Dioxins, Furans, and HCB

Inventories and Sources for Mexico

Dr. Alfonso García Gutiérrez

Director for Air Quality Research, DGICURG

National Institute of Ecology, SEMARNAT

Anillo Periferico 5000, 4th floor

Colonia Insurgentes Cuicuilco, Deleg.

Coyoacán, CP 04530 Distrito Federal, Mexico

alfgarci@ine.gob.mx

Objective:

Estimate the emissions to the atmosphere of dioxins, furans and hexachloro bencene generated from relevant sources produced by nature and man-made in Mexico from the years 1995 to 2000, using standard procedures.

Inventories And Soucre Of Dioxins, Furans And HCB-Mexico Chapter 1. A. Forest Fires (1994-98)

- 56 million hectares are forests and jungle
- 84 million hectares are pastures, brush, etc.
- Most fires are man-made (95%)
- Most fires are superficial (90%), only affecting grass and brush.
- Only 5 % of fires affect upper part of trees, cups.
- Fires have seasonality occurrance: from January to June, April is the most critical month.
- Average area affected: 312, 860 hectares in 8,757 incidents in 1999. (average 35 ha/fire).

B. Agricultural Fires (1994-1999)

5 million hectares/year are burned to clear land from agricultural waste, undercutting excessive vegetative growth and forest clearings (1999).

- Forest Fires Emission Estimate:
- > Affected Areas:
- Types of vegetations (p.23 of Mexico Draft Report)
- Biomass densities (p.24)
- Emission factors (p32)
- Estimated Emission = 2.352 grams/year (1999)
- Highest in states: Chiapas, Oaxaca, Chihuahua, Durango, and Baja California Norte.

Agricultural Fires:

- Total Agricultural Areas: 7.4 million hectares. (p.33)
- > Total Agricultural Areas Burned: 5.9 million hectares (p. 33)
- ➤ Emission Factor for corn waste= 0.00003 grams TEQ/ha

Estimated Emission: 221.48 grams per year (1999)

• States with highest emissions: Chiapas, Jalisco, State of Mexico, Veracruz and Oaxaca.

- Chapter 2. Incineration and Combustion Sources.
- 2. A. Medical Waste Incinerators. (p. 37)
- 26 facilities authorized since 1995, 4 shut by 2000, 22 remain.
- National treatment capacity 8, 000 ton/year, operating most at 50 % capacity; Concentrated in 11 states, most in the Mexico City area.
- Average input capacity 400 kg/hr, largest is 590 kg/hr.
- Emission factors: 0.551 ug/kg in small incinerators (less than 90 kg/hr; 1.54 ug/kg in medium incinerators more than 90 kg/hr)
- Estimated Emissions: 5.2 grams/year

- 2. B. Industrial Waste Incineration (p. 40)
- 14 authorized industrial incinerators (since 1997)
- National average capacity 700 tons/day
- Amount of industrial waste incinerated: 220,000 tons/year
- \blacksquare Emission factor = 3.8 ng TEQ/ kg

Estimated Emission (2000) = 0.84 grams/ year

- 2.C. Backyard Burning. (p. 42)
- Practiced in most small towns and in half of refuse in medium cities,
 where refuse collection is deficient,
- Most organic waste is fed to small animals or buried in ground; combustible materials are burned (about 6 % of refuse)
- Amount of refuse burned in backyards: 0.7 million tons/year
- Emission factor (Lemieux, 1997) = 0.14 ug/kg (p-46)

Estimated Emission (2000) = 103.8 g TEQ/year

2.D. Open Dumps Burnings

- Open dumps are operated by medium and small cities (about 33 % of total refuse generated)
- Scavengers collect plastic, metals, wood and paper; burn wasted to save space and strip cables; estimated 6 % of refuse received.
- Estimated refuse burned inside open dumps = 825, 000 tons/year
- Emission factor (Lemieux, 1997) 0.14 ug/kg refuse

Estimated Emissions (2000) = 115.5 grams/year

- 2.E. Biogas Burning (p. 53)
- Few sanitary landfills in the country; largest receives 5,000 tons/day, average capacity, 1,000 tons/day. 16-17 operating in 2000. Estimated national capacity 25, 000 tons/day
- No sanitary landfill practice biogas burning, most vent directly to air.
- Only the Santa Fe/Prados de la Montaña (closed in 1995; estimated 60, 000 tons) has 3 venting and burning gas shoots
- Estimating to burn 65 million cubic meters per year
- Emission factor = 2.4 ng/cubic meter

Estimated Emissions = 0.091 grams/ year

■ 2.F. Tires Burned (p.54)

- Tires Balance: Production 224, 000/year; import 7.5 million/year; export 25, 000; passive tires stored 45 million.
- About 1 % of tires reach open dumps and burned jointly with refuse
- About 2, 000 tires are used as fuel in brickmaking processes
- About 5, 000 tires are used as fuel in cement plants
- Emission factor 0.282 ng/kg tire (each tire weighs 10 kg)

Estimated Emission (from brickmaking only) 0.460 grams/year

- Chapter 3. Cement Industry (p. 67)
- National Clinker production 30 million tons or 300 x 100,000 tons
- 26 cement installations are authorized to used hazardous waste as supplementary fuel (mostly used lubricating oil) and tires; rest do not use hazardous wastes or tires.
- Waste used as fuel range from 5 to 30 %; average is 15 %
- Emission factor weighted for waste usage (p.67, chart 4.3) = 0.2 ng/kg

Estimated Emission (2000) 7.14 grams/year

- Chapter 4. Metallurgical Industry (p. 70)
- Large metallurgical facilities, mostly using minerals
- Secondary recovery of metals is mostly done by small and unregistred foundries, and difficult to track.
- Scrap metals are recovered by electric arc furnaces in 10 million ton/y
- Emission factor 0.57 ug/ton of scrap

Estimated Emissions 0.805 grams/year (2000)

- Chapter 5. Chemical Industry
- A. Chlorine production:
- No longer use graphite anode, instead use titanium anode: so no Dioxins are not emitted.
- B. Pulp and Paper Bleaching.
- Most bleached paper is imported
- Only one small pulp&paper plant bleach with chlorine: 89 tons/y
- Estimated Emissions: 0.744 grams/year
- Estimated discharge: 0.010 grams/year

- Chapter 5.C. PVC Production (p. 83)
- Production of PVC 485, 000 tons/y
- Emission factor 0.494 grams/ 100, 000 tons

■ Estimated Emissions : 2.4 grams /year

- Chapter 6. HCB Emissions (p. 86)
- Only tire production is estimated: other sources were not estimated (see page 86 chart 7.1)
- Rubber tires production 55,600 tons/year, or 5.6 million tires/y
- Emission factor for HCB : 1.492 ng HCB / tire
- Estimated Emission of HCB (1999)= 39.33 kg/y

Estimated Annual D&F Emissions Trends between 1995 and 2000.

Forest fires	Decreased	1.9 g/y	0.4 %
Agricultural fires	Unchanged	221.8 g/y	48.2 %
Medical WI	Increased	5.3 g/y	1.2 %
Industrial WI	Increased	0.8 g/y	
Backyard burning	Decreased	103.8 g/y	22.5 %
Open dump burning	Decreased	115.5 g/y	25.1 %
Biogas	Unchanged	0.09 g/y	
Brick making	Unchanged	0.06 g/y	
Cement Plants	Decreased	7.14 g/y	1.5 %
Pulp&Paper	Increased	0.8 g/y	
PVC Prod	Increased	2.4 g/y	0.5 %
Scrap Recovery	Increased	0.8 g/y	
National	Decreased	460.4 g/y	100 %

Comments would be received at and copies can be requested to:

Ing. Víctor J. Gutiérrez Avedoy General Director of CENICA-INE javedoy@ine.gob.mx