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Abstract

Database workloads are traditionally divided into two families, analytical and transac-
tional, each with their own set of matching requirements and optimizations. In recent
years, hybrid transactional and analytical (HTAP) systems have been developed to
support these two kinds of workloads within a single system, through careful light-weight
replication and synchronization. The design of benchmarks for these systems poses
several challenges: a) the need for measuring the goodness of the system under test to
isolate OLTP workloads from the intense resource consumption of concurrent OLAP
clients on the same machine, b) the requirement of having a unified measure that could
characterize performance across different combinations of workloads, c) the need for
reporting an informative measure of the actual freshness of the OLAP reads.

In this Master Thesis we review the state of the art in HTAP benchmarks, complementing
this with a practical evaluation using the HTAPBench benchmark, a tool that seeks to
address the first 2 challenges mentioned.

As our contribution to this field we focus on the third challenge: reporting an informative
measure of the actual freshness of the OLAP reads. For this, we study and evaluate on
freshness measures proposed in the literature; using a simple prototype for an HTAP
database that relies on replication from OLTP to OLAP formats, and that supports reads
with bounded staleness. We run the YCSB benchmark, an established OLTP benchmark
that enables to set a limited amount of concurrent updates and read operations, over our
prototype, and report the throughput and freshness measures at various refresh rates
for the replicated data. With our experiments we can identify Absolute Freshness and
Freshness Rate as the preferred choices for measures that can use information posterior
to the replica update time. This is the case for benchmarks. We also identify Absolute
Timeliness as the best metric for cases that cannot employ information posterior to the
update to the replica, which could be the case for query engines of HTAP DBMSs. In
addition, we propose and test a novel metric, Timeliness Rate, to capitalize on volatility
models for approximating the Freshness Rate, under limited information of ongoing
updates.

We expect our work to contribute to the development of standards for measuring
freshness by providing practical evaluations of this data quality dimension. We hope
that our observations could towards building query engines able to reason about freshness
in any situation where replicated data management is needed, like HTAP systems or
co-processor accelerated systems.
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1. Introduction

In the past decades, operational and analytical systems have been supported in relative
isolation, by specialized DBMSs. This architecture has resulted in systems with decent
performance. However, to maintain both systems separate, enterprises and organizations
have to bear a cost higher than that of maintaining a single system. In this type of
architecture, the data needs to be recorded in a transactional system, and it can only be
analyzed after being copied to an analytical system, often through a heavy ETL process.

Figure 1.1: Hybrid Transactional Analytical Processing [Web18]

In todays modern world, it is highly important to do analysis on real time data as early as
possible, in order to achieve advantage over competitors in the business world. Therefore,
Hybrid Transactional and Analytical Processing systems (HTAP)1 are emerging as a
solution with a crucial role for enterprise data management. These systems have very
diverse design characteristics that enable them to support well both online transactional
processing (OLTP) and online analytical processing (OLAP). In HTAP systems there is
no need of maintaining multiple copies of data, furthermore, analytics can be carried
out on the most recent real-time data within a single system. This last feature is the
most distinguishing one of HTAP DBMSs, it can represent a business advantage for
users of these systems who are able to leverage such feature.

1The word HTAP is coined by Gartner [Gar14].



2 1. Introduction

The traditional database workloads, OLTP and OLAP, are used for serving the transac-
tional and decision making applications of organizations, respectively. OLTP systems
are focused on providing high throughput for a large amount of small operations, while
OLAP systems main goal is to power the analysis of huge amounts of data and support
the intended decision making process. To evaluate the performance of these systems
there are different benchmark standards which are offered by Transactional Processing
Performance Council (TPC). The list of benchmarks provided by TPC include TPC-C,
TPC-E, TPC-H ,TPC-DS and OLTP. These report the performance, throughput and
latency for either OLTP or OLAP systems. The high demand for evaluating systems
that support mixed workloads (HTAP) necessitates the evolution of mixed workload
benchmarks, which are crucial to help these technologies develop by enabling the com-
parison of systems, helping the community to realize which design features are useful
and which not.

Authors have studied that the performance of HTAP DBMSs [PWM+14] depends on
specific factors such as the freshness of the OLAP reads, the flexibility of the system to
rewrite queries, and the scheduling of resources among both workloads. Authors report
a “house pattern” as a standard occurrence for HTAP systems, whereby an increase
in OLAP clients leads to a loss of throughput for the concurrent OLTP clients2. As
a consequence of such factors, specialized testing is required to assess the goodness of
HTAP systems in isolating both workloads and providing good performance at a given
expected freshness.

Specifically, the design of HTAP benchmarks present several challenging requirements,
as discussed by authors in the field [Bog12] [CFG+11] [CPV+17]:

• Providing an evaluation for workload isolation: To measure the capabilities of
the system for shielding OLTP workloads from the high resource requirements of
concurrent OLAP clients running on the same machine.

• Offering a unified performance measure: HTAP benchmarks should be able to
report a single unified measure to represent the performance of the system under
certain combination of workloads and proportions of the representative queries
per workload.

• Characterizing freshness: One of the fundamental design choices of HTAP systems
can be the support of OLAP reads with less freshness. This means that the
strong requirement for transactional serializability, usually supported through
so-called strong reads, can be lowered to enable OLAP clients to read on data
replicas which are slightly stale and not up to date. This is also called relaxed
serializability [BFG+06] or enabling reads with bounded staleness (as used in big
data systems [CCH+14]). Such a design can result in higher performance for
the OLAP clients. Stemming from the potential gains from this design, HTAP
systems have moved beyond designs that offer the same bounded staleness to all

2This was also reported by Bog in the context of evaluating CBTR [BPZ11].
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reads [KNF+12], to offer each request the ability to specify their own staleness
bound [BBB+17] [LMHK+17]. As a result, HTAP benchmarks need to be extended
such that they report the freshness for OLAP queries in their evaluations. This
is a significant challenge since, though a large number of measures have been
proposed [OC12], there is currently no standard metric for reporting freshness.

• Extending scale factor concepts with scale changes: Unlike OLAP-only systems,
HTAP systems can experience database growth and evolution from one scale factor
to another. As a result HTAP benchmarks should be able to evaluate the goodness
of the system under test to handle changes in database scale factor.

• Additional support for ad-hoc queries: Since OLAP queries can go beyond the
traditionally used benchmarks like TPC-H, it can be useful to support ad-hoc
queries in HTAP benchmarks.

Due to this set of challenges, next to the relative novelty of HTAP DBMSs, to date there
is no standard HTAP benchmark with mainstream adoption, and more particularly, no
standard for evaluating freshness. Such situation might hinder the development and
adoption of the technologies, leading to untapped potential.

Tools like CBTR [BPZ11], CH-BenCHmark [CFG+11] and HTAPBench [CPV+17] have
been proposed as mixed workload benchmarks. Each of them extends a bit the coverage
in requirements for these benchmarks. CBTR considers a real-time business scenario
different than the traditional TPC schemas. In their studies, authors employ the tool to
evaluate the impact of different schema normalizations for mixed workloads [BPZ11].
CH-BenCHmark covers all the queries from TPC-H and TPC-C over a unified schema.
The tool provides users with the facility of configuring different workload proportions
and to define a single read staleness bound [CFG+11]. To an extent HTAPBench
builds on the work of CH-BenCHmark, considering the same schema and workload
possibilities [CPV+17]. HTAPBench adds to useful contributions to the field. First, it
suggests a scheme based on a feedback controller, to balance the maximum number of
OLAP clients scheduled while keeping OLTP throughput for a fixed number of clients
within a threshold. Authors also propose a novel unified measure to evaluate the system
under test, and an informative visualization that conveys relevant features of how OLAP
and OLTP clients interact for the given system under test.

In spite of their contributions, these tools fail to address the challenge of characterizing
the freshness of the system under test, providing no measure for it. Furthermore, they
have no concept, as of the time of this writing, for evaluating workload that contain
individual reads with varying bounded staleness.

In consideration that the data quality dimension of freshness is an important factor
for HTAP systems, in this study we propose to contribute towards characterizing
freshness in HTAP benchmarks. To this end we evaluate a comprehensive number of
12 freshness/staleness measures proposed in the literature [RBSS02, GLRG04, Bou04,
NLF05, BFG+06, QL07, HKK09, OC12, CCH+14], by adopting a small prototype for
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an HTAP system, and extending a benchmarking configuration such that the different
measures can be recorded. We provide practical results for how these measures portray
the system under test over one configuration of the benchmark, and we found that the
metrics which are global measures and time-dependent metrics are not useful. We show
that some of the proposed measures are not applicable to our use case. We recommend
metrics that provide reasonable insights. We propose an new metric, Timeliness Rate,
which uses the modeled volatility of items to predict the freshness of the read replica as
a whole.

Moreover, we include a practical evaluation of the existing benchmarks, considering the
information that they provide in their detailed reports. We discuss, as well, how the
freshness measures could be adopted in them, apart from deciding on their utility and
cost for recording them.

Thus, we can summarize our contributions as follows:

• We provide necessary background to understand the state of the art for HTAP
benchmarks.

• We adapt an HTAP prototype based on replication across formats, such that it can
be used with the YCSB benchmark, creating a log of all the requests it receives.
We implement, as well, a tool that based on the generated logs, calculates diverse
freshness measures proposed in the literature. Hence we give a comprehensive
profile for the freshness of reads in the reported performance results the benchmark.

• Our tool can be used for any logs that share our current reporting format. Our
log generator can be ported to other YCSB clients and systems.

• We compare, for a specific scenario with mixed requests, the results for the
generated measures. We evaluate their ability to represent the precise freshness
characteristics provided by the system under test, and we report in addition about
how they compare in terms of required parameters to be kept while running the
benchmark. We find which metrics are more informative than others, and we
propose a new metric to extend those we study.

• We provide a practical walk-through of the work with two of the open source
available tools, discussing the features in their reports and limitations. We discuss
how the freshness measures that we evaluate could be added to these tools.

1.1 Structure

The structure of this Thesis is as follows:

• Background: In this chapter we present the necessary theoretical background and
context for our study. We cover benchmarking, HTAP systems, HTAP benchmarks
and freshness concepts (Chapter 2).
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• Prototypical Implementation: We present the various methods for measuring
the freshness and evaluating with the YCSB benchmark. We describe, as well, the
prototype HTAP system that we used for our tests (Chapter 3).

• The Evaluation of Freshness: We present the results for our evaluation about
freshness, how it affects the performance of the mixed workloads, and how the
freshness measures represent the system under test (Chapter 4).

• Results from HTAP Benchmarks and Alternatives for Adding Fresh-
ness: We provide a simple and practical evaluation of the use of state of the art
HTAP benchmarks. We discuss how freshness could be added to them (Chapter 5).

• Conclusion and Future Work: We summarize the results of our study, threats
to the validity of our work, and we provide an outlook for future work (Chapter 6).



6 1. Introduction



2. Background

In this chapter we present the necessary theoretical background and context for our
study. We organize this presentation as follows:

• Context for the Development of HTAP We start by giving a brief description
about HTAP, with a short introduction to OLTP (Online Transactional Processing)
and OLAP (Online Analytical Processing) workloads. We also give an overview of
existing HTAP systems and key characteristics.

• Benchmark Next we consider benchmarking for database systems, with a short
history about benchmarking (Section 2.2) and a discussion on classification of
benchmarks (Section 2.2.1). Following TPC practice, we further divide the bench-
marks into transaction processing benchmarks(Section 2.2.2), analytical processing
benchmarks (Section 2.2.3)and mixed workload benchmarks. Our discussion on
HTAP-specific topics is based on the following selection of primary studies:

– Tutorials on HTAP systems [BDM+16, OTT17].

– Papers on benchmarking for HTAP [CFG+11, Bog12, PWM+14, CPV+17].

– Papers that present the implementation of HTAP systems, or of components of
them [GKP+10, KN11, FCP+12, KNF+12, MGBA17, BBB+17, LMHK+17].

– Papers describing freshness metrics for different data management uses [RBSS02,
GLRG04, Bou04, NLF05, BFG+06, QL07, HKK09, OC12, CCH+14].
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2.1 Hybrid Transactional and Analytical Process-

ing

In this section we introduce OLAP, OLTP and HTAP. We do not intend to provide a
complete historical coverage of the topics. Instead we focus on introducing them for our
ensuring discussion on HTAP benchmarking.

Relational database systems have played a significant role in business applications for
many years. All businesses need data management systems to handle various parts of
their daily activities which include manufacturing, sales and orders, financial management
and the analysis of data for strategic decision making etc. In the past, a majority of these
database systems have been designed to handle online transaction processing in which
the database receives a workload made up of a large amount of transactional operations,
these consist of many singular tuple-level insertions, reads or updates (e.g. corresponding
to the sales of an item in e-commerce, or the updating of a profile in a social network).
The majority of database providers came up with specialized designs of data structures
and architectures to manage such workloads. Data management systems designed to
handle these workloads are called Online Transactional Processing (OLTP) systems.
H-Store is an example of a recent OLTP system, constituted by single-threaded engines
(i.e., workers) which provide lock-free execution of OLTP transactions. [KKN+08].

Coupled with the use case for OLTP, for the past 20 years, the employment of specialized
techniques of data analysis for decision making has gained importance, with terms like
business analytics or data science used to group these techniques . Specialized systems
have been developed to support most applications of the techniques, these are known as
Online Analytical Processing (OLAP) systems. Such tools are used for multi-dimensional
views, with historical considerations, of business activities. MonetDB is an example
of an OLAP system, and it is used in the field of health care, telecommunication and
astronomy [IGN+12].

OLAP and OLTP workloads are different from each other in the complexity of the
queries that constitute them, in the expected processing speeds, in the most fitting
database design, and in the resource requirements, among other features.

Characteristics OLTP OLAP
Queries Simple queries Complex queries
Processing speed Very fast Takes many hours

Database design
Normalized with many ta-
bles

De-normalized with fewer ta-
bles

Space require-
ment per query

Small number of tuples
Large space due to historical
data

Table 2.1: OLAP vs OLTP
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Typically OLAP systems and OLTP systems work separately in such a way that
analytical workloads do not affect the concurrent transactional workloads. In this
approach, analytical queries run on a data warehouse with replicated data from one or
more operational systems. Often OLAP systems consume data that is not up-to-date.

Plattner [Pla09] stated that advancements of in-memory technologies have enabled a
new approach for standard business applications where data can be stored just once
without compromising either transactions or analytical workloads. This new kind of
systems are now commonly know as Hybrid Transactional and Analytical Processing
(HTAP) systems, as named by Gartner [Gar14]. Some characteristics of these systems
are discussed next.

• No ETL: For analytics in HTAP, there is no requirement for data transfer from
operational databases to data warehouses.

• Data freshness for analysis: Transactional data is readily available for analytics as
soon as it is created.

• Freshness of aggregates and pre-computed values: Drill-down operations from
analytic aggregates always points to fresh HTAP application data.

• Less storage requirements: It eliminates or at least reduces the need for multiple
copies of the same data.

HTAP databases could play a considerable role in enabling freshness of operational data
for decision making, hence they could have great beneficial impact in these different
industries. Decision making on real time data could be a potentially valuable capability
for different organizations. Public safety, risk management, fraud detection, and others
might reasonably benefit from such capability.

2.1.1 Different HTAP systems

Tutorials presented at diverse database conferences have covered HTAP workloads and
database systems designed for them. To our knowledge such tutorials are limited to the
presentations by Bohm et.al[BDM+16] and by Ozcan et.al [OTT17]. The first covers
the design of some HTAP systems, both academic and industrial, such as SAP HANA,
Oracle InMemory, MemSQL and Cloudera Impala with Kudu. Apart from presenting
the design of the systems this tutorial does not offer a listing of open challenges. There
different HTAP systems vary on storage model, architecture, updates and layouts. A
summary of different HTAP systems is given in the below table.
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2.1.1.1 Hyper

Hyper is a main-memory database system which can handle OLAP and OLTP workloads
by using a consistent virtual memory snapshots mechanism. This mechanism happens
at system-configured time intervals. [KN11].

Figure 2.1: HyPer: Virtual Memory Snapshot of OLAP &OLTP[KN11]

Architecture: As we know, to consolidate the two disparate workloads OLTP and
OLAP on to one system is a highly challenging task. In HyPer, hardware-assisted
replication mechanisms are used to maintain consistent snapshots of transactional data
[KN11]. HyPer processes the OLTP queries with lock-free control and guarantees ACID
properties. To execute the analytical queries, it uses virtual memory snapshots. The
OLAP snapshots are obtained by a fork system call from the OLTP process. The fork
system call creates a child process which is an exact copy of the parent process. As soon
as an update happens, new memory is allocated for the parent process, such that it has
new values for variables, on the other hand, the OLAP process holds the old values with
the previous memory locations. The OLAP queries are executed on the snapshots (i.e.,
the child processes) with a running parallel OLTP workload in one system. According
to some studies, the throughput of the transactional workload for the HyPer system
is better than for specialized OLTP engines like VoltDB. The query response time of
Hyper is very fast compared to other OLAP engines[KNF+12].

2.1.1.2 Hyrise

Hyrise is a hybrid database system which is based on vertical partition of different
widths [GKP+10]. Through the partitioning it seeks to reduce I/O costs for operations
and improve the memory use.
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Figure 2.2: Hyrise Architecture[GKP+10]

Architecture: The Hyrise architecture is mainly divided into three parts: the query
processor, the storage manager and the data container. This is similar to several database
systems, but the storage manager has different features for handling data containers.
The query processor prepares a physical query plan based on the user queries. The tasks
of the storage manager include creating and managing the hybrid containers with data.
The storage manager includes a layout manager which suggests the best possible layout
design for the workload provided by the Query Processor. Hyrise proposes an algorithm
for vertical partitioning, such that the best grouping of columns is formed for query
processing.

2.1.1.3 SAP HANA

SAP HANA is an in-memory DBMS [FCP+12]. Through the years this system has
evolved to include diverse features. As of now it is a multi-processing engine which
supports the classical relational data with both row and column layout. It also provides
features for efficient large scale processing with Spark (introduced with SAP HANA
VORA), graph processing (SAP HANA GRAPH), search engines and others.

Architecture: The center point of the SAP HANA architecture is an in-memory processing
engine. The relational data is stored in a table, which resides in main memory. The
physical representation of data can be as column or row layout, and can be changed from
one layout to other layout. By default, data enters the system as a row and ages towards
columns. For efficiency the columnar data is dictionary encoded, with compression
also applied, leading to good memory uses and enabling data skipping during query
processing. As SAP HANA also supports graph and text data, they can provide storage
in respective graph and text formats[IGN+12].

Octopus DB[DJ11] stores the data in a log form. This log contains both committed
and uncommitted data. Then a Storage View (SV) concept is used for committed data,
these are replicas of part of the data, and they are defined by queries. By using SVs,
similar to the use of materialized views, less data needs to be considered to answer a
query. SVs contain data sections in either row, column, PAX pages or index form and it
can also describe the whole log data as SV. It also creates suitable SV according to the
different workloads,i.e. defined as the Holistic Storage View Optimizer. According to
the query and considering the cost factor, it decides to create new SV or search in the
log. It follows the mechanism of Multiversion Concurrency control and it also holds the
ACID property.
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2.1.1.4 Others HTAP Systems

MemsSQL is one of the distributed SQL [CJW+16] databases. In this system the
transactional data is stored in a row format in memory and for the analytical processing
this data is converted to column form in disk. Here, for row formats skiplists are used
to access data and column stores means that PAX-like segments are used. It updates
as batches periodically merging the data to column store. It uses the multi version
optimistic concurrency control which avoids conflicts among transactions.

Peloton is an open source database management system, that uses a flexible storage
model. A logical tile abstraction lets the DBMS do query execution plans on data with
minimal overhead. It was proposed in [APM16]. Every table’s physical design to an
evolving query workload is enhanced by an online reorganization technique, which runs
continuously. Therefore the goal of this DBMS is to optimize the layout of a database
for an arbitrary application without requiring any manual tuning.

IBM wildfire and Snappy Data are HTAP systems that build on the scale-out processing
engine Spark. Snappy Data uses Gemfire for OLTP requests and the Spark ecosystem
for the OLAP requests. Similarly Wildfire has native columnar data storage but it
uses the Spark ecosystem for analytical queries, this ensures availability of immediate
committed data for analytical processing.

An elastic cloud data storage system(ES2) was proposed in [CCG+11], which efficiently
supports both OLTP and OLAP workloads among the same processing and storage
system. The distributed indexing component affirms the distributed data index dec-
laration, such that the efficient processing of ad-hoc queries is facilitated and efficient
data retrieval is achieved. Additionally, efficient data loading from various sources,
flexible data partitioning scheme, index and parallel scan is provided by the system. The
experiments demonstrate the efficiency of ES2 and yield results stating that ES2 can
provide for most OLAP queries a fresh and consistent snapshot of the data which are
simultaneously manipulated by OLTP operations. The benefit of providing distributed
indexes and accesses to the data for both OLTP and OLAP queries are confirmed by
the yielded results.

In [AIA14], H2O- an Adaptive Hybrid System was proposed. Ideally, a system should be
capable to combine the benefits of all possible storage layouts and execution strategies.
Provided a change in workload, it should react to change in real time as workload-specific
storage layouts and execution strategies are required for optimal performance. The
H2O system doesn’t intend to make any fixed decisions regarding storage layouts and
execution strategies, rather the H2O continuously adapt based on the workload.

The Oracle Database InMemory was defined in [LCC+15] as an option to provide a true
dual-format in-memory approach. This DBMS is seamlessly built into the Oracle Data
Access Layer, such that the DBMS is allowed to be instantly compatible with all of the
rich functionality of the Oracle Database.
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BatchDB is an in-memory database engine designed for hybrid OLTP and OLAP
workloads [MGBA17]. Good performance, high level data freshness and minimized load
balance between the OLTP and OLAP engines over fresh data are achieved by BatchDB.

Google Spanner simply referred to as Spanner[BBB+17], is a globally-distributed data
management system that backs hundreds of mission-critical services at Google. It is
built on ideas from both the large-scale systems and database communities. Spanner
has evolved from being developed initially to work exclusively as a eventually consistent
service, until recently it became a relational DBMS with HTAP features. For this various
copies of data are maintained in different distributed systems. The concurrency control
of Spanner uses the pessimistic locking and timestamps techniques, using Google’s True
Time technology.

2.1.1.5 Summary on Design of HTAP Systems

As explained above, several HTAP systems like Mem SQL, Peloton, SnappyData, IBM
Wildfire, BatchDB, Caldera, OctopusDB and Google Cloud Spanner are available in the
market. These HTAP systems have different design and storage methodologies for the
OLAP and OLTP workloads. They specifically vary in the data organization and query
processing techniques.

To separate the data for analytical processing different options are: snapshots (HyPer),
storage views (OctopusDB), multiple versions with delta buffers (SAP HANA) or multiple
versions with data containers (Peloton) among others. However, these systems cannot
have immediate committed data for the analytical processing [OTT17].

These systems also follow different storage techniques. Systems like SAP HANA use
the in-memory columnar processing storage technique. Other systems use PAX layouts
which are considered to combine the best of rows and columns (Caldera).

To summarize, the HTAP systems that we have discussed all seek to offer a “one-size-
fits-all” database system. To accomplish this they have a wide variety in their designs.
In the next section we discuss the core requirements or challenges for HTAP systems,
and we consider theoretically how the design choices we have presented might specifically
affect the two requirements of freshness and isolation.

2.1.2 Challenges of HTAP Systems

The essential goal for an HTAP system is to provide good performance for combinations of
analytical and transactional workloads. More specifically this means efficient processing
of a large number of OLTP clients with high throughput [FK09], while, simultaneously
servicing with minimum latency long-running queries for OLAP clients, which in turn
can theoretically analyze the most recent operational data. Since there are trade-offs in
favoring one type of workload over another, performance per workload is not only a goal
but also the first challenge of HTAP, which can define as the challenge of finding the
optimal OLTP and OLAP performance (OLAP latency, OLTP throughput) balancing
optimizations and resource usage for each workload, at a given number of clients. These
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optimizations tuned for a workload (including, for example, optimal data structures,
specialized operators, and others) are one of the essential aspects in database design,
supporting the good performance of the DBMS.

Several factors influence the HTAP performance. The work of Psaroudakis et.al
[PWM+14] studies some of such factors. In this study authors evaluate the HTAP/mixed
workload benchmark CH-benCHmark over two HTAP systems (SAP HANA and HyPer).
Based on this they identify 3 key performance-impacting factors when scaling the number
of concurrent transactional vs. analytical clients in these databases. The factors are:
freshness, flexibility and scheduling. Apart from the factors they establish that there
exist trade-offs in configuring them. In the next paragraphs we discuss these factors one
by one, after which we discuss the trade-offs and summarize the discussion by presenting
3 challenges related to these trade-offs.

Regarding freshness the authors refer to it as a measure for recency of the data consumed
by an OLAP query. Traditional batch-processing warehouses allowed OLAP queries to
run over relatively stale (or unfresh) data. For example, analysis of frequent purchasing
patterns could be scheduled to happen overnight, using the data from the previous day
(and not considering the data from the current moment). In contrast, analysis can also
be processed over more recent data. For example, real-time analysis of stock data, as
they are being updated. In Section 2.2.4.4 we present some metrics that have been
proposed in the literature for freshness.

Regarding flexibility, authors define it as a measure for how permissive (in contrast to
restrictive) is the design for interactivity or expressiveness of transactions and analytical
queries. A system that allows UDFs, for example, with ad-hoc queries, would be more
flexible than a system which only supports pre-compiled queries. The authors suggest
that restrictions in interactivity and expressiveness are usually introduced to enable
optimizations.

About scheduling, in the paper authors define it as the order or priority in which OLAP
and OLTP clients are configured to use the system’s resources. When the system reaches
saturation, the DBMS might choose to prioritize one type of client over the other.

After establishing these 3 factors, the authors suggest how they could impact one another.
In turn we will consider these impacts as 3 additional challenges for HTAP. We discuss
them in what follows.
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Figure 2.3: Data Freshness[PWM+14]

Increases in the data freshness requirements of OLAP clients reduces the performance,
since they must wait for OLTP clients to complete transactions, thus giving information
about the most fresh data. Figure 2.3, was proposed by the authors to model, generically,
this relationship.

Figure 2.4: Performance of HyPer for low level of analytical data freshness [PWM+14]
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Figure 2.5: Performance of HyPer for intermediate level of analytical data freshness
[PWM+14]

By carrying out a performance study using HyPer, authors show that increasing the level
of freshness (Figure 2.4 and Figure 2.5) leads to an overall less throughput of OLAP
clients, and also to less isolation between clients (which means that with increasing
OLAP clients, the performance of OLTP clients is more affected than with less freshness).
The last factor also affects the overall performance.

Based on this study we can venture to define the design challenge for HTAP systems
related to freshness as the second challenge of HTAP. This is the challenge to serve a
given level of OLAP freshness, while isolating OLTP clients from the impact of such
freshness requirements.

In terms of flexibility authors propose that there is also an inverse correlation between
flexibility and performance, with more flexibility leading to worsened performance.
Authors suggest that this relationship can be modeled, at a high level, as seen in
Figure 2.6
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Figure 2.6: Flexbility[PWM+14]

In their study authors do not show a specific case where the impact of flexibility is
perceived.

Which gives us the the third challenge of HTAP, the challenge to provide flexible OLAP
queries without deteriorating the overall performance. It is not clear if this is an
HTAP-specific challenge.

While processing both queries at a time, it may saturate the system.There should be
balance or scheduling required for the transactional and analytical queries.

In terms of scheduling, the authors emphasize that this is a fundamental task for scaling
up mixed workloads. Namely, when receiving a large number of mixed requests, DBMSs
have the opportunity of deciding how to manage the number of clients assigned for each
workload type. Naturally, this decision is fundamentally related to the first challenge of
HTAP. While the first challenge is concerned with optimizations in each workload, and
resources given, for a fixed number of clients, scheduling refers specifically to changing
the number of clients of each workload type (which ofcourse, also implies different
resource usages).

Authors propose that for scheduling and for the first challenge of HTAP, Figure 2.7
can serve as a model: the more resources are spent on workloads of a given type can
deteriorate the performance of the other workload type. As a result of this model, we can
define the fourth challenge of HTAP: the isolation challenge of increasing the number of
clients of one workload without deteriorating the performance of the other workload type.
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Figure 2.7: Scheduling[PWM+14]

In general, the behavior described for the fourth HTAP challenge produces a “house
pattern”: when the number of OLAP clients increases, the transactional performance
decreases and when the OLTP clients are less the analytical performance is much better
than with a higher number of OLTP clients. Figure 2.4 and Figure 2.5 show the result
of different combinations of number of clients for the workloads. As stated previously,
less freshness lead to better isolation. The more inclination in the slopes, the worse the
isolation.

Figure 2.8: SAP HANA default performance [PWM+14]
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Figure 2.9: SAP HANA performance without intra-query parallelism [PWM+14]

Isolation is specially important to achieve predictable performance of queries, an aspect
that is usually one of the expected features from databases. Predictability is an essential
user requirement, often formalized as latency bounds in SLAs.

Figure 2.8 and Figure 2.9 report the results of a similar study considering different
number of clients using SAP HANA and evaluating different configurations for intra-
query parallelism in the OLAP clients. By increasing the parallelism (i.e., effectively
giving more resources to OLAP then to OLTP), the performance of the OLAP clients
improved, to the detriment of the OLTP clients. This increase in parallelism also
produced more CPU utilization and less isolation than for less parallelism. These results
reiterate the author’s argument that performance per workload/resource assignation
(i.e., what we describe as the first challenge) and scheduling (i.e., fourth challenge) have
a high impact in HTAP performance.

Apart from these 4 challenges and 3 performance factors, we found in our literature
research the mention of other challenges for HTAP design. We mention 2 of them next.

As mentioned previously, the work of Ozcan et.al [OTT17] constitutes one of two tutorials
on HTAP systems given at database conferences. This work classifies HTAP systems
according to them being a single system or composed by a coupling of systems, they
also outline differences in data organization. To conclude the work, they set forward one
goal/challenge for HTAP systems based on the definition of Gartner. They call such
goal “true HTAP”, and it is the goal of having efficient support for OLAP and OLTP
within a single transaction. To our understanding authors suggest that the design has to
consider queries that are a mix of OLAP and OLTP rather than workloads only. To our
knowledge supporting efficiently such queries implies a novel HTAP challenge, which we
define as the fifth HTAP challenge.
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Related to this challenge, we would like to mention two implications: First, queries
that combine OLTP and OLAP might refer by default to the ultimate freshness, which
in turn could be affected by the second challenge of HTAP. Second, if the workload
turns out to be composed solely by queries of this type, the analysis for the scheduling
might either need fundamental changes or the scaling of clients needs to be re-framed
by considering the proportion of OLAP and OLTP sub-queries within transactions.

The final challenge is proposed in the work of Makreshanski et.al, [MGBA17]. In their
database presentation paper, they define elasticity as what we can name the sixth
HTAP challenge: that the DBMS should be able to scale dynamically with changing
number of machines (e.g. CPUs) and resources (e.g. disaggregated memory), taking
good advantage of the resources provided. While elasticity is important for regular
databases, it is specially challenging for HTAP, since studies have shown that these
different workloads have a different sensitivity to resource increases, according to scale
factors. For example, the study of Sen and Ramachandra [Sen18], reports the effect of
increasing the number of CPUs on mixed workloads with mixed clients. For OLAP they
find that on small scale factors the performance can benefit more from CPU increases
than for OLTP, however on large scale factors the authors report the opposite. Authors
also report similar findings for changes in LLC capacity.

OLAP/clients

OLAP/resource

FreshnessOLTPclients

F lexibility

Resources

Consistency

OLTP/resource

To summarize, according to our literature review, we find that there are 6 challenges as
suggested in the literature for HTAP systems. These are:

• Performance per workload

• Freshness maintaining recent data

• Flexibility tune the freshness

• Isolation with changing number of clients

• True HTAP OLTP and OLAP within one transaction

• Elasticity with changing the number of machines

To standardize the different systems available in the market, Benchmarking is introduced.
The detail about benchmark is explained in the next section.
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2.2 Benchmark

A Benchmark is a “standardized problem or a test which serves as a basis for evaluation
or comparisons (as for computer system performance)” [Bog12]. In the early 1980’s, the
world was transforming from end-user transaction, which involved human to human
interaction, to an increasing automation of transactions, which lead to more and
more human computer interfaces for everyday tasks. One of the first applications
was automated teller transaction machine (ATM) which extends from bigger level to
smaller level marketing. At that time the on-line transaction processing system industry
was intuitive and industries were growing. Today this on-line transaction processing
industry has grown to a level which can influence the economy of a country. Huge
numbers of vendors are coming up with their services in this area. It is important to
know the best among them. To facilitate this requirement, a benchmarking test would
be necessary. In the past two decades so many ad-hoc benchmarks for database and
transaction processing systems have evolved. The evolution of the benchmarks and
the standardization’s is clearly summarized in a handbook by J. Gray [Gra91]. Most
of the benchmarks created in the early periods were supplied with unclear measures
such as transactions per second and query processing performance. These may not be
applicable for measuring all the types of enterprise systems. Due to this scenario, many
enterprise system vendors came up with their own benchmarks to test their own product.
Similarly, SQL vendors have implemented the Wisconsin benchmark and used it to test
the performance of their new releases, and with each new machine. On the other hand
the Datamation query set which is a DebitCredit transaction benchmark was used to
evaluate and compare various relational products. Most of the times the results of the
performance tests were not published as the numbers were not so attractive and are not
helpful to enhance their markets.

However some third parties used to compare various existing products and used to pub-
lish the reviews and results. The losers of these test results used to blame the usability
or the credibility of those benchmarks. These situations caused benchmarking wars to
a significant level. This leads to the development of more standardized benchmarks
which are more reliable and acceptable by the most of the elite vendors. These standard
benchmarks are developed by some non-profitable organizations and some universities
to test performance, price and other important aspects of enterprise applications sys-
tems. The Transaction Processing Performance Council (TPC) [Cou17b], The Standard
Performance Evaluation Corporation (SPEC) [Cor12] and The Perfect Club (A group of
vendors and universities defining benchmarks for the scientific domain, with particular
emphasis on parallel or exotic computer architectures) [Gra91] are different organizations
which provide standardized benchmarks for enterprise applications.

In the below sections different benchmarks and classifications are discussed.

2.2.1 Benchmark Classification

According to the book by Anja Bog “Benchmarking Transaction and Analytical Process-
ing system” benchmarks can be classified according to their evaluation target, either as
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software or hardware benchmarks. [Bog12]. Hardware benchmarks are again divided
into two types as component benchmarks and system micro benchmarks.

Hardware benchmarks are useful for testing the system hardware. Component bench-
marks test test complete complex components (as the name says), such as a hard drive.
However, the micro benchmarks test the micro part of the system such as floating point
operation of the CPU.

Software benchmarks, on the other hand, can be divided between application software
benchmarks, system software benchmarks and micro-benchmarks. Application software
benchmarks evaluate the performance and functionality of applications or business
software. System software benchmark compares the software that is at a service
application level. Software benchmarks also have Micro benchmarks which compare the
alternative algorithms.

The above mentioned benchmarks are used for testing the hardware, software and
service applications. None of them are useful to test a database system. A Domain
specific benchmark is necessary to test a database system where the performance of such
system depends on the existing algorithms rather than on the hardware capacity alone.
Among various types of benchmarks discussed above, TPC benchmarks are designed
as domain-specific benchmarks. TPC founded in 1988 by group of 34 software and
hardware vendors, and governed by Omri Serlin. Among their measurements TPC offer
and some of the standard benchmarks used in industry for years to evaluate transaction
processing systems. [Gra91].

2.2.2 Transaction Processing System Benchmarks

Transactional processing system benchmarks are specially dedicated to OLTP applica-
tions. These benchmark workloads carry only transactional workloads. Usually these
study the number of transactions or operations a database can perform in a given interval
of time. Each benchmark differs in the way of executing workloads and and the data
models assumed. TPC-A , TPC-B, TPC-C, TPC-E and TPC-H benchmarks are the
main contributions from TPC . TPC-A and TPC-B are application specific benchmarks.
TPC-C and TPC-E are mainly focused on the transaction processing domain.

2.2.2.1 TPC-C

The TPC-C benchmark was developed by TPC on the basis of existing OLTP benchmark
in the year 1992. TPC-C benchmark extended the TPC-A and TPC-B benchmarks with
real time business’s characteristics [Cou17b]. TPC-C considers the real time scenario
of wholesale vendors whose business normally carries out on sales territory with its
own warehouses. The real challenges to the OLTP system in the above mentioned
scenario are, huge number of transactions and the complex database structure. TPC-C
benchmark is designed in a way to test whether OLTP system could handle the above
mentioned challenges. TPC-C database schema is as shown in the Figure 2.10. It
consists of 9 tables with 92 attributes which reflects real time scenario.



24 2. Background

One interesting aspect of TPC-C, is that it has a data generator which can be scaled
(i.e., the number of data items grow) according to the number of warehouses as shown
in the figure (Figure 2.10).

Figure 2.10: TPC-C database schema [Cou17a]

Workload:

TPC-C benchmark uses three read-write (RW) and two read-only (RO) transactions
namely

• New-order: enters a new order from a customer

• Payment: updates customer balance to reflect a payment

• Delivery: delivers orders (done as a batch transaction)

• Order-status: retrieves status of customer’s most recent order

• Stock-level: monitors warehouse inventory

Each of these transactions in the workload exists in different proportions. New-order
and payment transactions hold 45 and 43 percentages respectively. Other transactions
like delivery, order-status and stock-level holds four percentages each. TPC-C workloads
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require to satisfy ACID property (Atomicity, Consistency, Isolation, and Durability).
TPC-C workload is database-intensive with considerable I/O and cache load [BT12].

Metrics

The TPC-C benchmark measures performance and price-performance ratio of a system.
Performance is measured as the maximum number of new order transactions per minute
(tpmC) that a system can perform in a minimum time period of two hours. Price-
performance ratio is measured by sum of costs of hardware, software and supporting
worths for three years pricing divided by performance (tpmC).

2.2.2.2 TPC-E

The database benchmark TPC-E was developed and published in 2007 by TPC. TPC-E
is a platform independent benchmark. TPC-E considers brokerage enterprise which
manages customers, executes customer transactions and interaction of customers with
financial market. To handle above scenario, TPC-E database schema groups (Figure 2.11)
33 tables into 4 sets namely brokerage, customer, market and dimension. These tables
all together have 133 attributes. It uses a mixed and complex set of 12 transactions.

Figure 2.11: TPC-E database schema [BUU17]

TPC-E increased in the complexity of data structure as a result of complex transaction.
Compare to TPC-C, TPC-E includes more sophisticated, realistic and referential integrity
constraints [CAA+10].

Workload:

TPC-E workload is twice the size of the TPC-C workload. TPC-E has 12 transac-
tions among them six are read-only transactions, 4 are read-write transactions and other
two are data maintenance and trade cleanup.

Read-only transactions are namely:
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• Broker Volume: Brokerage house’s up-to-the minute (potential performance of
brokers)

• Customer Position: Retrieves the customer’s profile

• Market Watch: It takes care of the process of tracking the current market activity

• Security Detail: Detailed information on a particular security

• Trade Lookup: Information retrieved by a broker or a customer to satisfy their
questions regarding set of trades

• Trade Status: Summary of recent trading activity

Read-Write transactions are namely:

• Market Feed: Tracking the current market activity

• Trade Order: Make sales transaction

• Trade Result: Replaced with actual value in any means of trade result

• Trade Update: Update to the set of trade

These transactions in the workload exists in different proportions. Read-only transactions
hold 23 percentage and read-write transactions hold 77 percentage. Data-Maintenance
transaction runs once a minute. The Trade-Cleanup transaction runs once before starting
a benchmark run. Due to more read-only transactions in TPC-E, it is regarded as read
intensive benchmark. TPC-E satisfies ACID, in addition it holds check constraint and
reference integrity [Cou17b].

Metrics

TPC-E benchmark measures performance and price-performance ratio. Performance
is measured as the number of trade result transactions per second that a system can
perform in a minimum time period. Price-performance ratio is measured by the sum of
the costs of hardware, software and additional support, during three years divided by
the resulting performance (tpsE).

2.2.2.3 YCSB Benchmark

Various cloud data serving systems are arriving in the market , which are not based on
the relational model. Upcoming Database management systems are interpreted as No
SQL database systems, which means they do not share any common data model. The
storing of these data is based on key-values-stores which are wide-column database stores.
These data stores are different from RDBMS and measuring the performance of these
DBMS is difficult. To address these types of problems, Yahoo! Cloud Serving Benchmark
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(YCSB) was introduced by Cooper et.al in 2010. YCSB benchmark assumed the simplest
data model and defined workloads with different operations. It is a key-valued-stored
model which has ten fields of attributes and the workloads of YCSB benchmark are
extendable [CST+10]. YCSB benchmark comes with the support of different cloud
service DBMS such as Apache HBase , Apache Cassandra, MongoDB, Redis and others.

Figure 2.12: YCSB client Architecture [CST+10]

In [CST+10], the authors discussed about YCSB in detail with a focus on performance
and elasticity and additionally also work to develop a framework that intend to serve as
a tool of cloud system aspects which includes availability and replication in particular.
The approaches that can work to extend the framework to these purposes are discussed.
A two tier benchmark is proposed to evaluate the performance and scalability of cloud
serving systems. The major goal behind extending the benchmark to more number of
tiers was to deal with availability and replication of data.

Workload: Core package, a core set of workloads to evaluate various aspects of system’s
performance was developed in [CST+10]. The collection of related workloads is denoted
as a package in this framework. A particular combination of read/write operations,
distributed requests, data sizes etc. is considered as workload and could also be used
for system evaluation at a given point in the performance space. A wide slice of the
performance space is examined by a package which contains multiple workloads. YCSB
provides it’s users to develop their own space in two ways: either by defining a new set
of workload parameters or by writing a java code when necessary. Different types of
workloads were run in the code by authors such as:

Workload A: It is named as Update heavy, as in this workload 50 percent read and 50
percent of updates.

Workload B: It is named as Read heavy, as in this workload 95 percent read and 5
percent of updates.

Workload E: It is named as Short range, wherein records with ranges upto 100 were
used .
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Other workloads: Workload C is read only i.e., only 100 percent read and workload D
is read latest and considerably returns results that are similar to workload B [CST+10].

2.2.3 Analytical Processing System Benchmarks

Analytical processing system benchmarks are specially dedicated to decision support
systems (DSS). These benchmark workloads operate over large volumes of data, complex
queries and evaluates database solutions for business decision making. These bench-
marks use to measure the performance of OLAP applications systems rather than the
performance of a single task. For OLAP system APB-1 was the first standard benchmark
of public domain, for example Applix, Hyperion and Oracle. ABP-1 used to determine
whether service providers actually offer a minimum set of OLAP functionality to be
seen as analytical services. However, the APB-1 does not consider the optimization of
query reporting [BBF15].

2.2.3.1 TPC-H

The TPC-H benchmark was developed in 1999 as a decision support benchmark. This
benchmark is composed of handling concurrent data modifications and complex ad-hoc
queries. TPC-H benchmark queries are designed in a way that the database resembles
real time business. This benchmark illustrates decision support systems with large
volumes of data, queries with a high degree of complexity to provide solutions to the
critical business questions. The TPC-H benchmark database schema has 8 tables and
61 attributes in total as shown in the Figure 2.13.

Figure 2.13: TPC-H database schema [FKN11]

Workload:

TPC-H has 22 queries and 2 refreshing functions. The DSS’s query optimizer executes
these queries in a parallel manner. The two refreshing functions are used to keep the
database updated and to remove the old data. The queries are classified and discussed
as below:[tpc.org/tpc-h document]
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Pricing Summary Report Query (Q1): Reports the quantity of business which was built,
shipped, and returned. A sample query is given below:

Figure 2.14: Pricing Summary Report Query (Q1)

The output of such a query usually looks as below:

Figure 2.15: Output of pricing Summary Report Query (Q1)

Refreshing functions are used to populate the database. RF1 will add new orders to the
database and RF2 will remove the old orders from the database.

Metrics

TPC-H benchmark measures performance and price-performance ratio. Performance
is measured as the throughput per second that a system can perform (QphH@Size).
Price-performance ratio is measured as the price for the total system divided by the
performance ($/QphH@Size). These metrics always calculate against the size of the
database, indicated as @Size.
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Query Description

Pricing Summary Report (Q1)
Reports the quantity of business which
was built, shipped, and returned

Minimum expensive (Q2)
Search the appropriate suppler in a
given region for a given part.

Shipping Priority(Q3)
Retrieves the top ten highest valued
unzipped orders

Order Priority Checking (Q4)
Finds out the effectiveness of the order
priority system and provides the
customer satisfaction rating

Local Supplier Volume (Q5) Provides the local supplier revenue

Forecasting Revenue Change (Q6)
Predicts the revenue changes with
conditions such as “what if”

Volume Shipping Query (Q7)
Determines the value of the goods
shipped

National Market Share (Q8)
Determines the change of the market
share of given nation for 2 years

Product Type Profit Measure (Q9)
Equate the total profit on a given line
of parts from a supplier in a year

Returned Item Reporting (Q10)
Find out the customers who have
problem with the products

Important Stock Identification (Q11) Equate stock from important suppliers

hipping Modes and Order Priority (Q12)
Analyses the remark effect of selecting
cheaper modes of shipping

Customer Distribution Query (Q13) Relation between customers and order

Promotion Effect Query (Q14) Response of a promotion activity

Top Supplier Query (Q15)
Identifies the top supplier who needs to
be rewarded, given more business etc

Parts/Supplier Relationship (Q16)
Identifies whether sufficient number of
suppliers who can deliver products
with given attributes

Small-Quantity-Order Revenue (Q17)
Determines the loss of average revenue
if the orders of small scale are not
filled.

Large Volume Customer (Q18)
Ranks customers based on size the
ordered quantity

Discounted Revenue (Q19)
Equate the gross discounted revenue
generated for the sales of parts those
were sold for offered price

Potential Part Promotion (Q20)
Equate parts from the potential
suppliers,make available for
promotional offers

Suppliers Who Kept Orders Waiting (Q21)
Determines the suppliers who are
unable to deliver parts on time

Global Sales Opportunity (Q22)
Finds the locations of customers who
may prompted purchase

Table 2.4: Summary of Queries
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2.2.3.2 TPC-DS

TPC-DS is a decision support benchmark developed by the TPC in the year 2012.
TPC-DS examines a large database with ad-hoc queries, reporting queries and extraction
queries. The structure of the database falls under star or snowflakes schema. The
data in the database are unevenly balanced among dimensions as like non fact tables.
TPC-DS practices with large set of random interchanging query set [PSKL02]. The
TPC-DS benchmark was designed intellectually by pulling the essential performance
characteristics from the unlikeness operation of DSS. Queries modeled by the TCP-DS
benchmark address complex DSS analysis by considering addressable response time.
Those queries scripted with parameters that can be parameterized at any point of
execution. The parameterization can also be a scenario-based execution. Due to such
design, the TCP-DS benchmark could manage to resemble the absolute business analysis
environment in a broad manner. TPC-DS schema has 24 tables which includes 7 fact
tables and 17 dimension tables. Those 24 tables schema carry 425 attributes which
resemble retail goods supplier.

Workload:

TPC-DS workload consists of three distinct disciplines: Database Load, Query Run,
and Data Maintenance. TPC-DS workload executes 99 queries called a query run. This
runs two times in the order of first database load followed by query run and second data
maintenance followed by query run.

Database Load: Database load is primary step of the TPC-DS workload. This carries
out hardware and database preparations. Among those preparations some are timed (e.g
: loading of base table, creating and validation of constraints, creation of auxiliary data
structures and analysis of tables and auxiliary data structures) and some are un-timed
(e.g : System preparation, Flat file generation, Permutation of flat file rows, Database
creation, Table space creation).

Query run: This model generates a random set of queries from 99 query templates.
The query sets are generated by means of query substitution [PS04]. The model can
generate an enriched query set by considering 4 factors namely Query class, Schema
coverage, Resource utilization and SQL features. Query class in the context of business
intelligent systems can be weighed as Reporting class, Ad-Hoc Class, Iterative Class, and
Data Mining Class. Schema coverage is the basis for scoping the amount of data that
queries will access. The generated query could cover the scope of One fact table, Multiple
Fact Tables, Only Dimension Tables, Only Store Sales Channel, Only Catalog Sales
Channel or Only Web Sales Channel. The generated query should also considered the
different flow of CPU utilization by means of read write operation. As ANSI improved
in the quality of querying syntax for DSS system, the workload queries have also to be
improved in the form of more complex and concurrent DML queries.

Data Maintenance: Data maintenance plays a vital role in DSS. To resemble the
real world mechanism TPC-DS uses ELT (Extract Load Transformation ) for data
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maintenance. The main argument behind data maintenance is refresh data set. TPC-DS
provides the refresh data set in the form of a flat file. ELT mechanism of TPC-DS
extracts the data from flat file and loads it to the internal table. The data from the
internal table are transfered to fact and dimensional table in their manner.

Metrics

TPC-DS measures the performance (QphDS@SF) and price per performance ($/QphDS@SF).
The scaling factor is a number by which the initial database sizes are multiplied to
create a larger data set. The performance metrics decided by three scenarios.

• Performance tuning on the Database load, Queries and Data Maintenance

• Use of materialization

• Increasing number of streams

2.2.4 HTAP Benchmarking

In the Section 2.1 the need and the evaluation of HTAP systems is explained. As there is
a dramatic growth in HTAP systems, the benchmarking is also in need to be developed.
There are standardized and widely used benchmarks addressing either OLTP or OLAP.
However, despite the almost decade of HTAP systems, there is no standard HTAP
benchmark. With the base of OLTP and OLAP workloads, mixed workloads came into
existence. In the following section we are going to look some of the HTAP benchmarks
proposed to consider these mixed workloads and the system-specific aspects of HTAP
systems.

2.2.4.1 CH-benCHmark

TPC-C benchmark targets an OLTP system using transaction workload. TPC-H
benchmark focuses on analytical workload and refresh functions of an OLAP system.
TPC-C and TPC-H both can be simply installed on a single database instance and
run in parallel, but having different workloads and running on separate data. That’s
why CH-benCHmark came into existence by executing complex mixed workload of both
transaction and analytical types. In [Gar14] Gartner had described that the complex
mixed workloads should be designed by considering following challenges in the context of
OLAP and OLTP. Namely, continuous data loading, batch (expected) data loading, large
number (thousands per day) of standard reports and random unpredictable, ad-hoc query
users. Mixed workloads means analytical plus transactional workloads run in parallel
on the same tables in single database system. As discussed before CH-benCHmark’s
mixed workloads drives transactional and analytical workloads from TCP-C and TCP-H
respectively.
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Figure 2.16: CH-benCHmark schema, combining the schema of TPC-H and TPC-
C.[FKN11]

Workload:

Five TPC-C business transactions namely, New-order (enter a new order from a cus-
tomer), Payment (update customer balance to reflect a payment), Delivery (deliver
orders), Order-status (retrieve status of customer’s most recent order), Stock-level (mon-
itor warehouse inventory) are used without any modification. These transactions are
processed on the unchanged TPC-C tables. CH-benCHmark ensures continuous scaling
model by increasing the transaction load. An increase in the transaction load acquires
increased number of warehouses and also number of terminals. Each terminal generates
a limited load due to think times and keying times.

Read-only query suite modeled after TPC-H. CH-benCHmark adapted 22 TPC-H quires
and reformulated to match extended TPC-C schema but without any modification in
business semantics and syntactical structure. As we know that the TPC-C transaction
loads are designed in a way that the database will be updated continuously, so that
refresh function is not adapted by CH-benCHmark from TPC-H. As mentioned above
the transactional workload continuously increases number of warehouse and terminals
that indirectly results in variable database size for analytical workloads. CH-benCHmark
workloads are composed of analytical queries only, transactional queries only, or combi-
nation of two. OLTP and DS streams are connected to the database system to handle
set of transactional and analytical queries respectively. CH-benCHmark’s database
preserves isolation. Low level of isolation increases the number of concurrence for faster
performance and higher level of isolation guarantee the higher quality of results for
both analytical and transactional queries. The freshness come into the context because
database architecture has a single data set for both workloads.

Metrics:

In the simple model, transaction-per-min-C can be considered as transaction throughput
(TpmC) and query-per-hour-H can be considered as analytical throughput (QphH).
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Large data volume gives higher transactional throughput but results in less analytical
query throughput.

2.2.4.2 HTAPBench

Hyper transactional and analytical benchmark (HTAPbench) is designed to examine the
HTAP system, how it could sustain for mixed workloads (transactional and analytical
query) without ETL. CH-benCHmark stated that high throughput of OLTP transactions
will result in lower analytical query throughput. The HTAP system’s goal is to attain
the OLAP query performance along with high OLTP throughput. HTAPbench proposed
a way to attain a goal by maintaining OLTP throughput always in customer expected
interval. This approach ensures stable OLTP throughput and increases the capability of
SUT (System under test) to focus on OLAP querying. The HTAP benchmark designed
can broadly classified into three stages.1.The populate stage, 2. The warm up stage, 3.
Execution stage as shown in the (Figure 2.17) .

Figure 2.17: HTAPBench execution [CPV+17]

Workload:

HTAPbench chose TPC-C and TPC-H as optimal workload for OLTP and OLAP
system. Due to configuration and scalability of workload on the real time scenario
database, TPC-C has been chosen. TPC-H data schema is not based on the dataware-
house schema and not relay on ETL extraction (similar to the TPC-C schema). Thus
HTAPbench workloads are the combination of TPC-C and TPC-H workloads. As
discussed in Section 2.2.2.1 increasing in the number of warehouse and the client has
direct effect on OLTP throughput (Transactions-per-min-C). In HTAPbench the target
transaction per minute is one of the configurable criteria. HTAPbench introduces “Client
Balancer” that manages how business workloads are distributed to the SUT which make
sure that the OLTP throughput stays within a configured threshold. The business
queries of the HTAPbench are TPC-H. The HTAPbench enterprise queries are executed
on the data that are fed by the transactional queries which will be keep growing. Fixed
or dynamic parameter way of configurations are available to SUT system. The fixed
parameterization will make the business queries to search on the full domain. The
dynamic parameterization will make a business queries to search on different set of data
on each different run. The experimental observation from [CPV+17] stated that “ a
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variation of up to 77 parentage in result set cardinality was observed in comparison with
the previous approach ”.

OLTP workloads are randomized(in terms of data access) whereas OLAP workloads are
sequential. Likewise, a mixed workload will survey the capacity of the system under test
(SUT) to simultaneously schedule random and sequential access patterns. In [CPV+17]
experiments, HTAPBench configuration was used across the experiment and SUT can
be any intensive system (OLAP or OLTP or hybrid ) to check with its own metrics.

Metrics:

In [CPV+17] proposed the new metrics called unified metrics(QpHpW). QpHpWstands
for ” Queries of type H per Hour per Worker”.
QpHpW = (QphH / OLAP workers) @tpmC
Unified metrics is the number of analytical queries executed per OLAP worker regarding
a system that maintains the configured tpmC throughput. The Client Balancer module
is responsible for monitoring and deciding whether or not to launch additional OLAP
workers.

2.2.4.3 Freshness

A time-related quality dimension plays a crucial role to represent the degree of data
synchronization between original data and replicas in the processing systems where the
data is processed. Several notions have been used to describe this dimension: staleness,
age, timeliness, freshness, currency, obsolescence, up-to-dateness [Bou04], etc.

In this section we discuss a selection of work on freshness in data management systems.
In ( Chapter 4) we discuss freshness measures with more depth.

In various scenarios such as data integration or dynamic web database, the continuous
update of data plays a key role. Questions such as the following are very frequent:
Whether or not the data is fresh enough with respect to the user expectation? Is there
an existence of any stale data during extraction? How much present is the most recent
data in the given source?

These questions lead to the concept of data freshness, which consists on evaluating how
old the data read is when compared to the data updated.

Data freshness is comprised of a set of quality factors, hence each factor represents some
aspects of freshness and each factor can lead to its own metrics. Therefore, freshness
can be mostly defined as a quality dimension that can be measured in different ways.
For instance, while dealing with huge transactional data such as currency in a bank
account, the metrics currency would be more related to data freshness concept whereas
while dealing with huge data in an web store to calculate to point the price changes of
the items the usage of timeliness metrics would be more appropriate. Below we briefly
discuss few such existing metrics of data freshness along with scenarios where these
metrics play a key role.
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The same quality factor that can be measured with a single specific metric can also
be measured with several metrics, just in slightly different ways. For example, we can
consider one aspects and different ways of measuring it: The time passed since any
change in the source data without being reflected in a materialized view is measured by
the currency factor. This can be measured as: The percentage of extracted elements
that have their values equal to the source related values or simply are up-to-date is
measured as freshness rate metric. It can also be measured as: The count of updates
that have incurred to a source data from the time of data extraction is measured by the
obsolescence metric.

In what follows we summarize briefly some work in data management that either discusses
freshness or employs it in system design:

• In this study [Bou04], the authors have analyzed the influencing factors and
metrics of data freshness and evaluated them. These factors include features such
as the synchronization policy, the type of application and the nature of data.

• In the article [CGM03], the authors discussed the necessity to maintain local
copies of remote data sources that are fresh whenever the source data is updated.
These studies specify on how a local database can be refreshed to improve its
freshness by specifying age and freshness.

In this paper [CGM03] the authors have defined a theoretical approach for the
problem of data freshness on web by discussing various effectiveness policies.
Eventually it has been shown that the optimal policies discussed in these articles
can significantly improve freshness and age while using real web data. Also, author
points out that as the availability of digital information increases, it will be more
important to efficiently collect it and in addition a simple data warehouse cannot
refresh all its data constantly.

• While inducing the dynamic web content using traditional cache techniques, there
incurs the problem of service backlogs since update handling is in the path of service
access requires. Therefore it is necessary to dynamically select the materialized
views and to maximize performance while the data freshness is maintained in level of
acceptance. To address this issue, authors [LR04] introduce an adaptive algorithm
where caching and view materialization is combined to allow the decoupling of
access server request and update handling using data freshness.

• A typical web database system continuously receives read only queries to generate
dynamic web pages [QL07]. The response would be continuous updating write-only
response to keep the web data up-to-date. Nevertheless keeping large amount of
data updates on time might be highly difficult and hence the [QL07] authors
specified response time and staleness of the data as two important metrics to
maintain data quality. Further an approach combining these two incomparable
performance metrics was proposed as an algorithm to address this issue.
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• [NLF05] In this paper authors discussed the information integration process and
shed light above an important yet mostly ignored issue i.e., the information quality.
In addition, they discussed the necessity to improve the data obsolescence quality
metrics. According to them, data quality metrics such as timeliness, accuracy
or completeness of data, play a key role in the data quality. Also, an approach
to resolve the information overload issue by filtering important information was
proposed.

• The process for data quality (DQ) is analyzed in terms of dimension currency
that is to be quantified by partly automated and objective quantification tech-
niques [HKK09]. This concept derives two options for DQ quantification namely
real world test and estimation of metrics. The results showed that real world test
was not practically possible in large data sets and hence the estimated DQ as
metric of currency is economical to determine both current and planned DQ level.

• In this paper [GLRG04] the authors works with a goal to introduce C&C adaptive
dbms caching. Here the author considers collection of local materialized view
which, in turn, consist of collection copies each copies as a cache. The materialized
views such as transaction timestamps, self identification and copy staleness are
being defined by selection queries. The author further proposed a cache model
wherein cache schema can be defined by the local users as a set of local use along
with necessary properties of the cache specified by cache constrains.

In the above listing we have described different techniques for extracting fresh data
for the real time analysis. Data freshness or Data staleness is a time-related quality
dimension which can be measured in various methods. A detailed description of research
in freshness and measurement of freshness is described in the below table.

In this section we discussed a selection of work on freshness in data management systems.
In ( Chapter 4) we discuss these measures with more depth, giving the specific formulas
and evaluating them. In the next section (Section 2.2.4.4) we discuss briefly about
freshness in HTAP designs.

2.2.4.4 Freshness in HTAP and Benchmarks

Authors Ramamurthy et al. [RDS02] proposed storing the data and replicating it in
two different data formats such as row and columnar in a single system. The main
advantage of this technique is, to it process the required workload effectively and in
addition the can use the resources the resources efficiently. However, the main challenge
is to maintain the freshest data and the scalability of the OLAP query performance. To
overcome these issues, data replication is one of the novel solution.

Authors Makreshanski et al. [MGBA17] of BatchDB have implemented two types of
replication techniques. The primary replication technique handles the OLTP workloads
and the secondary replication technique works with updated data which handles OLAP
workloads. The two workloads utilize the resources effectively and results in high
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Authors Measurement

Heinrich et al. [HKK09]in 2009
Normalization, Interval scale,
Interpret ability, aggregation,
adaptively, feasibility

Naumann et.al [NLF05]in 200 Data update rate

Röhm et.al [RBSS02] in 2002
Freshness as parameter in the OLAP
queries

Guo et.al [GLRG04] in 2004
Combination of currency and
consistency into SQL queries

Labrinidis and Roussopoulos [LR04] in 2004
Proposed an performance and
freshness preference

Golab et al. [GJS09] in 2009
Data staleness defined as the time
elapsed between present time and
timestamps of update tuple.

P.A. Bernstein et al. [BFG+06] in 2006

propose a model that allows user to
specify freshness constraints and read
out-of-date data within a serialized
transaction

Hongfei Guo et al [GLR05] in 2005
Proposed a evaluation on data
replication

Cho and Garcia-Molina [CGM03]
To maintain the data fresh used a
cache update method

Xiong et al [XHLC08] in 2008 To provide freshness updates

Table 2.6: Overview of Different Freshness Measurement
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performance. The OLAP queries always run on the recent snapshot of the data and
it can be achieved by scheduling updates in batches from the transactional side. The
design of the system solved the issue of high performance and the processing analytical
queries on fresh data. However, there is no such measurement technique for freshness or
staleness of the data in HTAP available.

Authors Juchang Lee et al. [LMHK+17] proposed a new replication database architecture
system known as Asynchronous Parallel Table Replication (ATR). This new architecture
allows OLTP transactions in a primary machine and huge OLAP queries as replicas.
This schema results in the maximum scalability of OLAP system. In addition, it also
avoids the overhead of OLTP processing by freeing the CPU at primary system. Row
and column stores are used at primary for OLTP transactions and OLAP queries
at replicas respectively. Because of two different primary and replica systems, this
architecture cannot analyze real time data. However this ATR architecture allows the
user to pre-define the allowed data staleness for individual queries. Hence this method
ensures to avoid visible delay in the real time processing of data.

Google Cloud Spanner and its open-source version, CockroachDB, have evolved to
become fully-fledged database systems with HTAP features. In them, the concept
called stale reads and strong reads are used [BBB+17]. These reads are carried out
as lock free transactions. Stale reads ensures that the recent data is caught up for
analytical processing by using the past time stamp. Strong reads are set up with a
greater timestamps. This helps the strong reads to see the result of previously committed
transactions. Strong reads are designed either to wait for the most recent replica is
completely caught or it retries for the next near by up-to-date replica.

2.3 Summary

In this chapter, we discussed how HTAP systems are part of an evolutionary path that
arises from traditional databases, different types of existing HTAP systems and the
challenges faced by these types of HTAP systems. The major challenges that these
HTAP systems face are performance, freshness, flexibility, isolation and elasticity. Each
of these systems follow different methods to overcome these issues. However, there is
some research gap in the evaluation of HTAP system benchmarks. Though there exist
mixed workload benchmarks, these benchmarks do not satisfy all the requirements,
mainly the freshness challenges. To understand the freshness challenges, we have studied
the different freshness metrics provided by various authors.

In the next chapter we describe our prototypical implementation to study freshness
metrics.
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3. Prototypical Implementation

In this chapter we present the framework and implementation for our study. We organize
this presentation as follows:

• We start by presenting our evaluation question in (Section 3.1)

• We describe our evaluation prototype (), basic requirements for connecting to
YCSB (Section 3.1.2), and our evaluation setup (Section 3.2).

3.1 Evaluation Questions

As discussed previously, HTAP systems need to tackle several challenges in their design
(Section 2.1.2). In evaluating these systems, there still seems to be a lack of a standard
benchmark, and a lack of standard tests to compare how the systems face the design
challenges. Consequently, we believe that there is a large research gap. To address such
gap in our study we focus specifically on the the freshness challenge, and we propose
the following core research question:

1. In consideration that data freshness can be a performance expectation: How can
we test the freshness provided by databases? What could constitute appropriate
metrics, from the literature? How do they compare in compute requirements and
in informativeness?

3.1.1 Our prototype

As described above, there are different varieties of “one-size-fits-all” systems available.
Among them, OctopusDB [DJ11] is one of the most radical one, which supports both
OLAP and OLTP workloads in a single system. OctopusDB is one of the exceptional
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HTAP systems in terms of architecture. On the performance bases, OctopousDB is
enhanced in terms of data storage system and the adaptive physical layout technique.
However, providing freshness for a OLAP query system is still a challenge for it.

Considering the idea of the OctopusDB, Pavlo Shevchenko et al. implemented new
HTAP systems called Blinktopus. The brief introduction of the system is given below.

Architecture

This system is mainly based on the log-based storage, it means data stores in the log
and different data layouts are used i.e., it creates different Storage Views (SV) such as
column SV, row SV and Approximate Query Processing (AQP). The process of storing
data in the primary log and creating different physical layouts is similar to the concept
used by OctopusDB.

A new feature, orthogonal to our research, is introduced in Blinktopus: AQP. It is
one of the significant techniques to handle the interactive queries. The main goal is to
process the compact summary data instead of entire data sets. Moreover, to process
high speed streaming data AQP is the only feasible method to get interactive response
time [CGHJ12]. It focuses on approximation result and fast response time rather than
the exact result of the query.

Figure 3.1: Prototypical Database

APQ uses different predefined type of synopsis such as samples, histograms, wavelets,
and sketches to summarize the datasets. Each synopsis has its own advantages. Samples
can responded to wide range of queries [BC05] and it follows selectivity estimation.
Wavelets are used on a large set of data and it is very popular due to one-dimensional
computing on the dataset. Histogram, it further divides the dataset into small groups
such as buckets, bins and etc.. These small groups further structurally divided according
to the query and it provides error estimation. Sketches, this synopsis used for the
large and streaming dataset. It follows the hash logarithms. According to datasets, in
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Blinktopus, AQP uses the histogram synopsis to provide an interactive response time
for the queries.

To be able to use Blinktopus for our work we have modified the general architecture
of Blinktopus, so that it connects to the requirements of YCSB Benchmark, and
simultaneously, such that it supports a pessimistic concurrency control mechanism and
updates between the log and the materialized views with a given refresh rate.

We will be discussing further about requirements of YCSB Benchmark in the section
below.

Workflow for using Blinktopus with YCSB -First Blinktopus is compiled and executed,
then the dataset is loaded to the database by a YCSB workload. - During the initialization
Blinktopus takes as input the refresh rate. - Initially data is stored in the log file called
DataLog which stores the recent transactional data. - The operational data is stored
in a row or column store. For our research we used the row format, since it matches
reasonably well the expectations of YCSB, saving materialization time. -The query
processor is the heart of Blinktopus. It directs requests to the respective manager.
-Then the workload is compiled and executed, to receive as result the performance of
database as a throughput. In the first step of execution, Blinktopus is refreshed and
some warm-up time is given before letting YCSB run and return the measurements. -
During its executions Blinktopus logs its incoming requests asynchronously to disk, for
future usage.

3.1.2 Requirements of YCSB Benchmark

YCSB Benchmark is an open-source specification and program suite that is used for
evaluating the retrieval and maintenance capabilities of computer programs. This
benchmark is frequently used for the comparision of NoSQL database management
system’s relative performance. YCSB was built on Java and it possesses extensibility
so that the YCSB clients can be modified according to user requirements. This YCSB
Client supports to test different databases, therefore we have chosen YCSB Benchmark
in our environment as the Benchmark to perform tests over the database.

3.2 Experimental Environment

We have set up Blinktopus and YCSB Benchmark over the Java 8 platform, with system
configuration as follows.

• OS: Linux (Ubuntu 16.4)

• Architecture: X86 64

• Width: 64 bits

• Cores per socket: 2
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• Model Name: Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz

• RAM: 8GB

• Memory: 500MB

In our evaluation the results for throughput are collected from the YCSB benchmarking
tool, the results from the freshness measures are calculated by using a log of the requests
given to Blinktopus.

3.3 Summary

In this section we provide an overview of our implementation along our core evaluation
question, the workflow and the experimental setup that we have used. In further chapters
of this thesis, we will be discussing about the results of the experiments and how we
have answered our core evaluation question.



4. The Evaluation of Freshness

In this chapter we present the results of our evaluation of the different freshness metrics
as used over runs of the YCSB benchmark and our replica-based HTAP prototype,
Blinktopus. We structure this chapter as follows:

• Evaluation Question: We start the chapter by recapitulating the research
question that motivates our study for the chapter (Section 4.1).

• Freshness Metrics: We detail the freshness metrics that we considered, based
on our study of the literature, giving the specific formulas used (Section 4.2).

• Freshness Measures in a Database Benchmark: We present the results of
our evaluation in measuring the selected metrics over executions of YCSB with our
prototype (Section 4.3. We analyze our results by comparing the informativeness
of the metrics (i.e., how their averages correlate to the throughput) and their
computational requirements). We structure our findings in a list of observations,
providing a recommendation of the freshness metrics that should be considered
for inclusion into HTAP benchmarks. Additionally we propose and test a novel
measure that we considered pertinent and missing from the literature Section 4.3.8.

• Summary: We summarize our findings (Section 4.4).

4.1 Evaluation Questions

In this chapter we set to answer to the following research question:

1. In consideration that data freshness can be a performance expectation: How can
we test the freshness provided by databases? What could constitute appropriate
metrics, from the literature? How do they compare in compute requirements and
in informativeness?
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To this end we consider an offline evaluation of freshness, whereby we execute the
YCSB workload and track the metrics by writing to a file the complete execution of
the workload. Thus, generated results are analyzed for their update time with respect
to reads, for understanding how the performance of a workload varies between some
selected time intervals.

For the task of analyzing freshness in an HTAP system we are using Blinktopus which
was built based on the architecture of Octopus DB [DJ11]. Here the transactional data
is saved in an append-only log format. This data, so that it can be accessed by OLAP
operations, is periodically added to a snapshot in the shape of a materialized view (i.e.
row or column store). Such replica is updated every 3, 30 and 300 second intervals, in
our tests.

We employ workloads that update the data present in the system (i.e., the OLTP
replica), while simultaneously performing reads (i.e., from the relatively out-of-date
OLAP replica). Next to the freshness metrics we report the throughput of the workload.
Our observations regarding the last aspect are in line with previous studies showing that
the lower freshness leads to higher throughput.

In the presentation of our results, we study measures over given windows between two
updates to the read replica (i.e., refresh operations). This implies in the first place the
selection of the windows to discuss. Our approach was to select a pre-defined set of
windows for all measures, we took special care to repeat this set when we compared
measures (e.g. Freshness Rate and Freshness Index ). For representativeness, we also
selected to feature results for some windows with a lower number of operations than
average in the run. We made such decision for Freshness Index, Freshness Rate, Absolute
Timeliness and Currency Alternative. In general this should simply portray more
scenarios in our study, and should not change our observations in any way.

For the sake of complete disclosure, we include the statistics on the operation distribution
across refresh windows in Table 4.1. We show the averages, for which generally 95%
(i.e. the number of reads) should match the count of read sequences we report. For
300 seconds we observe a skew of 0 and a very low kurtosis, indicating an almost even
distribution with relatively frequent but modestly sized variations. For 3 and 30 seconds
we note negative skews indicating that a relatively low number of windows departs from
the average with a lower load, and a high kurtosis suggesting that these departures
are marked (i.e., that there are few windows with much less operations than average).
Hence we feature some results for these cases.

Statistic 3 sec 30 sec 300 sec
Average 5263.16 47796.65 492309
Variance 1369612.41 141221103.1 2942200833
Skew -2.36 -2.60 0
Kurtosis 5.35 8.28 -6

Table 4.1: Statistics for the distribution of operations across refresh windows in our
evaluation
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We calculate various freshness metrics using their respective formulas, which we discuss
in the coming sections.

4.2 Freshness Metrics

In our work we propose to analyze various freshness metrics, as they concern to evaluating
HTAP systems. To this end we devote this section by introducing our compilation
of freshness metrics, which we have derived from various studies for determining the
freshness of data.

All the formulas that we discuss in this section are based on a small set of measurements,
which we can define as follows:

• ti: Any time point.

• rtx: Any given read transaction.

• tu: Timestamp in which we updated the complete OLAP MV (materialized view)

• tmaxtx: Timestamp of the latest transaction in the OLAP MV

• tq: Timestamp in which we query for a specific item

• tlu: Timestamp of the last update of the specific item, right before tq, in the OLTP
store (i.e., for Blinktopus, the log)

• t0: Timestamp of the first update to an item (in its complete history).

• tmaxi: Given item i, this is the the max transaction timestamp (i.e, the last update)
that the item has before tu.

• Nu: Number of updates of a given item, up until a given timestamp.

• Obs: Number of transactions between tq and tu.

• nu: Number of items updated since last refresh (i.e., number of items that have
not been updated yet in the read replica).

• nmv: Number of items in a read replica or materialized view.

• nmvnu: Number of items in a read replica or materialized view that have not been
updated(nmv-nu).
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4.2.1 Two Alternatives for Currency

The first metric we consider is Currency. In [BWPT98], the authors have defined currency
as a function of various factors such as: delivery time (i.e., when the information product
is delivered to the customer), input time (i.e., when the data unit is obtained) and age
(i.e., how old is the data unit when it is received).

In essence, currency of a read transaction can be calculated as the difference between
extract and read time of the data. The more the currency, the less fresh the data is.

Formula: Currency (rtx) = tq-tu. [CGM00], [CGM03], [BSM03], [ES07]

In [BWPT98] the currency is interpreted, in an alternative way, as an updated currency
measure that captures the time of the last update of the item before tu.

Formula: Currencyalternative (rtx) = tq-tu + Age (item)

With Age defined as follows:

Age (item) = tu-tmaxi. [Bou04]

This alternative measure of currency has also been named as Timeliness, by other
authors. This concept of timeliness [Bou04] [GLR05] for a read transaction is measured
as the difference between the time of the query, and the time in which the item was
updated in the view, before tu (i.e., tmaxi).

Formula: Timeliness (rtx) = tq-tmaxi (this is interpreted from [Bou04])

From the two previous definitions (currency and currency alternative) we see that the
first one considers a measure for read transactions, but without a focus on the individual
items. Instead, this metric focuses on the difference between the read and update times
for the system as a whole. In contrast, the second measure provides a more fine-grained
measure for the freshness of a read transaction, encompassing the last update of the
item being read before the last update to the read replica.

4.2.2 Freshness, Staleness and Absolute Freshness

As discussed earlier, Freshness is conceptually a measure that gauges if the data in the
read replica is up-to-date or not. In contrast, its complementary measurement Staleness
conceptually checks how outdated is an item in the read replica.

The Freshness for a read transaction can be measured as the maximum timestamp of
any tuple in the materialized view. Following their complementary natures Staleness
can be measured as the difference between current time and the freshness of the read
transaction.

Formula: Freshness(rtx) = tmaxtx. [GJS09] [QL07]

Formula: Staleness (rtx) = tq-freshness(rtx) [GJS09]

The absolute version of each of these measures can be calculated (per read transaction)
by comparing the item in the database with the real time data, and verifying if the data
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has gone through any update [CGM03] [CGM00] [BSM03]. In the primary case, that is
if the item has been updated after tu, then the read transaction is absolutely stale (i.e.,
it returns “0”) else, it is absolutely fresh, wherein “1” is returned.

Formula: Absolute Freshness (rtx) = 1 if fresh at tq; or 0 if stale at tq.

This measure is applied to each read transaction, and then a counter can collect the
number of absolutely fresh or absolutely stale reads in a workload, to provide an
understanding of the proportions w.r.t to the total number of reads.

It is important to note that the definitions for staleness and freshness that we have
presented thus far focus only on the table as a whole, and are not predicated on individual
update times of items.

4.2.3 Freshness Rate and Freshness Index

Two metrics have been proposed to gauge how fresh a read replica is: the Freshness
Rate and the Freshness Index.

The Freshness rate is measured as the percentage of items in a read replica or materialized
view that are not updated after tu. That is, the total percentage of items which remain
non-updated after there has been a successful update in the OLAP materialized view.
This measurement requires to keep track of every updated item since tu. [Bou04]
[CGM03] [CGM00] [GJS09] [ES07] [QL07] [CGM99]

Formula: Freshness Rate(ti) = nmvnu/nmv.

[NLF05] had referred to the Freshness Index as a measure of freshness of the data at
a given time. This index measure reflects on how much deviation exits between the
up-to-date data and the data in the database. Intuitively derived a freshness index of “1”
states that the data or items are up-to-date, whereas a derived index of “0” resembles
“infinitely” outdated data.

Formula: Freshness Index(ti) = tmaxtx/tlu

It is important to notice that this measure compares the maximum timestamp in the
read replica with the last update of a specific item; as a result we can consider it an
item-based measure. We deem that the same can be said for the freshness rate, which
though it considers number of items alone, it must count the precise number of items
actually updated in the write replica.

4.2.4 Obsolescence

Authors have also proposed Obsolescence, defined as age in caching systems, i.e., the
count of updates performed on an object in a remote server starting from when it was
cached. This measure can be distinguished from others by being time independent, since
it does not consider the time but focuses on the transaction count.
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In this metric the count of updates that have occurred in the source starting from the
extraction time is measured. This measurement is possible from delta files or source
logs or even using change detection techniques.

Formula: Obsolescence(rtx) = Obs

4.2.5 Absolute Timeliness

An absolute measure for timeliness has been proposed [BWPT98], wherein the Absolute
Timeliness of a read transaction is interpreted with regards to volatility. In turn volatility
is a measure that models how long an item remains as valid. It can be calculated, on
the fly, as the time difference between the last two updates.

Formula: Absolute Timeliness (rtx) = max {1-{currency/volatility},0}

In this formula currency is calculated as usual (i.e., tq-tu). The resulting formula returns
“0” if the data is unacceptable and “1” if the standard of high timeliness is met. The
measurement only needs to keep tu and the volatility of items.

In addition to this formula, authors have proposed to enhance it with parameters that
enable to control the scale of the measure (i.e., by elevating the resulting measure to
the power of a parameter s).

Other authors [LMTdU08] have also discussed about the same measure of absolute
timeliness, under the term Up-to-dateness.

A similar version of this measure, in the context of age metrics, was discussed by Hinrichs
et. al. [Hin02]. Authors propose that this metric of timeliness could deliver an indication
on whether or not the value of an item has faced any changes in the real world starting
from its time of acquisition and storage within the system. If this measurement has
mean item update time as “0”, then it infers that the item value never turns outdated,
whereas a result of “1” refers to an up-to-date attribute value. In contrast, if the item
age is “0” then it is outdated.

4.2.6 Three more measures for Staleness, based on the items
update history

In addition to the measures presented thus far, authors have also proposed different
approaches to model the staleness of a read transaction over an item [OC12]. Unlike
other approaches, where the system either had complete access to present and past
information, or only to past one, the formulations that we discuss in this section combine
data from the live system and only aggregates of the past.

Specifically authors proposed 3 approaches for estimating staleness: Enhanced Averag-
ing, Shifting Window and Exponential Smoothing, leading to 3 different formulas and
calculation methods for this measure.
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Through Enhanced Averaging staleness is calculated by considering the last update of
the item (before tu), the first update of the item, and the number of updates that have
happened in between (Nu, not including results for after tu).

Formula: StalenessEnhancedAveraging(item, ti) = ti- tlu + tlu−t0
Nu

This measure estimates that the staleness is the difference between ti and the predicted
next update. For calculating this prediction, the method assumes a uniform distribution
between the first and last updates. When the difference is negative the model outputs a
staleness of 0. Likewise when an item has not been updated since its creation.

A possible limitation with this approach is the assumption of a uniform distribution in
the past update times, which is used to predict the next update. To solve this authors
propose the use of a shifting window that goes beyond tu.

Formula: StalenessShiftingWindow(item, ti) = ti- tlu + ti−twindowstart

Ncurrwindow
if Ncurrwindow>=3.

Where Ncurrwindow refers to the number of updates in the current window. When this
number is not greater than 3, then authors replace the fractional component by the
inverse of the update rate of the previous window.

Another method proposed is the exponential smoothing. Here an average linear weighted
combination of updates (Savti) is proposed to model data changes through a recursive
formula: Savti= (1−α) Savti−1 +α ∗ numberofupdatesinpreviouswindow. Then, an
online method for determining if a staleness value should be given is used.

4.2.7 Summary

In Table 4.2 we summarize the 12 freshness measures that we have discussed in this
section. We make a distinction between metrics for which we expect a negative or
positive correlation w.r.t the throughput for OLAP operations. Values that measure
freshness are expected to be negatively correlated (i.e., the more freshness, the lower the
throughput), while values that track staleness are expected to behave in the opposite
manner.

We also distinguish global vs. item-based measures, considering whether the measure is
dependent on item-specific features.

Finally we also highlight the unit of the measures. Units can be either time-specific
(e.g. nanoseconds), boolean (for which an aggregate might be necessary) and counts of
transactions.
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4.3 Freshness Measures in a Database Benchmark

After establishing, in the previous section, the different freshness measures that we will
consider, we present in this section our measurements of them over executions of the
YCSB benchmark using our HTAP prototype, Blinktopus.
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Figure 4.1: Throughput for Blinktopus on YCSB benchmark, workload B, at different
refresh rates

In Figure 4.1 we present the results for the throughput for workload B, which consists
of a mix of 95% reads and 5% updates, in 50000 operations over 4000 records. The
distribution of operation to records followed a default Zipfian distribution, with 80% of
cold and 20% of hot data.

In our setup, as explained in Chapter 3, we forward all read requests to a replica in
a row layout. Write requests, on the other hand, are appended to a log. We define
as refresh rate the interval in seconds for updating our read replica with the latest
information from the logs. This is an operation that is performed in a consistent manner,
through pessimistic locking. This refresh rate can be considered similar to a global
bounded staleness for read requests. Accordingly, a lower refresh rate (e.g. once every
300 seconds) is associated with a lower freshness, and a higher refresh rate (e.g. once
every 3 seconds) is associated with a higher freshness.

Our motivation for testing across different refresh rates is that through this we seek to
understand how well can the different measurements proposed be used to distinguish
the scenarios.



54 4. The Evaluation of Freshness

In our results, in Figure 4.1, we can see that similar to expectations ( [BPZ11, PWM+14])
more freshness (i.e., refreshing more frequently the read replica) leads to lower throughput.
From this execution we conduct a profile where we log all requests. Next we analyze this
log, in order to extract the different measures. In what follows we present and discuss
our results for the measures that we have pre-defined.

4.3.1 Two Alternatives for Currency

Figure 4.2: Currency at 3 sec for Workload B. Two windows between updates to read
replica.
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Figure 4.3: Currency at 30 sec for Workload B. Two windows between updates to read
replica.

Figure 4.4: Currency at 300 sec for Workload B. Two windows between updates to read
replica.

The evaluation results of the freshness factor of currency are presented in this section.
For this we consider the two alternative formulations that we discussed in previous
sections.

Currency is one of the simplest of metrics in terms of measurement, among all other
metrics. It is measured by the time elapsed between the timestamp of the specific item
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and the update timestamp to the read replica. Higher values of this metric clearly
indicate a delay in the read replica, and hence the possible existence of stale reads or
less fresh data.

In Figure 4.2, Figure 4.3 and Figure 4.4 we present our results for the currency metric.
These figures are plotted for two windows. These number of reads in these two windows
is consistent with the observed throughput. The plots are found to be very linear, similar
to obsolescence, which is a result of the linear formulation that only depends on tu and
tq. In addition, as expected the plots exhibit increasing trends with time.

In terms of its capability to compare the 3 different scenarios for refresh rates, we see
that, in the nanoseconds in the Y-axis, the measure captures well the growth in the
order of magnitudes across the different refresh rates.

However, since the metric is predicated on time, and not on the number of transactions
taking place, it provides only high level information and it is difficult to assess the real
freshness at a transaction level.

In Figure 4.5, Figure 4.6 and Figure 4.7 we show our results for the alternative version
of currency.

Unlike the previous measurement, here each individual read transaction considers the
maximum update time before tu for the item it is reading.

As a result of this change we can see two important differences:

• First, the line plotted is displaced to higher points on the y-axis (since tmaxi is
smaller than tu).

• Second, this plot shows more fine-grained results, with items that were updated
more in the past (before tu) moving higher in the y-axis, and items that have
been updated more recently (but before tu) moving lower in the y-axis. Because
of this some aspects related possibly to the hotness or coldness of data are visible,
specially in Figure 4.7, with clearly visible demarcations between items updated
more in the past (higher in the y-axis) and items updated more recently (lower in
the y-axis). In addition, densification is the trend as the window length grows.

Apart from these distinctive features, these plots show a similar behavior to those of the
previous currency measure: they show a linearly increasing trend, which is consistent
per item; across refresh rates they show growths in the orders of magnitudes. In spite of
this, this measure suffers from similar limitations to that of the previous currency metric:
it does not indicate the proportion of reads which are not fresh. By only employing the
last transaction time of the item, it does not model sufficiently the volatility of the item.
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Figure 4.5: Currency (alternative) at 3 sec for Workload B. Single window between
updates to read replica.

Figure 4.6: Currency (alternative) at 30 sec for Workload B. Single window between
updates to read replica.
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Figure 4.7: Currency (alternative) at 300 sec for Workload B. Single window between
updates to read replica.

4.3.2 Freshness, Staleness and Absolute Freshness

In this section we discuss our results for freshness, staleness and absolute freshness.
In Figure 4.8, Figure 4.9 and Figure 4.10 we show an example of a measurement of
freshness. Evidently, by only considering tmaxtx this measure gives as output a constant
value throughout the whole window. As a result it is not informative and does not give
insights about how the three cases differ.

Figure 4.8: Freshness at 3 sec for Workload B. Single window between updates to read
replica.
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Figure 4.9: Freshness at 30 sec for Workload B. Single window between updates to read
replica.

Figure 4.10: Freshness at 300 sec for Workload B. Single window between updates to
read replica.

In Figure 4.11, Figure 4.12 and Figure 4.13 we present our results for the staleness on
the 3 refresh rates. This measurement is almost equivalent to currency, save for the fact
that the offset is not on tu but on tmaxtx. As a consequence, the same limitations from
that measurement apply for this definition of staleness (i.e., it fails to inform on the
freshness of individual items in consideration of their volatility, it does not aggregate to
give insights about the freshness of reads as a whole).
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Figure 4.11: Staleness at 3 sec for Workload B. Single window between updates to read
replica.

Figure 4.12: Staleness at 30 sec for Workload B. Single window between updates to read
replica.
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Figure 4.13: Staleness at 300 sec for Workload B. Single window between updates to
read replica.

In Figure 4.14, Figure 4.15 and Figure 4.16 we display our evaluation of the absolute
freshness for each read transaction. The results that we report are the aggregate counts
of fresh/stale reads within one window between two refresh operations on the read
replica. We do not report on the distribution of individual fresh/stale flags per read
transaction, but we note that it follows a pattern similar to the reported for absolute
timeliness in a later section (see Figure 4.26, Figure 4.27 and Figure 4.28).

Unlike other measures evaluated until this point, which depend solely on values that are
calculated before the current window, the absolute freshness relies on tracking a list of
updated values after tu. In this sense the measure can be distinguished from others by
not being an estimate but an accurate evaluation1. We also note, that by assigning a
binary measure of freshness to individual items it provides a result similar to that of the
absolute timeliness.

1However, the measure does not track the values of items themselves, just the fact that there was
an update to an item. As a result, it can consider one item to be not fresh even if the recent updates
have assigned the exact same value it possesses in the read replica.
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Figure 4.14: Absolute Freshness and Absolute Staleness at 3 sec for Workload B
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Figure 4.15: Absolute Freshness and Absolute Staleness at 30 sec for Workload B
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Figure 4.16: Absolute Freshness and Absolute Staleness at 300 sec for Workload B

4.3.3 Freshness Rate and Freshness Index

As defined earlier, the freshness index [RBSS02] is proposed as a measure that is more
specific to time than to read transactions, and that reflects how much data deviates
from the up-to-date version. If the freshness index is 1 then most read transactions have
been on up-to-date data, else when the index is near 0 then most read transactions have
been done on outdated data.

In Figure 4.17, Figure 4.18, Figure 4.19 we measure the freshness index across the read
count sequence for the different refresh rates. Specifically we display the results of a
single window of read requests between two batch updates to the read replica.

When comparing the figures the first noteworthy aspect is the difference in the X-axis.
This indicates the amount of reads within the window of the two batch updates to the
read replica.

We see that most cases match the overall throughput: in Figure 4.18, with a throughput
of roughly 1000 transactions per second we can expect to find approximately 30000
operations within a window of 30 seconds and in Figure 4.19 approximately 300000
read transactions in 300 seconds. However, for the window selected in Figure 4.17,
there is a lower behavior than expected (i.e. we would’ve expected to see 3000 reads
in 3 seconds). This behavior occurs in some windows due to the overheads from the
pessimistic concurrency control with locks, which are more evident in this case (in
comparison to lower refresh rates), causing some windows to show a lower throughput
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than what is seen in the complete workload. We discuss about this in a later section
(Section 4.3.8).

Comparing the index measures itself, all three figures show a gradual decrease from 1
(i.e., 100% fresh) to close to 0.992 (i.e., 99.2% fresh). There is also a certain amount
of scaling involved, as there is a consistent change of magnitude in the percentages as
evaluated between the 30 and 300 seconds. On the other hand, in the measurements
between 30 and 3 seconds, there is a larger difference in magnitude of 3 orders. This
might be related to our observations regarding locking (i.e. since the throughput is
reduced in the window, the freshness is kept specially high).

Also, concerning the index itself we note that the average freshness index is decreasing
through the executions, which is consistent with the expectation that the correlation
with the throughput would be negative. We discuss about this in a later section
(Section 4.3.8).

It should be noted that all measurements that conform these apparently continuous
figures, are individual observations, with gaps between them, as seen in Figure 4.17. The
gaps between the observations correspond to interleaved updates (which increase the tlu,
leading in turn to step-wise decreases in the freshness index). When the measurement
scope is larger, these gaps become invisible in figures.

Figure 4.17: Freshness Index at 3 sec for Workload B. Single window between updates
to read replica.
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Figure 4.18: Freshness Index at 30 sec for Workload B. Single window between updates
to read replica.

Figure 4.19: Freshness Index at 300 sec for Workload B. Single window between updates
to read replica.

Moving on to the freshness rate, we report in Figure 4.20, Figure 4.21 and Figure 4.22 a
trend that is similar in some aspects to the observed for the freshness index, but that is
also markedly different in others.

In terms of what is similar between these metrics, we observe that the x-axis displays
an equivalent number of read counts per window, and that the distribution of reads
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per window corresponds to what is expected for the throughput in the cases of 30
and 300 seconds, but that it also diverges for the case of 3 seconds, due to the slight
non-determinism in concurrency management.

Other similar observations pertain to: the granularity of the measurements, which are
more visible in the 3 seconds case but less in the other cases and the overall downward
trend of the freshness rate itself, which in turn leads to lower averages that match our
expectation of a negative correlation with the throughput (to be discussed in a later
section).

However the measurements for freshness rate are markedly different from those of the
freshness index, since the first enable to report faster decays, going to 20 % and 0% in
the cases of 30 and 300 seconds, respectively. This yields results that at 300 seconds, by
the end of the time freshness rate falls to 0. With 30 seconds the freshness rate does fall
but only to 20%. After every refresh the freshness increases to 100% and again behaves
the same as before.

In fact, figures for the freshness index show a behavior that is roughly linear, while figures
for the freshness rate move from close to linear to a shape that resembles exponential
decay. Though both metrics introduce a non-linear component, in the form of non-
constant divisions, in our study it is only the freshness rate which is able to model
non-linear behavior.

This distinction means that the metric, by not being time dependent, but instead
building upon the proportion of items changed w.r.t those in the read replica, is able
to provide more insights than the freshness index for use cases which involve intensive
updates, as the one we study. Thus we observe from our results that the freshness index,
might be more applicable for domains where the number of updates is less important
than the time difference. Considering that this is not the case for HTAP benchmarks,
we suggest that freshness rate is a more appropriate measure.

Comparing the requirements from both measures, we note that both are quite similar in
the number of values that they need to track. While the freshness index needs to store
the maximum transaction time in a read replica (a fixed value per window), and the last
update of each item in the write replica, freshness rate requires the number of items in a
read replica (also a fixed value per window), and the number of items actually updated
in a write replica.
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Figure 4.20: Freshness Rate at 3 sec for Workload B. Two windows between updates to
read replica.

Figure 4.21: Freshness Rate at 30 sec for Workload B. Two windows between updates
to read replica.
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Figure 4.22: Freshness Rate at 300 sec for Workload B. Two windows between updates
to read replica.

4.3.4 Obsolescence

As mentioned previously, obsolescence captures the age of the read replica with respect
to the number of updates that have taken place in the write replica, since the last
synchronization of the read replica. Our evaluation for this measure over two windows
is presented in Figure 4.23, Figure 4.24 and Figure 4.25. The results confirm the
expectations that obsolescence would follow the opposite trend of freshness rates and
freshness indexes, increasing with time rather than decreasing. The trend is also linear
and does not present exponential behavior (which stems from the linearity of the
formula).

In terms of the different timestamps, we observe that the number of read operations per
window is consistent with the reported throughput, with numbers being greater for the
windows in the cases for 30 and 300 seconds. In addition, the number of writes in the
results (i.e., the tx count on the y-axis) match well the percentage of writes expected for
the workload. The number of writes in a 5% proportion to the workload would be, for
3000, 30000 and 300000 expected operations, roughly 150, 1500 and 15000, respectively.

When compared with other formulas, obsolescence is based on a linear function over the
increasing number of transactions that arrive into the write replica. Gouging this metric
is quite simple, as it only requires to track the time of the last update to the read replica,
and the number of transactions elapsed since. Among its drawbacks by considering
solely an aggregated view on the transactions (i.e., disregarding the specificity of items
written), it is less informative than measures which consider items, like the freshness
rate, and might give insufficient information about freshness when there is update skew
within a window (i.e. when a small number of items receives a large number of updates).



4.3. Freshness Measures in a Database Benchmark 69

Figure 4.23: Obsolescence at 3 sec for Workload B. Two windows between updates to
read replica.

Figure 4.24: Obsolescence at 30 sec for Workload B. Two windows between updates to
read replica.
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Figure 4.25: Obsolescence at 300 sec for Workload B. Two windows between updates to
read replica.

4.3.5 Absolute Timeliness

Absolute timeliness is a measure that is applied to each read transaction, assigning to
such transaction a score of 0 or 1, that indicates if the transaction is expected to be
timely (i.e., no updates are likely since tu) or not timely (i.e., updates might’ve occurred
after tu). To determine this score a heuristic predicts the volatility of items by using the
time difference between their last two updates before tu.

We present our study of this metric in Figure 4.26, Figure 4.27 and Figure 4.28. Specifi-
cally we show the scores assigned to each read transaction that arrives within a window,
for refresh rates of 3, 30 and 300 seconds, respectively.

The first noteworthy aspect from these measurements is that we observe a densification of
the values that are seen as untimely, starting from Figure 4.26, where they are relatively
seldom, and increasing through Figure 4.27 and Figure 4.28, with the latter showing
too the deterioration of the timely reads, which no longer manage to occur through a
complete window. In this sense, by using this metric we achieve similar insights to those
provided by the freshness rate: we see that there is a drastic loss of data quality taking
place, due to staleness.
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Figure 4.26: Absolute Timeliness at 3 sec for Workload B. Single window between
updates to read replica.

Figure 4.27: Absolute Timeliness at 30 sec for Workload B. Single window between
updates to read replica.
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Figure 4.28: Absolute Timeliness at 300 sec for Workload B. Single window between
updates to read replica.
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Figure 4.29: Absolute Timeliness at 3 sec for Workload B (Totals). Single window
between updates to read replica.
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Figure 4.30: Absolute Timeliness at 30 sec for Workload B (Totals). Single window
between updates to read replica.
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Figure 4.31: Absolute Timeliness at 3 sec for Workload B (Totals). Single window
between updates to read replica.
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The precise numbers for how many items fall, by the end of the window, in each category
(i.e., timely or not) are displayed in Figure 4.29, Figure 4.30 and Figure 4.31. Timely
reads constitute, respectively, 70%, 30% and 0.02% of the observed cases.

Regarding the number of operations per window, the results are consistent with our
expectations.

To conclude our discussion of this metric we should note that it requires to track tu, in
addition to the volatility of items. This last factor can be calculated with the last two
updates (which requires more information to be kept), which could also be pre-computed.
Perhaps better results can be achieved by considering more information from the item’s
history of updates to calculate the volatility. We should also note that the volatility of
an item in the past window might not reflect precisely how it is updated in the current
window.

4.3.6 Three more measures for Staleness, based on the items
update history

In Figure 4.32, Figure 4.33 and Figure 4.34 we present our results for the Enhanced
Averaging method of Staleness. We specifically plot the staleness estimated for each
read transaction on an item.

Our first observation pertains to the ranges of the values. We note that for some read
transactions, the values predicted are much larger than those of the Staleness. We
expect this to be explained for items in which the expected update was later than tlu,
but smaller than tmaxtx.

Across the refresh rates we also observe a densification process that tends to segregate
specially cold items to the bottom of the plot, specially hot items to the top, and the
majority in the middle. The process seems similar to Currency (alternative), with the
distinction that the Enhanced Averaging Method seems to predict lower stalenesses for
most of items.
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Figure 4.32: Staleness with Enhanced Averaging Method at 3 sec for Workload B. Single
windows between updates to read replica.

Figure 4.33: Staleness with Enhanced Averaging Method at 30 sec for Workload B.
Single windows between updates to read replica.
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Figure 4.34: Staleness with Enhanced Averaging Method at 300 sec for Workload B.
Single windows between updates to read replica.

In Figure 4.38, Figure 4.39 and Figure 4.40 we show our results for the shifting window
method. We display our results for a window of 0.75 seconds, which is smaller than the
refresh rate. If we would’ve selected a window larger or equal to the refresh rate, the
results would have been close to those of the enhanced averaging (this is, if we interpret
the formula to only use results from the previous window2).

Our evaluation for the shifting window does not show a meaningful sense of staleness.
When choosing a window size lower than the refresh rate the formula mixes the update
rate of the previous window with the expectation that tlu happened there. Hence we
find no workaround to adopt such formulation to our use case.

2When we interpret the formula to use also information from the current window, the formulas
target application becomes unclear.



4.3. Freshness Measures in a Database Benchmark 77

Figure 4.35: Shifting Window Method at 3 sec for Workload B. Single windows between
updates to read replica.

Figure 4.36: Shifting Window Method at 30 sec for Workload B. Single windows between
updates to read replica.
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Figure 4.37: Shifting Window Method at 300 sec for Workload B. Single windows
between updates to read replica.

We include, for illustration, in Figure 4.38, Figure 4.39 and Figure 4.40 the results for
the Savti for a selected item on different windows using the StalenessExponentialSmoothing.
We use the same window size than for the former approach. Our results, once again do
not show any meaningful information. This leads argument to the strong observation
that the last two measures are either not applicable, nor relevant for our use case. The
first one since it can presuppose a mix between updated data and predictions which
is not appropriate for our use case and damages the results, the second simply loses
relevance because Absolute Timeliness provides accurate measures, and in an evaluation
with a window smaller than the refresh rates there are no clear results.

Figure 4.38: Exponential Smoothing Method at 3 sec for Workload B. Single windows
between updates to read replica.
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Figure 4.39: Exponential Smoothing Method at 30 sec for Workload B. Single windows
between updates to read replica.

Figure 4.40: Exponential Smoothing Method at 300 sec for Workload B. Single windows
between updates to read replica.

With the results from these measures we conclude our evaluation. In the next section
we discuss how the measures fared in their correlation to the throughput.
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4.3.7 Correlation of freshness measures with throughput

In Table 4.3 we present how these measures correlated with the throughput in our study3.
Due to their limitations, we do not include results for Shifting Window and Exponential
Smoothing.

For almost all cases we selected the average of the measures through the window. For
Absolute Freshness and Absolute Timeliness we report the results for the final proportion
of fresh and timely reads within the windows, respectively.

3Please note that in Table 4.3 we include Timeliness Rate. This measure is presented and discussed
in Section 4.3.8.
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For all measures we report correlations that are close to 1 or -1. This finding corresponds
well to the studied correlation between freshness and throughput in systems like the one
we study.

All metrics correlated in the direction expected.

4.3.8 Discussion

In this section we discuss our observations regarding these measurements. We start
by providing general observations regarding where the measurements could be applied.
Next we note the insufficiency of global measurements and of time-based measurements
that do not consider item volatility. We conclude recommending measures and proposing
an extension to them.

4.3.8.1 Measures can be classified according to their use of information
posterior to tu

Our first observation, stemming from the practical experience of implementing the
measures, is that we see measures can be divided into two groups, based on their use of
information posterior to tu or not. Among the measures that use it we include: Absolute
Freshness, Freshness Index, Freshness Rate and Obsolescence. The rest of measures
(save for StalenessShiftingWindow and StalenessExponentialSmoothing) fall, logically, in the
other category.

StalenessShiftingWindow assumes a mix of a posteriori information with an approximation
of apriori information. We find that this is a use case which has no clear application.

The distinction between measures into these two large groups is important because it
establishes the way in which these measurements can be applied and the strategies that
can be adopted to model per-item freshness.

Measurements that use information posterior to tu are preferred for adoption in bench-
marks. They can be computed after the execution of the tests, by analyzing the
logs.

Furthermore the use of this a posteriori information can help the measures provide
precise insights (i.e., not based on estimations), such as the case of the Absolute Freshness
and Freshness Rate, which count as fresh exactly those items that have been updated
after tu.

Measures that do not use information posterior to tu are suitable to live systems, and
are to be preferred for HTAP designs that might employ freshness measurements as part
of the online statistics used by query optimizers.

Paired with their usability, these measurements are tasked with the challenge of properly
modeling the expected updates of items in the current window, by relying only on past
information of the items. We have seen some ways in which this is modeled within the
studied measures, such as the Currency (alternative), where the maximum transaction
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for a given item before tu is used to model the trajectory for the currency of items. We
have also seen this in Absolute Timeliness, where the two last updates to an item before
tu are employed to define the volatility of the item, and thus determine if an item is
fresh or not at the moment of a read transaction.

4.3.8.2 Global measures and time-dependent measures which disregard the
volatility of items provide insufficient information for our use case

We have also seen that some measures are global (or item-independent), such as Currency,
Freshness, Staleness and Obsolescence. From our study we note that these measures
provide insufficient information for our use case, when compared to item-based ones:
they do not give insights into the state of the read replica as a whole, nor into the exact
freshness of a read transaction. Thus we strongly encourage the avoidance of these
measures, since better measurements could be employed at similar costs.

The same statement can be applied to formulas that are based on time observations
while disregarding the volatility of items (i.e. such as Currency, Freshness, Staleness,
Freshness Index ); thus they are not adequate for a write-intensive scenario when the
number of updates is more informative than the time elapsed. In our evaluation we
adopted a workload with few updates (5%), the limitations of time-based measures
should be even more marked when the updates are more.

4.3.8.3 Among the metrics that use information posterior to tu, Absolute
Freshness and Freshness Rate should be preferred

Among the metrics that count with information a posteriori to tu we consider Absolute
Freshness and Freshness Rate to be the most useful. In what follows we detail our case.

Obsolescence, though easy to track, lacks the granularity of items, thus it is not precise.
The Freshness Index, though predicated as a non-linear formula, which should be able to
model decay, has the limitation that by being restricted to time measurements is hardly
applicable to write-intensive scenarios (when the number of operations reports better on
the amount of change than does time). For example, in our study, we observe that across
freshness changes (see Figure 4.17, Figure 4.18 and Figure 4.19) the metric does not
report a marked decay. This limitation is notable when compared to the Freshness Rate,
which truthfully reports a more drastic deterioration in our evaluation (see Figure 4.20,
Figure 4.21 and Figure 4.22).

Absolute Freshness measures with complete certainty the quality of the read operations
in a workload past. It focuses on the quality of the operations rather than on that of
the items. The Freshness Rate complements well the Absolute Freshness because it
tracks updates to items and reports on the freshness (i.e., quality) of the read replica
as a whole. As a result we recommend the selection of both these measurements, since
each provides a different insight into the storage and operation quality.



84 4. The Evaluation of Freshness

4.3.8.4 Among the metrics that do not use information posterior to tu,
Absolute Timeliness should be preferred

Considering the metrics that use solely information a priori to tu, we strongly encourage
the adoption of measurements that model the volatility of items, like Absolute Timeliness.

Currency and Freshness show the limitations of global measures, not considering items
nor volatility, and in addition, with the latter being almost entirely uninformative on its
own. Currency, to an extent, proposes simply a change of time coordinates for the study
of freshness. However, as noted, the time elapsed is not as informative as the number of
updates.

Currency (alternative) improves over Currency, but it does not provide a mechanism to
determine if a read is fresh or not, nor can it be employed straight-forwardly to determine
the quality of the read replica. The same problem applies to StalenessEnhancedAveraging

and StalenessExponentialSmoothing.

Among these measurements, only Currency (alternative), StalenessExponentialSmoothing

and Absolute Timeliness attempt to model the volatility of items. The former employs
a simple model, based on the last update of each item before tu, the latter estimates it
better by considering the time elapsed between the last two updates to an item before
tu. As a result the latter presents a better model for how likely is an item to be fresh
at the time of a read transaction. In consideration of this, and the fact that Absolute
Timeliness gives an evaluation on the quality of a read transaction, we recommend this
as a measure to employ from the group of those that rely on information a priori to tu.
StalenessExponentialSmoothing provides a sophisticated model of volatility, however since it
does not provide a clear measure like Absolute Timeliness, we do not consider to be
specially relevant.

4.3.8.5 Timeliness Rate: our proposal to complement Absolute Timeli-
ness, leveraging the volatility model

Stemming from the observation that Absolute Timeliness does not convey information
on the state of the read replica, we propose the use of another companion measure.
This is a novel measure which we call Timeliness Rate, and can be calculated with the
following formula:

Formula: Timeliness Rate(ti) = nmvnnt/nmv.

Where nmvnnt is calculated as: nmv−nnt, with nt: number of items marked as absolutely
untimely.

Figure 4.41, Figure 4.42 and Figure 4.43 display the results for evaluating the Timeliness
Rate in our experiment. Using the same windows than for Freshness Rate, we observe
that our measure is able to convey a similar information, though the model predicts,
at the end of the window less decay in freshness than the real one (i.e. 99% vs 94%,
32% vs 17%, 0 % vs 0 %). For comparison, see Figure 4.20, Figure 4.21 and Figure 4.22.
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The same trends are preserved in all plots, except for the freshness rate of 3, where the
decline modeled is notably less steep than the real one.

The absolute errors w.r.t the means of the Freshness Rate are: 6.22761, 0.52808 and
2.853521, for the refresh rates of 3, 30 and 300, respectively4. In addition, the negative
correlation with throughout is preserved and the difference when compared to the
correlation of the Freshness Rate is 0.006775132314.

Figure 4.41: Timeliness Rate at 3 sec for Workload B. Single windows between updates
to read replica.

4For reference, the values are presented in Table 4.3.
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Figure 4.42: Timeliness Rate at 30 sec for Workload B. Single windows between updates
to read replica.

Figure 4.43: Timeliness Rate at 300 sec for Workload B. Single windows between updates
to read replica.

These findings validate that the volatility model used in the calculation of Absolute
Timeliness is appropriate for modeling the freshness of HTAP databases, leading to a
close approximation of the real values when using this model to estimate the Freshness
Rate.
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A complete comparison of Absolute Timeliness with Absolute Freshness, though pertinent,
was left for future work.

4.3.8.6 Shifting Window Staleness is not pertinent to our use case, Ex-
ponential Smoothing Staleness, with its difficulties for aggregation
falls short when compared to Absolute Timeliness

In our study of StalenessShiftingWindow we found that a possible application is to employ
it to improve over Absolute Timeliness. For this we evaluated on cases where the window
size was smaller than the refresh rate. Such assumption lead to an inadequate expression
of the measures, producing inappropriate results. On the other hand we found no clear
way of organizing the measure such that it would work on a priori information only.
Hence, the sophisticated method of StalenessShiftingWindow is not pertinent to our use
case, and instead Absolute Timeliness is to be preferred.

4.3.8.7 Some measures can be considered as stand-alone measures, while
others can be considered building blocks

We conclude our discussion by noting that some measurements, by themselves, are
able to answer (with varying degrees of goodness) the information need of evaluating
the quality of read transactions (e.g. Absolute Freshness, Absolute Timeliness) and
the quality of the read replica (e.g. Freshness Rate). Other measures serve only as
building blocks to fulfill these and other information needs (e.g. Currency, Currency
(alternative), Freshness, Staleness, Freshness Index, Obsolescence). As a result in our
recommendation of metrics we do not discourage the use of others if they care helpful
to fulfill other information needs apart from those considered for our study.

4.4 Summary
In this chapter we collected our evaluation of different freshness measures over an
execution of the YCSB benchmark workload B (consisting of 95% reads and 5% updates)
over an HTAP prototype called Blinktopus. We defined the general evaluation question
which motivated our research, we presented the freshness metrics we found from the
literature, discussing their computational requirements and summarizing their features.
Next we evaluated the measures using the aforementioned configuration and displayed
results over windows between two refresh operations to the read replica.

We noted the pros and cons of the measures in describing the quality of individual read
operations and of the read replica as a whole, for measures that require information
posterior to tu and for measures that are tailored to not require such information. From
the first group we were able to recommend Absolute Freshness and Freshness Rate as
the preferred measures; from the second group we identified Absolute Timeliness as
the best candidate. In addition, to supplement the need for a measure, we proposed
and tested a novel measure, called Timeliness Rate so as to model the Freshness Rate
when there is no information posterior to tu, and a model for the volatility of items is
available.

In the next chapters we study an existing HTAP benchmark and conclude our work.
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5. Results from HTAP Benchmarks
and Alternatives for Adding
Freshness

In this chapter we present the results of our evaluation of the HTAPBench benchmark
results against an OLTP system. We report results that do not replicate the expectations.
Our results are merely an illustration, to complement our work and portray what can be
accomplished by such a tool. These results do not add to our core evaluation question,
save for suggesting how the freshness metrics might be integrated into a benchmarking
tool.

• Mixed workload: In this chapter we give a brief introduction and then focus
on the available mixed workload benchmark, HTAPBench and the results report
provided by it Section 5.2.

• Evaluation: The experimental setup for OLAP, OLTP and Hybrid systems are
discussed.

• Summary: We summarize the state of art of HTAPBench and suggest how
freshness measures we recommend can be added to its reporting.

5.1 Introduction

The benchmarking approaches defined were especially to suit the existing traditional
taxonomy of OLTP and OLAP systems. As discussed in Chapter-2, the benchmarking
approaches TPC-C and TPC-E are tailored for OLTP workloads and the benchmarks
TPC-H and TPC-DS are for analytical workloads (OLAP). As each of these benchmarks
focuses on optimization challenges that are associated to each system type which defines
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evaluation suites with different and contradicting motives. When an OLTP target
operation is optimized, the OLAP performance would intensively degrades and vice-
versa. Considering the scenario wherein specific set of queries that need distinct storage
layouts to gain efficiency are generated by OLTP and OLAP workloads. Also, different
sized datasets can be accommodated by taking the concept of warehouse as scaling
factor.The optimization of storage layout must be attained in order to obtain efficient
hybrid systems. Additionally the storage metrics generated by OLAP are sequential
while the OLTP workloads are mostly random. Few other reasons along with the
above mentioned ones cause the workloads to have evaluated independently. But this
was changed by [CFG+11], where in an approach for HTAPBench providing a unified
metric for HTAP systems geared towards execution of constantly increasing OLAP
requests limited by an admissible impact on OLTP performance was proposed. This is
accomplished by regulating the coexistence of OLTP and OLAP workloads using load
balancer and further proposing a method such that new data and results are generated,
so that across the runs the OLAP requests over freshly modified data are comparable.

A new metric was introduced by HTAPBench to provide the reading of analytical capa-
bility as system scales. A hybrid workload which exercises a workload with operational
and analytical activity at the same time and over the same system was introduced.
A client balancer was also introduced which controls the launch of analytical clients
alongside ensuring that the OLTP activity stays within configured threshold and the
results are kept comparable across runs by addressing data uniformity for workload.
The user is allowed to configure the necessary workloads using the configuration file.

We have discussed different benchmarks in previous chapter, which are focused on
individual workloads either on OLAP or OLTP workloads. The goal of these benchmarks
is to evaluate the systems according to their optimization challenge. As each of these
systems has different storage procedure and different access patterns, these systems are
efficient in the way of achieving high throughput and high latency. Hence for these
systems, OLTP and OLAP workloads are evaluated individually. In general, it is not
easy to evaluate the mixed workloads in a single machine because in a HTAP system
the throughput of one engine should not affect the others latency performance.

Authors Coelho et. all [CPV+17] proposed HTAPBench benchmark for the mixed
workloads. This benchmark is a open source benchmark and to run this HTAPBench
the database should be installed and it needs to be run on a server. To test this
benchmark, we have used the PostgreSQL. The PostgreSQL is an OLTP database and
it it is connected through a JDBC connection. The main goal of the HTAPbench is to
define a unified metrics (Section 2.2.4.2) for the HTAP workloads. The unified metrics is
nothing but maintaining the transaction motion on the increasing demand of analytical
workers and to analyze the analytical queries. It measures the performance of OLTP
and OLAP workloads with execution methods.Each query is executed five times. The
SUT also manages the number of OLAP workers those are added to it without affecting
the throughput of the OLTP.
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The concept of configuration file has been used in HTAPbench [CPV+17]. It has been
shown in Figure 5.1 and Figure 5.2 below. In this file, the benchmark is given some
privileges to configure the HTAPbench. With the help of this benchmark, we can test
the different databases and we can evaluate the system. For the evaluation and testing,
we have considered PostgreSql database. In fact, different databases can be added for
the evaluation according to the preference. The postgres created a htap database and
created a connection between the HTAPbench and htapb database. Further, the data is
loaded into the schema.

Figure 5.1: HTAPBench configuration file [CPV+17]

Figure 5.2: HTAPBench configuration file [CPV+17]

Cole et al. [CFG+11] primarily proposed a unified metrics which enables the quantitative
comparison of very similar systems, and also very different systems. Additionally they
also proposed solutions to the important challenges of hybrid benchmarks such as the
Client Balancer along with comparable and homogeneous results across executions. The
proposed prototype has been tested for validation over the OLTP, OLAP and Hybrid
systems. It has been shown that HTAPBench is capable of distinguishing different classes
of systems along with distinguishing systems within same classes with high precision.
This method concludes that it is able to introduce the required workload randomness
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while keeping the results comparable by ensuring equal query execution costs across the
whole dataset.

5.2 Scalability of Different Systems Under Test (SUTs)

Rather than comparing quantitatively the different SUTs the authors [CPV+17] have
presented scenarios to manifest the expressiveness of the benchmark suite and its metrics.
For test, mainly three different SUTs were chosen: OLTP, OLAP, and Hybrid systems.
In their analysis they have chosen to set up client balancer and an evaluation period of
60 sec along with regulated OLTP activity by the standard transaction mix in TPC-C.
Whereas for the OLAP activity a HTAPBench was set up such that every business query
would be selected in accordance to uniform distribution. Through out the experiment,
the HTAPBench was configured such that 100 transactions per second were injected.
These were equivalent, amount upto 2,099 active OLTP clients and 210 warehouses on a
total 117 GB of data. The chosen target transactions per second (tps) was selected as
the number of configured warehouses which is over 100 GB dataset. All the experiments
are carried out for average of five independent 60 minute runs. Along with this basic set
up, based on the type of SUT few changes were done on it.

In this section we display first results published by the authors. Next we report our own
limited results, which have faced problems intrinsic with the tool.

5.2.1 Results for OLTP system

A row oriented OLTP engine was deployed and it is configured with enough memory to
allow the number of clients required. Also the client balancer within the HTAPBench
was configured such that it would consider a default error margin of 20%. Through out
the test, it was evident that there exists a declining trend in the OLTP. This depicts
serious concerns for the OLAP activities as the engine was able to handle up to 50
OLAP clients.

Figure 5.3: OLTP SUT [CPV+17]
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5.2.2 Results for OLAP system

Along with the previous setup configuration this experiment deploys a column oriented
OLAP engine, in which only the required level of clients allowed is setup. From Figure 5.4
it is clear that this SUT has held the OLTP throughput for a shorter period and this
is completely reasonable behavior as the major focus of this engine does not lie with
OLTP activity. The client balancer stops to release new OLAP clients as soon as the
threshold was broken, that was at the 6th minute. As the threshold breaks even at a
lower throughput, the activity of OLTP was kept stable until the end of run time.

Figure 5.4: OLAP SUT[CPV+17]

5.2.3 Results for Hybrid system

The Figure 2.17 shows that the assigned target was acquired by OLTP in first minute of
execution. From then onwards the OLAP streams were deployed by the client balancer
until there existed a degrade over OLTP throughput that was beyond the considered
error margin. This happened after 20 minutes and hence registering a grand total of 12
OLAP streams. Then begins a slow degrade of the OLTP throughput over the reminder
of the test duration.
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Figure 5.5: Hybrid SUT

5.3 Our own Results

From our experimental setup when we analyzed the throughput of OLTP and OLAP,
we derived the following results.

Figure 5.6: Results of HTAPBench over PostgreSQL

From the Figure 5.6 we see that the experiment could hold the OLTP throughput
constantly until 7 minutes and then gradually starts decline for a minute and later
has a huge rapid decline and ends at 10 minutes. Whereas the OLAP system faces a
gradual increase constantly and equals the target point by the end of 19 minutes and
stays constant thereafter. The results derive that the system was able to survive for
13.03 tpmC and 35.08 QphH. Also the total number of OLAP workers until the end
were spotted to be 18. Therefore the result of number of QpH for each OLAP worker
can be calculated as fraction of QphH and OLAP workers. This derives to be 1.95 QpH.
Also the unified matrix QpHpW amounts to 1.95 @ 13.03 tpmC.

As Postgres is an OLTP system, to check for validity of our system, we compared our
system, its configuration, experimental setup and derived results to the OLTP system
experiment done by authors [CPV+17]. We trust that comparing these properties could
yield the validity or in case of incorrect results, the reasons or threads that cause the
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invalidity could be understood. To start with comparing the System configuration, The
OLTP system was setup on server with an Intel Xeon E5-2670 v3 CPU with 24 physical
cores (48 virtual) at 2.3 GHz with 2 cores and 72GB of memory, running Ubuntu 12.04
LTS as the operating system. Whereas we use Intel(R) Core(TM) i5-5200U CPU @
2.20GHz, 8GB RAM, 500GB Memory, 64 bits and Linux (Ubuntu 16.4) as operating
system.

The authors do not specify any constrain on how long should a OLAP system execute.
The lack of optimal time where the OLTP system has to run could be serious concern
for the validity in replicating their results.

5.4 Summary

In this chapter, we have discussed the state of the art of HTAPBench, an HTAP
Benchmark.

We have attempted to talk about various Systems Under Test (SUTs) scalability nature
by demonstrating the experiments along with their results that were done in three
different scenarios: OLTP, OLAP and Hybrid systems respectively. Additionally, we
presented our work i.e., HTAPBench over PostgreSQL which is an OLTP system. This
experiment was an attempt to validate the results presented and so was attempted to
perform in similar environment. It was not possible for us to repeat the results that
authors discuss.

Since the benchmark provides a log of operations, it is possible to employ this for adding
freshness measures. This can require the addition of a specific message to indicate the
refresh of a replica. Similarly, it can be used for different update schemes. A tool similar
to ours, which is capable of calculating Absolute Freshness and Freshness Rate from
the logs could be employed to provide these insights. A special extra parameter can be
needed to indicate the number of items in the storage.
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6. Conclusions and Future Work

6.1 Conclusions

The traditional database workloads, OLTP and OLAP, are used for serving the transac-
tional and decision making applications of organizations respectively. For the purpose
of evaluating the system performance, benchmarks have evolved. A Benchmark is a
standardized problem or a test which serves as a basis for evaluation or comparisons of
various systems. These benchmarks are further classified into different types, based on
their evolution target. Transactional Processing Performance Council (TPC) offers dif-
ferent benchmark standards. Transactional processing system benchmarks are especially
dedicated to OLTP applications whereas analytical processing system benchmarks are
specially dedicated to decision support systems (DSS).

The high demand for evaluating systems that support mixed workloads (HTAP) neces-
sitates the evolution of mixed workload benchmarks, which are crucial to help these
technologies developed by enabling the comparison of systems, helping the community
to realize which design features are useful and which are not. In spite of a dramatic
growth in HTAP systems, there is research gap in standard HTAP benchmarks and
there is no standard available in the market.

However some HTAP benchmarks exist, which consider mixed workloads and the system-
specific aspects of HTAP systems, like CH-benCHmark, HTAPBench and CBTR. The
major challenges that these HTAP systems face are to evaluate performance, freshness,
flexibility, isolation and elasticity issues.

These mixed workload benchmarks do not satisfy all the requirements, mainly the
challenge of providing a standard and informative measure for freshness. To understand
this challenge, we have studied the different freshness metrics provided by various authors.
In our work we analyzed various freshness metrics, as they concern to evaluating HTAP
systems. The common metrics proposed to represent the freshness of the data include
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staleness, age, timeliness, freshness, currency, obsolescence, up-to-datedness etc. In
various scenarios such as data integration or dynamic web database, continuous update
of data plays a key role, hence the freshness of the data as a metric (data quality) plays
a vital role for understanding the performance of a system. Without such a measure
HTAP tools can fool a benchmarking tool by simply reducing freshness to achieve a
higher throughput.

Evaluating freshness is also a potential area of interest in designing HTAP systems,
since the query engine might be able to leverage this information in its processing,
deciding, for example if a given optimization is possible by reducing freshness slightly
while keeping tight SLAs with users. It can also be used for co-processor accelerated
operations, which face the same problem of deciding if it is possible to run an operator
over a replica instead than over the live data.

We reviewed freshness metrics proposed in the literature, and we employed the following
setup to evaluate the applicability of these metrics:

6.1.1 Tests

The YCSB benchmark was built on Java and it possesses extensibility such that the
YCSB clients can be modified according to user requirements. This benchmark workload
has combination reads and updates and these mixed workloads run simultaneously, hence
we have chosen YCSB Benchmark in our environment as the Benchmark to perform
tests over our prototype database.

It should be noted that the read components of YCSB are OLTP and, hence, it cannot
be considered an HTAP benchmark. Nonetheless we deemed it fit to our study since
it combines reads and updates following statistical distributions representative of high
demand systems (namely a Zipf distribution of requests, with about 80% cold items and
20% hot items.

6.1.1.1 Implementation

For the task of analyzing freshness in an HTAP system we used a prototype database
which was built based on the architecture of Octopus DB. Our prototype database
was called Blinktopus DB, and it was developed by students in our university. In this
Thesis we modified this system according to the YCSB benchmark to run the test (i.e
we exposed the expected endpoints such that it could be connected to YCSB). We also
added the complete functionality of concurrency control with locking, and the concept
for a periodic refresh of the materialized views based on a provided refresh rate.

Our tests using a YCSB mixed workload were run in every 3, 30 and 300 second intervals.
In these tests we observed that the throughput of the system at 300 seconds is higher
and decreases when the time interval decreases. Hence we confirm experimentally the
case of higher freshness leading to lower throughput. We have tracked the complete
results into a file. The freshness measurements are performed off line on the stored data
file.
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6.1.2 Evaluation

Through our study calculating these measurements we note the pros and cons of the
measures in describing the quality of individual read operations and of the read replica
as a whole.

We note that metrics can be classified according to their use of information posterior to
the update time of replicas (i.e., live information about the updates that are still not
visible to the replica). The distinction between measures into these two large groups is
important because it establishes the way in which these measurements can be applied
and the strategies that can be adopted to model per-item freshness. Measurements that
use live information are suitable for adoption in benchmarks. They can be computed
after the execution of the tests, by analyzing the logs. Furthermore they provide precise
insights (not based on estimations), such as the case of the Absolute Freshness and
Freshness Rate, which count as fresh exactly those items that have been updated on the
live system.

Measures that do not use live information are the most suitable to live systems when
there is limited observability. These measures are to be preferred for HTAP designs
that might employ freshness measurements as part of the online statistics used by query
optimizers.

We also note that some measures like the Shifting Window Staleness are not pertinent
to our use case, as they does not fall into any of the two large groups we have discussed,
and hence it is unclear what are its real-world application.

We have also noted that global measures and time-dependent measures which disregard
the volatility of items provide insufficient information for our use case. Among the first
group they fail to give insights into the state of the read replica, or into the freshness of
specific read requests. Among the second, they are not adequate for a write-intensive
scenario when the number of updates is more informative than the time elapsed. In the
same line of thoughts we have noted that sophisticated approaches, like the Exponential
Smoothing Staleness, though potentially useful, with its difficulties for aggregation fall
short when compared to Absolute Timeliness.

We identified Absolute Freshness and Freshness Rate as the preferred metrics for
measures that require information posterior to the update of the replica. We also
proposed Absolute Timeliness as the best metric for measures which are tailored to
cases where there is no access to information posterior to the update time of the replica.
In addition, we invented and tested a novel measure, called Timeliness Rate so as to
model the Freshness Rate in the latter case. We show that our metric is useful and
readily applicable.

We concluded our discussion by observing that some measurements, by themselves, are
able to answer (with varying degrees of goodness) the information need of evaluating
the quality of read transactions (e.g. Absolute Freshness, Absolute Timeliness) and
the quality of the read replica (e.g. Freshness Rate). Other measures serve only as
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building blocks to fulfill these and other information needs. As a result from our study,
though we recommend the adoption of some metrics we do not discourage the use of
others which could be applied, if they can be helpful to fulfill other information needs
apart from those considered for our study. We envision as future work a system which
will offer users these metrics such that they can employ them as building blocks to
create dashboards and understand better their systems with regards to this data quality
dimension.

6.2 Future Work

We have tested the HTAPBench benchmark using OLTP, OLAP and Hybrid workloads.
Postgres database has been connected with this benchmark and tested. As a future
work, other databases (NuoDB, SAP HANA etc.) can also be connected with this
benchmark and the performance of those databases can be analyzed. This helps not
only to understand the benchmark credibility, in addition databases performance can be
more clearly understood. Also as future work, there needs to be more tests to validate
that the benchmark can be used by any user to reproduce the results published by
authors.

We suggest that important future work is to use our analysis framework on different
HTAP systems, and to extend it for two possible cases: a more fine-grained notion of
refresh rates (i.e. with it being applied to a subsection of the read replica), and the case
when requests themselves are able to introduce their freshness requirements (as we saw
is applied in Google Cloud Spanner).

6.3 Concluding Remarks

We expect our work to contribute to the development of standards for measuring
freshness, helping in practical evaluations of this data quality dimension, and helping
to build query engines able to reason about freshness in any situation where replicated
data management is needed, like HTAP systems or co-processor accelerated systems.
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ing decision support benchmarking to the next level. In Michael J. Franklin,



Bibliography 107

Bongki Moon, and Anastassia Ailamaki, editors, SIGMOD Conference,
pages 582–587. ACM, 2002. (cited on Page 31)

[PWM+14] Iraklis Psaroudakis, Florian Wolf, Norman May, Thomas Neumann, Alexan-
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