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Abstract

In this paper we show that normed structures which can be axiomatized in positive bounded
logic (in the sense of Henson and Iovino) admit proof-theoretic metatheorems (as developed by
the 2nd author since 2005) on the extractability of explicit uniform bounds from proofs in the
respective theories. We apply this to design such metatheorems for abstract Banach lattices, Lp-
and C(K)-spaces as well as bands in Lp(Lq)-Bochner spaces. We also show that a proof-theoretic
uniform boundedness principle can serve in many ways as a substitute for the model-theoretic use
of ultrapowers of Banach spaces.
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1. Introduction

During the last decade, proof-theoretic results (so-called logical metatheorems due to the 2nd
author) have been developed which allow one to extract finitary computational content in the
form of explicit uniform bounds from prima facie noneffective proofs in abstract nonlinear analysis
(see [29] and the subsequent extensions in [16] and [31] as well as [34, 33, 25, 32, 35] for some
recent applications). ‘Abstract’ here refers to the fact that the proofs analyzed concern general
classes of metric structures X (in addition to concrete structures such as R or C[0, 1] whose proof-
theoretic treatment is covered already by e.g. [28]). As the proof-theoretic methods used in this
context are based on extensions and variants of Gödel’s functional (‘Dialectica’) interpretation, the
basic condition on the classes of structures to be admissible is that they can be axiomatized by
axioms having a (simple) computable solution of their (monotone) functional interpretation (given
enrichments by suitable moduli e.g. of uniform convexity, uniform smoothness etc.). Structures
treated so far include metric and normed spaces and their completions, W -hyperbolic spaces and
CAT(0)-spaces, uniformly convex normed and hyperbolic spaces, uniformly smooth spaces, compact
metric spaces. Notably absent in this list are the classes of smooth (but in general not uniformly
smooth) or strictly convex (but in general not uniformly convex), separable (but in general not
boundedly compact and hence not finite dimensional) normed spaces, incomplete metric spaces etc.
These are classes of structures which are not closed under taking ultrapowers (w.r.t. a nonprincipal
ultrafilter) of a normed (or metric) structure, since e.g. an ultrapower of a Banach spaceX is strictly
convex iff X is uniformly convex. This already indicates a first point of connection between the
proof-theoretic approach to metric and normed structures and the model theory of such structures
as developed in the framework of continuous logic (due to [10], adapted by [6]) or positive bounded
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logic ([19]).
The proof-theoretic metatheorems referred to above and adapted to new classes of spaces in this
paper, have the form to guarantee the extractability of explicit uniform effective bounds from
proofs of large classes of statements provided that the proof can be formalized in a suitable formal
framework (the permitted frameworks are so strong that this is no restriction in practice). The
complexity and - in particular - the growth of the extracted bound reflect the computational content
of the given proof. The metatheorems are applied via specialized formats adapted to the concrete
situation at hand (see Corollaries 17.54, 17.55, 17.59, 17.70, 17.71 in [31]). E.g. we may have
some iterative procedure (xn) (e.g. the Krasnoselski, Mann, Ishikawa, Halpern or Bruck iteration)
based on a map T : X → X starting from some x0 ∈ X is considered for which either asymptotic
regularity results of the form ‖xn − T (xn)‖ → 0 or strong convergence results for (xn) can be
proven. Then the metatheorems can be applied to extract rates of asymptotic regularity resp. of
metastability in the sense of T. Tao which, as far as x0, X, T are concerned, only depend on a
bound N 3 b ≥ ‖x0‖, ‖x0 − T (x0)‖ and some so-called majorant T ∗ for T . In the important case
(both in fixed point theory as well as ergodic theory) where T is nonexpansive, T ∗ can be defined
as T ∗(n) := n+ 3b (see [31], p. 419). This approach has been applied to fixed point theory, ergodic
theory, topological dynamics, geodesic geometry, convex optimization, image recovery problems and
abstract Cauchy problems in more than 50 papers during the last decade. A survey of applications
up to 2008 can be found in [31]. For some more recent applications of logical metatheorems (and
related techniques) see e.g. [2, 4, 34, 33, 32, 35].
Let us now come to a second point of connection between the proof-theoretic approach to metric
and normed structures and positive bounded logic, namely the treatment of extensionality: in the
proof-theoretic framework metric structures X are treated as pseudo-metric spaces with a defined
equality relation x =X y := dX(x, y) =R 0. To state then that e.g. f : X → X is a selfmap of a
metric space X means to state the extensionality of f w.r.t. =X

x =X y → f(x) =X f(y)

which must not be included as a general axiom for all f of ‘type’ X → X to hold (see the discussion
in [29] on the collapse of the proof-theoretic metatheorems in the presence of such an axiom). The
issue is that the proof-theoretic method, which extracts uniform quantitative bounds from proofs,
would automatically translate such an axiom into the uniform quantitative form of extensionality,
i.e. uniform continuity on bounded subsets. One possible solution to this is to assume (in the
case of bounded metric structures) as an axiom that all the functions considered are uniformly
continuous (or even Lipschitzian) with given moduli of uniform continuity which is what is done
in the model-theoretic framework (see [19]). This scenario is also the most comfortable one in
the proof-theoretic context where the latter, however, also allows for a less radical solution by
weakening the extensionality axiom to a (permitted) rule of extensionality:

from a proof of s =X t infer that f(s) =X f(t),

which does not seem to have a natural model-theoretic counterpart.
Related to this extensionality issue is the treatment of relations R (say for simplicity binary ones):
if one adds a new constant χR for its characteristic function to the formal system, then - again
- we are only allowed to use the rule of extensionality. This problem is circumvented when χR
can be extended to a uniformly continuous real-valued function. A prime example for this in the
model-theoretic approach is the relation x ≤ y in a Banach lattice which can be expressed in a
uniformly continuous way as xt y =X y using the supremum operation t (see below). Here again,
continuous logic (or positive bounded logic) solves the extensionality problem by taking the radical
approach of demanding things to be expressed in continuous real-valued terms whereas in proof
theory we can also follow this line but are not obliged to (using instead an extensionality rule).
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The proof-theoretic approach is particularly simple if one only deals with bounded metric structures
X as is done in [29], where, however, also normed spaces are included (but mainly via norm-bounded
balls). This is due to the fact that one can use a trivial notion of majorizability - which is the key
concept for keeping track of uniform boundedness relations throughout a given proof - for objects
in X, maps X → X etc. Nevertheless, things can be adapted to unbounded metric structure as
is done in [16], where one then uses a ternary majorizability relation relative to a reference point
a ∈ X (which in the case of normed spaces is always taken to be a zero vector). Much of the
model theory for metric and normed structures relies on boundedness restrictions right from the
beginning and continuous logic has been adapted to unbounded metric structures only in [5].
While the proof-theoretic framework, which is not restricted to uniformly continuous functions, can
deal with classes of functions and metric structures which are not included in the present set-up of
positive bounded and continuous logic, we show in this paper that, conversely, all structures which
have an axiomatization in positive bounded logic admit proof-theoretic metatheorems tailored at
the respective structures. We exemplify this first by treating abstract (real) Lp-spaces and abstract
spaces C(K) (of continuous real-valued functions on an abstract compact spaceK) which are model-
theoretically particularly well-studied but have not yet been considered from the proof-theoretic
side. Seminal characterizations due to Bohnenblust [8], Kakutani [23, 24], Nakano [44], Gordon
[17] and subsequent work of Krivine [9] (see also [6]) are the starting point of our axiomatization
of the aforementioned abstract spaces. Using real Banach lattices and some additional axioms in
the language of Banach lattices, it is possible to characterize Lp-spaces 1 ≤ p <∞) in a way that
we can design logical metatheorems in the spirit of [31],[16] and [29] (Section 5). To this end, we
give a set of universal axioms for Banach lattices (Section 2), which is proven to be equivalent to
the standard approach ([45, Schaefer]). By adding the inequality

‖x t y‖p ≤ ‖x‖p + ‖y‖p ≤ ‖x+ y‖p , for all positive x, y ∈ X,

where x t y denotes the supremum of x and y (elements of a Banach lattice X), it is known from
[24] that any model of the theory is isometrically order-isomorphic to an Lp-space (Section 3).
Similarly for the spaces C(K) (Section 4).
We then prove that generally axioms in positive bounded logic (which has the same expressive
power as Chang and Keisler’s continuous logic, see [10]) can be translated into (adding appropri-
ate ‘Hilbert ε-operators’ to the language) axioms ∆ of a logical form which guarantees a trivial
(monotone) functional interpretation (Proposition 6.17). Moreover, the latter axioms are more ex-
pressive as they allow for quantification over N and X (rather than only over Bn(0) for each fixed
numeral n). This is crucial for the domain of applicability of the metatheorems as it makes many
∀n ∈ N∀x ∈ Bn(0)∃m ∈ NA∃-theorems (A∃ purely existential) provable to which the extractability
of explicit uniform bounds Φ(n) ≥ m then applies.
Using this, we adapt the logical metatheorems developed by [29] and [16] not only to (real) Banach
lattices, abstract Lp-spaces and abstract C(K)-spaces but to any structure axiomatized in positive
bounded logic in the sense of [19] (Theorem 6.18). In particular, we give a proof-theoretic account
of the technically very involved model-theoretic treatment (due to [20]) of the theory of Lp(Lq)-
Banach lattices and we establish a proof-theoretic bound extraction theorem for the theory of bands
of Lp(Lq)-Bochner spaces. Henson and Raynaud presented in [20] an infinite list of axioms, also
using Banach lattices, which axiomatizes bands of Lp(Lq)-Bochner spaces. In our formal framework
we can express their list of axioms by one sentence.
When we talked so far about structures axiomatized by sentences in positive bounded logic we
referred to the usual notion of satisfaction. In the model-theoretic literature ([19]), however, a
different notion of approximative satisfaction is used which means the satisfaction of the family
of all 2−k-approximations ϕk to a sentence ϕ in positive bounded logic rather than that of ϕ
itself. For the axiomatizations discussed so far, this makes no difference as the axioms are already
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in approximate form. In general, however, a structure may satisfy all ϕk without satisfying ϕ.
Henson and Iovino [19] showed that the validity of all approximations ϕk for each fixed k ∈ N in a
normed space structureM is equivalent to the validity of ϕ in any ultrapowerMU ofM w.r.t. a
nonprincipal ultrafilter U (see [19], Proposition 9.26). So the class of structures axiomatized by the
approximate version of the axioms is also closed under taking ultraroots while the class axiomatized
(in the usual sense) by positive bounded axioms is only closed under ultraproducts. We show
that in the proof-theoretic framework, ϕ(k) can be written as a single formula with parameter k
and establish that - over our deductive framework - a certain nonstandard uniform boundedness
principle, more precisely Σ0

1-UBX− (going back - for the case of bounded metric structures - to
the 2nd author [30]) establishes the equivalence between ϕ and ∀k ∈ Nϕ(k) (Theorem 6.33).
This suggests that Σ0

1-UBX− , which can be safely added as an axiom to the formal systems in
our metatheorems without any contribution to the complexity of the extracted bounds, can be
viewed as a proof-theoretic analogue to the model-theoretic use of ultrapowers (for proof-theoretic
investigations on the strength of the existence of a nonprincipal ultrafilter see [37, 49]). In fact, we
show that we may safely use the full strength of axioms ϕ in positive bounded logic in proofs from
which we extract uniform bounds while the resulting bound then will be valid also in the (in general
larger) class of all structures which only satisfy the weaker axioms ∀k ∈ Nϕ(k). We also show that
a number of other uses of ultrapowers can be replaced by the use of Σ0

1-UBX− : e.g. Σ0
1-UBX− implies

that a Banach space X is uniformly convex (uniformly smooth resp.) if and only if it is strictly
convex (resp. smooth) which corresponds to the respective equivalences in ultraproducts of Banach
spaces (see Section 6.4).
To summarize things, the present paper shows that, to a certain extent, the proof-theoretic ap-
proach, in the case of uniformly continuous functions and structures axiomatizable in positive
bounded logic, can be viewed as a constructive explicit finitary counterpart to the model-theoretic
and ultrapower-based techniques which, conversely, can be used in this case, as has recently been
pointed out in [3], to establish qualitative uniformity results corresponding to the quantitative
uniformity results extracted proof-theoretically. Let us emphasize though, that the proof-theoretic
framework, which is based on the language of functionals in all finite types, also allows for higher
order axiomatizations of structures and functions, whereas the model-theoretic context is essen-
tially first-order. Also, as mentioned already above, the proof-theoretic analysis also works in a
weakly extensional framework and only requires uniform quantitative versions of those instances
of extensionality actually used in the proof which in general is much weaker than to assume the
uniform continuity of all the constants involved (see [35] for a recent use of this feature).
For simplicity, we only consider one abstract space X (in addition to the concrete space R) and
selfmaps f : X → X in this paper. However, following the approach in [18], everything can be
extended to several (possibly different) normed spaces Xi and functions f : Xi1 × . . .×Xik → Xij

(where some of these spaces could also be R).

2. Banach lattices

We follow Schaefer [45] to define real Banach lattices. We do not consider complex Banach lattices
since the additional structure is irrelevant in our context and a complex Banach lattice can be
viewed as a real Banach lattice.

Definition 2.1 ([45, II, Section 1]). The set X with a binary relation ≤ is called a lattice if there
are binary operations t,u on X such that the following axioms hold:

(B1) ∀x, y, z ∈ X (x ≤ y ∧ y ≤ z → x ≤ z),

(B2) ∀x ∈ X (x ≤ x),
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(B3) ∀x, y ∈ X (x ≤ y ∧ y ≤ x→ x = y),

(B4) ∀x, y ∈ X (x ≤ x t y ∧ y ≤ x t y),

(B5) ∀x, y ∈ X (x u y ≤ x ∧ x u y ≤ y),

(B6) ∀m,x, y ∈ X (x ≤ m ∧ y ≤ m→ x t y ≤ m),

(B7) ∀m,x, y ∈ X (m ≤ x ∧m ≤ y → m ≤ x u y).

Note that t,u are uniquely determined.

Definition 2.2 ([45, II, Definition 1.2]). Let X be a vector space X over R together with an order
relation ≤. X is called an ordered vector space if the following hold:

(B8) (LO1) ∀x, y, z ∈ X (x ≤ y → x+ z ≤ y + z),

(B9) (LO2) ∀x, y ∈ X∀λ ∈ R+ (x ≤ y → λx ≤ λy).

If in addition X is a lattice in the sense of Definition 2.1, we call X a vector lattice or Riesz space.

Remark 2.3 ([45, p. 50]). The following is true in all vector lattices X (implied by axiom LO1):
For all x ∈ X and for any nonempty subset A ⊆ X it holds that x + sup(A) = sup(x + A),
x+ inf(A) = inf(x+A) and sup(A) = −inf(−A) provided that sup(A) and inf(A) resp. exist.
Notation 2.4. The following abbreviations are introduced.

1. x+ := x t 0, x− := (−x) t 0 and |x| := x t (−x),

2. a t b± c t d := (a t b)± (c t d) and a u b± c u d := (a u b)± (c u d).

Definition 2.5 ([45, p. 81]). Let X be a vector lattice. A norm ‖·‖ on X is called a lattice norm
if

(B10) ∀x, y ∈ X (‖x‖ = ‖|x|‖ ∧ (0 ≤ x ≤ y → ‖x‖ ≤ ‖y‖)).

If ‖·‖ is a lattice norm, then the pair (X, ‖·‖) is called a normed (vector) lattice; if, in addition,
(X, ‖·‖) is complete w.r.t. the norm it is called a Banach lattice.

2.1. Formal representation of Banach lattices
We introduce an extension of the theory Aω[X, ‖·‖ ,C] ([31, pp. 410-412 and pp. 432-434] or [29]),
consisting of an axiomatization of normed spaces together with an operator C assigning a limit
point to each Cauchy sequence with Cauchy rate 2−n (thereby axiomatizing the completeness of
X).

Definition 2.6. Define the set of finite types TX of Aω[X, ‖·‖ ,C] by

1. defining ground types: N, X, i.e. N, X ∈ TX , and

2. building up higher types inductively: ρ, τ ∈ TX ⇒ τ(ρ) ∈ TX .

The type τ(ρ) can be written as ρ → τ and objects of type τ(ρ) can be understood as functions
mapping arguments of type ρ to an object of type τ .
Notation 2.7. We define the following abbreviations:

1. Type 1 is an abbreviation for the type N(N). Using encoding techniques we always allow
finitely many arguments of the same type.
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2. We write “+,−, . . .” instead of “+R,−R, . . .”, whenever the interpretation is obvious and we
use “‖·‖ ,t” instead of “‖·‖X ,tX”.

3. For the base type X define x =X y :≡ ‖x− y‖ =R 0R.

4. Define higher-type equalities inductively for types ρ = Nτk . . . τ1, respectively ρ = Xτk . . . τ1,
we set x =ρ y as

∀zτ1
1 , . . . , z

τk
k (x(z1, . . . , zk) =N y(z1, . . . , zk)),

respectively ∀zτ1
1 , . . . , z

τk
k (x(z1, . . . , zk) =X y(z1, . . . , zk)).

5. Finite tuples of variables are denoted by xσ, where x = xσ1
1 . . . xσnn and σ = σ1 . . . σn (where

the types σi are identical if not specified otherwise).

To represent Banach lattices one could add the constants and axioms (B1)-(B10) to our theory.
However, the binary relation “≤”, or more explicitly its characteristic function, is not computable
(since it is not continuous). Since the main goal is to produce computable functionals bounding
existential quantified variables, this is an obstacle. Thus, we introduce a constant for the supremum
operation, then define the infimum and the binary order relation in terms of the supremum. To
this end, we have to add different axioms, for which we will show that they are true in all Banach
lattices in the sense of [45] and that the usual axioms for Banach lattices are provable in our theory.

Definition 2.8. We extend the theory Aω[X, ‖·‖ ,C] to Aω[X, ‖·‖ ,t] to represent Banach lat-
tices. The language of Aω[X, ‖·‖ ,t] has the following constants: All constants inherited from
Aω[X, ‖·‖ ,C] and the supremum operation “t” of type X(X)(X).

Definition 2.9. We introduce the following symbols as abbreviations:

1. Set “v” as a binary relation as follows: x v y :≡ x t y =X y.

2. Set “u” as operation of type X(X)(X): x u y :≡ −X ((−Xx) t (−Xy)) .

3. (xX)+ :≡ x t 0X and (xX)− :≡ (−Xx) t 0X ,

4.
∣∣xX ∣∣

X
:≡ x t (−Xx).

Definition 2.10. We add the following axioms to the theory Aω[X, ‖·‖ ,t]:

(A1) ∀xX(x t x =X x),

(A2) ∀xX , yX (x t y =X y t x),

(A3) ∀xX , yX , zX (x t (y t z) =X (x t y) t z),

(A4) ∀xX , yX (x t (x u y) =X x) and ∀xX , yX (x u (x t y) =X x),

(A5) ∀xX , yX , zX (x+X (y t z) =X (x+X y) t (x+X z)),

(A6) ∀λ1, xX , yX(|λ|R x t |λ|R (x t y) =X |λ|R (x t y)).

(A7) ∀xX (‖|x|X‖ =R ‖x‖),

(A8) ∀xX , yX (‖0X t x‖ ≤R ‖(0X t x) t y‖),

(A9) ∀xX1 , xX2 , yX1 , yX2 (‖x1 t y1 −X x2 t y2‖ ≤R ‖x1 −X x2‖+ ‖y1 −X y2‖).

Proposition 2.11. The operations “t”,“u” and “v” are (provably) extensional.
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Proof. Follows directly from axiom (A9) in Definition 2.10 (which we included for this very reason
as the usual proof of (A9) from the other axioms uses already extensionality).

Corollary 2.12 (Majorization of “t”).

∀xX , yX∀n,m ∈ N (‖x‖ ≤R n ∧ ‖y‖ ≤R m→ ‖x t y‖ ≤R n+m) .

Proof. Follows from axioms (A1), (A9) and Proposition 2.11.

For the general definition of majorizability we refer the reader to Definition 5.6. Since “u” is defined
via “t” (and “−X”) it is majorizable (see [31, Lemma 17.84]). In fact even the same majorant can
be used.

Proposition 2.13. The axioms (B1)-(B10) are provable in Aω[X, ‖·‖ ,t] and the axioms from
Definition 2.10 are true in any Banach lattice (and the order in the lattice coincides with the one
defined in terms of t).

Proof. See Appendix Propositions A.1 and A.2.

Definition 2.14 (cp. [29, Definition 3.1]). The full set-theoretic type structure Sω,X := 〈Sρ〉ρ∈TX
over N and the space X is defined by:

SN := N, SX := X, Sτ(ρ) := SSρτ ,

where we denote all set-theoretic functions Sρ → Sτ by SSρτ .

Proposition 2.15 (cp. [29, Definition 3.21]). Let (X, ‖·‖ ,t) be a nontrivial Banach lattice. Then
Sω,X becomes a model of Aω[X, ‖·‖ ,t] by letting the variables of type ρ range over Sρ if all inter-
pretations for the constants used for normed spaces are obtained from [29, Definition 3.21], and if
x t y with x, y ∈ X is interpreted by sup{x, y}.

Proof. Follows from Proposition 2.13.

Definition 2.16 ([29, cp. Definition 3.21]). A sentence of the language of Aω[X, ‖·‖ ,t] holds in a
nontrivial Banach lattice (X, ‖·‖ ,t) if it is true in the models of Aω[X, ‖·‖ ,t] obtained from Sω,X
as specified in Proposition 2.15.

Remark 2.17. For all subsequent theories and their interpretations we assume an analogue of the
previous definition of “holds”.

3. Lp spaces as Banach lattices

Following Ben-Yaacov et al. [6, Section 17] let 1 ≤ p <∞, Ω be a set, U a σ-algebra on Ω and µ a
σ-additive measure on U . Denote by Lp(Ω, U, µ) the space of (equivalence classes of) measurable
functions f : Ω→ R with ‖f‖ :=

(∫
Ω |f |

p
dµ
)1/p.

Definition 3.1 ([6, pp. 414-415]). We write BLp (for p ≥ 1) for the theory consisting of the
axioms (B1)-(B10) for Banach lattices and

(B11) ∀x, y ∈ X (x, y ≥ 0→ ‖x t y‖p ≤ ‖x‖p + ‖y‖p ≤ ‖x+ y‖p).

To exclude measures with atoms, i.e. the existence of so-called atoms, which are sets A ⊆ Ω with
µ(A) > 0 such that no subset B ⊆ A exists with 0 < µ(B) < µ(A), one can add another axiom to
the theory expressing that (Ω, U, µ) is atomless. An important example for atomless measures is
the Lebesgue measure on the real line.
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Definition 3.2 ([6, p. 415]). The theory BLp together with the following axiom is denoted by
ABLp.

(B12) supx∈X infy∈X
(
max{

∣∣‖y‖ − ∥∥x+ − y
∥∥∣∣ ,∥∥y u (x+ − y)

∥∥}) =R 0.

The next theorem goes back to [8],[44],[17] (for 1 ≤ p <∞) and (for the special case p = 1) to [23]
(although we use a variant axiomatization due to [9], see [38] for more information on the historical
background):

Theorem 3.3 (cp. [9, Theorem 3] and [6, Propositions 17.3 and 17.4]). Let M be a Banach
lattice. Then M is a model of the theory (A)BLp if and only if there is a (atomless) measure space
(Ω, U, µ) such that M is isometric and lattice isomorphic to Lp(Ω, U, µ) where 1 ≤ p <∞ (here t
in Lp(Ω, U, µ) is defined up to measure zero sets as pointwise maximum).

Proof. We refer to the proof of [9, Theorem 3] for BLp and to the proof of [6, Proposition 17.4] for
ABLp.

3.1. Formal theory for Lp spaces
Definition 3.4. We define the extension Aω[X, ‖·‖ ,t, p] of Aω[X, ‖·‖ ,t] by adding a constant cp
of type 1 with the axioms (cp. axiom (B11)):

(A10) cp ≥R 1R,

(A11) ∀xX , yX (‖|x| t |y|‖cp ≤R ‖|x|‖cp +R ‖|y|‖cp ≤R ‖|x|+X |y|‖cp) .

Note that in Definition 3.1 axiom (B11) is stated without the absolute value but with the restriction
to positive x, y ∈ X which is obviously equivalent. Our version is purely universal, thus it is its
own functional interpretation.

Proposition 3.5 (cp. [29, Definition 3.21]). Let Ω be a nonempty set, U a σ-algebra on Ω and
µ a nontrivial measure on Ω. Let 1 ≤ p < ∞ and let X be the space Lp(Ω, U, µ). Then Sω,X
becomes a model of Aω[X, ‖·‖ ,t, p] by letting the variables of type ρ range over Sρ as specified in
Proposition 2.15, with the exception that f t g with f, g ∈ X is interpreted by max{f, g}, µ-almost
everywhere. The constant cp is interpreted by (p)◦, where (r)◦ for r ∈ R+ is the function mapping
every real number to a representing element of NN (see [29, Definition 2.9]).

Proof. It is easy to see that the interpretation defined above fulfills all axioms from Definitions 2.10
and 3.4.

Definition 3.6. We define the extension Aω[X, ‖·‖ ,t, p]a of Aω[X, ‖·‖ ,t, p] by adding the fol-
lowing axiom to ensure that the measure µ is atomless:

(A12) ∀xX∀kN∃y �X 1X(‖x‖+ 1)
(
|‖y‖ − ‖x+ − y‖| , ‖y u (x+ − y)‖ ≤R 2−k

)
Proposition 3.7. The axioms (A12) and (B12) are (after expressing the use of sup, inf equivalently
using quantifiers) provably equivalent in Aω[X, ‖·‖ ,t].

Proof. By unwinding sup and inf we see that (A12) implies (B12). For the converse we have to prove
the bound for y. Observe that ‖(x+ − y)− (−y)‖ =R ‖x+‖ =R ‖x t 0‖ ≤R ‖|x|‖ =R ‖x‖. By the
nonexpansiveness of “u” (axiom (A9)) and (B10) this implies: ‖y u (x+ − y)− y u (−y)‖ ≤R ‖x‖
which yields by the reverse triangle inequality ‖y u (−y)‖ − ‖x‖ ≤R ‖y u (x+ − y)‖.
Since ‖y u (−y)‖ =R ‖y t (−y)‖ =R ‖|y|‖ =R ‖y‖, this implies ‖y‖ ≤R ‖x‖ + ‖y u (x+ − y)‖ .
Hence, the axioms (B12) and (A12) are equivalent.
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Theorem 3.8 (cp. [9, Theorem 3] and [6, Propositions 17.3 and 17.4]). The structure Sω,X is a
model of the theory Aω[X, ‖·‖ ,t, p](a) as defined in Proposition 2.15 if and only if there is a (atom-
less) measure space (Ω, U, µ) such that (X, ‖·‖ ,t) is isometric lattice isomorphic to Lp(Ω, U, µ).

Proof. Since we have shown that all axioms of the theory (A)BLp from Definition 3.1 can be proven
in the theory Aω[X, ‖·‖ ,t, p](a), and also that axioms from Aω[X, ‖·‖ ,t, p](a) hold in a Banach
lattice in the sense of (A)BLp together with an equivalent formulation of the atomless axiom, the
result follows from Theorem 3.3.

4. C(K) spaces

Similarly to Lp spaces one can also represent C(K) spaces of continuous real-valued functions,
where K is an abstract compact space, by Banach lattices.

Definition 4.1 ([45, Definition II.7.1]). A lattice norm x 7→ ‖x‖ on a vector lattice E is called an
M-norm if it satisfies the axiom

(M) ‖x t y‖ = max{‖x‖ , ‖y‖} (x, y ∈ E+).

A Banach lattice whose norm fulfills (M) is called an abstract M-space (AM-space). If the unit
ball contains a largest element and that element has norm 1, it is called the unit of E.

Theorem 4.2 ([24, Theorem 2]). For any AM-space with unit there exists a compact Hausdorff
space K such that (AM) is isometric and lattice isomorphic to the space C(K) of all bounded
continuous real-valued functions defined on K with ‖·‖∞ and pointwise supremum t.

Definition 4.3. We extend the theory Aω[X, ‖·‖ ,t] to Aω[X, ‖·‖ , C(K)] by adding the following
axioms (note that ‖1X‖ =R 1 is already an axiom of Aω[X, ‖·‖])

(A13) 0X v 1X and ∀xX(x̃ v 1X), where x̃ := x

maxR{‖x‖ , 1}
.

(A14) ∀xX , yX (‖|x| t |y|‖ =R maxR{‖x‖ , ‖y‖}).

Proposition 4.4. The axioms (A13) and (A14) are true in any AM-space with unit in the sense
of Definition 4.1 and the theory Aω[X, ‖·‖ , C(K)] proves axiom (M) and the existence of a unit,
namely 1X .

Proof. The axioms (A13) and (A14) are direct formalization of axiom (M) and the fact that the
unit element is the largest element in the unit ball.

Proposition 4.5. Let (X, ‖·‖ ,t, e) be an AM-space. Then Sω,X becomes a model of the theory
Aω[X, ‖·‖ , C(K)] by letting the variables of type ρ range over Sρ if all conditions of Proposition 2.15
hold with the exception of the interpretation of the constant 1X1 which is interpreted by the element
e ∈ X with ‖e‖ = 1 and the property ∀x ∈ X (‖x‖ ≤ 1→ x v e).

Theorem 4.6. Let (X, ‖·‖ ,t, e) be a Banach lattice with a unit e. The structure Sω,X is a model
of the theory Aω[X, ‖·‖ ,t, C(K)] as defined in Proposition 4.5 if and only if there exists a compact
Hausdorff space K such that (X, ‖·‖ ,t, e) is isometric and lattice isomorphic to the space C(K)
of all bounded continuous real-valued functions defined on K, where e ∈ X is the interpretation of
the constant e according to Proposition 4.5.

1Note that 1X is a constant in the language of Aω [X, ‖·‖] having norm 1, see [29].
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Proof. Follows from Theorem 4.2 and Proposition 4.4.

Remark 4.7. It is also possible to use the following axiom without involving a constant for the unit
element and so staying in the signature of Banach lattices (note that 0X v e follows already from
x := 0X and ‖e‖X = 1 follows from x := 1X and ‖1X‖ = 1):

∃e �X 1X∀xX (x̃ v e) , where x̃ := x

maxR{‖x‖ , 1}
. (1)

5. Logical Metatheorem for Lp, C(K) and Banach lattices

As previewed in Corollary 2.12 we define majorization, which is crucial for proving the forthcoming
metatheorem.

Definition 5.1 ([31, Definition 17.32]). We define inductively for each type ρ ∈ TX the corre-
sponding majorization type ρ̂ ∈ T:

N̂ := N, X̂ := N, τ̂(ρ) := τ̂(ρ̂).

Definition 5.2. We define two important classes of finite types ρ ∈ TX :

1. Define the class of small types consisting of the following finite types: N, N(N) . . . (N), X and
X(N) . . . (N).

2. Define the class of admissible types consisting of the following finite types: N(ρk) . . . (ρ1)
and X(ρk) . . . (ρ1) where ρ1, . . . , ρk are small types. Also the type N, X are admissible (in
particular, therefore, every small type is admissible).

Definition 5.3 ([29, Definition 3.22]). For functionals xρ,yρ of type ρ ∈ TX define x �ρ y by

ρ = N : x �N y :≡ x ≤ y,
ρ = X : x �X y :≡ ‖x‖ ≤R ‖y‖ ,
ρ = τ(σ) : x �τ(σ) y :≡ ∀zσ (x(z) �τ y(z)) .

Definition 5.4 ([31, cp. p. 142 and Theorem 10.26]).

1. We define ∆ to be the set of all sentences of the form

∀aδ∃b �σ ra∀cγB0(a, b, c),

where B0 is quantifier-free and does not contain any further free variables, r is a closed term
(of suitable types) of Aω[X, ‖·‖ , . . .]. The types δ, σ, γ can be at most admissible.

2. We denote the Skolem normal forms of the sentences in ∆ by

∆̃ :≡
{
∃B �σ(δ) r∀aδ, cγB0(a,Ba, c) : ∀aδ∃b �σ ra∀cγB0(a, b, c) ∈ ∆

}
Remark 5.5. The atomless axiom (A12) is syntactically in the class ∆, in contrast to axiom (B12).

10



Definition 5.6 ([16, Definition 9.1]). The type structure Mω,X of all (strongly) majorizable set-
theoretic functions of finite type ρ ∈ TX over a normed space (X, ‖·‖) is defined as:

MN := N, n &N m :≡ n ≥ m ∧ n,m ∈ N,
MX := X, n &X x :≡ n ≥ ‖x‖ ∧ n ∈MN, x ∈MX ,

x∗ &τ(ρ) x :≡ x∗ ∈M
M
ρ̂

τ̂
∧ x ∈MMρ

τ

∧∀y∗ ∈M
ρ̂
, y ∈Mρ (y∗ &ρ y → x∗y∗ &τ xy)

∧∀y∗, y ∈M
ρ̂

(
y∗ &

ρ̂
y → x∗y∗ &

τ̂
x∗y
)
,

Mτ(ρ) :=
{
x ∈MMρ

τ : ∃x∗ ∈M
M
ρ̂

τ̂

(
x∗ &τ(ρ) x

)} (
τ, ρ ∈ TX

)
.

Note that without adding the base type X, the type structure of (strongly) majorizable functions
of finite type is denoted by Mω defined first by Bezem [7]. We read x∗ &X x as “x∗ (strongly)
majorizes x”.

Lemma 5.7.

1. Let ρ be a small type. Then Mρ = Sρ.

2. Let ρ be an admissible type. Then Mρ ⊆ Sρ.

Proof. This is proven in [31, Proposition 3.70] for types T and for types TX in [16, Proof of
Theorem 4.10].

Lemma 5.8 (cp. [16, Lemma 9.11]). All closed terms t in the language of Aω[X, ‖·‖ ,t, p]a are
majorizable by closed terms in Aω when interpreted in Mω,X (depending on p only via an upper
bound N 3 b ≥ p).

Proof. We can refer to the proof of [16, Lemma 9.11] which is done by induction on the complexity
of the closed terms for Aω[X, ‖·‖] (and for Aω[X, ‖·‖ ,C] see [31, p. 434]). Thus, it remains to
show that newly introduced constants are majorizable. For the supremum operation this is shown
in Corollary 2.12. The constant cp is majorized (see [31, Lemma 17.8]) by M(b) &1 [cp]Mω,X =
[cp]Sω,X = (p)◦, with b ∈ N such that b ≥ p andM(b) := λn.j(b2n+2, 2n+1−1), where j(·, ·) denotes
the Cantor pairing function. As b we can always take e.g. b := d(cp(0))Qe+ 1.

Definition 5.9 (cp. [27, Definition 3.10]). We define the bounded axiom of choice:

b-ACX :≡
⋃

δ,ρ∈TX

{
b-ACδ,ρ

}
, where

b-ACδ,ρ :≡ ∀Zρ(δ)
(
∀xδ∃y �ρ ZxA(x, y, Z)→ ∃Y �ρ(δ) Z∀xA(x, Y x, Z)

)
.

Lemma 5.10 (cp. [27, Application 3.12]). Mω,X |= b-ACX .

Proof. Analogous to the proof of [27, Application 3.12]).

Lemma 5.11. For the sentences ∆ as defined in Definition 5.4 the following holds: Sω,X |=
∆ ⇒ Mω,X |= ∆̃.

Proof. We first want to prove Sω,X |= ∆ ⇒ Mω,X |= ∆. Recall that all sentences in ∆ (here we
only implictly refer to the tuple notation) have the format A := ∀aδ∃b �σ ra∀cγB0(a, b, c). From
Lemma 5.7 we know that for small types ρ we have Mρ = Sρ and for admissible types σ we have
Mσ ⊆ Sσ. So if all types are small, the assertion holds trivially (see also Lemma 17.84 in [31]).
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For the universal variables aδ and cγ the sentence A is weakened since the scope of the universal
quantifier is reduced from Sδ to Mδ (resp. for γ). Note that this inclusion does not hold for higher
types (see Howard [21]). Then we check the definition of the statement ∃b �σ ra which is defined
(for σ = τρn . . . ρ1, where τ ∈ {N, X}) as ∃bσ∀zρ(bz �τ raz).
Here we see that it is important to have only small types ρi since otherwise the scope of the
universal quantified variables z would be not identical. Since type of b is admissible we have a
smaller domain for finding a witness, thus we show that any b making A true is majorizable and
therefore an element of Mω,X . Because the term r and the variables a, z can only take values in
Mω,X , they are majorizable by definition. From [31, Lemma 17.65] we get that b is majorizable.
Now we show Mω,X |= ∆ ⇒ Mω,X |= ∆̃. Recall that all sentences in ∆̃ have the form
∃B �σ(δ) r∀aδ, cγB0(a,Ba, c). Then by using the bounded axiom of choice (Lemma 5.10) we see
that ∆ + b-ACX ` ∆̃ and thusMω,X |= ∆̃.

Definition 5.12 (cp. [29, Definition 3.6]). A formula F is called a ∀-formula (resp. ∃-formula) if it
has the form F ≡ ∀aσFqf(a, b) (resp. F ≡ ∃aσFqf(a, b)) where Fqf does not contain any quantifiers
and the types in σ are admissible and b are parameters of arbitrary finite type.

Now we prove our first logical metatheorem, extending the scope of the logical metatheorems due
to [16, Theorem 6.3] and [29, Theorem 3.7].

Theorem 5.13 (Logical Metatheorem for Lp, C(K) and Banach lattices). Let ρ ∈ TX be an
admissible finite type. Let B∀(x, u), resp. C∃(x, v), be ∀- resp. ∃-formulas that contain only the
variables x, u resp. x, v free. Assume

Aω[X, ‖·‖ ,t, p](a) ` ∀xρ
(
∀uNB∀(x, u)→ ∃vNC∃(x, v)

)
(2)

then one can extract a partial functional Φ : S
ρ̂
⇀ N whose restriction to the strongly majorizable

elements of S
ρ̂
is a (bar recursive) computable functional of Mω and the following holds in all

nontrivial (atomless) Lp(Ω, U, µ) spaces: for all x ∈ Sρ, x∗ ∈ Sρ̂ if x∗ &ρ x then

∀u ≤ Φ(x∗)B∀(x, u)→ ∃v ≤ Φ(x∗)C∃(x, v).

Φ depends on p only via an upper bound N 3 b ≥ p.
Moreover,

1. if ρ̂ is type 1, then Φ : S
ρ̂
→ N is a total computable functional (in the ordinary sense of

type-2 recursion theory) defined by bar recursion.

2. All variables may occur as finite tuples satisfying the same type restrictions.

3. If (2) holds for the theory Aω[X, ‖·‖ ,t], resp. Aω[X, ‖·‖ , C(K)], instead of Aω[X, ‖·‖ ,t, p](a)
the conclusion holds in all nontrivial Banach lattices (X, ‖·‖ ,t), resp. all spaces C(K) of
continuous real-valued functions on an abstract compact space K.

4. If the statement in (2) can be proven without the axiom of dependent choice, one does not need
bar recursion. Thus, we could then allow the type ρ to be an arbitrary finite type. Moreover,
all restrictions toMω,X can be omitted, and so everything follows in the full Sω,X . Then the
functional Φ : S

ρ̂
→ N is primitive recursive (in the sense of Gödel).

Proof. We extend the proof of [16, Theorem 6.3]. We need the modelMω,X for bar recursion to be
true (which does not hold in Sω,X , see [31, p. 214]), which in turn is necessary to solve the functional
interpretation of dependent choice (see [31, Chapter 11]). As stated in 4., without dependent choice
we can omit all restrictions to the types and use the model Sω,X instead. Theorem 3.8 shows that
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the theory Aω[X, ‖·‖ ,t, p](a) is the correct axiomatization for nontrivial (atomless) Lp(Ω, U, µ)
spaces, similarly in Theorem 4.6 we have shown that the theory Aω[X, ‖·‖ ,t, C(K)] axiomatizes
abstract spaces of continuous functions on a compact set K and for Banach lattices the same is
proven in Proposition 2.13. Since all terms of the theories are majorizable (see Lemma 5.8), we can
refer to the proof of [16, Theorem 6.3] with the exception of the sentences ∆, which are necessary for
the atomless axiom. All new axioms of Aω[X, ‖·‖ ,t, p] are universal and are, therefore unchanged
by the functional interpretation, which is one of the key ingredients of the proofs of [16, Theorem
6.3] and [29, Theorem 3.7]. By [31, Theorem 10.21] (since this theorem applies negative translation
- which only weakens ∆ - and the monotone functional interpretation) all sentences ∆ are upgraded
to ∆̃. This is not a major concern, see Lemma 5.11. The newly added Skolem functionals B for
each sentence in ∆̃ have to be added as new constants to the language to witness the existential
quantifier. Of course, none of these new constants is expected to be provably extensional. However,
since in the proof (2) those constants are not in the language, they cannot be used in the proof
anyway. They are majorizable, since they are smaller than closed terms r which are in turn
majorizable by primitive recursive terms, which follows from Lemma 5.8. This implies that the
newly added Skolem constants are majorizable and so can be interpreted in Mω,X . Since with
the added constants all axioms ∆̃ are universal sentences, they are unchanged by the functional
interpretation.
The axiom not involving the existence of a unit constant (the 1X is an arbitrary element of norm
1) from Remark 4.7 is in the class ∆, thus this axiomatization of C(K) is also admissible.

As a corollary to the proof of Theorem 5.13 we see that we may explicitly allow arbitrary axioms
of the form ∆ which can be added to the theory.

Corollary 5.14. Assume the same setting as in Theorem 5.13. If

Aω[X, ‖·‖ ,t, p](a) + ∆ ` ∀xρ
(
∀uNB∀(x, u)→ ∃vNC∃(x, v)

)
then one can extract a partial functional Φ : S

ρ̂
⇀ N whose restriction to the strongly majorizable

elements of S
ρ̂
is a (bar recursive) computable functional of Mω and the following holds in all

nontrivial (atomless) Lp(Ω, U, µ) spaces X s.t. Sω,X |= ∆: for all x ∈ Sρ, x∗ ∈ Sρ̂ if x∗ &ρ x then

∀u ≤ Φ(x∗)B∀(x, u)→ ∃v ≤ Φ(x∗)C∃(x, v).

The supplements (1)-(4) remain valid in this setting. The theory Aω[X, ‖·‖] and all extensions
defined in this work are also admitted.

Proof. Follows directly from the proof of Theorem 5.13.

As discussed already in the introduction, logical metatheorems of the type of Theorem 5.13 are
applied to nonlinear analysis not in the abstract form stated but via specialized corollaries that
refer to concrete formats such as the convergence of some iterative procedure (xn) involving some
nonlinear operator T : X → X as is common in fixed point and ergodic theory and continuous
optimization (see the introduction).

6. Positive bounded logic

After having formalized directly some theories of abstract spaces studied in model theory we will
next analyze positive bounded logic, which is a restriction of first-order logic, more systematically
from the proof-theoretic point of view. In this framework there are only bounded quantifiers, no
negations and all functions are uniformly continuous. After discussing the definitions due to [19]
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we show how we can mimic positive bounded logic in the formal theory Aω[X, ‖·‖] (axiomatizing
normed spaces without completeness) and show that the logical metatheorem for normed spaces
with additional axioms ∆ covers the expressive power of positive bounded logic (or continuous
logic, adapted by [6], having the same expressive power).
Remark 6.1. From now on, whenever we refer to the theory Aω[X, ‖·‖] it is permitted to use all
extensions (with the truth in the respective models) defined in this work, instead.

6.1. Model-theoretic view
First we introduce the models of positive bounded logic, i.e. families of normed spaces together
with some functions.

Definition 6.2 ([19, Definition 2.1]). A normed space structure M consists of a set
(
M (s) | s ∈ S

)
of normed spaces M (s) (one of which is always R), which are also called sorts with sort index set S
and a set of uniformly continuous (on bounded domains) functions F : M (s1)×· · ·×M (sm) →M (s0).

For simplicity reasons we will focus on a single normed space which corresponds to the abstract
type X (in addition to R). As indicated in [16, Section 7] and executed in [18] one can have multiple
abstract types Xi to treat several normed spaces simultaneously.

Definition 6.3 ([19, Definition 5.2]). Let L be a signature for normed space structures. We define
positive bounded (L-)formulas via induction on the complexity.

1. The prime formulas are r ≤ t and t ≤ r, where t is a real-valued term and r ∈ Q.

2. If ϕ1 and ϕ2 are positive bounded formulas, x is a variable, and r ∈ Q with r > 0 then
the following are positive bounded formulas: (ϕ1 ∧ ϕ2) and (ϕ1 ∨ ϕ2), ∃x (‖x‖ ≤ r ∧ ϕ1),
∀x (‖x‖ ≤ r → ϕ1).

Notation 6.4. We introduce the following abbreviations:

∃rxϕ :≡ ∃x (‖x‖ ≤ r ∧ ϕ) , ∀rxϕ :≡ ∀x (‖x‖ ≤ r → ϕ) ,
t = r :≡ t ≤ r ∧ r ≤ t.

Definition 6.5 ([19, Section 5]). If ϕ is a positive bounded formula, we define the positive bounded
formula ϕ′ to be an approximation of ϕ, which is denoted by ϕ @ ϕ′, as follows:

• For ϕ ≡ r ≤ t, approximations of ϕ are r′ ≤ t, where r′ < r.

• For ϕ ≡ t ≤ r, approximations of ϕ are t ≤ r′, where r < r′.

• For ϕ ≡ ψ1�ψ2, approximations of ϕ are ψ′1�ψ′2, where ψi @ ψ′i, for i = 1, 2 and � ∈ {∧,∨}.

• For ϕ ≡ ∃rxψ, approximations of ϕ are ∃r′xψ′, where r < r′ and ψ @ ψ′.

• For ϕ ≡ ∀rxψ, approximations of ϕ are ∀r′xψ′, where r′ < r and ψ @ ψ′.

Definition 6.6 ([19, Definition 5.9]). Let M be a normed space structure and let ϕ(x1, . . . , xn) be
a positive bounded formula. If ϕ′[a1, . . . , an] is true in M for every approximation ϕ′ of ϕ we say
that M approximately satisfies ϕ(x1, . . . , xn) at a1, . . . , an (where ai ∈M (si)), which is denoted by
M |=A ϕ[a1, . . . , an].

Definition 6.7 ([19, Definition 13.5]). For two classes of normed spaces structures C,D with
C ⊆ D we say that C is axiomatizable in D by positive bounded sentences, if there exists a set of
such sentences Γ such that for all structures C ∈ D it holds that C ∈ C iff C |=A Γ.
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Remark 6.8. All approximate models of the theory Aω[X, ‖·‖ ,t, p]a are also models since for uni-
versal formulas this is equivalent [19, Section 5]. The atomless axiom (A12) is - via its formulation
from Proposition 3.7 - equivalent to its own approximate version (in the sense of Lemma 6.13).

Lemma 6.9 ([19, Section 13]). Let ϕ(x1, . . . , xn) be a positive bounded formula. There exists an
equivalent prenex normal formula ψ(x1, . . . , xn) of the form

Q1y1Q2y2 . . . Qkykθ(x1, . . . , xn, y1, . . . , yk),

where Qi ∈ {∃ri ,∀ri} for i ∈ {1, . . . , k}, and θ(x1, . . . , xn, y1, . . . , yk) is quantifier-free in the sense
of positive bounded logic.

6.2. Positive bounded logic in proof theory
Since in positive bounded logic real numbers and abstract normed spaces are treated identically
(from a syntactic point of view) we want to stay close to this approach. Therefore, we introduce
the type X̃ which stands for the two types X and 1, where the latter is used to represent real
numbers. If x is of type 1 but is interpreted as a representative of a real number, equality has
to be understood in the following sense: x =R y (instead of x =1 y), as well as ‖x‖ = |x|R and
x �X̃ y := |x| ≤R |y| (instead of x �1 y). For all further details we refer to [31]. This double role
of the type 1, namely as the type of number-theoretic functions, which it officially represents, and
its use to represent real numbers causes certain technical complications (see Lemma 6.16) as we
will have to translate bounds in the sense of ≤R into bounds in the sense of �1 which is needed in
majorizability arguments.
Notation 6.10. Since rational numbers are encoded by natural numbers using the Cantor pair-
ing function (see [28] for the details) we introduce the following abbreviation: ∀a ∈ Q∗+ϕ(a) :=
∀aN

(
|a|Q >Q 0→ ϕ(|a|Q)

)
.

Definition 6.11. We define a class of formulas in the language of Aω[X, ‖·‖] denoted by PBL:

Θm(T, r, s) :≡ ∀lN∀r1x
X̃
1 ∃s1y

X̃
1 . . . ∀rmxX̃m∃smyX̃m

(
T (x, y, l) =R 0

)
,

where ri(l), si(l) are terms containing only l free denoting functions N → Q∗+ (see Notation 6.10)
and T is a function of type 1(N)(X̃) . . . (X̃). In the following, we will for better readability surpress
the dependence of ri(l), si(l) on l and simply write ri, si.

Whenever dealing with a formula of the class PBL we assume to have a modulus of uniform
continuity ωT : N× N× N→ N s.t.

Um(T, ωT ) := ∀nN, bN, lN∀bxX̃1 , x̄X̃1 , yX̃1 , ȳX̃1 . . . , yX̃m , ȳ
X̃
m (3)(∧m∧

i=1
‖xi − x̄i‖ , ‖yi − ȳi‖ <R 2−ωT (b,n,l) →

∣∣T (x, y, l)− T (x̄, ȳ, l)
∣∣ ≤R 2−n

)
.

This corresponds to the uniform continuity assumption made in positive bounded logic by which
all L-terms denote uniformly continuous (on bounded subsets) functions (see [19], Definition 2.1
and p.27).

Lemma 6.12. To each formula in prenex normal form with bounded quantifiers which is built up
from formulas r ≤R t and t ≤R r, viewed as prime formulas, by ∧,∨, we can construct a formula ϕ0
in the class PBL such that Aω[X, ‖·‖] ` ϕ↔ ϕ0. We construct ϕ0 by induction on the complexity
of ϕ (using implicitly the embedding of Q into R on the level of the representations):

15



1. r ≤R t is replaced by min{r, t} − r =R 0,

2. t ≤R r is replaced by min{r, t} − t =R 0,

3. φ =R 0 ∨ ψ =R 0 is replaced by min{|φ|, |ψ|} =R 0,

4. φ =R 0 ∧ ψ =R 0 is replaced by max{|φ|, |ψ|} =R 0.
Proof. The equivalence can be easily proven in Aω[X, ‖·‖].

The above lemma draws the connection between positive bounded logic and the class PBL which
covers positive bounded logic. We do not want to go into more details, since one would need to
define an explicit interpretation, add multiple base types Xi (which is possible, see [18]) and so
forth.
Lemma 6.13 (Approximations as one formula). Let

Θm(T, r, s) :≡ ∀lN∀r1x
X̃
1 ∃s1y

X̃
1 . . . ∀rmxX̃m∃smyX̃m

(
T (x, y, l) =R 0

)
be a formula in the class PBL. Then the following formula expresses the approximate truth of Θm:

Θm,ε(T, r, s) :≡ ∀k >N max {d− log2(ri)e | i ∈ {1, . . . , n}}

∀lN∀r1−2−kx
X̃
1 ∃s1+2−ky

X̃
1 . . . ∀rm−2−kx

X̃
m∃sm+2−ky

X̃
m

(∣∣T (x, y, l)
∣∣ ≤R 2−k

)
.

Proof. As implicitly defined in Definition 6.5 an error parameter 2−k is added to all prime formulas
of positive bounded logic as follows: the formula r − 2−k ≤ t is an approximation of r ≤ t for all
k ∈ N. If this error term is added to all prime formulas before applying Lemma 6.12 we obtain
that the inner formula T (x, y, l) =R 0 is approximated by

∣∣T (x, y, l)
∣∣ ≤R 2−k. Then the range of

the quantifiers is modified by the error parameter according to Definition 6.5. The final step is the
universal closure since we want to express all approximations of Θm in one formula.

Next we introduce an abbreviation stating that a formula θ is extensional with respect to specified
free variables:
Notation 6.14.

Ext(θ(x1, . . . , xm)) :≡ ∀xX̃1 , x̄X̃1 , . . . , xX̃m, x̄X̃m
(∧m∧
i=1

xi =X̃ x̄i → (θ(x1, . . . , xm)↔ θ(x̄1, . . . , x̄m))
)
.

Definition 6.15.

min1(x1, y1) := λvN.minN(xv, yv)

retrX̃(xX̃ , yX̃ , nN) := ‖y‖ x̌
max

{
‖x̌‖ , ‖y‖ , 2−n

} ,
where x̌X̃ :=

{
xX , if X̃ = X,

min1(x,M(y(0) + 1)), if X̃ = 1.

The following lemma motivates the somewhat involved definition of retrX̃(x, y, n).
Lemma 6.16.

(i) Aω[X, ‖·‖] ` Ext(A(x))→ (∀nN∀y1(|y| >R 2−n → (∃x �X̃ yA(x, y)
↔ ∃x �1 M(y(0) + 1)A(retrX̃(x, y, n), y)↔ ∃x1A(retrX̃(x, y, n), y)))),

(ii) Aω[X, ‖·‖] ` Ext(A(x))→ (∀nN∀yX(‖y‖ >R 2−n → (∃x �X̃ yA(x, y)
↔ ∃xXA(retrX̃(x, y, n), y)))).
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Proof. (i): Since A is extensional in x w.r.t. =R we are allowed to choose a small representation
for x via (̃·) with x =R x̃ (see [31, p. 93]). Since |y| ≤R (y(0) + 1)R the type 1 bound follows from
the Definition of (̃·) where x ∈ [−m,m] with m := y(0) + 1. Moreover, |y| >R 2−n and |x̃| ≤R |y|
imply retrX̃(x̃, y, n) =R x̃. Reversely, from Definition 6.15 we know |y| > 2−n∧x �1 M(y(0)+1)→
|retrX̃(x, y, n)| ≤R |y|. The second equivalence follows from Definition 6.15, here using that x̌1 is
applied to the first argument of retrX̃ and the fact that provably ˇ̌x =1 x̌ together with QF-ER.
(ii): Definition 6.15 implies ‖y‖ >R 2−n → ‖retrX(x, y, n)‖ ≤R ‖y‖ and x �X y ∧ ‖y‖ >R 2−n →
retrX(x, y, n) =X x. Thus, the equivalence follows from Ext(A(x)).

Proposition 6.17. Let Θ be a formula in the class PBL. Then there exists a formula Θ∗, which
in the case where r, s, T are given by closed terms is a sentence in ∆, such that

Aω[X, ‖·‖] ` ∀T 1(N)(X̃)...(X̃)∀ωN(N)(N)(N)
T ∀r, s ∈ (Q∗+)N (Um(T, ωT )→ (Θ∗ → Θ)),

where Um(T, ωT ) expresses the uniform continuity of T (see (3)). In the presence of b-ACX also
the converse implication Θ→ Θ∗ follows.

Proof. Let Θ be a formula in PBL:

Θ ≡ ∀lN∀r1x
X̃
1 ∃s1y

X̃
1 . . . ∀rmxX̃m∃smyX̃m(T (x, y, l) =R 0),

and assume that Um(T, ωT ). First, we remove the universal premise due to the bounded universal
quantifiers which is possible since (3) implies the extensionality of T .

Ext(T (x, y) =R 0) `
(

Θ↔ Θ0 :≡ ∀lN∀xX̃1 ∃s1y
X̃
1 . . . ∀xX̃m∃smyX̃m(T (x̃, y, l) =R 0)

)
,

x̃i := retrX̃(xi, ri, d− log2 rie+ 1).

Then, using AC, we obtain the Skolem normal form (cp. [31, p. 142])

Θ0 ↔ Θ∗ :≡ ∃sY ∀lN∀x(T (x̃, Y xl, l) =R 0),

where Θ∗ is spelled out as follows.

Θ∗ ≡ ∃Y
(∧m∧
i=1

Yi �X̃(X̃)(N) λy, l.si · 1X̃ ∧ ∀l
N∀x(T (x̃, Y x̃l, l) =R 0)

)
.

Since T (x̃, Y x̃l, l) =R 0 is a universal formula and we can bound Yi w.r.t. �1(1)(N) and �X(X)(N),
which follows from the extensionality of T together with Lemma 6.16, we conclude that Θ∗ can
be written as a sentence ∆ (and so the above use of AC can be re-casted as a use of b-ACX) for
closed terms r, s, T.

Theorem 6.18 (Logical Metatheorem for the class PBL). Let ρ ∈ TX be an admissible finite
type and Θ be a set of sentences of the class PBL such that for each ϕT ∈ Θ we have provably
Um(T, ωT ) (see (3) on p. 15) for some closed terms ωT , T defined in the language of Aω[X, ‖·‖].
Let B∀(x, u), resp. C∃(x, v), be ∀- resp. ∃-formulas that contain only the variables x, u resp. x, v
free. Assume

Aω[X, ‖·‖] + Θ ` ∀xρ
(
∀uNB∀(x, u)→ ∃vNC∃(x, v)

)
(4)

then one can extract a partial functional Φ : S
ρ̂
⇀ N whose restriction to the strongly majorizable

elements of S
ρ̂
is a (bar recursive) computable functional of Mω and the following holds in all

nontrivial normed spaces X s.t. Sω,X |= Θ: for all x ∈ Sρ, x∗ ∈ Sρ̂ if x∗ &ρ x then

∀u ≤ Φ(x∗)B∀(x, u)→ ∃v ≤ Φ(x∗)C∃(x, v).

The list (1)-(4) of Theorem 5.13 holds analogously.
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Proof. We have to add the following arguments to the proof of Theorem 5.13: In Proposition 6.17
we have shown that all axioms in the class PBL (which covers all closed instances of positive
bounded formulas in our theory) can be expressed by axioms Θ∗ ∈ ∆, which are covered by
Corollary 5.14. Thus, the only step is to use Θ∗ instead of the original set Θ (since Θ∗ provably
implies Θ). Since with b-ACX conversely Θ also implies Θ∗, the validity of Θ in Sω,X implies that
of Θ∗ (and by Lemma 5.11 we also have the validity of Θ∗ inMω,X).

Remark 6.19. The above metatheorem can be generalized to the setting where we do not re-
quire Aω[X, ‖·‖] + Θ `

∧∧
ϕT∈Θ

Um(T, ωT ) and only assume Um(T, ωT ) implicatively. Note that Θ is

w.l.o.g. finite since the proof of (4) can only involve finitely many axioms. Then the functional ϕ
would additionally dependent on ωT (which allows one to construct a majorant of T ).
Since the class ∆ covers both regular and approximate positive bounded formulas (see Lemma 6.13
and the proof of Proposition 6.17) as the latter are again in the class PBL, it is up to the user
which variant to take as an axiom. However, as we will show in Theorem 6.36, one can assume the
full non-approximative axiom for the proof of (4), which is equivalent using uniform boundedness
to the approximate version, but still conclude that the extracted uniform bound will be valid in all
structures satisfying the approximate version only.
Remark 6.20. Above we only considered PBL-axioms in the signature of Banach lattices (possibly
with a unit). However, the approach also applies to other signatures in the framework of positive
bounded logic as the uniform continuity requirement on bounded sets for the constants made in
positive bounded logic can always be stated as a universal axiom (once a modulus of continuity
is added to the language) from which one then construct a majorant (see the proof of Corollary
17.71.4 in [31]).

6.3. Uniform boundedness principle
In this section we study a uniform boundedness principle that will be shown to serve as a proof-
theoretic substitute to many uses of ultrapowers in the model theory of normed spaces. The starting
point is the axiom scheme ∃-UBX from [30, Definition 3.1]:

∃-UBX :≡
{
∀yα(N)(∀kN, xα, zβ∃nNA∃(y, k,minα(x, yk), z, n)→
∃χ1∀kN, xα, zβ∃n �N χkA∃(y, k,minα(x, yk), z, n)),

where α = N(σk) . . . (σ1), β = X(τm) . . . (τ1) (with τi,σi arbitrary finite types) and A∃ is an
∃-formula (see Definition 5.12). It is important to remark that ∃-UBX only makes sense when
considering bounded metric spaces. Since in a bounded metric space all elements of type X are
trivially majorized, the types in β can be very complex which is not possible in the case of normed
spaces.
The axiom (and also our variations of it) is in general invalid, since one of its immediate conse-
quences is the uniform continuity of all functions f : B1(0)→ X in the context of normed spaces.
For simplicity reasons we will restrict ourselves to the case of points yX̃ (and finite tuples yX̃)
instead of sequences yX̃(N). The sequential version of uniform boundedness has the advantage of
proving e.g. from strict convexity the existence of a modulus of uniform convexity, whereas one
would need choice in the pointwise version (see Proposition 6.41) to obtain a modulus. Since we
work in a strong theory with DC the pointwise version suffices. We will need rather technical (inten-
sional) uniform boundedness principles, having a subscript-minus at their names, and application
oriented variants for extensional formulas which are applied in Section 6.5.

Σ0
1-UBX− (A∃) :

{
∀yX̃∀nN(‖y‖ >R 2−n ∧ ∀xX̃∃zNA∃(retrX̃(x, y, n), y, z)
→ ∃z∗∀xX̃∃z �N z

∗A∃(retrX̃(x, y, n), y, z),
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where A∃ is an ∃-formula and retrX̃(x, y, n) as defined in Definition 6.15.
When we refer to the above principle by Σ0

1-UBX− we allow all instances of A∃; if we want to refer
to the inner formula A∃, we use the notation above (compare Lemma 6.23 with Lemma 6.25).
Now consider the following axiom of type ∆ (cp. [26] for type 1 and [31, Definition 17.99] for
arbitrary types in the context of bounded metric structures)

FX− :≡
{
∀ΦN(X)∀yX∀nN(‖y‖ >R 2−n → ∃y′ �X y∀xX(Φ(retrX(x, y, n)) �N Φ(y′)))∧
∀ΦN(1)∀v1∃v′ �1 v∀u1(Φ(min1(u, v)) �N Φ(v′)).

Proposition 6.21. Mω,X |= FX− .

Proof. The proof is similar to the proof of [31, Theorem 17.101].

Remark 6.22. Whenever the axiom FX− is in the theory we must use Mω,X as a model even if
dependent choice is not used, simply because in Sω,X the axiom FX− is wrong (see Section 6.5).

Lemma 6.23. Aω[X, ‖·‖] + FX− ` Σ0
1-UBX− .

Proof. Suppose ‖y‖ >R 2−n ∧ ∀xX̃∃zNA∃(retrX̃(x, y, n), y, z). By applying AC-∃ :≡ ∀x∃yA∃(x, y)
→ ∃f∀xA∃(x, fx), (which is equivalent to QF-AC) to the second conjunct we get

∃ΦN(X̃)∀xX̃A∃(retrX̃(x, y, n), y,Φ(x)).

Now we distinguish the cases X and 1 and start with the former: Since provably

‖y‖ > 2−n → retrX(retrX(x, y, n), y, n) =X retrX(x, y, n) (5)

by Definition 6.15 and (5) prenexing to a universal formula, we obtain with QF-ER

‖y‖ > 2−n → ∀xXA∃(retrX(x, y, n), y,Φ(retrX(x, y, n))).

Using FX− we know that ∃NN∀xX(Φ(retrX(x, y, n)) �N N).
For type 1 we use that provably ˇ̌x =1 x̌ (with x̌1 as in Definition 6.15) implying with QF-ER

|y| > 2−n → ∀x1A∃(retrX̃(x, y, n),Φ(x̌)).

Then we apply FX− (to Φ and v := M(y(0) + 1) from the definition of x̌) yielding ∃NN∀x1(Φ(x̌) �N
N) and hence both cases together imply

‖y‖ > 2−n → ∃z∗∀xX̃∃z �N z
∗A∃(retrX̃(x, y, n), y, z).

From now on, whenever we want to use Σ0
1-UBX− it is sufficient to have the theory Aω[X, ‖·‖]+FX− .

This theory is suitable for a logical metatheorem (see Theorem 6.36) whereas the uniform bounded-
ness principle does not have the right logical format. As we will see later, in most applications
we have a (provably) extensional formula A∃ which will allow us to use the following uniform
boundedness principle without having to deal with the retrX̃-operation:

Definition 6.24. We define the form of the uniform boundedness principle used in the applications
(and which follows from Σ0

1-UBX− for extensional formulas) with variables of type X̃ as follows.

Σ0
1-UBX : ∀yX̃(∀x �X̃ y∃zNA∃(x, y, z)→ ∃z∗∀x �X̃ y∃z �N z

∗A∃(x, y, z)),

where A∃ is an ∃-formula according to Definition 5.12. Again we may have tuples x, y having the
types X or 1.
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Lemma 6.25. Aω[X, ‖·‖] + Σ0
1-UBX− (A∃) ` Ext(A∃(x))→ Σ0

1-UBX(A∃)

Proof. Suppose that A∃ is extensional x w.r.t. =X resp. =R . If y =X 0 then x =X 0 and thus
the premise and the conclusion are identical: ∃zNA∃(0, 0, z). Similarly for y =R 0. If ‖y‖ > 0
there exists n ∈ N such that ‖y‖ > 2−n. Then from ∀x �X̃ y∃zNA∃(x, y, z) we get by applying
Lemma 6.16 to the negated formula, that equivalently ∀xX̃∃zNA∃(retrX̃(x, y, n), y, z) holds. Now
we apply Σ0

1-UBX− (A∃) resulting in

∃z∗∀xX̃∃z �N z
∗A∃(retrX̃(x, y, n), y, z).

Again by Ext(A∃(x)) and Lemma 6.16 we have ∃z∗∀x �X̃ y∃z �N z
∗A∃(x, y, z).

We now show how Σ0
1-UBX− (and with extensionality also Σ0

1-UBX) can be generalized to the
situation where A∃ is not only an existential formula but of the format ∃kN∀a1 �X̃ y1∃a2 �X̃
y2 . . . θqf.
To prove this generalized principle from Σ0

1-UBX− (and thus by FX− ) we add two choice (“epsilon”)
operators φ for both types in X̃ to the language having roughly the following semantics: For the
variables yX̃ , zN(X̃) (and nN) its output is an element φ(z, y) := x �X̃ y such that z(x) =N 0. If
such an element does not exist we set φ(z, y) := 0X (or φ(z, y) := 0R respectively). To eliminate the
hidden universal quantifier in x �X̃ y we use a technically involved axiom and also more involved
semantics for which we refer to the proof of Proposition 6.27.

Definition 6.26. We define an extension of the theory Aω[X, ‖·‖] denoted by Aω[X, ‖·‖ , φ] by
adding constants φ of type X(N)(X)(NX) and of type 1(N)(1)(N1) and the following purely uni-
versal axioms

(φ) ∀xX̃ , yX̃∀nN∀zN(X̃)

(‖y‖ >R 2−n → (z(retrX̃(x, y, n)) =N 0→ z(retrX̃(φ(z, y, n), y, n)) =N 0)).

Proposition 6.27 (cp. [30, Definition 3.21]). Let (X, ‖·‖) be a nontrivial normed space. Then
Sω,X becomes a model of Aω[X, ‖·‖ , φ] by letting the variables of type ρ range over Sρ if all constants
of Aω[X, ‖·‖] are interpreted as in Proposition 2.15 and φ is interpreted by any function with the
semantics specified below. The same holds for all extensions of Aω[X, ‖·‖] and their respective
models.

Proof. The existence follows from the semantics of φ, which we define as follows (using AC on the
metalevel):

φ(zN(X), yX , nN) :=X


retrX̃(x, y, n) for xX with z(retrX̃(x, y, n)) = 0,

if xX exists,
0X otherwise.

φ(zN(1), y1, nN) :=1


min1(x,M(y(0) + 1)) for x1 with z(retrX̃(x, y, n)) = 0,

if x1 exists,
0R otherwise.

Since z(retrX(x, y, n)) =N z(retrX(retrX(x, y, n), y, n)) and z(retrX̃1(x, y, n)) =N z(retrX̃1(x̌, y, n))
the axioms (φ) are fulfilled. We have to show that φ is majorizable in the proof of Theorem 6.36,
which is the reason why the semantics involves the retrX̃(x, y, n) and min1 operations.
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We define a more general uniform boundedness principle

Σ0
1-UBXb,− :


∀yX̃∀nN

(∧m∧
i=0
‖yi‖ >R 2−n ∧ ∀xX̃∃zNAb,−(retrX̃(x, y0, n), y, z)

→ ∃z∗∀xX̃∃z �N z
∗Ab,−(retrX̃(x, y0, n), y, z)

)
,

where Ab,− ≡ ∃kN∀xX̃1 ∃xX̃2 , . . .∀xX̃m−1∃xX̃m
θqf(retrX̃(x1, y1, n), . . . , retrX̃(xm, ym, n), k, retrX̃(x, y0, n), y, z, a),

where θqf is quantifier-free with arbitrary free parameters a. First we show how the augmented
theory Aω[X, ‖·‖ , φ] proves the more general uniform boundedness principle by Σ0

1-UBX− and thus
by FX− .

Lemma 6.28. Aω[X, ‖·‖ , φ] + Σ0
1-UBX− ` Σ0

1-UBXb,−.

Proof. Let θqf(xX̃ , yX̃ , kN, a) be a quantifier-free formula containing only the free variables indi-
cated. Then there exists a closed term tθ which provably satisfies

tθ(x, y, k, a) =N 0↔ θqf(x, y, k, a).

Now we apply φ to z := λxX̃ .tθ(x, y, k, a), y and n, implying (omitting all further arguments of tθ
for improved readability) under the assumption ‖y‖ >R 2−n :

θqf(retrX̃(x, y, n), y, k, a)→ θqf(retrX̃(φ(λx.tθ(x), y, n), y, n), y, k, a). (6)

By (6) we have that ∃xX̃θqf(retrX̃(x, y, n), y, k, a)↔ θqf(retrX̃(φ(λx.tθ(x), y, n), y, n), y, k, a).
Analogously, this can be applied to ∃xX̃¬θqf with the following outcome:

∀xX̃θqf(retrX̃(x, y, n), y, k, a)↔ θqf(retrX̃(φ(λx.t¬θ(x), y, n), y, n), y, k, a).

Iterating the procedure we obtain that Σ0
1-UBX− implies the more general case Σ0

1-UBXb,− where
Ab,− can be of the form

∃kN∀xX̃1 ∃xX̃2 , . . .∀xX̃m−1∃xX̃mθqf(retrX̃(x1, y1, n), . . . , k, retrX̃(x, y, n), y, z, a).

This is possible since by the previous algorithm one can transform Ab,− to an equivalent existential
formula and use Σ0

1-UBX− .

Corollary 6.29. Aω[X, ‖·‖ , φ] + FX− ` Σ0
1-UBXb,−.

Proof. Follows from Lemmas 6.23 and 6.28.

Lemma 6.30.

Aω[X, ‖·‖] + Σ0
1-UBXb,− ` ∀yX̃∀nN

(∧m∧
i=0
‖yi‖ >R 2−n

∧∀xX̃1 ∃xX̃2 . . . ∀xX̃m−1∃xX̃m∃zNθqf(retrX̃(x1, y1, n), . . . , retrX̃(xm, ym, n), y, z, a)

→ ∃z∗∀xX̃1 ∃xX̃2 . . . ∀xX̃m−1∃xX̃m∃z �N z
∗θqf(retrX̃(x1, y1, n), . . . , retrX̃(xm, ym, n), y, z, a)

)
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Proof. We apply the axiom Σ0
1-UBXb,− iteratively, first to ∀xX̃m−1∃zN∃xX̃mθqf resulting in

∀xX̃1 ∃xX̃2 . . . ∀xX̃m−3∃xX̃m−2∃z∗∀xX̃m−1∃xX̃m∃z �N z
∗

θqf(retrX̃(x1, y1, n), . . . , retrX̃(xm−1, ym−1, n), retrX̃(xm, ym, n)y, z, a)

until we obtain ∃z∗∀xX̃1 ∃xX̃2 . . . ∃z �N z
∗θqf(retrX̃(x1, y1, n), retrX̃(x2, y2, n) . . . , y, z, a)).

Definition 6.31. We define the generalized uniform boundedness principle for extensional formulas
∃vNθqf:

Σ0
1-UBXb (∃vNθqf) :

{
∀yX̃(∀x1 �X̃ y1∃x2 �X̃ y2 . . . ∃zN, vNθqf

→ ∃z∗∀x1 �X̃ y1∃x2 �X̃ y2 . . . ∃z �N z
∗∃vNθqf(. . .)),

where we allow arbitrary free variables.

Proposition 6.32.
Aω[X, ‖·‖] + Σ0

1-UBXb,− ` Ext(∃vNθqf(x))→ Σ0
1-UBXb (∃vNθqf).

Proof. Let y1, . . . , ym ∈ X (or y1, . . . , ym ∈ R) and n ∈ N such that all ‖yi‖ > 2−n and assume

∀x1 �X̃ y1∃x2 �X̃ y2 . . . ∃xm �X̃ ym∃zN, vNθqf(x1, . . . , xm, y, z, v, a).

By Ext(∃vNθqf(x)) together with Lemma 6.16 (applied m times) we have

∀xX̃1 ∃xX̃2 . . . ∃xX̃m∃zN, vNθqf(retrX̃(x1, y1, n), . . . , retrX̃(xm, ym, n), y, z, v, a).

We apply Lemma 6.30 (where the two existential number variables can be thought of coded into a
single one) to obtain

∃z∗, v∗∀xX̃1 ∃xX̃2 . . . ∃z �N z
∗∃v �N v

∗θqf(retrX̃(x1, y1, n), retrX̃(x2, y2, n) . . . , y, z, v, a).

Then this implies the following weakening of the statement:

∃z∗∀xX̃1 ∃xX̃2 . . . ∃xX̃m∃z �N z
∗∃vNθqf(retrX̃(x1, y1, n), retrX̃(x2, y2, n) . . . , y, z, v, a).

By the extensionality of ∃vNθqf w.r.t. x we obtain with Lemma 6.16

∃z∗∀x1 �X̃ y1∃x2 �X̃ y2 . . . ∃xm �X̃ ym∃z �N z
∗∃vNθqf(x1, . . . , xm, y, z, v, a).

Theorem 6.33.

Aω[X, ‖·‖ , φ] + FX− ` ∀T 1(N)(X̃)...(X̃)∀ωN(N)(N)(N)
T

(
Um(T, ωT )→

(
ϕ(T )↔ ∀kNϕ2−k(T )

))
,

where ϕ2−k is the 2−k-approximation of a formula ϕ of the class PBL according to Lemma 6.13
and Um(T, ωT ) expresses the uniform continuity of T (see (3). Instead of FX− one can also use
Σ0

1-UBX− .
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Proof. Let ϕ ∈ PBL. The direction ϕ(T ) → ∀kNϕ2−k(T ) is trivial. For the converse direction we
prove ¬ϕ(T )→ ¬(∀kN ϕ2−k(T )). Let

ϕ(T ) ≡ Θm(T, r, s) :≡ ∀lN∀r1x
X̃
1 ∃s1y

X̃
1 . . . ∀rmxX̃m∃smyX̃m

(
T (x, y, l) =R 0

)
be a formula in the class PBL. Negating Θm gives

∃lN∃x1 �X̃ 1X̃r1∀y1 �X̃ 1X̃s1 . . . ∃kN(|T (x, y, l)| >R 2−k).

Since
∣∣T (x, y, l)

∣∣ >R 2−k is extensional (since T is uniformly continuous) and in Σ0
1, we can apply

Corollary 6.29 and Proposition 6.32, resulting in (using monotonicity w.r.t. k)

∃kN, lN∃x1 �X̃ 1X̃r1∀y1 �X̃ 1X̃s1 . . . (|T (x, y, l)| >R 2−k).

Now we use the modulus of uniform continuity ωT to prove the negated approximate formula
according to Lemma 6.13:

∃kN, lN∃x1 �X̃ 1X̃(r1 − 2−k)∀y1 �X̃ 1X̃(s1 + 2−k) . . . (|T (x, y, l)| >R 2−k). (7)

Since the modulus depends on the range of the bounded variables which we are about to modify we
define a new modulus ω∗T (b, k, l) := max{ωT (b+ 1, k + 1, l), k + 1}. Due to the uniform continuity
with the new modulus ω∗T we have

∀lN∀xX̃1 , x̃X̃1 �X̃ 1X̃(r1 + 1)∀yX̃1 , ỹX̃1 �X̃ 1X̃(s1 + 1) . . .(∧m∧
i=1
‖x̃i − xi‖ , ‖ỹi − yi‖ ≤R 2−ω

∗
T (b,k,l) → |T (x, y, l)− T (x̃, ỹ, l)| ≤R 2−k−1

)
,

where b := dmax{ri, si | i, j ∈ {1, . . . ,m}}e.
Finally we need to argue why for any point x ∈ Br(0) there exists a point x∗ ∈ Br−2−n(0) (for
all n ∈ N such that r − 2−n > 0) such that ‖x∗ − x‖ ≤ 2−n. Note that in a metric space
this is not necessarily the case but in normed spaces this is always possible by setting x∗ :=

(r − 2−n)x
max{‖x‖ , r − 2−n}

. Hence, we have shown

∃kN, lN∃x1 �X̃ 1X̃(r1 − 2−N )∀y1 �X̃ 1X̃(s1 + 2−N ) . . . |T (x, y, l)| >R 2−k−1,

where b := dmax{ri, si | i, j ∈ {1, . . . ,m}}e and

N := max {ω∗T (b, k, l), d− log2 (ri)e+ 1 | i ∈ {1, . . . ,m}} .

Due the fact that N ≥ k + 1 we haven proven (7).
For the claim with Σ0

1-UBX− one uses Lemma 6.28 instead of Corollary 6.29.

Remark 6.34. There is a variant of the monotone functional interpretation, on which our metathe-
orems are based, due to [14] and extended to abstract spaces X in [13], which treats bounded
quantifiers directly as computationally empty (thereby avoiding the need for an epsilon-operator)
and which is particularly tailored towards conservation results for general uniform boundedness
principles. However, this so-called ‘bounded functional interpretation’, is based on an intensional
rule-based treatment of the bounding relation �X which is not provably equivalent to the usual
relation which we use (as in model theory).
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It is interesting to note that in the presence of uniform boundedness, it would have been sufficient
to assume that the function T is extensional, since uniform boundedness proves uniform continuity
on bounded sets from extensionality (see [30, Proposition 4.3]). In model theory the assumption of
extensionality is empty because in a model every function is extensional (because one has built-in
equality). As a consequence of this, all function symbols are assumed to be uniformly continuous
(on bounded sets) in model theory whereas in proof theory it is common to operate with partial
forms of extensionality which only need weaker assumptions than full uniform continuity (see
e.g. the treatment of functions satisfying the condition (E) used in fixed point theory in [35]).

Proposition 6.35 ([19, Proposition 9.26]). Let U be a countably incomplete ultrafilter. For a
normed space (L)-structure M and any positive bounded formula ϕ, with elements a1, . . . , an of M
of suitable sorts the following are equivalent: M |=A ϕ[a1, . . . , an] and (M)U |= ϕ[a1, . . . , an].

Discussion. In Theorem 6.33 we have shown that the uniform boundedness principle (via FX− )
proves the equivalence of approximate truth of a positive bounded formula and the original formula
(even allowing a more general class of formulas PBL). Together with Proposition 6.35 this gives
rise to the following analogy:

“Uniform boundedness in proof theory ≈ Ultrapower in model theory”.

Theorem 6.36 (Logical Metatheorem for the uniform boundedness principle). Let ρ ∈ TX be an
admissible finite type and Θ be a set of sentences of the class PBL, Θε be the set of approximations
of Θ in the sense of Lemma 6.13, such that for each ϕT ∈ Θ we have provably Um(T, ωT ) (see
(3) on p. 15) for some closed terms ωT , T defined in the language of Aω[X, ‖·‖]. Let B∀(x, u),
resp. C∃(x, v), be ∀- resp. ∃-formulas that contain only the variables x, u resp. x, v free. Assume

Aω[X, ‖·‖ , φ] + Θ + FX− ` ∀xρ
(
∀uNB∀(x, u)→ ∃vNC∃(x, v)

)
(8)

then one can extract a partial functional Φ : S
ρ̂
⇀ N whose restriction to the strongly majorizable

elements of S
ρ̂
is a (bar recursive) computable functional of Mω and the following holds in all

nontrivial normed spaces X s.t. Sω,X |= Θε: for all x ∈ Sρ, x∗ ∈ Sρ̂ if x∗ &ρ x then

∀u ≤ Φ(x∗)B∀(x, u)→ ∃v ≤ Φ(x∗)C∃(x, v).

Moreover,

1. if ρ̂ is type 1, then Φ : S
ρ̂
→ N is a total computable functional (in the ordinary sense of

type-2 recursion theory).

2. All variables may occur as finite tuples of the same type.

3. If the statement in (8) can be proven without the axiom of dependent choice, one does not
need bar recursion. Then the functional Φ : S

ρ̂
→ N is primitive recursive (in the sense of

Gödel).

Proof. We have to add the following lines of reasoning to the proof of Theorem 5.13: In Proposi-
tion 6.27 the constants φ are interpreted in Sω,X . Since the type of φ is (in case of type X) not
admissible we have to argue that we can also interpret φ inMω,X such that [φ]Sω,X ≈ρ [φ]Mω,X ,
where ≈ρ is defined in [31, Proposition 3.71 and Lemma 17.84]. By restricting [φ]Sω,X to arguments
of Mω,X , i.e. [φ]Mω,X := [φ]Sω,X �Mω,X , we obtain a suitable candidate for the interpretation of
φ since all arguments have an admissible type and so Lemma 5.7 is applicable. Then we have to
show that φ is majorizable, which is a straightforward computation if one uses the majorants for
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type 1: λ.z2, y1, nN.M(y(0) + 1) and for type X: λz1, yN, nN.y (see Definition 5.2 for the majoriza-
tion types). Thus, we have proven [φ]Sω,X ≈ρ [φ]Mω,X . Note that both majorants are simple,
computable functions and thus do not contribute to the complexity of the extracted bounds.
The axiom FX− is an axiom ∆, hence we can apply Corollary 5.14. From Proposition 6.21 we know
thatMω,X |= FX− (but Sω,X 6|= FX− , see Section 6.5) and by Lemma 5.10 thatMω,X |= F̃X− .
Since we have shown in Theorem 6.33 that under FX− the sets Θ and Θε are equivalent and Θε

can be written as an axiom ∆ (see Lemma 6.13 and the proof of Proposition 6.17), we are free to
assume the stronger version in the proof of (8), whereas we only have to demand the truth of the
approximate version in the respective model.

Remark 6.37. Observing the above proof shows why, even without using dependent choice in the
proof of (8), the restrictions on the types cannot be relaxed, since we have to pass through the
modelMω,X for FX− to hold.

Definition 6.38 (cp. [30, Definition 3.8]). The class H consists of all sentences (in the language
of the theory in question) that have a prenex normal form

∀aρ∀b �σ ra∃xN1∀y
τ1
1 . . . ∃xNn∀yτnn F∃(a, b, x, y),

where F∃ is an ∃-formula according to Definition 5.12, the types τi, ρ are small and σ is admissible
and bounded by a closed term r.

We present a conservation result for the class H for the uniform boundedness principle, which can
be proven from FX− (see Lemma 6.23).

Corollary 6.39 (cp. [31, Corollary 17.49 and Corollary 17.104] and [30, Corollary 3.9]). Let A be
a sentence in the class H. If

Aω[X, ‖·‖ , φ] + FX− ` A,
then A holds in any nontrivial normed space X. Similarly for the extensions of Aω[X, ‖·‖ , φ].

Proof. The proof is similar to the proof of [31, Corollary 17.49]. Short summary: One applies
Theorem 6.36 where the restrictions of types in the class H become apparent when bringing A to
the right logical format (its Herbrand normal form) in order to be applicable.

6.4. Applications of the uniform boundedness principle
In the following we will analyze some pairs of properties of normed spaces and their connection to
uniform boundedness and forming ultrapowers.

Example 6.40 ([1, II, Theorem 4.5]). Let X be a Banach space and U be a nontrivial ultrafilter
on N. Then (X)U is strictly convex ⇔ (X)U is uniformly convex ⇔ X uniformly convex.

Proposition 6.41 (cp. [31, Proposition 17.110]).

Aω[X, ‖·‖] + Σ0
1-UBX− ` X is strictly convex→ X is uniformly convex.

Proof. Strict convexity can be formalized as follows

∀kN∀x1, x2 �X 1X∃nN
(∥∥ 1

2 (x1 + x2)
∥∥ ≥ 1− 2−n → ‖x1 − x2‖ < 2−k

)
(9)

The formula
∥∥ 1

2 (x1 + x2)
∥∥ ≥ 1 − 2−n → ‖x1 − x2‖ < 2−k is of type ∃vNθqf and is extensional

allowing us to use Lemma 6.25 and apply Σ0
1-UBX resulting in

∀kN∃nN∀x1, x2 �X 1X
(∥∥ 1

2 (x1 + x2)
∥∥ ≥ 1− 2−n → ‖x1 − x2‖ < 2−k

)
expressing uniform convexity.
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Using the conservation result from Corollary 6.39 we also show that adding the uniform bounded-
ness principle does not invoke the provability of strict convexity (and further properties) of the
normed space in question. To this end we only need to prove that the property in question can be
equivalently formulated by a sentence in the class H.

Proposition 6.42. Aω[X, ‖·‖] + FX− 0 X is strictly convex.

Proof. The property of a space X to be strictly convex (see (9)) is in the class H. The claim
then follows from Corollary 6.39 and the fact that there exist Banach spaces which are not strictly
convex (e.g. l1, l∞).

Definition 6.43 ([22] and [46]). Let X be a Banach space. Let B(X) denote the unit ball.

1. We call X nonsquare if ∀x, y ∈ B(X)
(
min

{∥∥x+y
2
∥∥ ,∥∥x−y2

∥∥} < 1
)
.

2. We call X uniformly nonsquare if

∃δ > 0∀x, y ∈ B(X)
(
min

{∥∥x+y
2
∥∥ ,∥∥x−y2

∥∥} < 1− δ
)
.

Proposition 6.44. Let X be a Banach space and U be a nontrivial ultrafilter on N. Then the
following are equivalent.

1. (X)U is nonsquare;

2. (X)U is uniformly nonsquare;

3. X is uniformly nonsquare.

Proof. We only prove 1 → 3 the rest is rather trivial. Assume that (X)U is nonsquare and for a
contradiction that X is not uniformly nonsquare, i.e.

∀kN∃x, y �X 1X
(∥∥∥∥x− y2

∥∥∥∥ ≥ 1− 2−k ∧
∥∥∥∥x+ y

2

∥∥∥∥ ≥ 1− 2−k
)
,

implying the existence of sequences (xn)n∈N, (yn)n∈N ⊂ B1(0) such that∥∥∥∥xn − yn2

∥∥∥∥ ≥ 1− 2−n ∧
∥∥∥∥xn + yn

2

∥∥∥∥ ≥ 1− 2−n.

Now set x̃ := (̃xn) and ỹ := (̃yn) as elements of (X)U having the following properties:

lim
n→∞

‖xn − yn‖ = 2 = ‖x̃− ỹ‖ , lim
n→∞

‖xn + yn‖ = 2 = ‖x̃+ ỹ‖ ,

contradicting the statement that (X)U is nonsquare.

Proposition 6.45.

Aω[X, ‖·‖] + Σ0
1-UBX− ` X is nonsquare→ X is uniformly nonsquare.

Proof. Follows by applying Σ0
1-UBX to the statement “X is nonsquare” which can be formalized

as follows
∀x, y �X 1X ∃k ∈ N

(
min

{∥∥x+y
2
∥∥ ,∥∥x−y2

∥∥} < 1− 2−k
)
, (10)

Since min
{∥∥x+y

2
∥∥ ,∥∥x−y2

∥∥} < 1 − 2−k is of the format ∃vNθqf and is extensional, we can use
Lemma 6.25.
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Proposition 6.46. Aω[X, ‖·‖] + FX− 0 X is nonsquare.

Proof. The property of a space to be nonsquare (see (10)) is in the class H. The claim then
follows from Corollary 6.39 and the fact that there exist Banach spaces which are not nonsquare
(e.g. l1).

The following result illustrates why forming ultrapowers can be seen as a form of completion
(cp. [48, Remark 3]).

Proposition 6.47 ([31, cp. Proposition 17.105]).

Aω[X, ‖·‖] + Σ0
1-UBX− ` X is complete.

Proof. By contradiction: Applying Σ0
1-UBX to the formula expressing the existence of a non-

convergent Cauchy sequence yields that the sequence cannot be Cauchy.

Definition 6.48 ([36] and [43]). Let X be a Banach space, let n ∈ N, and let B(X) denote the
unit ball and S(X) the unit sphere.

1. X is called p(n)-convex if ∀x1, . . . , xn ∈ S(X)∃1 ≤ i, j ≤ n (i 6= j ∧ ‖xi − xj‖ < 2) .

2. X is called P(n)-convex if P (n) = sup {r > 0 | ∃n disjoint balls of radius r in B(X)} < 1
2 .

Example 6.49 ([43, cp. Theorem 3.8]). Let X be a Banach space and n ∈ N and let U be a
nontrivial ultrafilter. Then (X)U is P (n)-convex ⇔ X is P (n)-convex ⇔ (X)U is p(n)-convex.

Proposition 6.50. For every fixed n ∈ N

Aω[X, ‖·‖] + Σ0
1-UBX− ` X is p(n)-convex→ X is P (n)-convex

Proof. One can formalize p(n)-convexity as follows (note that we can replace S(X) by B(X) as
the property is trivial if one of the xi has norm < 1)

∀x1, . . . , xn �X 1X∃kN
(
min {‖xi − xj‖ | i 6= j} < 2− 2−k

)
. (11)

Since min {‖xi − xj‖ | i 6= j} < 2− 2−k is of the form ∃vNθqf and is extensional we can use Lemma
6.25 and apply Σ0

1-UBX (to k only) yielding

∃kN∀x1, . . . , xn �X 1X
(
min {‖xi − xj‖ | i 6= j} < 2− 2−k

)
which is equivalent to P (n)-convexity by [36, Remark 1.4].

Proposition 6.51. For every fixed n ∈ N: Aω[X, ‖·‖] + FX− 0 X is p(n) convex.

Proof. The property of a space X to be p(n)-convex (see (11)) is in the class H. The claim then
follows from Corollary 6.39 and the fact that there exist Banach spaces which are not p(n)-convex
(e.g. l∞, C[0, 1] see [43, Example 3.4]).

Definition 6.52 ([41, pp. 59-60] and [47]). Let X be a Banach space.

1. X is called smooth if the limit lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for every x, y ∈ X with ‖x‖ = 1 =
‖y‖.
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2. X is called uniformly smooth if for the modulus of smoothness ρX(τ), τ > 0 it holds that
limτ→0

ρX(τ)
τ = 0, where

ρX(τ) := sup
{
‖x+ y‖+ ‖x− y‖

2 − 1 | x, y ∈ X, ‖x‖ = 1, ‖y‖ = τ

}
.

Example 6.53 ([12]). Let X be a Banach space and let U be a nontrivial ultrafilter. Then X is
uniformly smooth ⇔ (X)U is smooth ⇔ (X)U is uniformly smooth.

Proposition 6.54.

Aω[X, ‖·‖ , J ] + Σ0
1-UBX− ` X is smooth→ X is uniformly smooth,

where Aω[X, ‖·‖ , J ] is an extension of Aω[X, ‖·‖] by a constant J for the normalized duality map
and a universal axiom stating the properties of J (see [34]).

Proof. Consider the duality mapping J of X and let fx ∈ J(x) for some x ∈ S(X). For each λ > 0
and y ∈ S(X) it holds by [47, Proof of Theorem 4.3.1]

‖x‖ − ‖x− λy‖
λ

≤ fx(y)
‖x‖

≤ ‖x+ λy‖ − ‖x‖
λ

(12)

which is used to show that the single-valuedness of J is equivalent to smoothness. Now observe
that smoothness implies

∀mN∀x, y �X 1X∃kN(‖x‖ , ‖y‖ = 1→
∥∥x+ 2−ky

∥∥+
∥∥x− 2−ky

∥∥ < 2 + 2−k2−m) (13)

which is a suitable format for the application of Lemma 6.25. Applying Σ0
1-UBX yields

∀mN∃k∗∀x, y �X 1X∃k �N k
∗(‖x‖ , ‖y‖ = 1→

∥∥x+ 2−ky
∥∥+

∥∥x− 2−ky
∥∥ < 2 + 2−k2−m)

which implies with (12) the uniform norm-norm continuity of J which is equivalent to uniform
smoothness (see [11, Theorems II.2.14 and II.2.16]).

Proposition 6.55. Aω[X, ‖·‖] + FX− 0 X is smooth.

Proof. Statement (13) is in the class H. It can be shown that it is equivalent to smoothness. The
claim then follows from Corollary 6.39 and the fact that there exist Banach spaces which are not
smooth (e.g. l1, l∞).

6.5. Applications of the uniform boundedness principle in current research
Definition 6.56 (cp. [15]). Let X be a real Banach space and X∗ denote its dual space. Let
φ : X → [0,∞) be a continuous function with φ(0) = 0 and x 6= 0→ φ(x) > 0 satisfying:
For all sequences (xn)n∈N in X such that (‖xn‖)n∈N is non-increasing and lim

n→∞
φ(xn) = 0 it holds

that lim
n→∞

‖xn‖ = 0.
An accretive operator A : D(A) → 2X with 0 ∈ A(z) is called φ-accretive at zero if the following
holds for all (x, u) ∈ A: 〈u, x− z〉+ ≥ φ(x− z).

The authors of [32] introduce a new definition which generalizes φ-accretivity at zero in the sense
that the existence of the continuous function φ is not demanded but which has a stronger uniform
requirement on the positivity of A at zero instead such that the distance from 0 only depends on
the distance ‖x‖ has from zero 0 but not on x itself.
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Definition 6.57 ([32, Definition 10]). Let X be real Banach space. We call an accretive operator
A : D(A)→ 2X uniformly accretive at zero if

∀k,K ∈ N ∃m ∈ N ∀(x, u) ∈ A (‖x− z‖ ∈ [2−k,K + 1]→ 〈u, x− z〉+ > 2−m).

We now show that the uniform boundedness principle can be used to obtain uniform accretivity
from φ-accretivity when considering only single valued operators A. Since in Definition 6.56 we
have x 6= 0→ φ(x) > 0 it follows that (assuming A(z) = 0)

∀x ∈ D(A) (‖x− z‖ > 0→ 〈A(x), x− z〉+ > 0)

which is equivalent to

∀k,K ∈ N ∀x ∈ D(A)∃m ∈ N
(
‖x− z‖ ≥ 2−k ∧ ‖x− z‖ ≤ K + 1→ 〈A(x), x− z〉+ > 2−m

)
.

The variableK plays the role of y (which we could introduce as a dummy variable as well) bounding
x− z (and thus bounding x). Applying uniform boundedness and observing that the statement is
monotone w.r.t. m yields

∀k,K ∈ N∃m ∈ N ∀x ∈ D(A)
(
‖x− z‖ ≥ 2−k ∧ ‖x− z‖ ≤ K + 1→ 〈A(x), x− z〉+ > 2−m

)
which is exactly Definition 6.57 when considering single valued maps.
Remark 6.58. Note that one has to add an additional predicate A to the language in order to
formalize “∀(x, u) ∈ A” in our framework. By adding the definition of accretivity as a universal
axiom to the theory, the predicate A functions as an implicit quantification over all accretive
operators. Of course, one also needs to formalize dual spaces and the normalized duality map in
order to prove a logical metatheorem for the setting of (uniformly) accretive operators. In [34] the
authors provide a formal representation of the normalized duality map, together with a continuous
selection functional.

7. Logical Metatheorem for BLpLq-Banach lattices

In this section we recast the axiomatization of the BLpLq-Banach lattice from [20] in our proof-
theoretic formal framework and explicitly write it as an axiom ∆ so that Corollary 5.14 can be
(suitably adapted) applied (see Theorem 7.13 below).

Definition 7.1. Let X be a lattice.

1. Two elements x, y ∈ X are disjoint or orthogonal if |x| u |y| = 0, which is denoted by x ⊥ y.

2. For a subset A ⊆ X we denote the set of all disjoint elements of A by

A⊥ := {x ∈ X | ∀a ∈ A(x ⊥ a)}.

A⊥ is also called the orthogonal complement of A.

Definition 7.2 ([42, Definition 1.2.1]). Let X be a vector lattice.

1. A subspace U of X is called a sublattice of X if for all elements x, y ∈ U both x u y ∈ U and
x t y ∈ U hold.

2. A subspace I of X is called an ideal if for all y ∈ I and x ∈ X with |x| ≤ |y| also x ∈ I.

3. An ideal B of X is called a band if for every subset A ⊆ B with sup(A) ∈ X also sup(A) ∈ B.
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In [20] the class of bands of Lp(Lq)-Banach lattices is considered, which is closed under ultrapowers,
in contrast to the class of Lp(Lq)-Banach lattices (see [39]). Before discussing an axiomatization
using Banach lattices we give a more analytical definition: An abstract Lp(Lq)-space is a Banach
lattice X which, for some measure space (Ω,Σ, µ), can be equipped with the structure of an
L∞(Ω,Σ, µ)-module and with a so-called random norm N : X → Lp(Ω,Σ, µ)+ with the following
properties (see [20]). Note that all sentences have to read with the addition of “almost everywhere”.

1. ∀ϕ ∈ L∞(Ω,Σ, µ)∀x ∈ X(ϕ ≥ 0 ∧ x ≥ 0→ ϕ.x ≥ 0).

2. ∀x, y ∈ X(N(x+ y) ≤ N(x) +N(y)).

3. ∀ϕ ∈ L∞(Ω,Σ, µ)∀x ∈ X(N(ϕ.x) = |ϕ|N(x)).

4. ∀x, y ∈ X(0 ≤ |x| ≤ |y| → N(x) ≤ N(y)).

5. ∀x, y ∈ X (x ⊥ y → N(x+ y)q = N(x)q +N(y)q).

6. ∀x ∈ X (‖x‖X = ‖N(x)‖Lp).

In the case which is most interesting for applications, N is explicitly defined by the map f 7→(∫∞
0 ‖f(t)‖pLq dt

)1/p. The multiplicative action of L∞(Ω,Σ, µ) on Lp([0,∞), Lq(Ω,Σ, µ)) is well-
defined. If N is defined as above, the class of abstract Lp(Lq)-spaces coincides with that of bands
in Lp(Lq)-Banach lattices (denoted by BLpLq-Banach lattices). Following the approach for the
axiomatization of Lp(Ω,Σ, µ)-spaces the authors of [20] prove an axiomatization by Banach lattices,
in this case relying on finite approximations.

Definition 7.3 (Banach-Mazur distance [38, p. 165]). Let X and Y be isomorphic Banach spaces.
Define

d(X,Y ) := inf
{
‖L‖

∥∥L−1∥∥ | L is a linear isomorphism of X onto Y
}

as the Banach-Mazur distance of X to Y .

The notion of Lp-spaces due to ([40]) is applied to the setting of Lp(Lq)-Banach lattices by the
authors of [20].

Definition 7.4 ([20, Definition 3.1]). A Banach lattice X is a (LpLq)λ-lattice if for every ε > 0
and every n ∈ N it holds: Let x1, . . . , xn be positive, pairwise disjoint elements of X. There exists
a finite dimensional sublattice F of X which is isomorphic to a finite dimensional BLpLq-Banach
lattice E with Banach-Mazur distance d(F,E) ≤ λ+ ε and contains elements x′1, . . . , x′n such that
‖x′i − xi‖ ≤ ε for all i = 1, . . . , n.

Proposition 7.5 ([20, Proposition 3.6]). Let 1 ≤ p, q <∞. A Banach lattice is a (LpLq)1-lattice
if and only if it is isometrically lattice isomorphic to a BLpLq-Banach lattice.

Lemma 7.6. Let X be a Banach lattice, x1, . . . , xn ∈ X and α1, . . . αn ∈ R.

1. For all pairwise disjoint positive elements x1, . . . , xn it holds that
‖
∑n
i=1 αixi‖ ≥ maxi∈{1,...,n}{|αi| ‖xi‖}.

2. For all elements x1, . . . , xn(∧n∧
i=1

(‖xi‖ ≤ 1 ∧ xi ≥ 0)→
∧n∧
i=1

(‖x′i‖ ≤ 1 ∧ x′i ≥ 0) ∧
∑

i,j=1,...,n
i 6=j

|x′i| u
∣∣x′j∣∣ = 0

)
,
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where x′i := xi − xi u
∑
k 6=i

xk for each i ∈ {1, . . . , n} and

(∧n∧
i=1
‖xi‖ ≤ 1 ∧ xi ≥ 0 ∧

∑
i,j=1,...,n

i 6=j

|xi| u |xj | = 0
)
→
∧n∧
i=1

xi = x′i.

Proof. See Appendix A.7 and A.8.

The following lemma is one of the main ingredients for the axiomatization of BLpLq-Banach
lattices.

Lemma 7.7 ([20, Lemma 3.2]). Let X be a (LpLq)λ-lattice. Then for every ε > 0 and every finite
dimensional sublattice E of X there exists a finite dimensional sublattice F of X and a vector
lattice homomorphism T : E → F such that F is (λ+ ε)-lattice isomorphic to a finite dimensional
BLpLq-Banach lattice and for all x ∈ E it holds: ‖Tx− x‖ ≤ ε ‖x‖.

Proof. See [20, Lemma 3.2], proving Lemma 7.6 is instructive for the proof.

Now we discuss an axiomatization of BLpLq-Banach lattices in terms of finite dimensional sub-
spaces in the language of Banach lattice due to Henson and Raynaud. They basically spell out
Proposition 7.5 and the quantitative information from Lemma 7.7. Since it is not possible to for-
mally speak about finite dimensional subspaces in the language of Banach lattices, a finite set y
of generators of a subspace F is used instead. Such a subspace has the shape

(
⊕mi=1l

di
q

)
p
, where

y = (yij)i,j with i = 1, . . . ,m and j = 1, . . . , di.

Definition 7.8 ([20, p. 219]). The infinite list of axioms for BLpLq-Banach lattices (An,N )n,N∈N
is built up as follows:

ψ′m,d,N (y) := ∀(λij) i=1,...,m
j=1,...,dm

((
m∑
i=1

(
di∑
j=1
|λij |q

)p/q)1/p

≤

∥∥∥∥∥∥
m∑
i=1

di∑
j=1

λijyij

∥∥∥∥∥∥
≤

(
1 + 1

N

)(
m∑
i=1

(
di∑
j=1
|λij |q

)p/q)1/p)
ψ′′m,d(y) :=

∑
(i,j) 6=(i′,j′)

|yij | u |yi′j′ | = 0

ψ′′′m,d(y) :=
m∑
i=1

di∑
j=1
|yij − |yij || = 0

ψm,d,N (y) := ψ′m,d,N (y) ∧ ψ′′m,d(y) ∧ ψ′′′m,d(y)

ϕn,m,d,N (x) := ∃y

ψm,d,N (y) ∧
∧n∧
k=1
∃λ

∥∥∥∥∥∥xk −
m∑
i=1

di∑
j=1

λijyij

∥∥∥∥∥∥ ≤ 1
N


φn,N (x) :=

∨∨
m,d

ϕn,m,d,N (x), where m, d1, . . . , dm ∈ N with
m∑
i=1

di ≤ n2nN

An,N := ∀x1, . . . , xn

( ∑
i,j=1,...,n

i6=j

|xi| u |xj | = 0→ φn,N (x)
)
.
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The formula ψ′m,d,N (y) expresses that the finite dimensional subspace generated by the elements
yij has Banach-Mazur distance of at most (1 + 1

N ) to
(
⊕mi=1l

di
q

)
p
. The formulas ψ′′m,d(y) and

ψ′′′m,d(y) express that the yij are positive and pairwise disjoint, which is necessary to show that
their linear span is a sublattice. Then ϕn,m,d,N (x) states that to given elements x1, . . . , xn there
exists points yij with the aforementioned properties such that a linear combination of those are an
1
N -approximation of the xi. Since in Definition 7.4 the existence of some finite dimensional subspace
is required the formula φn,N (x) is a big disjunction over all possible dimensions m, dm where the
upper bound can be found in [20, Proposition 3.7]. In [20] it is indicated that one can translate
the axioms An,N into the language of positive bounded logic, which in turn can be translated into
sentences ∆ as shown in Proposition 6.17. One obstacle for the translation into positive bounded
formulas are the unbounded quantifiers. First we can assume that the elements x1, . . . , xn are
positive, since Definition 7.4 is used in the axioms An,N . We can bound the norm of the elements
xi by 1, since we could renorm them which would lead to new coefficients λij in ϕn,m,d,N and larger
error ‖xk‖N instead of 1

N , which is of no harm since we implicitly quantify over all N ∈ N. Setting
all but one λij = 0 (and one to 1) we obtain from ψ′m,d,N (y) that 1 ≤ ‖yij‖ ≤ 1 + 1

N ≤ 2. The
coefficients in ϕn,m,d,N are in the interval [−2, 2] by the following reasoning: The yij are positive
disjoint elements, and ‖xk‖ ≤ 1 yielding

∥∥∥∑m
i=1
∑di
j=1 λijyij

∥∥∥ ≤ 2 which gives together with Lemma
7.6.A.7 that λij ∈ [−2, 2]. Finally, with the help of a construction (x1, . . . , xn) 7→ (x′1, . . . , x′n) from
Lemma A.8 we can avoid the universal premise in An,N .
Using sequence types we can even avoid having an infinite list of axioms, in fact it is possible in
our language to have only one axiom. To do so, we need some abbreviations:

Definition 7.9.

1. Set 1X(N)(N) := λn,m.1X (constant 1X -function of type X(N)(N)).

2. We set ∃λ1(N)(N)(N) ∈ [−2, 2] := ∃λ �1(N)(N)(N) λi, k, l.(λn.j(2n+4 + 1, 2n+2 − 1)).

We axiomatize BLpLq-Banach lattices in our language as follows.

Definition 7.10. We define the extension Aω[X, ‖·‖ ,t, p, q] of the theory Aω[X, ‖·‖ ,t] by adding
the constants cp, cq of type 1 with the axioms cq ≥R 1R, cp ≥R 1R and the axiom B:

B := ∀nN, NN ≥ 1∀xX(N)∃y �X(N)(N) 2 · 1X(N)(N)∃λ1(N)(N)(N) ∈ [−2, 2] (φ(n,N, x, y, λ)) ,

φ(n,N, x, y, λ) := ∃m �N n2nN∃d �N(N) λi.n2nN
(

m∑
i=1

d(i) ≤N n2nN → ϕ(n,N, x, y, λ,m, d)
)
,

where λi.n2nN is the λ-abstraction,

ϕ(n,N, x, y, λ,m, d) := ψ(N, y,m, d) ∧ ∀k �N n

∥∥∥∥∥∥x̃(k)′ −
m∑
i=1

d(i)∑
j=1

λ(i)(j)(k) ·X y(i)(j)

∥∥∥∥∥∥ ≤R
1
N

 ,

ψ(N, y,m, d) := ψ′(N, y,m, d) ∧ ψ′′(y,m, d) ∧ ψ′′′(y,m, d),

ψ′(N, y,m, d) := ∀λ1(N)(N)

((
m∑
i=1

(
d(i)∑
j=1
|λ(i)(j)|qR

)p/q)1/p

≤R

∥∥∥∥∥∥
m∑
i=1

d(i)∑
j=1
|λ(i)(j)|R y(i)(j)

∥∥∥∥∥∥
≤R

(
1 + 1

N

)( m∑
i=1

(
d(i)∑
j=1
|λ(i)(j)|qR

)p/q)1/p)
ψ′′(y,m, d) := ∀i, i0 �N m∀j �N d(i)∀j0 �N d(i0) ((i 6= i0 ∨ j 6= j0)→ |y(i)(j)| u |y(i0)(j0)| =X 0)
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ψ′′′(y,m, d) :=
m∑
i=1

d(i)∑
j=1
|y(i)(j)− |y(i)(j)|| =X 0,

where x̃ := |x|
max{‖x‖ , 1} and x(i)′ := x(i)− x(i) u

(∑
k 6=i x(k)

)
for each i ∈ {1, . . . , n}.

The axiom B can easily be written as an axiom ∆ using the max{·} operation for the bounded
universal quantifiers and prenexing the two bounded existential quantifiers.
Remark 7.11. By having the universal closure instead of the infinite list of axioms we obtain a
somewhat stronger theory. In terms of standard models (Sω,X) both theories coincide - otherwise
we would not have a correct axiomatization. However, the theory with the axiom B is stronger
than the theory with an infinite list of axioms since more statements are provable (e.g. B).

Proposition 7.12 (cp. Proposition 3.5). Let Lp(Ω, U, µ, Lq(Ω′, U ′, µ′)) be a band of a Bochner
space (for 1 ≤ p, q < ∞). Then Sω,X becomes a model of Aω[X, ‖·‖ ,t, p, q] by letting the vari-
ables of type ρ range over Sρ with the constants being interpreted as specified in Proposition 3.5
(interpreting cq analogously to cp). Conversely, any Banach lattice X such that Sω,x is a model of
Aω[X, ‖·‖ ,t, p, q] is isometrically isomorph to a band in some Lp(Ω, U, µ, Lq(Ω′, U ′, µ′))-lattice.

Proof. Follows from the discussion after Definition 7.8, Lemma 7.6.A.8, Remark 7.11 and the
axiomatization of BLpLq-Banach lattices of [20].

Theorem 7.13 (Logical Metatheorem for BLpLq-Banach lattices). Let ρ ∈ TX be an admissible
finite type. Let B∀(x, u), resp. C∃(x, v), be ∀- resp. ∃-formulas that contain only the variables x, u
resp. x, v free. Assume

Aω[X, ‖·‖ ,t, p, q] ` ∀xρ
(
∀uNB∀(x, u)→ ∃vNC∃(x, v)

)
then one can extract a partial functional Φ : S

ρ̂
⇀ N whose restriction to the strongly majorizable

elements of S
ρ̂
is a (bar recursive) computable functional of Mω and the following holds for all

bands of Lp(Ω, U, µ, Lq(Ω′, U ′, µ′)) Bochner spaces (for 1 ≤ p, q < ∞): for all x ∈ Sρ, x∗ ∈ Sρ̂ if
x∗ &ρ x then

∀u ≤ Φ(x∗)B∀(x, u)→ ∃v ≤ Φ(x∗)C∃(x, v).

Moreover, the supplements (1)-(4) of Theorem 5.13 are also valid in this setting.

Proof. The proof extends the proof of Theorem 5.13. The theory for BLpLq-Banach lattices
Aω[X, ‖·‖ ,t, p, q] has two new constant symbols cp, cq which are both majorizable (see Lemma 5.8)
and is extending the theory Aω[X, ‖·‖ ,t] by the axiom B which can be written as an axiom ∆
(Definition 7.10). Thus everything follows from the proof of Theorem 5.13 and Corollary 5.14.

Remark 7.14. Even more spaces can be added to be applicable for the above metatheorem. In [19,
Example 8.3] the authors list spaces which can be axiomatized in positive bounded logic: normed
algebras, C∗-algebras, dual pairs (X,X ′), where X is a Banach space and X ′ is its dual space,
triples (X,X ′, X ′′) and operator spaces. Proving and applying metatheorems for those spaces
could be a natural sequel to this work.
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A. Appendix

Proposition A.1. The axioms (B1)-(B10) are provable in Aω[X, ‖·‖ ,t].

Proof. (B1): Let x, y, z ∈ X such that x v y and y v z. Then we have by (A3), extensionality
(Proposition 2.11) and by assumption (x t y =X y and y t z =X z)

x t z =X x t (y t z) =X (x t y) t z =X y t z =X z, hence x v z.

The other axioms follow similarly (making free use of extensionality): (B2) is immediate from (A1).
(B3) follows from (A2). (B4) follows from (A1) and (A3). (B5) is a consequence of (A4) and (A2).
(B6) follows from (A3). (B7) follows from the definition of u and axioms (A2),(A3),(A4). (B8)
is a consequence of (A5). (B9) follows from (A6). The first conjunct of (B10) is immediate from
(A7). The second conjunct follows from (A8).

Proposition A.2. The axioms from Definition 2.10 are true in any Banach lattice.

Proof. 1. The law xu y = −((−x)t (−y)), which we used to define u, holds in any Banach lattice
(see e.g. [42], Theorem 1.1.1).
2. The axioms (A1),(A2),(A3) and (A4) are fulfilled by [45, II, Section 1, p.48].
3. The truth of translation invariance (A5) in any Banach lattice follows from [45, p. 50].
4. Axiom (A6): Let x, y ∈ X and λ ∈ R. Then |λ| ≥ 0. From x v xt y following from axiom (B4)
we can use (LO)2: |λ|x v |λ|(x t y) which is equivalent to |λ|x t (|λ|(x t y)) =X |λ|(x t y).
5. Axiom (A7) follows directly from axiom (B10).
6. Axiom (A8) can be inferred from axiom (B10) as follows. Let x, y ∈ X and observe that
∀u, v ∈ X(u v u t v) is true. Thus we have 0X v 0X t x v (0X t x) t y implying with (B10)
‖0X t x‖ ≤R ‖(0X t x) t y‖.
7. Axiom (A9) can be proven from axiom (B10) together with [45, II, Prop. 1.4] as follows. We
have for all x1, x2, y1, y2 ∈ X

‖x1 t y1 − x2 t y2‖ =R ‖|x1 t y1 − x2 t y2|‖

and
|x1 t y1 − x2 t y2| v |x1 − x2|+ |y1 − y2|

which implies with the triangle inequality of the norm

‖x1 t y1 − x2 t y2‖ ≤R ‖|x1 − x2|+ |y1 − y2|‖ ≤R ‖x1 − x2‖+ ‖y1 − y2‖ .

Lemma A.3 ([42],Thm.1.1.1). Let a, b, c be elements of a Banach lattice X with a, b, c ≥ 0. Then

(a+ c) u b ≤ a u b+ c u b.

Lemma A.4. Let X be a Banach lattice and let α0, α1, α2 ∈ R with α0 6= 0 and x1, x2 ∈ X with
x1, x2 ≥ 0. Then
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1. |α0x1| u x2 = |α0|
(
x1 u

1
|α0|

x2

)
.

2. |x1| u |x2| = 0→ |α1x1| u |α2x2| = 0.

Proof. 1. By [45, II, Prop. 1.4 and Cor. 1] we have

|α0|
(
x1 u

x2

|α0|

)
=1

2 |α0|
∣∣∣∣∣∣∣∣x1 + x2

|α0|

∣∣∣∣− ∣∣∣∣x1 −
x2

|α0|

∣∣∣∣∣∣∣∣
=1

2

∣∣∣∣∣∣∣∣|α0|x1 + x2

∣∣∣− ∣∣∣ |α0|x1 − x2

∣∣∣∣∣∣∣∣= |α0|x1 u x2 = |α0x1| u x2.

2. Suppose |x1| u |x2| = 0. If α1 · α2 = 0 then (w.l.o.g. α2 = 0)

0 ≤ |α1x1| u |α2x2| = |α1x1| u 0 ≤ 0.

Otherwise, w.l.o.g. 0 < |α2| ≤ |α1|:

0 ≤ |α1x1| u |α2x2|
A.4.1= |α1|

(
x1 u

|α2|
|α1|
|x2|
)
≤ |α1| (|x1| u |x2|) = 0.

Lemma A.5. Let n, k ∈ N with n > k and x1, . . . , xn be pairwise disjoint positive elements of a
Banach lattice X. Let α1, . . . αn ∈ R. Then

∑k
i=1 αixi ⊥

∑n
j=k+1 αjxj .

Proof.

0 ≤

∣∣∣∣∣
k∑
i=1

αixi

∣∣∣∣∣ u
∣∣∣∣∣∣

n∑
j=k+1

αjxj

∣∣∣∣∣∣
[45, II, Prop. 1.4]

≤
k∑
i=1
|αixi| u

n∑
j=k+1

|αjxj |

A.3
≤

k∑
i=1

|αixi| u n∑
j=k+1

|αjxj |

 A.3
≤

k∑
i=1

n∑
j=k+1

|αixi| u |αjxj |
A.4= 0.

Lemma A.6. Let X be a Banach lattice and let n ∈ N. Then for all pairwise disjoint positive
elements x1, . . . , xn it holds ‖

∑n
i=1 xi‖ ≥ maxi∈{1,...,n}{‖xi‖}.

Proof. By induction. For n = 1 the assertion is trivial. For the induction step we first note that
(
∑n
i=1 xi) ⊥ xn+1 follows from Lemma A.5. Assume the statement holds for n ∈ N, then∥∥∥∥∥
n∑
i=1

xi + xn+1

∥∥∥∥∥ [45, II, Prop. 1.4]=

∥∥∥∥∥
(

n∑
i=1

xi

)
t xn+1 +

(
n∑
i=1

xi

)
u xn+1

∥∥∥∥∥ =

∥∥∥∥∥
(

n∑
i=1

xi

)
t xn+1

∥∥∥∥∥
(B4) and (B10)

≥ max
{∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥ , ‖xn+1‖

}
IH
≥ max{maxi∈{1,...,n}{‖xi‖}, ‖xn+1‖}.

Lemma A.7. Let X be a Banach lattice and let n ∈ N. Then for all pairwise disjoint positive
elements x1, . . . , xn and all α1, . . . , αn ∈ R it holds ‖

∑n
i=1 αixi‖ ≥ maxi∈{1,...,n}{|αi| ‖xi‖}.
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Proof. Suppose α1, . . . , αk ≥ 0 and αk+1, . . . , αn < 0.∥∥∥∥∥
n∑
i=1

αixi

∥∥∥∥∥ =

∥∥∥∥∥∥
k∑
i=1

αixi −
n∑

j=k+1
|αj |xj

∥∥∥∥∥∥ (B10)=

∥∥∥∥∥∥
∣∣∣∣∣∣
k∑
i=1

αixi −
n∑

j=k+1
|αj |xj

∣∣∣∣∣∣
∥∥∥∥∥∥ [45, II, Prop. 1.4]=

∥∥∥∥∥
k∑
i=1

αixi t
n∑

j=k+1
|αj |xj −

k∑
i=1

αixi u
n∑

j=k+1
|αj |xj︸ ︷︷ ︸

=0 by Lemma A.5

∥∥∥∥∥ [45, II, Prop. 1.4]=

∥∥∥∥∥
n∑
i=1
|αi|xi

∥∥∥∥∥
A.6,A.4
≥ maxi∈{1,...,n}{|αi| ‖xi‖}.

Lemma A.8. Let X be a Banach lattice and let n ∈ N. Then the following hold for all elements
x1, . . . , xn :(∧n∧

i=1
(‖xi‖ ≤ 1 ∧ xi ≥ 0)→

∧n∧
i=1

(‖x′i‖ ≤ 1 ∧ x′i ≥ 0) ∧
∑

i,j=1,...,n
i 6=j

|x′i| u
∣∣x′j∣∣ = 0

)

and (∧n∧
i=1
‖xi‖ ≤ 1 ∧ xi ≥ 0 ∧

∑
i,j=1,...,n

i6=j

|xi| u |xj | = 0
)
→
∧n∧
i=1

xi = x′i,

where x′i := xi − xi u

∑
k 6=i

xk

 for each i ∈ {1, . . . , n}.

Proof. Let x1, . . . , xn be positive elements of a Banach lattice X with norm at most 1. Positivity of
x′i follows from the positivity of xi since xi ≥ xiu (

∑
i 6=k

xk). Also ‖x′i‖ ≤ ‖xi‖ ≤ 1 since 0 ≤ x′i ≤ xi.

The fact that the x′j are disjoint can be checked as follows. For i 6= j:

|x′i| u
∣∣x′j∣∣ =

xi − xi u
∑
k 6=i

xk

 u
xj − xj u

∑
k 6=j

xk


≤ (xi − xi u xj) u (xj − xj u xi) = xi u xj − xj u xi = 0.

For the second claim, let x1, . . . , xn be positive disjoint elements with norm at most 1. Then

‖xi − x′i‖ =

∥∥∥∥∥∥xi −
xi − xi u

∑
k 6=i

xk

∥∥∥∥∥∥ =

∥∥∥∥∥∥xi u
∑
k 6=i

xk

∥∥∥∥∥∥ A.3≤
∥∥∥∥∥∥
∑
k 6=i

(xk u xi)

∥∥∥∥∥∥ = 0.
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