
Abstract

In this contribution, we present our concepts for two decisive components of a parti-
tioned simulation of fluid-structure interactions: The coupling tool and the flow solver.
Hereby, the main focus with respect to the coupling tool, called FSI❄ce, is to achieve a
strict separation and, thus, independence of the coupling strategy and the two solvers.
This ensures maximal flexibility with respect to the choice or exchange of these com-
ponents. The flow solvers F3F and Peano are designed with the help of (adaptive)
Cartesian grids in combination with space-filling curves such that a maximal storage
efficiency both in terms of memory requirements and memory access is reached.

Keywords: Fluid-Structure Interactions, Partitioned Approach, Modularity, Large
Deformations, Coupling Environment, Cartesian Grids, Hardware-Efficiency

1 Introduction

Modularity and flexibility are properties which seem to be inherent to partitioned fluid-
structure interaction simulations. This is surely true from the conceptual point of view.
However, it is not trivial not to loose the independence of the involved components in
an actual implementation. Many approaches introduce dependencies between the two
solver codes (fluid and structure) by the direct mapping of data between the two (non-
matching) solver grids at the interface between fluid and structure. In other cases, the
coupling strategy (explicit/implicit coupling,...) is implemented in one of the solvers
which unneccessarily complicates the exchange of the respective solver. Our newly
developed coupling environment FSI*ce avoids these drawbacks by the introduction
of a third, independent mesh describing the fluid-structureinterface and by a client-
server approach with the two solvers acting as servers and a client controlling the
whole coupled simulation and, therewith, of course also defining the coupling strategy

1

regardless of the actual solvers. This gives us maximal flexibility both in the choice
of the two solvers but also in the choice of coupling strategies including sophisticated
methods such as multilevel algorithms or reduced order models which are very hard or
even impossible to implement without a strict independenceof solvers and coupling
strategy.

In addition to these requirements, a widely usable softwareenvironment for fluid-
structure interactions has to be able to efficiently handle large deformations of the
computational domain. This holds in particular for the fluiddomain. Think of par-
ticles moving through the fluid, e.g. To handle this requirement, we present a fluid
solver working on (adaptive) Cartesian grids in an Eulerianframework that is with a
fixed grid. We show methods to fastly update the grid after a change of the geome-
try, to efficiently map data from these Cartesian grids to thecentral interface mesh of
FSI*ce as well as robust interpolation schemes tailored to Cartesian grids and prevent-
ing instabilities.

Finally, we will present results achieved with our Cartesian flow solvers and FSI*ce
for benchmark and application scenarios in various configurations.

2 FSI❄ce: Modular Coupling of Codes

2.1 Basic Concept of the Coupling Environment FSI❄ce

The aim of the coupling environment FSI❄ce as proposed in [5] is to enable a parti-
tioned simulation of fluid-structure interactions maintaining the modularity and flex-
ibility of the theoretical concept of partitioned simulations in a real implementation.
Thus, we have to ensure certain properties: To reduce the cost of embedding a solver
in the coupled simulation environment, the solvers have to act purely as solvers and
not additionally as a steering component of the coupled simulation, for example. To
maintain the independence of the fluid and the structure solver, the two solvers may
not communicate directly with each other. To avoid dependencies between solvers
and the logically third component of a coupled simulation, the coupling strategy, it
has to be implemented in a own software component and not in one or both of the
solvers. As the simulation of fluid-structure interactionsis a typical high performance
computing application, the coupling tool has to be able to handle parallel solvers.

According to these requirements, FSI❄ce acts not only as a communication in-
terface between the two solvers involved but as a supervisorof the coupled simula-
tion (see Fig. 1). The coupling strategy is chosen and executed within FSI❄ce. For
this purpose, FSI❄ce evaluates the simulation results recieved from the two solvers
and decides what to do in the next step. This decision is sent to the solvers to-
gether with updated function values at the coupling surface. Hereby, three possi-
ble responses are provided:FSII STATUS GO (continue with the next time step),
FSII STATUS LOOP (perform another loop in an implicit coupling scheme), and
FSII STATUS STOP (finalise the computation).

2

Structure

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

Fluid

Supervisor

Figure 1: Left: Schematic view of the concept of FSI❄ce with FSI❄ce acting as a
supervisor of the whole coupled simulation (from [4]); right: Cells at the boundary
of the computational domain of a fluid solver using a Cartesian grid together with the
central surface description of a cylinder surface held in FSI❄ce.

A so-called central surface mesh, that is a triangulation ofthe coupling surface
between fluid and structure, is held within FSI❄ce as a reference surface description
for the two solvers. That is, the solvers map their data to this central mesh or get
updated informations from this central mesh. Thus, they only send or recieve data
to or from FSI❄ce and not from the second solver. Fig. 1 shows a Cartesian solver
grid together with the central surface mesh. The central surface mesh is realised as a
vef(vertex-edge-face)-graph and has to describe a closed and oriented surface without
self intersections. Besides the pure surface description,the vef-graph also holds data
stored at the vertices such as velocity and force values. Each of the involved solver
codes has to hold his own instance of the central surface meshin order to be able to
send data in the correct form and to interpret recieved data in an appropriate manner.
For the initialisation and updating of the central surface mesh, FSI❄ce provides two
possibilities: The mesh can either be identical to the surface mesh of one of the solver
grids or defined completely separately.

The programming interface of FSI❄ce was first described in [5]. In this early pub-
lication, only the communication via MPI (Message Passing Interface [33]) was pro-
posed. However, if we want to use parallel fluid and structuresolvers (which is in-
evitable due to the complexity of most application scenarios), these solvers themselves
use MPI as a communication library. This poses some new problems in the usage of
the MPI CommunicatorMPI COMM WORLD. The usage of collective MPI functions
in the fluid solvers, for example, would require respective function calls also in the
structure solver where they are in general not available. Asit does not make sense to
exculde collective MPI functions, FSI❄ce implements two possible solutions to this
problem:

The first possibility is that each solver and FSI❄ce have to introduce their own
communicators (FLUID COMM, STRUC COMM, andFSI COMM) which do not have
common processes inMPI COMM WORLD. This requires only slight modifications of
the MPI calls within the two solvers.

In the second possibility, we leave the solver implementations unchanged and use
direct communication via sockets (TCP/IP) for the communication between FSI❄ce

3

Structure

FLUID_COMM

FSI_COMM

STRUC_COMM

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

Supervisor

Fluid Structure

TC
P/
IP TCP/IP

MPI_COMM_WORLD MPI_COMM_WORLD

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

Supervisor

Fluid

Figure 2: Schematic view of the two communication concepts provided by FSI❄ce:
Using newly defined MPI communicators for each of the involved three software com-
ponents (left); communication between solvers and FSI❄ce via sockets (right).

t = t + dt;
end

(status != FSI_STATUS_LOOP)until

do
compute the current time step;
write data to DMesh;
status = Fsi_send_quantity(DMesh,...);
status = Fsi_recieve_quantity(DMesh,...);

while (status == FSII_STATUS_GO)

read data from DMesh;

Figure 3: Modified time loop of the fluid or structure solver for a coupling with FSI❄ce
(single level coupling).

and the solvers. Besides the advantages that it requires no changes in the solver codes,
this concept is also more widely applicable. Whereas 1) requires a homogeneous
implementation of MPI on all involved computing resources,the communication via
sockets can be realised also in very heterogeneous environments. Such, running the
whole coupled simulation in a grid environment with FSI❄ce running on a PC and the
two solver running on different high performance computers, e.g., becomes possible.
Both concepts are displayed schematically in Fig. 2 and explained in more details in
[4].

2.2 Potentials for Sophisticated Coupling Schemes

2.2.1 Methods with Explicit Subiterations Within one Time Step

Due to the strict separation of the solver codes from the coupling strategy realised in
FSI❄ce, the work to be done within the solvers to tie them to FSI❄ce is very small.
As a simple example, Fig. 3 shows the modified solver time loopneeded to perform a
single level coupling with possible subiterations within each time step. In particular,
the algorithm shows, that the decision on subiterations, their convergence, and the
computation of Aitken relaxation factors [35], e.g., is notperformed in the solver but
within FSI❄ce where the value of the variablestatus is set.

4

if (status == FSII_STATUS_RESTRICT)

interpolate to finer grid;
until (status == FSI_STATUS_GO || status == FSI_STATUS_STOP)
t = t + dt;

end

else if (status == FSI_STATUS_INTERPOLATE)
restrict to coarser grid;

do
compute the current time step;
write data to DMesh;
status = Fsi_send_quantity(DMesh,...);
status = Fsi_recieve_quantity(DMesh,...);

while (status == FSII_STATUS_GO)

read data from DMesh;

Figure 4: Modified time loop of the fluid or structure solver for a coupling with FSI❄ce
(single or multilevel coupling).

2.2.2 Multilevel Methods

To implement multilevel coupling schemes such as those presented in [3, 51], ad-
ditional values for the status variable indicating whetherthe solver has to switch to
another grid level have to be introduced. But still, we end upwith a single modifica-
tion of the time loop of the solvers as displayed examplarilyin Fig. 4. Note that this
algorithm is a generalisation of the single level algorithmand can be applied for both
single and multilevel coupling schemes.

2.2.3 Implicit Coupling Iterations

For some problems, explicit coupling iterations do not leadto a satisfying overall con-
vergence. Thus, implicit coupling iterations have to be considered as well. Hereby, in
general, Jacobians of the structure and the fluid solver are required, the computation of
which, however, is not possible outside the solver codes. Thus, the implementation of
implicit coupling iterations seems to contradict the FSI❄ce paradigma of performing
the whole coupling independent from the solver codes. However, the usage of for ex-
ample reduced order models [48] purely relying on information gained as a response
of the solvers at the coupling interface, can be done in a verynatural way within
FSI❄ce. Fig. 5 shows the overall iteration loop with the assignment of the single steps
to FSI❄ce or the solvers. It becomes obvious, that we can stay with the time loop
displayed in Fig. 3 within the solver codes.

2.3 Octree-Based Data Access

As we typically deal with three different and non-matching grids – a fluid solver grid, a
structure solver grid, and the central surface mesh – in our fluid-structure environment,
efficient methods for the mapping of data between these gridsat the coupling surface
are of utmost importance. Although the actual choice and, insome special cases, also
the implementation of the respective interpolations or projections is left to the user,

5

do
build reduced order model structure;
apply reduced order model structure;
call fluid solver;
build reduced order model fluid;
apply reduced order model fluid;
call structure solver;

until convergence

Figure 5: Iteration loop for an implicit coupling using reduced order models both for
the structure and the fluid solver [48] performed by FSI❄ce. Steps that are performed
by the solvers are written in italics.

Cart. res. # triang. runtime
256 8, 000 2.6 sec
512 8, 000 10.1 sec
512 32, 000 14.3 sec
512 128, 000 17.4 sec

Figure 6: Visualisation of a surface triangulation (left) and the Cartesian solver grid
(middle) for a three-dimensional spherical computationaldomain; right: Runtime for
the neighbourhood search between vertices of the Cartesiansolver grid and the trian-
gles of the central surface mesh measured on a Pentium M 1.6 GHz processor with
2048 kB cache (from [6]).

a user friendly coupling environment has to provide functions for the technical and
general part of the data mapping – the detecting of nearest neighbours of vertices and
elements of the involved grids. For this purpose, FSI❄ce embeds the vef-graph of
the central surface mesh in an adaptive octree structure. This octree allows for a very
efficient and, thus, fast detection of the nearest grid vertices of a solver grid for each
surface triangle. Hereby, the keys to efficiency are the adaptive structure of the octree
with fine cells only around the coupling surface and not in thewhole computational
domain and, second, the exploitation of information inheritance from father to son
cells [14, 8]. To give a first impression of the efficiency of the neighbourhood search,
Fig. 6 shows computational times for the neighbourhood search between a Cartesian
solver grid and the surface mesh of a sphere in three dimensions.

3 F3F and Peano: Efficient Flow Simulation on Carte-
sian Grids

Our flow solvers F3F and Peano both solve the Navier-Stokes equations

∂u

∂t
+

1

re
∆u + (u · ∇)u + ∇p = 0 (1)

∇
T u = 0 (2)

6

bytes per vertex bytes per cell
2D 20 14
3D 28 18

Table 1: Overall storage requirements per grid vertex (where flow velocities are stored)
and grid cell (where pressure values are stored) for the Peano flow solver using DaSt-
Gen [10, 11].

with flow velocitiesu, pressurep, and Reynolds numberre using an explicit time-
stepping scheme in combination with a Chorin-like projection method [12, 19, 7]. For
the spatial discretisation, F3F uses a finite volume discretisation [5, 8] whereas Peano
works with a finite element discretisation [50, 37, 8, 7].

3.1 Benefits of Cartesian Grids

Our flow solvers F3F and Peano are based on Cartesian computational grids, which
showed to be a competitive choice in the last years [1, 42, 21,23, 15, 2]. As such grids
poccess a clearly defined structure in the regular but also inthe adaptive case, this
choice minimises the storage requirements. We do not have tostore any interdepen-
dencies between grid components such as vertices, edges, faces and elements. They
are inherently given by the locally recursive constructionor refinement process of
the grids. Our adaptive solver Peano uses in addition a cell-wise operator evaluation,
which makes also the storage of specialised difference stencils at boundaries between
different refinement depths obsolete as the cell-wise operators only rely on vertex
and midpoint data of the current cell. These informations are available equally in all
cells independent of the refinement depth of neighbouring cells. To give consideration
to adaptive grid refinement, we only have to correctly restrict and interpolate oper-
ator values or data, respectively, at such boundaries between different mesh widths
[21, 41, 23, 7]. To further minimise the storage requirements, we implemented a data
structure generator DaStGen [10], which prevents the useless storage of temporarily
not required informations, e.g. Table 1 shows the resultingstorage requirements per
vertex (where we store the flow velocities, e.g.) and per gridcell (where we store the
pressure, e.g.). Note that these number do not depend on the adaptivity pattern of the
grid and that the storage requirements have been reduced by afactor of approximately
four in the two-dimensional case compared to the requirements given in [7] without
the usage of DaStGen.

Whereas we can apply a simplei, j, k-indexing and processing order of the grid
cells combined with a simple partitioning of the domain in rectangular subdomains
for parallelisation [36], the algorithm becomes more complex in Peano due to the grid
adaptivity. Here, we have to be very careful to maintain a high efficiency of data
storage and data access in spite of the less regular data dependencies. This holds in
particular in the case of multilevel algorithms, where alsodata dependencies between
different refinement levels have to be taken into consideration. In addition, we will
not achieve a balanced parallelisation using rectangular subdomains any more. And

7

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140
 0

 50

 100

S
pe

ed
up

P
ro

ce
ss

es

Nodes

Joins Enabled (Two Processes per Node)

Linear Speedup
Joining Processes

Infinicluster, Joins Enabled, Exp 1
Infinicluster, Joins Enabled, Exp 2
Infinicluster, Joins Enabled, Exp 3

Figure 7: Preliminary results on the strong scaling of the Peano solver for a Poisson
equation solved on an InfiniBand cluster. Experiment 1 includes6.1 · 105 degrees of
freedom, experiment 25.4 ·106 degrees of freedom, and experiment 34.9 ·107 degrees
of freedom.

we need a dynamical load balancing as a consequence of dynamic adaptivity. Peano
solves all these difficulties with the help of space-fiiling curves [44], in particular
Peano curves. For each of our adaptively refined Cartesian grids, there is a corre-
sponding iterate of the Peano curve prescribing an orderingof the grid cells onall
refinement levels. Due to the good locality properties of these curves [52], we use
them to define the processing order of our grid cells within the solver iterations. On
this basis, we construct highly cache-efficient data structures, so-called stacks [21, 41]
for the storage of the degrees of freedom within these iterations. Such, we achieve L2
cache-hitrates above99% or, in other words and more significant, only110% of the
unavoidable number of L2 cache misses [21, 41, 50, 32]. Note that this is true not only
for single level solvers but also for multigrid methods [32,28].

For the parallelisation of solvers on adaptive grids, space-filling curves are known
to be an efficient and comparably easy to apply tool for domainpartitioning and dy-
namical load balancing [38, 39, 20, 43, 40, 30, 52, 45]. Hereby, the principle idea
behind is to queue up the grid cells (on all refinement levels)in the order prescribed
by the space-filling curve and, subsequently, to cut this queue into equal pieces. Peano
adopts this principle [29, 24, 22]. In the last two years, theoriginal concept has been
modified to a more level-oriented approach which has the advantage that already the
domain partitioning itself can be done in parallel [36, 7, 31]. Thus, we never have to
store the whole grid on one single processor. Fig. 7 shows some preliminary results on
the scalability of the code. More details of the new domain decomposition and load
balancing approach will be published soon in a separate paper.

From the numerical point of view, Peano offers a highly flexible and powerfull

8

grid adaptivity [16, 28, 32] in combination with an efficientmultigrid solver [28, 32].
To remedy the lower discretisation order at complicated domain boundaries induced
by the Cartesian grid, a variety of possibilities is known inliterature [49, 34]. The
implementation of such methods in Peano is work in progress.

3.2 Consistent Forces

For the simulation of fluid-structure interaction problems, an obviously very important
feature of a flow solver is the accurate calculation of forcesexerted on the structure
surface by the flow field. Hereby, the method of consistent forces as proposed in [18]
can be applied very naturally in our solvers. The local forces at grid vertices at the
structure boundary are computed by the accumulation of the contributions to the right
hand side of the momentum equation (1) from all adjacent fluidcells (see also [7]):

fi =

(

A
duh

dt
+ Duh + C(uh)uh − MT ph

)

i

, (3)

whereA, D, C, andM denote the discrete mass, diffusion, convection, and gradient
operators, respectively. In the adaptive solver Peano, these values are automatically
available after each grid-wide cell-wise operator evaluation. More details for the real-
isation in our solves are provided in [9, 7, 5, 8].

3.3 Geometry Changes

Due to structure movements or deformation, the computational domain of the fluid
solver is underlying possibly large deformations or even topology changes. This re-
quires an adequate method to handle these changes. Our flow solvers work with the
Eulerian approach that is with fixed grids. These grids covera rectangular domain in
which the actual computational domain is embedded. Grid cells outside the consid-
ered scenario and grid cells within the structure are markedas ’obstacle cells’. This
approach is called a marker-and-cell approach [46, 19] in literature. For regular grids,
a geomatry change simply results in a reset of the cell markers. It is obvious that
the upper bound of the costs for this change corresponds to one sweep over all grid
cells. In the case of adaptively refined grids such as those displayed in Fig. 8, adaptive
refinements, in particular those around complicatetly shaped structures have to be re-
done in addition. However, these costs are proportional to the costs of one sweep over
the grid, again, as even the complete generation of a new gridfrom the current central
surface mesh requires only one sweep over the grid which is being build immediately
within this sweep [14]. In [14, 7, 6], we give runtimes for this grid generation for
different grid resolutions. For example, the generation ofa grid with843 million grid
cells requires only a computational time of eleven second ona Pentium 42.4 Ghz
processor [6], which is really neglectable compared to the runtime of a fluid solver
time step on such a fine grid. If we implement the restriction of changes to those
subtrees of the cell tree which is actually affected by a geometry movement – which

9

Figure 8: Left: Adaptively refined Cartesian grid for the simulation of the transport
of a spherical particle in a channel with oscillating diameter. Only fluid cells are
displayed, regions with obstacle cells appear white or green, respectively. Right: Sit-
uation after a particle movement. The subtree of the grid cell tree where changes have
to be performed is marked with a red square.

is currently work in progress, runtimes for resetting the grid after a geometry change
will be further reduced.

The change of cell markers and adaptive refinement patterns due to geometry chan-
ges leads to new fluid grid points for which correct velocity values have to be deter-
mined that do not harm the cell-wise continuity equations. To find such values, we use
the values from the nearest already existing fluid grid points and subsequently apply
an L2-projection of the velocity field onto the closest divergence-free velocity field
[7]: ~unew = ~uold

−∇q with ∆q = ∇
T~uold.

3.4 Surface Data Mapping

To map data between the central surface mesh of FSI❄ce and the Cartesian grid of the
flow solver, we first determine the nearest surface triangle for each boundary vertex
of the Cartesian solver grid as described in Sect. 2.3. Subsequently, we determine the
orthogonal projection from the vertex to the respective triangle.

3.4.1 Velocities

To transport information from the structure solver to the fluid solver, we use the ve-
locities at the surface of the structure computed by the structure solver. The velocities
at the Cartesian boundary vertices are set equal to the values at the projection points
at the nearest triangle of the central surface mesh. Hereby,we interpolate the values
linearly within the triangles [13].

3.4.2 Forces

Forces exerted on the structure are the input the structure solver gets from the fluid
solver. Thus, we have to perform the invers mapping as for thevelocities: We set

10

Figure 9: Snapshots from simulations of fluid flow around a tower in a laminar flow
regime [13].

values at projection points of Cartesian boundary points equal to the forces computed
at these boundary vertices. Subsequently, these values aredistributed to the nodes
of the central surface mesh according to the barycentric coordinates of the projection
points.

As the structure solver we use in our examples, AdHoc [17], needs stresses and not
forces as an input, we additionally compute the stresses at the central surface mesh.
For this purpose, we define polygonals around the nodes of thesurface mesh defined
the baycentres of the neighbouring triangles and the midpoints of the involved edges.
The stresses at the surface nodes result from the forces devided by the area of these
polygonals [13].

4 Numerical Results

In this section, we propose some scenarios for which we performed simulations us-
ing our coupling environment FSI❄ce in combination with our flow solver F3F and
Peano. Currently, these simulations can be devided into twosubgroups, test cases and
benchmarks with the purpose of an evaluation and verification of our software and
application scenarios with the task of gaining new insightsin the underlying phyiscal
phenomena. We will not go into details for the examples shownbut, instead, only give
an overview of some scenarios which have already been computed with our tools.

4.1 Flow Around a Tower

A first test case to show the technical and quantitative function of our software com-
ponents is the flow around a tower, for which several simulations have been run in
[13, 6]. To simulate the structure behaviour, we used the h-p-adaptive structure solver
AdHoc [17]. Fig. 9 shows snapshots from simulations runs presented in [13].

4.2 Benchmark Scenarios

In [25], several benchmark scenarios for the evaluation andverification of simulation
tools for fluid-structure interactions have been proposed.We are currently performing

11

Figure 10: Left and middle: First simulation results for thethree CFD benchmark
scenarios described in [25]. Right: Cut-off of the flow field for the CFD benchmark
’flow around a cylinder’ with Reynolds number20 from [47] (see also [6]).

first computations for the FSI benchmarks I-III. As we can notpresent the results in
this paper, yet, we give some pictures and data gained from preliminary studies of pure
CFD benchmarks which were performed in preparation of the whole coupled fluid-
structure simulations. Fig. 10 shows visualisations of theCFD scenarios from [25] and
gives a cut-off of the flow field around a cylinder computed on an adaptively refined
grid. For a grid with42, 501 cells, we achieved a drag coefficient of5.691 (reference
value5.580) and a lift coefficient of0.0113 (reference value0.0107) [7]. These results
will be further improved in the future by a more sophisticated and dynamical grid
adaptivity.

4.3 The Drift Ratchet

The Drift Ratchet is our application scanario. A drift ratchet is a tool used in life sci-
ences for the separation of microscopic particles according to their size. The function
of this tool has been shown experimentally [27]. However, a deeper understanding of
the crucial physical phenomena and an exact tuning of the concrete realisation require
further investigations, among which numerical simulations are a very meaningful and
fast possibility. The drift ratchet consists of a kind of sieve with pores with asymmet-
rically oscillating diameter [7, 27]. A fluid with the suspended particles is pumped
forward and backward through this sieve by a pressure pump with oscillating pres-
sure. In the last months, we performed several simulation runs for the transport of
one particle in a suitable cut-off of a pore. First ’drift’ effects could be shown and are
described in [7, 6]. Here, we only show some snapshots of a simulation run for illus-
tration in Fig. 11. The particles are rigid bodies for which we only have to compute
velocities and rotation according to Newtons laws of motion[7]. This results in very
simple structure equations which we directly solve within our fluid solver.

12

Figure 11: Snapsots of a simulation of a particle moving in a cut-off of a drift ratchet
pore.

5 Conclusion

In this paper, we have described and showed the applicability of our software com-
ponents for the partitioned fluid-structure interaction simulations: The coupling envi-
ronment FSI❄ce and the flow solvers F3F and Peano. For the coupling environment,
we could show that we achieve a very high flexibility in the choice and exchange
of solvers and the coupling strategy which is not the case forexample for the most
commonly used tool for code to code coupling MpCCI [26, 8, 7],for example. The
flow solvers show the storage efficiency of Cartesian grids inparticular in combina-
tion with the newly developed algorithms and data structures based on space-filling
curves. In addition, large geometry or even topology changes can be realised very
efficiently within our Eulerian approach as grid generationand adaption are very fast
processes within the framework of our Cartesian grids. In some first examples, the
technical and quantitative correctness and efficiency has been shown. However, ex-
ploiting the whole potential of the concept is still work in progress. This includes the
implementation of more sophisticated coupling strategies, libraries for data interpola-
tion and projection between solver grids and the central surface description of FSI❄ce
as well as further runtime optimisations, better time stepping methods, and dynamical
adaptivity for our flow solver Peano.

Acknowledgements
This work was supported by the German Research Foundation, project HA 1517/25
and research group 493, and the Competence Network for Technical, Scientific High
Performance Computing in Bavaria. This support is thankfully acknowledged.

13

References

[1] M. Bader, H.-J. Bungartz, A. Frank, and R.-P. Mundani. Space tree structures for PDE
software. In P. M. A. Sloot, C. J. Kenneth Tan, J. J. Dongarra,and A. G. Hoekstra,
editors,Proc. of the Int. Conf. on Comp. Science, number 2331 in LNCS, pages 662–
671. Springer, 2002.

[2] J. Ballmann, K.-H. Brakhage, F. Bramkamp, W. Dahmen, B. Gottschlich-Müller,
M. Hesse, Ph. Lamby, and S. Müller. Polyhedral discretization, data compression and
mesh generation.Numerical Notes on Fluid Mechanics, 84:125–204, 2003.

[3] H. Bijl, A. H. van Zuijlen, and S. Bosscher. Two level algorithms for partitioned fluid-
structure interaction computations. In P. Wesseling, E. O˜nate, and J. Périaux, editors,
ECCOMAS CFD 2006, European Conference on Computational Fluid Dynamics. TU
Delft, 2006.

[4] M. Brenk. Algorthmic Aspects of Fluid-Structure Interactions on Cartesian Grids (Ger-
man: Algorithmische Aspekte der Fluid-Struktur-Wechselwirkung auf kartesischen Git-
tern). PhD thesis, TU München, 2007.

[5] M. Brenk, H.-J. Bungartz, M. Mehl, R.-P. Mundani, A. Düster, and D. Scholz. Effi-
cient interface treatment for fluid-structure interactionon cartesian grids. InECCOMAS
COUPLED PROBLEMS 2005, Proc. of the Thematic Conf. on Computational Methods
for Coupled Problems in Science and Engineering. International Center for Numerical
Methods in Engineering (CIMNE), 2005.

[6] M. Brenk, H.-J. Bungartz, M. Mehl, I.L. Muntean, T. Neckel, and K. Daubner. An
eulerian approach for partitioned fluid-structure simulations on cartesian grids.Compu-
tational Mechanics, 2008. accepted.

[7] M. Brenk, H.-J. Bungartz, M. Mehl, I.L. Muntean, T. Neckel, and T. Weinzierl. Nu-
merical simulation of particle transport in a drift ratchet. SIAM Journal of Scientific
Computing, 2008. accepted.

[8] M. Brenk, H.-J. Bungartz, M. Mehl, and T. Neckel. Fluid-structure interaction on carte-
sian grids: Flow simulation and coupling environment. In H.-J. Bungartz and M. Schäfer,
editors,Fluid-Structure Interaction, number 53 in LNCSE, pages 233–269. Springer,
2006.

[9] M. Brenk, H.-J. Bungartz, and T. Neckel. Cartesian discretisations for fluid-structure
interaction – consistent forces. In P. Wesseling, E. Oñate, and J. Périaux, editors,ECCO-
MAS CFD 2006, European Conference on Computational Fluid Dynamics. TU Delft,
2006.

[10] H.-J. Bungartz, W. Eckhardt, M. Mehl, and T. Weinzierl.Dastgen - a data structure gen-
erator for parallel c++ hpc software. In Bubak, van Albada, Sloot, and Dongarra, editors,
ICCS 2008 Proceedings, Lecture Notes in Computer Science, Heidelberg, Berlin, June
2008. Springer-Verlag.

[11] H.-J. Bungartz, M. Mehl, and Ch. Zenger.100 Volumes NNFM and 40 Years Numerical
Fluid Mechanics, volume 100 ofNotes on Numerical Fluid Mechanics and Multidisci-
plinary Design, chapter Computer Science. Springer, 2008.

14

[12] A. J. Chorin. Numerical solution of the Navier-Stokes equations.Math. Comp., 22:745–
762, 1968.

[13] K. Daubner. Data exchange and geometry treatment for the simulation of fluid-structure
interactions with partitioned aproaches (german: Datenaustausch und geometriebe-
handlung bei der simulation von fluid-struktur-wechselwirkungen mit partitionierten
ansätzen). Diploma thesis, Institut für Informatik, TU München, 2005.

[14] K. Daubner. Geometrische Modellierung mittels Oktalbäumen und Visualisierung von
Simulationsdaten aus der Strömungsmechanik. Studienarbeit, Universität Stuttgart, Uni-
versität Stuttgart, 2005.

[15] F.J. Deister. Selbstorganisierendes hybrid-kartesisches Netzverfahren zur Berechnung
von Str̈omungen um komplexe KOnfigurationen. PhD thesis, Universität Stuttgart, 2002.

[16] N. Dieminger. Kriterien für die selbstadaption cache-effizienter mehrgitteralgorithmen.
Diplomarbeit, Fakultät für Informatik, Technische Universität München, 2005.

[17] A. Düster, H. Bröker, H. Heidkamp, U. Heißerer, S. Kollmannsberger, R. Krause,
A.Muthler, A. Niggl, V. Nübel, M. Rücker, and D. Scholz.AdhoC4 – User’s Guide.
Lehrstuhl für Bauinformatik, TU München, 2004.

[18] P. M. Gresho and R. L. Sani. On pressure boundary conditions for the incompressible
Navier-Stokes equations.Int. J. Numer. Meth. Fluids, 7:1111–1145, 1987.

[19] M. Griebel, Th. Dornseifer, and T. Neunhoeffer.Numerical Simulation in Fluid Dynam-
ics, a Practical Introduction. SIAM, 1998.

[20] M. Griebel and G. W. Zumbusch. Hash-storage techniquesfor adaptive multilevel solvers
and their domain decomposition parallelization. In J. Mandel, C. Farhat, and X.-C. Cai,
editors,Proceedings of Domain Decomposition Methods 10, DD10, number 218, pages
279–286, Providence, 1998. AMS.

[21] F. Günther.Eine cache-optimale Implementierung der Finiten-Elemente-Methode. PhD
thesis, Institut für Informatik, TU München, 2004.

[22] F. Günther, A. Krahnke, M. Langlotz, M. Mehl, M. Pögl,and Ch. Zenger. On the paral-
lelization of a cache-optimal iterative solver for pdes based on hierarchical data structures
and space-filling curves. InRecent Advances in Parallel Virtual Machine and Message
Passing Interface: 11th European PVM/MPI Users Group Meeting Budapest, Hungary,
September 19 - 22, 2004. Proceedings, volume 3241 ofLecture Notes in Computer Sci-
ence, Heidelberg, 2004. Springer.

[23] F. Günther, M. Mehl, M. Pögl, and C. Zenger. A cache-aware algorithm for PDEs on hier-
archical data structures based on space-filling curves.SIAM J. Sci. Comput., 28(5):1634–
1650, 2006.

[24] W. Herder. Lastverteilung und parallelisierte Erzeugung von Eingabedaten für ein paral-
leles cache-optimales Finite-Element-Verfahren. Diploma thesis, Institut für Informatik,
TU München, 2005.

15

[25] J. Hron and S. Turek. Proposal for numerical benchmarking of fluid-structure inter-
action between elastic object and laminar incompressible flow. In H.-J. Bungartz and
M. Schäfer, editors,Fluid-Structure Interaction, number 53 in LNCSE, pages 371–385.
Springer, 2006.

[26] W. Joppich, M. Kürschner, and the MpCCI team. Mpcci — a tool for the simulation of
coupled applications.Concurrency Computat.: Pract. Exper., 18(2):183–192, 2006.

[27] C. Kettner, P. Reimann, P. Hänggi, and F. Müller. Drift ratchet.Phys. Rev. E, 61:312–323,
2000.

[28] A. Krahnke.Adaptive Verfahren ḧoherer Ordnung auf cache-optimalen Datenstrukturen
für dreidimensionale Probleme.Dissertation, TU München, 2005.

[29] M. Langlotz. Parallelisierung eines cache-optimalen3d finite-element-verfahrens.
Diplomarbeit, Fakultät für Informatik, Technische Universität München, 2004.

[30] A. Laszloffy, J. Long, and A. K. Patra. Simple data management, scheduling and so-
lution strategies for managing the irregularities in parallel adaptive hp finite element
simulations.Parallel Computing, 26, 2000.

[31] M. Mehl, M. Brenk, I.L. Muntean, T. Neckel, and T. Weinzierl. Benefits of structured
cartesian gris for the simulation of fluid-structure interactions. InProceedings of the
Third Asian-Pacific Congress on Computational Mechanics, Kyoto, Japan, December
2007.

[32] M. Mehl, T. Weinzierl, and C. Zenger. A cache-obliviousself-adaptive full multigrid
method.Numer. Linear Algebr., 13(2-3):275–291, 2006.

[33] MPI: A message-passing interface standard, version 1.1, 1995. Manual.

[34] R. Mittal and G. Iaccarino. Immersed boundary methods.Annu. Rev. Fluid Mech.,
37:239–261, 2005.

[35] D. P. Mok and W. A. Wall. Partitioned analysis schemes for the transient interaction
of incompressible flows and nonlinear flexible structures. In W. A. Wall, K.-U. Blet-
zinger, and K. Schweizerhof, editors,Trends in Computational Structural Mechanics,
pages 689–698. CIMNE, 2001.

[36] Ioan Lucian Muntean, Miriam Mehl, Tobias Neckel, and Tobias Weinzierl. High Per-
formance Computing in Science and Engineering, Garching 2007, chapter Concepts for
Efficient Flow Solvers Based on Adaptive Cartesian Grids. Springer, Berlin Heidelberg
New York, 2008.

[37] T. Neckel. Einfache 2d-Fluid-Struktur-Wechselwirkungen mit einer cache-optimalen
Finite-Element-Methode. Diploma thesis, Fakultät für Mathematik, TU München, 2005.

[38] J.T. Oden, A. Para, and Y. Feng. Domain decomposition for adaptivehp finite element
methods. InDomain decomposition methods in scientific and engineeringcomputing.
Proceedings of the 7th international conference on domain decomposition, volume 180
of Contemp. Math., pages 203–214, Providence, Rhode Island, 1994. AMS.

16

[39] M. Parashar, J.C.Browne, C.Edwards, and K.Klimkowski. A common data management
infrastructure for parallel adaptive algorithms for pde solutions. InProceedings of the
1997 ACM/IEEE conference on Supercomputing, pages 1–22. ACM Press, 1997.

[40] A.K. Patra, J. Long, and A. Laszloff. Efficient paralleladaptive finite element methods
using self-scheduling data and computations.HiPC, pages 359–363, 1999.

[41] M. Pögl. Entwicklung eines cache-optimalen 3D Finite-Element-Verfahrens f̈ur große
Probleme, volume 745 ofFortschritt-Berichte VDI, Informatik Kommunikation 10. VDI
Verlag, Düsseldorf, 2004.

[42] T. Pohl, M. Kowarschik, J. Wilke, K. Iglberger, and U. Rde. Optimization and profiling
of the cache performance of parallel lattice boltzmann codes.Parallel Processing Letters,
13:549–560, 2003.

[43] S. Roberts, S. Klyanasundaram, M. Cardew-Hall, and W. Clarke. A key based paral-
lel adaptive refinement technique for finite element methods. In Proc. Computational
Techniques and Applications: CTAC ’97, pages 577–584, Singapore, 1998.

[44] H. Sagan.Space-filling curves. Springer, New York, 1994.

[45] J. Steensland, S.C. Handra, and M. Parashar. An application-centric characterization of
domain-based sfc partitioners for parallel samr.IEEE Trans. on Parallel and Distributed
Systems, 13(12):1275–1289, 2002.

[46] M. F. Tomé and S. McKee. GENSMAC: A computational marker and cell method for
free surface flows in general domains.J. Comp. Phys., 110:171–186, 1994.

[47] S. Turek and M. Schäfer. Benchmark computations of laminar flow around a cylinder. In
E. H. Hirschel, editor,Flow Simulation with High-Performance Computers II, number 52
in NNFM. Vieweg, 1996.

[48] J. Vierendeels. Implicit coupling of partitioned fluid-structure interaction solvers using
reduced-order models. In H.-J. Bungartz and M. Schäfer, editors, Fluid-Structure Inter-
action, number 53 in LNCSE, pages 1–18. Springer, 2006.

[49] T. Wagner. Randbehandlung höherer Ordnung für ein cache-optimales Finite-Element-
Verfahren auf kartesischen Gittern. Diploma thesis, Institut für Informatik, TU
München, 2005.

[50] T. Weinzierl. Eine cache-optimale Implementierung eines Navier-Stokes Lösers unter
besonderer Berücksichtigung physikalischer Erhaltungssätze. Diploma thesis, Institut
für Informatik, TU München, 2005.

[51] S. Yigit, M. Heck, D. C. Sternel, and M. Schäfer. Efficiency of fluid-structure interac-
tion simulations with adaptive underrelaxation and multigrid acceleration.Int. J. Multi-
physics, 1:85–99, 2007.

[52] G. Zumbusch. Adaptive parallel multilevel methods forpartial differential equations.
Habilitationsschrift, Universität Bonn, 2001.

17

