Cálculo Numérico

Faculdade de Engenharia, Arquiteturas e Urbanismo – FEAU

Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia)

IV -Interpolação Numérica

Objetivos: O objetivo desta aula é apresentar a interpolação polinomial como forma de se obter uma aproximação para uma função f(x) que descreve um conjunto de dados. Veremos 3 metodologias para encontrar os polinômios. Inicialmente, utilizaremos o método de eliminação de Gauss (visto no capítulo III) para resolver o sistema de equações desejado obtido a partir da matriz de Vandermonde.

No final da aula veremos duas outras metodologias propostas para obter uma aproximação polinomial para uma função f(x): o método de Lagrange e o método de Newton.

1. Introdução

Consideremos a tabela abaixo contendo uma lista de valores pra o calor especifico de um dado material em função de sua temperatura:

temperatura (°C)	20	25	30	35	40	45	50
calor específico	0.99907	0.99852	0.99826	0.99818	0.99828	0.99849	0.99878

Suponhamos que se queira calcular:

- i) o calor específico da água a 32.5ºC;
- ii) a temperatura para a qual o calor específico é 0.99837.

A interpolação nos ajuda a resolver este tipo de problema.

Interpolar uma função f(x) consiste em aproximar essa função por uma outra função g(x), escolhida entre uma classe de funções definida *a priori* e que satisfaça algumas propriedades. A função g(x) é então usada em substituição à função f(x).

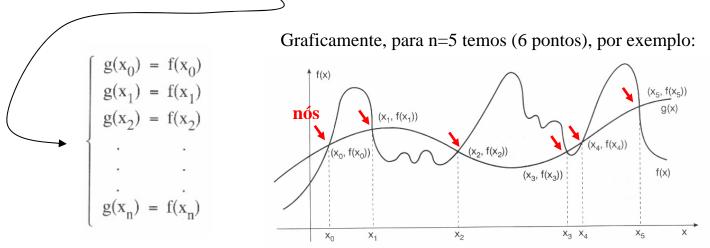
A necessidade de se efetuar esta substituição surge em várias situações, como por exemplo:

- quando são conhecidos somente os valores numéricos da função para um conjunto de pontos e é necessário calcular o valor da função em um ponto não tabelado (como é o caso do exemplo anterior);
- duando a função em estudo tem uma expressão tal que operações como a diferenciação e a integração são difíceis (ou mesmo impossíveis) de serem realizadas.

2. O conceito de interpolação numérica

Consideremos (n + 1) pontos distintos: x_0 , x_1 ,..., x_n , chamados nós da interpolação, e os valores de f(x) nesses pontos: $f(x_0)$, $f(x_1)$,..., $f(x_n)$.

A forma de interpolação de f(x) que veremos a seguir consiste em se obter uma determinada função g(x) tal que:



Obs: Nos nós da interpolação as funções f(x) e g(x) assumem os mesmos valores!

Durante essa aula consideraremos que g(x) pertence a classe das funções polinomiais embora existam outras formas de interpolação como utilizando funções trigonométricas, expansão por series, etc.

3. A interpolação polinomial

Dados os pontos $(x_0, f(x_0))$, $(x_1, f(x_1))$,..., $(x_n, f(x_n))$, portanto (n+1) pontos, queremos aproximar f(x) por um polinômio $p_n(x)$, de grau menor ou igual a n, tal que:

$$f(x_k) = p_n(x_k) \qquad k = 0,1,2,..., n$$

$$P_2(x) = \text{parábola} \rightarrow \text{interpola 3 pontos}$$

$$P_2(x') \qquad P_1(x') \qquad P_1(x) = \text{reta} \rightarrow \text{interpola 2 pontos}$$

Surgem aqui as perguntas: existe sempre um polinômio $p_n(x)$ que satisfaça estas condições? Caso exista, ele é único?

Representaremos $p_n(x)$ por:

$$p_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n.$$

Portanto, obter $p_n(x)$ significa obter os coeficientes a_0 , a_1 ,..., a_n .

Da condição $p_n(x_k) = f(x_k)$, $\forall k = 0, 1, 2,..., n$, montamos o seguinte sistema linear:

$$\begin{cases} a_0 + a_1 x_0 + a_2 x_0^2 + \dots + a_n x_0^n = f(x_0) \\ a_0 + a_1 x_1 + a_2 x_1^2 + \dots + a_n x_1^n = f(x_1) \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ a_0 + a_1 x_n + a_2 x_n^2 + \dots + a_n x_n^n = f(x_n) \end{cases}$$

com n + 1 equações e n + 1 variáveis: a₀, a₁,..., a_n.

Na notação matricial temos $\mathbf{V} \times \mathbf{a} = \mathbf{f}$, onde

$$\mathbf{V} = \begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{pmatrix} \quad , \qquad \mathbf{a} = \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ \vdots \\ a_n \end{pmatrix} \qquad \mathbf{e} \qquad \mathbf{f} = \begin{pmatrix} f(x_0) \\ f(x_1) \\ f(x_2) \\ \vdots \\ f(x_n) \end{pmatrix}$$

A matriz V é uma **matriz de Vandermonde** e, portanto desde que x_0 , x_1 , x_2 ,, x_n sejam pontos distintos temos **det** (V)=0. Portanto, o sistema acima admite solução única. A matriz coluna a é a matriz das incógnitas e a matriz coluna f é a das constantes $f(x_i)=y_i$

Demonstramos, assim, o seguinte teorema:

TEOREMA 1

Existe um único polinômio $p_n(x)$, de grau \leq n, tal que: $p_n(x_k) = f(x_k)$, k = 0, 1, 2, ..., n desde que $x_k \neq x_j$, $j \neq k$.

Conforme acabamos de ver, o polinômio $p_n(x)$ que interpola f(x) em x_0 , x_1 ,..., x_n é único. No entanto, existem várias formas para se obter tal polinômio. Uma das formas é a resolução do sistema linear obtido anteriormente. Estudaremos ainda as formas de Lagrange e de Newton.

Teoricamente as três formas conduzem ao mesmo polinômio. A escolha entre elas depende de condições como estabilidade do sistema linear, tempo computacional etc.

3.1. Interpolação linear

Sejam dois pares ordenados (x_0, y_0) e (x_1, y_1) , com $x_0 \neq x_1$, de uma função y = f(x). Para obtermos uma aproximação de f(x), $x \in (x_0, x_1)$ faz-se a seguinte aproximação:

$$f(x) \approx P_1(x) = a_0 + a_1 x$$

onde $P_1(x)$ é um polinônimo interpolador de 1^a ordem, (grau 1). Impondo que o polinômio interpolador passe pelos dois pares ordenados, temos o seguinte sistema de equações lineares de 2^a ordem:

$$P_1(x_0) = y_0 P_1(x_1) = y_1$$
 $\rightarrow \begin{cases} a_0 + a_1 x_0 = y_0 a_0 + a_1 x_1 = y_1 \end{cases}$

ou reescrevendo na forma matricial temos:

$$\left[\begin{array}{cc} 1 & x_0 \\ 1 & x_1 \end{array}\right] \left[\begin{array}{c} a_0 \\ a_1 \end{array}\right] = \left[\begin{array}{c} y_0 \\ y_1 \end{array}\right]$$

Transformando o sistema linear acima em um sistema triangular equivalente, temos:

$$\begin{bmatrix} 1 & x_0 & y_0 \\ 1 & x_1 & y_1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & x_0 & y_0 \\ 0 & x_1 - x_0 & y_1 - y_0 \end{bmatrix} \longrightarrow \begin{bmatrix} a_0 & + & x_0 a_1 & = & y_0 \\ & & (x_1 - x_0) & a_1 & = & y_1 - y_0 \end{bmatrix}$$

Cuja solução é dada por:

$$a_1 = \frac{y_1 - y_0}{x_1 - x_0}$$
 e $a_0 = y_0 - a_1 x_0$

Logo o polinômio interpolador pode ser escrito da seguinte forma:

$$P_1(x) = a_0 + a_1 x = (y_0 - a_1 x_0) + a_1 x = y_0 + a_1 (x - x_0)$$

ou de forma mais apropriada:

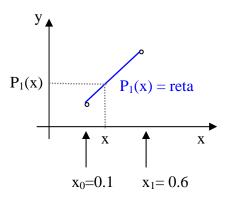
$$P_1(x) = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0)$$
(4.1)

Como o determinante da matriz do sistema linear acima é igual a $x_1 - x_0 \neq 0$, então o sistema admite uma única solução, isto é, por dois pontos passa um único polinômio interpolador de 1ª ordem, ou grau 1.

Exemplo 1

Calcular $P_1(0.2)$ e $P_1(0.3)$ a partir dos pontos abaixo:

i	0	1
x_i	0.1	0.6
y_i	1.221	3.320



$$P_1(x) = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0)$$

Nesse caso a formula geral será:

$$P_1(x) = 1.221 + \frac{3.320 - 1.221}{0.6 - 0.1} (x - 0.1) = 1.221 + 4.198 x$$

Então para os pontos 0.2 e 0.3 teremos as os valores do polinômio abaixo:

$$P_1(0.2) = 1.221 + \frac{3.320 - 1.221}{0.6 - 0.1}(0.2 - 0.1) \rightarrow P_1(0.2) = 1.641$$

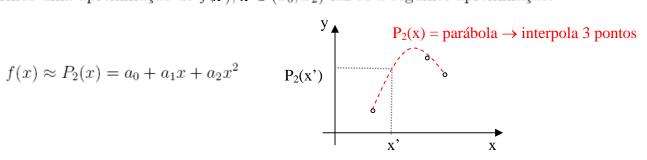
$$P_1(0.3) = 1.221 + \frac{3.320 - 1.221}{0.6 - 0.1}(0.3 - 0.1) \rightarrow P_1(0.3) = 2.061$$

$$P_1(0.3) = 1.221 + \frac{3.320 - 1.221}{0.6 - 0.1} (0.3 - 0.1) \rightarrow P_1(0.3) = 2.061$$

3.2. Interpolação quadrática

Sejam três pares ordenados (x_0, y_0) , (x_1, y_1) e (x_2, y_2) , com x_i distintos, de uma função y = f(x). Para obtermos uma aproximação de $f(\mathbf{x}')$, $\mathbf{x}' \in (x_0, x_2)$ faz-se a seguinte aproximação:

$$f(x) \approx P_2(x) = a_0 + a_1 x + a_2 x^2$$



onde $P_2(x)$ é um polinômio interpolador de 2^a ordem, ou grau 2. Impondo que o polinômio interpolador passe pelos três pares ordenados, temos o seguinte sistema de equações lineares de 3^a ordem:

$$P_2(x_0) = y_0 P_2(x_1) = y_1 \rightarrow \begin{cases} a_0 + a_1 x_0 + a_2 x_0^2 = y_0 a_0 + a_1 x_1 + a_2 x_1^2 = y_1 a_0 + a_1 x_1 + a_2 x_1^2 = y_1 a_0 + a_1 x_2 + a_2 x_2^2 = y_2 \end{cases}$$

ou reescrevendo na forma matricial temos:

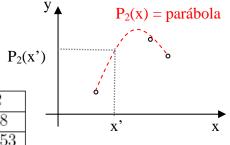
$$\begin{bmatrix} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \end{bmatrix}$$

O sistema de equações lineares admite uma única solução, pois o $Det(X) = (x_2 - x_0)(x_2 - x_1)(x_1 - x_0) \neq 0$. Desta forma, pelos três pares ordenados passa um único polinômio interpolador de 2^a grau. Este fato pode ser generalizado, dizendo-se que por n+1 pontos passa um único polinômio de grau n.

Obs. Para encontrarmos os coeficientes a_i temos que resolver esse sistema de equações. Podemos por exemplo utilizar o método direto de eliminação de Gauss (triangularizar a matriz sanduíche) ou adotar métodos iterativos para resolver esse sistema de equações como, por exemplo, os métodos de Gauss-Jacobi e o de Gauss-Seidel.

Exemplo 2

Determinar $P_2(0.2)$ usando os dados da tabela abaixo:



i	0	1	2
x_i	0.1	0.6	0.8
y_i	1.221	3.320	4.953

Os coeficientes do polinômio interpolador são determinados pela solução do sistema linear

$$\begin{array}{c} P_2(x_i) = f(x_i) = y_i \\ a_0 \times 1 + a_1 \times 0.1 + a_2 \times 0.1^2 = 1.221 \\ a_0 \times 1 + a_1 \times 0.6 + a_2 \times 0.6^2 = 3.320 \\ a_0 \times 1 + a_1 \times 0.8 + a_2 \times 0.8^2 = 4.953 \end{array} \qquad \qquad \qquad \qquad \qquad \begin{bmatrix} 1 & 0.1 & 0.1^2 \\ 1 & 0.6 & 0.6^2 \\ 1 & 0.8 & 0.8^2 \end{bmatrix}. \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 1.221 \\ 3.320 \\ 4.953 \end{bmatrix}$$

Resolvendo o sistema acima pelo método de Gauss temos o seguinte sistema triangular inferior:

Para a primeira etapa de eliminação temos $m_{21}=1$ e $m_{31}=1$, então:

Para a segunda etapa de eliminação temos m_{32} =0.5/0.7 = 0.714, então:

Resolvendo o sistema de baixo para cima temos:

$$a_2 = 5.667$$
; $a_1 = 0.231$ $a_0 = 1.141$

Dessa forma o polinômio $P_2(x)$ terá a seguinte forma:

$$P_2(x) = 1.141 + 0.231x + 5.667x^2$$

Calculando $P_2(0.2)$ encontramos:

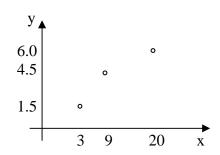
$$P_2(0.2) = 1.141 + 0.231(0.2) + 5.667(0.2)^2 = 1.414$$

Obs. Encontrar um polinômio interpolador a partir da resolução de um sistema de equações para ordens maiores do que a estudada acima pode ser muito trabalhoso. Iremos aprender a seguir, duas metodologias (de Lagrange e de Newton) para encontrarmos os polinômios interpoladores de qualquer ordem sem termos que resolver sistemas de equações.

Exercício 1

A) Encontre o polinômio interpolador de ordem 2 (Parábola) que ajusta os pontos abaixo utilizando o método de eliminação de Gauss para triangularizar o sistema de equações. Dica: Faça $P_2(x_i)=f(x_i)=y_i$ em cada ponto i e depois triangularize a matriz sanduíche do sistema para achar os coeficientes a_0 , a_1 e a_2 do polinômio.

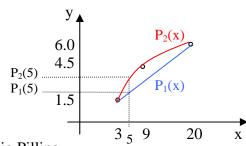
i	0	1	2
x_i	3	9	20
$F(xi)=y_i$	1.5	4.5	6.0



- **B**) Calcule o valor de $P_2(5)$.
- C) Encontre o polinômio interpolador de ordem 1 (reta) que ajusta os 1° e 3° pares de pontos da tabela do item A. Dica: Faça $P_1(x_i)=f(x_i)=y_i$ em cada ponto i e depois triangularize a matriz sanduíche do sistema para achar os coeficientes a_0 e a_1 do polinômio.
- **D**) Calcule o valor de $P_1(5)$ e verifique se este valor é maior ou menor do que $P_2(5)$ obtido no item B.

Respostas:

- A) $P_2(x) = -0.5778 + 0.7566x 0.0214x^2$; B) $P_2(5) = 2.672$;
- C) $P_1(x)=0.7059+0.2647x$; D) $P_1(5)=2.0294 < P_2(5)$



Exercício 2

Encontre o $P_2(x)$ que ajusta os pontos abaixo. Dica: Faça $P_2(x_i)=f(x_i)=y_i$ em cada ponto i e depois triangularize a matriz sanduíche do sistema para achar os coeficientes a_0 , a_1 e a_2 do polinômio.

i	0	1	2
x_i	1	2	5
$F(xi)=y_i$	12	4	9

Exercício 3

Encontre o $P_3(x)$ que ajusta os pontos abaixo. Dica: Faça $P_3(x_i)=f(x_i)=y_i$ em cada ponto i e depois triangularize a matriz sanduíche do sistema para achar os coeficientes a_0 , a_1 , a_2 e a_3 do polinômio.

i		1	2	<i>3</i>
x_i	1	2	4	5
$F(xi)=y_i$	12	4	8	9

4. Forma de Lagrange

Sejam x_0 , x_1 ,..., x_n , (n+1) pontos distintos e $y_i = f(x_i)$, i = 0, ..., n.

Seja $p_n(x)$ o polinômio de grau \leq n que interpola f em $x_0,...,x_n$. Podemos representar $p_n(x)$ na forma $p_n(x) = y_0L_0(x) + y_1L_1(x) + ... + y_nL_n(x)$, onde os polinômios $L_k(x)$ são de grau n. Para cada i, queremos que a condição $p_n(x_i) = y_i$ seja satisfeita, ou seja:

$$p_n(x_i) = y_0 L_0(x_i) + y_1 L_1(x_i) + ... + y_n L_n(x_i) = y_i.$$

De maneira compacta, podemos escrever a forma de Lagrange para o polinomio interpolador como:

$$p_n(x) = \sum_{k=0}^{n} f(x_k) L_k(x)$$

onde $L_k(x)$ são os fatores de Lagrange e são dados por:

$$L_k(x) = \prod_{\substack{J=0\\J\neq k}}^n (x-x_j) \, / \, \prod_{\substack{J=0\\J\neq k}}^n (x_k-x_j) = \quad \frac{(x-x_0)\,(x-x_1)\,\,\dots\,\,(x-x_{k-1})\,(x-x_{k+1})\,\,\dots\,\,(x-x_n)}{(x_k-x_0)\,(x_k-x_1)\,\,\dots\,\,(x_k-x_{k-1})\,(x_k-x_{k+1})\,\,\dots\,\,(x_k-x_n)}$$

Exercício 4 ————

Calcule o valor dos somatórios e produtórios abaixo:

a)
$$\sum_{J=0}^{4} (2-j)$$
 b) $\sum_{J=0}^{4} (2-j)$ c) $\prod_{J=0}^{4} (2-j)$ d) $\prod_{J=0}^{4} (2-j)$ $\prod_{J\neq 2} (2-j)$

Exemplo 3

Considere a tabela de dados ao lado:

Pela forma de Lagrange, temos que:

$$p_2(x) = y_0 L_0(x) + y_1 L_1(x) + y_2 L_2(x),$$
 onde:

$$L_0(x) = \frac{(x-x_1) \ (x-x_2)}{(x_0-x_1) \ (x_0-x_2)} = \frac{(x-0) \ (x-2)}{(-1-0) \ (-1-2)} = \frac{x^2-2x}{3}$$

$$L_1(x) = \frac{(x-x_0) \ (x-x_2)}{(x_1-x_0) \ (x_1-x_2)} = \frac{(x+1) \ (x-2)}{(0+1) \ (0-2)} = \frac{x^2-x-2}{-2} \qquad \begin{array}{c} \\ \hline \\ \hline \end{array} \qquad \begin{array}{c} \\ \\ \hline \end{array} \qquad \begin{array}{c} \\ \\ \end{array} \end{array} \qquad \begin{array}{c} \\ \\ \end{array} \qquad \begin{array}{c} \\ \\ \end{array} \qquad \begin{array}{c} \\ \\ \end{array} \end{array} \qquad \begin{array}{c} \\ \\ \end{array} \end{array} \qquad \begin{array}{c} \\ \\ \end{array} \qquad \begin{array}{c} \\ \\ \end{array} \end{array} \qquad \begin{array}{c} \\ \\ \end{array} \qquad \begin{array}{c} \\ \\ \end{array} \qquad \begin{array}{c} \\ \\ \end{array} \end{array} \qquad \begin{array}{c} \\ \\ \end{array} \qquad \begin{array}{c} \\ \\ \end{array} \qquad \begin{array}{c} \\ \\ \end{array} \end{array} \qquad \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \qquad \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \qquad \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c$$

$$L_2(x) = \frac{(x-x_0) (x-x_1)}{(x_2-x_0) (x_2-x_1)} = \frac{(x+1) (x-0)}{(2+1) (2-0)} = \frac{x^2+x}{6}.$$

$$\frac{n=2}{k=2} \xrightarrow{k=2} \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}$$

Assim, na forma de Lagrange,

Macete: Escrevemos primeiro os termos do produtório de j=0→n e depois desconsideramos os termos i=k

$$\begin{array}{c|c}
 & n=2 \\
\hline
 & k=0 \\
\hline
 & (x - x_1)(x - x_2) \\
\hline
 & (x_0 - x_1)(x_0 - x_2)
\end{array}$$

$$\xrightarrow{n=2} (x - x_0)(x - x_1)$$

$$(x_2 - x_0)(x_2 - x_1)$$

 $\mathbf{x_1}$

29

1.1

X

 \mathbf{X}_{2}

3.5

90

$$p_2(x) = 4\left(\frac{x^2 - 2x}{3}\right) + 1\left(\frac{x^2 - x - 2}{-2}\right) + (-1)\left(\frac{x^2 + x}{6}\right).$$

$$y_0 = f(x_0) \qquad y_1 = f(x_1) \qquad y_2 = f(x_2)$$

Agrupando os termos semelhantes, obtemos que $p_2(x) = 1 - \frac{7}{3}x + \frac{2}{3}x^2$,

Exercício 5

Considere a tabela de dados experimentais ao lado:

Escreva o polinômio interpolador de Lagrange de ordem 2 para esse conjunto de pontos. Calcule $P_2(1.5)$ e $P_2(2.5)$.

Dica:
$$P_2(x) = f(x_0)L_0(x) + f(x_1)L_1(x) + f(x_2)L_2(x);$$
 $L_k(x) = \prod_{\substack{J=0 \ J=0}}^{2} (x-x_j) / \prod_{\substack{J=0 \ J\neq k}}^{2} (x_k-x_j)$

Exercício 6

Considerando um função do tipo $f(x)=5x + \ln(x+1)$, escreva o polinômio interpolador de Lagrange de ordem 3 passando que passa pelos pontos x=1, 2, 3 e 4. Calcule $P_3(1.1)$ e $P_3(1.2)$.

Dica:
$$f(1)=5.69$$
; $f(2)$;= 11.09; $f(3)=16.38$; $f(4)=21.60$
 $P_3(x)=f(x_0)L_0(x)+f(x_1)L_1(x)+f(x_2)L_2(x)+f(x_3)L_3(x)$;

onde
$$\mathbf{L_k}(\mathbf{x}) = \prod_{\substack{J=0 \ J \neq k}}^{3} (\mathbf{x} - \mathbf{x_j}) / \prod_{\substack{J=0 \ J \neq k}}^{3} (\mathbf{x_k} - \mathbf{x_j})$$

IV – Interpolação Numérica – Cálculo Numérico – Prof. Dr. Sergio Pilling

ALGORITMO Algoritmo do Polinômio de Lagrange Dados iniciais: m, x, y, z (nr de pontos, abscissas, ordenadas, valor a interpolar) r=0; Para i=1 até m Faça c=1; d=1; Para j=1 até m Faça Se i^=j Então Faça c=c*(z-x(j)); d=d*(x(i)-x(j)); Fim Se Fim Para r=r+y(i)*c/d; Fim Para Mostrar (0 valor de z interpolado é r);

5. Forma de Newton

A forma de Newton para o polinômio $p_n(x)$ que interpola f(x) em $x_0, x_1, ..., x_n$, (n + 1) pontos distintos é a seguinte:

$$p_n(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots + f[x_0, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1})$$

onde o termo $\mathbf{f}[\mathbf{x}_i]$ é conhecido como **OPERADOR DIFERENCAS DIVIDADAS**. Este operador é definido a a partir das operações listadas abaixo para certa função f(x) tabelada em n+1 pontos distintos $(x_0, x_1, x_2, ...x_n)$:

$$f[x_i] \equiv f(x_i) \qquad e \qquad f[x_0\,,\,x_1\,,\,x_2\,,\,\dots,\,x_n] = \frac{f[x_1\,,\,x_2\,,\,\dots,\,x_n] - f[x_0\,,\,x_1\,,\,x_2\,,\,\dots,\,x_{n-1}]}{x_n\,-\,x_0} \qquad (\text{Ordem } n)$$

$$f[x_0] = f(x_0) \qquad (Ordem \ Zero)$$

$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \qquad (Ordem \ 1)$$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} \qquad (Ordem \ 2)$$

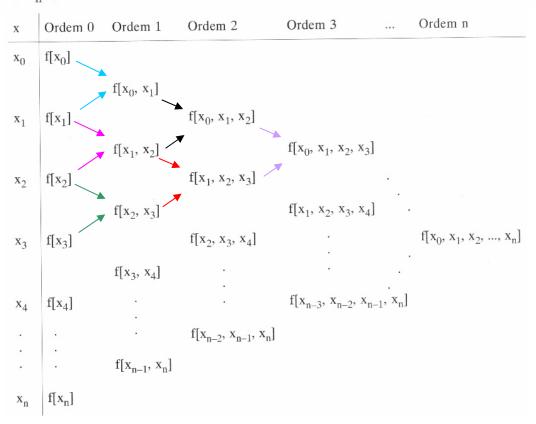
$$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0} \qquad (Ordem \ 3)$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$f[x_0, x_1, x_2, \dots, x_n] = \frac{f[x_1, x_2, \dots, x_n] - f[x_0, x_1, x_2, \dots, x_{n-1}]}{x_n - x_0} \qquad (Ordem \ n)$$

Dizemos que $f[x_0, x_1, ..., x_k]$ é a diferença dividida de ordem k da função f(x) sobre os k+1 pontos: $x_0, x_1, ..., x_k$.

Dada uma função f(x) e conhecidos os valores que f(x) assume nos pontos distintos $x_0, x_1, ..., x_n$, podemos construir a tabela:



Exemplo 4

Usando a forma de Newton, polinômio $P_2(x)$ que interpola f(x) nos pontos dados ao lado é:

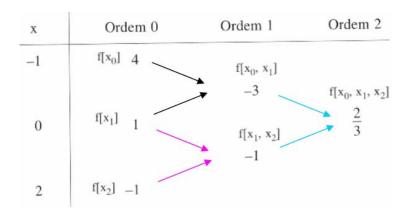
	\mathbf{x}_0	\mathbf{x}_1	\mathbf{x}_2
x	-1	0	2
f(x)	4	1	-1

$$p_2(x) = f[x_0] + (x - x_0) \ f[x_0, x_1] + (x - x_0) \ (x - x_1) \ f[x_0, x_1, x_2].$$

Calculando as diferenças divididas pela formula geral

$$f[x_i] \equiv f(x_i) \qquad e \qquad f[x_0\,,\,x_1\,,x_2\,,\dots,\,x_n] = \frac{f[x_1\,,\,x_2\,,\dots,\,x_n] - f[x_0\,,\,x_1\,,\,x_2\,,\dots,\,x_{n-1}]}{x_n\,-\,x_0} \qquad (\text{Ordem } n)$$

construímos a tabela das diferenças divididas abaixo



e posteriormente reescrevemos facilmente o polinômio interpolador em sua forma final:

$$p_2(x) = 4 + (x + 1)(-3) + (x + 1)(x - 0) \frac{2}{3}$$
 ou $p_2(x) = \frac{2}{3}x^2 - \frac{7}{3}x + 1$

Exemplo 5 Seja o conjunto de pontos ao lado:

	\mathbf{x}_0	\mathbf{x}_1	\mathbf{X}_2	\mathbf{x}_3	\mathbf{X}_{4}
X	-1	0	1	2	3
			0		-2

Utilizando a definição das diferenças divididas escrevemos a tabela das diferenças divididas:

$$f[x_0]=f(x_0)=1$$

$$f[x_0^-, x_1^-] = \frac{f[x_1^-] - f[x_0^-]}{x_1^- - x_0^-} = \frac{1 - 1}{1} = 0$$

$$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1} = \frac{0 - 1}{1 - 0} = \boxed{-1}$$

$$f[x_0\,,x_1\,,x_2]\,=\,\frac{f[x_1\,,x_2]\,-\,f[x_0\,,x_1]}{x_2\,-\,x_0}\,=\,\frac{-\,1\,\,-\,0}{1\,\,+\,\,1}\,=\!\frac{-1}{2}$$

$$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1} = \frac{-1 + 1}{2 - 0} = 0$$

x
 Ordem 0
 Ordem 1
 Ordem 2
 Ordem 3
 Ordem 4

 -1
 1

$$0$$
 $-\frac{1}{2}$
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

$$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0} = \frac{0 + 1/2}{2 + 1} = \frac{1}{6}$$

Com a tabela das diferenças divididas encontramos facilmente qualquer polinômio interpolador $P_n(x)$ onde $n \le 4$ que ajusta os pontos do exercício.

ALGORITMO Algoritmo do Polinômio de Newton Dados iniciais: m, x, y, z (nr de pontos, abscissas, ordenadas, valor a interpolar) r=0; Para i=1 até m Faça dely(i)=y(i); Fim Para Para k=1 até m-1 Faça Para i=m até k+1 Passo -1 Faça dely(i)=(dely(i)-dely(i-1))/(x(i)-x(i-k)); Fim Para Fim Para Fim Para r=dely(m); Para i=m-1 Até 1 Passo -1 Faça r=r*(z-x(i))+dely(i); Fim Para Mostrar (0 valor de z interpolado é r);

Exercício 7

Considere a tabela de dados experimentais ao lado:

Escreva o polinômio interpolador de Newton de ordem 2 para esse conjunto de pontos. Calcule $P_2(1.5)$ e $P_2(2.5)$.

Dica:
$$P_2(x) = f[x_0] + (x - x_0) f[x_0,x_1] + (x - x_0) (x - x_1) f[x_0,x_1,x_2]$$

onde
$$f[x_0] = f(x_0)$$
;

$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = \frac{\frac{f(x_1) - f(x_0)}{x_1 - x_0}}{\frac{x_2 - x_1}{x_2 - x_0}}$$

Exercício 8

Considerando uma função do tipo $f(x)=5x + \ln(x+1)$, escreva o polinômio interpolador de Newton de ordem 3 passando que passa pelos pontos x=1, 2, 3 e 4. Calcule $P_3(1.1)$ e $P_3(1.2)$.

Dica:
$$f(1)=5.69$$
; $f(2)$;= 11.09; $f(3)=16.38$; $f(4)=21.60$
 $P_3(x) = f[x_0] + (x - x_0) f[x_0,x_1] + (x - x_0) (x - x_1) f[x_0,x_1,x_2] + (x - x_0) (x - x_1) (x - x_2) f[x_0,x_1,x_2,x_3]$

onde
$$f[x_0] = f(x_0)$$

$$f[x_{0}, x_{1}] = \frac{f[x_{1}] - f[x_{0}]}{x_{1} - x_{0}} = \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}$$

$$f[x_{0}, x_{1}, x_{2}] = \frac{f[x_{1}, x_{2}] - f[x_{0}, x_{1}]}{x_{2} - x_{0}} = \frac{\frac{f(x_{2}) - f(x_{1})}{x_{2} - x_{1}} - \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}}{x_{2} - x_{0}}$$

$$f[x_{0}, x_{1}, x_{2}, x_{3}] = \frac{f[x_{1}, x_{2}, x_{3}] - f[x_{0}, x_{1}, x_{2}]}{x_{3} - x_{0}} = \frac{\frac{f(x_{3}) - f(x_{2})}{x_{3} - x_{0}} - \frac{f(x_{2}) - f(x_{1})}{x_{2} - x_{1}} - \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}}{\frac{x_{2} - x_{1}}{x_{2} - x_{0}}} = \frac{\frac{f(x_{3}) - f(x_{2})}{x_{3} - x_{0}} - \frac{f(x_{2}) - f(x_{1})}{x_{2} - x_{0}} - \frac{f(x_{1}) - f(x_{0})}{x_{2} - x_{0}}}{\frac{x_{2} - x_{0}}{x_{3} - x_{0}}}$$

6. Estudo do Erro na interpolação

Derivada de função no ponto $\xi_x \in (x_0, x_n)$ de ordem n+1

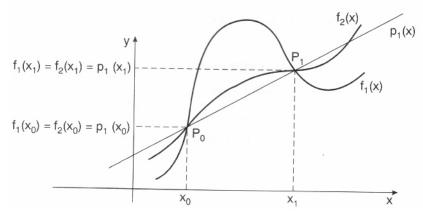
Ao se aproximar uma função f(x) por um polinômio interpolador de grau n. comete-se um erro $E_n(x)$ tal que seu valor estimado é:

$$E_n(x) = f(x) - p_n(x) = (x - x_0)(x - x_1)(x - x_2) \dots (x - x_n) \underbrace{f^{(n+1)}(\xi_x)}_{(n+1)!}$$

O exemplo abaixo ilustra este fato no caso da interpolação linear:

Exemplo 6

Consideremos duas funções $f_1(x)$ e $f_2(x)$ que se encontram nos nós P_0 e P_1 .



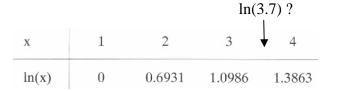
Nesse caso é possível encontrar um mesmo polinômio interpolador $p_1(x)$ – uma reta – para ajustar ambas as funções.

Contudo, o erro
$$E_1^1(x) = f_1(x) - p_1(x)$$
 é maior que $E_1^2(x) = f_2(x) - p_1(x)$, $\forall x \in (x_0, x_1)$.

Observamos ainda que o erro, neste caso, depende da concavidade das curvas, ou seja, de $f_1''(x)$ e $f_2''(x)$.

Exemplo 7

Consideremos o problema de se obter $\ln(3.7)$ por interpolação linear, onde $\ln(x)$ está tabelado ao lado: $\ln(x)$ 0 0.6931 1.



Como $x = 3.7 \in (3, 4)$, escolheremos $x_0 = 3$ e $x_1 = 4$ e pela forma de Newton, temos:

$$p_1(x) = f(x_0) + (x - x_0)f[x_0, x_1] = 1.0986 + (x - 3) \frac{(1.3863 - 1.0986)}{4 - 3}$$

$$p_1(x) = 1.0986 + (x - 3)(0.2877) \implies p_1(3.7) = 1.300.$$

Dado que, com quatro casas decimais ln(3.7) = 1.3083, o erro cometido é $E_1(3.7) = \ln(3.7) - p_1(3.7) = 1.3083 - 1.3 = 0.0083 = 8.3 \times 10^{-3}.$

Exemplo 8

Considere a função $f(x) = e^x + x$ -1 e a tabela dada abaixo. Obtenha $p_1(0.7)$ por interpolação linear e faça uma análise do erro cometido.

X	0	0.5	1	1.5	2.0
f(x)	0.0	1.1487	2.7183	4.9811	8.3890

Obtenção de p_1 (0.7).

$$\begin{aligned} &p_1(x) = f(x_0) + (x - x_0)f[x_0, x_1]. \\ &x = 0.7 \in (0.5, 1), \text{ então } x_0 = 0.5 \text{ e } x_1 = 1 \\ &p_1(x) = 1.1487 + (x - 0.5) \left(\frac{2.7183 - 1.1487}{1 - 0.5}\right) = 1.1487 + (x - 0.5)3.1392 \\ &p_1(0.7) = 1.7765. \end{aligned}$$

O calculo do erro devido a esse processo de interpolação dará:

$$|E_1(0.7)| = |f(0.7) - p_1(0.7)| = |1.7137 - 1.7765| = |-0.0628| = 0.0628.$$

OBS. Limitante para o Erro (Leitura Opcional)

A fórmula para o erro

$$E_{n}(x) = (x - x_{0})(x - x_{1}) \dots (x - x_{n}) \frac{f^{(n+1)}(\xi_{x})}{(n+1)!}, \quad \xi_{x} \in (x_{0}, x_{n})$$

tem uso limitado na prática, dado que serão raras as situações em que conheceremos $f^{(n+1)}(x)$, e o ponto ξ_x nunca é conhecido.

A importância da fórmula exata para E_n(x) é teórica, uma vez que é usada na obtenção das estimativas de erro para as fórmulas de interpolação, diferenciação e integração numérica.

Na pratica uma estimativa para o erro é dada pela expressão abaixo:

$$|E_n(x)| = |f(x) - p_n(x)| \le |(x - x_0)(x - x_1)...(x - x_n)| \frac{M_{n+1}}{(n+1)!}$$

onde
$$M_{n+1} = \max_{x \in I} | f^{(n+1)}(x) |$$
.

Exercícios propostos:

1) Considerando a tabela de pontos abaixo encontre o valor de f(w) = 0.432 empregando interpolações na Forma de Lagrange de ordem 2, 3 e 4. Encontre o erro associado a cada uma das interpolações.

W	0.1	0.2	0.4	0.6	0.8	0.9
f(w)	0.905	0.819	0.67	0.549	0.449	0.407

2) Considere a tabela de pontos abaixo, obtenha uma aproximação para f(0.6) usando polinômios na Forma de Newton de graus 2, 3 e 4. Encontre o erro associado a cada uma das interpolações.

x	0	0.2618	0.5234	0.7854	1.0472	1.309	
f(x)	0	1.0353	2	2.8284	3.4641	3.8637	