Abstract

In this contribution, we present our concepts for two deeisiomponents of a parti-
tioned simulation of fluid-structure interactions: The plg tool and the flow solver.
Hereby, the main focus with respect to the coupling tooleceFS[ce, is to achieve a
strict separation and, thus, independence of the coupliategy and the two solvers.
This ensures maximal flexibility with respect to the choicexchange of these com-
ponents. The flow solvers F3F and Peano are designed withetpeoh (adaptive)
Cartesian grids in combination with space-filling curveststhat a maximal storage
efficiency both in terms of memory requirements and memocgsgis reached.
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1 Introduction

Modularity and flexibility are properties which seem to bleerent to partitioned fluid-
structure interaction simulations. This is surely trueririhe conceptual point of view.
However, it is not trivial not to loose the independence efitivolved components in
an actual implementation. Many approaches introduce dkgrenmes between the two
solver codes (fluid and structure) by the direct mapping td batween the two (non-
matching) solver grids at the interface between fluid andcsire. In other cases, the
coupling strategy (explicit/implicit coupling,...) is jplemented in one of the solvers
which unneccessarily complicates the exchange of the cagpesolver. Our newly
developed coupling environment FSI*ce avoids these drakghy the introduction
of a third, independent mesh describing the fluid-strucioterface and by a client-
server approach with the two solvers acting as servers arieérg controlling the
whole coupled simulation and, therewith, of course alsadedithe coupling strategy



regardless of the actual solvers. This gives us maximalbiliéyi both in the choice
of the two solvers but also in the choice of coupling strasgncluding sophisticated
methods such as multilevel algorithms or reduced order rsad&ch are very hard or
even impossible to implement without a strict independasfcslvers and coupling
strategy.

In addition to these requirements, a widely usable softwakeronment for fluid-
structure interactions has to be able to efficiently handtgd deformations of the
computational domain. This holds in particular for the fldamain. Think of par-
ticles moving through the fluid, e.g. To handle this requieem we present a fluid
solver working on (adaptive) Cartesian grids in an Euleframework that is with a
fixed grid. We show methods to fastly update the grid afterangle of the geome-
try, to efficiently map data from these Cartesian grids tocetral interface mesh of
FSI*ce as well as robust interpolation schemes tailorecaiweSian grids and prevent-
ing instabilities.

Finally, we will present results achieved with our Cartadlaw solvers and FSI*ce
for benchmark and application scenarios in various cordigims.

2 FSllce: Modular Coupling of Codes

2.1 Basic Concept of the Coupling Environment FSIice

The aim of the coupling environment FSle as proposed in [5] is to enable a parti-
tioned simulation of fluid-structure interactions maintag the modularity and flex-
ibility of the theoretical concept of partitioned simutats in a real implementation.
Thus, we have to ensure certain properties: To reduce th@tembedding a solver
in the coupled simulation environment, the solvers havectgarely as solvers and
not additionally as a steering component of the coupled lsitian, for example. To
maintain the independence of the fluid and the structureesdiive two solvers may
not communicate directly with each other. To avoid dependsnbetween solvers
and the logically third component of a coupled simulatidrg toupling strategy, it
has to be implemented in a own software component and noteroomoth of the
solvers. As the simulation of fluid-structure interactiaa typical high performance
computing application, the coupling tool has to be able todi@parallel solvers.

According to these requirements, EBk acts not only as a communication in-
terface between the two solvers involved but as a superuistite coupled simula-
tion (see Fig. 1). The coupling strategy is chosen and egdowtthin FS[ce. For
this purpose, FSlce evaluates the simulation results recieved from the tviesD
and decides what to do in the next step. This decision is sethé solvers to-
gether with updated function values at the coupling surfaeereby, three possi-
ble responses are provideBSI | _STATUS_QO (continue with the next time step),
FSI 1 _STATUS_LOOP (perform another loop in an implicit coupling scheme), and
FSI | _STATUS_STOR (finalise the computation).



Figure 1: Left: Schematic view of the concept of E§é with FS[ce acting as a
supervisor of the whole coupled simulation (from [4]); rigiCells at the boundary
of the computational domain of a fluid solver using a Cartegiad together with the
central surface description of a cylinder surface held iHIES.

A so-called central surface mesh, that is a triangulatiothefcoupling surface
between fluid and structure, is held within EBE as a reference surface description
for the two solvers. That is, the solvers map their data te tieintral mesh or get
updated informations from this central mesh. Thus, they sehd or recieve data
to or from FS[ce and not from the second solver. Fig. 1 shows a Cartesiaersol
grid together with the central surface mesh. The centrdasemesh is realised as a
vef(vertex-edge-face)-graph and has to describe a clos®dréented surface without
self intersections. Besides the pure surface descripth@nvef-graph also holds data
stored at the vertices such as velocity and force valuesh Bhathe involved solver
codes has to hold his own instance of the central surface mesider to be able to
send data in the correct form and to interpret recieved dada iappropriate manner.
For the initialisation and updating of the central surfacesim FSIice provides two
possibilities: The mesh can either be identical to the serfaesh of one of the solver
grids or defined completely separately.

The programming interface of FSte was first described in [5]. In this early pub-
lication, only the communication via MPI (Message Passitgrface [33]) was pro-
posed. However, if we want to use parallel fluid and structalgers (which is in-
evitable due to the complexity of most application scersgjrithese solvers themselves
use MPI as a communication library. This poses some new @mubin the usage of
the MPI CommunicatoMPl _COMMWORLD. The usage of collective MPI functions
in the fluid solvers, for example, would require respectwection calls also in the
structure solver where they are in general not availablet dses not make sense to
exculde collective MPI functions, FSte implements two possible solutions to this
problem:

The first possibility is that each solver and ESé have to introduce their own
communicatorskLU D.COW STRUC_COW andFSI _COVM) which do not have
common processes WPl _COVMWORLD. This requires only slight modifications of
the MPI calls within the two solvers.

In the second possibility, we leave the solver implemeotetiunchanged and use
direct communication via sockets (TCP/IP) for the commatan between FSlce
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Figure 2: Schematic view of the two communication conceptwigded by FSIce:
Using newly defined MPI communicators for each of the invdlireee software com-
ponents (left); communication between solvers and E8lvia sockets (right).

while (status == FSII_STATUS_GO)
do
compute the current time step;
write data to DMesh;
status = Fsi_send_quantity(DMesh,...);
status = Fsi_recieve_quantity(DMesh,...);
read data from DMesh;
until (status != FSI_STATUS_LOOP)
t=t+dt
end

Figure 3: Modified time loop of the fluid or structure solver éocoupling with FSIice
(single level coupling).

and the solvers. Besides the advantages that it requirdsamges in the solver codes,
this concept is also more widely applicable. Whereas 1)iregua homogeneous
implementation of MPI on all involved computing resourd& communication via

sockets can be realised also in very heterogeneous envardsmSuch, running the
whole coupled simulation in a grid environment with ESé running on a PC and the
two solver running on different high performance computerg., becomes possible.
Both concepts are displayed schematically in Fig. 2 andagxetl in more details in

[4].

2.2 Potentials for Sophisticated Coupling Schemes
2.2.1 Methods with Explicit Subiterations Within one Time Sep

Due to the strict separation of the solver codes from the looyigtrategy realised in
FSICce, the work to be done within the solvers to tie them tolf®8lis very small.
As a simple example, Fig. 3 shows the modified solver time loegxled to perform a
single level coupling with possible subiterations withach time step. In particular,
the algorithm shows, that the decision on subiterationsy ttonvergence, and the
computation of Aitken relaxation factors [35], e.g., is petformed in the solver but
within FSIOce where the value of the varialdé at us is set.



while (status == FSII_STATUS_GO)
do
compute the current time step;
write data to DMesh;
status = Fsi_send_quantity(DMesh,...);
status = Fsi_recieve_gquantity(DMesh,...);
read data from DMesh;
if (status == FSII_STATUS_RESTRICT)
restrict to coarser grid,;
else if (status == FS|_STATUS_INTERPOLATE)
interpolate to finer grid;
until (status == FSI_STATUS_GO || status == FSI_STATUS_STOP)
t=t+dt
end

Figure 4: Modified time loop of the fluid or structure solver éocoupling with FSIice
(single or multilevel coupling).

2.2.2 Multilevel Methods

To implement multilevel coupling schemes such as thoseepted in [3, 51], ad-
ditional values for the status variable indicating whetther solver has to switch to
another grid level have to be introduced. But still, we enduifh a single modifica-
tion of the time loop of the solvers as displayed examplanliig. 4. Note that this
algorithm is a generalisation of the single level algorithind can be applied for both
single and multilevel coupling schemes.

2.2.3 Implicit Coupling Iterations

For some problems, explicit coupling iterations do not leeaa satisfying overall con-
vergence. Thus, implicit coupling iterations have to besidered as well. Hereby, in
general, Jacobians of the structure and the fluid solveegugned, the computation of
which, however, is not possible outside the solver codess;Tifne implementation of
implicit coupling iterations seems to contradict the B& paradigma of performing
the whole coupling independent from the solver codes. Hewélie usage of for ex-
ample reduced order models [48] purely relying on informatjained as a response
of the solvers at the coupling interface, can be done in a watyral way within
FSICce. Fig. 5 shows the overall iteration loop with the assigminoéthe single steps
to FSlce or the solvers. It becomes obvious, that we can stay wéttithe loop
displayed in Fig. 3 within the solver codes.

2.3 Octree-Based Data Access

As we typically deal with three different and non-matchimiglg — a fluid solver grid, a
structure solver grid, and the central surface mesh — in ouk-fitructure environment,
efficient methods for the mapping of data between these gtittee coupling surface
are of utmost importance. Although the actual choice andpme special cases, also
the implementation of the respective interpolations ofjgmtions is left to the user,



do
build reduced order model structure;
apply reduced order model structure;
call fluid solver;
build reduced order model fluid;
apply reduced order model fluid;
call structure solver;

until convergence

Figure 5: Iteration loop for an implicit coupling using rexhd order models both for
the structure and the fluid solver [48] performed by BE&. Steps that are performed
by the solvers are written in italics.

Cart. res.| # triang. | runtime
256 8,000 | 2.6sec
512 8,000 | 10.1sec
512 32,000 | 14.3 sec
912 128,000 | 17.4 sec

Figure 6: Visualisation of a surface triangulation (left)dathe Cartesian solver grid
(middle) for a three-dimensional spherical computatiattahain; right: Runtime for

the neighbourhood search between vertices of the Carteslaer grid and the trian-
gles of the central surface mesh measured on a Pentium M 1z6pBid¢essor with

2048 kB cache (from [6]).

a user friendly coupling environment has to provide funwidor the technical and

general part of the data mapping — the detecting of nearegtlneurs of vertices and

elements of the involved grids. For this purpose, (& embeds the vef-graph of
the central surface mesh in an adaptive octree structuiis.otlree allows for a very

efficient and, thus, fast detection of the nearest grid estof a solver grid for each
surface triangle. Hereby, the keys to efficiency are the tadagtructure of the octree
with fine cells only around the coupling surface and not invii®le computational

domain and, second, the exploitation of information intaece from father to son

cells [14, 8]. To give a first impression of the efficiency of theighbourhood search,
Fig. 6 shows computational times for the neighbourhoodcbebetween a Cartesian
solver grid and the surface mesh of a sphere in three dimensio

3 F3F and Peano: Efficient Flow Simulation on Carte-
sian Grids

Our flow solvers F3F and Peano both solve the Navier-Stokestiens

1
@+—Au+(u~V)u+Vp =0 (1)

ot re
Viu = 0 (2)



bytes per vertex bytes per cell
2D 20 14
3D 28 18

Table 1: Overall storage requirements per grid vertex (@few velocities are stored)
and grid cell (where pressure values are stored) for thed#am solver using DaSt-
Gen [10, 11].

with flow velocitiesu, pressurep, and Reynolds numbete using an explicit time-
stepping scheme in combination with a Chorin-like proectnethod [12, 19, 7]. For
the spatial discretisation, F3F uses a finite volume disagbn [5, 8] whereas Peano
works with a finite element discretisation [50, 37, 8, 7].

3.1 Benefits of Cartesian Grids

Our flow solvers F3F and Peano are based on Cartesian compatairids, which
showed to be a competitive choice in the last years [1, 423115, 2]. As such grids
poccess a clearly defined structure in the regular but alsbaeradaptive case, this
choice minimises the storage requirements. We do not hastte any interdepen-
dencies between grid components such as vertices, edges,dad elements. They
are inherently given by the locally recursive constructaynrefinement process of
the grids. Our adaptive solver Peano uses in addition axnes#-operator evaluation,
which makes also the storage of specialised differenceitdeat boundaries between
different refinement depths obsolete as the cell-wise opesyanly rely on vertex
and midpoint data of the current cell. These informatiomsaaailable equally in all
cells independent of the refinement depth of neighbouritig.CEo give consideration
to adaptive grid refinement, we only have to correctly restnd interpolate oper-
ator values or data, respectively, at such boundaries eetd#ferent mesh widths
[21, 41, 23, 7]. To further minimise the storage requireragwe implemented a data
structure generator DaStGen [10], which prevents the ssalorage of temporarily
not required informations, e.g. Table 1 shows the resulibogage requirements per
vertex (where we store the flow velocities, e.g.) and per ¢gitl(where we store the
pressure, e.g.). Note that these number do not depend oddpé\aty pattern of the
grid and that the storage requirements have been reducefhbipaof approximately
four in the two-dimensional case compared to the requirésngimen in [7] without
the usage of DaStGen.

Whereas we can apply a simplgj, k-indexing and processing order of the grid
cells combined with a simple partitioning of the domain ictesmgular subdomains
for parallelisation [36], the algorithm becomes more ccemph Peano due to the grid
adaptivity. Here, we have to be very careful to maintain éhhefficiency of data
storage and data access in spite of the less regular dataddepmes. This holds in
particular in the case of multilevel algorithms, where alata dependencies between
different refinement levels have to be taken into considmratin addition, we will
not achieve a balanced parallelisation using rectangulad@mains any more. And
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Figure 7: Preliminary results on the strong scaling of thar@esolver for a Poisson
equation solved on an InfiniBand cluster. Experiment 1 ide&s.1 - 10° degrees of

freedom, experiment24-10° degrees of freedom, and experiment3- 107 degrees

of freedom.

we need a dynamical load balancing as a consequence of dyadagtivity. Peano
solves all these difficulties with the help of space-fillingnees [44], in particular
Peano curves. For each of our adaptively refined Cartesids,ghere is a corre-
sponding iterate of the Peano curve prescribing an orderirige grid cells orall
refinement levels. Due to the good locality properties os¢heurves [52], we use
them to define the processing order of our grid cells withangblver iterations. On
this basis, we construct highly cache-efficient data stinest so-called stacks [21, 41]
for the storage of the degrees of freedom within these iterat Such, we achieve L2
cache-hitrates abov®% or, in other words and more significant, only0% of the
unavoidable number of L2 cache misses [21, 41, 50, 32]. Nhaethis is true not only
for single level solvers but also for multigrid methods [28].

For the parallelisation of solvers on adaptive grids, sgdlagg curves are known
to be an efficient and comparably easy to apply tool for dompaititioning and dy-
namical load balancing [38, 39, 20, 43, 40, 30, 52, 45]. Heréte principle idea
behind is to queue up the grid cells (on all refinement levielshe order prescribed
by the space-filling curve and, subsequently, to cut thisiqueto equal pieces. Peano
adopts this principle [29, 24, 22]. In the last two years,dhginal concept has been
modified to a more level-oriented approach which has thergdge that already the
domain partitioning itself can be done in parallel [36, 7].3hus, we never have to
store the whole grid on one single processor. Fig. 7 showe goatiminary results on
the scalability of the code. More details of the new domaicodeposition and load
balancing approach will be published soon in a separaterpape

From the numerical point of view, Peano offers a highly fléxiand powerfull



grid adaptivity [16, 28, 32] in combination with an efficianultigrid solver [28, 32].
To remedy the lower discretisation order at complicated @iarboundaries induced
by the Cartesian grid, a variety of possibilities is knowrlitarature [49, 34]. The
implementation of such methods in Peano is work in progress.

3.2 Consistent Forces

For the simulation of fluid-structure interaction probles obviously very important
feature of a flow solver is the accurate calculation of foreesrted on the structure
surface by the flow field. Hereby, the method of consistergg®ias proposed in [18]
can be applied very naturally in our solvers. The local feraegrid vertices at the
structure boundary are computed by the accumulation ofdhg&ibutions to the right

hand side of the momentum equation (1) from all adjacent ftelts (see also [7]):

du

= (A% + Dt Clanyun = 307 ) ©
whereA, D, C, andM denote the discrete mass, diffusion, convection, and gnadi
operators, respectively. In the adaptive solver Peanaggthialues are automatically
available after each grid-wide cell-wise operator evatutmtMore details for the real-
isation in our solves are provided in [9, 7, 5, 8].

(2

3.3 Geometry Changes

Due to structure movements or deformation, the computatidomain of the fluid
solver is underlying possibly large deformations or evgrotogy changes. This re-
guires an adequate method to handle these changes. Our fl@wssaork with the
Eulerian approach that is with fixed grids. These grids cavesctangular domain in
which the actual computational domain is embedded. Grild ceitside the consid-
ered scenario and grid cells within the structure are masse@bstacle cells’. This
approach is called a marker-and-cell approach [46, 19tendture. For regular grids,
a geomatry change simply results in a reset of the cell marklris obvious that
the upper bound of the costs for this change correspondse®wrep over all grid
cells. In the case of adaptively refined grids such as thageadied in Fig. 8, adaptive
refinements, in particular those around complicatetly sbagtructures have to be re-
done in addition. However, these costs are proportiondlé¢costs of one sweep over
the grid, again, as even the complete generation of a newrgndthe current central
surface mesh requires only one sweep over the grid whichng lbelild immediately
within this sweep [14]. In [14, 7, 6], we give runtimes forgtgrid generation for
different grid resolutions. For example, the generatioa gfid with843 million grid
cells requires only a computational time of eleven secona@ étentium 42.4 Ghz
processor [6], which is really neglectable compared to tirgime of a fluid solver
time step on such a fine grid. If we implement the restrictibrcltanges to those
subtrees of the cell tree which is actually affected by a ggoyrmovement — which



Figure 8: Left: Adaptively refined Cartesian grid for the siation of the transport
of a spherical particle in a channel with oscillating diaemetOnly fluid cells are
displayed, regions with obstacle cells appear white orrgresspectively. Right: Sit-
uation after a particle movement. The subtree of the gridies where changes have
to be performed is marked with a red square.

is currently work in progress, runtimes for resetting thiel gifter a geometry change
will be further reduced.

The change of cell markers and adaptive refinement pattesdyeometry chan-
ges leads to new fluid grid points for which correct velociyues have to be deter-
mined that do not harm the cell-wise continuity equatiortsfifd such values, we use
the values from the nearest already existing fluid grid oamd subsequently apply
an Ly-projection of the velocity field onto the closest divergetfiee velocity field
[7]: u"ev = o' — Vq with Ag = VTl

3.4 Surface Data Mapping

To map data between the central surface mesh dilé&and the Cartesian grid of the
flow solver, we first determine the nearest surface triangiefch boundary vertex
of the Cartesian solver grid as described in Sect. 2.3. Suiesely, we determine the
orthogonal projection from the vertex to the respectivarngie.

3.4.1 \Velocities

To transport information from the structure solver to theédflsolver, we use the ve-
locities at the surface of the structure computed by thegira solver. The velocities
at the Cartesian boundary vertices are set equal to thesvatube projection points
at the nearest triangle of the central surface mesh. Hevebynterpolate the values
linearly within the triangles [13].

3.4.2 Forces

Forces exerted on the structure are the input the structiversgets from the fluid
solver. Thus, we have to perform the invers mapping as fovébecities: We set
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Figure 9: Snapshots from simulations of fluid flow around aeioim a laminar flow
regime [13].

values at projection points of Cartesian boundary poinigktp the forces computed
at these boundary vertices. Subsequently, these valuetistiributed to the nodes
of the central surface mesh according to the barycentricdoates of the projection
points.

As the structure solver we use in our examples, AdHoc [1 d¢deestresses and not
forces as an input, we additionally compute the stressdseatdntral surface mesh.
For this purpose, we define polygonals around the nodes dutiace mesh defined
the baycentres of the neighbouring triangles and the midpoif the involved edges.
The stresses at the surface nodes result from the forcedadeby the area of these
polygonals [13].

4 Numerical Results

In this section, we propose some scenarios for which we pedd simulations us-
ing our coupling environment FSte in combination with our flow solver F3F and
Peano. Currently, these simulations can be devided intestlegroups, test cases and
benchmarks with the purpose of an evaluation and verificatioour software and
application scenarios with the task of gaining new insigihtiie underlying phyiscal
phenomena. We will not go into details for the examples shioumtninstead, only give
an overview of some scenarios which have already been ceumuith our tools.

4.1 Flow Around a Tower

A first test case to show the technical and quantitative fanaif our software com-
ponents is the flow around a tower, for which several simotetinave been run in
[13, 6]. To simulate the structure behaviour, we used thedlalgptive structure solver
AdHoc [17]. Fig. 9 shows snapshots from simulations runsgméed in [13].

4.2 Benchmark Scenarios

In [25], several benchmark scenarios for the evaluationvanification of simulation
tools for fluid-structure interactions have been propo¥éelare currently performing
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Figure 10: Left and middle: First simulation results for tieee CFD benchmark
scenarios described in [25]. Right: Cut-off of the flow fietdt the CFD benchmark
'flow around a cylinder’ with Reynolds numbgo from [47] (see also [6]).

first computations for the FSI benchmarks I-1ll. As we can pi@sent the results in
this paper, yet, we give some pictures and data gained freimpnary studies of pure
CFD benchmarks which were performed in preparation of thelevboupled fluid-

structure simulations. Fig. 10 shows visualisations of3k® scenarios from [25] and
gives a cut-off of the flow field around a cylinder computed aradaptively refined
grid. For a grid with42, 501 cells, we achieved a drag coefficient®691 (reference

value5.580) and a lift coefficient 0f).0113 (reference valué.0107) [7]. These results
will be further improved in the future by a more sophistichtend dynamical grid
adaptivity.

4.3 The Drift Ratchet

The Drift Ratchet is our application scanario. A drift ragtis a tool used in life sci-
ences for the separation of microscopic particles accgrtirtheir size. The function
of this tool has been shown experimentally [27]. Howevereper understanding of
the crucial physical phenomena and an exact tuning of thereterealisation require
further investigations, among which numerical simulasiare a very meaningful and
fast possibility. The drift ratchet consists of a kind ofv@evith pores with asymmet-
rically oscillating diameter [7, 27]. A fluid with the suspad particles is pumped
forward and backward through this sieve by a pressure purtip agicillating pres-
sure. In the last months, we performed several simulatios far the transport of
one particle in a suitable cut-off of a pore. First 'driftfefts could be shown and are
described in [7, 6]. Here, we only show some snapshots of alatran run for illus-
tration in Fig. 11. The patrticles are rigid bodies for whick wnly have to compute
velocities and rotation according to Newtons laws of mofign This results in very
simple structure equations which we directly solve withim fiuid solver.
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Figure 11: Snapsots of a simulation of a particle moving imtadff of a drift ratchet
pore.

5 Conclusion

In this paper, we have described and showed the appligabflibur software com-
ponents for the partitioned fluid-structure interactiaonlations: The coupling envi-
ronment FSIce and the flow solvers F3F and Peano. For the coupling emaiat
we could show that we achieve a very high flexibility in the ickoand exchange
of solvers and the coupling strategy which is not the casefample for the most
commonly used tool for code to code coupling MpCCI [26, 8,f@f,example. The
flow solvers show the storage efficiency of Cartesian grigsairticular in combina-
tion with the newly developed algorithms and data structir@sed on space-filling
curves. In addition, large geometry or even topology chargm be realised very
efficiently within our Eulerian approach as grid generatmal adaption are very fast
processes within the framework of our Cartesian grids. mesdirst examples, the
technical and quantitative correctness and efficiency leas Ishown. However, ex-
ploiting the whole potential of the concept is still work irogress. This includes the
implementation of more sophisticated coupling stratedilesaries for data interpola-
tion and projection between solver grids and the centréd&esardescription of FSIce
as well as further runtime optimisations, better time stegpmethods, and dynamical
adaptivity for our flow solver Peano.
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