences (see details in Arabi et al. 2010). DNA amplification were done using Hot start mix RTG Taq (GE Healthcare, Waukesha, WI, USA) in a $25 \mu 1$ final volume containing between 1 and 5μ of DNA and $1 \mu 1$ of each 10 mM primer. Initial denaturation was performed at $94^{\circ} \mathrm{C}$ for 4 min , then we applied 40 cycles of denaturation-hybridization of 30 s at $94^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at hybridization temperature $\left(50^{\circ} \mathrm{C}\right.$ for $\mathrm{CO} 1,52^{\circ} \mathrm{C}$ for 18 S$)$, and 1 min at $72^{\circ} \mathrm{C}$. Final elongation lasts 10 min at $72^{\circ} \mathrm{C}$. Purification and cycle sequencing were performed by Eurofins (Munich, Germany) using the PCR primers detailed above.

Fig. 1. Barcode richness in GenBank before and after this study. A-B. Number of CO1 haplotypes before (\mathbf{A}) and after (\mathbf{B}) this study as a function of the origins of the specimens sequenced. \mathbf{C}. Number of species (grey) and genera (black) represented by a CO1 sequence found in GenBank databases before (left) and after (right) this study, classified by ecoregions. Littoral ecoregions defined according to Spalding et al. (2007) and abyssal ecoregions following a simplification of Bachraty et al. (2009).

The sequences were cleaned using CodonCode Aligner v. 3.7.1 (CodonCode Corporation, Dedham, MA, USA) by comparing forward and reverse electrophoregrams. Nucleotide ambiguities were coded according to the IUPAC nomenclature. Cleaning was achieved after multiple DNA alignments using Se-Al v. 2.0a11 (Rambaut 2002). Each sequence was compared via BLAST methods (NCBI, Benson et al. 2015) in order to detect potential contaminations. The sequences were deposited in GenBank under accession numbers KX535346-KX535450 (CO1) and KX536422-KX536501 (18S).

Phylogenetic analyses

The 104 CO1 barcodes and 8018 S sequences generated for this study were compared to all sequences of Ammotheidae (48) and Aschorhynchidae (19) downloaded from GenBank. For other pycnogonid families, we selected only species for which both CO 1 and 18 S sequences were available. Details on the 75 CO 1 and 79 18S sequences from GenBank are provided in Appendix 1. The pycnogonid tree was rooted with 10 outgroup species, including two chelicerates (Uropygi: Mastigoproctus giganteus (Lucas, 1835); Xiphosura: Limulus polyphemus (Linnaeus, 1785)), six mandibulates (Stomatopoda: Squilla empusa Say, 1818; Branchiopoda: Triops longicaudatus LeConte, 1846; Chilopoda: Lithobius variegatus Leach, 1814 and L.forficatus (Linnaeus, 1785); Diplopoda: Thyropygus sp. and Orthoporus sp.) and two onychophorans (Opisthopatus cinctipes Purcell, 1899 and Peripatoides novaezaelandiae (Hutton, 1876)). We avoided CO1 sequences characterized by an inverted bias in base composition (e.g., scorpions, spiders, etc.) in order to limit artefacts during phylogenetic reconstruction. This strategy was determined in agreement with previous studies showing that asymmetric mutational constraints occurred during the evolution of the mitochondrial genome of Chelicerata, including sea spiders (Hassanin et al. 2005; Hassanin 2006; Arabi et al. 2010, 2012).

Fig. 2. Regional distribution of the studied specimens. Green diamonds indicate locations where specimens were collected at shallow depths ($<100 \mathrm{~m}$), blue circles those from deep-sea samplings; the combinations of both symbols indicates mixed samplings (below and above 100 m depth). 1: Futuna; 2: Marquesas Islands; 3: Guadeloupe; 4: French Guiana; 5: Mid-Atlantic Ridge, Snake Pit site; 6: MidAtlantic Ridge, Logatchev site; 7: Mid-Atlantic Ridge, Lucky Strike site; 8: Mozambique Channel; 9: South Madagascar; 10: Antarctica, Terre Adélie; 11: Papua New Guinea; 12: New Caledonia and Vanuatu.

The 18 S alignment was achieved using a first trial with CodonCode Aligner v. 3.7.1, and it was optimized manually on Se-Al v. 2.0a11. Several regions with too many ambiguous positions for homology were removed from the analyses. In other regions that are difficult to align, but which provide phylogenetic information at lower taxonomic levels, we chose a different strategy based on the use of different taxonomic blocks. For instance, the region located at positions 679-693 (with respect to the DQ389932 sequence) was aligned using four shifted blocks corresponding to the following taxa: (1) Ammotheidae Dohrn, 1881, Nymphonidae Wilson, 1878, Callipallenidae Hilton, 1942 and Pallenopsidae Fry, 1978, (2) Ascorhynchidae Hoek, 1881 and Endeidae Norman, 1908, (3) Phoxichilidiidae Sars, 1891, and (4) Colossendeidae Jarvinsky, 1870, Pycnogonidae Wilson, 1878 and Austrodecidae Stock, 1954.

Phylogenetic analyses were performed with MrBayes v. 3.2.2 (Ronquist \& Huelsenbeck 2003), running 4 chains for 10 million generations, and a 25% burn-in. We analysed the 18 S and CO 1 (partitioned by codon positions or without partition) datasets separately, and the model (i.e., GTR $+\mathrm{G}+\mathrm{I}$) was selected using the best AIC score calculated on jModelTest (Posada 2008). For the reduced dataset of 135 taxa used for the concatenation of CO1 and 18S markers, we performed a partitioned analysis using a GTR for each marker.

Analysis of the nucleotide compostion in COI sequences

Strand-bias in nucleotide composition was analysed at third codon positions of CO1 sequences. As similar trends were previously found for two- and fourfold degenerate sites (Hassanin et al. 2005), we followed the simplified approach previously published in Arabi et al. (2010), in which AT and CG skews were calculated on all third codon positions of CO 1 sequences using the following formulas: AT skew $=\left(\mathrm{F}_{\mathrm{A}}-\mathrm{F}_{\mathrm{T}}\right) /\left(\mathrm{F}_{\mathrm{A}}+\mathrm{F}_{\mathrm{T}}\right)$ and CG skew $=\left(\mathrm{F}_{\mathrm{C}}-\mathrm{F}_{\mathrm{G}}\right) /\left(\mathrm{F}_{\mathrm{C}}+\mathrm{F}_{\mathrm{G}}\right)$, where F is the frequency of the considered nucleotide at third codon positions. The skew values were considered as significant if the null hypothesis could be rejected to a confidence level of 5%.

Results

Datasets

The great extent of localities and depth range explored here allowed us to examine a large diversity of pycnogonids from 8 of the 11 families and from the seven main genera of Ammotheidae, except Ammothea (i.e., Achelia, Ammothella, Cilunculus, Nymphopsis Haswell, 1884, Sericosura Fry \& Hedgpeth, 1969 and Tanystylum). The presently monospecific Acheliana Arnaud, 1971 is also sequenced for the first time with an undescribed species (in prep.). With the sequences extracted from GenBank (see Appendix 1), we included one additional ammotheid genus (Ammothea) and two other families (Austrodecidae and Colossendeidae) in the analyses.

We detected several potential errors in the GenBank sequences, involving substitutions in highly conserved regions (e.g., Ammothea hilgendorfi DQ389936; Anoplodactylus batangensis DQ389918), as well as unexpected indels in the 18 S stems, which are very constrained regions (see below) (e.g., Ascorhynchus castelloides DQ389905; Callipallene novaezealandiae DQ389927; Anoplodactylus batangensis DQ389918). However, these potential errors were not so problematic for phylogenetic inferences, since most of them are autapomorphic. More worrying is the misleading effect of the 18 S sequence of Pentapycnon charcoti (DQ389924) on phylogenetic reconstruction. Indeed, our preliminary analyses revealed its chimeric origin as positions 1 to 923 correspond to an undetermined fungus. In this case, we excluded the fungal part of the sequence from the alignment. Similar problems have previously been described in Arabi et al. (2010) for other sea spiders. Other sequences susceptible to generate reconstruction artefacts, due to their poor quality (highly divergent sequences in conserved regions) or their shortness, were removed from the analyses (CO1: Achelia alaskensis DQ390093; 18S: Pallenopsis macronyx DQ389908).

The CO1 alignment contains 179 sequences (of which 104 are new) and 618 nucleotides representing 376 informative characters (369 without outgroups). It is worth noting that all specimens of the genus Eurycyde Schiödte, 1857 share a synapomorphic deletion of two codons in the CO1 gene (positions 472-477 in the DQ390087 sequence of Achelia assimilis). There is no significant difference between the CO1 analyses made with or without partition (Fig. 3). The 18 S alignment contains 159 sequences (of which 80 are new) and 1750 nucleotides (including gaps due to alignment) representing 321 informative characters (idem without outgroups). The 18 S tree is shown in Fig. 4. The concatenation of the two markers contains 135 sequences and 2550 nucleotides representing 746 informative characters (602 without outgroups). The tree obtained from the concatenation is illustrated in Fig. 5.

Phylogenetic relationships

The monophyly of Pycnogonida is supported by maximal values of posterior probability $(\mathrm{PP}=1)$ in all analyses. Most families are monophyletic with high support ($\mathrm{PP}>0.9$) in most analyses: Colossendeidae, Endeidae, Pallenopsidae, Phoxichilidiidae and Pycnogonidae. In the CO1 tree (Fig. 3), however, Pallenopsidae is recovered as paraphyletic $(\mathrm{PP}=0.87)$ and the monophyly of Phoxichilidiidae is less robust ($\mathrm{PP}<0.5$). The family Ascorhynchidae is found to be monophyletic in the concatenated analysis $(\mathrm{PP}=0.9)($ Fig. 5) and the 18 S analysis based on 135 specimens $(\mathrm{PP}=0.72)($ Appendix 2$)$, whereas different, but unrobust relationships are shown in other analyses $(\mathrm{PP}<0.6)$. All members of the families Callipallenidae and Nymphonidae are systematically grouped, but these taxa are always found to be either poly- or paraphyletic.

Within pycnogonids, most basal relationships are poorly supported ($\mathrm{PP}<0.8$), but the families Austrodecidae and Pycnogonidae are found to be the first divergent lineages in most topologies (Figs 3-5, Appendix 2). However, these results only show good support in the combined analysis, where Austrodecidae and Pycnogonidae are the first and second offshoots, respectively ($\mathrm{PP}>0.85$). The family Colossendeidae is the next taxon to diverge in both combined and 18 S analyses, but this has only weak support ($\mathrm{PP}=0.57-0.77$) (Figs 4-5). In the CO1 analyses (Fig. 3, Appendix 2), Colossendeidae appear as the sister-group of Phoxichilidiidae ($\mathrm{PP}=0.69$ and 0.93), and they are allied to the clade uniting Nymphonidae and Callipallenidae ($\mathrm{PP}=0.82$) in the CO 1 analysis based on 179 haplotypes (Fig. 3).

The clade uniting Callipallenidae and Nymphonidae is grouped with Ascorhynchidae in the 18S and combined analyses ($\mathrm{PP}=0.72-0.93$) (Figs 4-5, Appendix 2). In the CO1 analysis based on 135 specimens (Appendix 2), however, the paraphyletic ascorhynchids are grouped with some ammotheids (i.e., excluding the "Achelia sawayai group", see below) and Pallenopsidae ($\mathrm{PP}=0.81$).

The family Ammotheidae appears to be monophyletic in the 18 S and $\mathrm{CO} 1+18 \mathrm{~S}$ trees with good supports ($\mathrm{PP}=0.83-0.95$) (Figs 4-5, Appendix 2). The CO1 analyses (Fig. 3, Appendix 2), however, support its polyphyly ($\mathrm{PP}=0.81-0.9$) due to the position of the "Achelia sawayai group" (Achelia sawayai Marcus, $1940+$ Achelia sp. $15+$ specimen MNHN-IU-2013-18602), which is found to be monophyletic with maximum support in all analyses $(\mathrm{PP}=1)$ and divergent from other Ammotheidae $(\mathrm{PP}=0.79)$.

Two major subfamilies of Ammotheidae can be distinguished: (1) Achelinae Wilson, 1881, which includes Achelia, Nymphopsis, Tanystylum, all Ammothella except A. stauromata Child, 1982 and A. biunguiculata Dohrn, 1881, and Cilunculus gracilis Nakamura \& Child, 1991 (see 18S analysis in Fig. 4); and (2) Ammotheinae Dohrn, 1881 emend., which is composed of the genera Ammothea, Acheliana, Sericosura, all Cilunculus but C. gracilis, and the species Ammothella stauromata and A. biunguiculata (see 18 S analysis in Fig. 4). The subfamily Ammotheinae is supported in all analyses, in general with highest support values. The subfamily Achelinae is monophyletic in the 18 S and $\mathrm{CO} 1+18 \mathrm{~S}$ trees $(\mathrm{PP}=1)($ Figs $4-5$, Appendix 2), but paraphyletic in the CO1 trees $(\mathrm{PP}=0.94-0.98)$ (Fig. 3, Appendix 2) because the "Achelia sawayai group" appears as the sister-group of Endeidae

Fig. 3. Bayesian tree of Pycnogonida based on 179 sequences of the mitochondrial CO1 gene (partitioned analysis). Coloured rectangles show non-ammotheid families, and coloured branches discriminate ammotheid genera. The numbers at the nodes indicate posterior probabilities greater than 0.5 . Symbols associated with each taxon name indicate the bias in base composition, as expressed by AT (circles) and CG (squares) skews (see main text for details): blue symbols represent a significant positive bias; red symbols indicate a significant negative bias; uncoloured symbols show insignificant values of skews. Asterisks after taxon names indicate holotype specimens. The arrow at the top of the tree shows the connection with Part 2 of the tree (see next page).

Fig. 3. Part 2, see Part 1 for explanation.

Fig. 4. Bayesian tree of Pycnogonida based on 159 sequences of the nuclear 18 S rRNA gene. Coloured rectangles show non-ammotheid families and coloured branches discriminate ammotheid genera. The numbers at the nodes indicate posterior probabilities greater than 0.5 . Asterisks after taxon names indicate holotype specimens. Outgroups were removed for better readability. The arrow at the top of the tree shows the connection with Part 2 of the tree (see next page).

Fig. 4. Part 2, see Part 1 for explanation.
$(\mathrm{PP}=0.5-0.74)$. In the 18 S and combined analyses (Figs 4-5, Appendix 2), the "Achelia sawayai group" is included within Achelinae, where it constitutes a strongly supported clade with Tanystylum ($\mathrm{PP}=1$).

Within Achelinae, the monophyly of Nymphopsis is recovered in all analyses ($\mathrm{PP}=0.56-0.64$ in CO1 analyses, $\mathrm{PP}=1$ in 18 S and concatenated analyses). In the $\mathrm{CO} 1+18 \mathrm{~S}$ tree (Fig. 5), Ammothella s. str. (excluding A. stauromata and A. biunguiculata) constitutes a monophyletic clade ($\mathrm{PP}=1$), but the 18 S tree (Fig. 4) shows that Cilunculus gracilis (which is absent from the CO1 tree) also falls into this clade $(\mathrm{PP}=0.95)$. In the CO1 analyses (Fig. 3, Appendix 2), Ammothella s. str. is found to be polyphyletic: a first group, which includes Ammothella sp. 7, A. tuberculata Cole, 1904 and A. appendiculata (Dohrn, 1881), is related to Nymphopsis with rather strong support ($\mathrm{PP}=0.6-0.88$); a second group, which is only represented by the species Ammothella setacea (Helfer, 1938), is close to the genus Tanystylum $(\mathrm{PP}=0.9)$; and a third group, which is composed of Ammothella sp. 1, 2, 6, 12, 14, 15, A. spinifera Cole, 1904 and A. tippula Child, $1983(\mathrm{PP}=0.6)$, shows an unstable position with respect to other lineages of Achelinae. The monophyly of Achelia s. str. (i.e., excluding the "Achelia sawayai group") is well supported in all analyses ($\mathrm{PP}=0.92-1$), except in the 18 S tree of Fig. 5 , where its paraphyly is not found to be robust ($\mathrm{PP}<0.5$).

Within Ammotheinae, Ammothea is constantly shown as paraphyletic due to the inclusive position of the genus Acheliana $(\mathrm{PP}=1)$ (Figs 3-5, Appendix 2). The genus Cilunculus (excluding C. gracilis) is found to be monophyletic in the 18 S and $\mathrm{CO} 1+18 \mathrm{~S}$ trees $(\mathrm{PP}=0.95-1)$. The genus Sericosura is monophyletic in all analyses ($\mathrm{PP}=0.97-1$).

Nucleotide composition in CO1 sequences

The analysis of third codon positions of the CO1 gene shows that most families of Pycnogonida are characterized by positive values for AT and CG skews (Fig. 3; detailed values in Supplementary file), which means that their sequences have an excess of A relative to T nucleotides and of C relative to G nucleotides. However, the AT skew is significantly negative in most species of the genus Anoplodactylus Wilson, 1878 (10 on 14), and in Austrodecus glaciale Hodgson, 1907. In the clade grouping Callipallenidae and Nymphonidae, two unrelated species (MNHN-IU-2014-8371 Nymphonidae gen. sp. and Nymphon hamatum) also show negative AT and CG skews. For the family Ammotheidae, our analyses revealed a higher heterogeneity of base composition. The members of the subfamily Achelinae exhibit a strong heterogeneity: for most taxa, the skew values are non-significant (e.g., Nymphopsis and Achelia excluding the "Achelia sawayai group"); Ammothella, Achelia and Tanystylum generally have negative skews, but with some exceptions (Achelia boschi Stock, 1992; A. assimilis (Haswell, 1885); Ammothella spinifera Cole, 1904; Ammothella sp. 15; Tanystylum neorhetum Marcus, 1940 all show positive skews); the "Achelia sawayai group," however, shows a strong positive bias.

Discussion

Monophyly and low supports of interfamilial relationships

Both our CO1 and 18 S analyses supported the monophyly of most pycnogonid families. In contrast, the two families Ammotheidae and Ascorhynchidae were only recovered as monophyletic in the 18 S trees. In the CO1 trees, the polyphyly of Ammotheidae sensu Bouvier (1923) seems to be robust (but see next paragraph below), whereas the polyphyly of Ascorhynchidae is not highly supported ($\mathrm{PP}<0.6$). For Ascorhynchidae, the lack of robustness suggests that their basal diversification (i.e., the divergence between Ascorhynchus and Eurycyde) was more ancient than in other families, excepting, perhaps, Ammotheidae (see below). Indeed, for the deepest nodes of the CO1 trees most of the genuine phylogenetic signal has been erased because of the high saturation of synonymous substitutions in the mitochondrial genome and the low levels of variation observed at non-synonymous sites of the CO1 gene (very high selective pressure). This explains why the CO1 gene did not provide robust support for most interfamilial relationships (Fig. 5). The sole exception concerns Callipallenidae and Nymphonidae,

Fig. 5. Bayesian tree of Pycnogonida obtained from the concatenation of CO1 and 18S genes (135 taxa). Coloured rectangles show nonammotheid families and coloured branches discriminate ammotheid genera. The numbers at the nodes indicate posterior probabilities greater than 0.5 . Bold branches indicate CO 1 (yellow), 18S (blue), or both (red) support in the independent analyses of CO1 and 18S genes provided in Appendix 1. Asterisks after taxon names indicate holotype specimens. Outgroups were removed for better readability.

which are grouped together at the end of a very long branch in the CO 1 and $\mathrm{CO} 1+18 \mathrm{~S}$ trees (Figs 3, 5). This result clearly indicates that the divergence between Callipallenidae and Nymphonidae is more recent than that of other families. In agreement with this view, they share many morphological characters, including the structure of the 10 -articled ovigers and the presence of well-developed chelae (Bamber 2007b). In addition, our datasets did not provide any evidence for their reciprocal monophyly. On the contrary, our analyses suggested that these two families are reciprocally polyphyletic ($\mathrm{PP}<0.92$). However, we found very different polyphyletic patterns in the combined, CO 1 and 18S analyses (Figs 3-5), which suggests that CO and/or 18S genes are not the best markers to resolve relationships at this level of the pycnogonid tree (Figs 3-4, Appendix 2).

Even with the 18 S dataset, most basal relationships within Pycnogonida were not well-resolved, suggesting that most families of Pycnogonida have diverged rapidly from each other. As pointed out by Charbonnier et al. (2007), there is a substantial hiatus in the fossil record of Pycnogonida, between the Devonian (ca 400 Mya) and the Jurassic (ca 160 Mya), and the concomitant appearance of several different families during the Mesozoic is in agreement with a crown group radiation. To explain both the lack of resolution for interfamilial relationships and the long branch that separates outgroups from pycnogonids, Arabi et al. (2010) have also suggested that a very long period of time occurred between the origin of Pycnogonida, and the subsequent rapid diversification that led to extant families.

Strong heterogeneity in base composition in the CO1 gene of Ammotheidae

The analyses of CO1 and 18S genes revealed real discordance regarding the phylogeny of Ammotheidae. In the 18 S tree (Fig. 4), the family Ammotheidae is found to be monophyletic and it can be divided into two major clades corresponding to the subfamilies Ammotheinae and Achelinae. In the CO1 tree (Fig. 3), the family appears to be polyphyletic: most species of Achelinae fall into the paraphyletic Pallenopsidae, whereas those of the "Achelia sawayai group" are related to the Endeidae, the Ammotheinae being their sister group. As exposed in detail below, we suggest that the apparent topological conflict between CO 1 and 18 S markers is the consequence of the combined effects of mutational saturation and multiple changes in base composition during the mtDNA evolution of Ammotheidae.

Previous studies have shown that in most species of Metazoa, the double-stranded and circular mitochondrial genome presents a typical strand asymmetry, in which synonymous sites of the positive strand are characterized by an excess of A relative to T nucleotides and of C relative to G nucleotides (i.e., positive AT and CG skews), while synonymous sites of the complementary negative strand show a reverse bias. This strand-bias in base composition is the consequence of asymmetric mutational constraints during replication and/or transcription of the mtDNA genome (Hassanin et al. 2005; Hassanin 2006). Hassanin et al. (2005) have suggested that the orientation of the control region of the mtDNA is crucial in the establishment of asymmetric mutational constraints, because this region contains both replication and transcription origins. In support of that hypothesis, they showed that two kinds of mitogenomic inversions can lead to a reversal in nucleotide composition: (1) inversion of the control region can result in a global reversal of asymmetric mutational constraints; (2) inversion of a genomic fragment can result in a local reversal of asymmetric mutational constraints. Several reversals of strand specific bias were identified in CO1 sequences of Chelicerata (Arabi et al. 2010, 2012) including the common ancestors of Scorpiones and Opisthothelae spiders, as well as several taxa within Acari, Opiliones, Pseudoscorpiones and Pycnogonida. Within Pycnogonida, Arabi et al. (2010, 2012) have revealed a strong heterogeneity in base composition, particularly among ammotheids, with taxa characterized by positive AT and CG skews (Achelia assimilis), positive CG skew but no significant bias for AT (Ammothea), negative AT and CG skews (e.g., Achelia hispida Hodge, 1864, Ammothella tuberculata and Nymphopsis duodorsospinosa Hilton, 1942) and negative AT skew but no significant bias for CG (Ammothella appendiculata). Our analyses showed that the situation is even more complex with the detection of two additional categories: taxa with no significant strand-bias (e.g., Nymphopsis)
and taxa with negative CG skew but no significant bias for AT (e.g., Tanystylum orbiculare Wilson, 1878). More importantly, our analyses of base composition in CO1 sequences suggest that the apparent polyphyly of Ammotheidae and that of Achelinae resulted from artefacts in tree reconstruction, because Ammotheinae, Achelinae s. str. (excluding the "Achelia sawayai group") and the "Achelia sawayai group" exhibit clear differences in base composition. Indeed, many species of Achelinae excluding the "Achelia sawayai group" are characterized by one or two negative skews in their CO1 sequence. Only four species of this large clade appear to be characterized by positive AT and CG skews (Achelia assimilis, Ammothella sp. $15+$ A. spinifera, and Tanystylum neorhetum), and all of them occupy a derived position within the subfamily. As a consequence, we can infer that the CO1 sequence of the most recent common ancestor of Achelinae was characterized by a negative AT skew and a negative or non-significant CG skew. In contrast, all species of the "Achelia sawayai group" clade have positive AT and CG skews, and those of the Ammotheinae clade generally show a positive CG skew associated with a non-significant AT skew. As pointed out in previous studies, important differences in base composition of mtDNA genes may be misleading for phylogenetic inferences, because they can produce artefacts such as Long Branch Attraction (LBA), when distantly related taxa with similar base composition tend to group together, or the opposite, Long Branch Repulsion (LBR), when closely related taxa with reverse strand-specific biases do not group together (Hassanin et al. 2005; Hassanin 2006; Arabi et al. 2010, 2012).

Here, we suggest that the CO1 polyphyly of Achelinae and Ammotheidae can be explained by both LBA and LBR artefacts, because two groups of Achelinae have very different base compositions, and because each of them tends to be attracted by the taxa with the most similar strand-specific bias, i.e., Endeidae for the "Achelia sawayai group" and Pallenopsis macneilli Clark, 1963 for all other species of Achelinae, resulting in the apparent polyphyly of Achelinae and Ammotheidae. This effect is particularly misleading for Ammotheidae because their diversification is assumed to be ancient, as revealed by their remarkable morphological diversity and by our analyses of 18 S and CO 1 genes (up to 25% divergence between ammotheid CO1 sequences). In this context, and given that the 18 S gene is more appropriate for studying the deepest nodes of arthropod classes (e.g., Mallatt et al. 2004; Arabi et al. 2012), we conclude that our nuclear gene gave accurate information for the monophyly of Ammotheidae, Ammotheinae and Achelinae. Morphologically, all representatives of Ammotheidae sensu Bouvier (1923) share the structure of the ovigers with feeble strigilis, without rows of compound spines, and generally without terminal claw. The grouping of Achelia, Ammothella s. str., Nymphopsis and Tanystylum in the subfamily Achelinae also makes sense from a purely morphological perspective. Indeed, Ammothella s. str. and Nymphopsis, which are shown as sister-groups in our study, share a lot of characters (long abdomen, eventually bi-articulated and trumpet-like scapes, long ocular tubercle), while Achelia and Tanystylum share a discoidal body outline.

Taxonomic implications

Only two ammotheid genera, Nymphopsis and Sericosura, are found to be monophyletic. Interestingly, specimens of Sericosura from the Pacific (Sericosura sp. 1 and S. venticola Child, 1987) occupy a paraphyletic position with respect to the Atlantic specimens (Sericosura sp. 2 and S. heteroscela Child \& Segonzac, 1996). This pattern is coherent with the biogeographic model proposed by Bachraty et al. (2009), in which they suggested that most hydrothermal vent taxa have dispersed from the Pacific into the North Atlantic Ocean by a deep-sea corridor that stayed open until the closure of the Panama Isthmus around 3 million years ago.

The genus Achelia is polyphyletic: most species are grouped into a robust clade, whereas the "Achelia sawayai group" is placed within the genus Tanystylum. However, the paraphyly of Tanystylum was not highly supported by the 18 S dataset, suggesting that the hypothesis of monophyly cannot be excluded. Although Achelia and Tanystylum share some superficial similarities, the latter genus shows a typical morphology characterized by palps with a reduced number of articles. Therefore, we consider that
further studies are needed to decide whether a new genus should be described for members of the "Achelia sawayai group".

The inclusive position of Acheliana within the genus Ammothea suggests that Acheliana should be synonymized with Ammothea. This result was partially perceived by Arnaud (1971a), who noted the close relationship between the two genera. However, the type species of Acheliana, A. tropicalis Arnaud, 1971, must be re-examined to provide a definitive conclusion.

The genus Cilunculus is polyphyletic in the 18 S tree, because the species C. gracilis is included within Ammothella. Misidentification is rather unlikely, as the 18 S sequence of C. gracilis was produced by Nakamura et al. (2007), who described the species with Child in 1991 (Nakamura \& Child 1991). A taxonomic issue is a more plausible explanation. Indeed, C. gracilis is one of the seven species of Cilunculus presenting a two-jointed scape, a characteristic shared with all species of the genus Ammothella. Nakamura \& Child (1991) themselves recognized that C. gracilis was closely allied to Ammothella. Its assignation to the genus Cilunculus was based on the presence of a (shallow) hood-like extension of the head above the chelifores and the proboscis (Loman 1908). However, according to Child (1994), this is the only character to "temporarily" support a genus (Cilunculus) which "hangs rather precariously over the pit of synonymy", and Nakamura et al. (2007) also expressed the unclearness of this character for several species. Now, it is becoming obvious that a revision of the genus Cilunculus is urgently needed, as our results confirmed that the presence of a cephalic hood is not a reliable character for diagnosing members of this taxon. As there is no reason to wait to reassign the currently discussed species to the genus Ammothella, we refer to it as Ammothella gracilis (Nakamura \& Child, 1991) comb. nov. The status of other species of Cilunculus with two-jointed scapes and shallow hoods will probably follow the same reassignment in forthcoming revisions.

The genus Ammothella is polyphyletic in all analyses, as most species are clustered into the Achelinae, whereas A. stauromata, and potentially A. biunguiculata (according to 18 S data), are robustly placed in the Ammotheinae. From a morphological point of view, both latter species possess the typical characters of the genus Ammothella, but A. biunguiculata shows a very original profile with short chelifores and short abdomen (see Dohrn 1881; Bouvier 1923; Hedgpeth 1941), and A. stauromata is easily recognizable, with its characteristic dorso-median tubercles (see Child 1982; Fig. 6A, C). Therefore, both molecular and morphological data suggest that the taxonomic status of these two species must be revised. For A. biunguiculata, no taxonomic change can be proposed here because we do not have morphological material and the CO1 sequence is not available. For A. stauromata, however, we can describe a new genus, maybe provisional, as there is no evidence for a relationship with any other described genus. Thus, this taxon must receive due attention in future studies.

Family Ammotheidae Dohrn, 1881
Subfamily Ammotheinae Dohrn, 1881 emend.
Teratonotum gen. nov.
urn:1sid:zoobank.org:act:CD6D82C7-E0EC-4E46-A2C6-559678E48B29
Fig. 6

Type species

Ammothella stauromata Child, 1982: 270 (in list), 271-273, fig. 1.
Ammothella stauromata - Arango 2003a: 2730-2731. - Bamber 2004: 2-3, 21 (in tab.); 2007a: 256 (in list). - Child 1987: 180 (in list); 1988: III (in list), 5-7, 30-31 (in list); 1990: 316 (in description); 1996: 544; 1998: 290-291. - Müller 1989: 125; 1990a: 66; 1990b: 106. - Nakamura \& Child 1988: 809-810. - Stock 1994: 29.

Fig. 6. Teratonotum stauromatum (Child, 1982) gen. et comb. nov. (MNHN-IU-2013-17964). A. Dorsal view. B. Propodus of third leg. C. Dorsal view of body. D. Ventral view of body. Abbreviations: $a b=$ abdomen; $a c=$ auxiliary claw; $c h=$ chelifore; $c t=$ chelifore tubercle on the anterior tip of the first scape; $d t=$ dorsal tubercle; $m c=$ main claw; $o t=$ ocular tubercle; $o v=$ oviger; $p a=$ palp; $p b=$ bulbous tubercle bearing the palp; $p p=$ propodus; $p r=$ proboscis; $s=$ strigilis; $t=$ tarsus. Scale bars: $\mathrm{A}=0.5 \mathrm{~mm} ; \mathrm{B}=0.1 \mathrm{~mm}$; $\mathrm{C}-\mathrm{D}=0.2 \mathrm{~mm}$.

Diagnosis

Trunk slender, totally segmented; ocular tubercle present, with three long, slender dorso-median tubercles; abdomen long, straight, almost vertical; scapes bi-articled, more proximal article with dorsodistal slender tubercle, chelae atrophied in adult; palps 9-articulated, originating from bulbous tubercles (with slender tubercle) placed anterolaterally on cephalic segment; oviger 10-articulated, originating ventral to first lateral processes, strigilis with denticulate spines; third leg with a single cement tube at anterior tip in males, tarsus short, propodus curved, auxiliary claws present.

Etymology

$\tau \varepsilon ́ \rho \alpha \varsigma$ (téras): monster, and vã̃ov (nōton): back (ancient Greek); referring to its remarkable back tubercles. Gender neutral.

An underestimated biodiversity

The CO1 data generated in this study on specimens collected during the recent MNHN expeditions indicate that the diversity of Ammotheidae was poorly represented in the nucleotide databases, such as GenBank and BOLD (Ratnasingham \& Hebert 2007). Indeed, all our new CO1 sequences show at least 7% of nucleotide divergence with the ca 430 pycnogonid sequences available in GenBank, and even up to 11% if the genus Sericosura is excluded from the comparisons. This means that none of the ammotheids analysed here can be identified at the species level using molecular barcoding. Actually, this result is not surprising if we consider that most of the pycnogonids previously registered in the GenBank and BOLD databases were collected along the coastlines of temperate South America (Chile and Argentina) and Antarctica (Fig. 1), whereas our specimens come from widely spread geographic areas, i.e., French Guiana, Guadeloupe, Madagascar, Marquesas Islands, New Caledonia, Papua New Guinea, Vanuatu, and Atlantic and Pacific vents (Fig. 2). Besides, another issue for molecular taxonomy is the fact that most of the barcode sequences deposited in BOLD were not identified to the family level (958 of $1315,72.85 \%$). Beyond a problem of molecular taxonomy, ammotheids, and more generally pycnogonids, suffer from a lack of knowledge. For instance, our specimens collected along the coastlines of southern Madagascar show a far more rich diversity than previously recorded in the literature: five different species of Achelia were identified, whereas only two species were previously known from Madagascar; none of the species of Ammothella and Endeis studied here were known in the region; and a new species of Acheliana was found (Arnaud 1971a, 1971b, 1972, 1973; Stock 1974). In a more general way, it seems that the large collection of sea spiders assembled during the MNHN expeditions represents an important input to our knowledge of this group and promises the description of numerous new species (in prep.).

Acknowledgements

The studied specimens were collected during MNHN expeditions of the programs "Tropical Deep Sea Benthos" and "Planète Revisitée" (http://laplaneterevisitee.org). Deep-sea specimens were mainly collected during the many cruises organized by P. Bouchet, S. Samadi and L.C. of the MNHN and Institut de Recherche pour le Developpement (IRD). Recent expeditions were funded by the Total Foundation, the Prince Albert II of Monaco Foundation, the Sloan Foundation, the Stavros Niarchos Foundation and conducted by the MNHN and Pro-Natura International. The KARUBENTHOS expedition was sponsored via European funding (FEDER), the Port Autonome de la Guadeloupe (PAG). Specimens from hydrothermal vents were provided by the IFREMER:BICOSE and FUTUNA 3 cruises (financial support was provided by the Eramet and Technip companies). The CEAMARC cruise on RSV Aurora Australis was funded by the Australian Antarctic Division, the French polar institute IPEV, CNRS and the ANR project ANTFLOCKs (G. Lecointre). Special thanks to S. Hourdez for the specimens from the Hydromar cruise, to N. Schnell for photography and to the editor and the two anonymous reviewers for useful comments on the first version of the manuscript. R.S. acknowledges the French-Taiwanese
grant TF-DeepEvo co-funded by the ANR and the Ministry of Science and Technology of Taiwan for supporting his visit to Germany. This work was supported by the project "Taxonomie moléculaire: DNA Barcode et Gestion durable des Collections", funded by the MNHN and the "Bibliothèque du Vivant" network funded by the CNRS, MNHN, INRA and CEA (Genoscope).

References

Arabi J., Cruaud C., Couloux A. \& Hassanin A. 2010. Studying sources of incongruence in arthropod molecular phylogenies: sea spiders (Pycnogonida) as a case study. Comptes Rendus Biologies 333 (5): 438-453. http://dx.doi.org/10.1016/j.crvi.2010.01.018
Arabi J., Judson M.L., Deharveng L., Lourenço W.R., Cruaud C. \& Hassanin A. 2012. Nucleotide composition of CO1 sequences in Chelicerata (Arthropoda): detecting new mitogenomic rearrangements. Journal of Molecular Evolution 74 (1-2): 81-95. http://dx.doi.org/10.1007/s00239-012-9490-7

Arango C.P. 2003a. Sea spiders (Pycnogonida, Arthropoda) from the Great Barrier Reef, Australia: new species, new records and ecological annotations. Journal of Natural History 37: 2723-2772. http:// dx.doi.org/10.1080/00222930210158771

Arango C.P. 2003b. Molecular approach to the phylogenetics of sea spiders (Arthropoda: Pycnogonida) using partial sequences of nuclear ribosomal DNA. Molecular Phylogenetics and Evolution 28 (3): 588-600. http://dx.doi.org/10.1016/S1055-7903(03)00069-1
Arango C.P. \& Wheeler W.C. 2007. Phylogeny of the sea spiders (Arthropoda, Pycnogonida) based on direct optimization of six loci and morphology. Cladistics 23 (3): 255-293. http://dx.doi.org/10.1111/ j.1096-0031.2007.00143.x

Arango C.P., Soler-Membrives A. \& Miller K.J. 2011. Genetic differentiation in the circum-Antarctic sea spider Nymphon australe (Pycnogonida: Nymphonidae). Deep Sea Research II 58 (1): 212-219. http://dx.doi.org/10.1016/j.dsr2.2010.05.019
Arnaud F. 1971a. Acheliana tropicalis n. gen., n. sp., pycnogonide des récifs coralliens du sud-ouest de Madagascar. Beaufortia 18 (241): 199-204.
Arnaud F. 1971b. Pycnogonides des récifs coralliens de Madagascar. 2. Redescription de Pycnogonum madagascariensis Bouvier, 1911. Téthys 1: 161-64.

Arnaud F. 1972. Pycnogonides des récifs coralliens de Madagascar. 3. Famille des Callipallenidae. Téthys 3: 157-64.
Arnaud F. 1973. Pycnogonides des récifs coralliens de Madagascar. 4. Colossendeidae, Phoxichilidiidae et Endeidae. Téthys 4 (4): 953-960.
Arnaud F. \& Bamber R.N. 1987. The biology of Pycnogonida. Advances in Marine Biology 24: 1-96. http://dx.doi.org/10.1016/S0065-2881(08)60073-5
Bachraty C., Legendre P. \& Desbruyères D. 2009. Biogeographic relationships among deep-sea hydrothermal vent faunas at global scale. Deep Sea Research I 56 (8): 1371-1378. http://dx.doi. org/10.1016/j.dsr.2009.01.009
Bamber R.N. 2004. Pycnogonids (Arthropoda: Pycnogonida) from French cruises to Melanesia. Zootaxa 551: 1-27.
Bamber R.N. 2007a. Pycnogonida of New Caledonia. In: Payri C.E. \& Richer de Forges B. (eds) Compendium of Marine Species of New Caledonia: 255-257. Documents Scientifiques et Techniques, deuxième édition, IRD Nouméa 117.
Bamber R.N. 2007b. A holistic re-interpretation of the phylogeny of the Pycnogonida Latreille, 1810 (Arthropoda). Zootaxa 1668: 295-312.

Bamber R.N., El Nagar A. \& Arango C. (eds) 2015. Pycnobase: World Pycnogonida Database. Available from http://www.marinespecies.org/pycnobase\ on\ [accessed 2 Nov. 2015].

Benson D. A., Clark K., Karsch-Mizrachi I., Lipman D.J., Ostell J. \& Sayers E.W. 2015. GenBank. Nucleic Acids Research 43 (D1): D30-D35. http://dx.doi.org/10.1093/nar/gku1216
Bouchet P., Héros V., Lozouet P. \& Maestrati P. 2008. A quarter-century of deep-sea malacological exploration in the South and West Pacific: Where do we stand? How far to go? In: Héros V., Cowie R.H. \& Bouchet P. (eds) Tropical Deep-Sea Benthos 25: 9-40. Mémoires du Muséum national d'Histoire naturelle 196.
Bouvier E.-L. 1910. Les Pycnogonides à cinq paires de pattes recueillis par la mission antarctique Jean Charcot à bord du Pourquoi Pas? Comptes Rendus des Séances Hebdomadaires de l'Académie des Sciences, Paris 142: 15-22.

Bouvier E.-L. 1923. Pycnogonides. Faune de France 7: 1-69.
Charbonnier S., Vannier J. \& Riou B. 2007. New sea spiders from the Jurassic La Voulte-sur-Rhône Lagerstätte. Proceedings of the Royal Society of London B 274 (1625): 2555-2561. http://dx.doi. org/10.1098/rspb. 2007.0848

Child C.A. 1982. Pycnogonida from the Western Pacific Islands, I. The Marshall Islands. Proceedings of the Biological Society of Washington 95 (2): 270-281.
Child C.A. 1987. Chapter 16. Pycnogonida of Enewetak Atoll. In: Devaney D.M., Reese E.S., Burch B.L. \& Helfrich P. (eds) The Natural History of Enewetak Atoll 2: 179-180. Hawaii, United States Department of Energy, Office of Energy Research, Office of Health and Environmental Research, Ecological Research Division.

Child C.A. 1988. Pycnogonida of the Western Pacific Islands, III: Recent Smithsonian-Philippine expeditions. Smithsonian Contributions to Zoology 468 (1-4): 1-32. http://dx.doi.org/10.5479/ si. 00810282.468

Child C.A. 1990. Pycnogonida of the Western Pacific Islands, VIII: Recent collections from islands of the Great Barrier Reef, Australia. Proceedings of the Biological Society of Washington 103 (2): 311-335.
Child C.A. 1994. Antarctic and Subantarctic Pycnogonida. 1. The Family Ammotheidae. Washington, DC. Biology of the Antarctic Seas 23: 1-48. http://dx.doi.org/10.1029/AR063p0001

Child C.A. 1996. Pycnogonida of the Western Pacific Islands, XIII: Collections from Indonesia, Melanesia, and Micronesia. Oceanographic Literature Review 4 (44): 366.
Child, C. A. 1998. Pycnogonida of the Western Pacific Islands, XIV: A shallow-water collection from Tonga. Species Diversity 3 (2): 289-300.
Dietz L., Arango C.P., Dömel J.S., Halanych K.M., Harder A.M., Held C., Mahon A.R., Mayer C., Melzer R.R., Rouse G.W., Weis A., Wilson N.G. \& Leese F. 2015. Regional differentiation and extensive hybridization between mitochondrial clades of the Southern Ocean giant sea spider Colossendeis megalonyx. Royal Society Open Science 2 (7): e140424. http://dx.doi.org/10.1098/rsos. 140424

Dohrn A. 1881. Die Pantopoden des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. Monographie der Fauna und Flora des Golfes von Neapel 3: 1-252.

Fry W.G. 1978. A classification within the pycnogonids. Zoological Journal of the Linnean Society 63 (1-2): 35-58. http://dx.doi.org/10.1111/j.1096-3642.1978.tb02089.x

Griffiths H.J., Arango C.P., Munilla T. \& McInnes S.J. 2011. Biodiversity and biogeography of Southern Ocean pycnogonids. Ecography 34 (4): 616-627. http://dx.doi.org/10.1111/j.1600-0587.2010.06612.x

Hassanin A. 2006. Phylogeny of Arthropoda inferred from mitochondrial sequences: strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. Molecular Phylogenetics and Evolution 38 (1): 100-116. http://dx.doi.org/10.1016/j.ympev.2005.09.012
Hassanin A., Léger N. \& Deutsch J. 2005. Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of Metazoa, and consequences for phylogenetic inferences. Systematic Biology 54 (2): 277-298. http://dx.doi.org/10.1080/10635150590947843
Hedgpeth J.W. 1941. A key to the Pycnogonida of the Pacific coast of North America. Transactions of the San Diego Society of Natural History 9 (26): 253-264. Available from http://biodiversitylibrary.org/ page/5715977 [accessed 28 Jan. 2017].

Hedgpeth J.W. 1948. The Pycnogonida of the Western North Atlantic and the Caribbean. Proceedings of the United States Museum 97 (3216): 157-342.
Hoek P.P.C. 1881. Nouvelles études sur les pycnogonides. Archives de Zoologie Expérimentale et Générale 9: 445-542.
Krabbe K., Leese F., Mayer C., Tollrian R. \& Held C. 2010. Cryptic mitochondrial lineages in the widespread pycnogonid Colossendeis megalonyx Hoek, 1881 from Antarctic and Subantarctic waters. Polar Biology 33 (3): 281-292. http://dx.doi.org/10.1007/s00300-009-0703-5

León T.M. 2001. Synopsis of the pycnogonids from Antarctic and Subantarctic waters. Polar Biology 24: 941-945. http://dx.doi.org/10.1007/s003000100305
Loman J.C. 1908. Die Pantopoden der Siboga-Expedition. Siboga Expedition 40: 1-88.
Mallatt J.M., Garey J.R. \& Shultz J.W. 2004. Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28 S and 18 S rRNA gene sequences to classify the arthropods and their kin. Molecular Phylogenetics and Evolution 31(1): 178-191. http://dx.doi.org/10.1016/j.ympev.2003.07.013
Müller H.-G. 1989. Shallow-water Pycnogonida from coral reefs at Moorea, Society Islands, with description of Rhynchothorax tiahurensis n. sp. Bonner Zoologische Beiträge 40 (2): 123-139.
Müller H.-G. 1990a. Shallow-water Pycnogonida from Kenya and Sri Lanka, with descriptions of three new species. Bonner Zoologische Beiträge 41 (1): 63-79.
Müller H.-G. 1990b. On some Indo-West-Pacific Pycnogonida from the Zoologisk Museum, Copenhagen. Zoologische Abhandlungen, Staatliches Museum für Tierkunde Dresden 45 (10): 103-110.

Munilla T. \& Soler-Membrives A. 2009. Check-list of the pycnogonids from Antarctic and sub-Antarctic waters: zoogeographic implications. Antarctic Science 21 (2): 99-111. http://dx.doi.org/10.1017/ S095410200800151X
Munilla T. \& Soler-Membrives A. 2015. Pycnogonida from the Bellingshausen and Amundsen seas: taxonomy and biodiversity. Polar Biology 38 (3): 413-430. http://dx.doi.org/10.1007/s00300-014-1585-8
Nakamura K. \& Child A.C. 1988. Pycnogonida of the western Pacific Islands. V. A collection by the Kakuyo Maru from Samoa. Proceedings of the Biological Society of Washington 101 (4): 809-816. https://dx.doi.org/10.5479/si.00810282.512
Nakamura K. \& Child C.A. 1991. Pycnogonida from waters adjacent to Japan. Smithsonian Contributions to Zoology 512 (1-4): 1-74.
Nakamura K., Kano Y., Suzuki N., Namatame T. \& Kosaku A. 2007. 18S rRNA phylogeny of sea spiders with emphasis on the position of Rhynchothoracidae. Marine Biology 153 (2): 213-223. http:// dx.doi.org/10.1007/s00227-007-0803-0

Posada D. 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25 (7): 1253-1256. http://dx.doi.org/10.1093/molbev/msn083

Rambaut A. 2002. Sequence Alignment Editor, version 2.0 alpha 11. Available from http://www.evolve. zoo.ox.ac.uk/ [accessed 28 Jan. 2017].
Ratnasingham S. \& Hebert P.D. 2007. BOLD: The Barcode of Life Data System. Molecular Ecology Notes 7 (3): 355-364. http://dx.doi.org/10.1111/j.1471-8286.2007.01678.x
Regier J.C., Shultz J.W., Zwick A., Hussey A., Ball B., Wetze R., Martin J.W. \& Cunningham C.W. 2010. Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463 (7284): 1079-1083. http://dx.doi.org/10.1038/nature08742
Rehm P., Meusemann K., Borner J., Misof B. \& Burmester T. 2014. Phylogenetic position of Myriapoda revealed by 454 transcriptome sequencing. Molecular Phylogenetics and Evolution 77: 25-33. http:// dx.doi.org/10.1016/j.ympev.2014.04.007

Richer de Forges B., Chan T.-Y., Corbari L., Lemaitre E., Macpherson E., Ahyong S.T. \& Ng P.K.L. 2013. The MUSORSTOM-TDSB deep sea benthos exploration programme (1976-2012): An overview of crustacean discoveries and new perspectives on deep-sea zoology and biogeography. In: Ahyong A., Chan T.-Y., Corbari L. \& Ng P.K.L. (eds) Tropical Deep-Sea Benthos vol. 27: 13-66. Muséum national d'Histoire naturelle, Paris.
Roeding F., Borner J., Kube M., Klages S., Reinhardt R. \& Burmester T. 2009. A 454 sequencing approach for large scale phylogenomic analysis of the common emperor scorpion (Pandinus imperator). Molecular Phylogenetics and Evolution 53 (3): 826-834. http://dx.doi.org/10.1016/j.ympev.2009.08.014
Ronquist F.R. \& Huelsenbeck J.P. 2003. MRBAYES: Bayesian phylogenetic inference under mixed models. Bioinformatics 19 (12): 1572-1574. http://dx.doi.org/10.1093/bioinformatics/btg180
Schiaparelli S., Oliverio M., Taviani M., Griffiths H., Lörz A.N. \& Albertelli G. 2008. Circumpolar distribution of the pycnogonid-ectoparasitic gastropod Dickdellia labioflecta (Dell, 1990) (Mollusca: Zerotulidae). Antarctic Science 20 (5): 497-498. http://dx.doi.org/10.1017/S0954102008001302
Spalding M.D., Fox H.E., Allen G.R., Davidson N., Ferdaña Z.A., Finlayson M., Halpern B.S., Jorge M.A., Lombana A., Lourie S.A., Martin K.D., McManus E., Molnar J., Recchia C.A. \& Robertson J. 2007. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57 (7): 573-583. http://dx.doi.org/10.1641/B570707
Stephensen K.H. 1933. Havedderkopper (Pycnogonida) og rankefødder (Cirripedia). Danmarks Fauna 38: 1-158.
Stock J.H. 1974. Medio- and infralittoral Pycnogonida collected during the IIOE near the landbase on Nossi-Be, Madagascar. Bulletin Zöologisch Museum 4 (3): 11-18.
Stock J.H. 1994. Indo-west Pacific Pycnogonida collected by some major oceanographic expeditions. Beaufortia 44 (3): 17-77.

Manuscript received: 15 February 2016
Manuscript accepted: 29 October 2016
Published on: 24 February 2017
Guest editors: Line Le Gall, Frédéric Delsuc, Stéphane Hourdez, Guillaume Lecointre and Jean-Yves Rasplus
Desk editor: Danny Eibye-Jacobsen

Printed versions of all papers are also deposited in the libraries of the institutes that are members of the EJT consortium: Muséum national d'Histoire naturelle, Paris, France; Botanic Garden Meise, Belgium; Royal Museum for Central Africa, Tervuren, Belgium; Natural History Museum, London, United Kingdom; Royal Belgian Institute of Natural Sciences, Brussels, Belgium; Natural History Museum of Denmark, Copenhagen, Denmark; Naturalis Biodiversity Center, Leiden, the Netherlands.
Appendix 1. CO1 and 18S sequences used for this study, including GenBank accession numbers.

Family	Genus	Species	MNHN code	CO1	18S	Geographical origin	Reference
Ammotheidae	-	Ammotheidae gen sp	IU-2013-18602	KX535450	KX536501	Iles du Salut	this study
Ammotheidae	Achelia	Achelia assimilis	-	DQ390087	DQ389932	Victoria, Australia	Arango \& Wheeler 2007
Ammotheidae	Achelia	Achelia assimilis	-	KF603901	-	Chile, Region de los Lagos	Weis \& Melzer 2002
Ammotheidae	Achelia	Achelia assimilis	-	KF603907	-	Chile, Region de los Lagos	Weis \& Melzer 2002
Ammotheidae	Achelia	Achelia assimilis	-	KF603909	-	Chile, Region de los Lagos	Weis \& Melzer 2002
Ammotheidae	Achelia	Achelia bituberculata	-	-	AB292185	Manazuru, Kanagawa	Nakamura et al. 2007
Ammotheidae	Achelia	Achelia boschi	IU-2011-682	KX535401	KX536462	south Madagascar	this study
Ammotheidae	Achelia	Achelia boschi	IU-2011-744	-	KX536436	south Madagascar	this study
Ammotheidae	Achelia	Achelia boschi	IU-2011-789	KX535415	KX536473	south Madagascar	this study
Ammotheidae	Achelia	Achelia boschi	IU-2011-790	KX535370	-	south Madagascar	this study
Ammotheidae	Achelia	Achelia boschi	IU-2011-791	KX535438	-	south Madagascar	this study
Ammotheidae	Achelia	Achelia echinata	-	-	AF005438	?	Giribet \& Ribera 2000
Ammotheidae	Achelia	Achelia hispida voucher	-	FJ862875	FJ862857	Brittany	Arabi et al. 2010
Ammotheidae	Achelia	Achelia hoeki	-	DQ389888	DQ389888	Palmer S Antarctica	Arango \& Wheeler 2007
Ammotheidae	Achelia	Achelia mixta	IU-2012-1244	KX535421	-	Madang	this study
Ammotheidae	Achelia	Achelia mixta	IU-2012-1269	-	KX536478	Madang	this study
Ammotheidae	Achelia	Achelia nana	IU-2011-726	KX535354	KX536425	south Madagascar	this study
Ammotheidae	Achelia	Achelia nana	IU-2011-727	KX535359	KX536430	south Madagascar	this study
Ammotheidae	Achelia	Achelia sawayai	-	DQ390070	DQ389916	Colombian Caribbean	Arango \& Wheeler 2007
Ammotheidae	Achelia	Achelia sp. 1	IU-2011-702	KX535360	KX536431	south Madagascar	this study
Ammotheidae	Achelia	Achelia sp. 1	IU-2011-752	KX535355	KX536426	south Madagascar	this study
Ammotheidae	Achelia	Achelia sp. 3	IU-2011-712	KX535349	KX536423	south Madagascar	this study
Ammotheidae	Achelia	Achelia sp. 5	IU-2011-687	KX535419	KX536476	south Madagascar	this study
Ammotheidae	Achelia	Achelia sp. 7	IU-2013-18598	KX535449	KX536500	Kavieng	this study
Ammotheidae	Achelia	Achelia sp. 9	IU-2012-804	KX535362	KX536433	Marquesas	this study
Ammotheidae	Achelia	Achelia sp. 9	IU-2012-811	KX535383	KX536451	Marquesas	this study
Ammotheidae	Achelia	Achelia sp. 10	IU-2013-17934	KX535440	KX536493	Kavieng	this study
Ammotheidae	Achelia	Achelia sp. 10	IU-2013-18597	KX535372	KX536441	Kavieng	this study
Ammotheidae	Achelia	Achelia sp. 12	IU-2012-1221	KX535422	KX536479	Madang	this study

Family	Genus	Species	MNHN code	CO1	18S	Geographical origin	Reference
Ammotheidae	Achelia	Achelia sp. 15	IU-2012-806	KX535371	KX536440	Marquesas	this study
Ammotheidae	Achelia	Achelia sp. 15	IU-2012-807	KX535369	KX536439	Marquesas	this study
Ammotheidae	Achelia	Achelia sp. 15	IU-2012-808	-	KX536446	Marquesas	this study
Ammotheidae	Achelia	Achelia sp. 15	IU-2012-809	KX535378	KX536448	Marquesas	this study
Ammotheidae	Achelia	Achelia superba	-	-	AB292186	Shimoda, Izu, Shizuoka	Nakamura et al. 2007
Ammotheidae	Acheliana	Acheliana sp.	IU-2011-659	KX535416	-	south Madagascar	this study
Ammotheidae	Acheliana	Acheliana sp.	IU-2011-681	KX535418	KX536475	south Madagascar	this study
Ammotheidae	Acheliana	Acheliana sp.	IU-2011-764	KX535400	-	south Madagascar	this study
Ammotheidae	Ammothea	Ammothea calmani	-	FJ969346	-	Ross Sea	Nielsen et al. 2009
Ammotheidae	Ammothea	Ammothea carolinensis	-	FJ969347	-	Ross Sea	Nielsen et al. 2009
Ammotheidae	Ammothea	Ammothea carolinensis	-	FJ969348	-	Ross Sea	Nielsen et al. 2009
Ammotheidae	Ammothea	Ammothea clausi	-	DQ300052	DQ389894	Palmer S Antarctica	Arango \& Wheeler 2007
Ammotheidae	Ammothea	Ammothea glacialis	-	FJ969349	-	Ross Sea	Nielsen et al. 2009
Ammotheidae	Ammothea	Ammothea hilgendorfi	-	DQ390091	DQ389936	California, USA	Arango \& Wheeler 2007
Ammotheidae	Ammothea	Ammothea longispina	-	FJ969350	-	Ross Sea	Nielsen et al. 2009
Ammotheidae	Ammothea	Ammothea ovatoides	-	DQ390081	DQ389926	California, USA	Arango \& Wheeler 2007
Ammotheidae	Ammothea	Ammothea sp.	-	FJ862871	FJ862850	?	Arabi et al. 2010
Ammotheidae	Ammothea	Ammothea spinosa	-	KF603912	-	Chile	Weis \& Melzer 2002
Ammotheidae	Ammothella	Ammothella appendiculata	-	DQ390056	DQ389899	Colombian Caribbean	Arango \& Wheeler 2007
Ammotheidae	Ammothella	Ammothella biunguiculata	-	-	AB292060	Shimoda, Izu, Shizuoka	Nakamura et al. 2007
Ammotheidae	Ammothella	Ammothella biunguiculata	-	-	LC010686	?	Tamaoki et al. (unpubl.)
Ammotheidae	Ammothella	Ammothella gracilis (ex Cilunculus gracilis)	-	-	AB292188	off Hokkaido	Nakamura et al. 2007
Ammotheidae	Ammothella	Ammothella indica	-	-	AB292184	Manazuru, Kanagawa	Nakamura et al. 2007
Ammotheidae	Ammothella	Ammothella setacea	IU-2011-684	KX535350	KX536424	south Madagascar	this study
Ammotheidae	Ammothella	Ammothella sp. 1	IU-2013-18601	KX535377	KX536447	Kavieng	this study
Ammotheidae	Ammothella	Ammothella sp. 2	IU-2013-17914	KX535436	KX536490	Iles du Salut	this study
Ammotheidae	Ammothella	Ammothella sp. 5	IU-2013-18604	KX535428	KX536483	Iles du Salut	this study
Ammotheidae	Ammothella	Ammothella sp. 6	IU-2012-963	KX535424	-	Marquesas	this study
Ammotheidae	Ammothella	Ammothella sp. 7	IU-2012-898	KX535380	-	Guadeloupe	this study
Ammotheidae	Ammothella	Ammothella sp. 7	IU-2012-972	KX535368	KX536438	Guadeloupe	this study
Ammotheidae	Ammothella	Ammothella sp. 12	IU-2013-18586	KX535382	KX536450	Madang	this study

Family	Genus	Species	MNHN code	CO1	18S	Geographical origin	Reference
Ammotheidae	Ammothella	Ammothella sp. 14	IU-2012-816	KX535443	KX536495	Marquesas	this study
Ammotheidae	Ammothella	Ammothella sp. 15	IU-2012-954	KX535374	KX536443	Guadeloupe	this study
Ammotheidae	Ammothella	Ammothella spinifera	-	DQ390074	DQ389919	Colombian Caribbean	Arango \& Wheeler 2007
Ammotheidae	Ammothella	Ammothella tippula	IU-2011-679	KX535385	-	south Madagascar	this study
Ammotheidae	Ammothella	Ammothella tippula	IU-2011-703	KX535429	KX536484	south Madagascar	this study
Ammotheidae	Ammothella	Ammothella tuberculata	-	DQ390094	DQ389938	California, USA	Arango \& Wheeler 2007
Ammotheidae	Cilunculus	Cilunculus armatus	-	-	AB292187	Shimoda, Izu, Shizuoka	Nakamura et al. 2007
Ammotheidae	Cilunculus	Cilunculus roni	IU-2011-2583	KX535367	-	Manus Island	this study
Ammotheidae	Cilunculus	Cilunculus scaurus	IU-2007-4650	KX535357	KX536428	New Caledonia	this study
Ammotheidae	Cilunculus	Cilunculus sewelli	IU-2011-602	KX535417	KX536474	Mozambic Channel	this study
Ammotheidae	Cilunculus	Cilunculus sewelli	IU-2011-603	KX535356	KX536427	Mozambic Channel	this study
Ammotheidae	Nymphopsis	Nymphopsis curtiscapus	IU-2011-661	KX535363	KX536434	south Madagascar	this study
Ammotheidae	Nymphopsis	Nymphopsis curtiscapus	IU-2011-676	KX535366	KX536437	south Madagascar	this study
Ammotheidae	Nymphopsis	Nymphopsis curtiscapus	IU-2011-691	KX535347	-	south Madagascar	this study
Ammotheidae	Nymphopsis	Nymphopsis curtiscapus	IU-2011-692	KX535348	-	south Madagascar	this study
Ammotheidae	Nymphopsis	Nymphopsis curtiscapus	IU-2011-724	KX535353	-	south Madagascar	this study
Ammotheidae	Nymphopsis	Nymphopsis duodorsospinosa	-	DQ390069	DQ389915	Colombian Caribbean	Arango \& Wheeler 2007
Ammotheidae	Nymphopsis	Nymphopsis muscosa	IU-2012-1204	KX535352	-	Madang	this study
Ammotheidae	Nymphopsis	Nymphopsis muscosa	IU-2012-1206	KX535351	-	Madang	this study
Ammotheidae	Nymphopsis	Nymphopsis muscosa	IU-2013-18621	KX535448	KX536499	Madang	this study
Ammotheidae	Nymphopsis	Nymphopsis muscosa	IU-2013-18639	KX535399	KX536461	Kavieng	this study
Ammotheidae	Nymphopsis	Nymphopsis muscosa	IU-2013-18640	KX535393	-	Kavieng	this study
Ammotheidae	Nymphopsis	Nymphopsis muscosa	IU-2013-18641	KX535394	-	Kavieng	this study
Ammotheidae	Nymphopsis	Nymphopsis muscosa	IU-2013-6573	KX535411	-	Madang	this study
Ammotheidae	Nymphopsis	Nymphopsis muscosa	IU-2013-6580	KX535414	-	Madang	this study
Ammotheidae	Nymphopsis	Nymphopsis muscosa	IU-2013-6600	KX535392	-	Madang	this study
Ammotheidae	Nymphopsis	Nymphopsis sp.	IU-2013-18608	KX535390	KX536456	Iles du Salut	this study
Ammotheidae	Sericosura	Sericosura heteroscela	IU-2013-15606	KX535444	KX536496	N Medio-Atlantic Ridge, Snake Pit site	this study
Ammotheidae	Sericosura	Sericosura sp. 1	IU-2014-10209	KX535439	KX536492	Futuna	this study
Ammotheidae	Sericosura	Sericosura sp. 1	IU-2014-10210	KX535442	KX536494	Futuna	this study
Ammotheidae	Sericosura	Sericosura sp. 2	IU-2013-19237	KX535437	KX536491	N Medio-Atlantic Ridge, Logatchev site	this study
Ammotheidae	Sericosura	Sericosura sp. 2	IU-2013-19238	KX535384	KX536452	N Medio-Atlantic Ridge, Logatchev site	this study

Family	Genus	Species	MNHN code	CO1	18S	Geographical origin	Reference
Ammotheidae	Sericosura	Sericosura sp. 2	IU-2013-19239	KX535346	KX536422	N Medio-Atlantic Ridge, Lucky Strike site	this study
Ammotheidae	Sericosura	Sericosura sp. 2	IU-2013-19242	KX535373	KX536442	N Medio-Atlantic Ridge, Lucky Strike site	this study
Ammotheidae	Sericosura	Sericosura venticola	-	DQ390080	DQ389925	North Pacific vents	Arango \& Wheeler 2007
Ammotheidae	Tanystylum	Tanystylum californicum	-	DQ3900990	DQ389935	California, USA	Arango \& Wheeler 2007
Ammotheidae	Tanystylum	Tanystylum cavidorsum voucher	-	KF603964	-	Chile, Region de los Rios	Weis \& Melzer 2002
Ammotheidae	Tanystylum	Tanystylum cavidorsum voucher	-	KF603965	-	Chile, Region de los Rios	Weis \& Melzer 2002
Ammotheidae	Tanystylum	Tanystylum cavidorsum voucher	-	KF603966	-	Chile, Region de los Rios	Weis \& Melzer 2002
Ammotheidae	Tanystylum	Tanystylum cavidorsum voucher	-	KF603967	-	Chile, Region de los Rios	Weis \& Melzer 2002
Ammotheidae	Tanystylum	Tanystylum cavidorsum voucher	-	KF603969	-	Chile, Region de los Rios	Weis \& Melzer 2002
Ammotheidae	Tanystylum	Tanystylum cavidorsum voucher	-	KF603970	-	Chile, Region de los Rios	Weis \& Melzer 2002
Ammotheidae	Tanystylum	Tanystylum neorhetum voucher	-	KF603971	-	Chile, Region de Magallanes y de la Antarctica Chilena	Weis \& Melzer 2002
Ammotheidae	Tanystylum	Tanystylum orbiculare	-	DQ390064	DQ389910	Mar del Plata, Argentina	Arango \& Wheeler 2007
Ammotheidae	Tanystylum	Tanystylum orbiculare	-	GU370074	-	Massachussetts	Masta et al. 2010
Ammotheidae	Tanystylum	Tanystylum sp.	-	FJ862870	FJ862849	Australia	Arabi et al. 2010
Ammotheidae	Tanystylum	Tanystylum sp. 1	IU-2013-18603	KX535445	KX536497	Iles du Salut	this study
Ammotheidae	Tanystylum	Tanystylum sp. 1	IU-2013-18606	KX535386	KX536453	Iles du Salut	this study
Ammotheidae	Tanystylum	Tanystylum sp. 2	IU-2013-18587	KX535446	-	Kavieng	this study
Ammotheidae	Tanystylum	Tanystylum sp. 2	IU-2013-18589	KX535358	KX536429	Kavieng	this study
Ammotheidae	Tanystylum	Tanystylum sp. 2	IU-2013-18596	KX535379	KX536449	Kavieng	this study
Ammotheidae	Tanystylum	Tanystylum sp. 3	IU-2013-18605	KX535396	KX536458	Iles du Salut	this study
Ammotheidae	Teratonotum	Teratonotum stauromatum (ex Ammothella stauromata)	IU-2012-959	KX535420	KX536477	Marquesas	this study
Ammotheidae	Teratonotum	Teratonotum stauromatum (ex Ammothella stauromata)	IU-2013-18591	KX535361	KX536432	Kavieng	this study
Ascorhynchidae	Ascorhynchus	Ascorhynchus auchenicum	-	-	AB292189	Shimoda, Izu, Shizuoka	Nakamura et al. 2007
Ascorhynchidae	Ascorhynchus	Ascorhynchus auchenicum	-	-	LC010685	?	Tamaoki et al. (unpubl.)
Ascorhynchidae	Ascorhynchus	Ascorhynchus castelli	-	FJ862876	FJ862858	Salomon Islands	Arabi et al. 2010
Ascorhynchidae	Ascorhynchus	Ascorhynchus castelli	IU-2014-8275	KX535408	KX536468	Iles du Salut	this study
Ascorhynchidae	Ascorhynchus	Ascorhynchus castellioides	-	DQ390070	DQ389905	Colombian Caribbean	Arango \& Wheeler 2007
Ascorhynchidae	Ascorhynchus	Ascorhynchus cryptopygius	-	-	AB292190	off Taito-zaki, Chiba	Nakamura et al. 2007

Family	Genus	Species	MNHN code	CO1	18S	Geographical origin	Reference
Ascorhynchidae	Ascorhynchus	Ascorhynchus glaberrimus	-	-	AB292191	Shimoda, Izu, Shizuoka	Nakamura et al. 2007
Ascorhynchidae	Ascorhynchus	Ascorhynchus glaberrimus	-	-	LC010684	?	Tamaoki et al. (unpubl.)
Ascorhynchidae	Ascorhynchus	Ascorhynchus japonicus	-	-	AB292192	Tosa Bay, Kochi	Nakamura et al. 2007
Ascorhynchidae	Ascorhynchus	Ascorhynchus japonicus	-	-	LC010683	?	Tamaoki et al. (unpubl.)
Ascorhynchidae	Eurycyde	Eurycyde curvata	-	DQ390055	DQ389897	Colombian Caribbean	Arango \& Wheeler 2007
Ascorhynchidae	Eurycyde	Eurycyde raphiaster	-	DQ390075	DQ389920	Caribbean	Arango \& Wheeler 2007
Ascorhynchidae	Eurycyde	Eurycyde sp.	IU-2013-18613	KX535388	KX536454	French Guiana	this study
Ascorhynchidae	Eurycyde	Eurycyde spinosa	-	DQ390092	DQ389937	California, USA	Arango \& Wheeler 2007
Ascorhynchidae	Nymphonella	Nymphonella tapetis	-	-	AB790611	Japan	Chows et al. (unpubl.)
Ascorhynchidae	Nymphonella	Nymphonella tapetis	-	-	AB700615	Japan	Chows et al. (unpubl.)
Ascorhynchidae	Nymphonella	Nymphonella tapetis	-	-	AB700612	Japan	Chows et al. (unpubl.)
Ascorhynchidae	Nymphonella	Nymphonella tapetis	-	-	AB700616	Japan	Chows et al. (unpubl.)
Ascorhynchidae	Nymphonella	Nymphonella tapetis	-	-	AB700614	Japan	Chows et al. (unpubl.)
Ascorhynchidae	Nymphonella	Nymphonella tapetis	-	-	LC010682	?	Tamaoki et al. (unpubl.)
Ascorhynchidae	Nymphonella	Nymphonella tapetis	-	-	AB700613	Japan	Chows et al. (unpubl.)
Austrodecidae	Austrodecus	Austrodecus glaciale	-	DQ390048	DQ389890	Palmer S Antarctica	Arango \& Wheeler 2007
Callipallenidae	Austropallene	Austropallene cornigera	-	DQ390077	DQ389922	Palmer S Antarctica	Arango \& Wheeler 2007
Callipallenidae	Austropallene	Austropallene cornigera	IU-2013-18652	KX535376	KX536445	Antarctica	this study
Callipallenidae	Austropallene	Austropallene cornigera	IU-2013-18653	KX535364	KX536435	Antarctica	this study
Callipallenidae	Austropallene	Austropallene cristata	-	DQ390045	DQ389887	Palmer S Antarctica	Arango \& Wheeler 2007
Callipallenidae	Callipallene	Callipallene brevirostris	-	DQ390057	DQ389900	Colombian Caribbean	Arango \& Wheeler 2007
Callipallenidae	Callipallene	Callipallene novaezealandiae	-	DQ390082	DQ389927	Victoria, Australia	Arango \& Wheeler 2007
Callipallenidae	Cheilopallene	Cheilopallene nodulosa	IU-2013-18642	KX535430	KX536485	Kavieng	this study
Callipallenidae	Meridionale	Meridionale ambigua	-	DQ390085	DQ389930	Victoria, Australia	Arango \& Wheeler 2007
Callipallenidae	Oropallene	Oropallene minor	-	DQ390059	DQ389994	New South Wales, Australia	Arango \& Wheeler 2007
Callipallenidae	Parapallene	Parapallene avida	-	DQ390083	DQ389928	Victoria, Australia	Arango \& Wheeler 2007
Callipallenidae	Propallene	Propallene longiceps	-	DQ390054	DQ389896	Japan	Arango \& Wheeler 2007
Callipallenidae	Stylopallene	Stylopallene longicauda	-	DQ390090	DQ389929	Victoria, Australia	Arango \& Wheeler 2007
Colossendeidae	Colossendeis	Colossendeis stramenti	-	DQ390078	DQ389923	Antarctica, Polarsten Exp.	Arango \& Wheeler 2007
Colossendeidae	Colossendeis	Colossendeis tenera	-	DQ390061	DQ389907	North Pacific	Arango \& Wheeler 2007
Colossendeidae	Decolopoda	Decolopoda australis	-	DQ390063	DQ389909	Livingstone, Antarctica	Arango \& Wheeler 2007
Colossendeidae	Rhopalorhynchus	Rhopalorhynchus filipes	-	FJ862872	FJ862852	New Caledonia	Arabi et al. 2010

Family	Genus	Species	MNHN code	CO1	18S	Geographical origin	Reference
Endeidae	Endeis	Endeis australis	-	DQ390050	DQ389892	Colombian Caribbean	Arango \& Wheeler 2007
Endeidae	Endeis	Endeis clipeata	IU-2011-776	KX535441	-	south Madagascar	this study
Endeidae	Endeis	Endeis mollis	-	DQ390051	DQ389893	Palmer S Antarctica	Arango \& Wheeler 2007
Endeidae	Endeis	Endeis sp.	IU-2013-18550	KX535406	KX536466	Iles du Salut	this study
Endeidae	Endeis	Endeis sp.	IU-2013-18554	KX535447	KX536498	Madang	this study
Endeidae	Endeis	Endeis sp.	IU-2013-18556	KX535381	-	Madang	this study
Endeidae	Endeis	Endeis sp.	IU-2013-18634	KX535405	KX536465	Kavieng	this study
Endeidae	Endeis	Endeis sp.	IU-2013-18637	KX535426	-	Kavieng	this study
Endeidae	Endeis	Endeis sp.	IU-2013-18638	KX535427	KX536482	Kavieng	this study
Endeidae	Endeis	Endeis spinosa	-	-	FJ862848	Brittany	Arabi et al. 2010
Endeidae	Endeis	Endeis spinosa	-	AY731173	-	?	Hassanin et al. 2005
Nymphonidae	-	Nymphonidae gen. sp.	IU-2014-8371	KX535433	KX536487	Iles du Salut	this study
Nymphonidae	Nymphon	Nymphon articulare	IU-2013-18648	KX535398	KX536460	Antarctica	this study
Nymphonidae	Nymphon	Nymphon articulare	IU-2013-18649	KX535397	KX536459	Antarctica	this study
Nymphonidae	Nymphon	Nymphon brevicaudatum	-	DQ390087	DQ389889	Palmer S Antarctica	Arango \& Wheeler 2007
Nymphonidae	Nymphon	Nymphon hamatum	-	DQ390076	DQ389921	Antarctica, Polarsten Exp.	Arango \& Wheeler 2007
Nymphonidae	Nymphon	Nymphon surinamense	IU-2013-18614	KX535404	KX536464	French Guiana	this study
Nymphonidae	Nymphon	Nymphon surinamense	IU-2013-18615	KX535387	-	French Guiana	this study
Nymphonidae	Nymphon	Nymphon surinamense	IU-2013-18620	KX535434	KX536488	French Guiana	this study
Nymphonidae	Nymphon	Nymphon unguiculatum	-	DQ390053	DQ389895	Palmer S Antarctica	Arango \& Wheeler 2007
Nymphonidae	Pentanymphon	Pentanymphon antarcticum	-	DQ390049	DQ389891	Palmer S Antarctica	Arango \& Wheeler 2007
Pallenopsidae	Pallenopsis	Pallenopsis macneilli	-	DQ390086	DQ389931	Victoria, Australia	Arango \& Wheeler 2007
Pallenopsidae	Pallenopsis	Pallenopsis macronyx	-	DQ390062	-	Livingston, Antarctica	Arango \& Wheeler 2007
Pallenopsidae	Pallenopsis	Pallenopsis sp. 1	IU-2013-18651	KX535435	KX536489	Terre Adélie	this study
Pallenopsidae	Pallenopsis	Pallenopsis sp. 2	IU-2013-18645	KX535409	KX536469	Kavieng	this study
Pallenopsidae	Pallenopsis	Pallenopsis sp. 3	IU-2013-18545	KX535402	-	Iles du Salut	this study
Pallenopsidae	Pallenopsis	Pallenopsis sp. 3	IU-2013-18546	KX535407	KX536467	Iles du Salut	this study
Pallenopsidae	Pallenopsis	Pallenopsis sp. 4	IU-2013-18610	KX535432	KX536486	French Guiana	this study
Phoxichilidiidae	Anoplodactylus	Anoplodactlylus californicus	-	DQ390068	DQ389914	Colombian Caribbean	Arango \& Wheeler 2007
Phoxichilidiidae	Anoplodactylus	Anoplodactylus viridintestinalis	-	DQ390088	DQ389933	California, USA	Arango \& Wheeler 2007
Phoxichilidiidae	Anoplodactylus	Anoplodactylus batagensis	-	DQ390072	DQ389918	Colombian Caribbean	Arango \& Wheeler 2007
Phoxichilidiidae	Anoplodactylus	Anoplodactylus erectus	-	DQ390089	DQ389934	California, USA	Arango \& Wheeler 2007

Family	Genus	Species	MNHN code	CO1	18S	Geographical origin	Reference
Phoxichilidiidae	Anoplodactylus	Anoplodactylus sp.	IU-2013-18544	KX535391	KX536457	Iles du Salut	this study
Phoxichilidiidae	Anoplodactylus	Anoplodactylus sp.	IU-2013-18609	KX535413	KX536472	French Guiana	this study
Phoxichilidiidae	Anoplodactylus	Anoplodactylus sp.	IU-2013-18611	KX535412	KX536471	French Guiana	this study
Phoxichilidiidae	Anoplodactylus	Anoplodactylus sp.	IU-2013-18632	KX535403	KX536463	Kavieng	this study
Phoxichilidiidae	Anoplodactylus	Anoplodactylus sp.	IU-2013-18636	KX535425	KX536481	Kavieng	this study
Phoxichilidiidae	Anoplodactylus	Anoplodactylus sp.	IU-2013-18643	KX535395	-	Kavieng	this study
Phoxichilidiidae	Anoplodactylus	Anoplodactylus sp.	IU-2013-18644	KX535389	KX536455	Kavieng	this study
Phoxichilidiidae	Anoplodactylus	Anoplodactylus sp.	IU-2013-18646	KX535410	KX536470	Kavieng	this study
Phoxichilidiidae	Anoplodactylus	Anoplodactylus sp.	IU-2013-18647	KX535431	-	Kavieng	this study
Phoxichilidiidae	Anoplodactylus	Anoplodactylus sp.	IU-2014-8292	KX535423	KX536480	Iles du Salut	this study
Pycnogonidae	Pentapycnon	Pentapycnon charcoti	-	DQ390079	DQ389924	Antarctica, Polarsten Exp.	Arango \& Wheeler 2007
Pycnogonidae	Pycnogonum	Pycnogonum diceros	-	DQ390095	DQ389939	Antarctica, Polarsten Exp.	Arango \& Wheeler 2007
Pycnogonidae	Pycnogonum	Pycnogonum stearnsi	-	DQ390058	DQ389902	California, USA	Arango \& Wheeler 2007
Pycnogonidae	Pycnogonum	Pycnogonum tuberculatum	IU-2013-18654	KX535375	KX536444	Vanuatu	this study
OUTGROUP	Limulus	Limulus polyphemus	-	-	L81949	-	Spears \& Abele 1998
OUTGROUP	Limulus	Limulus polyphemus	-	NC003057	-	-	Lavrov et al. 2000a
OUTGROUP	Lithobius	Lithobius forficatus	-	NC002629	-	-	Lavrov et al. 2000b
OUTGROUP	Lithobius	Lithobius variegatus	-	-	AF000773	-	Giribet \& Ribera 1998
OUTGROUP	Mastigoproctus	Mastigoproctus giganteus	-	JN018215	JN018311	-	Arabi et al. 2010
OUTGROUP	Opisthopatus	Opisthopatus cinctipes	-	NC014273	-	-	Braband et al. 2010
OUTGROUP	Orthoporus	Orthoporus sp.	-	-	AY210829	-	Mallatt et al. 2004
OUTGROUP	Peripatoides	Peripatoides novaezealandiae	-	-	AF342794	-	Mallatt \& Winchell 2002
OUTGROUP	Squilla	Squilla empusa	-	-	L81946	-	Spears \& Abele 1998
OUTGROUP	Squilla	Squilla empusa	-	NC007444	-	-	Swinstrom 2009
OUTGROUP	Thyropygus	Thyropygus sp.	-	NC003344	-	-	Lavrov et al. 2002
OUTGROUP	Triops	Triops longicaudatus	-	-	AF144219	-	Spears \& Abele 2000
OUTGROUP	Triops	Triops longicaudatus	-	NC006079	-	-	Cook et al. 2005

References for Appendix 1:

Arabi J., Cruaud C., Couloux A. \& Hassanin A. 2010. Studying sources of incongruence in arthropod molecular phylogenies: sea spiders (Pycnogonida) as a case study. Comptes Rendus Biologies 333 (5): 438-453. http://dx.doi.org/10.1016/j.crvi.2010.01.018
Arango C.P. \& Wheeler W.C. 2007. Phylogeny of the sea spiders (Arthropoda, Pycnogonida) based on direct optimization of six loci and morphology. Cladistics 23 (3): 255-293. http://dx.doi.org/10.1111/ j.1096-0031.2007.00143.x

Braband A., Cameron S.L., Podsiadlowski L., Daniels S.R. \& Mayer G. 2010. The mitochondrial genome of the onychophoran Opisthopatus cinctipes (Peripatopsidae) reflects the ancestral mitochondrial gene arrangement of Panarthropoda and Ecdysozoa. Molecular Phylogenetics and Evolution 57 (1): 285-292. http://dx.doi.org/10.1016/j.ympev.2010.05.011

Cook C.E., Yue Q. \& Akam M. 2005. Mitochondrial genomes suggest that hexapods and crustaceans are mutually paraphyletic. Proceedings of the Royal Society of London B 272 (1569): 1295-1304. http:// dx.doi.org/10.1098/rspb.2004.3042

Giribet G. \& Ribera C. 1998. The position of arthropods in the animal kingdom: a search for a reliable outgroup for internal arthropod phylogeny. Molecular Phylogenetics and Evolution 9 (3): 481-488. http://dx.doi.org/10.1006/mpev.1998.0494

Giribet G. \& Ribera C. 2000. A review of arthropod phylogeny: new data based on ribosomal DNA sequences and direct character optimization. Cladistics 16 (2): 204-231. http://dx.doi. org/10.1111/j.1096-0031.2000.tb00353.x
Hassanin A., Léger N. \& Deutsch J. 2005. Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of Metazoa, and consequences for phylogenetic inferences. Systematic Biology 54 (2): 277-298.
Lavrov D.V., Boore J.L. \& Brown W.M. 2000a. The complete mitochondrial DNA sequence of the horseshoe crab Limulus polyphemus. Molecular Biology and Evolution 17 (5): 813-824. http://dx.doi. org/10.1093/oxfordjournals.molbev.a026360
Lavrov D.V., Brown W.M. \& Boore J.L. 2000b. A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede Lithobius forficatus. Proceedings of the National Academy of Sciences 97 (25): 13738-13742. http://dx.doi.org/10.1073/pnas. 250402997

Lavrov D.V., Boore J.L. \& Brown W.M. 2002. Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and nonrandom loss. Molecular Biology and Evolution 19 (2): 163-169. http://dx.doi.org/10.1093/oxfordjournals.molbev.a004068

Mallatt J. \& Winchell C.J. 2002. Testing the new animal phylogeny: first use of combined large-subunit and small-subunit rRNA gene sequences to classify the protostomes. Molecular Biology and Evolution 19 (3): 289-301. http://dx.doi.org/10.1093/oxfordjournals.molbev.a004082

Mallatt J. M., Garey J.R. \& Shultz J.W. 2004. Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28 S and 18 S rRNA gene sequences to classify the arthropods and their kin. Molecular Phylogenetics and Evolution 31 (1): 178-191. http://dx.doi.org/10.1016/j.ympev.2003.07.013
Masta S.E., McCall A. \& Longhorn S.J. 2010. Rare genomic changes and mitochondrial sequences provide independent support for congruent relationships among the sea spiders (Arthropoda, Pycnogonida). Molecular Phylogenetics and Evolution 57 (1): 59-70. http://dx.doi.org/10.1016/j.ympev.2010.06.020
Nakamura K., Kano Y., Suzuki N., Namatame T. \& Kosaku A. 2007. 18S rRNA phylogeny of sea spiders with emphasis on the position of Rhynchothoracidae. Marine Biology 153 (2): 213-223. http:// dx.doi.org/10.1007/s00227-007-0803-0

Nielsen J.F., Lavery S. \& Lörz A.N. 2009. Synopsis of a new collection of sea spiders (Arthropoda: Pycnogonida) from the Ross Sea, Antarctica. Polar Biology 32 (8): 1147-1155. http://dx.doi.org/10.1007/ s00300-009-0611-8
Spears T. \& Abele L.G. 1998. Crustacean phylogeny inferred from 18S rDNA. In: Fortey R.A. \& Thomas R.H. (eds) Arthropod Relationships: 169-187. Springer Netherlands, Dordrecht. http://dx.doi. org/10.1007/978-94-011-4904-4_14
Spears T. \& Abele L.G. 2000. Branchiopod monophyly and interordinal phylogeny inferred from 18S ribosomal DNA. Journal of Crustacean Biology 20 (1): 1-24. http://dx.doi.org/10.1163/20021975$\underline{99990012}$
Swinstrom K. 2009. The first complete mitochondrial genome sequences for stomatopod crustaceans: implications for phylogeny. Lawrence Berkeley National Laboratory. Available from http://escholarship. org/uc/item/4s4023bb [accessed 1 February 2017].
Weis A. \& Melzer R.R. 2012. How did sea spiders recolonize the Chilean fjords after glaciation? DNA barcoding of Pycnogonida, with remarks on phylogeography of Achelia assimilis (Haswell, 1885). Systematics and Biodiversity 10 (3): 361-374. http://dx.doi.org/10.1080/14772000.2012.716462

Appendix 2A. Bayesian tree of Pycnogonida based on 135 CO 1 sequences (un-partitioned analysis). Coloured rectangles show non-ammotheid families, and coloured branches discriminate ammotheid genera. The numbers at the nodes indicate the posterior probabilities superior to 0.5 . Asterisks associated to taxon names indicate holotype specimens. Outgroups were removed for better readability.

Appendix 2B. Bayesian tree of Pycnogonida based on 13518 S sequences. Coloured rectangles show non-ammotheid families, and coloured branches discriminate ammotheid genera. The numbers at the nodes indicate the posterior probabilities superior to 0.5 . Asterisks associated to taxon names indicate holotype specimens. Outgroups were removed for better readability.

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database
Digitale Literatur/Digital Literature
Zeitschrift/Journal: European Journal of Taxonomy
Jahr/Year: 2017
Band/Volume: 0286
Autor(en)/Author(s): Sabroux Romain, Corbari Laure, Krapp Franz, Bonillo Celine, Le Prieur Stephanie, Hassanin Alexandre

Artikel/Article: Biodiversity and phylogeny of Ammotheidae (Arthropoda: Pycnogonida) 1-33

