Logics Exercise		
	TU MÜNChen Institut für Informatik	Prof. Tobias Nipkow Dr. Peter Lammich Simon Wimmer
SS 2016	Exercise Sheet 2	20.04.2016

Submission of Homework: Before tutorial on Apr 27

Exercise 2.1. [Predicate Logic]

a) Specify a satisfiable formula F, such that for all models \mathcal{A} of F, we have $\left|U_{\mathcal{A}}\right| \geq 3$.
b) Can you also specify a satisfiable formula F, such that for all models \mathcal{A} of F, we have $\left|U_{\mathcal{A}}\right| \leq 3$?

Exercise 2.2. [Resolution Completeness]

a) Does $F \models C$ imply $F \vdash_{\text {Res }} C$? Proof or counterexample!
b) Can you prove $F \models C$ by resolution?

Exercise 2.3. [Resolution of Horn-Clauses]

Can the resolvent of two Horn-clauses be a non-Horn clause?

Exercise 2.4. [Optimizing Resolution]

We call a clause C trivially true if $A_{i} \in C$ and $\neg A_{i} \in C$ for some atom A_{i}. Show that the resolution algorithm remains complete if it does not consider trivially true clauses for resolution.

Exercise 2.5. [Finite Axiomatization]

Let M_{0} and M be sets of formulas. M_{0} is called axiom schema for M, iff for all assignments $\mathcal{A}: \mathcal{A} \models M_{0}$ iff $\mathcal{A} \models M$.

A set M is called finitely axiomatized iff there is a finite axiom scheme for M.
a) Are all sets of formulas finitely axiomatized? Proof or counterexample? b) Let $M=\left(F_{i}\right)_{i \in \mathbb{N}}$ be a set of formulas, such that for all i : $F_{i+1} \models F_{i}$, and not $F_{i+1} \models F_{i}$. Is M finitely axiomatized?

Homework 2.1. [Definitonal CNF]
(3 points)
Calculate the definitional CNF of the following formula:

$$
\left(A_{1} \vee\left(A_{2} \wedge \neg A_{3}\right)\right) \vee A_{4}
$$

Solution:

$$
\left.\begin{array}{r}
\left(A_{1} \vee\left(A_{2} \wedge \neg A_{3}\right)\right) \vee A_{4} \\
\\
\leadsto \\
\left(\left(A_{1} \vee\left(A_{2} \wedge A_{5}\right)\right) \vee A_{4}\right) \wedge\left(A_{5} \leftrightarrow \neg A_{3}\right) \\
\left(\left(A_{1} \vee A_{6}\right) \vee A_{4}\right) \wedge\left(A_{5} \leftrightarrow \neg A_{3}\right) \wedge\left(A_{6} \leftrightarrow\left(A_{2} \wedge A_{5}\right)\right) \\
\end{array}\right)
$$

$\left.{ }^{*}\right)$: By e.g. the truth table approach we get that the CNF of a formula $L_{i} \leftrightarrow\left(L_{j} \wedge L_{k}\right)$ is $\left(L_{i} \vee \overline{L_{j}} \vee \overline{L_{k}}\right) \wedge\left(\overline{L_{i}} \vee L_{j}\right) \wedge\left(\overline{L_{i}} \vee L_{k}\right)$ (where L_{i}, L_{j} and L_{k} are literals).

Homework 2.2. [Definitional DNF]
We call formulas F and F^{\prime} equivalid if

$$
\models F \text { iff } \models F^{\prime}
$$

First show that

$$
F[G / A] \text { and }(A \leftrightarrow G) \rightarrow F \text { are equivalid }
$$

for any formulas F and G and any atom A, provided that A does not occur in G. Now argue that for every formula F of size n there is an equivalid DNF formula G of size $O(n)$.

Solution: Suppose $\mathcal{A} \models F[G / A]$ for any \mathcal{A}. We have to consider two cases:

1. $\mathcal{A}(A)=\mathcal{A}(G)$. Then $\mathcal{A}(F[G / A])=\mathcal{A}(F)=1$ with the same argument as in the lecture (correctness proof for definitional CNF).
2. $\mathcal{A}(A) \neq \mathcal{A}(G)$. Then $\mathcal{A} \not \vDash A \leftrightarrow G$.

In either case we immediately get $\mathcal{A} \models(A \leftrightarrow G) \rightarrow F$, which completes the 'only if'direction.

For the other direction, assume $\models(A \leftrightarrow G) \rightarrow F$ and let \mathcal{A} be an suitable assignment for $F[G / A]$. We obtain an assingment \mathcal{A}^{\prime}, which is not defined for A (it may be the case that \mathcal{A} $=\mathcal{A}^{\prime}$). By the coincidence lemma, we know $\mathcal{A} \models F[G / A]$ iff $\mathcal{A}^{\prime} \models F[G / A]$. We now extend \mathcal{A}^{\prime} to some assignment $\mathcal{A}^{\prime \prime}=\mathcal{A}^{\prime} \cup\left\{A \mapsto \mathcal{A}^{\prime}(G)\right\}$, where $\mathcal{A}^{\prime} \models F[G / A]$ iff $\mathcal{A}^{\prime \prime} \models F[G / A]$ by the coincidence lemma. We get $\mathcal{A}^{\prime \prime} \models(A \leftrightarrow G) \rightarrow F$ by assumption and thus $\mathcal{A}^{\prime \prime} \models F$ from the construction of $\mathcal{A}^{\prime \prime}$. By the substitution lemma, $\mathcal{A}^{\prime \prime}(F[G / A])=\left(\mathcal{A}^{\prime \prime}\left[\mathcal{A}^{\prime \prime}(G) / A\right]\right)(F)=\mathcal{A}^{\prime \prime}(F)$. Together we have $\mathcal{A}^{\prime \prime} \models F[G / A]$ and thus $\mathcal{A} \models F[G / A]$.

Construction of the definitional DNF now proceeds analogously to the definitional CNF, with the exception that new definitions of the form $A \leftrightarrow G$ are conjoined to the formula via implication and not conjunction. The last step converts the whole formula to DNF. Because $(A \leftrightarrow G) \rightarrow F \equiv(A \wedge \neg G) \vee(\neg A \wedge G) \vee F$ the size of the obtained formula is linear in the size of the original formula.

Homework 2.3. [Compactness Theorem]

Suppose every subset of S is satisfiable. Show that then

$$
\text { every subset of } S \cup\{F\} \text { is satisfiable or }
$$ every subset of $S \cup\{\neg F\}$ is satisfiable

for any formula F.

Solution: Proof by contradiction. Suppose $S \cup\{F\}$ has an unsatisfiable subset M and $S \cup\{\neg F\}$ has an unsatisfiable subset L. We can assume that $M=M^{\prime} \cup\{F\}$ and $L=L^{\prime} \cup\{\neg F\}$ for some M^{\prime}, L^{\prime} where $M^{\prime} \subseteq S$ and $L^{\prime} \subseteq S$ because every subset of S is satisfiable. We additionally know that $M^{\prime} \cup L^{\prime}$ is satisfiable by assumption. Consider the sets

$$
M^{\prime} \cup L^{\prime} \cup\{F\} \quad \text { and } \quad M^{\prime} \cup L^{\prime} \cup\{\neg F\}
$$

Then one of them has to be satisfiable. (Let \mathcal{A} with $\mathcal{A} \models M^{\prime} \cup L^{\prime}$. Then either $\mathcal{A} \models F$ or $\mathcal{A} \not \vDash F$. That is, $\mathcal{A} \models F$ or $\mathcal{A} \models \neg F$.) This directly implies that either M or L is satisfiable, a contradiction.

Homework 2.4. [Compactness and Validity]

We say that a set of formulas S is valid if every F in S is valid. Prove or disprove:
S is valid iff every finite subset of S is valid

Solution: Trivial by definition:

$$
\begin{array}{lll}
S \text { valid } & \text { iff } & \text { all } F \text { in } S \text { are valid } \\
& \text { iff } & \text { all finite subsets of } S \text { are valid. }
\end{array}
$$

Homework 2.5. [Resolution]

Use the resolution procedure to decide if the following formulas are satisfiable. Show your work (by giving the corresponding DAG or linear derivation)!

1. $\neg A_{1} \wedge A_{2} \wedge\left(\neg A_{1} \vee A_{3}\right) \wedge\left(A_{1} \vee \neg A_{2} \vee A_{3}\right)$
2. $A_{2} \wedge\left(\neg A_{3} \vee A_{1}\right) \wedge\left(\neg A_{1} \vee A_{2}\right) \wedge\left(\neg A_{1}\right) \wedge\left(\neg A_{2} \vee A_{3}\right)$

Solution:

1. $0:\left\{\neg A_{1}\right\}$

1: $\left\{A_{2}\right\}$
2: $\quad\left\{\neg A_{1}, A_{3}\right\}$
3: $\quad\left\{A_{1}, \neg A_{2}, A_{3}\right\}$
4: $\left\{\neg A_{2}, A_{3}\right\} \quad(0,3)$
5: $\left\{A_{1}, A_{3}\right\} \quad(1,3)$
6: $\left\{A_{3}\right\} \quad(0,5)$
No more inferences are possible and thus we conclude that the formula is satisfiable.
2. 0: $\left\{A_{2}\right\}$

1: $\left\{\neg A_{3}, A_{1}\right\}$
2: $\left\{\neg A_{1}, A_{2}\right\}$
3: $\left\{\neg A_{1}\right\}$
4: $\left\{\neg A_{2}, A_{3}\right\}$
5: $\left\{\neg A_{1}\right\} \quad(0,2)$
6: $\left\{A_{3}\right\} \quad(0,4)$
7: $\left\{\neg A_{3}\right\} \quad(1,3)$
8:
The formula is unsatisfiable.

