

1

1. Meaningful names for variables

Hungarian naming convention: use an abbreviation for the type as part of the variable name

Example:

char ch; /* all char begins with ch */
byte b; /* all byte begins with b */

char* pch; /* pointer to char type variable */
char** ppch; /*pointer to pointer to char type variable */

void *pvNewBlock(size_t size) ; /* allocate a memory of size “size” and return void type
 pointer of the starting address of the allocated memory */

2. Put Assert in functions

/* memcpy -- copy a nonoverlapping memory block */
void memcpy(void* pvTo, void* pvFrom, size_t size)
{
 void* pbTo = (byte*)pvTo;

void* pbFrom = (byte*)pvFrom;

 if(pvTo == NULL | | pvFrom == NULL)
 {
 fprintf(stderr, “Bad args in memcpy\n”);
 abort();

}

 while(size-->0)
 *pbTo++ == *pbFrom++;
 return(pvTo);
}

2

2.1. Debugging version vs. final version

void memcpy(void* pvTo, void* pvFrom, size_t size)
{
 void* pbTo = (byte*)pvTo;

void* pbFrom = (byte*)pvFrom;

#ifdef DEBUG

 if(pvTo == NULL | | pvFrom == NULL)
 {
 fprintf(stderr, “Bad args in memcpy\n”);
 abort();

}
#endif /* #ifdef DEBUG */

 while(size-->0)
 *pbTo++ == *pbFrom++;
 return(pvTo);
}

2.2. Using Assert

An assertion specifies that a program satisfies certain conditions at particular points in its
execution. In C, assertions are implemented with the standard assert macro. The argument to
assert must be true when the macro is executed, otherwise the program aborts and prints an
error message.

Example:

assert(size <= LIMIT);

will abort the program and print an error message like this:

 Assertion violation: file test.c, line 34: size <= LIMIT

if size is greater than LIMIT.

void memcpy(void* pvTo, void* pvFrom, size_t size)
{
 void* pbTo = (byte*)pvTo;

3

 void* pbFrom = (byte*)pvFrom;
 assert(pvTo != NULL && pvFrom != NULL);
 while(size-->0)
 *pbTo++ == *pbFrom++;
 return(pvTo);
}

assert is a debug-only macro that aborts execution if its argument is false. This macro is
disabled if, at the moment of including <assert.h>, a macro with the name NDEBUG has
already been defined. This allows for a coder to include as many assert calls as needed in a
source code while debugging the program and then disable all of them for the production
version by simply including a line like:

#define NDEBUG

at the beginning of its code, before the inclusion of <assert.h>.

3. Improving subsystems

When finishing writing a subsystem, ask yourself, “How are programmers going to misuse this
subsystem, and how can I detect these problems automatically?”.

3.1. Put scaffolding around the C routines in the form of cover functions

/* fNewMemory -- allocate a memory block.*/

int fNewMemory(void** pv, size_t size)
{
 byte** ppb = (byte**)ppv;
 ppb = (byte)malloc(size);
 return(*ppb != NULL);
}

if (fNewMemory(&pbBlock, 32))
 successful -- pbBlock points to the block
else

unsuccessful -- pbBlock is NULL

4

4. Coding with Style

4.1. Documenting the code

Writing comments to explain how clients should interact with the code.

4.2. Choosing meaningful names for variables and functions

4.3. Using Language Features with Style

Using Language Features with Style

Use Constants: The language offers constants to give a symbolic name to a value that doesn’t
change.
 Example:
const int kAveragePriceOfCheeseInNewBrunswick = 24;

Take Advantage of const Variables: when we do not want to change value of the variable

Example:
void wontChangeString(const char* inString);
 // tells the caller that it will not change the content of the C-style string that is
passed in.

4.4. Formatting
The Curly Brace Alignment and Indentation

void someFunction()
{
 if (condition())
 {
 cout << “condition was true” << endl;
 }
 else
 {
 cout << “condition was false” << endl;
 }
}

5

5. C struct

A struct is an aggregate of elements of arbitrary type.
Example:

struct address {
 int number;
 char *street;
 char state[2];
 int zip;
};
defines a new type called address. Individual members of the variable of type address can be

accessed using the .(dot) operator.
Example:

address jd;
jd.number = 61;
jd.street = “South St.”;

Structure objects can also be accessed through pointers using the -> operator.
Example:

address jd, *pjd;
pjd = &jd;

 pjd->number = 60;

void print_addr(address *paddr)
{
 cout<<”street name “<< paddr->street <<endl;
}

6

6. Preprocessing

6.1. Macro definition and expansion

A preprocessing directive of the form
 #define identifier token-string
cause the preprocessor to replace subsequent instances of identifier with the given sequence of
tokens.
Example:
 #define SIDE 8
the declaration
 char chessboard[SIDE][SIDE];
after macro expansion becomes

char chessboard[8][8];

“Function like” macro definition
 #define identifier(identifier, .., identifier) token-string
Example:

#define index_mask 0XFF00
#define extract(word,mask) word & mask

the call
 index = extract(packed_data, index_mask);
expands to

index = packed_data&0XFF00;

7. Tricks for writing efficient code
7.1. Dead Code Removal

Before After
var = 5;
printf(“%d”, var);
exit(0);
printf(“%”, var*2);

var = 5;
printf(“%d”, var);
exit(0);

7.2 Using cheap arithmetic

Raising one value to the power of another, or dividing, is more expensive than multiplying.
Before After

x = pow(y,2.0); x = y*y;

7

a=c/2.0; a=c*0.5;

7.3 Eliminating common subexpression
Before After

d = c*(a/b);
e= (a/b)*2.0;

adivb = a/b;
d = c*adivb;
e= adivb*2.0;

The subexpression (a/b) occurs in both assignment statements. There is no need to calculate it
twice.

7.4 Renaming variables

Before After
x=y*z;
q=r+x*2.0;
x=a+b;

x0=y*z;
q=r+x0*2.0;
x=a+b;;

The original code has an output dependency, while the new code doesn’t.

8

8. Program Flow Chart

http://www.programiz.com/article/flowchart-programming

http://www.programiz.com/article/flowchart-programming

9

Reference:
1. Steve Maguire, Writing Solid Code
2. Bruce Eckel, Thinking in C++
3. Bjarne Stroustrup, The C+ + Programming Language
4. Nicholas A. Solter, and Scott J. Kleper, Professional C++

