Chapter 7 Review Problems

Use the navigation buttons at the bottom of the pages to get hints, check your answers, move to the next problem, or go back to previous pages.

Get the entire General, Organic, and Biochemistry Course as a Series of Video Lectures at: www.collegechem.com
7.1) When two or more pure substances are combined, we refer to the combination as a
a) homogeneous state
b) solution
c) mixture
d) compound
e) soup Click here for a hint
7.1) When two or more pure substances are combined, we refer to the combination as a

HINT:

a) homegeneous state
b) solution
c) mixture
d) compound
e) soum

For more help: see chapter 7 part 1 video or chapter 7 section 2 in the textbook.
7.1) When two or more pure substances are combined, we refer to the combination as a \qquad
a) homogeneous state

When two or more pure substances are combined, the resulting mixture will be either homogeneous or heterogeneous.
b) solution A solution is a homogeneous mixture of two or more pure substances.
c) mixture
d) compound A compound is a pure substance, not a mixture.
e) soup I hope this was not your selection.

For more details: see chapter 7 part 1 video or chapter 7 section 2 in the textbook.
7.2) One way in which mixtures are classified is by their macro-scale, visually observed homogeneity. Write an explanation of the difference between homogeneous mixtures and heterogeneous mixtures.

Click here for a hint
7.2) One way in which mixtures are classified is by their macro-scale, visually observed homogeneity. Write an explanation of the difference between homogeneous mixtures and heterogeneous mixtures.

HINT: You could adequately explain this in one or two sentences.
For more help: see chapter 7 part 1 video or chapter 7 section 2 in the textbook.

7.2) One way in which mixtures are classified is by their macro-scale, visually observed homogeneity. Write an explanation of the difference between homogeneous mixtures and heterogeneous mixtures.

A homogeneous mixture appears to be the same throughout the entire sample/object.
A heterogeneous mixture has visible regions of varying composition.
FURTHER EXPLANATION: If you dissolve a spoon of sugar in water, the resulting mixture would be homogenous. If you were to repeatedly withdraw one drop of the sugar-water from various random regions in the glass, each of the drops would be identical. This can be contrasted with a heterogeneous mixture. An example of a heterogeneous mixture is a chocolate chip cookie. In some small regions of the chocolate chip cookie, a chocolate chip can be seen; in other small regions a chocolate chip is not seen. If you were to use tweezers/forceps to repeatedly withdraw a small sample of the cookie form various random regions of the cookie, the samples that you withdrew may not all appear to be identical. The amount of chocolate in each sample could vary. You may see that a few of the samples are 100% chocolate, some may contain both chocolate and non-chocolate parts, and in other samples you may not observe any chocolate parts at all.
7.3) Solutions are mixtures of pure substances in which the pure substance particles (molecules, ions, or noble gas atoms) are evenly distributed throughout the entire volume of the mixture.

Consider a solution composed of 5.0 grams of sodium chloride and 100.0 grams of water.
i) What is the solvent?
ii) What is the solute?
7.3) Solutions are mixtures of pure substances in which the pure substance particles (molecules, ions, or noble gas atoms) are evenly distributed throughout the entire volume of the mixture.

Consider a solution composed of 5.0 grams of sodium chloride and 100.0 grams of water.
i) What is the solvent?
ii) What is the solute?

HINT: The pure substance that is in the greatest abundance is referred to as the solvent. The other pure substance components of a solution are called solutes.

For more help: see chapter 7 part 1 video or chapter 7 section 3 in the textbook.
7.3) Solutions are mixtures of pure substances in which the pure substance particles (molecules, ions, or noble gas atoms) are evenly distributed throughout the entire volume of the mixture.

Consider a solution composed of 5.0 grams of sodium chloride and 100.0 grams of water.
i) What is the solvent? water
ii) What is the solute? sodium chloride

EXPLANATION: The pure substance that is in the greatest abundance is referred to as the solvent. Typically, especially in biological systems, and in this problem, the solvent is water. The other pure substance components of a solution are called solutes.

For more details: see chapter 7 part 1 video or chapter 7 section 3 in the textbook.
7.4) When two liquids mix with each other in any ratio, we say that the substances are \qquad
a) polar
b) nonpolar
c) hydrophilic
d) miscible
e) adult beverages

Click here for a hint
7.4) When two liquids mix with each other in any ratio, we say that the substances are \qquad
HINT:
a) polar
b) nompolar
c) miscible
d) hydrophilic
e) -adult beverages
7.4) When two liquids mix with each other in any ratio, we say that the substances are \qquad ."
a) polar
b) nonpolar
c) hydrophilic
d) miscible

EXPLANATION: Some liquid-in-liquid solutions can be made at any ratio of the liquids. For example, water and ethyl alcohol will mix no matter what the ratio is of water to ethyl alcohol. When two liquids mix with each other in any ratio, we say that the substances are "miscible." Some pairs of liquids will not mix with each other at all. For example, oil will not significantly dissolve in water, this is why we see oil floating on the top of water when oil spills occur. When two liquids will not mix with each other we say that the substances are "immiscible."
e) adult beverages
7.5) Label each of the following statements as true or false.
a) The solubility of a dissolved gas depends on both temperature and pressure.
b) Whenever a gas is present above a liquid, some of the gas will dissolve in the liquid.
c) The solubilities of most solids in water decrease as the temperature increases.
d) The solubilities of gases in water increase as the temperature increases.
e) The solubility of a gas increases as the partial pressure of that gas above the solution increases.
7.5) Label each of the following statements as true or false.
a) The solubility of a dissolved gas depends on both temperature and pressure.
b) Whenever a gas is present above a liquid, some of the gas will dissolve in the liquid.
c) The solubilities of most solids in water decrease as the temperature increases.
d) The solubilities of gases in water increase as the temperature increases.
e) The solubility of a gas increases as the partial pressure of that gas above the solution increases.

HINT: The information needed to answer these questions is given in chapter 7 part 2 video and chapter 7 section 3 in the textbook.
7.5) Label each of the following statements as true or false.
a) The solubility of a dissolved gas depends on both temperature and pressure. true
b) Whenever a gas is present above a liquid, some of the gas will dissolve in the liquid. true
c) The solubilities of most solids in water decrease as the temperature increases. false

- The solubilities of most solids in water increase as the temperature increases.
d) The solubilities of gases in water increase as the temperature increases. false
- The solubilities of gases in water decrease as the temperature increases.
e) The solubility of a gas increases as the partial pressure of that gas above the solution increases. true

$$
\text { For more details: See chapter } 7 \text { part } 2 \text { video or chapter } 7 \text { section } 3 \text { in the textbook. }
$$

Go back
7.6) Some ionic compounds dissolve to a significant extent in water; some do not. It is difficult to use theoretical methods to predict the extent to which an ionic compound will dissolve. It is therefore convenient to use "solubility rules" in order to know which ionic compounds will significantly dissolve in water.

Use the solubility rules table to determine which of the following compounds are water soluble.
a) potassium bromide
b) silver bromide
c) sodium sulfate
d) sodium hydroxide
e) copper(II) chromate
f) lead(II) hydroxide
g) iron(III) nitrate
h) copper(I) hydroxide

Solubility Rules Table

Water Soluble			
Compound	Example	Exceptions	Exception Example
Nitrates	NaNO_{3}	None	None
Chlorides, Bromides, and Iodides	NaCl	Compounds containing Ag^{+}, Pb^{2+}, or Hg^{+}, and HgI_{2}	AgCl
Sulfates	$\mathrm{K}_{2} \mathrm{SO}_{4}$	Compounds containing Pb^{2+}, $\mathrm{Sr}^{2+}, \mathrm{Ba}^{2+} \text {, or } \mathrm{Hg}^{+}$	PbSO_{4}
Water Insoluble			
Compound	Example	Exceptions	Exception Example(s)
Hydroxides	$\mathrm{Mg}(\mathrm{OH})_{2}$	Compounds containing alkali (Group I) metals or $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}$, $\mathrm{Ba}^{2+}, \mathrm{NH}_{4}{ }^{+}$	NaOH
Phosphates, Carbonates, and Chromates	FePO_{4}	Compounds containing alkali (Group I) metals or $\mathrm{NH}_{4}{ }^{+}$	$\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Li}_{3} \mathrm{PO}_{4}, \\ \mathrm{Na}_{2} \mathrm{CrO}_{4} \end{gathered}$

7.6) Some ionic compounds dissolve to a significant extent in water; some do not. It is difficult to use theoretical methods to predict the extent to which an ionic compound will dissolve. It is therefore convenient to use "solubility rules" in order to know which ionic compounds will significantly dissolve in water.

Use the solubility rules table to determine which of the following compounds are water soluble.
a) potassium bromide
b) silver bromide
c) sodium sulfate
d) sodium hydroxide
e) copper(II) chromate
f) lead(II) hydroxide
g) iron(III) nitrate
h) copper(I) hydroxide

Go back

7.6) Some ionic compounds dissolve to a significant extent in water; some do not. It is difficult to use theoretical methods to predict the extent to which an ionic compound will dissolve. It is therefore convenient to use "solubility rules" in order to know which ionic compounds will significantly dissolve in water.

Use the solubility rules table to determine which of the following compounds are water soluble.
a) potassium bromide water soluble
b) silver bromide water insoluble (Ag^{+}is an exception)
c) sodium sulfate water soluble
d) sodium hydroxide water soluble (sodium is in Group I)
e) copper(II) chromate water insoluble
f) lead(II) hydroxide water insoluble
g) iron(III) nitrate water soluble

Solubility Rules Table

Water Soluble			
Compound	Example	Exceptions	Exception Example
Nitrates	NaNO_{3}	None	None
Chlorides, Bromides, and Iodides	NaCl	Compounds containing Ag^{+}. Pb^{2+}, or Hg^{+}, and HgI_{2}	AgCl
Sulfates	$\mathrm{K}_{2} \mathrm{SO}_{4}$	Compounds containing Pb^{2+}, $\mathrm{Sr}^{2+}, \mathrm{Ba}^{2+} \text {, or } \mathrm{Hg}^{+}$	PbSO_{4}
Water Insoluble			
Compound	Example	Exceptions	Exception Example(s)
Hydroxides	$\mathrm{Mg}(\mathrm{OH})_{2}$	Compounds containing alkali (Group I) metals or $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}$, $\mathrm{Ba}^{2+}, \mathrm{NH}_{4}{ }^{+}$	NaOH
Phosphates, Carbonates and Chromates	FePO_{4}	Compounds containing alkali (Group I) metals or $\mathrm{NH}_{4}{ }^{+}$	$\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Li}_{3} \mathrm{PO}_{4}, \\ \mathrm{Na}_{2} \mathrm{CrO}_{4} \end{gathered}$

h) copper(I) hydroxide water insoluble

For more details: See chapter 7 part 2 video or chapter 7 section 3 in the textbook.
7.7) Determine if a precipitation reaction would occur when a silver nitrate solution is mixed with a magnesium bromide solution and, if a reaction does occur, write the balanced chemical equation.
7.7) Determine if a precipitation reaction would occur when a silver nitrate solution is mixed with a magnesium bromide solution and, if a reaction does occur, write the balanced chemical equation.

HINT:
 Method for Predicting if a Precipitation Reaction will Occur and Writing the Balanced Chemical Equation for Precipitation Reactions

Step 1: Write reactants and arrow for the chemical equations using word form (not formulas):
silver nitrate + magnesium bromide \rightarrow
Step 2: Add the "possible" products to the word equation by switching anions:
silver nitrate + magnesium bromide \rightarrow silver bromide + magnesium nitrate
Step 3: Convert the word equation to a formula equation.

Step 4: Balance the equation.

Step 5: Add the phases of the reactants and "possible" products to the equation.
For more help: See chapter 7 part 3 video or chapter 7 section 4 in the textbook.
7.7) Determine if a precipitation reaction would occur when a silver nitrate solution is mixed with a magnesium bromide solution and, if a reaction does occur, write the balanced chemical equation.

ANSWER: $2 \mathbf{A g N O}_{3}(a q)+\mathbf{M g B r} 2(a q) \rightarrow \mathbf{2} \mathbf{A g B r}(s)+\mathbf{M g}\left(\mathbf{N O}_{3}\right)_{2}(a q)$

Method for Predicting if a Precipitation Reaction will Occur and Writing the Balanced Chemical Equation for Precipitation Reactions:

Step 1: Write reactants and arrow for the chemical equations using word form (not formulas):
silver nitrate + magnesium bromide \rightarrow
Step 2: Add the "possible" products to the word equation by switching anions:
silver nitrate + magnesium bromide \rightarrow silver bromide + magnesium nitrate
Step 3: Convert the word equation to a formula equation:

$$
\mathbf{A g N O}_{3}+\mathbf{M g B r}_{2} \rightarrow \mathbf{A g B r}+\mathbf{M g}\left(\mathrm{NO}_{3}\right)_{2}
$$

Step 4: Balance the equation:

$$
2 \mathbf{A g N O}_{3}+\mathbf{M g B r}_{2} \rightarrow \mathbf{2} \mathbf{A g B r}+\mathbf{M g}\left(\mathrm{NO}_{3}\right)_{2}
$$

Step 5: Add the phases of the reactants and "possible" products to the equation.

$$
2 \mathbf{A g N O}_{3}(a q)+\mathbf{M g B r}_{2}(a q) \rightarrow \mathbf{2} \mathbf{A g B r}(s)+\mathbf{M g}\left(\mathbf{N O}_{3}\right)_{2}(a q)
$$

7.8) Determine if a precipitation reaction would occur when a aluminum bromide solution is mixed with a lithium phosphate solution and, if a reaction does occur, write the balanced chemical equation.
7.8) Determine if a precipitation reaction would occur when a aluminum bromide solution is mixed with a lithium phosphate solution and, if a reaction does occur, write the balanced chemical equation.

HINT:

Method for Predicting if a Precipitation Reaction will Occur and Writing the

 Balanced Chemical Equation for Precipitation ReactionsStep 1: Write reactants and arrow for the chemical equations using word form (not formulas).
aluminum bromide + lithium phosphate \rightarrow
Step 2: Add the "possible" products to the word equation by switching anions.

Step 3: Convert the word equation to a formula equation.

Step 4: Balance the equation.

Step 5: Add the phases of the reactants and "possible" products to the equation.

For more help: See chapter 7 part 3 video or chapter 7 section 4 in the textbook.

> | Click here to check |
| :---: |
| your answer |

7.8) Determine if a precipitation reaction would occur when a aluminum bromide solution is mixed with a lithium phosphate solution and, if a reaction does occur, write the balanced chemical equation.

ANSWER: $\operatorname{AlBr}_{3}(a q)+\mathbf{L i}_{3} \mathrm{PO}_{4}(a q) \rightarrow \operatorname{AlPO}_{4}(s)+\mathbf{3 L i B r}(a q)$

Method for Predicting if a Precipitation Reaction will Occur and Writing the Balanced Chemical Equation for Precipitation Reactions:

Step 1: Write reactants and arrow for the chemical equations using word form (not formulas):
aluminum bromide + lithium phosphate \rightarrow
Step 2: Add the "possible" products to the word equation by switching anions:
aluminum bromide + lithium phosphate \rightarrow aluminum phosphate + lithium bromide
Step 3: Convert the word equation to a formula equation:

$$
\mathrm{AlBr}_{3}+\mathrm{Li}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{AlPO}_{4}+\mathrm{LiBr}
$$

Step 4: Balance the equation:

$$
\mathrm{AlBr}_{3}+\mathrm{Li}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{AlPO}_{4}+\mathbf{3} \mathrm{LiBr}
$$

Step 5: Add the phases of the reactants and "possible" products to the equation.

$$
\operatorname{AlBr}_{3}(a q)+\mathbf{L i}_{3} \mathrm{PO}_{4}(a q) \rightarrow \mathrm{AlPO}_{4}(s)+3 \mathrm{LiBr}(a q)
$$

Go back
For more details: See chapter 7 part 3 video or chapter 7 section 4 in the textbook.
7.9) A gas producing double replacement reaction is a special type of double replacement in which a gas is produced. The gas producing double replacement reaction that is typically encountered in the health sciences field and, therefore the only gas producing reaction with which I would like you to be familiar, is the reaction of aqueous hydrogen monochloride ($\mathbf{H C l}$, also know as hydrochloric acid) and aqueous sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$.
In order for you to review this gas producing reaction, complete the chemical equation below by adding the three products of this reaction:

$$
\mathbf{H C l}(a q)+\mathbf{N a H C O} 3(a q) \rightarrow ? ?+?
$$

7.9) A gas producing double replacement reaction is a special type of double replacement in which a gas is produced. The gas producing double replacement reaction that is typically encountered in the health sciences field and, therefore the only gas producing reaction with which I would like you to be familiar, is the reaction of aqueous hydrogen monochloride $(\mathbf{H C l}$, also know as hydrochloric acid) and aqueous sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$.
In order for you to review this gas producing reaction, complete the chemical equation below by adding the three products of this reaction:

$$
\text { HINT: } \quad \mathbf{H C l}(a q)+\mathrm{NaHCO}_{3}(a q) \rightarrow \quad \mathbf{H}_{2} \mathrm{O}(l)+\square ? \mathbf{N a C l}(a q)
$$

For more help:

See chapter 7 part 4 video or chapter 7 section 4 in the textbook.

Go back
7.9) A gas producing double replacement reaction is a special type of double replacement in which a gas is produced. The gas producing double replacement reaction that is typically encountered in the health sciences field and, therefore the only gas producing reaction with which I would like you to be familiar, is the reaction of aqueous hydrogen monochloride $(\mathbf{H C l}$, also know as hydrochloric acid) and aqueous sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$.
In order for you to review this gas producing reaction, complete the chemical equation below by adding the three products of this reaction:

$$
\text { ANSWER: } \quad \mathbf{H C l}(a q)+\mathrm{NaHCO}_{3}(a q) \rightarrow \quad \mathbf{H}_{2} \mathbf{O}(l)+\mathbf{C O}_{2}(g)+\mathbf{N a C l}(a q)
$$

EXPLANATION:

double replacement: $\mathbf{H C l}(a q)+\mathbf{N a H C O}_{\mathbf{3}}(a q) \rightarrow: \mathbf{N H C O}(a q)+\mathbf{N a C l}(a q)$

Carbonic acid decomposes
to $\mathrm{H}_{2} \mathrm{O}(l)$ and $\mathrm{CO}_{2}(g)$.

$$
\mathbf{H C l}(a q)+\mathbf{N a H C O}_{3}(a q) \rightarrow\left[\begin{array}{cc}
\mathbf{H}_{2} \mathbf{O}(l)+\mathbf{C O} \\
\hline
\end{array}\right.
$$

For more details:
See chapter 7 part 4 video or chapter 7 section 4 in the textbook.

Gas Producing Double Replacement Reaction

7.10) List the following alcohols in order of increasing solubility in water (least soluble to most soluble).

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{OH}$
 hexanol

$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{OH}$ ethanol
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{OH}$
butanol

least soluble

\qquad
\qquad
\qquad
most soluble
7.10) List the following alcohols in order of increasing solubility in water (least soluble to most soluble).
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{OH}$
hexanol
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{OH}$ ethanol
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{OH}$
butanol

HINT:

Water molecules are attracted to alcohols and many other families of organic molecules through hydrogen bonding and/or dipole-dipole interactions.

- As the hydrocarbon part of various alcohol molecules gets larger, the water solubility decreases.
- As the hydrocarbon part of a molecule gets larger, London forces become more important (stronger), the molecule becomes less polar, and the organic molecules are more attracted to each other than they are to water molecules. When this occurs, it is lower in energy for the organic molecules to be surrounded by other organic molecules and therefore the water solubility drastically decreases.

For more help:
See chapter 7 part 5 video or chapter 7 section 5 in the textbook.

Go back
7.10) List the following alcohols in order of increasing solubility in water (least soluble to most soluble).
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{OH}$
hexanol
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{OH}$ ethanol
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{OH}$
butanol
least soluble
hexanol
butanol
ethanol
most soluble

EXPLANATION:

Water molecules are attracted to alcohols and many other families of organic molecules through hydrogen bonding and/or dipole-dipole interactions.

- As the hydrocarbon part of various alcohol molecules gets larger, the water solubility decreases.
- As the hydrocarbon part of a molecule gets larger, London forces become more important (stronger), the molecule becomes less polar, and the organic molecules are more attracted to each other than they are to water molecules. When this occurs, it is lower in energy for the organic molecules to be surrounded by other organic molecules and therefore the water solubility drastically decreases.

For more details:

See chapter 7 part 5 video or chapter 7 section 5 in the textbook.

Go back
7.11) List the following esters in order of increasing solubility in water (least soluble to most soluble).

methyl ethanoate
least soluble

 methyl butanoate
\square
7.11) List the following esters in order of increasing solubility in water (least soluble to most soluble).

methyl ethanoate

least soluble

butyl butanoate
 methyl butanoate

HINT:

Water molecules are attracted to esters and many other families of organic molecules through hydrogen bonding and/or dipole-dipole interactions. As the hydrocarbon parts of various esters molecules get larger, the water solubility decreases.

- As the hydrocarbon part of a molecule gets larger, London forces become more important (stronger), the molecule becomes less polar, and the organic molecules are more attracted to each other than they are to water molecules. When this occurs, it is lower in energy for the organic molecules to be surrounded by other organic molecules and therefore the water solubility drastically decreases.

For more help:

See chapter 7 part 5 video or chapter 7 section 5 in the textbook.
7.11) List the following esters in order of increasing solubility in water (least soluble to most soluble).

methyl ethanoate

 methyl butanoate

least soluble
butyl butanoate
methyl butanoate
methyl ethanoate
most soluble

EXPLANATION:

Water molecules are attracted to esters and many other families of organic molecules through hydrogen bonding and/or dipole-dipole interactions. As the hydrocarbon parts of various ester molecules get larger, the water solubility decreases.

- As the hydrocarbon part of a molecule gets larger, London forces become more important (stronger), the molecule becomes less polar, and the organic molecules are more attracted to each other than they are to water molecules. When this occurs, it is lower in energy for the organic molecules to be surrounded by other organic molecules and therefore the water solubility drastically decreases.

For more details:

See chapter 7 part 5 video or chapter 7 section 5 in the textbook.
7.12) Match each of the concentrations (on the left) with its description (on the right).
$\left(\frac{\text { moles of solute }}{\text { liters (L) of solution }}\right)$

Molarity
Molality
Osmolarity
Osmolality
$\left(\frac{\text { volume of solute }}{\text { volume of solution }}\right) \times 100$

$$
\left(\frac{\text { mass of solute }}{\text { mass of solution }}\right) \times 100
$$

$$
\left(\frac{\text { osmoles of solute }}{\mathrm{kg} \text { of } \text { solvent }}\right)
$$

$$
\left(\frac{\text { osmoles of solute }}{\text { liter (L) of solution }}\right)
$$

$$
\left(\frac{\text { grams of solute }}{\mathrm{mL} \text { of solution }}\right) \times 100
$$

$$
\left(\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}\right)
$$

Click here to check

 your answer7.12) Match each of the concentrations (on the left) with its description (on the right).

$\%(W / W)$

$$
\left(\frac{\text { volume of solute }}{\text { volume of solution }}\right) \times 100
$$

> \% (v/v)
\% (w/v)

$$
\left(\frac{\text { mass of solute }}{\text { mass of } \text { solution }}\right) \times 100
$$

$$
\left(\frac{\text { osmoles of solute }}{\mathrm{kg} \text { of solvent }}\right)
$$

7.12) Match each of the concentrations (on the left) with its description (on the right).

$$
\text { Molarity }=\left(\frac{\text { moles of solute }}{\text { liters (L) of solution }}\right)
$$

EXPLANATION: The term "concentration" refers to the amount of a solute in a solution.

The concentration of a solution is the numeric quantity of solute that is dissolved in a particular quantity of solution (or solvent).

As seen in this problem, there are several units of measure that are commonly used to report concentration. The descriptions here are the

$$
\text { Osmolality }=\left(\frac{\text { osmoles of solute }}{\mathrm{kg} \text { of solvent }}\right)
$$ definitions, written in equation form, for the concentration units of measure.

$$
\text { Osmolarity }=\left(\frac{\text { osmoles of solute }}{\text { liter (L) of solution }}\right)
$$

For more details:
See chapter 7 part 6 video, chapter 7 part 7 video, and chapter 7 part 8 video, or chapter 7 section 6

$$
\%(\mathrm{w} / \mathrm{v})=\left(\frac{\text { grams of solute }}{\mathrm{mL} \text { of } \text { solution }}\right) \times 100
$$ in the textbook.

$\%(\mathrm{v} / \mathrm{v})=\left(\frac{\text { volume of solute }}{\text { volume of solution }}\right) \times 100$

$$
\%(\mathrm{w} / \mathrm{w})=\left(\frac{\text { mass of solute }}{\text { mass of solution }}\right) \times 100
$$

$$
\text { Molality }=\left(\frac{\text { moles of } \text { solute }}{\mathrm{kg} \text { of } \text { solvent }}\right)
$$

Go back
7.13) 2.00 grams of acetone $\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)$ is dissolved in enough water to make 0.150 L of solution.
a) What is the molarity (M) of the solution?
b) How many moles of acetone are contained in 0.067 L of this acetone solution?
c) What volume (\mathbf{L}) of this acetone solution would contain 0.015 moles of acetone?
 Click here for a hint
7.13) 2.00 grams of acetone $\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)$ is dissolved in enough water to make 0.150 L of solution.
a) What is the molarity (\mathbf{M}) of the solution?

HINT for part (a):	molarity $=\left(\frac{\text { moles of solute }}{\text { liters }(\mathrm{L}) \text { of solution }}\right)=?$
	You were given the volume (L) of solution.
	How many moles of acetone $\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)$ are contained in 2.00 grams?

b) How many moles of acetone are contained in 0.067 L of this acetone solution?

HINT for parts (b) and (c): Because molarity is the relationship between moles of solute and liters of solution, we use it as a conversion factor to convert between liters of solution and moles of solute (glucose).

c) What volume (\mathbf{L}) of this acetone solution would contain 0.015 moles of acetone?
7.13) 2.00 grams of acetone $\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)$ is dissolved in enough water to make 0.150 L of solution.
a) What is the molarity (M) of the solution? ANSWER: $\mathbf{0 . 2 2 9}$ mole/L (or $\mathbf{0 . 2 2 9} \mathbf{~ M}$)
b) How many moles of acetone are contained in 0.067 L of this acetone solution? ANSWER: $\mathbf{0 . 0 1 5}$ moles $\mathbf{C}_{3} \mathbf{H}_{6} \mathbf{O}$
c) What volume (\mathbf{L}) of this acetone solution would contain 0.015 moles of acetone? ANSWER: 0.066 L

> | CLICK HERE to see the complete |
| :--- |
| $\underline{\text { solution for this problem }}$ |

7.13) 2.00 grams of acetone $\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)$ is dissolved in enough water to make 0.150 L of solution.
a) What is the molarity (M) of the solution? ANSWER: 0.229 mole/L (or $\mathbf{0 . 2 2 9} \mathbf{M}$)

$$
\begin{array}{c|c|c}
2.00 \text { grams } \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O} & 1{\text { mole } \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}}^{58.09 \text { grams } \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}} & =0.0344 \text { moles } \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O} \\
\text { molarity }= & \left.\left(\frac{\text { moles of solute }}{\text { liters (L) of solution }}\right)=\left[\frac{0.0344 \text { moles } \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}}{0.150 \text { L of solution }}\right)=\quad \mathbf{0 . 2 2 9} \text { mole/L (or } \mathbf{0 . 2 2 9} \mathbf{~ M}\right)
\end{array}
$$

b) How many moles of acetone are contained in 0.067 L of this acetone solution? ANSWER: $\mathbf{0 . 0 1 5}$ moles $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$

For parts (b) and (c): Because molarity is the relationship between moles of solute and liters of solution, we use it as a conversion factor to convert between liters of solution and moles of solute (glucose).

c) What volume (\mathbf{L}) of this acetone solution would contain 0.015 moles of acetone? ANSWER: 0.066 L

7.14) 5.75 grams of LiCl is dissolved in enough water to make 0.970 L of solution.
a) What is the molarity (M) of the solution?
b) How many moles of LiCl are contained in 0.010 L of this solution?
c) What volume (\mathbf{L}) of this solution would contain 0.0078 moles of LiCl ?
 Click here for a hint
7.14) 5.75 grams of LiCl is dissolved in enough water to make 0.970 L of solution.
a) What is the molarity (M) of the solution?

c) What volume (\mathbf{L}) of this solution would contain 0.0078 moles of LiCl ?
7.14) 5.75 grams of LiCl is dissolved in enough water to make 0.970 L of solution.
a) What is the molarity (M) of the solution? ANSWER: $\mathbf{0 . 1 4 0}$ mole/L (or $\mathbf{0 . 1 4 0} \mathbf{M}$)
b) How many moles of LiCl are contained in 0.010 L of this solution? ANSWER: $\mathbf{0 . 0 0 1 4} \mathbf{~ m o l e s ~} \mathrm{LiCl}$
c) What volume (\mathbf{L}) of this solution would contain 0.0078 moles of LiCl? ANSWER: 0.056 L

> CLICK HERE to see the complete solution for this problem
7.14) 5.75 grams of LiCl is dissolved in enough water to make 0.970 L of solution.
a) What is the molarity (M) of the solution? ANSWER: $\mathbf{0 . 1 4 0}$ mole/L (or $\mathbf{0 . 1 4 0} \mathbf{M}$)

$$
\text { molarity }=\left(\frac{\text { moles of solute }}{\text { liters }(\mathrm{L}) \text { of solution }}\right)=\left(\frac{0.136 \text { mole LiCl }}{0.970 \mathrm{~L} \text { of solution }}\right)=\mathbf{0 . 1 4 0} \mathrm{mole} / \mathrm{L}(\text { or } \mathbf{0 . 1 4 0} \mathbf{~ M})
$$

b) How many moles of LiCl are contained in 0.010 L of this solution? ANSWER: $\mathbf{0 . 0 0 1 4} \mathbf{~ m o l e s ~ L i C l ~}$

For parts (b) and (c): Because molarity is the relationship between moles of solute and liters of solution, we use it as a conversion factor to convert between liters of solution and moles of solute (and vice versa).

c) What volume (\mathbf{L}) of this solution would contain 0.0078 moles of LiCl? ANSWER: 0.056 L

Go back
7.15) 6.78 grams of magnesium chloride is dissolved in 1.37 kg of water.
a) What is chemical formula for magnesium chloride? \qquad
a) What is the molality (\boldsymbol{m}) of the solution?
7.15) 6.78 grams of magnesium chloride is dissolved in 1.37 kg of water.

a) What is the molality (\boldsymbol{m}) of the solution?

$$
\begin{array}{lc}
\hline \text { HINT: } & \text { molality }(\boldsymbol{m})=\left(\frac{\text { moles of solute }}{\text { kg of solvent }}\right)=? \\
& \text { You were given the kg of solvent. } \\
& \text { How many moles of magnesium chloride are contained in } 6.78 \text { grams? }
\end{array}
$$

7.15) 6.78 grams of magnesium chloride is dissolved in 1.37 kg of water.
a) What is chemical formula for magnesium chloride?
a) What is the molality (\boldsymbol{m}) of the solution? ANSWER: $0.0520 \mathrm{~mole} / \mathbf{k g}$ (or $\mathbf{0 . 0 5 2 0} \mathbf{m}$)

CLICK HERE to see the complete solution for this problem
7.15) 6.78 grams of magnesium chloride is dissolved in 1.37 kg of water.
a) What is chemical formula for magnesium chloride?
a) What is the molality (\boldsymbol{m}) of the solution? ANSWER: $0.0520 \mathrm{~mole} / \mathbf{k g}$ (or $\mathbf{0 . 0 5 2 0} \mathbf{m}$)

$$
\begin{aligned}
& \left.\begin{array}{l|c|}
6.78 \text { grams } \mathrm{MgCl}_{2} & 1 \text { mole } \mathrm{MgCl}_{2} \\
\hline & 95.21 \text { grams } \mathrm{MgCl}_{2}
\end{array} \right\rvert\,=0.0712 \text { mole } \mathrm{MgCl}_{2} \\
& \text { molality }=\left(\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}\right)=\left(\frac{0.0712 \mathrm{~mole} \mathrm{MgCl}_{2}}{1.37 \mathrm{~kg} \text { of solvent }}\right)=\mathbf{0 . 0 5 2 0} \mathrm{mole} / \mathrm{kg}(\text { or } 0.0520 \mathrm{~m})
\end{aligned}
$$

7.16) 11.5 grams of NaCl is dissolved in enough water to make 5.30 L of solution.
a) What is the osmolarity of the solution?
b) How many osmoles are contained in 2.00 L of this solution?
c) What volume (\mathbf{L}) of this solution would contain 3.50 osmoles?

Click here for a hint
7.16) 11.5 grams of NaCl is dissolved in enough water to make 5.30 L of solution.
a) What is the osmolarity of the solution?

HINT for part (a): \quad osmolarity $=\left(\frac{\text { osmoles of solute }}{\text { liters (L) of solution }}\right)=?$
You were given the volume (L) of solution.
Convert 11.5 grams of NaCl to moles of NaCl , then convert moles of NaCl to osmoles.

- An osmole is a mole of dissolved particles; how many osmoles are present for each mole of NaCl that dissolved?
b) How many osmoles are contained in 2.00 L of this solution?

HINT for parts (b) and (c): Because osmolarity is the relationship between osmoles of solute and liters of solution, we use it as a conversion factor to convert between liters of solution and osmoles of solute (and vice versa).

c) What volume (\mathbf{L}) of this solution would contain 3.50 osmoles?

Go back
7.16) 11.5 grams of NaCl is dissolved in enough water to make 5.30 L of solution.
a) What is the osmolarity of the solution? ANSWER: 0.0743 osmole/L (or 0.0743 osmolar)
b) How many osmoles are contained in 2.00 L of this solution? ANSWER: $\mathbf{0 . 1 4 9}$ osmoles
c) What volume (\mathbf{L}) of this solution would contain 3.50 osmoles? ANSWER: 47.1 L

CLICK HERE to see the complete
solution for this problem
7.16) 11.5 grams of NaCl is dissolved in enough water to make 5.30 L of solution.
a) What is the osmolarity of the solution? ANSWER: 0.0743 osmole/L (or 0.0743 osmolar)

| Determine the
 osmoles of $\mathrm{NaCl}:$ | 11.5 grams NaCl 1 mole NaCl | 2 osmoles |
| :--- | :---: | :---: |$=0.394$ osmole

One mole of NaCl dissociates into two moles of particles (one mole of Na^{+}and one mole of Cl^{-}) when placed in water. One mole of dissolved NaCl results in two osmoles. This relationship is used as a conversion factor to convert moles of NaCl to osmoles.

$$
\text { osmolarity } \left.=\left(\frac{\text { osmoles of solute }}{\text { liters (L) of solution }}\right)=\left(\frac{0.394 \text { osmoles } \mathrm{NaCl}}{5.30 \mathrm{~L} \text { of solution }}\right)=\mathbf{0 . 0 7 4 3} \text { osmole/L (or } \mathbf{0 . 0 7 4 3} \text { osmolar }\right)
$$

b) How many osmoles are contained in 2.00 L of this solution? ANSWER: $\mathbf{0 . 1 4 9}$ osmoles

c) What volume (\mathbf{L}) of this solution would contain 3.50 osmoles? ANSWER: 47.1 L

Go back
7.17) 1.38 grams of 2-propanol $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}\right)$ is dissolved in enough water to make 2.25 L of solution.
a) What is the osmolarity of the solution?
b) How many osmoles are contained in 600.0 mL of this solution?
c) What volume (\mathbf{L}) of this solution would contain 0.200 osmoles?

Click here for a hint
7.17) 1.38 grams of 2-propanol $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}\right)$ is dissolved in enough water to make 2.25 L of solution.
a) What is the osmolarity of the solution?

HINT for part (a): \quad osmolarity $=\left(\frac{\text { osmoles of solute }}{\text { liters (L) of solution }}\right)=$?
You were given the volume (L) of solution.
Convert 1.38 grams of $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ to moles of $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$, then convert moles of $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ to osmoles.

- An osmole is a mole of dissolved particles; how many osmoles are present for each mole of $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ that dissolved?
b) How many osmoles are contained in 600.0 mL of this solution?

HINT for parts (b) and (c): Because osmolarity is the relationship between osmoles of solute and liters of solution, we use it as a conversion factor to convert between liters of solution and osmoles of solute (and vice versa).

c) What volume (\mathbf{L}) of this solution would contain 0.200 osmoles?

Go back
7.17) 1.38 grams of 2-propanol $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}\right)$ is dissolved in enough water to make 2.25 L of solution.
a) What is the osmolarity of the solution? ANSWER: 0.0102 osmole/L (or 0.0102 osmolar)
b) How many osmoles are contained in $600.0 \mathbf{m L}$ of this solution? ANSWER: $\mathbf{0 . 0 0 6 1 2}$ osmoles
c) What volume (L) of this solution would contain 0.200 osmoles? ANSWER: 19.6 L

CLICK HERE to see the complete solution for this problem
7.17) 1.38 grams of 2-propanol $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}\right)$ is dissolved in enough water to make 2.25 L of solution.
a) What is the osmolarity of the solution? ANSWER: 0.0102 osmole/L (or 0.0102 osmolar)

$\begin{array}{l}\text { Determine the } \\ \text { osmoles of } \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}:\end{array}$	$\begin{array}{l}1.38 \text { grams } \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}\end{array}$	1 mole $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$	1 osmoles
	60.09 grams $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$	$\underbrace{1 \text { mole } \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}}$	

Because $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ is a molecule, it does not dissociate when it dissolves. One mole of dissolved $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ results in one mole of dissolved particles (one osmole). This relationship is used as a conversion factor to convert moles of $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ to osmoles.

$$
\text { osmolarity }=\left(\frac{\text { osmoles of solute }}{\text { liters (L) of solution }}\right)=\left(\frac{0.0230 \text { osmoles }}{2.25 \mathrm{~L} \text { of solution }}\right)=\mathbf{0 . 0 1 0 2} \text { osmole/L (or } \mathbf{0 . 0 1 0 2} \text { osmolar) }
$$

b) How many osmoles are contained in $600.0 \mathbf{m L}$ of this solution? ANSWER: $\mathbf{0 . 0 0 6 1 2}$ osmoles

c) What volume (L) of this solution would contain 0.200 osmoles? ANSWER: 19.6 L

7.18) 3.25 grams of MgCl_{2} is dissolved in enough water to make 10.0 L of solution. What is the osmolarity of the solution?
7.18) 3.25 grams of MgCl_{2} is dissolved in enough water to make 10.0 L of solution. What is the osmolarity of the solution?

HINT: \quad osmolarity $=\left(\frac{\text { osmoles of solute }}{\text { liters (L) of solution }}\right)=?$
You were given the volume (L) of solution.
Convert 3.25 grams of MgCl_{2} to moles of MgCl_{2}, then convert moles of MgCl_{2} to osmoles.

- An osmole is a mole of dissolved particles; how many osmoles are present for each mole of MgCl_{2} that dissolved?
7.18) 3.25 grams of MgCl_{2} is dissolved in enough water to make 10.0 L of solution. What is the osmolarity of the solution? ANSWER: 0.0102 osmole/L (or 0.0102 osmolar)

CLICK HERE to see the complete solution for this problem
7.18) 3.25 grams of MgCl_{2} is dissolved in enough water to make 10.0 L of solution. What is the osmolarity of the solution? ANSWER: 0.0102 osmole/L (or 0.0102 osmolar)

3.25 grams MgCl_{2}	1 mole MgCl_{2}	3 osmoles
	95.21 grams MgCl_{2}	$\underbrace{1 \text { mole } \mathrm{MgCl}_{2}}$

One mole of MgCl_{2} dissociates into three moles of particles when placed in water.

$$
\mathrm{MgCl}_{2} \rightarrow 1 \mathrm{Mg}^{2+}+2 \mathrm{Cl}^{-}
$$

One mole of dissolved MgCl_{2} results in three osmoles. This relationship is used as a conversion factor to convert moles of MgCl_{2} to osmoles.

$$
\text { osmolarity }=\left[\frac{\text { osmoles of solute }}{\text { liters (L) of solution }}\right)=\left(\frac{0.102 \text { osmoles }}{10.0 \mathrm{~L} \text { of solution }}\right)=\mathbf{0 . 0 1 0 2} \text { osmole/L (or } \mathbf{0 . 0 1 0 2} \text { osmolar) }
$$

7.19) A glucose solution is prepared by adding 1.47 grams of glucose to enough water to make 300.0 mL of solution.
a) What is the $\%(\mathbf{w} / \mathbf{v})$ of the solution?
b) How many grams are contained in $345 \mathbf{m L}$ of this solution?
c) What volume $(\mathbf{m L})$ of this solution would contain 0.0500 grams of glucose?

Click here for a hint
7.19) A glucose solution is prepared by adding 1.47 grams of glucose to enough water to make 300.0 mL of solution.
a) What is the $\%(\mathbf{w} / \mathbf{v})$ of the solution?

HINT for part (a): $\quad \mathbf{\%}(\mathbf{w} / \mathbf{v})=\left(\frac{\text { grams of solute }}{\text { mL of solution }}\right) \times 100 \%$
You were given the grams of solute (glucose) and mL of solution.
b) How many grams are contained in $345 \mathbf{m L}$ of this solution?

For parts (b) and (c): Because $\%(\mathbf{w} / \mathbf{v})$ is the grams of solute in 100 mL of solution, we use this relationship as a conversion factor to convert between mL of solution and grams of solute (and vice versa).

c) What volume $(\mathbf{m L})$ of this solution would contain 0.0500 grams of glucose?

Go back
7.19) A glucose solution is prepared by adding 1.47 grams of glucose to enough water to make 300.0 mL of solution.
a) What is the $\%(\mathbf{w} / \mathbf{v})$ of the solution? ANSWER: $\mathbf{0 . 4 9 0} \%(\mathbf{w} / \mathbf{v})$
b) How many grams are contained in 345 mL of this solution? ANSWER: 1.69 grams glucose
c) What volume ($\mathbf{m L}$) of this solution would contain 0.0500 grams of glucose? ANSWER: $\mathbf{1 0 . 2} \mathbf{~ m L}$

CLICK HERE to see the complete solution for this problem
7.19) A glucose solution is prepared by adding 1.47 grams of glucose to enough water to make 300.0 mL of solution.
a) What is the $\%(\mathbf{w} / \mathbf{v})$ of the solution? ANSWER: $\mathbf{0 . 4 9 0} \%(\mathbf{w} / \mathbf{v})$

$$
\mathbf{\% (\mathbf { w } / \mathbf { v })}=\left(\frac{\text { grams of solute }}{\mathrm{mL} \text { of solution }}\right) \times 100 \%=\left(\frac{1.47 \text { grams glucose }}{300 \mathrm{~mL} \text { of solution }}\right) \times 100 \%=\mathbf{0 . 4 9 0} \%(\mathbf{w} / \mathbf{v})
$$

b) How many grams are contained in 345 mL of this solution? ANSWER: 1.69 grams glucose

For parts (b) and (c): Because $\%(\mathbf{w} / \mathrm{v})$ is the grams of solute in 100 mL of solution, we use this relationship as a conversion factor to convert between mL of solution and grams of solute (and vice versa).

c) What volume $(\mathbf{m L})$ of this solution would contain 0.0500 grams of glucose? ANSWER: 10.2 mL

Go back
7.20) An ethanol solution is prepared by adding 25.0 grams of ethanol to 100.0 grams of water. What is the $\%(\mathrm{w} / \mathrm{w})$ concentration?
7.20) An ethanol solution is prepared by adding 25.0 grams of ethanol to 100.0 grams of water. What is the $\%(\mathrm{w} / \mathrm{w})$ concentration?

$$
\begin{aligned}
& \text { HINT: } \\
& \qquad \%(\mathbf{w} / \mathrm{v})=\left[\frac{\text { grams of solute }}{\text { grams of solution }}\right] \times 100 \%
\end{aligned}
$$

7.20) An ethanol solution is prepared by adding 25.0 grams of ethanol to 100.0 grams of water. What is the $\%(\mathrm{w} / \mathrm{w})$ concentration? ANSWER: 20.0 \%(w/w)

CLICK HERE to see the complete solution for this problem
7.20) An ethanol solution is prepared by adding 25.0 grams of ethanol to 100.0 grams of water. What is the $\%(\mathrm{w} / \mathrm{w})$ concentration? ANSWER: 20.0 \%(w/w)

$$
\mathbf{\%}(\mathbf{w} / \mathbf{v})=\left(\frac{\text { grams of solute }}{\text { grams of solution }}\right) \times 100 \%=(\underbrace{\frac{25.0 \text { grams glucose }}{125.0 \text { grams of solution }}}) \times 100 \%=\mathbf{2 0 . 0} \%(\mathbf{w} / \mathbf{w})
$$

A solution is a mixture. It contains both the solute and the solvent.
The mass of the solution in this problem is: $\mathbf{2 5 . 0} \mathbf{g}+\mathbf{1 0 0 . 0} \mathbf{g}=\mathbf{1 2 5 . 0} \mathbf{g}$
7.21) How many grams of AgNO_{3} are contained in 500.0 mL of a 0.100 M solution?

Click here for a hint
7.21) How many grams of AgNO_{3} are contained in 500.0 mL of a 0.100 M solution?

HINT:

7.21) How many grams of AgNO_{3} are contained in 500.0 mL of a 0.100 M solution?

ANSWER: 8.49 grams AgNO_{3}
CLICK HERE to see the complete solution for this problem

Go back
7.21) How many grams of AgNO_{3} are contained in 500.0 mL of a 0.100 M solution?

ANSWER: 8.49 grams $\mathbf{A g N O}_{3}$

7.22) 134.7 g of KCl is dissolved in enough water to make 1.2 L of solution.
a) What is the $\mathbf{E q} / \mathbf{L}$ concentration of potassium ions?

Note that you are looking for $\mathbf{E q}$ of \mathbf{K}^{+}ions only, not equivalents from Cl^{-}.
b) How many equivalents (Eq) of K^{+}are contained in $0.070 \mathbf{L}$ of this solution?
c) What volume (\mathbf{L}) of this solution would contain $3.5 \mathbf{E q}$ of \mathbf{K}^{+}?

Click here for a hint
7.22) 134.7 g of KCl is dissolved in enough water to make 1.2 L of solution.
a) What is the $\mathbf{E q} / \mathbf{L}$ concentration of potassium ions?

$$
\text { HINT for part (a): } \quad \mathbf{E q} / \mathrm{L}=\left(\frac{\mathrm{Eq} \text { of solute }}{\text { liters (L) of solution }}\right)=?
$$

You were given the volume (L) of solution.
Convert 134.7 grams of KCl to moles of KCl , then convert moles of KCl to $\mathbf{E q}$ of \mathbf{K}^{+}.

- One mole of dissolved KCl results in one mole of dissolved K^{+}ions and one mole of Cl^{-}ions. In this problem, we are only concerned with the K^{+}ions. Because K^{+}ions have a $1+$ charge, one mole of K^{+}ions is equal to one Eq. One mole of KCl contains one $\mathbf{E q}$ of K^{+}.
b) How many equivalents (Eq) of K^{+}are contained in $0.070 \mathbf{L}$ of this solution?

HINT for parts (b) and (c): Because Eq/L concentration is the relationship between $\mathbf{E q}$ of solute and liters of solution, we use it as a conversion factor to convert between liters of solution and $\mathbf{E q}$ of solute (and vice versa).

c) What volume (L) of this solution would contain $3.5 \mathbf{E q}$ of \mathbf{K}^{+}?

Go back
7.22) 134.7 g of KCl is dissolved in enough water to make 1.2 L of solution.
a) What is the $\mathbf{E q} / \mathbf{L}$ concentration of potassium ions? ANSWER: $1.5 \mathrm{Eq} / \mathrm{L}$
b) How many equivalents (Eq) of K^{+}are contained in 0.070 L of this solution? ANSWER: $0.11 \mathbf{E q ~ K}{ }^{+}$
c) What volume (L) of this solution would contain $3.5 \mathbf{E q}$ of \mathbf{K}^{+}? ANSWER: 2.3 L

7.22) 134.7 g of KCl is dissolved in enough water to make 1.2 L of solution.
a) What is the $\mathbf{E q} / \mathbf{L}$ concentration of potassium ions? ANSWER: $1.5 \mathrm{Eq} / \mathrm{L}$

Determine the $\boldsymbol{E q}$ of \mathbf{K}^{+}:

An equivalent $(\mathbf{E q})$ is defined as a mole of charge in solution. One mole of dissolved KCl results in one mole of dissolved K^{+} ions and one mole of Cl^{-}ions. In this problem, we are only concerned with the K^{+}ions. Because K^{+}ions have a $1+$ charge, one mole of K^{+}ions is equal to one $\mathbf{E q}$. One mole of KCl contains one $\mathbf{E q}$ of K^{+}.

$$
(\mathrm{Eq} / \mathrm{L})=\left(\frac{\mathrm{Eq} \text { of solute }}{\text { liters }(\mathrm{L}) \text { of solution }}\right)=\left(\frac{1.807 \mathrm{Eq} \mathrm{~K}^{+}}{1.2 \mathrm{~L} \text { of solution }}\right)=\mathbf{1 . 5 ~ E q} / \mathrm{L}
$$

b) How many equivalents (Eq) of K^{+}are contained in 0.070 L of this solution? ANSWER: $0.11 \mathrm{Eq} \mathrm{K}{ }^{+}$

For parts (b) and (c): Because $\mathbf{E q} / \mathbf{L}$ concentration is the relationship between $\mathbf{E q}$ of solute and liters of solution, we use it as a conversion factor to convert between liters of solution and $\mathbf{E q}$ of solute (and vice versa).

c) What volume (L) of this solution would contain $3.5 \mathbf{E q}$ of \mathbf{K}^{+}? ANSWER: 2.3 L

Go back

7.23) 0.500 grams of iron(III) sulfate is dissolved in enough water to make $75 \mathbf{m L}$ of solution.
a) What is the $\mathbf{E q} / \mathbf{L}$ concentration of sulfate ions?

Note that you are looking for $\mathbf{E q}$ of sulfate ions only, not equivalents from $\mathbf{F e}^{\mathbf{3 +}}$.
b) How many equivalents (Eq) of $\mathrm{SO}_{4}{ }^{2-}$ are contained in $7.80 \mathbf{L}$ of this solution?
c) What volume (\mathbf{L}) of this solution would contain $0.95 \mathbf{E q}$ of $\mathbf{S O}_{4}{ }^{2-}$?

Click here for a hint
7.23) 0.500 grams of iron(III) sulfate is dissolved in enough water to make $75 \mathbf{m L}$ of solution.
a) What is the $\mathbf{E q} / \mathbf{L}$ concentration of sulfate ions?

$$
\text { HINT for part (a): } \quad \mathbf{E q} / \mathrm{L}=\left(\frac{\mathrm{Eq} \text { of solute }}{\text { liters (L) of solution }}\right)=?
$$

You were given the volume (L) of solution.
Convert 0.500 grams of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ to moles of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$, then convert moles of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ to $\mathbf{E q}$ of $\mathrm{SO}_{4}{ }^{2-}$.

- How many $\mathbf{E q}$ of $\mathbf{S O}_{4}{ }^{2}$ are contained in one mole of dissolved $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$?
b) How many equivalents (Eq) of $\mathrm{SO}_{4}{ }^{2-}$ are contained in $7.80 \mathbf{L}$ of this solution?

HINT for parts (b) and (c): Because Eq/L concentration is the relationship between $\mathbf{E q}$ of solute and liters of solution, we use it as a conversion factor to convert between liters of solution and $\mathbf{E q}$ of solute (and vice versa).

c) What volume (L) of this solution would contain $0.95 \mathbf{E q}$ of $\mathbf{S O}_{\mathbf{4}^{2-}}{ }^{\mathbf{-}}$?

Go back
7.23) 0.500 grams of iron(III) sulfate is dissolved in enough water to make $75 \mathbf{m L}$ of solution.
a) What is the $\mathbf{E q} / \mathbf{L}$ concentration of sulfate ions? ANSWER: $0.10 \mathrm{Eq} \mathrm{SO} \mathbf{4}_{4}{ }^{2-} / \mathrm{L}$
b) How many equivalents (Eq) of $\mathrm{SO}_{4}{ }^{2-}$ are contained in $7.80 \mathbf{L}$ of this solution? ANSWER: $0.78 \mathbf{E q ~ S O} \mathbf{S}^{2-}$
c) What volume (\mathbf{L}) of this solution would contain $0.95 \mathbf{E q}$ of $\mathbf{S O}_{4}{ }^{2-}$? ANSWER: 9.5 L

7.23) 0.500 grams of iron(III) sulfate is dissolved in enough water to make $75 \mathbf{m L}$ of solution.
a) What is the $\mathbf{E q} / \mathbf{L}$ concentration of sulfate ions? ANSWER: $0.10 \mathrm{Eq} \mathrm{SO}_{4}{ }^{2-} / \mathrm{L}$

There are three sulfate ions in one mole of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$. Because each $\mathrm{SO}_{4}{ }^{2-}$

$$
\mathrm{Fe}_{2}\left(\mathbf{S O}_{4}\right)_{3}(s) \rightarrow 2 \mathrm{Fe}^{3+}(a q)+\underbrace{\mathbf{3 \mathbf { S O } _ { 4 } { } ^ { 2 - } (a q)}}_{\begin{array}{c}
\mathbf{6} \mathbf{~ E q} \\
\text { of } \mathbf{S O}_{4}{ }^{2-}
\end{array}}
$$

Determine the Eq of $\mathrm{SO}_{4}{ }^{2-}: \quad$| $0.500 \mathrm{~g} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ | 1 mole $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ | $6 \mathrm{Eq} \mathrm{SO}_{4}{ }^{2-}$ |
| :--- | :---: | :---: |
| | $399.91 \mathrm{~g} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ | $1 \mathrm{~mole} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ |$=0.00750 \mathrm{Eq} \mathrm{SO}_{4}{ }^{2-}$

$$
(\mathrm{Eq} / \mathrm{L})=\left(\frac{\mathrm{Eq} \text { of solute }}{\text { liters }(\mathrm{L}) \text { of solution }}\right)=\left(\frac{0.00750 \mathrm{Eq} \mathrm{SO}_{4}{ }^{2-}}{0.075 \mathrm{~L} \text { of solution }}\right)=0.10 \mathrm{Eq} \mathrm{SO}_{4}{ }^{2-} / \mathrm{L}
$$

b) How many equivalents (Eq) of $\mathrm{SO}_{4}{ }^{2-}$ are contained in 7.80 L of this solution? ANSWER: $0.78 \mathrm{Eq} \mathrm{SO} \mathbf{S}^{2-}$

For parts (b) and (c): Because $\mathbf{E q} / \mathbf{L}$ concentration is the relationship between $\mathbf{E q}$ of solute and liters of solution, we use it as a conversion factor to convert between liters of solution and $\mathbf{E q}$ of solute (and vice versa).

c) What volume (\mathbf{L}) of this solution would contain $0.95 \mathbf{E q}$ of $\mathbf{S O}_{4}{ }^{2-}$? ANSWER: 9.5 L

Go back

7.24) Predict whether each of the following biological compounds is hydrophilic or hydrophobic?
a)

Lycopene is a bright red carotenoid pigment and phytochemical found in tomatoes and some other red fruits and vegetables, such as red carrots, watermelons, and papayas.

Riboflavin, also known as vitamin B_{2}, is a vitamin found in food and used as a dietary supplement. Food sources include eggs, green vegetables, milk and other dairy product, meat, mushrooms, and almonds.
7.24) Predict whether each of the following biological compounds is hydrophilic or hydrophobic?
a)

Lycopene is a bright red carotenoid pigment and phytochemical found in tomatoes and some other red fruits and vegetables, such as red carrots, watermelons, and papayas.
b)

Riboflavin, also known as vitamin B_{2}, is a vitamin found in food and used as a dietary supplement. Food sources include eggs, green vegetables, milk and other dairy product, meat, mushrooms, and almonds.

HINT: Hydrophilic compounds dissolve in water. Compounds that are significantly polar and/or can hydrogen bond with water tend to be water soluble. As a general rule, molecules that have at least one polar functional group for every five carbon atoms are water soluble, and therefore classified as hydrophilic. You saw four polar functional groups in chapter 4: the hydroxyl group (-OH), the carbonyl group $(\mathrm{C}=\mathrm{O})$, the carboxyl group $(-\mathrm{COOH})$, and the carboxylate group (COO).

For more help:
Go back
See chapter 7 part 11 video or chapter 7 section 8 in the textbook.

Click here to check
 your answer

7.24) Predict whether each of the following biological compounds is hydrophilic or hydrophobic?
a)
)

hydrophobic

Lycopene is a bright red carotenoid pigment and phytochemical found in tomatoes and some other red fruits and vegetables, such as red carrots, watermelons, and papayas.

Riboflavin, also known as vitamin B_{2}, is a vitamin found in food and used as a dietary supplement. Food sources include eggs, green vegetables, milk and other dairy product, meat, mushrooms, and almonds.

hydrophilic

EXPLANATION: Hydrophilic compounds dissolve in water. Compounds that are significantly polar and/or can hydrogen bond with water tend to be water soluble. As a general rule, molecules that have at least one polar functional group for every five carbon atoms are water soluble, and therefore classified as hydrophilic. You saw four polar functional groups in chapter 4: the hydroxyl group $(-\mathrm{OH})$, the carbonyl group $(\mathrm{C}=\mathrm{O})$, the carboxyl group $(-\mathrm{COOH})$, and the carboxylate group (COO).

For more details:

Go back
7.25) The compound below is amphipathic.
a) Which end (left or right) of this compound would be most attracted to water?
b) Which end (left or right) of this compound would be most attracted to oil?
 Click here for a hint
7.25) The compound below is amphipathic.
a) Which end (left or right) of this compound would be most attracted to water?
b) Which end (left or right) of this compound would be most attracted to oil?

HINT: Amphipathic compounds have both a large nonpolar region, which is not strongly attracted to water, and an extremely polar and/or formally-charged region, which is quite strongly attracted to water.

For more help:

See chapter 7 part 11 video or chapter 7 section 8 in the textbook.

Click here to check
your answer
7.25) The compound below is amphipathic.
a) Which end (left or right) of this compound would be most attracted to water? right-hand end
b) Which end (left or right) of this compound would be most attracted to oil? left-hand end

EXPLANATION: Although lone pairs are not shown explicitly in skeletal structures, the oxygens do have lone pairs that can hydrogen bond with water. In addition, there is a formal charge on one of the the oxygens. Water molecules' dipoles are strongly attracted to the charged region of the compound through ion dipole interactions. Furthermore, there are two highly-polar carbon-oxygen bonds which are strongly attracted to water molecules. The region of an amphipathic compound that is attracted to water is called the polar "head." The left-hand end of the molecule is a nonpolar region that does not have significant attractive interactions with water, however this nonpolar region is strongly attracted to large nonpolar regions of other particles (such as oil).

Amphipathic compounds are often illustrated using a sphere for the polar head that is attached to one or more long tubular structures that represent the carbon chains in the nonpolar tail, as shown on the bottom of the figure.

For more details:

See chapter 7 part 11 video or chapter 7 section 8 in the textbook.
7.26) Soaps are amphipathic compounds. Which statement best describes them?
a) Soaps have a hydrophobic end which will attract nonpolar substances, such as oil on clothing.
b) Soaps are necessary for removing water soluble polar substances from skin or other objects to be cleaned.
c) Soaps dissolve best in polar solvents, which is why they can remove dirt.
d) Soaps cannot be attracted to either polar or nonpolar compounds.
7.26) Soaps are amphipathic compounds. Which statement best describes them?
a) Soaps have a hydrophobic end which will attract nonpolar substances, such as oil on clothing.

HINT: b) Soaps are neeessary for removing water soluble polar substances from skin or other objects to be eleaned.

- Soaps are not necessary for removing water soluble polar substances because water alone would do so.
c) Soaps dissolve best in polar solvents, which is why they can remove dirt.
d) Soaps cannot be attracted to either polar or nonpolar compounds.

For more help:
See chapter 7 part 11 video or chapter 7 section 8 in the textbook.
7.26) Soaps are amphipathic compounds. Which statement best describes them?
a) Soaps have a hydrophobic end which will attract nonpolar substances, such as oil on clothing.

BEST: - Soap forms micelles that encapsulate nonpolar substances within their nonpolar tail interiors. Micelles containing the oil can move into the rinse water and away from the object that is being washed.
b) Soaps are necessary for removing water soluble polar substances from skin or other objects to be cleaned.

- Soaps are not necessary for removing water soluble polar substances because water alone would do so.
c) Soaps dissolve best in polar solvents, which is why they can remove dirt.
- Soaps DO NOT dissolve, they form micelles that enable them to emulsify nonpolar substances.
d) Soaps cannot be attracted to either polar or nonpolar compounds.
- The "polar heads" of soaps are attracted to polar compounds. The "nonpolar tails" of soaps are attracted to nonpolar compounds.

For more details:

See chapter 7 part 11 video or chapter 7 section 8 in the textbook.
7.27) If 0.250 L of a 0.500 M solution is diluted to a final volume of 1.50 L , what is the final concentration?
7.27) If 0.250 L of a 0.500 M solution is diluted to a final volume of 1.50 L , what is the final concentration?

HINT: Recognize that this is a dilution problem. The dilution equation must be used.

For more help:

See chapter 7 part 12 video or chapter 7 section 9 in the textbook.
7.27) If 0.250 L of a 0.500 M solution is diluted to a final volume of 1.50 L , what is the final concentration?

ANSWER: 0.0833 M

CLICK HERE to see the complete solution for this problem

Go back
7.27) If 0.250 L of a 0.500 M solution is diluted to a final volume of 1.50 L , what is the final concentration?

EXPLANATION: Recognize that this is a dilution problem.

The dilution equation must be used: $\quad \mathrm{M}_{1} \bullet \mathrm{~V}_{1}=\mathrm{M}_{2} \bullet \mathrm{~V}_{2}$
$\mathbf{V}_{1}, \mathbf{M}_{1}$, and \mathbf{V}_{2} are given; solve for $\mathbf{M}_{2}: \quad \frac{\mathbf{M}_{1} \bullet \mathrm{~V}_{1}}{\mathbf{V}_{2}}=\mathbf{M}_{2}$

$$
\mathrm{M}_{2}=\frac{\mathrm{M}_{1} \bullet \mathrm{~V}_{1}}{\mathrm{~V}_{2}}=\frac{(0.500 \mathrm{M})(0.250 \mathrm{D})}{(1.50 \mathrm{D})}=0.0833 \mathrm{M}
$$

For more details:

See chapter 7 part 12 video or chapter 7 section 9 in the textbook.
7.28) What volume of a 0.500 M solution should be diluted in order to obtain 2.00 L of a 0.100 M solution?
7.28) What volume of a 0.500 M solution should be diluted in order to obtain 2.00 L of a 0.100 M solution?

HINT: Recognize that this is a dilution problem. The dilution equation must be used.

For more help:

See chapter 7 part 12 video or chapter 7 section 9 in the textbook.
7.28) What volume of a 0.500 M solution should be diluted in order to obtain 2.00 L of a 0.100 M solution?

ANSWER: 0.400 L

CLICK HERE to see the complete solution for this problem

Go back
7.28) What volume of a 0.500 M solution should be diluted in order to obtain 2.00 L of a 0.100 M solution?

EXPLANATION: Recognize that this is a dilution problem.

The dilution equation must be used: $\quad \mathrm{M}_{1} \bullet \mathrm{~V}_{1}=\mathrm{M}_{2} \bullet \mathrm{~V}_{2}$

$$
\mathbf{M}_{1}, \mathbf{V}_{2} \text {, and } \mathbf{M}_{2} \text { are given; solve for } \mathbf{V}_{\mathbf{1}}: \quad \mathrm{V}_{1}=\frac{\mathrm{M}_{2} \bullet \mathrm{~V}_{2}}{\mathrm{M}_{1}}
$$

$$
\mathrm{V}_{1}=\frac{(0.100 \mathrm{M})(2.00 \mathrm{~L})}{(0.500 \mathrm{M})}=0.400 \mathrm{~L}
$$

For more details:

See chapter 7 part 12 video or chapter 7 section 9 in the textbook.
7.29) When particles that are larger than typical molecules or ions are put into another medium, typically water, the resulting mixture is classified as either a colloid or a suspension. Describe the difference between a colloid and a suspension.
7.29) When particles that are larger than typical molecules or ions are put into another medium, typically water, the resulting mixture is classified as either a colloid or a suspension. Describe the difference between a colloid and a suspension.

HINT: Consider the effect that gravity has on colloids vs. suspensions.

For more help:
See chapter 7 part 13 video or chapter 7 section 10 in the textbook.
7.29) When particles that are larger than typical molecules or ions are put into another medium, typically water, the resulting mixture is classified as either a colloid or a suspension. Describe the difference between a colloid and a suspension.

EXPLANATION:

In colloids, the dispersed particles (colloidal particles) are small enough that they do not settle to the bottom of their container. Conversely, in suspensions, the solid particles are large enough that gravity causes them to settle to the bottom of their container unless the mixture is repeatedly or constantly stirred or shaken.

For more details:
See chapter 7 part 13 video or chapter 7 section 10 in the textbook.
7.30) Diffusion is defined as the net transport of a substance, due to Brownian motion, from
a) one side of a membrane to another.
b) within an evenly dispersed mixture to the bottom of the container.
c) a region of lesser concentration of the substance to a region of greater concentration of the substance.
d) a region of greater concentration of the substance to a region of lesser concentration of the substance.
7.30) Diffusion is defined as the net transport of a substance, due to Brownian motion, from

HINT: a) one side of a membrane to another.

b) within an evenly dispersed mixture to the bottom of the container.
c) a region of lesser concentration of the substance to a region of greater concentration of the substance.
d) a region of greater concentration of the substance to a region of lesser concentration of the substance.

For more help:

See chapter 7 part 14 video or chapter 7 section 11 in the textbook.
7.30) Diffusion is defined as the net transport of a substance, due to Brownian motion, from
a) one side of a membrane to another.
b) within an evenly dispersed mixture to the bottom of the container.
c) a region of lesser concentration of the substance to a region of greater concentration of the substance.
d) a region of greater concentration of the substance to a region of lesser concentration of the substance.

EXPLANATION: In the diffusion process, substances will spontaneously move from an area of greater concentration (of the particular substance) to lesser concentration until it is evenly distributed.

For more details:
See chapter 7 part 14 video or chapter 7 section 11 in the textbook.
7.31) In this course, we will only discuss osmosis for aqueous solutions such as biological systems, therefore for our purposes, osmosis is the net transport of water molecules from a solution with a lesser solute particle concentration through a semipermeable membrane to a solution with a greater solute particle concentration.
Osmosis is very important in biology because cell membranes are semipermeable. The difference in solute particle concentration (osmolarity) between the inside of the cell and the surrounding solution has important implications in maintaining the viability of the cell. Match each of the three terms (on the left), with its description for the solution that surrounds a cell (on the right):

hypertonic solution

There is a lesser solute particle concentration outside the cell than inside the cell, and there is a net flow of water from the outside to the inside of the cell. This results in the swelling and possible bursting of the cell.
hypotonic solution

> The concentration of solute particles is the same on the inside and outside of the cell, therefore the flow of water in and out of the cell are equal and the cell maintains it natural and healthy (viable) shape.

```
isotonic solution
```

There is a greater solute particle concentration outside the cell than inside of the cell, so there is a net flow of water from the inside to the outside of the cell. This results in the shrinking of the cell.
7.31) In this course, we will only discuss osmosis for aqueous solutions such as biological systems, therefore for our purposes, osmosis is the net transport of water molecules from a solution with a lesser solute particle concentration through a semipermeable membrane to a solution with a greater solute particle concentration.
Osmosis is very important in biology because cell membranes are semipermeable. The difference in solute particle concentration (osmolarity) between the inside of the cell and the surrounding solution has important implications in maintaining the viability of the cell. Match each of the three terms (on the left), with its description for the solution that surrounds a cell (on the right):

hypertonic solution

There is a lesser solute particle concentration outside the cell than inside the cell, and there is a net flow of water from the outside to the inside of the cell. This results in the swelling and possible bursting of the cell.

The concentration of solute particles is the same on the inside and outside of the cell, therefore the flow of water in and out of the cell are equal and the cell maintains it natural and healthy (viable) shape.

There is a greater solute particle concentration outside the cell than inside of the cell, so there is a net flow of water from the inside to the outside of the cell. This results in the shrinking of the cell.
For more help:
See chapter 7 part 14 video or
Go back chapter 7 section 11 in the textbook.
7.31) In this course, we will only discuss osmosis for aqueous solutions such as biological systems, therefore for our purposes, osmosis is the net transport of water molecules from a solution with a lesser solute particle concentration through a semipermeable membrane to a solution with a greater solute particle concentration.
Osmosis is very important in biology because cell membranes are semipermeable. The difference in solute particle concentration (osmolarity) between the inside of the cell and the surrounding solution has important implications in maintaining the viability of the cell. Match each of the three terms (on the left), with its description for the solution that surrounds a cell (on the right):

There is a lesser solute particle concentration outside the cell than inside the cell, and there is a net flow of water from the outside to the inside of the cell. This results in the swelling and possible bursting of the cell.

The concentration of solute particles is the same on the inside and outside of the cell, therefore the flow of water in and out of the cell are equal and the cell maintains it natural and healthy (viable) shape.

There is a greater solute particle concentration outside the cell than inside of the cell, so there is a net flow of water from the inside to the outside of the cell. This results in the shrinking of the cell.

For more details:
See chapter 7 part 14 video or chapter 7 section 11 in the textbook.
7.32) Consider a container that is divided by a semipermeable membrane. A sodium chloride (NaCl) solution is placed in the chamber on left-hand side of the membrane and an equal volume of pure water is placed in the chamber on the right-hand side of the membrane (as illustrated BELOW). At this point, osmosis begins. Will osmotic pressure cause the water level to rise on the left-hand side or the right-hand side of the membrane?

```
Initial State:
Equal amounts of liquid are placed on
    opposite sides of a membrane.
Saltwater on one side and pure water
            on the other side.
```


$=\mathrm{H}_{2} \mathrm{O}$ molecule
$=\mathbf{N a}^{+}$ion
$=\mathbf{C l}^{-}$ion
Go back
7.32) Consider a container that is divided by a semipermeable membrane. A sodium chloride (NaCl) solution is placed in the chamber on left-hand side of the membrane and an equal volume of pure water is placed in the chamber on the right-hand side of the membrane (as illustrated BELOW). At this point, osmosis begins. Will osmotic pressure cause the water level to rise on the left-hand side or the right-hand side of the membrane?

HINT:

Because of osmosis, there is a net transport of water molecules from the solution with a lesser solute particle concentration (pure water in this scenario), through the membrane, and into the solution with a greater solute particle concentration. This results in the level of the water column rising on one side of the membrane and falling on the other side.

The water levels will continue to change until the pressure caused from the difference in water column heights (osmotic pressure) on each side of the membrane equalizes the transport of water molecules between each side of the membrane.

For more help:
See chapter 7 part 14 video or chapter 7 section 11 in the textbook.
your answer
7.32) Consider a container that is divided by a semipermeable membrane. A sodium chloride (NaCl) solution is placed in the chamber on left-hand side of the membrane and an equal volume of pure water is placed in the chamber on the right-hand side of the membrane (as illustrated BELOW). At this point, osmosis begins. Will osmotic pressure cause the water level to rise on the left-hand side or the right-hand side of the membrane?

ANSWER: Osmotic pressure cause the water level rise on the left-hand side of the membrane.

EXPLANATION:

There is a net transport of water molecules from the solution with a lesser solute particle concentration (pure water in this scenario), through the membrane, and into the solution with a greater solute particle concentration. This results in the level of the water column rising on the left-hand side of the membrane and falling on the right-hand side.

For more details:
See chapter 7 part 14 video or chapter 7 section 11 in the textbook.
7.33 Which of the following scenarios would have a greater osmotic pressure?
a) 0.250 M lithium bromide on one side of a semipermeable membrane and pure water on the other side.
b) 0.500 M lithium bromide on one side of a semipermeable membrane and pure water on the other side.
7.33 Which of the following scenarios would have a greater osmotic pressure?
a) 0.250 M lithium bromide on one side of a semipermeable membrane and pure water on the other side.
b) 0.500 M lithium bromide on one side of a semipermeable membrane and pure water on the other side.

HINT:

The greater the difference in osmolarity between each side of the semipermeable membrane, the greater the osmotic pressure.

For more help:

See chapter 7 part 14 video or chapter 7 section 11 in the textbook.
7.33 Which of the following scenarios would have a greater osmotic pressure?
a) 0.250 M lithium bromide on one side of a semipermeable membrane and pure water on the other side.
b) 0.500 M lithium bromide on one side of a semipermeable membrane and pure water on the other side.

EXPLANATION:

The greater the difference in osmolarity between each side of the semipermeable membrane, the greater the osmotic pressure.
Scenario (a) has a difference in osmolarity between each side of the membrane of $\mathbf{0 . 5 0 0}$ osmoles/L.

- Each mole of dissolved LiBr results in two osmoles. The LiBr solution has a molarity of 0.250 moles $/ \mathrm{L}$, so its osmolarity is $\mathbf{0 . 5 0 0}$ osmoles/L.
- Pure water has an osmolarity $=$ ZERO

Scenario (b) has a difference in osmolarity between each side of the membrane of $\mathbf{1 . 0 0} \mathbf{0 s m o l e s} / \mathbf{L}$.

- The LiBr solution has a molarity of 0.500 moles/L, so its osmolarity is $\mathbf{1 . 0 0}$ osmoles/L
- Pure water has an osmolarity $=$ ZERO

Scenario (b) has a greater difference in osmolarity, it therefore has a greater osmotic pressure.
7.34 Which of the following scenarios would have a greater osmotic pressure?
a) 0.500 M lithium chloride on one side of a semipermeable membrane and pure water on the other side.
b) 0.250 M aluminum sulfate on one side of a semipermeable membrane and pure water on the other side.
7.34 Which of the following scenarios would have a greater osmotic pressure?
a) 0.500 M lithium chloride on one side of a semipermeable membrane and pure water on the other side.
b) 0.250 M aluminum sulfate on one side of a semipermeable membrane and pure water on the other side.

HINT:

The greater the difference in osmolarity between each side of the semipermeable membrane, the greater the osmotic pressure.

For more help:
See chapter 7 part 14 video or chapter 7 section 11 in the textbook.
7.34 Which of the following scenarios would have a greater osmotic pressure?
a) 0.500 M lithium chloride on one side of a semipermeable membrane and pure water on the other side.
b) 0.250 M aluminum sulfate on one side of a semipermeable membrane and pure water on the other side.

EXPLANATION:

The greater the difference in osmolarity between each side of the semipermeable membrane, the greater the osmotic pressure.
Scenario (a) has a difference in osmolarity between each side of the membrane of $\mathbf{1 . 0 0}$ osmoles/L.

- Each mole of dissolved LiCl results in two osmoles. The LiCl solution has a molarity of $0.500 \mathrm{moles} / \mathrm{L}$, so its osmolarity is $\mathbf{1 . 0 0}$ osmoles/L.
- Pure water has an osmolarity $=$ ZERO

Scenario (b) has a difference in osmolarity between each side of the membrane of $\mathbf{1 . 2 5}$ osmoles/L.

- Each mole of dissolved $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ results in five osmoles (two osmoles of Al^{3+} and three osmoles of $\mathrm{SO}_{4}{ }^{2-}$). The $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ solution has a molarity of 0.250 moles/L, so its osmolarity is $\mathbf{1 . 2 5} \mathbf{~ o s m o l e s} / \mathbf{L}$.
- Pure water has an osmolarity $=$ ZERO

Scenario (b) has a greater difference in osmolarity, it therefore has a greater osmotic pressure.

For more details:
See chapter 7 part 14 video or chapter 7 section 11 in the textbook.

This is the last problem.
© 2019 Jim Zoval

